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ABSTRACT

This study introduces a simple analytic expression for calculating the lead time required for a linear trend to

emerge in a Gaussian first-order autoregressive process. The expression is derived from the standard error of

the regression and is tested using the NCAR Community Earth System Model Large Ensemble of climate

change simulations. It is shown to provide a robust estimate of the point in time when the forced signal of

climate change has emerged from the natural variability of the climate system with a predetermined level of

statistical confidence. The expression provides a novel analytic tool for estimating the time of emergence

of anthropogenic climate change and its associated regional climate impacts from either observed or modeled

estimates of natural variability and trends.

1. Introduction

The time of emergence (TOE) is defined as the point

in time when the signal of climate change emerges from

the underlying noise of background natural variability

(Madden and Ramanathan 1980; Santer et al. 1995;

Weatherhead et al. 1998; Christensen et al. 2007; Giorgi

and Bi 2009; Mahlstein et al. 2011; Deser et al. 2012b;

Hawkins and Sutton 2012; Zappa et al. 2015). It is

helpful for anticipating when the impacts of climate

change are likely to have significant effects across soci-

eties and ecosystems, and can inform risk assessments,

mitigation policies, and climate adaptation planning.

As noted in the IPCC Fifth Assessment Report (AR5)

(Kirtman et al. 2013, p. 983), there is ‘‘no single metric’’ for

estimatingTOE. Inmost cases, TOE is estimated as the first

lead time when the anthropogenic signal in climate change

exceeds (and then remains continuously above) a pre-

determined factor of the amplitudeof thenatural variability.

In this case, the TOE for a time series x(t) is expressed as

n
TOE

5
ks

e

b
, (1)

where nTOE is the time of emergence (the number of

time steps at which anthropogenic climate change is

judged to have emerged from the background natural

variability; this is expressed relative to the start of the time

series and is referred to subsequently as the lead time), k is

the required ratio of the forced signal to the natural vari-

ability (generally between 1 and 3), se is the amplitude of

the internal (unforced) variability, and b is the linear trend

per time step. Note that in this study, the term natural

variability refers to the sum of internal climate variability

as a result of stochastic dynamic processes and external

variability as a result of natural forcings, such as volcanic

eruptions and solar variability.

Most previous studies of TOE are based on empirical

estimates of the first lead time at which Eq. (1) (or a

closely related variant) is satisfied. The differences lie in

the methodologies used to determine b, se, and k. For

example, Giorgi and Bi (2009), Mahlstein et al. (2011),

Diffenbaugh and Scherer (2011), and Zappa et al. (2015)

all define b as the change in the climate state averaged

over an ensemble of climate change simulations, where

the forced signal is smoothed with different averaging

periods. Weatherhead et al. (1998) estimate b using a

generalized least squares regression model. Hawkins

and Sutton (2012) define b as the linear projection ofCorresponding author: Jingyuan Li, jingyuan.li@colostate.edu
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regional temperatures onto smoothed values of simu-

lated global-mean temperatures. Giorgi and Bi (2009),

Mahlstein et al. (2011), andHawkins and Sutton (2012)

estimate b from ordinary least squares (OLS) linear

regression and prescribe a signal-to-noise ratio k that is

an integer factor of the natural variability. Santer et al.

(1995) also employ signal-to-noise ratios, but they

consider them as a function of the time scale of both

the signal and the noise. Christensen et al. (2007),

Deser et al. (2012b) and Zappa et al. (2015) consider

various ‘‘epoch differences’’ and a value of k derived

from the t statistic for the difference of means.

Mahlstein et al. (2012) also consider differences be-

tween epochs when assessing the time of emergence

and apply a Kolmogorov–Smirnov test to assess

whether two sample epochs are significantly different

(i.e., rather than a t statistic).

The existing literature on TOE provides valuable

insight into the point in time when anthropogenic cli-

mate change will emerge from natural climate vari-

ability on regional spatial scales. But it also has several

shortcomings. The methodologies used to estimate the

trend [b in Eq. (1)], the amplitude of the natural vari-

ability [se in Eq. (1)], and the predetermined signal-to-

noise ratio [k in Eq. (1)] vary widely from one study to

the next, which makes it difficult to reproduce and

compare different estimates of the TOE. Times of

emergence defined on the basis of a fixed signal-to-

noise ratio (e.g., Hawkins and Sutton 2012) do not

correspond to a particular level of statistical signifi-

cance. Several existing methods require smoothing the

data using a wide range of methodologies. Further-

more, many of the methods are based on empirical

rather than analytical techniques.

