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SUMMARY

Transcriptional dysregulation of the MYC oncogene
is among the most frequent events in aggressive tu-
mor cells, and this is generally accomplished by
acquisition of a super-enhancer somewhere within
the 2.8 Mb TAD where MYC resides. We find that
these diverse cancer-specific super-enhancers,
differing in size and location, interact with the MYC
gene through a common and conserved CTCF bind-
ing site located 2 kb upstream of the MYC promoter.
Genetic perturbation of this enhancer-docking site in
tumor cells reduces CTCF binding, super-enhancer
interaction,MYC gene expression, and cell prolifera-
tion. CTCF binding is highly sensitive to DNA
methylation, and this enhancer-docking site, which
is hypomethylated in diverse cancers, can be inacti-
vated through epigenetic editing with dCas9-DNMT.
Similar enhancer-docking sites occur at other genes,
including genes with prominent roles in multiple can-
cers, suggesting a mechanism by which tumor cell
oncogenes can generally hijack enhancers. These
results provide insights into mechanisms that allow
a single target gene to be regulated by diverse
enhancer elements in different cell types.
INTRODUCTION

Elevated expression of the c-MYC transcription factor occurs in

a broad spectrum of human cancers and is associated with tu-

mor aggression and poor clinical outcome (Berns et al., 1992;

Dang, 2012; Gabay et al., 2014; Grotzer et al., 2001). Activation

of theMYC gene, which encodes c-MYC, is a hallmark of cancer

initiation and maintenance. Dysregulation of MYC is often

achieved through the formation of large tumor-specific super-

enhancers in the region surrounding the MYC gene (Chapuy

et al., 2013; Fulco et al., 2016; Herranz et al., 2014; Hnisz

et al., 2013; Lin et al., 2016; Liu et al., 2015; Lovén et al., 2013;

Shi et al., 2013; Whyte et al., 2013; Zhang et al., 2016). These

large enhancer clusters differ in size, composition, and distance

from the MYC promoter, yet all accomplish the same task of
C
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stimulating MYC overexpression across a broad spectrum of

tumors.

Selective gene activation is essential to the gene expression

programs that define both normal and cancer cells. During

gene activation, transcription factors (TFs) bind enhancer ele-

ments and regulate transcription from the promoters of nearby

or distant genes through physical contacts that involve looping

of DNA between enhancers and promoters (Bonev and Cavalli,

2016; Buecker and Wysocka, 2012; Bulger and Groudine,

2011; Fraser et al., 2015; M€ueller-Storm et al., 1989; Spitz,

2016; de Wit et al., 2013). The mechanisms that ensure that spe-

cific enhancers interact with specific promoters are not fully un-

derstood. Some enhancer-promoter interactions are likely deter-

mined by the nature of TFs bound at the two sites (Muerdter and

Stark, 2016; Weintraub et al., 2017).

Recent studies have revealed that specific chromosome

structures play important roles in gene control. Enhancer-pro-

moter interactions generally occur within larger chromosomal

loop structures formed by the interaction of CTCF proteins

bound to each of the loop anchors (Dekker and Mirny, 2016;

Fraser et al., 2015; Gibcus and Dekker, 2013; Gorkin et al.,

2014a; Hnisz et al., 2016a, 2018; Ji et al., 2016). These loop

structures, variously called topologically associated domains

(TADs), sub-TADs, loop domains, CTCF contact domains, and

insulated neighborhoods, tend to insulate enhancers and genes

within the CTCF-CTCF loops from elements outside those loops

(Dixon et al., 2012; Dowen et al., 2014; Franke et al., 2016; Hnisz

et al., 2016a, 2016b; Ji et al., 2016; Narendra et al., 2015; Nora

et al., 2012; Phillips-Cremins et al., 2013; Rao et al., 2014). Con-

straining DNA interactions within CTCF-CTCF loop structures in

this manner may facilitate proper enhancer-promoter contacts.

CTCF does not generally occupy enhancer and promoter ele-

ments (Cuddapah et al., 2009; Dixon et al., 2012; Dowen et al.,

2014; Handoko et al., 2011; Ji et al., 2016; Kim et al., 2007; Phil-

lips-Cremins et al., 2013; Rao et al., 2014; Rubio et al., 2008;

Tang et al., 2015). Another TF, YY1, generally binds to enhancers

and promoters and facilitates their interaction through YY1

dimerization (Weintraub et al., 2017). However, when CTCF

does bind these regulatory elements, it can also contribute to

enhancer-promoter interactions (Banani et al., 2017; Nora

et al., 2017; Splinter et al., 2006; Zuin et al., 2014).

Here, we investigate DNA looping structures in theMYC locus

in multiple cancers and identify a CTCF-occupied site at the

MYC promoter that facilitates docking with essentially any
ell Reports 23, 349–360, April 10, 2018 ª 2018 The Author(s). 349
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enhancers that are formed within the 2.8 Mb MYC locus. The

CTCF-occupied site at the MYC promoter, which we call the

MYC enhancer-docking site, can be abrogated by genetic and

epigenetic editing. Similar enhancer-docking sites occur at other

oncogenes. This suggests a mechanism by which tumor cells

can generally hijack enhancers and, with editing, a potential ther-

apeutic vulnerability.

