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Homogeneous Chaos Revisited

Let (C, H, W) be an abstract Wiener space. That is: 8

is a separable real Banach space with norm 11 tl1; H is a separable

real Hilbert space with norm l-11 H; H c X, IIhH < CllhllH for some

C < - and all h E H, and H is 11 110 - dense in 0; and W is the

probability measure on (0, Be) with the property that, for each

Z E '*, e E 0 - <z, 0> under W is a Gaussian random variable with

mean zero and variance IIZi2 sup{<Z, h>2 : h H with lhllH = 1.

Let {%k : k e Z + } C O* be an orthonormal basis in H; set

A = {a N Z : Ja = ak < I}; and, for a E A, define
kEZ

Ha () = . + H (<Zk 8>) ,e e O,
keZ + k

where

H m/ (_lm e 2/2 dm i2/2 m e N and R 1
d~Me(em a

- 1/2 A} is an orthonormal basis in L2W)Then, {(Ca!) - H E Al is an orthonormal basis in L(W).

Moreover, if, for m E N

2(W
Z(m) - span{H a : jai = ml

then: Z(m ) is independent of the particular choice of the ortho-

normal basis { :k E Z }; Z(m) i Z(n) for m f n; and

L2(W) = G Z(m) These facts were first proved by N. Wiener [6 ]
m=O

and constitute the foundations on which his theory of homogeneous

chaos is based.



The purpose of the present article is to explain how,

for given D E L2(W), one can compute the orthogonal projection

F(t m of c onto Z (m). In order to describe the procedure, it

will be necessary to describe the elementary Sobolev theory asso-

ciated with (®, H, W). To this end, let Y be a separable real Hilbert

space and set P(Y) = span{H y : a e A and y e Y}. Then P(Y) is

dense in L2(W; Y). Next, for m e N and D e P(Y), define

e - Dm (e) E H 6m ~ Y by

(Dm( e) h I a ... ® h m ® y)

H ®Y

m m
at ... atm ( (e + t. hi),y) 
=t! .. atm j=1 Y t 1 ... =tm=O

1 m m (Rm~j=l 3

for h ... , hm H and y C Y. Then D m maps P(Y) into P(H 6 Y)

and Dn Dm o Dn -m for 0 < m < n. Associated with the operator

Dm : p(y) - P(H e Y) is its adjoint operator am. Using the

Cameron-Martin formula [1] , one can easily prove the following

lemma.

(1) Lemma: The operator am does not depend on the choice of

orthonormal basis {Zk : k E Z+}, P(Hm ® Y) c Dom(am ), and

m : P(H(m ® Y) - P(Y). Moreover, if m E Z +, K = (kl, . km)
k k

(Z+) m and £K = z 1 m then

m t
(2) amzK = H (K)

where a(K) is the element of A defined by



(a(K))k = card{l 6 j < m : kj = k}, k E .

In particular, H c Dom(am) .

Since am is densely defined, it has a well-defined adjoint

(am)*. Set W'(Y) = Dom((am )*) and use 111 2 to denote the

associated graph norm on W 2(Y). The following lemma is an easy

application of inequalities proved by M. and P. Kree [3].

(2) Lemma: W2 ( He Y) c Dom(3m) 1 Iamll < C 11 11 2 Y
M L (W;Y) m Y)

and am = ((am)*)* Moreover, P(Y) is 11 -1 -dense in W'(Y)

W ' mFinally ,W (Y ) c l2r (Y) and II I C1 for all m > 0.
~m+l -M~ WM(Y) W (Y)

Warning: In view of the proceeding, the use of Dm to denote its.

own closure (am)* is only a mild abuse of notation. Because it

simplifies the notation, this abuse of notation will be used

throughout what follows;
0o

Now set W2 (Y) = W2 (Y)*, m > 0, and W'(Y) = W,(y].
~-2 minm=0

Then, when W (Y) is given the Frgchet topology determined by
2 c 3o

{il lW ?Y m > O}, (WW(Y))* is W A(Y) W' (Y). Moreover,

v m 2 7L'(W;Y) becomes a subspace of W2 (Y) when ~ E L'(W:Y) is identified

with the linear functional Y E WE(Y) Ey and in this wa

W2(Y) becomes a dense subspace of W 2 (Y). Finally, Dm has a unique

continuous extension as a mad from W =(y) into W~(H e Y) given

by T ~ DmT where DmT(y) = T(dmY) for T E Wm(H®m Y). In particular,

for T E .W (R1 )
, there is a unique DmT(1) E Hem defined by:
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~(3) (DMmT(1), h) = T(amh), h E H m

H®

Note that when D E W2(R 1)

(4) Dm%(l) = EW[DmD]

(5)- Theorem: Let < D L 2(W) be given. Then, for each m > 0:

(6) '7m'II 1 m(6) n (mD¢ = m- 3 (DmC(l)).