The purposes of this study are twofold. First, we

introduce a simple and novel expression for estimat-

ing the lead time required for a linear trend to emerge

from natural variability at a predetermined level of

statistical confidence. The expression is developed

from the standard error of the regression, which is

widely used in climate research but as far as we know

has not been exploited for the explicit purpose of

calculating TOE. Second, we will test the resulting

expression in a large ensemble of climate change

simulations. The results demonstrate the robustness

of the assumptions that underlie the expression and

make clear its utility for assessing the emergence of

linear trends in climate data. The expression is de-

veloped in section 2. The application of the expression

to climate trends is explored in section 3, and its ad-

vantages relative to other methods of calculating TOE

are considered in section 4. Conclusions are provided

in section 5.

2. An analytic expression for the lead time required
for a linear trend to emerge from natural
variability

Consider the case of a first-order autoregressive

[AR(1)] time series of length N with a linear trend

b imposed upon it such that

x(n
t
)5 bn

t
1ax(n

t
2 1)1 «(n

t
) ,

where nt5 1, 2, . . . ,N is the number of time steps, x(0)5
0 by assumption, and « is white noise (independent

Gaussian noise with a mean of zero and a variance of

s2
«). The parameter a is between 0 and 1, and represents

thememory in the time series x(nt) from one time step to

the next.

Here we estimate b using simple linear regression,

where b̂ is the regression estimator of the trend. The

parameter a can be estimated as the lag-1 autocorrelation

of the time series (r1). The confidence interval in the total

change in x(nt) over time nt can thus be expressed as

CI5 b̂n
t
6 e ,

where nt is again the number of time steps and e is the

uncertainty in the change in x(nt) over time nt given by

b̂nt. The margin of error (e) is given in units of Dx/(ntDt),
where Dt is the time step. The trend b̂ is given in units of

Dx/Dt so that b̂nt is the change over the length of the

record and has the same units as e.

Following Thompson et al. (2015), if detrended values

of x(nt) are well modeled as an AR(1) process, then the

margins of error on the linear trend in x(nt) can be ex-

pressed as

e5 t
c
n
t
sg(n

t
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1
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t
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In Eq. (2), tc is the t statistic for the desired confidence

level and s is the standard deviation of the residuals of

the regression [i.e., of detrended values of x(t)]. The

expressions for g(nt, r1) and g(nt) account for 1) the ef-

fects of persistence on the estimate of s, where r1 is the

lag-1 autocorrelation of the residuals; and 2) the stan-

dard deviation of the time axis, respectively. Note that
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Eq. (2) is simply the standard error of the regression for

the case where 1) the predictor is time, and 2) detrended

values of the predictand are well modeled as an AR(1)

process (e.g., Santer et al. 2000; Thompson et al. 2015).

The trend in x(t) is statistically significant when it ex-

ceeds its margins of error. Setting e5 b̂nt in Eq. (2) yields

(T3
SIG 2T

SIG
)

12
3

T
SIG

12 r
1

11 r
1

� �
2 2

(T
SIG

2 2)
5

�
t
c
s

b̂

�2

, (3)

where TSIG denotes the lead time when the trend in x(t)

is statistically significant (in units of time steps). That is,

given our parameter estimates of b̂, s, and r1, TSIG is the

estimated number of time steps required for the trend to

be statistically significant at the desired confidence level.

The value ofTSIG can be trivially calculated given b̂, s, r1,

and tc. It requires no subjective analysis choices (such as

the length of the periods used in epoch differences) and

no smoothing of the data.

The parameters b̂, s, and r1 are calculated using the

entire length of the time series, while tc is a function of nt.

Thus, to solve forTSIG, Eq. (3) is calculated iteratively at

each time step. For instance, a time series with a TSIG of

10 time steps is calculated using the two-tailed 95%

value of tc 562.26, while a time series with a TSIG of 50

time steps is calculating using the respective value of tc5
62.01. We use the entire length of the time series to

determine the values of b̂, s, and r1. This provides the

most accurate estimates given that the linear trend

and the Gaussian AR(1) distribution are consistent

throughout the entire period, as calculations using short

time series can produce erroneous values. A graphical

representation of the calculation of TSIG can be seen in

Fig. 1, where TSIG corresponds to the time step when the

lower 95% error bound intersects zero (Fig. 1 will be

discussed in more detail in the next section).

Equation (3) can be simplified greatly given two

conditions. First, detrended values of x(nt) are not seri-

ally correlated (r1 ’ 0). This condition holds for climate

variability at most terrestrial locations on interannual

time scales, since there is very little memory in the in-

ternal variability of land surface climate from one year

to the next [see discussion in Thompson et al. (2015)].

