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Abstract—We study the reliability of power transmission  To the best of our knowledge, [4] is the only other work to
networks under regional disasters. Initially, we quantify the effect look at the effect of geographically correlated failuregpomwer
of large-scale non-targeted disasters and their resultingascade  npetworks.
effects on power networks. We then model the dependence of tda
networks on the power systems and consider network reliakily Next, motivated by the effects of power loss on data
in this dependent network setting. Our novel approach proviles  networks [9], we consider the survivability of data netwsrk
a promising new direction for modeling and designing netwoks  with respect to power networks. We assume data nodes rely

to lessen the effects of geographical disasters. on the operation of the closest power load nodes in order to
function. We present numerical results that show data mitwo
. INTRODUCTION connectivity is significantly lower when power network de-

o pendency is considered; this implies power network effects
Power transmission networks are vulnerable to large-scalgave a significant impact on the survivability of real-world
natural disasters, such as hurricanes or geomagneticsfdfm gata networks.

[7], [13]. The geographical layout of the network affecte th N _ _

impact of such real-world disasters since they occur inifipec Power network resilience has been considered in the past
geographic locations. For example, an ElectromagnetisePul [3], [6], however so far only [4] has considered the effedts o
(EMP) attack [10] or geomagnetic storm can cause failure oft targeted geographic failure model. In this work we conside
electric power lines that directly transmit power to a lacigg, ~ the effect of non-targeted geographic disasters on the powe
thereby likely causing significant disruptions to powengms.  network. Some recent work has modeled the interdependence
However, the damage to the power network infrastructure i9etween data and power networks and demonstrated asymp-
not necessarily limited to these initial failures; powetwrks ~ totic percolation results [8]; however they did not conside
are also vulnerable toascading failures. Cascading failures Power flows or geography in their models. Additionally, [14]
occur when an initial failure in the network changes powerconsidered a geographic dependence model but did not con-
flows, which must obey physical law constraints, such thafider failures which were geographically correlated.

additional lines overload and fail. This in turn causes tower

flows to change again; this process will continue until some [1l. A SSESSINGPOWERNETWORK RELIABILITY

stability is reached. A well known example of a cascading We now consider a geographic failure model for power

failure is the 2003 blackout where a significant area of the : . . ,
northeastern U.S. lost power [2]. In this paper we consideP'€tWOrks where a disaster is modeled as a ‘randomly’ located

two failure models. The first model considers power networkdiSk- This can describe thf ef;ectf;somr? natural dis_asggr[lig
with respect to a randomly located geographic disaster an@S 9eomagnetic storms [1], [7], [13] or hurricanes, in addit

subsequent cascading failures. The second model builds dff collateral (non-targeted) damage from attacks on other
Qntmental networks (e.g. an attack on the communication o

the first; we describe a dependency between power and d e i )
networks and consider the connectivity of data networkii t e\ragsportat_lfon Eetwgrks). fOll"r goal |s|to be able to lénd!adsta
context. For each model, we present numerical results baséfid quantify the effect of large-scale non-targeted disast
and their resulting cascade effects on the power network. We
on real-world networks. . ) X
first describe the network and failure model and then propose

metrics to be evaluated on a real-world network.
II. OVERVIEW OF MODELS AND RELATED WORK

Motivated by the effects of natural disasters and cascadin§. Network and Failure Model
failures, we initially consider a two-stage failure model f

power networks. The first stage removes power lines th oints on the plane and links are represented by line segment
intersect a randomly located disk (which models a geograph his is the same model used in previous and related work [4],

cally correlated failure). The second stage then calcsiltte [11]
cascading failure that occurs due to the removal of theainiti
links. By using the tools developed in our previous work [11]  The failure model consists of two stages; the first stage is
and the cascading failure model presented in [5], we are ablénk failures caused by the random circular disaster and the
to calculate the effect of this type of failure in power netli®  next stage is the resulting cascading failures. We firstridesc

