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Floodlight quantum key distribution (FL-QKD) has realized a 1.3 Gbit/s secret-key rate (SKR) over a 10-dB-
loss channel against a frequency-domain collective attack [Quantum Sci. Technol. 3, 025007 (2018)]. It achieved
this remarkable SKR by means of binary phase-shift keying (BPSK) of multiple optical modes. Moreover, it
did so with available technology, and without space-division or wavelength-division multiplexing. In this paper
we explore whether replacing FL-QKD’s BPSK modulation with a high-order encoding can further increase
that protocol’s SKR. First, we show that going to K-ary phase-shift keying with K = 32 doubles—from 2.0 to
4.5 Gbit/s—the theoretical prediction from [Phys. Rev. A 94, 012322 (2016)] for FL-QKD’s BPSK SKR on a
50-km-long fiber link. Second, we show that 2d × 2d quadrature amplitude modulation does not offer any SKR
improvement beyond what its d = 1 case—which is equivalent to quadrature phase-shift keying—provides.

DOI: 10.1103/PhysRevA.98.012323

I. INTRODUCTION

Quantum key distribution [1] (QKD) allows remote parties
(Alice and Bob) to create a shared random bit string with
unconditional security. Later, they can employ their shared
string for one-time-pad (OTP) encryption [2] of messages they
wish to keep entirely private from any eavesdropper (Eve).
Unfortunately, current QKD systems’ Mbit/s secret-key rates
(SKRs) [3–7] fall far short of what is needed to make high-
speed (Gbit/s) transmission with OTP encryption ready for
widespread deployment. Floodlight QKD (FL-QKD) [8–10]
is a recent protocol that uses binary phase-shift keying (BPSK)
of multiple optical modes and homodyne detection to achieve
security against the optimum frequency-domain collective
attack. Its initial theoretical study [8] predicted that FL-QKD
was capable of Gbit/s SKRs at metropolitan-area distances
over single-mode fiber (no space-division multiplexing) in a
single-wavelength channel (no wavelength-division multiplex-
ing) without the need to develop any new technology. The
initial tabletop experimental demonstration of FL-QKD [9]
used 100 Mbit/s modulation to realize a 55 Mbit/s SKR over a
10-dB-loss channel (equivalent to 50 km of low-loss fiber) in
a setup that was limited by the bandwidth of its electronics. A
subsequent tabletop experiment [10], using GHz-bandwidth
electronics, attained a 1.3 Gbit/s SKR over a 10-dB-loss
channel using a 7 Gbit/s modulation rate

Why is FL-QKD’s SKR so much higher than prior state of
the art, even when compared at the same collective-attack secu-
rity level? It is because FL-QKD takes advantage of multimode
encoding, whereas the predominant decoy-state BB84 proto-
col does not [3], and conventional continuous-variable (CV)
QKD protocols require single-mode encoding [4]. Moreover,
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the SKR advantage over decoy-state BB84 shown in recent
D-dimensional QKD experiments [5–7] comes only from
mitigating the SKR-limiting effect of single-photon detectors’
dead time, i.e., within each time slot of their D-slot symbols
these protocols take no advantage of multimode encoding.
Thus the SKRs in bits/s for prior state-of-the-art systems are
constrained to be no more than the ultimate limit on SKR in bits
per mode, viz., the PLOB bound [11], SKR � − log2(1 − η)
bits per mode for a channel with transmissivity η. In contrast,
FL-QKD’s predicted 2 Gbit/s SKR [8] over a 50-km-long fiber
link uses 10 Gbit/s BPSK modulation of 200 modes per symbol
making its 10−3 bits per mode well below the − log2(1 − η) =
0.15 PLOB bound for η = 0.1, while still affording the Gbit/s
SKRs needed for high-speed OTP encryption.

How can we increase FL-QKD’s bits per mode SKR,
other things being equal, to further enhance its bits/s SKR?
Because FL-QKD relies on homodyne detection, there is a
potential answer from classical fiber-optic communication,
where a similar problem has been confronted in the context of
increasing the spectral efficiency (bits/s Hz = bits per mode)
for coherent (homodyne or heterodyne) detection systems [12].
For classical communication the answer is to go to a high-order
modulation format, e.g., K-ary phase-shift keying (KPSK) or
quadrature amplitude modulation (QAM). Therefore, in this
paper we will evaluate the merits of FL-QKD’s using those
formats. We show that KPSK with K = 32 doubles—from
2.0 to 4.5 Gbit/s—the theoretical prediction from Ref. [8]
for FL-QKD’s BPSK SKR on a 50-km-long fiber link, but
we find that 2d × 2d-symbol QAM does not offer any SKR
improvement beyond what its d = 1 case—which is equivalent
to quadrature phase-shift keying, i.e., 4PSK—provides.