RESULTS

Cell-Type-Specific MYC Enhancers Loop to a Common
Upstream CTCF Site
Previous studies have established that tumor cells acquire tu-

mor-specific super-enhancers at various sites throughout the

MYC locus (Figures 1A and S1A) (Bradner et al., 2017; Chapuy

et al., 2013; Gabay et al., 2014; Gröschel et al., 2014; Herranz

et al., 2014; Hnisz et al., 2013; Lin et al., 2016; Lovén et al.,

2013; Parker et al., 2013; Zhang et al., 2016; Shi et al., 2013),

but the mechanisms by which these diverse enhancer structures

control MYC are not clear. In one case, for example, a super-

enhancer located �2 Mb downstream of the MYC gene has

been shown to physically interact with MYC, but the mecha-

nisms responsible for this specific interaction are unclear (Shi

et al., 2013). To gain insights into the potential role of DNA

loop structures in gene control at the MYC locus, we generated

cohesin HiChIP data for HCT-116 cells and collected published

DNA interaction data for three other cancer cell types for com-

parison (Figure 1B; Tables S1 and S5) (Hnisz et al., 2016a;

Pope et al., 2014). Among the DNA loop structures observed in

these datasets, a large 2.8 Mb DNA loop was evident in all four

cell types. This loop connects CTCF sites encompassing the

MYC gene and qualifies as an insulated neighborhood. The

DNA anchor sites of this 2.8 Mb DNA loop occur at the bound-

aries of a TAD found in all cells (Figure S1B). The MYC TAD en-

compasses a region previously described as a ‘‘gene desert,’’

because this large span of DNA contains no other annotated pro-

tein-coding genes (Montavon and Duboule, 2012; Ovcharenko

et al., 2005).

While all cells examined appear to share the TAD-spanning 2.8

Mb loop encompassing MYC, the loop structures within the

neighborhoodwere found to bemarkedly different among the tu-

mor types. The internal loops were dominated by interactions

between a MYC promoter-proximal CTCF site and the diverse

super-enhancers (Figures 1B and 1C). The major differences be-

tween these internal structures in the different tumor cells

involved the different positions of the tumor-specific super-

enhancer elements. Examination of Hi-C data for a broader

spectrum of tumor cell types suggests that tumor cells generally

have DNA contacts between the MYC promoter-proximal site

and other sites within the 2.8 Mb MYC TAD (Figure S1B). This

looping was not limited to cancer cells, because examination

of enhancer and promoter-capture Hi-C data in a variety of

normal cell types that express MYC (Javierre et al., 2016) re-

vealed that cell-type-specific enhancers do indeed loop to the

MYC proximal CTCF site (Figures S1C and S1D). This indicated

that this CTCF site is also used during normal development by

cell-type-specific enhancers to facilitate MYC expression and

cellular proliferation.
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Further examination of theMYC promoter-proximal region re-

vealed three constitutive CTCF binding sites (Figure 1C). All

three sites were found to be occupied by CTCF in a wide variety

of normal cells and tumor cells, and this binding pattern is

shared across species (Figure S1C). Previous studies have

examined the role of CTCF binding at all three sites (Filippova

et al., 1996; Gombert and Krumm, 2009; Gombert et al., 2003;

Klenova et al., 1993; Rubio et al., 2008). The two sites located

within the MYC gene have been shown to play roles in MYC

transcript start site selection and in promoter-proximal pausing

of RNA polymerase II (Filippova et al., 1996). The CTCF binding

site located 2 kb upstream of the major transcription start site

has been reported to protect the promoter from methylation

and to be an insulator element (Gombert and Krumm, 2009;

Gombert et al., 2003). The DNA interaction data described

here, however, suggests that this upstream site dominates con-

nections with distal enhancer elements, as the majority of reads

in the DNA interaction data are associated with this site in all tu-

mor cells examined (Figures 1C and S1E). The �2 kb CTCF

binding site contains a number of putative CTCF binding motifs;

one of these most closely matches the canonical CTCF motif in

the JASPAR database (Sandelin et al., 2004) and occurs within

a highly conserved sequence (Figure 1D). These features, the

presence of CTCF sites in tumor super-enhancers, and the

ability of two CTCF-bound sites to be brought together through

CTCF homodimerization (Saldaña-Meyer et al., 2014; Yusufzai

et al., 2004) led us to further study the possibility that the

�2 kb site has an enhancer-docking function critical to MYC

expression.

MYC Promoter Proximal CTCF Site Is Necessary for
Enhancer-Promoter Looping and High MYC Expression
To determine whether the putative enhancer-docking site plays

a functional role inMYC expression through DNA loop formation,

small perturbations of the CTCF binding site were generated in

both alleles of the tumor cell lines K562, HCT-116, Jurkat, and

MCF7 using clustered regularly interspaced short palindromic

repeats (CRISPR)/Cas9 (Figures 2A and 2B). Attempts at genetic

perturbation by transfection with constructs carrying CRISPR/

Cas9 with a guide RNA specifically targeting the CTCF motif up-

streamof theMYC gene did not yield viable clones. To allow cells

to continue to proliferate if the CTCF motif deletion was lethal,

cells were virally transduced with an exogenous MYC gene

driven by a phosphoglycerate kinase (PGK) promoter (Fig-

ure S2A). This construct contained sequence differences in the

30 UTR that allowed discrimination between the endogenous

and exogenous MYC mRNAs. Cells expressing this exogenous

MYC gene were then subjected to CRISPR/Cas9 perturbation.