We consider a network such that nodes are represented by



Fig. 1. The probability that a randomly located disk centeredCnintersects only

I3 andly is given by the ratio of the area of the shaded region to tha aféhe large

rounded rectangle. Fig. 2. Every shaded region above represents a set of disk centesewadius ise 8
kilometers and only intersects a particular set of powezdishould a failure be centered
within that region. The network being represented is thialahigh-voltage electrical

the initial failures caused by the random circular disk (othi ansmission network (HVIET) [14], [15].

is the same as the failure model presented in [11]). We model
a disaster event in the network assiagle randomly located
disk of a radiusr, centered within an area of interest (i.e.
C is a set of points in the plane where the disaster may b
centered). If the randomly located disk intersects someepow
lines, we assume those lines are destroyed. A DC power flow can be described by the amount of power
o flow from nodei to nodej on (i, j), denoted byf;;, and
(il"ée phase angle at nodedenoted byd,. A DC power flow
must obey the following constraints.

Let (i,7) denote the power line from nodeto nodej
and let £ denote the set of all these lines. Lgt denote the
feactance ofi,j) and letu,;; denote the capacity df, j).

Geometric probability [16] allows us to assign a measure t
sets of disks. This measure is simply defined as the Lebesg
integral over the set of disk centers. Using this measure an
tools from computational geometry, we can find the probigbili
a randomly located disk that intersectsalso intersects some =B Vie N 1
set of links. See Fig. 1 for a simple example and Fig. 2 for Z Ji =i Vi @

an example with respect to the Italian high-voltage eleatri Jhj)eE
transmission network (HVIET).
After this initial failure, due to power flow constraints, 0; — 05 = x5 fi; V(i,7) 2)

a cascading failure may occur. We will use the same power

flow and cascading failure model described in [5]. Thus these Equation (1) constrains the total power out of a node to

geometric probability tools along with the cascading f@lu be equal to the amount of power injected at that node (power
model allow us to analyze the effects of large scale randomlyonservation). For example, if a node is a generator then the
located disasters on the power network. net power flow out must be the amount of power generated

We now present our failure model for power flows andat that node. Equation (2) is the analogue to Ohm’s law; the

cascading failures in power networks. We use the same mod ount of.power through a power line is proportional to the
as found in [4], [5] and even borrow some notation. The detail d'fference in phase anglés and®;.

of the DC power flow and cascading model may be skipped |t should be noted that the power flow has a feasible solu-

and the reader may proceed to Section IlI-B without loss otjon as long as,cx B = 0 for every connected component

continuity. K in the network (that is, aggregate supply equals aggregate
1) DC Power Flow Model: We now describe the DC demand for that component) [5]. Additionally, the values of

power flow model which is a linearized version of the morethe power flows are unique [5].

complicated AC power flow model. We use the DC model 2) Cascading Failure Model: We now describe the cascad-

because it is more tractable and easier to find solutions f%g failure model. Again, this model can be found in [4], [5]
power flows. but is presented here for completeness.

Let 8; represent the amount of power injected at node
If B; > 0 then node is a source of power and may represent
a generator where power is injected into the systens; K 0
then node; is a sink of power and may represent demand afY
this node. We call these type of nodes power demand nodes. We now describe the cascading failure model in steps.
If 5; =0 then power is neither injected or removed at node ~
and may represent a power bus. Létbe the set of nodes in 1) Setf;; to be the absolute value of the power flow @)
the network. before any failure occurs.

Before any failures occur, we assume the network is
connected and thagt_,_,, 8; = 0. In other words, we assume
gregate demand is equal to aggregate supply.