The remainder of the paper is organized as follows. We
begin, in Sec. II, by extending the FL-QKD protocol—as pre-
sented in Ref. [8] and subsequently realized in Refs. [9,10]—to
allow for high-order encoding, using either the KPSK or QAM
signal constellations. Next, in Sec. III, we analyze FL-QKD’s
performance when it employs KPSK with 1 � log2(K ) � 5 or
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FIG. 1. Quantum channel setup for FL-QKD under frequency-
domain collective attack. ASE: amplified spontaneous emission
source. SPDC: spontaneous parametric downconverter. LO: local
oscillator.

2d × 2d square-lattice QAM with 1 � d � 4. We conclude, in
Sec. IV, with some discussion and suggestions for future work.
Derivation details appear in Appendixes A and B.

II. FL-QKD WITH HIGH-ORDER ENCODING

In FL-QKD with high-order encoding (schematic in Fig. 1),
Alice splits the W -Hz bandwidth, flat-top spectrum, high-
brightness (many photons per mode) output from an amplified
spontaneous emission (ASE) source into a low-brightness (�1
photon per mode) signal and a high-brightness reference. To
enable channel monitoring, Alice combines her low-brightness
ASE with the signal output from a spontaneous parametric
down-converter (SPDC)—of the same W -Hz bandwidth flat-
top spectrum as the ASE—in an n:1 ASE-to-SPDC ratio with
n � 1. Alice uses a single-photon detector to monitor her
SPDC’s idler and another single-photon detector to monitor
a κA � 1 fraction that she taps from her combined ASE-
SPDC light, while sending the remainder of that light—whose
brightness is NS � 1 photon per mode—to Bob. Alice retains
her bright reference beam in an optical-fiber delay line—using
amplifiers as needed—for use as her dual-homodyne receiver’s
high-brightness (NLO � 1 photons per mode) local oscillator
(LO).

In the absence of Eve, the fiber link from Alice to Bob is a
pure-loss channel with transmissivity κS � 1. Eve’s presence,
however, allows her to control that channel; hence Alice
and Bob must perform channel monitoring to bound Eve’s
information gain. So, prior to his encoding operation, Bob taps
a small fraction κB � 1 of the light he receives and sends it
to a single-photon detector. The outputs from Alice and Bob’s
single-photon detectors enable them to determine the singles’
rates SI for Alice’s idler and SA (SB) for Alice’s (Bob’s)
tap, as well as CIA (CIB) and C̃IA (C̃IB) the time-aligned
and time-shifted coincidence rates between Alice’s idler and
Alice’s (Bob’s) tap. They use their measurements to (1) verify
that Bob receives the photon flux he would get were Eve absent
and (2) determine Eve’s intrusion parameter, fE , from [8]

fE = 1 − [(CIB − C̃IB )/SB]/[(CIA − C̃IA)/SA]. (1)

I

(a) (b)

Q OQ

OI

Q

I

FIG. 2. Signal constellation examples: (a) 8PSK; (b) 4 × 4 QAM.
In both cases the gray shading marks one-standard-deviation regions
for Alice’s receiver about the {Īk + iQ̄k}—where Īk + iQ̄k is how
Bob’s kth transmitted symbol would appear, in a noise-free world, at
the output of Alice’s dual-homodyne receiver—and the red lines mark
the boundaries of her minimum error-probability decision regions.
Note that the eccentricity of the elliptical contours shown in (a)
originates from the correlation between Alice’s LO and the light she
receives from Bob. That eccentricity has been exaggerated in (a) to
emphasize the rotational symmetry, while in (b) circular contours
are shown because, as demonstrated in Appendix B, the contours’
eccentricity is negligible for parameter values of interest for FL-QKD.

Alice and Bob’s knowing Eve’s intrusion parameter quantifies
the integrity of the Alice-to-Bob channel and allows them to
place an upper bound on Eve’s Holevo-information rate for her
optimum frequency-domain collective attack. Eve can realize
that optimum attack in the form of an SPDC light-injection
attack [8], in which case fE is the fraction of the light entering
Bob’s terminal that comes from Eve.

