
MIT Open Access Articles

Can light dark matter solve the core-cusp problem?

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Deng, Heling, et al. “Can Light Dark Matter Solve the Core-Cusp Problem?” Physical 
Review D, vol. 98, no. 2, July 2018. © 2018 American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevD.98.023513

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/117108

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/117108


 

Can light dark matter solve the core-cusp problem?

Heling Deng,1,* Mark P. Hertzberg,1,† Mohammad Hossein Namjoo,2,‡ and Ali Masoumi1,§
1Institute of Cosmology, Department of Physics and Astronomy, Tufts University,

Medford, Massachusetts 02155, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 19 April 2018; published 13 July 2018)

Recently, there has been much interest in light dark matter, especially ultralight axions, as they may
provide a solution to the core-cusp problem at the center of galaxies. Since very light bosons can have a de
Broglie wavelength that is of astrophysical size, they can smooth out the centers of galaxies to produce a
core, as opposed to vanilla dark matter models, and so it has been suggested that this solves the core-cusp
problem. In this work, we critically examine this claim. While an ultralight particle will indeed lead to a
core, we examine whether the relationship between the density of the core and its radius matches the data
over a range of galaxies. We first review data that show the core density of a galaxy ρc varies as a function

of the core radius Rc as ρc ∝ 1=Rβ
c with β ≈ 1. We then compare this to theoretical models. We examine a

large class of light scalar dark matter models, governed by some potential V. For simplicity, we take the
scalar to be complex with a global Uð1Þ symmetry in order to readily organize solutions by a conserved
particle number. However, we expect our central conclusions to persist even for a real scalar, and
furthermore, a complex scalar matches the behavior of a real scalar in the nonrelativistic limit which is the
standard regime of interest. For any potential V, we find the relationship between ρc and Rc for ground state
solutions is always in one of the following regimes: (i) β ≫ 1, or (ii) β ≪ 1, or (iii) unstable, and so it never
matches the data. We also find similar conclusions for virialized dark matter, more general scalar field
theories, degenerate fermion dark matter, superfluid dark matter, and general polytropes. We conclude that
the solution to the core-cusp problem is more likely due to either complicated baryonic effects or some
other type of dark matter interactions.

DOI: 10.1103/PhysRevD.98.023513

I. INTRODUCTION

The distribution of matter in galaxies has been a
controversial subject for some time. The vanilla dark matter
models (modeled by classical particles with only gravita-
tional interactions) lead to an NFW-type profile [1], which
appears to match the density profile of the halo of a galaxy
quite well. On the other hand, the agreement between
vanilla dark matter and observations is less clear towards
the center of a galaxy. In particular, most galaxies appear to
exhibit a “core” near their center wherein the density profile
ρðrÞ flattens as r → 0, while the classic NFW profile has a
“cusp” wherein the density profile ρðrÞ rises sharply as
r → 0. This discrepancy is known as the “core-cusp”
problem.
The size of a galactic core is typically on the order of a

few kpc. So, naively this problem could have an obvious
solution: as we go towards the center of the Galaxy, on the

order of kpc, the baryonic density is rather large, so one can
imagine that baryonic effects, such as supernovae and other
astrophysical processes, smooth out the center of the
Galaxy, producing a core. However, this candidate explan-
ation is nontrivial to implement for the following reason:
the presence of the core appears to persist for small (dwarf)
galaxies that are dark matter dominated and baryon
deficient. So it is not clear how baryonic feedback effects
can solve this puzzle; we shall return to this possibility in
the discussion section.
A popular alternate explanation has been put forward for