Clones were selected with small deletions or insertions disrupt-

ing the canonical CTCF motif (Figures 2B and S2B) and these

cells were further characterized. CTCF chromatin immunopre-

cipitation quantative polymerase chain reaction (ChIP-qPCR)

showed complete loss of CTCF binding to this site in K562 and

HCT-116 cells and a 60%–70% reduction in CTCF binding at

this site in Jurkat and MCF7 cells (Figure 2C). RNA analysis re-

vealed a 70%–80% reduction of endogenous MYC mRNA in

the absence of the enhancer-docking site in all of these cell types

(Figure 2D). Furthermore, an inducible CRISPR/Cas9
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Figure 1. Cell-Type-Specific Super-Enhancers in the

MYC Locus Loop to a Common CTCF Site

(A) The 4.5 Mb region surrounding the MYC gene. The 2.8 Mb

TAD containingMYC and portions of the two adjacent TADs are

indicated with thick black horizontal lines. Super-enhancers

(data from Becket et al., 2016; Frietze et al., 2012; Lin et al.,

2012; Pope et al., 2014; Wang et al., 2011) are shown in colored

boxes for a panel of tumor cell lines that express MYC.

(B) Chromosome interaction data at the �3 MbMYC locus. For

HCT-116, SMC1 HiChIP interactions with an origami score of at

least 0.9 and a minimum PET count of 9 are shown as purple

arcs; the insulated neighborhood spanning interaction, which

encompasses the TAD, is shown as a blue arc (data from this

study). For MCF7, Pol II ChIA-PET interactions with an origami

score of at least 0.9 are shown as purple arcs; the insulated

neighborhood spanning interactions from CTCF ChIA-PET data

are shown in blue (data from ENCODE and Li et al., 2012). For

K562, RAD21 ChIA-PET interactions with an origami score of at

least 0.9 are shown as purple arcs; the insulated neighborhood

spanning interaction is shown in blue and has an origami

score of 0.44 (data from Heidari et al., 2014). For Jurkat, SMC1

ChIA-PET interactions with an origami score of at least 0.99 are

shown as purple arcs; the insulated neighborhood spanning

interactions are shown in blue (data from Hnisz et al., 2016a).

CTCF ChIP-seq peaks are depicted as purple rectangles,

super-enhancers are depicted as red rectangles, and typical

enhancers are depicted as gray rectangles (data from this

study; Hnisz et al., 2016a; Pope et al., 2014).

(C) CTCF ChIP-seq and SMC1 ChIA-PET read counts in the

MYC promoter regions. Purple tracks display CTCF ChIP-seq

signal in the four cell lines from (B). Light blue track displays the

read counts from read pileup of Jurkat SMC1 ChIA-PET data,

showing that the major peak of SMC1 ChIA-PET reads occurs

at the �2 kb CTCF site. Dark blue bars indicate CpG islands.

ChIP-seq read counts are shown in reads permillion sequenced

reads per base pair. ChIA-PET reads are shown as read counts

per base pair.

(D) The top panel depicts all putative CTCF binding motifs as

blue arrows, which indicate the orientation of the motif. The

CTCF motif depicted in dark blue occurs in the most conserved

region and shows the best match with consensus CTCF motif.

100 vertebrate conservation from the UCSC genome browser is

depicted in the middle panel. The JASPAR score for all the

motifs is indicated with blue bars. The position weight matrix for

the canonical JASPAR CTCF motif and the actual sequence is

shown below.

See also Figure S1.
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Figure 2. Perturbation of the Core CTCFMotif

in the MYC CTCF Loop-Anchor Reduces

CTCF Occupancy and MYC Expression

(A) Schematic representation of the experiment.

HCT-116, K562, Jurkat, and MCF7 cells were

transduced with a construct expressing MYC under

a PGK promoter and selected for successful inte-

gration. These cells were then transiently transfected

with plasmid carrying Cas9 and a gRNA targeting the

CTCF binding motif. Positive cells were identified

and selected using fluorescence-activated cell

sorting (FACS). These cells were multiplied, and

clonal populations were characterized.

(B) The DNA sequences in the vicinity of the core

CTCF motif and the mutations generated in clonal

populations of K562, HCT-116, Jurkat, and MCF7

cell lines. The reference (WT, wild-type) sequence

highlighted in blue is complementary to the gRNA

sequence targeting the most prominent CTCF motif

(shown here in bold colored sequence). For the

aneuploid MCF7 cell line, the two most common

mutations are depicted.

(C) ChIP-qPCR showing reduction of the CTCF oc-

cupancy in D-CTCF K562, HCT-116, Jurkat, and

MCF7 cells. p values were generated with a Stu-

dent’s t test. Error bars represent the SD of the mean

from three technical replicates.

(D) qPCR showing reduction of endogenous MYC

mRNA levels inD-CTCF K562, HCT-116, Jurkat, and

MCF7 cells. p values were generated with a Stu-

dent’s t test. Error bars represent the SD of the mean

from three biological replicates.

See also Figure S2.
perturbation model showed reduced proliferation for these four

cell types upon induction of CTCF-site deletions (Figures S2C–

S2G). These results indicate that the CTCF motif in the MYC

enhancer-docking site is necessary for CTCF binding, for high

levels of MYC expression and for cellular proliferation.