To complete his part of the FL-QKD protocol, Bob first
takes the light not routed to his channel monitor’s single-photon
detector and modulates it with a random symbol selected from
his signal constellation at an R = 1/T baud symbol rate. In
Refs. [8–10], that constellation was BPSK, i.e., Bob randomly
applied a 0 rad or π rad phase shift. In the present work,
Bob will employ either a KPSK or a square-lattice QAM
constellation, as shown in Figs. 2(a) and 2(b), respectively,
and detailed in Sec. III. These encodings are easily imposed
on the ASE light that Bob receives from Alice by means
of commercially available electro-optic modulators, cf. the 7
Gbit/s BPSK modulation applied to 2.24-THz-bandwidth ASE
light in the FL-QKD experiment reported in Ref. [10].

After his encoding, Bob amplifies his modulated light
with a gain GB � 1 quantum-limited amplifier whose output
ASE has brightness NB = GB − 1, and sends the modulated
and amplified light back to Alice through what, in Eve’s
absence, is a κS-transmissivity fiber. The amplifier’s gain will
overcome the return-path loss insofar as Alice is concerned,
thus making FL-QKD’s performance only subject to one-way
path loss, despite its being a two-way protocol. Furthermore,
the amplifier’s ASE will mask Bob’s modulation from Eve’s
passive (listening only) attack. Indeed, Alice’s transmitting
low-brightness (NS � 1) light to Bob precludes Eve’s deriving
a sufficiently good broadband phase reference—from light
she taps from the Alice-to-Bob channel—for retrieving Bob’s
symbol stream from his noisy transmission to Alice [13]. On
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the other hand, Alice’s high-brightness (NLO � 1) broadband
LO beam enables her to reliably recover Bob’s symbols.

To decode Bob’s symbols, Alice uses dual-homodyne re-
ception, i.e., she 50:50 beam splits both the light returned from
Bob and her LO, and then makes homodyne measurements of
the I (0 rad LO phase shift) and Q (π/2 rad LO phase shift)
in-phase and quadrature components of the returned light,
as in classical KPSK or QAM fiber-optic communications.
Following Alice’s minimum error-probability decoding of
Bob’s symbol stream from her measured sequence of I + iQ

values, Alice and Bob complete the FL-QKD protocol with the
usual key reconciliation and privacy amplification steps, using
an authenticated classical communication channel.

III. SECRET KEY RATES

Our route to determining FL-QKD’s performance when it
employs KPSK or QAM parallels what was done in Ref. [8] for
FL-QKD using BPSK: we obtain a lower bound on the SKR
from

SKRLB = βIAB − χUB
EB. (2)

Here (1) β is Alice and Bob’s reconciliation efficiency; IAB

is Alice and Bob’s bits/s Shannon-information rate, which
they calculate from their measured conditional probability
distribution—obtained during reconciliation—for Alice’s de-
coded symbol given Bob’s encoded symbol; and (2) χUB

EB

is an upper bound on Eve’s bits/s Holevo-information rate,
which Alice and Bob calculate from their channel monitors’
fE measurement. Also, we are assuming that (1) Eve mounts
an SPDC light-injection attack—which, see below, realizes her
optimum frequency-domain collective attack on KPSK—with
fE = 0.01 intrusion parameter and (2) SKRLB is sufficiently
high that a typical QKD session will push deep into the
asymptotic regime, i.e., no finite-key correction is needed.
Note that IAB does not achieve the Holevo capacity for
classical information transmission from Bob to Alice, even
in the absence of Eve. That capacity is achieved by Bob’s
encoding with an ensemble of Gaussian-distributed coherent
states and Alice decoding with a joint-detection receiver [14].
Our interest, however, is in high-SKR QKD when Eve may
be attacking the quantum channel. Hence we have chosen to
use the principal high-order encodings employed in fiber-optic
communications. As will be seen below, however, the SKR
gains we obtain with these high-order encodings fall far short of
what they afford in conventional fiber-optic communications.

The subsections that follow evaluate SKRLB for FL-QKD
with KPSK and QAM using the same parameter values
that Ref. [8] assumed, thus enabling direct comparisons of
FL-QKD’s performance using these high-order encodings to
the protocol’s performance with its original BPSK encoding.
These parameter values are as follows. (1) Alice’s ASE and
SPDC sources operate at 1550 nm wavelength and have W = 2
THz bandwidth. (2) Alice’s transmission to Bob has a 99:1
ASE-to-SPDC ratio, and its brightness, NS , is chosen, for
each propagation distance, to maximize SKRLB. (3) Alice and
Bob are connected by L-km-long single-mode fibers with 0.2
dB/km loss. (4) Alice and Bob use 1% taps for their channel
monitors. (5) Bob’s symbol rate is R = 10 Gbaud (T = 0.1 ns
symbol duration) [15]. (6) Bob’s amplifier has gain GB = 104.