2) ConSIder some Ssu bset Of power ||nes to be Inltla”y lCDF of Yield on HVIET network with radiu0km, FoS=1.2, and=0.5, Average Yield = 0.78336

removed from the network.
3) In order to calculate DC power flows for this modified net-
work, aggregate supply and demand must match in eacos-
component. Hence, we proportionately reduce supply (041
demand) at nodes in each component until this conditioro
is met. This may model load shedding or a ramping dowr ™
of generators. 05
4) Power flowsf;; are then calculated for the remaining o.4-
network by finding the unique power flows that satisfy .
equations 1 and 2. ~
5) Let fi; = alfi;| + (1 — a)fi;.
fi; represents some ‘moving average’ of flow through the®'
power line (7,j) and can be thought of as modeling of o _ : o o
some thermal effectsy is a parameter in this moving Yield
average S.et to .a value betwe_en 0 and la!fS Sma”,’_ .. Fig. 3. CDF of the average yield on the HVIET network with disastediua of
then the line will take more time steps to heat up; if approximately 50 kilometers. We assume that the regiontefést is given by the convex
a = 1 then the line can be thought of as feeling the hull of the network. Note that there is a significant probigbthe yield is 1; this is mainly
effect of the new flow instantaneously. In this work we caused by disks centered within the region of interest tbatat intersect the network.
assumex = 0.5. ~
6) We then remove all lines for whicfi; > u;;. This may N
cause an additional change in the power flows (hence th
cascade); we go back to step 3 and the process repe
until no flow is above capacity. 0.4

0.2-

Average Yield vs. FoS on HVIET network with radi®km andx=0.5

0.9-

It should be noted that we were not able to attain thez*|
capacities of power lines for real power networks. Hence? 04
in order to approximate the capacities on a power networl€
we calculate the initial power flows on each line and then<
set u;; proportional to|f;;| before any failures occur. This
proportion is called the Factor of Safet§f'¢S) and relates to 0.3
the amount of ‘spare capacity’ on the power lines. In other
wordsu;; = |fij| x FoS before any failures occur. For real

0.4~

power grids, it is believed that a good approximation farS “YTir 1z 13 14 18 1e 17 18 ds 2
is 1.2 [4]. Hence, for the majority of this work, we assume
FoS =1.2. Fig. 4. Average yield vs. FoS on the HVIET network with disaster wadiof

approximately 50 kilometers. When thE€oS = 1, then there is no spare capacity
i . allocated on the power lines, so when a failure event ocdwesrésulting cascading
B. Performance Metrics and Numerical Results failure brings down most of the network. As FoS increases,average yield increases
. as well, as one would expect. Note whétwS = 2, then the failure event will have a
Our goal is to analyze the effect of a randomly locatedmuch smaller effect on the yield.

circular disk failure in conjunction with cascading faigr
on power networks. Let the yield be the fraction of demand
satisfied after the disaster and resulting cascade. Bylasilng  expect. For example, whefioS = 2 the failure event will not
the probabilities of relevant joint link failures using theols ~ have much effect on the yield. Addressing the effect of the
and equations in [11] and considering the resulting casgadi radius of the disaster, Fig. 5 shows as the radius of thelniti
effects, one can evaluate the expected value as well as tltisaster increases, the average yield in the network dsesea
distribution of the yield to a randomly located disk failure

event. We now compare the effect of independent random link

failures to the effect of a randomly located circular fadur

We now discuss some numerical results based on thgve initially calculate the average yield of HVIET to a ciraul
HVIET network’. Fig. 3 shows the cumulative distribution disaster while the size of the region of interéstvaries. The
function (CDF) of the average yield on the HVIET network size of C' is varied to change the probability a unit of fiber is
with disaster radius of 50 kilometers. Addressing the effeccut. So we can plot average yield versus the probability & uni
of Factor of Safety, Fig. 4 shows how average yield changesf fiber is cut. See Fig. 6 for results.
as the factor of safetyHoS) is changed (Factor of Safety ) o ]
relates to the amount of ‘spare capacity’ on power linesteNo _ Next, we calculate average yield assuming independent link
when FoS = 1, then there is no spare capacity allocated orfailures such .that links fail with the same pyobab_ll|ty as in
the power lines, so when a failure event occurs the resultinghe random disk-cut case. Thus the probability a link fasls i
cascading failure brings down most of the network. AsS  Still a function of its length, however links fail independly.
increases, the amount of spare capacity on the power linedince the total number of power lines is not small, calcngati

increase, so the average yield increases as well, as onel woigverage yield by enumerating all possible failures is not
feasible (possible failures are exponential in numberrid).