If the putativeMYC enhancer-docking site contributes to loop-

ing interactions with distal enhancers, then the loss of this site

should cause a decrease in DNA interactions between the

MYC promoter and the distal super-enhancers. We used chro-

mosome conformation capture combined with high-throughput
352 Cell Reports 23, 349–360, April 10, 2018
sequencing (4C-seq) to compare super-

enhancer interactions in K562 and HCT-

116 cells with normal or perturbed CTCF

binding motifs. The 4C-seq data in K562

cells indicated that the MYC enhancer-

docking site interacts predominantly with

distal super-enhancers located �0.3 Mb

and �2 Mb downstream of the MYC gene

and that the majority of these interactions

were significantly reduced when the puta-

tive CTCF motif was perturbed (Figures

3A and S3A). In order to control for any

direct effects of a genetic alteration near

the viewpoint, 4C-seq was performed with

a viewpoint placed in the downstream su-

per-enhancer. This showed clear interac-
tions with the MYC enhancer-docking site as well as with the

nearby super-enhancer, and these interactions were signifi-

cantly reduced upon perturbation of the CTCF motif (Figures

3B and S3B). Similar results were obtained in HCT-116 cells,

where the viewpoint was centered on the super-enhancer

located�0.4 Mb upstream of theMYC gene (Figure S3C). These

results showed that the CTCF site in the promoter-proximal re-

gion of MYC is important for optimal interaction with distal en-

hancers and supports the idea that this CTCF site functions as

an enhancer-docking site.
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(A) 4C analysis showing reduced looping of the MYC promoter proximal CTCF site to super-enhancers in CTCF motif deletion cells (DK562) versus unmodified

cells (K562). H3K27Ac ChIP-seq and CTCF ChIP-seq are shown in blue and purple colors respectively. Blowups show the 4C interactions for three K562 specific

super-enhancers. The 4C viewpoint is situated 112 base pairs upstream of the deleted loop-anchor region.

(B) 4C analysis showing reduced looping of the MYC promoter proximal CTCF site to super-enhancers in CTCF motif deletion cells (DK562) versus unmodified

cells (K562) using a viewpoint centered on themost distant super-enhancer downstream of theMYC gene. H3K27Ac ChIP-seq and CTCF ChIP-seq are shown in

blue and purple, respectively. Blowups show the 4C interactions at the MYC promoter and distant super-enhancer near the viewpoint. Shading represents the

90% confidence interval based on three biological replicates. Peak calls from the H3K27Ac ChIP-seq were used to define the regions to be quantified and are

indicated in gray boxes at the bottom of the panels. Boxplots show quantification of the reads per fragment for the indicated regions. p values were generated

using Student’s t test, and data pairs with a p value < 0.05 are indicated with an asterisk. Reads are shown in reads per million sequenced reads per base pair.

Typical enhancers and super-enhancers are shown as gray boxes and red boxes, respectively.

See also Figure S3.
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Figure 4. dCas9-Mediated Methylation of the CTCF Loop-Anchor Site Reduces MYC Expression in Tumor Cells

(A) Top panel shows CTCF ChIP-seq at the MYC gene region in HCT-116 cells. ChIP-seq reads are shown in reads per million sequenced reads per base pair.

Bottompanels shows a blowup of the�700-bp region underneath the CTCF peak depicting the CTCFmotifs (blue arrows) and the gRNAs (red rectangles) used to

target dCas9-DNMT3A-3L to the enhancer anchor. Lollipop symbols indicate the location of CpGs that are assayed for methylation levels in (C).

(B) Schematic representation of the experiment. HCT-116 or K562 cells were transfected with plasmids encoding the dCAS9-DNMT3A-3L, GFP, and a gRNA

together with a plasmid encoding 2 additional gRNAs. HCT-116 or K562 cells were isolated by FACS after 2 days, and DNA and RNA were isolated.

(C) Methylation at MYC promoter loop-anchor site in untreated cells and cells transfected with dCas9-DNMT3A-3L in conjunction with the 5 indicated gRNAs.

(D) qPCR analysis ofMYCmRNA levels and fraction of methylated CpGs for untreated and dCas9-DNMT3A-3L + 5 gRNA transfected cells. Error bars represent

the SD of the mean for three biological replicates.

See also Figure S4.
Loss of MYC Expression with Methylation of Enhancer-
Docking Site
CTCF binding is abrogated when its sequence motif is methyl-

ated (Bell and Felsenfeld, 2000; Maurano et al., 2015), and the

MYC enhancer-docking site occurs within a CpG island that is

consistently hypomethylated in different tumor types as well as

in different normal tissues (Figures S4A and S4B). The recent

development of tools that permit site-specific DNA methylation

(Liu et al., 2016; Siddique et al., 2013) suggested a means to

disruptMYC expression bymethylation of the enhancer-docking

site. To achieve targeted methylation, we created a construct to

express a dCas9 fusion protein consisting of the catalytic

domain of DNMT3A and the interacting domain of DMNT3L.