quite some time in which nonvanilla dark matter properties
are invoked to smooth out the cores of galaxies. One such
popular example is self-interacting dark matter, wherein
massive dark matter particles undergo self-scattering with a
mean free path λMFP ¼ 1=ðnσÞ ¼ m=ðρσÞ with a rather
large scattering cross section σ. Under come conditions,
this can plausibly lead to a core [2]. However, such large
scattering cross sections may be at odds with other dark
matter measurements, such as observations of the bullet
cluster, which puts an upper bound on the dark matter
scattering cross section to mass ratio of σ=m <
Oð1Þ cm2=g [3]. If we take a representative core density
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of ρ ¼ 0.1M⊙ pc−3 (see Fig. 1), we obtain a mean free path
lower bound of λMFP > Oð50Þ kpc, which is somewhat
larger than the corresponding observed core size of≈1 kpc;
we shall also return to this in the discussion section.
Another popular proposal has been put forward in which

the galactic core may be due to the quantum nature of the
dark matter particles. In particular, if the dark matter
particles are bosons, they can be extremely light, with a
huge occupancy number. One of the motivations for this
comes from string theory, in which it is plausible that a
typical compactification includes axions with exponentially
small masses [5]. In this case, the de Broglie wavelength
λ ¼ h=ðmvÞ can be of astrophysical size, which is some-
times called “fuzzy dark matter” [6]. This gives rise to a
kind of “quantum pressure” that prevents the center of the
galaxy from becoming arbitrarily dense, leading to a type of
core. A typical mass of m ∼ 10−22 eV is often invoked to
produce cores of size ∼kpc. Note that, in this regime, the
particle’s occupancy number must be huge in order for this
type of dark matter to be most of the galactic mass. So the
theory is well described by classical field theory. (See
Ref. [7] for a rigorous explanation of why classical field
theory provides an accurate description of the dynamics in
this regime, despite claims to the contrary in Ref. [8].)
Other interesting consequences of this proposal are studied
in Ref. [9].
In this work we critically examine this proposal. Our

primary motivation is the following: if indeed the large de
Broglie wavelength of these ultralight bosons is responsible
for the presence of the core of a galaxy, then it should self
consistently explain the core of many other (if not all)

galaxies. While one can always fix parameters, say the
mass of the dark matter, so that the relationship between
core density ρc and core radius Rc works for one galaxy, it
needs to then correctly predict this relationship for other
galaxies; some data are given in Fig. 1. Here we show that if
the bosons organize into a type of Bose-Einstein conden-
sate, and consequently occupy their ground state configu-
ration near the center of a galaxy, then we can compute this
relationship for all galaxies. We find that the resulting
relationship between ρc and Rc does not match the data for
a large family of scalar dark matter models, including
“fuzzy dark matter” in which self-interactions are assumed
negligible and for more general scalar field models in
which self-interactions are important. We extend these
results to scalar dark matter that has not gone into the
ground state, but has virialized in a more conventional
sense. Finally, we extend our results to even more general
scalar field models, degenerate fermions, superfluids, and
general polytropes.
Our paper is organized as follows: In Sec. II, we present

some galactic data which indicate ρc ∝ 1=Rc. In Sec. III,
we present the family of scalar dark matter models that we
analyze. In Sec. IV, we outline the form of ground state
solutions that we are interested in. In Sec. V, we present the
numerical solution to these models for a range of param-
eters. In Sec. VI, we describe a simple variational technique
to capture the qualitative behavior of the solutions. In
Sec. VII, we discuss the possibility of nonground state
behavior. In Sec. VIII, we discuss various other scalar field
and fermionic models. Finally, in Sec. IX, we summarize
our results and mention future directions.

II. GALACTIC DATA

The halos of galaxies are dominated by dark matter,
which organize into the famous NFW profile [1], in which
the density falls off as ∼1=r3 at large radii and rises as ∼1=r
at small radii. While this matches data quite well for radii
much bigger than ∼kpc, it appears to fail on scales r≲ kpc.
In particular, typical galaxies appear to exhibit a core where
the density approaches a constant as r → 0. In the vicinity
of the core, a convenient density profile is the following
functional form [10],

ρðrÞ ¼ ρc
1þ r2=R2

c
; ð1Þ

where the core density ρc is taken to be the central density
and the core radius Rc is taken to be the radius at which the
density has dropped to half its central value. In Fig. 1, we
plot core density ρc versus core radius Rc for a range of
different galaxies from Ref. [4]. (In fact, this reference
used the so-called Burkert profile ρðrÞ ¼ ρc=ð1þ r=RBÞ
ð1þ r2=R2

BÞ in which the core radius RB is when the
density has dropped to a quarter of its central value; so we
have re-scaled by a factor of Rc ≈ 0.54RB accordingly.)