(6) Alice’s LO is undegraded with brightness NLO = 104 and
her receiver has an η = 0.9 homodyne efficiency. (7) Alice and
Bob’s reconciliation efficiency is β = 0.94.

Before proceeding to our SKRLB evaluations, there is an im-
portant point to make about Alice’s homodyne-measurement
statistics. With our assumed T = 0.1 ns symbol duration
and W = 2 THz source bandwidth, there are M = T W =
200 modes per symbol in Bob’s transmission to Alice. In this
M � 1 regime, the central limit theorem implies that Alice’s
I and Q values for each received symbol are jointly Gaus-
sian random variables given the value of Bob’s transmitted
symbol. Furthermore, the means, variances, and covariance
of I and Q—which fully characterize their joint conditional
distribution—can be obtained from the value of the transmitted
symbol and the conditional covariance matrix of the return and
reference beams’ M independent identically distributed (iid)
return-LO mode pairs.

A. FL-QKD performance with KPSK encoding

In FL-QKD with KSPK encoding, Bob applies a 2πk/K

rad phase shift to the light remaining after his monitor tap,
where k (his symbol to be encoded) is equally likely to be
any integer between zero and K − 1. As a result, given Bob’s
transmitted symbol k, the joint distribution for Alice’s I and Q

has the rotational symmetry shown in Fig. 2(a). Specifically,
p( I,Q | k ) is a Gaussian, whose mean 〈I + iQ〉 = Īk + iQ̄k

has phase angle 2πk/K and a k-independent magnitude, and
whose covariance matrix is such that

Ĩk ≡ I cos(2πk/K ) + Q sin(2πk/K ), (3)

Q̃k ≡ −I sin(2πk/K ) + Q cos(2πk/K ) (4)

are statistically independent with k-independent variances
σ 2

Ĩ
> σ 2

Q̃
. (See Appendix A for the details.)

The preceding statistics make it easy to determine Alice’s
minimum error-probability rule for decoding Bob’s trans-
mitted symbol from her I + iQ measurement. Because Bob
sends each possible symbol with equal probability, the min-
imum error-probability rule reduces to making a maximum-
likelihood decision as to which symbol was sent [16]. Because
the conditional statistics of I and Q are Gaussian and ro-
tationally symmetric, the maximum-likelihood decision rule
is minimum-distance decoding: Alice decodes her measured
I + iQ as the symbol whose Īk + iQ̄k is closest to that
measured value. As shown in Fig. 2(a), this means that the
decision region,Dk , in the I + iQplane wherein Alice decodes
symbol k is

Dk = {I + iQ : −πk/K � θ < πk/K}, (5)

where |I + iQ|eiθ is the polar-coordinate form of I + iQ.
Using the {Dk}, together with the equiprobable nature of

Bob’s encoding and the jointly Gaussian conditional distribu-
tions {p(I,Q | k)}, we can numerically evaluate the condi-
tional probabilities Pr(k̃ | k) for Alice to decode her I + iQ

value as k̃, given that Bob sent symbol k, via

Pr(k̃ | k) =
∫ ∫

Dk̃

dI dQp(I,Q | k). (6)
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FIG. 3. SKR lower bounds for FL-QKD vs one-way path length
L, with insets showing the optimized brightness NS of Alice’s
transmission to Bob. The assumed parameter values are given in the
text. (a) SKRLB with KPSK for 1 � log2(K ) � 5. (b) SKRLB with
2d × 2d square-lattice QAM for 1 � d � 4.

Alice and Bob’s Shannon-information rate then follows from

IAB = R

⎧⎨
⎩

K−1∑
k=0

K−1∑
k̃=0

Pr(k̃ | k)

K
log2

[
K Pr(k̃ | k)∑K−1
k′=0 Pr(k̃ | k′)

]⎫⎬
⎭.

(7)

At this point, we can obtain SKRLB from Eq. (2) once we
have an upper bound on Eve’s Holevo-information rate, χUB

EB ,
when she mounts an SPDC light-injection attack. In that attack,
Eve injects signal light from her own W -Hz bandwidth, flat-top
spectrum, low-brightness SPDC source into the Alice-to-Bob
channel, so that it will get modulated and amplified by Bob and
then transmitted on the Bob-to-Alice channel. Eve also stores
her SPDC source’s idler light for use as a reference and then—
making use of that reference, plus the light she has tapped
from the Alice-to-Bob channel, and the light she taps from
the Bob-to-Alice channel—Eve makes the collective quantum
measurement that maximizes her Holevo-information rate.