Second, the trend length is at least;15 time steps. In this

case,T3
SIG �TSIG and the two-tailed t statistic for the 95%

confidence level is tc ; 2. Applying both conditions

yields a simplified version of Eq. (3) that is suitable for

cases where the natural variability is not serially correlated

from one time step to the next:

T
95%

’ 3. 6

�
s

b̂

�2/3

, (4)

where T95% is the lead time when the trend in x(t) is

statistically significant at the 95% confidence level.

Equation (4) places Eq. (3) in a ‘‘signal to noise’’ format

that is similar but not identical to that used in many

FIG. 1. Trend amplitudes formodeled surface temperature at the grid

boxes collocated with (a) London, (b) central Siberia, and (c) Jakarta

using CESM-LE output. Red dots indicate actual trends from all

30 ensemble members, while the dashed lines indicate the predicted

ranges of trends found by applying Eq. (2) to the statistics of the model

natural variability. Theblue vertical line indicates the lead timewhen the

forced trend is statistically significant as per Eq. (3). See text for details.
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previous studies and provides a useful back-of-the-

envelope estimate for TSIG. All analyses in this paper

use the general expression of Eq. (3) for accuracy.

3. Application to climate trends

In this section, we test the robustness of Eq. (3) (TSIG)

for assessing the point in time when the signature of

anthropogenic warming emerges from the background

noise of natural climate variability (i.e., achieves statis-

tical significance) on regional scales. We perform the

assessment for land surface temperature changes at in-

dividual grid boxes. To do so, we exploit a large en-

semble of climate change simulations.

In a large ensemble of climate change simulations,

each individual ensemble member may be viewed as a

unique realization of ‘‘model reality.’’ Here we test

the expression for TSIG using output from the NCAR

Community Earth System Model Large Ensemble

(CESM-LE).

Details of the simulations are provided in Hurrell

et al. (2013) and Kay et al. (2015). In short, the CESM-

LE consists of 40 climate change simulations run using

the same model configuration with the same external

forcings. Differences in climate trends from one re-

alization to the next are entirely due to the internal

variability in the model. Note that internal variability is

distinct from ‘‘natural’’ variability, since the latter in-

cludes both internal climate variability and external

forcings, such as those resulting from volcanic eruptions

and variations in solar output (see the appendix). Here,

we use the original 30 CESM-LE simulations released in

2014. The runs are available from 1920 to 2100, with

historical forcings used for the period 1920–2005 and

RCP8.5 forcings used for the period 2006–2100. The

analyses are based on seasonal-mean values of sur-

face temperature for the Northern Hemisphere (NH)

cold-season (October–March) and warm-season (April–

September) months over the 1970–2015 period. There

are three reasons for choosing this time period: 1) We

wish to focus on the period with the largest global

warming observed to date (Bindoff et al. 2013); 2) we

wish to compare results derived from the CESM-LE

with results derived from observations, which are rela-

tively sparse before 1970; and 3) our analytic expression

is based on a linear least squares fit to the forced signal,

which is approximately linear over the selected period

(the linear assumption is discussed in more detail in the

final section). The simulated trends in global-mean

surface temperature from the CESM-LE are not linear

over the full simulation period 1920–2100; that is, the

trends increase from roughly zero in the mid-twentieth

century to roughly 0.5Kdecade21 in the latter part of

the twenty-first century (Kay et al. 2015; see Fig. 2

therein). However, they are approximately linear over the

comparatively short 1970–2015 period examined here. We

tested the linearity assumption by comparing residual

temperature time series derived by subtracting a linear fit

to the data with those derived by subtracting second- and

third-order fits to the data. The higher-order fits do not

significantly change the variance explained by the residual

time series (see also the discussion in the appendix).

The expression for TSIG is tested as follows. First, we

calculate the ‘‘empirically derived TSIG’’ as the first time

step when 29 out of 30 ensemble members exhibit trends

of the same sign as that of the model forced signal in the

current and all subsequent time steps. In the context of

large ensembles, for a confidence level of 95%, the ex-

pression for TSIG [Eq. (3)] should thus correspond to the

lead time when 97.5% of all possible realizations of

model reality exhibit trends of the same sign as the

forced signal (for a two-tailed confidence interval).

