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Abstract

Peroxisome Proliferator-Activated Receptor delta (PPAR-δ) is a nuclear receptor transcription 

factor that regulates gene expression during development and disease states such as cancer. 

However, the precise role of PPAR-δ during tumorigenesis is not well understood. Recent data 

suggest that PPAR-δ may have context specific oncogenic and tumor suppressive roles depending 

on the tissue, cell-type, or diet-induced physiology in question. For example in the intestine, pro-

obesity diets, like a high fat diet (HFD), are associated with increased colorectal cancer incidence. 

Interestingly, many of the effects of a HFD in the stem and progenitor cell compartment are driven 

by a robust PPAR-δ program and contribute to the early steps of intestinal tumorigenesis. 

Importantly, the PPAR-δ pathway or its downstream mediators may serve as therapeutic 

intervention points or biomarkers in colon cancer that particularly arise in obese patients. 

Although potent PPAR-δ agonists and antagonists exist, their clinical utility may be enhanced by 

uncovering how PPAR-δ mediates tumorigenesis in diverse tissues and cell-types as well as in 

response to diet.

BACKGROUND

Peroxisome Proliferator-Activated Receptor delta (PPAR-δ) belongs to the Peroxisome 

Proliferator-Activated Receptor (PPAR) subfamily of nuclear receptor transcription factors 

that is comprised of three members (alpha, beta/delta and gamma) (1). PPARs are critical 

regulators of metabolism and exhibit tissue and cell-type specific expression patterns and 

functions that can be altered by physiological cues. Although PPAR isoforms have highly 

homologous structures and have overlapping functions, distinct selective ligands have been 

identified to activate each family member exclusively. PPAR-α is the first member of the 

family that was cloned and characterized in mouse liver where it regulates lipid homeostasis 
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and reduces triacylglycerol levels. PPAR-γ has been extensively studied in adipose tissue 

where it controls adipogenesis, lipid metabolism and enhances glucose metabolism (1). In 

particular, PPAR-δ is highly expressed in the intestinal crypts, keratinocytes and oxidative 

skeletal muscle fibers (2) and is a master regulator of lipid metabolism (3). For example, 

PPAR-δ mediated metabolic regulation prevents against diet-induced obesity, metabolic 

syndrome and enhances skeletal muscle endurance and function (4, 5). Furthermore, dietary 

interventions such as fasting (3) and inflammatory cytokines such as tumor necrosis factor 

alpha (TNF-α) and interferon gamma (IFN-γ) (6) augment PPAR-δ signaling. Thus, PPAR-

δ couples diverse dietary, nutritional, or physiological inputs to organismal metabolism (7–

9).

While long chain fatty acids and their derivatives were initially recognized as endogenous 

activators of PPAR-δ pathway, the actual nature of the physiological ligands of PPAR-δ 
remains elusive. In the past decade, in addition to fatty acids, derivatives of arachidonic acid 

(10), lipoperoxidation products (11) and all-trans-retinoic acid (ATRA) (12) have been 

proposed to activate the PPAR-δ pathway. Although a general consensus is lacking, two 

major models have been postulated regarding how nuclear PPAR-δ senses its ligand(s). In 

the first model, it is proposed that the ligands are delivered from the cytoplasm to the 

nucleus by fatty acid binding proteins (FABPs) (13, 14), and in a second model it is 

suggested that the ligands are products of active nuclear lipid metabolism (15). Importantly, 

several very potent and selective small molecule PPAR-δ agonists including GW501516, 

GW0742 (16), and MBX-8025 (17) have been developed and widely used experimentally to 

decipher the biological significance of PPAR-δ mediated transcriptional activity (Figure 1).

PPAR-δ controls transcription both directly and indirectly (1). Direct regulation involves 

partnering with retinoid X receptor (RXR) and binding to peroxisome proliferator response 

elements (PPRE) in the enhancers and promoters of its target genes (Figure 1). Furthermore, 

PPAR-δ mediated transcriptional activation relies on ligand binding and concomitant 

epigenetic mechanisms that include displacement of co-repressors and recruitment of co-

activator associated chromatin-remodeling factors, which orchestrate the framework 

necessary for transcriptional initiation (18). Over the past decade, PPAR-δ or its direct 

transcriptional targets have been demonstrated to bear on diverse cellular functions such as 

stem cell maintenance, cellular differentiation, metabolism and inflammation.

PPAR-δ also regulates a multitude of genes indirectly by affecting the activity of other 

transcription factors through physical interaction or through signal transduction pathways 

that impact the function of other transcription factors (Figure 1). For example, PPAR-δ is 

found to interfere with NFκB pathway (an important pathway in controlling inflammatory 

gene expression) and attenuate inflammation (19). Moreover, PPAR-δ cooperates with β-

catenin (a key transcription factor for cell fate determination) in bone turnover and intestinal 

tumorigenesis (7, 20).

