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Abstract

In a conformational nonequilibrium steady state (cNESS), enzyme turnover is mod-

ulated by the underlying conformational dynamics. Based on a discrete kinetic net-

work model, we use the integrated probability flux balance method to derive the

cNESS turnover rate for a conformation-modulated enzymatic reaction. The tradi-

tional Michaelis–Menten (MM) rate equation is extended to a generalized form, which

includes non-MM corrections induced by conformational population currents within

combined cyclic kinetic loops. When conformational detailed balance is satisfied, the

turnover rate reduces to the MM functional form, explaining its validity for many enzy-

matic systems. For the first time, a one-to-one correspondence is established between

non-MM terms and combined cyclic loops with unbalanced conformational currents.

Cooperativity resulting from nonequilibrium conformational dynamics has been ob-

served in enzymatic reactions, and we provide a novel, rigorous means of predicting
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and characterizing such behavior. Our generalized MM equation affords a systematic

approach for exploring cNESS enzyme kinetics.

Conformational dynamics is essential for understanding the biological functions of enzymes.

For decades, the framework of enzymatic reactions has been the traditional Michaelis–Menten

(MM) mechanism,1 where enzyme-substrate binding initializes an irreversible catalytic reac-

tion to form a product. The average turnover rate v in a steady state (SS) follows a hyperbolic

dependence on the substrate concentration [S], v = k2[S]/(KM+[S]), where the catalytic rate

k2 and the Michaelis constant KM characterize this enzymatic chain reaction. In contrast

to the single-conformation assumption for the traditional MM mechanism, recent single-

molecule experiments2–4 have revealed the existence of multiple enzymatic conformations,

spanning a broad range of lifetime scales from milliseconds to hours. Conformational dynam-

ics, including hopping between different conformations and thermal fluctuations around a

single-conformation potential well, must be incorporated into enzymatic reaction models for

a quantitative study.3,5–18 Slow conformational dynamics modulate the enzymatic reaction

and allow the enzyme to exist in a conformational nonequilibrium steady state (cNESS),

permitting complex deviations from MM kinetics (the hyperbolic [S] dependence for v).

However, experimental and theoretical studies have shown MM kinetics to be valid in the

presence of slow conformational dynamics under certain conditions, although k2 and KM be-

come averaged over conformations.3,10,15 Is there a unifying theme governing this surprising

behavior?

Non-MM enzyme kinetics have been characterized by cooperativity for many years.5,6,19

For allosteric enzymes with multiple binding sites, the binding event at one site can alter the

reaction activity at another site, accelerating (decelerating) the turnover rate and resulting

in positive (negative) cooperativity.19 Another common deviation from MM kinetics is sub-

strate inhibition, where the turnover rate reaches its maximum value at a finite substrate

concentration and then decreases at high substrate concentrations.19 For a monomeric en-

zyme, the above non-MM kinetic behavior, referred to – in this case – as ‘kinetic cooperativ-

2



ity,’19 can be achieved by a completely different mechanism: nonequilibrium conformational

dynamics.5,6,11–15 Can we characterize and predict this interesting behavior in a cNESS?

Recently, theoretical efforts have been applied to study conformation-modulated enzyme

kinetics by including dynamics along a conformational coordinate. On the basis of the usual

rate approach, some previous work has demonstrated certain non-MM kinetics under spe-

cific conditions.10,12–14,16 Based on an alternative integrated probability flux balance method,

non-MM kinetics were linked to a nonzero conformational population current, i.e., broken

conformational detailed balance, in a two-conformation model, and a general MM expression

was speculated.15 However, a generalized theory to systematically analyze cNESS enzyme

kinetics is still needed. In this Letter, we focus on a monomeric enzyme and apply the inte-

grated flux balance method to derive a generalized form for the turnover rate, which includes

non-MM corrections. We show that when conformational detailed balance is satisfied, MM

kinetics hold, explaining their general validity. In addition, the deviations from MM kinet-

ics are analyzed with reduced parameters from the generalized form of v. For an extended

version of our derivation, we refer readers to ref 20.