Given that the CESM-LE consists of only 30 members,

29 is the closest approximation to our 95% confidence

level. Note that the empirically derived TSIG does not

correspond to a strict statistical quantity and is calcu-

lated primarily to explore the robustness of Eq. (3) in the

context of a large ensemble of climate simulations. The

additional requirement that 29 out of 30 ensemble

members must also exhibit trends of the same sign as

that of the model forced signal in all subsequent time

steps is to control for any false positives in the TSIG re-

sults (i.e., aTSIG that has ‘‘emerged’’ but then falls below

the 29/30 threshold at a future time step).

Second, we calculate the ‘‘analytically derived TSIG’’

at all grid boxes by solving Eq. (3) for TSIG using 1) the

ensemble-mean trends in temperature calculated over

the period 1970–2015 (b̂); 2) the standard deviations

of the residuals of the regression (i.e., the variability

about the long-term trends; s); and 3) the lag-1 auto-

correlations of the residuals of the regression (r1). The

ensemble-mean trends are assumed to reflect the forced

signal in surface temperature. The standard deviation

and lag-1 autocorrelation of the residuals are found by

1) detrending the seasonal-mean temperature time se-

ries in each of the ensemble members and at each grid

box and 2) calculating the pooled standard deviations

and ensemble-averaged lag-1 autocorrelations of the

residual time series. The resulting values of s and r1 are

assumed to reflect the amplitude and persistence of the

model’s natural variability. We note that for short time

series (fewer than 20 time steps) or time series with large

memory, using detrended residuals from ordinary least

squares can result in erroneous lag-1 autocorrelation

values. In such cases, it is advisable to use a generalized

least squares (GLS) estimator of the trend to calculate r1.
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In principle, the model’s natural variability can be

isolated using a variety of different methodologies. We

have chosen to isolate the natural variability by

removing a linear fit to the temperature time series in all

ensemble members, since Eq. (3) is a function of the

standard error of the residuals of the regression. In the

appendix, we explore three alternative methods for iso-

lating the natural variability: 1) by removing a second-

order polynomial (rather than linear) fit to the gridbox

temperature time series, thus retaining natural external

forcings as a result of, say, volcanic eruptions and allow-

ing for exponential changes in temperature; 2) by re-

moving the gridbox ensemble-mean temperature time

series from the gridbox temperature time series in all en-

semblemembers, thus explicitly removing the signals of all

forms of forced variability from the ensemble members

and allowing for forced variability on a range of time

scales; and 3) by using the last 1380yr of the preindustrial

control run, in which there are no natural external forcings

(e.g., volcanoes or solar irradiance changes). In practice, all

four methods yield very similar estimates of internal/

natural climate variability and thus very similar estimates

of the time of emergence (Figs. A1, A2).

Figure 1 illustrates the analytically and empirically

derived values of TSIG in NH wintertime surface

temperatures at three grid boxes: one from Northern

Hemisphere midlatitudes (at a grid box whose node is

close to London, United Kingdom), one from a region

of relatively high temperature variance (located in

central Siberia), and one from a region of relatively

low temperature variance (close to Jakarta, In-

donesia). The sloping black lines in all three panels

indicate the ensemble-mean trend over the 1970–2015

period at each location. As noted above, the

ensemble-mean trend is interpreted as the ‘‘forced

signal’’ of climate change. The small red dots indicate

the trends in surface temperature from all 30 indi-

vidual ensemble members, where the trends start in

1970 and end on the date indicated on the ordinate

axis. The units on all trends are kelvin per length of the

record. The dashed lines in all three panels indicate

the analytically derived 95% margins of error on the

forced signal, where the margins of error are derived

from Eq. (2). Note that the close agreement of the

95% margins of error given by Eq. (2) (dashed lines)

and the trends calculated from the large ensemble

(red dots) attests to the robustness of Eq. (2) for es-

timating the role of natural variability in climate

trends (see Thompson et al. 2015).

The analytically derived values of TSIG are calculated

at each terrestrial location by inserting the estimated

forced signal and natural variability for each grid box

into Eq. (3). For example, in the case of London, the

estimated forced signal is b̂5 0.02Kyr21, the amplitude

of the natural variability is s 5 0.6K, and the winter-to-

winter autocorrelation is not significantly different from

zero (r1 ; 0). Inserting the above values into Eq. (3)

yields TSIG 5 41 yr, or 2011, which by definition is the

lead time when the lower bound of the 95% confidence

levels intersects zero (the intersection is marked by the

vertical blue line in Fig. 1). Both the forced signal and

natural variability vary from one location to the next in

Fig. 1, but in general the latter dominates the variations

in TSIG. For example, TSIG is longer over Siberia, where

the interannual temperature variance is much larger

(s 5 2K), but shorter over Indonesia, where the in-

terannual temperature variance is relatively small (s 5
0.2K). The inverse relationship between regional tem-

perature variance and the emergence of the forced sig-

nal has been noted extensively in previous studies (e.g.,

Christensen et al. 2007; Mahlstein et al. 2011). The key

point in Fig. 1 is that the expression given in Eq. (3) for

TSIG clearly provides a simple and robust estimate of

the first lead time at which effectively all realizations

of model ‘‘reality’’ (as given by individual ensemble

members) exhibit warming.