Gene expression analysis studies in combination with chromatin immunoprecipitation 

sequencing (ChIP-seq) have identified direct and indirect PPAR-δ regulated genes (21, 22). 

Well-documented direct targets of PPAR-δ include genes involved in fatty-acid oxidation 

and lipid metabolism such as Cpt1a, Fabp1 and Pdk4, whereas pro-inflammatory cytokines 
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like TNF-α and IL-6 are regulated indirectly. Overall, PPAR-δ controls the expression of a 

large set of genes through different mechanisms that are influenced by the PPAR-δ 
expression levels, interaction with additional transcription factors as well as the abundance 

and nature of its ligands. These different levels of control confer versatility to PPAR-δ 
mediated gene regulation in myriad tissues and cell types during development and disease 

states such as cancer.

PPAR-δ in development and cancer

Several developmental abnormalities have been reported in PPAR-δ-null mice including 

reduced gestational and postnatal body weight as well as abnormalities in multiple tissues 

such as adipose tissue, skin, and intestine (23, 24). In adipose tissue, PPAR-δ deficiency 

leads to a reduction in adipocyte numbers and PPAR-γ expression levels—the PPAR family 

member that controls adipogenesis (23). While PPAR-δ is not directly implicated in the 

regulation of adipogenesis, it contributes to the metabolic response of adipose tissue to 

dietary fatty acids (8, 23). Although PPAR-δ is expendable for homeostatic function in the 

skin, it plays a critical role in skin repair after injuries that disrupt skin integrity. Also it is 

understood that agonist-activated PPAR-δ hampers cellular proliferation and induces 

keratinocyte differentiation (24, 25). Thus, these findings are consistent with the notion that 

PPAR-δ signaling may possess anti-tumorigenic roles in the skin by preventing the growth 

and promoting the differentiation of (pre-)malignant cells through antagonizing the 

expression of proteins known to contribute to keratinocyte hyperproliferation and skin 

tumorigenesis (24–27). However, these anti-tumorigenic effects of PPAR-δ signaling in the 

skin may be context specific as it is observed in only some models of skin cancer (28, 29).

In the intestine, PPAR-δ performs critical regulatory functions and modulates intestinal 

physiology in multiple cell types, yet the underlying mechanisms are poorly understood. For 

instance, PPAR-δ was identified as a crucial factor in Paneth cell differentiation and thus, 

implicating it as a significant player in intestinal homeostasis (30). Paneth cells not only 

possess anti-microbial functions but also constitute a niche component for intestinal stem 

cells (ISCs) that reside at the bottom of the crypt, a location where PPAR-δ expression is the 

highest in the intestine (30, 31). By influencing Paneth cell differentiation, PPAR-δ regulates 

a significant support cell of the ISC, which drives the rapid renewal of the intestinal 

epithelium. In addition, PPAR-δ contributes to intestinal physiology through the control of 

lipid absorption, cholesterol trafficking and enteroendocrine cell function in more 

differentiated or specialized intestinal cell-types (32–34).

Initial reports on the role of PPAR-δ in intestinal tumorigenesis suggested that PPAR-δ is a 

direct transcriptional target of the Wnt/β-catenin pathway, a pathway that governs intestinal 

maintenance and tumorigenesis. Adenomatous polyposis coli (APC) orchestrates the 

destruction of cytoplasmic β-catenin in the absence of an upstream Wnt activation signal to 

tightly control β-catenin nuclear localization and activity. APC inactivation leads to strong 

activation of the β-catenin pathway and is the most common initiating oncogenic event of 

intestinal dysplasia (35). Although early studies demonstrated induction of PPAR-δ in 

intestinal tumors that were formed upon loss of APC or by chemical mutagenesis, 

subsequent reports in both rodents and humans failed to establish an unequivocal induction 
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of PPAR-δ expression or activity in intestinal cancers (36). Several studies have utilized 

either whole body or intestinal specific genetic ablation of PPAR-δ to delineate the precise 

function of PPAR-δ in tumor prone APCmin/+ mice (mice with nonsense mutation in Apc 
gene that results in a truncated protein) or chemically induced models of intestinal 

tumorigenesis. While some studies found a pro-tumorgenic role for PPAR-δ, others posited 

an anti-tumorigenic function. Conflicting results from these loss of function studies have 

raised important questions regarding the role of PPAR-δ in intestinal tumorigenesis (23, 37–

39). In contrast, however, gain of function studies that utilized the PPAR-δ agonist 

GW501516 more consistently demonstrated that PPAR-δ activation mediates a pro-

tumorigenic phenotype in the intestine (40).