In Ref. [8] it was shown that Eve’s SPDC light-injection at-
tack realizes her optimum frequency-domain collective attack
when Bob uses BPSK encoding. It turns out that this is still
true when Bob uses KPSK encoding, because KPSK’s signal
constellation is rotationally symmetric. This makes Eve’s
conditional state, given Bob transmits symbol k, a Gaussian
state with a k-independent von Neumann entropy. It also makes
her unconditional state identical to what prevails when Bob
uses BPSK. Consequently, applying the χUB

EB derivation from
Ref. [8]’s Appendix C to FL-QKD with KPSK requires only
that in the final χUB

EB formula—Eq. (C56) of that Appendix—
the maximum allowable value for χUB

EB be increased from
R log2(2) = R to R log2(K ), i.e.,

χUB
EB = R min{MκSNS[fE/ ln(2) − fE log2(fEκSNS )

+ (1 − fE )NS log2(1 + 1/NS )], log2(K )}. (8)

This result omits O(κ3/2
S ) and O(N−1/2

B ) terms that were
included in our numerical evaluations but are too long to
display here.

Figure 3(a) plots KPSK’s SKRLB versus one-way path
length L for 1 � log2 K � 5 when, for each L value, Alice’s
source brightness NS is chosen to maximize SKRLB and

the other system parameters as given earlier in this section,
i.e., they are the same as those employed in Ref. [8]. We
see that at 50 km path length going from BSPK to 32PSK
increases the SKR from 2 Gbit/s to 4.5 Gbit/s. The inset in
Fig. 3(a) plots the optimized NS versus L. As required to defeat
Eve’s passive eavesdropping attack on BPSK [8,10,13], we
see that NS � 1 prevails at all distances shown for that case.
Somewhat higher brightnesses—but still satisfying NS < 1
at all distances—are optimum as K increases, because Eve’s
decoding a higher-order KPSK requires her to have a higher-
quality phase reference, something that is still inaccessible
to her at those NS values. As an interesting side note, we
point out that the convergence with increasing L of Fig. 3(a)’s
SKRLB 4PSK curve to its BPSK curve—a behavior that can be
shown analytically—is due to the resulting decrease in Alice’s
signal-to-noise ratio and the structure of those two signal sets.

B. FL-QKD performance with QAM encoding

In FL-QKD with 2d × 2d square-lattice QAM, Bob first
selects a symbol from 0 � k � Kq − 1 ≡ 4d2 − 1 in an
equiprobable manner. He then intensity and phase modulates
the light remaining after his channel-monitor tap to encode
that symbol so that, in a noise-free world, it would appear as
Īk + iQ̄k—the center of the kth gray-shaded region in Fig.
2(b)—at the output of Alice’s dual-homodyne receiver [17].

Our first task is to use the Gaussian approximation for
Alice’s I and Q values’ conditional distribution to determine
Alice’s minimum error-probability decision rule. Finding that
decision rule, without further approximation, is made difficult
by the symbol-dependent conditional variances and covariance
of I and Q. In Appendix B, however, we show that for the
parameter values of interest, it is reasonable to take I and Q to
be statistically independent, given Bob’s transmitted symbol is
k, with mean values Īk and Q̄k , and equal symbol-independent
variances, σ 2.

With the preceding approximation for QAM’s conditional
measurement statistics, p(I,Q | k), finding FL-QKD’s min-
imum error-probability decision rule reduces to the one for
classical fiber-optic communication with QAM: decoding an
equiprobable QAM symbol from its observation in additive
white Gaussian noise. The minimum error-probability decision
rule for that problem is minimum-distance decoding, i.e., the
decision region, Dk , for symbol k is

Dk = {I + iQ : arg min
k′

|(I − Īk′ ) + i(Q − Q̄k′ )| = k}, (9)

as shown in Fig. 2(b).
So, to evaluate Alice and Bob’s Shannon-information rate,

we use QAM’s p(I,Q | k) and its Dk̃ to calculate Pr(k̃ | k)
from Eq. (6) for 0 � k, k′ � Kq − 1. The desired Shannon-
information rate is then found from

IAB = R

⎧⎨
⎩

Kq−1∑
k=0

Kq−1∑
k̃=0

Pr(k̃ | k)

Kq

log2

[
Kq Pr(k̃ | k)∑Kq−1
k′=0 Pr(k̃ | k′)

]⎫⎬
⎭.