1We would like to thank the authors of [14], [15] for sharingithdata. Instead we use a Monte Carlo approach, using 4000 samples




A Yield vs. Disaster Radi HVIET net k with FoS=1.2a0& H . : 5 5
N verage Yie'd vs. Disaster Raclus on V=T nefworic Wil Fos=2. et Other metrics: Consider other metrics beyond yield such as

the distribution of number of lines destroyed or the disttitn

of connected components. These distributions will allovtais
better understand the impact of a random geographicaltdisas
on the survivability of the power grid.

Computationally efficient algorithms: Development of ef-
ficient algorithms to calculate the yield in general netvgork
that scale well with network size. Analyzing the runningeim
of our current algorithms and developing faster method$ wil
allow us to obtain numerical results on larger and more thetai
real-world power networks.

Average Yield

07 03 o0a 05 08 07 08 09 1 Extending the probabilistic fa|IL_Jre .model: Currently, our
Raditis model assumes that every power line intersected by a circula
. . - , disk is removed from the network. However, power lines withi
Fig. 5. Average yield vs. radius (in terms of degrees of latitudegltude) on the . . . . .
HVIET network. As the radius of the initial disaster increasthe average yield in the & disaster rgglon may not al_Ways fa”_(e-g- shielded pOWﬂSh
network decreases. near a hurricane may remain operational). So the disastgr ma
have a probabilistic effect on the lines. It would be int&éres
to capture this doubly random effect; we model a disaster as a
---independent link failures randomly located disk that also has a non-deterministieceff
—geographically correlated failutes g the intersected power lines.

Average Yield vs. Probability of Unit Link Failure for radi@km, FoS=1.2, and=0.
0.98 T T .

D

AC Power Flow Model: A more realistic power flow model
can be considered. Currently, many papers on power networks
assumes a DC power flow model [6] [4]; this type of model is
very simple and ignores certain effects that may occur durin
a cascade. The AC power flow model is a more realistic flow
model, though it is harder to solve for the flow equations [12]

1 We can alter our failure model to incorporate the more réalis
AC power flow model and study the impact of the cascading
model on yield and other performance metrics.
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Probability of Unit Link Failure x10° Robust Design: In addition to the above items, we can

. o o N study some power network design issues. One goal may be
Fig. 6. The solid line shows average yield in HVIET versus phebability to increase the average yield in the network under a random

a unit (latitude/longitude) of power line is cut by a randoiiskdof radius circular disk disaster. To this end. we may consider how t ad
approximately 8km. The dashed line shows average yield itEfN\Assuming ’ ’

power lines failindependently such that lines fail with the same probability addltl_onal power lines or increase c_apacmes of certaiwego
as in the random disk case. lines in order to increase average yield. For example, we may

consider what Factor of Safety is required to guarantee the

expected yield above a certain threshold.
for each particular probability of unit link failure sampeint.

See Fig. 6 for results.
9 IV. RELIABILITY OF DEPENDENTNETWORKS

Notice that average yield under independent failures & les Many systems and networks depend on reliable delivery of
than in the case of random disk-cuts. This result demoestrat f he electri id | . ired
geographic disasters on power networks have key diffesence?ower rct)m tt € ??Cmc %” t For exatm:_p e, pot\vlvverl!s _r_equ_;re