Figure 2 shows the results for a similar test at all

terrestrial grid boxes during the NH winter and sum-

mer seasons. The top panels indicate the empirically

derived values of TSIG found by empirically calculating

the lead time when 29 of the 30 ensemble members

exhibit warming in the current and subsequent time

steps. The bottom panels in Fig. 2 indicate the analyt-

ically derived values of TSIG obtained from Eq. (3)

(very similar results are derived for Eq. (4), since the

lag-1 autocorrelation of seasonal-mean surface tem-

perature is not significantly different from zero at most

terrestrial grid boxes). Warm colors indicate relatively

early signal detection times (e.g., times of emergence

less than 2015). White denotes lead times that exceed

the analysis period (TOE beyond 2015), while gray

denotes oceans and any missing data.

The strong similarities between the top and bottom

panels in Fig. 2 are important. They suggest that the lead

time given by Eq. (3) provides a reliable estimate of the

geographical pattern of detection time—the time at

which virtually all possible realizations of model reality

indicate trends of the same sign as the forced signal.

They also support the assumptions that underlie Eq. (3),

for example, that the natural variability is sufficiently

Gaussian and that the forced signal is sufficiently linear

to warrant use of the standard error of the regression. As

noted in numerous previous studies (e.g., Christensen

et al. 2007; Mahlstein et al. 2011; Hawkins and Sutton

2012), the forced signal in surface temperature emerges

earliest in regions where the variance is smallest (i.e., the
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tropics during all seasons and the extratropics during the

warm season months).

The top panels in Fig. 3 examine analogous results, but

for the case where 1) the estimated forced signal (b̂) is

again derived from the CESM-LE but 2) the natural

variability (s and r1) is derived from observations of sur-

face temperature from the HadCRUT4 dataset. The

HadCRUT4 data are obtained from the Climatic Re-

search Unit at the University of East Anglia and are

analyzed on a 58 3 58 grid for the period January 1970–

September 2015. The advantage of using observations to

estimate the natural variability is that—by definition—

they best reflect the variance of the ‘‘real world.’’ The

disadvantages are that 1) the observed record may be too

short to fully sample variability on decadal time scales

and that 2) the observed record includes missing data and

may include residual errors that influence estimates of the

observed variability. As in the case of Fig. 2, b̂ is defined

as the ensemble-mean trend from the CESM-LE over

1970–2015. In contrast to Fig. 2, s is found by 1) de-

trending the observed wintertime-mean surface temper-

ature data at each grid box and 2) calculating the standard

deviation of the resulting time series. Note that the de-

trending methodology is identical to that applied to in-

dividual ensemble members (except for the pooling) in

Fig. 2 and is discussed in the appendix.

Results based on the amplitude of observed natural

variability are similar but not identical to those based on

the natural variability displayed by the CESM-LE. Re-

gions of strong agreement between the top panels in

Fig. 3 and the bottom panels in Fig. 2 correspond to

areas where the variability in the CESM-LE closely

corresponds to that in the observations. Regions where

the top panels in Fig. 3 and the bottom panels in Fig. 2

are notably different point to areas where differences

between the simulated and observed natural variability

lead to differences in the lead time when surface

warming emerges in a statistically significant sense.

These differences can be seen more clearly in the top

panels of Fig. 4, which show the ratios of the ampli-

tudes of natural variability derived from the CESM-

LE to those derived from observations. For the most

part, the CESM-LE overestimates the variance of sur-

face temperature and thus underestimates the times of

FIG. 2. UsingCESM-LEoutput to test Eq. (3) for (left) winter and (right) summer. (top) Empirically derived lead

times when the trends emerge from natural variability, calculated as the time step when 29 out of 30 ensemble

members exhibit positive trends in the current and all subsequent time steps. (bottom) Analytically derived lead

times (TSIG) derived by applyingEq. (3) to themodel natural variability. Note that all lead times beyond the limit of

the analysis period (45 yr or 2015) are white. Gray denotes ocean regions.
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emergence over much of the Northern Hemisphere

midlatitudes.