(10)

Now, to complete our goal of finding FL-QKD’s SKRLB

for operation with 2d × 2d square-lattice QAM when Eve
mounts an SPDC light-injection attack, we need to get χUB

EB
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for that attack. Eve’s Holevo-information rate upper bound
can be obtained in a manner similar to the case of BPSK.
Indeed, the derivation in Appendix C of Ref. [8] is directly
applicable with only minor changes. This applicability is due
to Eve’s conditional state, given Bob transmits his kth symbol,
still being Gaussian, and her unconditional state still having
a Wigner covariance matrix that is diagonal. Hence Ref. [8]’s
Appendix C provides the upper bound we are seeking if we (1)
take account of the k-dependent nature of Eve’s conditional
state in evaluating the average of her conditional-states’ von
Neumann entropies, (2) bound her unconditional state’s von
Neumann entropy by the von Neumann entropy of a thermal
state with the same Wigner covariance matrix, and (3) use
R log2(Kq ), instead of R, as the upper limit of her Holevo-
information rate. (See Appendix B for the details.)

Figure 3(b) plots QAM’s SKRLB versus one-way path
length L for 1 � d � 4 when, for each L value, Alice’s source
brightness NS is chosen to maximize SKRLB and the other
system parameters are the same as those employed in Ref. [8]
and for KPSK. The inset in this figure shows the optimized
NS value versus L; as expected, low-brightness operation is
maintained to ward off Eve’s passive-eavesdropping attack.
What may not be expected for QAM, however, is the following
behavior. Unlike what we saw for KPSK—where increasing
K led to increasing SKR, albeit with diminishing returns, for
1 � log2(K ) � 5—the best QAM performance, for 1 � d �
4, occurs when d = 1. But d = 1 square-lattice QAM is merely
quadrature phase-shift keying (QPSK = 4PSK) rotated by π/4
rad, so we conclude that QAM, at least in its square-lattice
form, offers no SKR benefit to FL-QKD [18].

IV. DISCUSSION

We have shown that 32PSK can increase FL-QKD’s SKR on
a 50-km-long fiber channel from 2.0 Gbit/s to 4.5 Gbit/s, but
that square-lattice QAM offers no SKR improvement beyond
its 4-ary case, which is equivalent to 4PSK. Therefore, the
first thing to discuss is the reason for this behavior, which
contrasts sharply with QAM’s ability to provide substantial
capacity increases in classical fiber-optic communication by
virtue of its higher spectral efficiency.

It is easy to see why FL-QKD with KPSK suffers diminish-
ing returns with increasing K . Because NS < 1 is maintained
to ensure security against Eve’s passive-eavesdropping attack,
the {Īk + iQ̄k} become more tightly packed around a circle
of limited radius in the I,Q place with increasing K . Thus,
because the one-standard-deviation noise regions about these
points do not change with K , increasing K makes it harder
for Alice to reliably decode Bob’s transmitted symbols, hence
limiting Alice and Bob’s SKR gain with increasing K .

Alice’s transmitting at low brightness, so that Eve cannot
obtain a suitable high-quality broadband phase reference to
decode Bob’s KPSK, defeats passive eavesdropping. For 2d ×
2d square-lattice QAM with d > 1, however, the situation is
different. Now, Bob’s symbols vary in both intensity and phase.
So, even without a suitable high-quality broadband phase
reference, Eve’s passive-eavesdropping attack can provide
some intensity information about Bob’s symbols. Moreover,
as is the case for KPSK, Alice faces increasing difficulty in
discriminating between Bob’s different QAM symbols with

increasing d, because those symbols lie within a limited-radius
circle in the I,Q plane, and they are each surrounded by
fixed-radius one-standard-deviation noise regions. The result
is that d = 1 is the best of the 2d × 2d square-lattice QAM
constellations insofar as FL-QKD’s SKR is concerned.

In conclusion, FL-QKD—whether with its original BPSK
encoding or with its high-order KPSK encoding—currently of-
fers something that no other QKD protocol does: Gbit/s SKRs
over metropolitan-area distances with available technology and
without space-division or wavelength-division multiplexing.
Hence FL-QKD could make OTP encryption of high-data-rate
traffic possible over such distances. Two issues that remain to
be addressed before widespread use of FL-QKD might occur
are as follows.

