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Homogeneous Chaos Revisited

Let (®, H, W) be an abstract Wiener space. That is: ©
1s a separable real Banach space with norm H-ﬂ@; H is a separable

real Hilbert space with norm |l - HcSo, HhH@ < CHhHH for some

H’

C < » and all h € H, and H is Il - dense in‘@; and W is the

Q
probability measure on (@, B@) with the property that, for each

2. € 0%, 9 € 0 » <2, 0> under W is a Gaussian random variable with
2

mean zero and variance nzné = sup{<&, h>" : h € H with HhHH = 1}.
Let'{zk ke ™} C ©* be an orthonormal basis in H: set
N + .
A = {a € N lal = ], @ < =}; and, for a € A, define
keZ '
k .
H(8) = I _H (<25,00) ,0€0,
@ kez® %k
where
m g2z &, -g%)2 1
H (&) = (-1)" e — (e )y, m € N and £ € R
m d m .
g
-1/2 . : . . 2
Then, {(a!) Hy + o € A} is an orthonormal basis in L°(W).
Moreover, if, for m € N ,
2
L™ (W)
z(m) ¢ span{H, : [a| = m} ,

then: Z(m) is independent of the particular choice of the ortho-
normal basis'{zk : k € Z+}; Z(m) L Z(n) for m # n; and
Lz(w) = @ Z(m) . These facts were first proved by N. Wiener [ 6 ]

m=0
and constitute the foundations on which his theory of homogeneous

chaos 1is based.




The purpose of the present article is to explain how,
for given ¢ € LZ(W), one can compute the orthogonal projection
H,(m)¢ of ¢ onto ng). In order to describe the procedure, it
will be necessary to describe the elementary Sobolev theory asso-
ciated with (@,PL'W]. To this end, let Y be a separable real.Hilbert
space and‘set P(Y) =_span{Hay : « € Aand y € Y}. Then P(Y) is
dense in LZ(W; Y). Next, form € N and ¢ € P(Y), define

o -~ DMo(8) € i ey by

(0™ (8), hl @ ... @ 1™ ® y)
H &Y
o % j
= (o(e + t. h'),y)
3t ... 9t 521 9 Y ty=.. .ot _=0
1 ' m ' m . ™
for h™, ..., hW € Hand y € Y. Then D maps P(Y) into P(H ® Y)

and D" = D™ o D"™™ for 0 < m < n. Associated with the operator

" P(Y) - P(Hgm @ Y) is its adjoint operator T, Using the
Cameron-Martin formula [l], one can easily prove the following

lemma.

(1) Lemma: The operator 3™ does not depend on the choice of
m

orthonormal basis {zk : k€ 2%}, P(H®

m

3™ . p® @ Y) - P(Y). Moreover, ifme z¥, K = (k

® Y) < Dom(3™), and
e K
(z™, and ¥ =21 @ ... @ 2 ™ then

m, K _
(2) 3L = Ha(K)

where a(K) is the element of A defined by




(a(K))y = card(l <j <m : ky = k}, k € ="

In particular, H@m < Dom(amy.

Since 3™ is densely defined, it has a well-defined adjoint

(am)*. Set Wi(Y) = Dom((am)*) and use Il , to denote the
i W (Y)
associated graph norm on W;(Y). The following lemma is an easy

application of inequalities proved by M. and P. Kree [3].

o) : . 2 ®m m m
(2) Lemma: Wm(H ® Y) € Dom(3 ), I3 VI 2 < CmuWu 2 &M ,
j L™ (w;Y) Wm(h ® Y)
2
and 3™ = ([Sm)*)*. Moreover, P(Y) is -l , -dense in W;(Y).
' W (Y)
. 2 2 m
Finally, W (Y) € WZ(Y) and 1| -1 < C_Jl -l for all m > 0.
m+ltt = m WD (Y) m W?+1(Y]

Warning: In view of' the proceeding, the use of D™ to denote its

own closure (am)* is only a mild abuse of notation. Because it
, i
simplifies the notation, this abuse of notation will be used

throughdut what follows.

@

Now set WX (v} =Wi(Y)*, m >0, and Wi(Y) = wI vy
m=0
Then, when Wi(Y) is given the Fréchet topology determined bv
® 2
e 5 :m = 0}, [Wi[Y))* is W%m(Y)E W~ _(Y). Moreover,
We(Y) n=g M

2 2
L"(w;Y) becomes a subspace of W%Q[Y) when ¢ € L7 (W:Y) is identified

. . . 2
with the linear functional ¥ € W™ (Y) - Ew[(Q,W)Y]; and in this wav

"Wi(Y) becomes a dense subspace of W%G(Y). Finally, D™ has a unique
5 m
continuous extension as a map from ij(y) into w%m(H® ® Y) given
) m
by T - D™ where D™T(¥) = T(3™¥) for ¥ € W"(#®¥ @ Y). In particular,

5 m
for T € ij(Rl), there 1s a unique DmT(l) € H® defined by :




m

(3) (O"T(1), h) = T™), h e KO
@

H
2,01
Note that when ¢ € W_(R*) ,

Y (D™

(4) D8 (1)

(5 Theorem: Let ¢ € Lz(w) be given. Then, for each m > 0:

(6) T m? = 2 a™(o"e(1)).
Hence,
(7 o= 1 gt
m=

In particular, when ¢ € Wi(Rl):