; - y 0 operate street lights for transportation networks inesi
from independent smaller scale fa|Il_Jre_s (e.g. power liaria otrl)wer example gre fiber netvSorkS' power is needed at
due to brush growth). Perhaps this is because some pow'ﬁn '

supply nodes and power demand nodes are near each OtrEearckbone routers and jc\mphflers (o_n fiber links) or else those
components will fail. Since cascading power outages can be

and so a random disk may be more likely to effectively remove idesoread. their effect on dependent svstems can be devast
both these nodes simultaneously which may reduce the chanc b N P y
Ing. In particular, due to the widespread nature of blackout

of a large cascading failure (since power loads will remain , | fib K b di dif th
balanced). Also note the contrast to the result in [11] fa th continental fiber networks may become disconnected 1f the
NSFNET data network where independent failures on a dataPOWer failure affects a large area that includes the netsvork

network have less impact than in the case of random disk-cut§JhySICaI components. For example, the blackouts of 2003 had

this highlights a fundamental difference in the surviviapil a significant effect on the connectivity of the Internet [9].

between power and data networks. Motivated by the dependencies of many networks and sys-
tems on the power network, we consider the design of robust
C. Possible Extensions infrastructures with respect to cascading power failupssed

by a randomly located geographic disaster. We first deseribe
In the context of random geographic failures and powemodel for the dependence of a network on the power network.
networks, the following problems are potential extensifois We then present our failure model and compare data network
future work. reliability with and without power network dependency.



ATTR vs. Radius for GARR Network
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Fig. 7. Part of the backbone of the Italian research network (GARRY,[[15] is . ]
shown above by solid line segments representing links aradesi representing nodes.  Fig. 8. The red dashed curve showsI'T'R for the ltalian research network (GARR)
The dashed segments represent the Voronoi cells based totétiens of power demand ~ as a function of the radius (in latitude/longitude coortisy of a randomly located
nodes, shown by crosses above, in the Italian high-voltiggrizal transmission network  Circular disastewhen no power networks are considered (using tools and models from
(HVIET) [14], [15]. Our model assumes that data nodes ektpawer from the closest  [11]). The blue solid curve showdT'T"R for the GARR network when the dependency
power demand node; when a demand node fails, data nodesdowithin its Voronoi effects of Italian high-voltage electrical transmissiogtwork (HVIET) are considered.
cell are assumed to fail as well. For every radius considered a Monte Carlo approach with 4@00ples was used. We
note thatATT'R is significantly lower when power network dependency is @ered;
this implies power network effects have a significant impatthe survivability of real-
world data networks.

A. Dependence on Power Network

As described above, many networks and systems require
power to operate properly; that is, failure to provide power
to systems can cause failure in those dependent systems.
Although these systems typically have backup power supplie
backup generators are often unreliable. We assume, as in the

previous section, that the power network is represented by o  ATTR - If a connected network cannot be guaranteed

the connectivity of the continental fiber network. Thus,
we can consider the probability that the dependent
network remains connected after a randomly located
disaster on the power grid.

points and line segments in the plane. Similarly, we assume after a failure or full connectivity is not critically
the dependent network is also modeled by points and line important, it may be useful to consider th&l'TR
segments. A de_pendent node is likely to draw its power from a metric. This is given by the probability a randomly
nearby substation. So, we let a dependent node be opetationa chosen pair of nodes in the dependent network remain
if the closest (|n a Euclidean Sense) power demand noddlis sti connected after a rand0m|y located disaster on the
delivering power (that is3; < 0 for nodes). Thus, based on power grid. In the following, we consider the effect
the locations of demand nodes in the power network, we can of random disasters on real-world dependent networks
construct a Voronoi diagram; a dependent node in a particula using this metric.