This dCas9-DNMT3A-3L protein was targeted to the MYC

enhancer-docking site in K562 and HCT-116 cells using multiple
354 Cell Reports 23, 349–360, April 10, 2018
guide RNAs that span the region (Figures 4A and 4B). The

targeting of dCas9-DNMT3A-3L resulted in robust local DNA

methylation (Figure 4C) and a 40%–50% reduction in mRNA

levels in both cell types (Figure 4D). The methylated region likely

contains binding sites for additional TFs that may be sensitive

to DNA methylation, so it is possible that the reduced mRNA

levels are due to multiple factors. In order to test whether

disruption of TFs other than CTCF contribute to the reduction

in MYC mRNA levels, the dCas9-DNMT3A-3L was targeted

to the MYC enhancer-docking site in CTCF-site deleted

K562 cells. No further reduction of MYC mRNA levels was

observed under these conditions (Figures S4C and S4D), indi-

cating that loss of CTCF was amajor contributor to the observed

reduction of MYC expression upon targeted methylation of the

MYC enhancer-docking site. These results demonstrate that



epigenetic editing of the enhancer-docking site can reduceMYC

expression.

CTCF Enhancer-Docking Sites at Additional Genes
Previous genomic studies have noted that CTCF might

engender enhancer-promoter interactions at a minority of

genes (Banani et al., 2017; Nora et al., 2017; Splinter et al.,

2006; Zuin et al., 2014). We therefore identified the set of genes

whose promoter-proximal regions contain CTCF-bound sites

and that show evidence of enhancer interactions in K562,

Jurkat, and HCT-116 cells. We identified all active transcription

start sites (TSSs) that have at least one CTCF-bound site within

2.5 kb of the TSS that interacts with at least one enhancer. This

yielded between 555 and 1,108 TSSs with a nearby CTCF site

that loops to an active enhancer (Figure 5A; Table S2). We

define these TSSs as having a putative CTCF enhancer-dock-

ing site. The majority of TSSs identified in this analysis were

identified in only one cell type, with only 52 TSSs identified in

all three cell types (Figure 5B). Nonetheless, these putative

enhancer-docking sites tended to be constitutively bound by

CTCF in all three cell types, and the CTCF motifs in these sites

showed high sequence conservation (Figures 5C and 5D). This

suggests that these putative enhancer-docking sites are occu-

pied by CTCF regardless of interaction with active enhancers

and that differences in cell-type-specific enhancers are largely

responsible for differential use of enhancer-docking site genes

in these cells.

Gene ontology analysis of the genes with putative enhancer-

docking sites found different processes to be significantly en-

riched in each cell type, and these processes were dominated

by the cellular identity of the cell lines (Figure S5A; Table S3).

Common processes among the three cell types include cell cycle

and other cancer-related processes such as gene expression

and response to signaling (Figure S5A). A number of cancer-

associated genes were found, including TGIF1, VEGFA,

RUNX1, and PIM1 (Figure 5E), as well as others (Figure S5B).

We conclude that genes other than MYC are likely regulated by

CTCF-bound enhancer-docking sites and that these include

multiple cancer-associated genes.

DISCUSSION

Aberrant transcriptional activation of the MYC oncogene occurs

frequently in tumor cells and is associated with tumor aggres-

sion. MYC resides within a 2.8 Mb TAD and its aberrant activa-

tion is generally accomplished by acquisition of a super-

enhancer somewhere within that TAD. How these diverse can-

cer-specific super-enhancers loop long distances to specifically

interact withMYC has not been clear.We find that the diverse su-

per-enhancers commonly interact with, and depend on, a

conserved CTCF binding site located 2 kb upstream of the

MYC promoter. Because tumor super-enhancers can encom-

pass genomic regions as large as 200 kb, and CTCF occupies

sites that occur on average every 10 kb, there is considerable

opportunity for super-enhancers to adventitiously contain a

CTCF-bound site, which in turn could serve to interact with the

MYC CTCF site (Table S6). Thus, different tumor super-en-

hancers have the opportunity to form through diverse mecha-
nisms throughout this large TAD and can exploit the MYC

CTCF site to interact with and activate MYC expression.

The concept that enhancer-promoter interactions generally

occur within larger chromosomal loop structures such as

TADs, which are themselves often formed by the interaction of

CTCF proteins bound to each of the TAD loop anchors (Dekker

and Mirny, 2016; Fraser et al., 2015; Gorkin et al., 2014a; Hnisz

et al., 2016a), is supported by the observations described

here. These larger loop structures tend to insulate enhancers

and genes within the CTCF-CTCF loops from elements outside

those loops. Constraining DNA interactions within CTCF-CTCF

loop structures in this manner may facilitate proper enhancer-

promoter contacts.

The evidence described here argues that diverse human tu-

mor cell super-enhancers depend on the MYC CTCF site for

optimal levels of enhancer-promoter looping and mRNA expres-

sion. A recent independent study in K562 cells used a tiling

CRISPR screen to systematically perturb the MYC locus and

also found that full MYC expression and cell proliferation is

dependent on this region (Fulco et al., 2016). However, deletion

of the �2 kb CTCF site has limited effects onMYC expression in

mice (Dave et al., 2017; Gombert and Krumm, 2009), and some

translocated enhancers can drive MYC expression in the

absence of this CTCF site (Shiramizu et al., 1991). There are

several potential explanations for these diverse results. It is

possible that the �2 kb CTCF site is important for optimal

MYC expression levels in human cells, but not in mice. It is

conceivable that the deletion of a region containing the CTCF

site can be compensated by features of the new enhancer land-

scape in the deletion mutations. Furthermore, additional mecha-

nisms normally involved in enhancer-promoter interactions,

such as YY1-YY1 interactions, may mask the loss of the CTCF

site in vivo; YY1 is present in the MYC promoter region and is

thus likely to contribute to DNA looping and expression (Wein-

traub et al., 2017).