To describe the generalized conformation-modulated reaction catalyzed by a monomeric

enzyme, we introduce a discrete kinetic network model, which is illustrated in Figure 1a.

This N × M network consists of a vertical conformation coordinate (1 ≤ i ≤ N) and a

horizontal reaction coordinate (1 ≤ j ≤ M) . For the reaction state index, j = 1 denotes the

initial substrate-unbound enzymatic state (E), whereas j ≥ 2 denotes intermediate substrate-

bound enzymatic states (ES).3,14,15,21,22 Without product states, our network corresponds to

a dissipative system. For an arbitrary site Ri,j, the reaction rates for the forward (Ri,j →

Ri,j+1) and backward (Ri,j → Ri,j−1) directions are given by ki,j and ki,−(j−1), respectively.

The rate for enzyme-substrate binding, the only step in our model dependent upon substrate

concentration [S], depends linearly on [S] as ki,1 = k0
i,1[S] for binding rate constant k0

i,1, with

[S] maintained constant in most enzymatic experiments. The conformational dynamics are

treated via a kinetic rate approach, with the interconversion (hopping or diffusion) rates for
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Figure 1: (a) Generalized kinetic network scheme for a conformation-modulated enzymatic
reaction. (b) Flux network corresponding to (a) (see text for details).
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Ri,j → Ri+1,j and Ri,j → Ri−1,j given by γi,j and γ−(i−1),j, respectively. We note that local

detailed balance results in the constraint ki,jγ−i,j/(ki,−jγi,j) = ki+1,jγ−i,j+1/(ki+1,−jγi,j+1) for

j ≤ M − 1. However, for the purposes of our kinetic analysis, it is unnecessary to impose

this relation, as our principal results hold, irrespective of whether it is satisfied. The rate

equation for site Ri,j is written as

d

dt
Pi,j(t) =

N
∑

i′=1

γi,i′;jPi′,j(t) +
M
∑

j′=1

kj,j′;iPi,j′(t) (1)

where Pi,j(t) is the probability of an enzyme in site Ri,j at time t, i.e., the survival probability

for the site. Here, γi,i′;j = γi−1,jδi′,i−1+γ−i,jδi′,i+1−[γi,j+γ−(i−1),j]δi′,i denotes the interconver-

sion rates in the j-th reaction state and kj,j′;i = ki,j−1δj′,j−1+γi,−jδj′,j+1− [ki,j +ki,−(j−1)]δj′,j

denotes the reaction rates for the i-th conformation.

Within the framework of a dissipative enzymatic network, the average turnover rate v is

equivalent to the inverse of the mean first passage time (MFPT) 〈t〉. Using the residence

time τi,j =

ˆ

∞

0

Pi,j(t)dt at each site Ri,j, we can express the MFPT in the N ×M network

as a summation of τi,j, i.e, 〈t〉 =
∑

i,j τi,j . Instead of inverting the transition matrix,3 we

evaluate τi,j by inspecting integrated probability fluxes,15 which correspond to stationary

population fluxes normalized by v, and these will be shown to directly reflect conformational

nonequilibrium. Along the horizontal reaction coordinate, the integrated flux for Ri,j →

Ri,j+1 is given by Fi,j = ki,jτi,j − ki,−jτi,j+1. Along the vertical conformation coordinate, the

integrated flux for Ri,j → Ri+1,j is given by Ji,j = γi,jτi,j − γ−i,jτi+1,j . In addition, we need

to specify the initial condition Pi,j(t = 0) for calculating 〈t〉. For a monomeric enzyme, each

turnover event begins with the substrate-unbound state, and Pi,1(t = 0) defines the initial

flux Fi,0. With the definition of {Fi,j, Ji,j}, we map the original kinetic network to a flux

network as shown in Figure 1b. For each site Ri,j , the rate equation in eq 1 is replaced by a

flux balance relation,

Fi,j−1 + Ji−1,j = Fi,j + Ji,j (2)
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which is generalized to the probability conservation law: the total input integrated probability

flux must equal the total output integrated probability flux. This conservation law can be

extended to complex first-order kinetic structures including the N ×M network. The flux

balance method thus provides a simple means of calculating the MFPT.