These conflicting findings, regarding PPAR-δ necessity in intestinal tumorigenesis, may be 

due to different genetic strategies used to disrupt PPAR-δ function. Studies that supported an 

anti-tumorigenic role for PPAR-δ in APCmin/+ mice utilize germline disruption of PPAR-δ 
exon 8 (37, 38). Whereas ablation of PPAR-δ by disrupting exon 4 failed to decrease tumor 

incidence in Apcmin/+ mice but led to a reduction in size of the largest intestinal adenomas 

(23). However, deletion of PPAR-δ exon 4 and part of exon 5 significantly diminished tumor 

numbers in Apcmin/+ mice, and exon4 deletion reduced dysplastic lesions in Apcmin/+ mice 

exposed to chemical injury (39, 41). Some of the discrepancy likely arises from the fact that 

disruption of exon 8 (the last PPAR-δ exon) may produce a hypomorphic protein, while 

disruption of exon 4 (an essential portion of the PPAR-δ DNA binding domain) ablates 

PPAR-δ activity (42). Lastly, it is important to point out that these studies used germline 

PPAR-δ mutants. More recently, intestine-specific PPAR-δ loss (targeting exon 4) decreased 

the numbers of dysplastic lesions in response to chemical mutagenesis (42). Another 

possible confounder in these studies is the use of different genetic backgrounds, which is 

known to influence tumor susceptibility in Apcmin/+ mice or to chemical injury (1).

Dietary regulation of stemness and tumor initiation

As discussed above, accumulating evidence underscores the importance of PPAR-δ pathway 

in health and disease. However little is known about how PPAR-δ contributes to the 

regulation of stemness and tumor initiation in response to diet-induced physiologies. Diet is 

a modifiable lifestyle factor that has a profound impact on mammalian physiology, health, 

and disease including cancer. Long-lived mammalian tissue-specific stem cells play a key 

role in how tissues adapt to diverse diet-induced physiological states. Such stem cells 

dynamically remodel tissue composition in response to physiological cues by altering the 

balance between self-renewal and differentiation divisions (43). Factors that increase 

somatic stem cell self-renewal division rate are implicated to elevate cancer risk (44, 45). 

This suggests that dietary interventions that boost stem cell self-renewal increase the 

potential pool of cells that can undergo mutagenesis and give rise to cancer.

Consistent with this notion, we recently demonstrated that a pro-obesity high fat diet (HFD)-

activated PPAR-δ program augments the numbers, proliferation and function of ISCs in the 

mouse intestine, providing a possible explanation to the long-sought link between diet-

induced obesity and cancer (7, 46). In addition, intestinal adaptations to a long-term HFD 

not only enabled ISCs to acquire niche independence (i.e. initiate mini-intestines in culture 
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without need of their Paneth niche) but also allowed non-stem cell progenitors to obtain 

stem-cell attributes. These changes effectively augmented the numbers of cells within the 

intestine that possessed stemness and that could initiate tumors upon loss of the APC tumor 

suppressor gene (7). Moreover, enforced PPAR-δ activation mimicked many of these effects 

of a HFD. As mentioned, there are differing opinions on the role of PPAR-δ in intestinal 

tumor initiation. However, these findings demonstrate that PPAR-δ activation in ISCs and 

progenitors has pro-tumorigenic effects in the intestine and raises the possibility that PPAR-

δ inhibition in the setting of a HFD may dampen tumor initiation, progression, or both.

An important question is whether a HFD has similar stem cell enhancing effects in other 

tissues. Interestingly, in contrast to the enhanced stemness observed in the intestine, HFD 

decreases neural progenitor cells proliferation and hippocampal neurogenesis by increasing 

lipid peroxidation and reducing BDNF levels in hippocampus (47). On the other hand, HFD 

alters the differentiation potential of bone marrow-derived mesenchymal stem cells (MSCs), 

subcutaneous adipose-derived stem cells (sqASCs), and infrapatellar fat pad-derived stem 

cells (IFP). Notably, the fatty acid constituents of the diet in part mediated this effect, 

implicating a possible role for PPAR-δ signaling (48). Also, the impact of a HFD in 

hematopoiesis is context dependent. A recent study demonstrated that a maternal HFD 

compromises the expansion of the fetal HSPC pool and hematopoietic lineage specification. 

Conversely, adult hematopoiesis is augmented in response to HFD-induced obesity (49, 50). 