Our studies suggest that an additional set of human genes,

beyond MYC, may utilize promoter-proximal enhancer-docking

sites to mediate cell-type-specific enhancer-promoter interac-

tions. Such CTCF-mediated enhancer-promoter interactions

are generally nested within larger CTCF-mediated loops that

would function as insulated neighborhoods. At these genes

with CTCF-mediated enhancer docking, the promoter-proximal

enhancer-docking sites tend to be constitutively bound by

CTCF and these binding sites tend to be highly conserved.

Indeed, two studies have reported that these genes tend to

lose expression upon perturbation of CTCF (Nora et al., 2017;

Zuin et al., 2014), consistent with a role for CTCF in enhancer-

promoter looping. Among these genes are cancer-associated

genes that likely employ this mechanism to engender interac-

tions with tumor-specific enhancers. For example, at CSNK1A1,

a drug target in acute myeloid leukemia (AML) tumor cells

(Järås et al., 2014), VEGFA, which is upregulated in many can-

cers (Goel and Mercurio, 2013), and RUNX1, a well-defined

oncogene in AML (Deltcheva and Nimmo, 2017), the evidence

suggests that super-enhancers in these cancer cells use

a CTCF enhancer-docking mechanism to interact with the

oncogene. Thus, a CTCF-dependent enhancer-docking mecha-

nism, which presumably facilitates interaction with different
Cell Reports 23, 349–360, April 10, 2018 355
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Figure 5. Putative Enhancer-Docking Sites Occur at Additional Genes with Prominent Roles in Cancer

(A) Identification of genes with putative enhancer-docking sites. Genes were filtered for their expression status, presence of a CTCF binding site within 2.5 kb of

the TSS and evidence of looping to an active enhancer, defined by H3K27Ac ChIP-seq.

(B) Venn-diagram showing the overlap of TSSs with putative CTCF enhancer docking in K562, HCT-116, and Jurkat cells.

(C) Venn-diagrams showing the number of TSSs from active genes, the number of these that exhibit putative CTCF enhancer-docking and how many of these

have a constitutive CTCF site within 2.5 kb of the TSS.

(D) Conservation analysis of the CTCFmotifs in the CTCF-bound elements in putative enhancer-docking sites. The mean 46-way PhastCons score of the highest

JASPAR scoring motifs in CTCF peaks within putative CTCF enhancer docking and their flanking regions are shown.

(E) Examples of genes with putative CTCF enhancer-docking sites from the different cell types analyzed. CTCF ChIP-seq peaks are shown as purple rectangles,

typical enhancers are shown as gray rectangles, and super-enhancers are shown as red rectangles. Black arrows indicate the CTCF sites that may facilitate

enhancer docking. The insulated neighborhood loop is shown in blue and loops internal to it are shown in purple. HCT-116 HiChIP interactions internal to the

neighborhood with an origami score of at least 0.9 and aminimum PET count of 15 are shown for the TGIF1 locus. Jurkat SMC1 ChIA-PET interactions internal to

the neighborhood with an origami score of at least 0.97 are shown for the RUNX1 locus. K562 RAD21 ChIA-PET interactions internal to the neighborhood with an

origami score of at least 0.9 and aminimumPET count of 30 are shown for the VEGFA locus. K562RAD21ChIA-PET interactions internal to the neighborhoodwith

an origami score of at least 0.9 and aminimum PET count of 30 are shown for the PIM1 locus. Data are from this study and two others (Hnisz et al., 2016a; Heidari

et al., 2014).

See also Figure S5.
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cell-specific enhancers during development, is exploited by can-

cer cells to dysregulate expression of prominent oncogenes.

MYC dysregulation is a hallmark of cancer (Bradner et al.,

2017). The c-MYC TF is an attractive target for cancer therapy

because of the role that excessive c-MYC levels play in a broad

spectrum of aggressive cancers (Felsher and Bishop, 1999; Jain

et al., 2002; Soucek et al., 2008), but direct pharmacologic inhi-

bition of c-MYC remains an elusive challenge in drug discovery

(Bradner et al., 2017). TheMYC enhancer-docking site, and pre-

sumably those of other oncogenes, can be repressed by dCas9-

DNMT-mediated DNA methylation. Oncogene enhancer-dock-

ing sites may thus represent a vulnerability in multiple human

cancers.

EXPERIMENTAL PROCEDURES

Further details and an outline for resources used in this work can be found in

Supplemental Experimental Procedures.

CRISPR/Cas9 Genome Editing

Genome editing was performed using CRISPR/Cas9 essentially as described

previously (Ran et al., 2013). The genomic sequences complementary to all

guide RNAs are listed in Table S4.

ChIP-Seq

ChIP was performed as described previously (Lee et al., 2006). Approxi-

mately 30 million cells were crosslinked for 10 min at room temperature by

the addition of one-tenth of the volume of 11% formaldehyde solution to

the growth media followed by 5 min quenching with 125 mM glycine. Cells

were washed twice with PBS, and then the supernatant was aspirated and

the cell pellet was flash frozen at �80�C. 100 mL Protein G Dynabeads

(Thermo 10003D) were blocked with 0.5%BSA (w/v) in PBS. Magnetic beads

were bound with 40 mL anti-CTCF antibody (Millipore 07-729). Nuclei were

isolated as previously described (Lee et al., 2006) and sonicated in lysis

buffer on a Misonix 3000 sonicator for 5 cycles at 30 s each on ice (18–21

W) with 60 s on ice between cycles. Sonicated lysates were cleared once

by centrifugation and incubated overnight at 4�Cwith magnetic beads bound

with antibody to enrich for DNA fragments bound by the indicated factor.