To evaluate the MFPT, we begin with the final reaction state (j = M) and propagate

all the fluxes back to the initial reaction state (j = 1) based on eq 2. For each site Ri,j,

the physical nature of the first-order kinetics determines that all three variables, τi,j, Ji,j

and Fi,j , are linear combinations of terminal fluxes Fi,j=M . The first two variables are

formally written as τi,j =
∑N

i′=1 ai,j,i′Fi′,M and Ji,j =
∑

i′
ci,j,i′Fi′,M , where ai,j,i′ and ci,j,i′

are coefficients depending on rate constants {k, γ}. For example, the coefficients for the

final reaction state are ai,M,i′ = 1/ki,Mδi′,i and ci,M,i′ = γi,M/ki,Mδi′,i − γ−i,M/ki+1,Mδi′,i+1.

Because of the direction of our reversed flux propagation, only the coefficients for the initial

reaction state are [S] dependent, and they can be explicitly written as ai,1,i′ = bi,i′/[S] and

ci,1,i′ = di,i′/[S]. The substrate-unbound (Ei = Ri,1) and substrate-bound (ESi =
∑M

j=2Ri,j)

states are distinguished by the different [S] dependence of the coefficients. The MFPT is

thus given by

〈t〉 =

N
∑

i′=1

[

∑N

i=1 bi,i′

[S]
+

N
∑

i=1

M
∑

j=2

ai,j,i′

]

Fi′,M (3)

The essential part of our derivation is then to solve for the terminal fluxes Fi,M . The

SS condition can be interpreted as follows: after each product release, the enzyme returns

to the same conformation for the next turnover reaction, i.e., Fi,M = Fi,0.
7 Applying the

probability conservation law to each horizontal chain reaction with a single conformation

and considering the boundary condition at conformations i = 1 and N , we express the SS

condition as a flux constraint, Ji,E + Ji,ES = 0 for i = 1, 2, · · · , N − 1, where Ji,E = Ji,1

and Ji,ES =
∑M

j=2 Ji,j. For each combined cyclic loop Ei → Ei+1 → ESi+1 → ESi → Ei,

there may exist a stabilized nonequilibrium conformational population current (see Figure

1b), with Ji,E representing this stationary current normalized by v. However, under certain

circumstances, Ji,E can vanish, and the SS condition is further simplified to Ji,ES = 0. We
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note that satisfaction of the aforementioned constraint resulting from local detailed balance

still permits nonzero Ji,E. In general, we assume that there exist Nc(≤ N − 1) nonzero

conformational currents and (N − 1 − Nc) zero ones. In addition to these (N − 1) current

conditions, the normalization condition
∑N

i=1 Fi,0 = 1 is needed for fully determining the

initial fluxes (due to Fi,0 = Fi,M). As a result, we derive an N -equation array for Fi,0,

U · F =


















1 1 · · ·

C1,1 +
(

d1,1

[S]

)

C1,2 +
(

d1,2

[S]

)

· · ·

C2,1 +
(

d2,1

[S]

)

C2,2 +
(

d2,2

[S]

)

· · ·

...
...

...



















·













F1,0

F2,0

...













=













1

0

...