FIG. 1. Core density ρc versus core radius Rc for a range of
galaxies. Black dots are data taken from Ref. [4]. Orange dashed
curve is the best fit power law curve ρc ∝ 1=Rβ

c with β ¼ 1.3 for
this data set, while we find β ≈ 1 more generally.
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Their data fRc; ρcg come from measuring rotation curves.
Although there is significant scatter in the data, an overall
trend can be clearly seen. By parametrizing the relationship
between core density and core radius as a power law,

ρc ∝
1

Rβ
c
; ð2Þ

we find that the best-fit value for the exponent for this
particular data set is β ¼ 1.3. We have also examined other
data sets, including faint galaxies [10], finding β ¼ 0.9, etc.
In general we find that β ≈ 1. We note that this roughly
holds for both small (dwarf) and large galaxies, including
galaxies that are dominated by dark matter.

III. SCALAR MODELS

Our task then is to see whether the above behavior can be
reproduced by extremely light bosons. As a reasonable
model for light bosonic dark matter, we take the dark matter
particle to be spin 0. One could imagine studying a massive
spin 1 particle, though we expect qualitatively similar
behavior. For simplicity, we will focus in this paper on a
complex scalar Φ whose dynamics is organized by a global
Uð1Þ symmetry Φ → Φeiθ. (Other work on complex scalar
dark matter includes Ref. [11].) We do not have a physical
motivation for this ad hoc symmetry; we only introduce
this to simplify the analysis. In particular, the global
symmetry leads to a conserved particle number N, which
we can use to organize solutions. More precisely, we will
focus on ground state solutions at fixed number N. If
instead we studied a real scalar field, there would techni-
cally be no conserved particle number to organize sol-
utions, and so the only true ground state solutions would be
vacuum solutions. So for real scalars with self-interactions,
one is forced to consider particle number changing proc-
esses, whose time dependence can be complicated in
general. However, this problem only arises at large field
values. At small field values, particle number changing
processes are suppressed, and the real scalar field evolution
matches the complex scalar field evolution. We shall return
to the difference between complex and real scalar field
dynamics in the next section and the discussion.
We assume this scalarΦ is minimally coupled to Einstein

gravity with a canonical kinetic term and allow for
self-interactions from a potential V. The action is then
(signature þ − −−, units ℏ ¼ c ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
R

16πG
þ j∂Φj2 − VðjΦjÞ

�
: ð3Þ

By varying the action, we obtain the standard Einstein
equations for gravity, as well as the following equation of
motion for Φ,

□Φ≡ jgj−1=2∂μð
ffiffiffiffiffi
jgj

p
gμν∂νΦÞ ¼ −∂Φ�V: ð4Þ

The primary choice to make is the potential V. Since we
know cold dark matter (described by nonrelativistic par-
ticles) works very well on large scales, we demand that the
potential is quadratic V ¼ m2jΦj2 þ � � � around its mini-
mum. At large field values, one is allowed to consider
various possibilities for the potential. For simplicity, we
consider potential functions that are monotonically increas-
ing as we increase Φ. Otherwise we would have the
complication of potentials with multiple minima. This
could lead to topological defects that are currently unob-
served and so we shall avoid this possibility here.
A family of potential functions that captures a range of

qualitatively different behavior is the following,

VðjΦjÞ ¼ m2F2

α

��
1þ jΦj2

F2

�
α

− 1

�
; ð5Þ

where F is some mass scale that represents the cutoff of the
effective theory and α > 0 is a positive exponent. Note that
if we Taylor expand the potential around small Φ, we have