Beads were washed with wash buffers A, B, C, and D sequentially. DNA

was eluted, cross-links were reversed, and DNA was purified with phenol

chloroform extraction and ethanol precipitation. Libraries for Illumina

sequencing were prepared following the Illumina TruSeq DNA Sample

Preparation v2 kit and sequenced on the Illumina HiSeq 2500 for 40 bases

in single-read mode.

4C-Seq

A modified version of 4C-seq (van de Werken et al., 2012) was developed

(Supplemental Experimental Procedures). The major change was the ligation

is performed in intact nuclei (in situ). This change was incorporated because

previous work has noted that in situ ligation dramatically decreases the rate

of chimeric ligations and background interactions (Rao et al., 2014).

HiChIP

HiChIP was performed essentially as described (Mumbach et al., 2016).

10 million HCT116 cells were crosslinked for 10 min at room temperature by

the addition of one-tenth of the volume of 11% formaldehyde solution to the

growth media followed by 5-min quenching with glycine. Cells were washed

twice with PBS, and then the cell pellet was flash frozen in liquid nitrogen.

Frozen samples were processed according to protocol (Supplemental Exper-

imental Procedures).

Targeted Methylation and Bisulfite Sequencing

To perform targeted methylation, cells were transfected with a dCas9-

DNMT3A-3L construct and five guides. To generate the dCas9-DNMT3A-3L
construct, dCas9 was isolated from pSQL1658 (Addgene 51023) by PCR.

Cas9 was removed from pX330-Cas9 (Addgene 42230) and replaced by

DNMT3A-3L (Siddique et al., 2013). Guide RNAs used for targeting can be

found in Table S4.

Statistical Methods

ChIP-Seq Data Analysis

ChIP-seq datasets were generated for this study as well as collated from pre-

vious studies (Table S5) and were aligned using Bowtie (version 0.12.2) to the

human genome (build hg19, GRCh37) with parameter -k 1 -m 1 -n 2. We used

MACS version 1.4.2 with the parameter ‘‘-no-model-keep-dup=auto.’’ A p

value threshold of enrichment of 1e-09 was used.

4C Analysis

4C-seq reads were trimmed and mapped using bowtie with options -k 1 -m

1 against the hg19 genome assembly. We only used the reads from non-

blind fragments for further analysis. The normalized profile of each sample

was smoothened using a 6-kb running mean at 500-bp steps across the

genome. Quantification of the 4C signal counted the reads per fragment

per million sequenced reads in the super-enhancers or the CTCF MACS

peak calls.

HiChIP and ChIA-PET Data Analysis

Wedeveloped a new software pipeline and analytical method called origami to

process HiChIP and chromatin interaction analysis by paired-end tag

sequencing (ChIA-PET). The software and releases can be found at https://

github.com/younglab/origami using version alpha20160828. The ChIA-PET

datasets analyzed along with their corresponding linker sequence and called

interactions in and around the MYC TAD can be found in Table S4. Each

ChIA-PET datasets was processed as follows: the reads were first trimmed

and aligned using origami-alignment. Each end of a paired end tag (PET)

with a linker sequence were separately mapped to the hg19 genome assembly

using bowtie with the following options: -v 1 -k 1 -m 1. After alignment, the

separated PETs were re-paired in the final BAM output. After repairing,

all duplicated PETs within the data were removed. Peaks were called on

the re-paired ChIA-PET reads using MACS1 v1.4.2 with the following

parameters: -nolambda -nomodel -p 1e�9.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is GEO:

GSE92881. The origami algorithm is accessible at https://github.com/

younglab/origami (version alpha20160828).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and six tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.03.056.
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Järås, M., Miller, P.G., Chu, L.P., Puram, R.V., Fink, E.C., Schneider, R.K.,

Al-Shahrour, F., Peña, P., Breyfogle, L.J., Hartwell, K.A., et al. (2014). Csnk1a1

inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia.

J. Exp. Med. 211, 605–612.

Javierre, B.M., Burren, O.S., Wilder, S.P., Kreuzhuber, R., Hill, S.M., Sewitz, S.,

Cairns, J., Wingett, S.W., Várnai, C., Thiecke, M.J., et al.; BLUEPRINT Con-

sortium (2016). Lineage-specific genome architecture links enhancers and

non-coding disease variants to target gene promoters. Cell 167, 1369–1384.

Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S.,

Weintraub, A.S., Hnisz, D., Pegoraro, G., Lee, T.I., et al. (2016). 3D chromo-

some regulatory landscape of human pluripotent cells. Cell Stem Cell 18,

262–275.

Kim, T.H., Abdullaev, Z.K., Smith, A.D., Ching, K.A., Loukinov, D.I., Green,

R.D.D., Zhang, M.Q., Lobanenkov, V.V., and Ren, B. (2007). Analysis of the

vertebrate insulator protein CTCF-binding sites in the human genome. Cell

128, 1231–1245.