The fact that PPAR-δ-activated fatty acid oxidation drives hematopoietic stem cell self-

renewal (51) suggests that HFD-mediated regulation of hematopoiesis may involve PPAR-δ 
function. Nonetheless, whether a HFD or PPAR-δ is linked to tumor initiation in these 

tissues warrants further investigation.

CLINICAL-TRANSLATIONAL ADVANCES

Despite the fact that preclinical studies have provided evidence that PPAR-δ agonists 

possess therapeutic value in the treatment of several metabolic diseases, there are currently 

no FDA approved agonists for PPAR-δ.(5, 9). This is in contrast to PPAR-α and PPAR-γ, 

which have FDA approved agonists that are standard of care for metabolic disorders such as 

hyperlipidemia and diabetes. Although clinical trials revealed that short-term administration 

of PPAR-δ agonists GW501516 (NCT00841217) (52) and MBX-8025 (NCT00701883) (53) 

had beneficial effects in patients with metabolic syndrome, pre-clinical long-term studies in 

mice indicated that PPAR-δ agonists might have pro-tumorigenic effects, thus dampening 

enthusiasm for these compounds in human trials.

Several studies have suggested that PPAR-δ expression has prognostic value for cancer 

patients including those with colorectal cancer (54, 55). However, there are inconsistencies 

in the reported PPAR-δ expression levels of different human tumors compared to normal 

tissue as well as how PPAR-δ expression correlates with prognosis. For instance, a study 

that examined 52 colorectal cancer patients found that PPAR-δ and COX-2 expression in 

tumors negatively correlates with patient survival (54). However, another study with 141 

colorectal cancer patients revealed that higher expression of PPAR-δ in primary colorectal 

tumors was associated with lower expression of Ki67 (a cellular marker for proliferation), a 

higher frequency of stage I cases, a lower frequency of later stage cases, and a lower rate of 

Beyaz and Yilmaz Page 5

Clin Cancer Res. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lymph node metastasis (55). More studies are required to precisely ascertain the molecular 

mechanisms that PPAR-δ employs during cancer initiation and progression and how this 

impacts patient prognosis.

PPAR-δ polymorphisms have been associated with physical performance (56), diabetes (57), 

obesity (58) and cancer (59, 60). A recent study focusing at colorectal cancer patients 

identified 7 novel variants among 22 inherited or acquired PPARD variants. Interestingly, 4 

recurrent variants were detected in or adjacent to exon 4, which encodes an essential portion 

of the PPAR-δ DNA-binding domain, suggesting that these variants have functional 

significance (60). Although these variants may have clinical importance, the effect of PPAR-

δ polymorphisms on gene expression or function of PPAR-δ is still poorly understood.

Our recent data indicates that HFD-activated PPAR-δ engages a specific β-catenin program 

that involves expression of genes implicated in intestinal tumorigenesis such as Jag1 and 

Bmp4 in ISCs and progenitors (7). Future studies need to address whether increased 

expression of Jag1 or Bmp4 has any prognostic or correlative value in colorectal cancer that 

arise in obese patients. Furthermore, it will be important to determine the functions of 

PPAR-δ in the setting of diverse tissues, cell-types, diets, and risk factors that are associated 

with cancer in humans. The fact that PPAR-δ links dietary regulation of stemness to tumor 

initiation in the intestine raises the possibility of a new therapeutic approach in the treatment 

of intestinal cancers in obesity (7) such as exploiting possible PPAR-δ dependencies in 

tumors that arise in a HFD or obesity. Uncovering the cellular and molecular mechanisms by 

which PPAR-δ drives its effects may lead to new therapeutic insights, especially in those 

cancers with high PPAR-δ activity.
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Figure 1. 
Mechanisms of PPAR-δ mediated gene regulation. Dietary fatty acids, synthetic small 

molecule agonists (GW501516), intracellular fatty acids and metabolites may activate 

PPAR-δ pathway. Two major models have been proposed regarding delivery of PPAR-δ 
ligands. First, fatty acid binding proteins (FABPs) can transport fatty acids to the nucleus. 

Second, ligands are produced in the nucleus as a result of nuclear lipid metabolism. Ligand 

binding activates PPAR-δ and leads to regulation of several important biological processes. 

First, PPAR-δ partners with retinoid X receptor (RXR) and binds to peroxisome proliferator 

response elements (PPRE) to activate the expression of genes involved in lipid metabolism 

(1). In addition, PPAR-δ interacts with β-catenin, which is a key transcription factor for cell 

fate determination and assists β-catenin to induce gene expression in order to modulate 

stemness in response to dietary cues like fatty acids (2). Lastly, PPAR-δ inhibits 

inflammatory gene expression by interfering with NFκB pathway (3).
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