The bottom panels in Fig. 3 show analogous results

to those in the top panels, but in this case both the

natural variability and the forced signal (the linear

trends) are estimated from observations; that is, b̂ is

defined as the linear trend calculated from observa-

tions over the period 1970–2015 and s is found in an

identical manner to the top panel. The observed

trends reflect only one realization of reality and are

therefore noisier than the model ensemble-mean

trends, particularly over regions of large tempera-

ture variance such as the Northern Hemisphere mid-

latitudes during winter (e.g., Deser et al. 2012a).

Nevertheless, the resulting lead times are interesting

in that they provide a purely observational estimate of

the lead time when the observed warming emerges

from the observed natural climate variability in a

statistically significant sense.

The differences between the upper and lower panels

in Fig. 3 arise solely from differences between trends

from the CESM-LE ensemble mean and the observations.

The CESM-LE ensemble-mean trends from 1970 to

2015 are weaker than those derived from the observa-

tions over much of the tropical land areas, Europe, and

East Asia during summer (see the bottom panels of

Fig. 4). Hence, the purely observational lead times in

these regions are shorter than those derived from the

ensemble-mean trends.

Figure 5 explores whether the TOE estimates ob-

tained solely from observations lie outside the range

of TOE estimates derived from all individual ensem-

ble members. To address this question, we calculated

the TOE at all grid boxes and for all ensemble mem-

bers using the individual ensemble member trends

and detrended standard deviations as estimates of

the forced signal and natural variability (i.e., we

treated output from individual ensemble members

as we treated the observations in the lower panel of

Fig. 3). Interestingly, the observed TOE estimates

given in the bottom panel of Fig. 3 lie within the 95%

bounds on TOE estimates derived from individual

ensemble members over 95% of all land areas

(Fig. 5).

FIG. 3. As in the bottom panels in Fig. 2, but for lead times calculated by applying Eq. (3) to the (top) ensemble-

mean trends from the CESM-LE and the observed natural variability and (bottom) linear trends from the obser-

vations and the observed natural variability. The observed natural variability is estimated in both panels as the

standard deviation of the detrended data. The observations are used over the period 1970–2015. White denotes lead

times beyond the limit of the analysis period (longer than 45 yr), while gray denotes oceans and any regions ofmissing

data. See text for details.
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4. Discussion

The standard error of the regression is widely used

in climate research. But to the best of our knowledge,

it has not been explicitly used to develop an expres-

sion for the time of emergence of anthropogenic

climate change. The resulting expression for TSIG

provides a novel and general ‘‘rule of thumb’’ for

assessing the lead time when anthropogenic climate

change will emerge from natural climate variability.

The methodology has some disadvantages relative to

existing methods; for example, it assumes that the

natural variability is Gaussian, which is not required

in existing metrics based on the Kolmogorov–

Smirnov test (e.g., Mahlstein et al. 2012). However,

it also has several key advantages:

1) The expression for TSIG given by Eq. (3) [and Eq. (4)

for the case where the data are not serially corre-

lated] indicates the lead time when the forced signal

of the trend has emerged in a statistically significant

sense. Some previous studies explicitly consider

TOE in the context of statistical significance (e.g.,

Christensen et al. 2007; Deser et al. 2012a; Zappa

et al. 2015). But others consider it in the context of

specific values of the natural variability. For exam-

ple, consider the case of TOE defined as the first lead

time when the forced signal exceeds 2 times the

amplitude of the natural variability [e.g., one of the

criteria outlined in Hawkins and Sutton (2012)]. At

the grid box close to London, the TOE for k 5 2 in

Eq. (1) occurs at a lead time of 74 yr, which is more

than three decades longer than the point in time

FIG. 4. (top) Ratio of amplitudes of natural variability from the CESM-LE to that from observations for (a) the

winter season and (b) the summer season. Warm colors denote regions where the amplitude of natural variability is

larger in the model for the 1970–2015 period, while cool colors denote regions where the amplitude of natural

variability is larger in observations for the same period. (bottom) Differences between the 1970–2015 ensemble-

averaged trends from the CESM-LE and trends from HadCRUT4 observations for (c) winter and (d) summer. The

CESM-LE trends were used in calculating the lead times in the top panels of Fig. 3, while the observed trends were

used in calculating the lead times in the bottom panels of Fig. 3. The predominance of cool colors for both seasons

indicates that observed trends from 1970 to 2015 were larger than the simulated ensemble-mean trends over the same

period. Gray denotes oceans and any regions of missing data.
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when the trend is significant (Fig. 1). Similarly large

differences are found throughout much of the ex-

tratropics (Fig. 6).