(6") 1wy " 2 3" (0o

and

(7") ¢ = 7 i# a™ ¥ [p™s]
m=0 7

Proof: Simply observe that, by Lemma (1):

7 EV[oa™ 2X1a™ oX

s™(d™a (1)) e
Ke(Z )

ialzm (2) Ew[QHQ]HQ

= m! I N9
; (m)

The classic abstract Wiener space is the Wiener space

associated with a Brownian motion on Rl. Namely, define Hl(Rl) and




@(Rl) to be, respectively, the complefion of C:((Q,é); Rl) with

respect to

il 1, = (fmlw'(t ‘2 at) /2
Hy(R) ) ) )
and

1
1+t

l8(t) |

sup

1
HQH@(R ) sy

- Then Wiener's famous existence theorem shows that there is a probabil-

1ty measure on @(Rl) such that (@(Rl), Hl(Rl), W) is an abstract
Wiener space. For (@(Rl), Hl(Rl), W), K. Itd [2] showed how to

cast Wiener's theory of homogeneous. chaos in a particularly appeal-

“ing form. To be precise, set Dm = [O,m)m; and, for f € LZ(Dm),

define

[ fame - 7 dee(t ) ftm'lde(t ) ftzf(t t . )de(t.

o GET o m o m-27 °°° o c(l),..., o(m) i
m m

where no denotes the permutation group on {1, ..., m} and the

dg(t)-integrals are taken in the sense of Itd. What It6 discovered
. . 2 . . )
is that, for given ¢ € L (W), there exists a unique symmetric

f(gf“) € LZ(Dm) such that
| = 1 (m) .m
(8) Hzcm)é = =T jD £s de

In order to interpret Ito's result in terms of Theorem (3),

let {wk ke zh) c C: ((o0,=): Rl) be an orthonormal basis in
K e grly* by ¢¥(at) = (J v¥(s)ds)dt. Then

LZ(DI) and define 2
0




<Qk, g> = ( wkdle. Moreover, by using, on the one hand, the

J
!

generating function for the Hermite polynomials and, on the other
hand, the uniqueness of solutions to linear stochastic integral
equations (cf. H. P. McKean [5]), one finds that for
- +ym, ‘
K € (kl, cees km) € (Z)":

k .;m

h™ d7¢ = H

[g a(K)

m
K kl | km
where ¢ = ¢ R ... @y and a(K) € A is defined as in Lemma (1).

Hence, by Lemma (1):

m K f oK ame , ke zH™ .
g .

m

(9) 3

(tl,...,tm)(sl’ e sm) B

A tm). Then, for each h € Hl(Rl)Qm, there is a

) Fina}ly, for (tl, «o., t ) €0, define h

(51 A tl) “ee (§m

. 2 . _ m
unique h' € L®(B_) such that (h, h ) 1.®
m (tlg"'ytm) Hl(R ) .

t .
m T .
! ... e C
jo ...JO h (51’ ey sm)dsl, c e, dsm for all (tl, , tm) ‘ Cm

(10) Theorem: Given ¢ € Lz(w) and m > 1, then fém) in (8) 1is

(d™e (1)) .

Proof: By (9):

3™ ™o (1)) X Xy

)
1.2
Hy (RD)

R CC TEOD RN NP SR
Ke(Z ) L (Elm) O,

3N ] .o (DTe(D), 2

KE(z ) m

1]
—_—

(0™ (1)) d™s




~J

Thus, by (6):

_ 1 m '
Hz(m)® = = JDm (0™e (1)) a™s

Since (Dm¢(l))' i3 symmetric, the desired identification is how

complete.

(11) Remark: It is intuitively clear that the fém) in (8) must

: W, ,
be given by fém)(tl, e ooy tm) = E [@9'(tl) ...0 (tm)], What Theorem
(10) says is that a vigorous definition of Ew[ée‘(tl),... e'[tm)]
is provided by (D™(1)) (ty, ---» t.)-

(12) Remark: Given d > 1, define Hl(Rd) and @(Rd) by analogy with
Hl(Rl) and @(Rl). Then (@(Rd), Hl(Rd), W) beéomes an abstract
Wiener space when W is the Wiener measure associated with Brownian
motion in Rd. Moreover, an analogous interpretation of H7(m)®

in terms of Dmé(l) can be given in this case as well.

(13) Remark: Theorem (10) is little more than an exercise 1in

formalism unless ¢ € Wi(Rl). Fortunately, many interesting functions

are in Wi(Rl]. For example, let ¢ : Rl > R1 and b : Rl - Rl be

smooth functions having bounded first derivatives and slowly

increasing derivatives of all orders. Define X(:,x), x € Rl, to

be the solution to

T T
X(T,x) = X + f o (X(t,x))de(t) + [ b(X(t,x))dt, T > 0.
(o] [e]

Then, for each (T,x) € (0,=) x RY, X(T,x) € wi(R)). 1In fact,

DX(-,x) satisfies:
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. T
o' (X(t,x)) DX(t,x) de(t) + J b'(X(t,x))DX(t,x)dt
Q T (o]

R f o(X(t,x)) dt;
O .

an equation which can be easily solved by the method of variation
of parameters. Moreover, DmX(T,X), m 2 2, can be found by iteration

of the preceding.

(14) Remark: In many ways the present paper should be viewed
as an outgrowth of P. Malliavin's note [4]. Indeed, it was only
after reading Malliavin's‘note that the ideas developed here occurred

to the present author.
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