Klenova, E.M., Nicolas, R.H., Paterson, H.F., Carne, A.F., Heath, C.M., Good-

win, G.H., Neiman, P.E., and Lobanenkov, V.V. (1993). CTCF, a conserved nu-

clear factor required for optimal transcriptional activity of the chicken c-myc

gene, is an 11-Zn-finger protein differentially expressed in multiple forms.

Mol. Cell. Biol. 13, 7612–7624.

Lee, T.I., Johnstone, S.E., and Young, R.A. (2006). Chromatin immunoprecip-

itation and microarray-based analysis of protein location. Nat. Protoc. 1,

729–748.

Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh,

H.M., Goh, Y., Lim, J., Zhang, J., et al. (2012). Extensive promoter-centered

chromatin interactions provide a topological basis for transcription regulation.

Cell 148, 84–98.

Lin, C.Y., Lovén, J., Rahl, P.B., Paranal, R.M., Burge, C.B., Bradner, J.E., Lee,

T.I., and Young, R.A. (2012). Transcriptional amplification in tumor cells with

elevated c-Myc. Cell 151, 56–67.

Lin, C.Y., Erkek, S., Tong, Y., Yin, L., Federation, A.J., Zapatka, M., Haldipur,

P., Kawauchi, D., Risch, T., Warnatz, H.-J., et al. (2016). Active medulloblas-

toma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62.

Liu, M., Maurano, M.T., Wang, H., Qi, H., Song, C.-Z., Navas, P.A., Emery,

D.W., Stamatoyannopoulos, J.A., and Stamatoyannopoulos, G. (2015).

Genomic discovery of potent chromatin insulators for human gene therapy.

Nat. Biotechnol. 33, 198–203.

Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D.,

Young, R.A., and Jaenisch, R. (2016). Editing DNAmethylation in the mamma-

lian genome. Cell 167, 233–247.e17.

Lovén, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner,

J.E., Lee, T.I., and Young, R.A. (2013). Selective inhibition of tumor oncogenes

by disruption of super-enhancers. Cell 153, 320–334.

Maurano, M.T., Wang, H., John, S., Shafer, A., Canfield, T., Lee, K., and

Stamatoyannopoulos, J.A. (2015). Role of DNAmethylation inmodulating tran-

scription factor occupancy. Cell Rep. 12, 1184–1195.

Montavon, T., and Duboule, D. (2012). Landscapes and archipelagos: spatial

organization of gene regulation in vertebrates. Trends Cell Biol. 22, 347–354.

M€ueller-Storm, H.P., Sogo, J.M., and Schaffner, W. (1989). An enhancer stim-

ulates transcription in transwhen attached to the promoter via a protein bridge.

Cell 58, 767–777.
Muerdter, F., and Stark, A. (2016). Gene regulation: activation through space.

Curr. Biol. 26, R895–R898.

Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf,

W.J., and Chang, H.Y. (2016). HiChIP: efficient and sensitive analysis of pro-

tein-directed genome architecture. Nat. Methods 13, 919–922.

Narendra, V., Rocha, P.P., An, D., Raviram, R., Skok, J.A., Mazzoni, E.O., and

Reinberg, D. (2015). CTCF establishes discrete functional chromatin domains

at the Hox clusters during differentiation. Science 347, 1017–1021.

Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N.,

Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al. (2012). Spatial partition-

ing of the regulatory landscape of the X-inactivation centre. Nature 485,

381–385.

Nora, E.P., Goloborodko, A., Valton, A.-L., Gibcus, J.H., Uebersohn, A.,

Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted

degradation of CTCF decouples local insulation of chromosome domains

from genomic compartmentalization. Cell 169, 930–944.

Ovcharenko, I., Loots, G.G., Nobrega, M.A., Hardison, R.C., Miller, W., and

Stubbs, L. (2005). Evolution and functional classification of vertebrate gene de-

serts. Genome Res. 15, 137–145.

Parker, S.C.J., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama,

J.A., van Bueren, K.L., Chines, P.S., Narisu, N., Black, B.L., et al.; NISC

Comparative Sequencing Program; National Institutes of Health Intramural

Sequencing Center Comparative Sequencing Program Authors; NISC

Comparative Sequencing Program Authors (2013). Chromatin stretch

enhancer states drive cell-specific gene regulation and harbor human disease

risk variants. Proc. Natl. Acad. Sci. USA 110, 17921–17926.

Phillips-Cremins, J.E., Sauria, M.E., Sanyal, A., Gerasimova, T.I., Lajoie, B.R.,

Bell, J.S., Ong, C.-T.T., Hookway, T.A., Guo, C., Sun, Y., et al. (2013). Architec-

tural protein subclasses shape 3D organization of genomes during lineage

commitment. Cell 153, 1281–1295.

Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang,

Y., Hansen, R.S., Canfield, T.K., et al. (2014). Topologically associating do-

mains are stable units of replication-timing regulation. Nature 515, 402–405.

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013).

Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–

2308.

Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D.,

Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., and Aiden,

E.L. (2014). A 3Dmap of the human genome at kilobase resolution reveals prin-

ciples of chromatin looping. Cell 159, 1665–1680.

Rubio, E.D., Reiss, D.J., Welcsh, P.L., Disteche, C.M., Filippova, G.N., Baliga,

N.S., Aebersold, R., Ranish, J.A., and Krumm, A. (2008). CTCF physically links

cohesin to chromatin. Proc. Natl. Acad. Sci. USA 105, 8309–8314.
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