2) The expression for TSIG exploits linear regression

instead of epoch differences to estimate the linear

trend. For example, Christensen et al. (2007), Deser

et al. (2012b), and Zappa et al. (2015) all consider

statistical significance when assessing the time of

emergence, but they consider the differences in

means between epochs of various lengths rather than

linear trends. The distinction is important. Linear

regression uses all of the data in a time series, while

epoch differences take data only from the beginning

and end of the time series. Additionally, the variance

of the epoch difference estimator varies greatly

depending on the length of the epoch used and is

always larger than the variance of the linear trend

estimator for AR(1) time series with lag-1 autocor-

relations less than about 0.85 (Barnes and Barnes

2015). Thus, for all time series with a lag-1 autocor-

relation less than 0.85, we believe the linear re-

gression estimator to be preferable to epoch

differences.

3) The expression for TSIG is not subject to a multiple-

testing problem. Many previous methods of calcu-

lating TOE have relied on stepping through

continuous time steps and defining the TOE as the

first time step when the criteria is met (e.g., the first

time step when the forced signal exceeds 2 times the

amplitude of the natural variability). This sequen-

tial testing increases the rate of type I errors (false

positives in the results).

4) The expression for TSIG can be solved analytically

and requires no additional modifications to the

data. Hence, the resulting estimate of TOE can be

easily reproduced from one study to the next and

readily compared across different model configu-

rations and forcing scenarios.

5. Conclusions

The lead times at which anthropogenic warming and

its related impacts emerge from the background noise of

natural variability vary greatly from one location to the

next. The expression derived in Eq. (3) provides a simple

analytic tool for estimating the lead time when the re-

gionally dependent impacts of climate change emerge

FIG. 6. Comparison between lead times calculated using (top) Eq.

(3) and (bottom) Eq. (1), where k 5 2. In both cases, the forced

signal is given as the ensemble-mean temperature trends over 1970–

2015, and the natural variability is given as the detrended observed

interannual standard deviation. Gray denotes oceans and any re-

gions of missing data. Note the top panel is reproduced from Fig. 3a.

FIG. 5. Grid boxes where the TOE calculated fromHadCRUT4 surface temperature observations fall outside the

95% bounds on TOE calculated for individual ensemble member trends and standard deviations. Only 5% of the

observed TOE estimates lie outside the bounds given by the individual ensemble members.
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from the natural variability in a statistically significant

sense.

We have focused on the application of Eq. (3) to

surface temperature, but the expression holds for any

time series where the following three conditions aremet:

1) the forced signal can be modeled as a linear trend;

2) the statistics of the natural variability (detrended

values of the time series) are closelyGaussian; and 3) the

standard deviation of the natural variability is station-

ary. These three assumptions derive from our use of the

standard error of the regression. The bases for all three

assumptions are discussed and justified in Thompson

et al. (2015). The linear assumption warrants additional

comment here.

In principle, the signature of anthropogenic forcing in

the climate system is not necessarily linear. For example,

atmospheric aerosols likely contributed to the slowdown

of globally averaged warming during the mid-twentieth

century (Bindoff et al. 2013), and the surface tempera-

ture trends of the next 50 yr are expected to be notably

larger than those of the past 50 yr (Kirtman et al. 2013).

However, in practice, the simulated response of surface

temperature to greenhouse gas increases can be mod-

eled as a linear trend on time scales shorter than roughly

50 yr, including the 1970–2015 period considered here

(e.g., see Kay et al. 2015; cf. Fig. 2 therein).

The methodology outlined here is potentially useful in

climate change research for four primary reasons. 1) It

provides an analytic estimate of the lead time required for a

trend to emerge and can thus be trivially calculated given

(i) the amplitude and autocorrelation of the observed

natural variability and (ii) the simulated forced signal. 2) It

provides an estimate of the time required for a linear trend

to emerge in a statistically significant sense, rather than as a

(statistically arbitrary) factor of the internal variability. 3) It

is not burdened by issues arising from sequential testing of

the data, as is the case for many other TOE methods. 4)

The expression requires no treatment of the data, which

renders the resulting lead times easy to compare across

different model configurations, different forcing scenarios,

and different estimates of the natural variability.
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APPENDIX

Estimating the Amplitude of the Natural (or
Internal) Variability Used in Eqs. (2)–(4)

Figure A1 explores four different approaches for

estimating s in Eqs. (2)–(4) using the CESM output:

1) removing a linear fit to the temperature time series in

each of the ensemble members (as done in the main

text; top panel); 2) removing a second-order polynomial

(rather than linear) fit to the gridbox temperature time

series in all ensemble members; 3) removing the gridbox

ensemble-mean temperature time series from the gridbox

temperature time series in all ensemble members; and 4)

taking the last 1380yrof theCESMpreindustrial control run.