The first issue arises because FL-QKD is an interferometric
protocol, which implies that proper functioning of Alice’s
dual-homodyne receiver requires that the roundtrip Alice-to-
Bob-to-Alice fiber link be stabilized in time delay to <1 ps
and in phase to <0.2 rad for BPSK and even more finely for
KPSK. It turns out, however, that the BPSK-level challenge
has been overcome by MIT Lincoln Laboratory, which has
recently reported success in stabilizing the 86-km-roundtrip
fiber link between its Lexington Massachusetts location and
the Cambridge Massachusetts MIT campus [19]. Performing
a field test of FL-QKD on such a stabilized, deployed-fiber
channel is the next experimental step that ought to be taken
in FL-QKD’s development. In support of such a field test,
extending our SKR analysis to include the impact of imperfect
phase stabilization is an important future task.

The second issue to be addressed concerns FL-QKD’s
existing security proof’s being limited to frequency-domain
collective attacks in the asymptotic domain, as opposed, e.g.,
to decoy-state BB84’s coherent-attack security proof with a
finite-key correction [3]. Toward this end, a recent theoretical
study [20] elaborates the use of limited entanglement-assisted
channel capacity to prove that Gaussian attacks are the opti-
mum for a broad class of two-way QKD protocols. We have
used that result to establish a framework that could provide
the desired coherent-attack security proof for FL-QKD [21].
Completing that security proof is the essential next step in
FL-QKD’s theoretical development.
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APPENDIX A: DETAILS FOR KPSK ENCODING

In this Appendix we shall supply details for FL-QKD with
KPSK encoding that were omitted from Sec. III A, viz., we
will derive the means, variances, and covariance of I and
Q conditioned on Bob’s having transmitted the kth symbol
from his KPSK alphabet. Then, we will verify the rotational
invariance claimed in Sec. III A, by proving that Ĩk and Q̃k from
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Eqs. (3) and (4) are statistically independent, given k, and we
will find their k-independent conditional variances, σ 2

Ĩ
> σ 2

Q̃
.

Our work in this Appendix will draw heavily upon the
BPSK theory for FL-QKD that was established in Ref. [8].
In that paper’s Appendix A, it was shown that the returned
and LO light entering Alice’s receiver for a particular symbol
transmission comprise a collection of M = T W iid mode pairs
with photon annihilation operators { â′

Bm
: 1 � m � M } and

{ â′
Rm

: 1 � m � M }, respectively. Under Eve’s SPDC light-
injection attack, and assuming Bob has transmitted his kth
symbol, the results from Ref. [8]’s Appendix A—generalized
to account for KPSK signaling—show that the â′

Bm
and â′

Rm

modes are in a zero-mean, jointly Gaussian state that is
completely characterized by its nonzero second moments:

〈
â

′†
Bm

â′
Bm

〉 = κS[GB (1 − κB )κSNS + NB] ≡ nB, (A1)〈
â

′†
Rm

â′
Rm

〉 = NLO, (A2)〈
â

′†
Bm

â′
Rm

〉 = e−2πik/KcRB, (A3)

where

cRB ≡ κS[GB (1 − κB )(1 − fE )NSNLOn/(n + 1)]1/2. (A4)

Alice 50:50 beam splits her returned and LO modes to provide
the following inputs for the I and Q channels of her dual-
homodyne receiver:

â
′(I )
Bm

= (
â′

Bm
+ âVBm

)/√
2, (A5)

â
′(Q)
Bm

= (
â′

Bm
− âVBm

)/√
2, (A6)

â
′(I )
Rm

= (
â′

Rm
+ âVRm

)/√
2, (A7)

â
′(Q)
Rm

= (
â′

Rm
− âVRm

)/√
2, (A8)

where the {âVBm
, âVRm

} are in their vacuum states. The I and Q

outputs of Alice’s dual-homodyne receiver are then the results
of the quantum measurements

Î =
M∑

m=1

(
â

′(I )†
+m â

′(I )
+m − â

′(I )†
−m â

′(I )
−m

)
, (A9)

Q̂ =
M∑

m=1

(
â

′(Q)†
+m â

′(Q)
+m − â

′(Q)†
−m â

′(Q)
−m

)
, (A10)

where

â
′(I )
±m ≡ √

η
(
â

′(I )
Bm

± â
′(I )
Rm

)/√
2 +

√
1 − ηv̂

(I )
±m, (A11)

â
′(Q)
±m ≡ √

η
(
â

′(Q)
Bm

± iâ
′(Q)
Rm

)/√
2 +

√
1 − ηv̂

(Q)
±m, (A12)

with η being her receiver’s homodyne efficiency and the
{v̂(I )

±m, v̂
(Q)
±m } modes being in their vacuum states.