(4)

with Ci,i′ =
∑M

j=2 ci,j,i′. Notice that for the (i+ 1)-th row of matrix U in eq 4, di,i′/[S] only

exists when Ji,E 6= 0, and Nc rows are [S] dependent for this matrix. We solve for the initial

fluxes by the matrix inversion Fi,0 = [U−1]i,1. After a tedious but straightforward derivation,

Fi,0 is written as

Fi,0([S]) = fi,0 +
Nc
∑

n=1

fi,n/([S] + sn) (5)

where each sn is assumed to be distinct, and constraints hold for
∑

i fi,0 = 1 and
∑

i fi,n = 0

for n ≥ 1.

Substituting eq 5 into eq 3, we obtain the key result of this Letter: the cNESS turnover

rate for the N × M network with Nc unbalanced conformational currents is given by a

generalized Michaelis–Menten equation,

v =

[

A0 +
B0

[S]
+

Nc
∑

n=1

Bn

[S] + sn

]−1

(6)

where the reduced parameters are A0 = 〈1/keff
2 〉[S]→∞, B0 = 〈Keff

M /keff
2 〉[S]=0, and Bn =

∑

i[1/k
eff
i,2−Keff

i,M/(k
eff
i,2sn)]fi,n. For each conformational channel, we introduce an effective cat-
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alytic rate keff
i,2 = (

∑N

i′=1

∑M

j=2 ai′,j,i)
−1 and an effective Michaelis constant Keff

i,M = keff
i,2

∑

i′ bi′,i,

which describe the kinetics within that channel in the decomposed representation of the

scheme, wherein the N two-state chain reactions are effectively independent, each with

probability Fi,0. The conformational average is defined as 〈x〉[S] =
∑

i xiFi,0([S]) for a

conformation-dependent variable xi. In the right hand side of eq 6, the first two terms

retain the traditional MM form, whereas the remaining Nc terms introduce non-MM rate

behavior, with a 1:1 correspondence between non-MM terms and combined cyclic loops with

nonzero conformational currents. Our derivations clearly show that these non-MM terms are

induced by the [S]-dependent conformational distribution F resulting from nonequilibrium

conformational currents. Therefore, MM kinetics are valid when conformational detailed

balance is satisfied, where all Bn vanish due to Fi,0 = fi,0.

positive 

cooperativity

negative cooperativity

substrate 

inhibition

1

2

3

1

2

3

Figure 2: (a) Three non-MM turnover rates for the single-loop model with A0 = B0 =
s1 = 1. The circles (B1 = −1) and the up-triangles (B1 = 2) exhibit positive and negative
cooperativity, respectively. The two solid lines are the fit using the Hill equation. The
dashed line (B1 = −2) shows substrate inhibition behavior. (b) Phase diagram of enzyme
kinetics for the single-loop model. Two lines, B1 = 0 and B1 = −B0, separate three regimes
of kinetics.

With nonzero conformational currents, the enzyme kinetics are expected to exhibit coop-

erative non-MM behavior. As a demonstration, the single-loop model with only one current

J1,E and one non-MM term B1/([S] + s1) is first considered. With other parameters fixed,

we calculate turnover rates v for the three values of B1 in Figure 2a. For the two turnover

rates monotonically increasing with [S] (B1 = −1 and 2), we fit them with the Hill equation,

v/vmax = [S]nH/(κ + [S]nH), where the Hill constant nH > 1 (nH < 1) indicates positive
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(negative) cooperativity. The fitting results show that cooperativity is completely deter-

mined by the sign of B1: positive for B1 < 0 and negative for B1 > 0. This result is also

reflected in eq 6, where negative (positive) B1 increases (decreases) the MM turnover rate

(A0+B0/[S])
−1. The dashed line in Figure 2a shows that a largely negative B1+B0 leads to

substrate inhibition behavior. The cNESS substrate inhibition shows positive cooperativity

at low substrate concentrations, and then the turnover rate decreases to a nonzero value A−1
0

in the substrate-saturation limit. Next, we plot the phase diagram of enzyme kinetics for the

single-loop model in Figure 2b, which only depends on B0 and B1. From this phase diagram,

α = B1/B0 is defined as a unique non-MM indicator for single-loop systems, with negative

cooperativity for α > 0, positive cooperativity for −1 ≤ α < 0, and substrate inhibition for

α < −1.