The four methods have various advantages and dis-

advantages. The advantages of method 1 are that (i) the

residuals of the linear fit correspond directly to the re-

siduals of the regression that form the basis for s in Eq.

(3) and (ii) a similar method can be applied to obser-

vations in the absence of climate model output. The

disadvantages are that (i) the anthropogenic signal is not

necessarily best modeled as a linear trend; (ii) the linear

fits include a component of the internal variability, since

stochastic variability includes a trend component; and

(iii) the linear fit does not account for externally forced

variability resulting from, say, volcanic eruptions.

Method 2 is similar to method 1, but it has the additional

advantage that it allows for exponential changes in

temperature. However, the residuals of the second-order

polynomial fit do not—strictly speaking—correspond to

the residuals of the regression that form the basis for s

in Eq. (3). The residuals of method 3 also do not form

the basis for s in Eq. (3), but removing the ensemble-

mean time series arguably reflects the most robust

method for removing the variability caused by all forms

of external forcing in the CESM-LE, including an-

thropogenic forcings (e.g., as a result of increasing

greenhouse gases) and external natural forcings (e.g.,

as a result of volcanoes). Method 4 is the simplest and

most accurate for estimating pure internal variability,

as the preindustrial control run does not include either

anthropogenic forcings or natural external forcings

such as volcanic eruptions (which are included in the

forced simulations). Note that the first two methods

include both internal climate variability and natural

variability as a result of volcanic forcings and solar ir-

radiance changes, whereas the latter two methods in-

clude only internal variability.

As shown in Fig. A1, all four methods yield very

similar estimates of the nonanthropogenic amplitude of

climate variability. But there are subtle differences. For

example, the top panels in Fig. A2 show the ratios
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FIG. A1. Comparisons of the standard deviations calculated from the CESM-LE over the period 1970–2015 using

four different methods to remove the long-term forced signal for (left) winter and (right) summer. (a),(b) Pooled

standard deviations after removing the linear trend from all gridpoint time series in all ensemble members (as used

for Figs. 2c,d, respectively, from the main text). (c),(d) Pooled standard deviations after removing a second-order

polynomial fit from all gridpoint time series in all ensemble members. (e),(f) Pooled standard deviations after

removing the ensemble-mean time series from all gridpoint time series in all ensemble members. (g),(h) Standard

deviations from the last 1380 yr of the control run. Gray denotes ocean regions.
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between 1) natural variability calculated using method 1

(i.e., the method used in the main text) and 2) internal

variability calculated using method 3. The dominance of

warm colors (and lack of cool colors) demonstrates that

the amplitude of natural variability is indeed slightly

larger than that of internal variability as we expect, since

natural variability includes both internal variability and

natural external forcings as a result of volcanic eruptions,

etc. However, these additional sources of variability are

neither large nor significant enough to show up in the

standard deviations in Fig. A1. Importantly, the two

methods yield nearly identical estimates of the time of

emergence (TSIG, bottom four panels in Fig. A2).

Last, we note that in the CESM-LE, the historical

forcings with volcanic eruptions and solar irradiance

changes extend only to the year 2005. After 2005, the

FIG. A2. Comparisons between natural variability and internal variability as calculated from the large ensemble

for (left) winter and (right) summer. (a),(b) Ratio between the amplitude of natural variability [standard deviations

as calculated in (a) and (b) in Fig. A1] and internal variability [standard deviations as calculated in (e) and (f) in

Fig. A1]. (c),(d) Analytically derived lead times from Eq. (3) using the estimate of internal variability from

Figs. A1e,f. (e),(f) Analytically derived lead times from Eq. (3) using the estimate of natural variability from

Figs. A1a,b (reproduced from Figs. 2c,d, respectively). Gray denotes ocean regions.
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CESM-LE uses RCP8.5 forcing, which does not include

volcanoes. Thus, the ‘‘natural variability’’ calculated

here over the period 1970–2015 does not account for

external natural forcings between 2006 and 2015. How-

ever, there have been no major volcanic eruptions

during the period 2006–15, and plots comparing the

amplitude of natural and internal variability calculated

for the period 1970–2005 (not shown) are almost iden-

tical to those calculated for the period 1970–2015.
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