Straightforward calculations now yield the following ex-
pressions for the conditional means, variances, and covariance
of I and Q, given that Bob’s transmitted symbol was k:

Īk = Mη cos(2πk/K )cRB, (A13)

Q̄k = Mη sin(2πk/K )cRB, (A14)

σ 2
Ik

= Mη
[
η cos(4πk/K )c2

RB + nB + NLO(1 + ηnB )
]/

2,

(A15)

σ 2
Qk

= Mη
[ − η cos(4πk/K )c2

RB + nB + NLO(1 + ηnB )
]/

2,

(A16)

σIkQk
= Mη2 sin(4πk/K )c2

RB

/
2. (A17)

Finally, we can prove our rotational invariance claim for the
conditional statistics of I and Q. Using Eqs. (3) and (4),
together with the conditional moments we have just obtained,
gives us the desired result: p(Ĩk, Q̃k | k) is a Gaussian dis-
tribution that is completely characterized by the following
moments:

〈Ĩk〉 = MηcRB, (A18)

〈Q̃k〉 = 0, (A19)

σ 2
Ĩk

= Mη
[
ηc2

RB + nB + NLO(1 + ηnB )
]/

2, (A20)

σ 2
Q̃k

= M
[ − ηc2

RB + nB + NLO(1 + ηnB )
]/

2, (A21)

σĨkQ̃k
= 0. (A22)

Here, the Gaussian nature of p(Ĩk, Q̃k | k) follows from
p(I,Q | k)’s being Gaussian, and the statistical independence
of Ĩk and Q̃k given k was sent then follows from their being
uncorrelated (σĨkQ̃k

= 0). We also see that Ĩk and Q̃k have
k-independent variances, σ 2

Ĩ
> σ 2

Q̃
, given k was sent.

APPENDIX B: DETAILS FOR QAM ENCODING

Here we shall supply details for FL-QKD with QAM
encoding that were omitted from Sec. III B, i.e., the conditional
means, variances, and covariance of I and Q, where we again
rely on results from Ref. [8]’s Appendix A.

Suppose that Bob encodes his kth symbol on the light
remaining after his channel monitor’s tap by imposing a trans-
missivity 0 < κq � 1 attenuation and a 0 � θq < 2π phase
shift that are chosen in accord with where the kth symbol
appears in his 2d × 2d square-lattice QAM constellation.
Conditioned on that symbol being sent, and assuming that Eve
has mounted an SPDC light-injection attack, the returned and
LO light that enters Alice’s receiver are again comprised of M

iid {â′
Bm

, â′
Rm

} mode pairs that are each in a zero-mean, jointly
Gaussian state that is completely characterized by its nonzero
second moments:〈

â
′†
Bm

â′
Bm

〉 = κS[GB (1 − κB )κqκSNS + NB] ≡ nBq
,〈

â
′†
Rm

â′
Rm

〉 = NLO,〈
â

′†
Bm

â′
Rm

〉 = √
κqe

−iθq cRB. (B1)

It is now a relatively simple matter to show that

Īk = Mη
√

κq cos(θq )cRB, (B2)

Q̄k = Mη
√

κq sin(θq )cRB (B3)
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are the conditional-mean values and

σ 2
Ik

= Mη
[
ηκqc

2
RB cos(2θq ) + nBq

+ NLO(1 + ηnBq
)
]/

2,

(B4)

σ 2
Qk

= Mη
[ − ηκqc

2
RB cos(2θq ) + nBq

+ NLO(1 + ηnBq
)
]/

2,

(B5)

σ 2
IkQk

= Mη2κqc
2
RB sin(2θq )/2 (B6)

are the conditional variances and covariance of Alice’s I and
Q values when Bob transmits his kth symbol.

To simplify finding Alice’s minimum error-probability de-
cision regions—and hence the calculation of Alice and Bob’s
Shannon-information rate—we note that the parameter values
assumed in Sec. III imply that

NLO � κqc
2
RB ∼ κqκ

2
SGBNSNLO

> nBq
∼ κqκSNB � 1. (B7)

Using these relations simplifies Eqs. (B4)–(B6) to σ 2
Ik

≈
Mη2NLOnBq

/2, σ 2
Qk

≈ Mη2NLOnBq
/2, and σIkQk

≈ 0, thus
justifying the white Gaussian noise assumption made in
Sec. III B.
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