Figure 3: (a)–(c) Three cases in which a current J1,E circulating counterclockwise within a

two-conformation loop can be modulated by ∆∆τ eff (see text for details); such modulation
underlies the emergence of kinetic cooperativity. In each conformational channel, a horizontal
arrow proceeds from the state with the faster effective characteristic residence time (see text
for details) to the state with the slower one, with J1,E superimposed onto this view. Note
that there are also analogous cases for J1,E proceeding in the clockwise direction.

The direction of a conformational current alone does not predict its influence on the

cooperativity, which raises the question of how currents are modulated to govern cooperative

behavior. For the two-conformation network, the simplest single-loop model, we can rewrite

the non-MM term as

B1

[S] + s1
∝ ∆∆τ eff × J1,E([S]) (7)

where ∆∆τ eff = ∆τ eff 1 − ∆τ eff2, with ∆τ eff i = τ effEi
− τ effESi

. Here, the Ei and ESi residence

times in the decomposed representation, each independent of the non-MM term [and thus
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of J1,E([S])], are given by τ effEi
([S]) = Keff

i,M/(k
eff
i,2[S]) and τ effESi

= 1/keff
i,2, respectively. Also,

τ effEi
= τ effEi

([S] = s1), where s1 is the value of [S] at which |J1,E([S])| is at half its maxi-

mum and thus represents a characteristic non-MM substrate concentration. Therefore, τ effEi

represents a characteristic value of τ effEi
([S]), with corresponding characteristic residence time

gradient ∆τ eff i. Thus, ∆∆τ eff represents the difference in characteristic residence time gradi-

ent between the two decomposed conformational channels. Cooperativity depends upon J1,E

modulated by ∆∆τ eff , i.e., it is governed by the relative modulation of the current between

the two decomposed chain reactions. In the two-conformation model, J1,E proceeds from

Ei to ESi in one conformational channel and from ESi to Ei in the other, as illustrated in

Figure 3a–c for a counterclockwise current, which corresponds to J1,E > 0 based upon our

original definition of Ji,j. In each two-state chain reaction, enzyme turnover is accelerated

(decelerated) when J1,E proceeds from the state with the slower (faster) effective character-

istic residence time to the state with the faster (slower) one. In Figure 3a (b), turnover is

accelerated (decelerated) in both chain reactions, resulting in overall turnover acceleration

(deceleration), i.e., positive cooperativity or substrate inhibition (negative cooperativity). In

Figure 3c, turnover is accelerated in conformation 1 and decelerated in conformation 2 (the

opposite [not shown] is possible as well), with the cooperativity depending upon the relative

modulation of the current between the two decomposed chains. Kinetic cooperativity is

thus explained as follows: when J1,E proceeds in the direction that, on average, corresponds

to decreasing (increasing) effective characteristic residence time, positive cooperativity or

substrate inhibition (negative cooperativity) occurs.

Interestingly, when the effective characteristic residence time gradient is conformation

invariant, modulation of the conformational current is balanced, resulting in MM kinetics,

even in the presence of circulating current (i.e., when ∆∆τ eff = 0 and J1,E 6= 0 for the

two-conformation network). This scenario represents a unique type of nonequilibrium sym-

metry in multidimensional kinetic networks and is not precluded by the satisfaction of the

aforementioned constraint resulting from local detailed balance. Additionally, we note that
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for the 2× 2 model, J1,E vanishes under a simple conformational detailed balance condition,

γ1,1
γ1,2

K1,M =
γ−1,1

γ−1,2
K2,M (8)

where Ki,M = (ki,−1 + ki,2)/k
0
i,1. Explicit calculations for this model are provided in the

Supporting Information.

a) b)

3

4

5

1

2

3

4

5

Figure 4: Enzyme kinetics for the two-loop model with A0 = B0 = s1 = 1 and s2 = 4. (a)
Three turnover rates v that are non-monotonic functions of [S]. Each line shows a typical
type of non-MM kinetic behavior from the regime labeled by the same number in (b). (b)
Phase diagram determined by two non-MM parameters B1 and B2. There are five regimes
of non-MM behavior (see text for details).