Hence,

(7) = mi a (Dm (1))

In particular, when D E W2(R1 ,:

(6'�) z m r amEW [D m ]

and

m0

Proof: Simply observe that, by Lemma (1):

am (Dm(1)) + EW [,am QK]am QK
KE(Z)m

= 2 (m) E [WHa ]H

mi I(m)
Z(M)

The classic abstract Wiener space is the Wiener space

associated with a Brownian motion on R1. Namely, define H 1(R l) and



®(R1) to be, respectively, the completion of C ((O,); R1 ) with

respect to

1
iiH l(R.) c dt' /2

and

=- sup , et)
ll- S(R1) t >p l+t

Then Wiener's famous existence theorem shows that there is a probabil-

ity measure on ®(R1) such that (®(R1), H!(R ), W) is an abstract

Wi.ener space. For ((R1), H 1 (R ), W), K. It6 [2] showed how to

cast Wiener's theory of homogeneous chaos in a particularly appeal-

ing form. To be precise, set 0m = [0 ,j)m; and, for f C L 2 (]), 

define

f din0 F (t mdeCtm ) .. f(t t )d (tJ 71 C= 11 J0 m .a t (m) i
m m

where im denotes the permutation group on {1, ... , m} and the

de(t)-integrals are taken in the sense of ItS. What It0 discovered

is that, for given $ E L2(W), there exists a unique symmetric

f(m) e L2( m ) such that

mm(8) n ¢ = 1 f(m) dme

In order to interpret Ito's result in terms of Theorem (5S,

let C{k : k E ZC} c Co ((o,f): R1) be an orthonormal basis in

L2 (01 ) and define 9k E ®(R)* by Zk(dt) = ( 0k(s)ds)dt. Then
-O
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< k, e> = I ~kdle. Moreover, by using, on the one hand, the

°01
generating function for the Hermite polynomials and, on the other

hand, the uniqueness of solutions to linear stochastic integral

equations (cf. H. P. McKean [5]), one finds that for

K E (kl, ... , km) E (Z+)m

hk dme = H
a(K)

m
k k

where K = 1 1 ... I p m and a(K) E A is defined as in Lemma (1).

Hence, by Lemma (1):

(9) am zK { I K dine , K e (Z+)

Finally, for (tl, ... , tn) E Om, define h(tl t )(Sl, ..., m )

(s A tl) ... (Sm A tm)' Then, for each h E H 1(R ) , there is a

unique h' E L2 (m) such that (h, h(t tm))H (R1)m

t t
f m ,r ,s)s m

o h msl, ..., dsm for all (tl, ...(, tm) 
Jo o

(10) Theorem: Given $ E L2 (W) and m > 1, then f(m) in (8) is

(D (1))'.

Proof: By (9):

am(Dmt(1)) = m( K)
KE(Z )m H1(R m

z m ((Dm(l))' 'K) , f yK dine
KE(Z +)Tf LL'(Om) m

= [ (Dm (1))' dme .
JOi m



Thus, by (6):

(m) = 1 I (DmC(1)) dmine
m

Since (Dm"(l))' iS symmetric, the desired identification is now

complete.

(11) Remark: It is intuitively clear that the flm ) in (8) must

be given by fIm)(tl, ..., tm) = EW[~e'(tl) ... e'(t m )]. What Theorem

(10) says is that a vigorous definition of EB [w'(tl) .... '(tm)]
m

is provided by (DmP(l)) (tl, ..., t m).

(12) Remark: Given d > 1, define H 1(Rd) and ®(Rd ) by analogy with

HI(R 1) and O(R1). Then (®(Rd), Hi(Rd), W) becomes an abstract

Wiener space when W is the Wiener measure associated with Browni-an

motion in Rd. Moreover, an analogous interpretation of (m
7(m)

in terms of Dm%(l) can be given in this case as well.

(13) Remark: Theorem (10) is little more than an exercise in

formalism unless $ E W2(R 1). Fortunately, many interesting functions

are in W2(R1). For example, let a : R 1 1 and b R1 R be

smooth functions having bounded first derivatives and b R slowl

increas having bounded firs derivatives of all orders. Define X(,x), x Rslowly to

be the solution to

X(T,x) = x + J T(X(t,x))de(t) + { b(X(t,x))dt, T > 0.
0 0

Then, for each (T,x) E (0,c) x R1 X(T,x) W2(R 1 ) In fact,

DX( ,x) satisfies:



- 9 

T CT~x) = iio rT
DX(T,x) -= a'(X(t,x)) DX(t,x) de(t) + b'(X(t,x))DX(t,x)dt

^°T 0

+ a(X(t,x)) dt;

an equation which can be easily solved by the method of variation

of parameters. Moreover, DmX(T,x), m > 2, can be found by iteration

of the preceding.

(14) Remark: In many ways the present paper should be viewed

as an outgrowth of P. Malliavin's note [4].. Indeed, it was only

after reading Malliavin's note that the ideas developed here occurred

to the present author.
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