Voronoi cell will depend on the operation of the power demand
node corresponding to that cell. See Fig. 7 for an example. D. Numerical Results

B. Failure Model Using the failure model just described, we present some nu-

We use the same failure model for the power arid presente erical results based on the Italian research network (GARR
P grid p nd the ltalian high-voltage electrical transmission roekwv

in the previous section augmented with data-power networ HVIET) [14], [15]. Consider Fig. 8. Via a Monte Carlo

dependency. This failure model consists of three stages; ., ation. this figure shows howiTTR is significantly
first stage is link failures caused by the random circulan, o "\yhen power network dependency is considered: this
disaster and the next stage is the resulting cascadingdailu iE]pIies power network effects have a significant impact on

Ir?ett/t]/(e)rlfogvaesrege(t)vr;lorlgo-rrhaemictgle fjﬁgﬁ Ot':) tshue (16pfgéj§s e survivability of real-world data networks. Fig. 9 shows
are consi(dered oncegthegca2cadinp failureé have %chzgurred similar result when the connectivity metric is considered
9 " although the difference is not as significant. Perhaps this

is because removing certain power demand nodes from the

network causes the network to be disconnected regardless if
Our goal is to assess the reliability of networks to failurescascading failure occurs.

in the power grid. In the context of a random geographic

failure on the power grid and the resulting impact on depahde E. Possible Extensions

networks, we propose to consider the following metrics:

C. Metrics for Dependent Network Robustness

In the context of a random geographic disaster on the power
e Connectivity - In many networks, especially data net-grid and its effect on dependent networks, one can consider
works, we are concerned with connectivity; i.e. doesto study some network design problems. One goal may be to

the network remain connected. For example, we wouldncrease the connectivity ad7T R metric in the dependent
like for all major U.S. cities to be able to communicate network. To this end, we may consider how to add additional
with each other, therefore it is reasonable to considepower lines or increase capacities of certain power lines in



Connectivity vs. Radius for FoS=1.2 amei0.5 approach provides a promising new direction for modeling
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Fig. 9. The red dashed curve shows the probability the data netwemkains
connected for the ltalian research network (GARR) as a fancof the radius (in
latitude/longitude coordinates) of a randomly locatedudar disastevhen no power

networks are considered (using tools and models from [11]). The blue solid curve shiow  [2]
the probability the data network remains connected for t#RB network when the
dependency effects of Italian high-voltage electricahsraission network (HVIET) are
considered. For every radius considered a Monte Carlo apprwith 4000 samples was

used.

order to decrease the effect of cascading failures in theepow (3]
grid thereby reducing the effect on dependent networks. For
example, we may consider what Factor of Safety is required to
guarantee thelTT'R metric remains above a certain threshold

in the dependent network. Alternatively, we can considev ho [4]
to augment the existing dependent network so that it becomes
more robust to cascading power failures. An interestingréut
direction would be to study the joint design of the power 5]
grid and dependent network as well as explore the tradeoff
between strengthening the power network and the dependei?]
network.

We now discuss a design problem with respect to datal”!
networks. Suppose we wish to strengthen the connection of
the data network of two major American cities under the (8]
context of random power failures caused by an attack. One
problem would be to consider a maximally blackout disjoint
path problem: how to find a pair of data paths with common [9]
source and destination that has the minimum probability of
being affected by a blackout. The solution to this problem
gives the most survivable pair of paths with respect to powe°!
blackouts.

[11]
V. CONCLUSION

Motivated by the effects of natural disasters such as ge[-lz]
omagnetic storms [13] and cascading failures, in this paper
we considered a two-stage failure model for power networks.
The first stage removes power lines that intersect a randomiy3)
located disk and the second stage calculates the cascading
failure that occurs due to the removal of the initial linkse W
used the tools developed for randomly located circularants ~ [14]
a cascading failure model to calculate the effect of thietyp
of failure in power networks. Then motivated by the effects
of power loss on data networks [9], we considered the survivys
ability of data networks with respect to power networks. Weyg)
assumed data nodes rely on the operation of the closest power
demand nodes to function. Through numerical results, we wer
able to show power network effects have a significant impact
on the survivability of real-world data networks. Our novel

[—Power Network Dependency (FoS=1.2 am®5) and designing networks to lessen the effects of geogralphica
disasters.
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