For the two-loop models with two non-MM terms, the cNESS enzyme kinetics become

more complicated, as illustrated in a typical phase diagram in Figure 4b. Except for an

unphysical regime where v shows divergence and negativity, five regimes of enzyme kinetics

can be characterized in the phase space composed of B1 and B2. Similar to the single-

loop model, when monotonically increasing to the maximum value vmax in the substrate-

saturation limit ([S] → ∞), v can exhibit negative (Regime 1) and positive (Regime 2)

cooperativity. The separation line between these two kinetic regimes, however, is hard to

rigorously define. The dashed separation line in Figure 4b corresponds to nH = 1, where the

Hill constant is empirically calculated using nH = log 81/ log([S]0.9vmax
/[S]0.1vmax

),19 and [S]v

is the substrate concentration for v. In Regimes 3-5, the turnover rate v is a non-monotonic

function of [S] (examples shown in Figure 4a). In Regime 3, with vmax occurring at a finite

[S]vmax
, the turnover rate exhibits the same substrate inhibition behavior as the single-loop
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model. Alternatively, an additional local minimum of v can appear at [S]vmin
(> [S]vmax

),

and v increases at high substrate concentrations instead. Two examples are shown by the

dashed and dotted lines in Figure 4a. Based on a criterion whether the global vmax appears

as [S] → ∞ or at the finite [S]vmax
, this non-MM kinetic behavior is further divided into

Regimes 4 and 5, respectively.

For the generalized Nc-loop model, cNESS enzyme kinetics can be similarly analyzed

using reduced parameters from eq 6. In the case that all the non-MM parameters Bn are

positive (negative), the turnover rate exhibits negative cooperativity (positive cooperativity

or substrate inhibition). With the coexistence of positive and negative non-MM parameters,

cooperativity can be qualitatively determined by the small-[S] expansion of the turnover

rate in eq 6, v ∼ B−1
0 [S]− (A0B

−2
0 +

∑Nc

n=1Bns
−1
n B−1

0 )[S]2 + O([S]3). For a largely negative
∑

n Bn/sn, the positive quadratic [S] term dominates in v, resulting in positive cooperativity.

When this summation becomes largely positive, the cancellation between linear and nonlinear

terms can slow down the increase of v with [S], inducing negative cooperativity. The sign

of
∑

n Bn/sn is thus a qualitative indicator of cooperativity. To investigate the substrate

inhibition behavior, we expand v in the substrate-saturation limit as v ∼ A−1
0 − (B0 +

∑

n Bn)A
−2
0 [S]−1 + O([S]−2). For

∑

nBn < −B0, v is a decreasing function of [S], and the

maximum turnover rate vmax must appear at a finite [S]. The investigation of other types of

non-monotonic behavior for v needs the explicit rate form in eq 6.

In summary, we study cNESS enzyme kinetics induced by population currents from

conformational dynamics. Applying the flux balance method to a discrete N × M kinetic

model, we derive a generalized Michaelis–Menten equation to predict the [S] dependence

of the turnover rate. Using reduced non-MM parameters, Bn in eq 6, our generalized MM

equation provides a systematic approach to explore cNESS enzyme kinetics. Compared to

the typical rate matrix approach, our flux method characterizes non-MM enzyme kinetics

in a much simpler way. For example, a unique kinetic indicator α = B1/B0 is defined for

the single-loop model, and phase diagrams are plotted for the single- and two-loop models.
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Our study can be extended to other important biophysical processes following the MM

mechanism, e.g., the movement of molecular motors induced by ATP binding.
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