VðjΦjÞ ¼ m2jΦj2 þ κjΦj4 þ…; ð6Þ

where

κ ≡m2ðα − 1Þ
2F2

: ð7Þ

So if α ¼ 1, we have no self-interactions; if α > 1, we have
repulsive self-interactions (κ > 0); and if α < 1, we have
attractive self-interactions (κ < 0). The case of α < 1 is,
therefore, representative of (i) typical axion models (albeit
axions are real scalars ϕ) in which the canonical single
instanton potential VðϕÞ¼m2F2

að1− cosðϕ=FaÞÞ gives the
small field expansion VðϕÞ¼m2ϕ2=2−m2ϕ4=ð24F2

aÞþ���
and (ii) axion-monodromy models in which the above
potential is indicative [12]. For a possible construction of a
repulsive (α > 1) light dark matter model, see [13].

IV. BOSE-EINSTEIN CONDENSATE

The above action’s global Uð1Þ symmetry gives rise to
the following conserved current associated with particle
number

Jμ ¼ i
ffiffiffiffiffi
jgj

p
gμνðΦ�∂νΦ −Φ∂νΦ�Þ; ð8Þ

with ∂μJμ ¼ 0 and a corresponding conserved particle
number,

N ¼
Z

d3xnðx; tÞ; with nðx; tÞ≡ J0ðx; tÞ; ð9Þ

the local number density.
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Since the particle number is conserved and since we have
bosons at high occupancy, the system can, in principle,
organize into a Bose-Einstein condensate. This occurs if the
system has sufficiently fast interactions to reorganize
towards the ground state. As discussed in Refs. [14–16],
the gravitational interaction rate for a typical mode k for an
initially messy field configuration can be estimated as

Γ ∼
8πGm2n

k2
: ð10Þ

At first sight, this appears to be tiny for very light fields due
to them2 factor. However, this is incorrect for the following
reasons: (i) in order for Φ to be the bulk of the dark matter
in the galaxy, then we need ρ ¼ mn fixed to the observed
galactic density, and (ii) we can rewrite the wave number as
k ¼ mv, where v is a virial speed in the galaxy. This gives
Γ ∼ 8πGρ=ðmv2Þ ∝ 1=m and so it is evidently becoming
large for very light fields. A representative value from
Fig. 1 is ρ ¼ 0.1 M⊙ pc−3 with corresponding virial speed
v ≈ 10−4c (using Eq. (33) with R ¼ kpc). Then if we take
m ¼ 10−22 eV, we obtain 1=Γ ≈ 5 Myr, which is smaller
than a typical galactic age (in fact this time-scale can be
further reduced due to self-interactions). This suggests
there may be enough time for gravitational interactions
to organize the field towards a Bose-Einstein condensate,
which will be our assumption going forward for most of
this paper. However, see Sec. VII for a discussion of the
case in which this assumption is not satisfied.
The Bose-Einstein condensate is a configuration that

minimizes the energy at fixed particle number. This comes
from extremizing the free energy,

E − μN; ð11Þ

where E is the energy and μ is a chemical potential. It
can be readily shown that this is extremized for field
configurations with the following simple time and space
dependence,

Φðx; tÞ ¼ ϕðrÞffiffiffi
2

p e−iωt; ð12Þ

where ω ¼ μ is the frequency of oscillation of the field in
the complex plane. Here ϕðrÞ is some real function of
radius only, as the ground state selects out a spherically
symmetric configuration. Since we will extremize the free
energy, we can in general find both local minima (stable
solutions) and local maxima (unstable solutions).
Note that if we were to consider our starting fieldΦ to be

a real scalar, then in the nonrelativistic limit, we would
simply add to the right hand side of Eq. (12) the complex
conjugate. The equation of motion for ϕðrÞ would essen-
tially remain the same, up to some trivial rescalings by

Oð1Þ factors. (See Ref. [17] for a systematic treatment of
corrections to the nonrelativistic theory of a real scalar.)

V. NUMERICAL SOLUTION

Here we would like to describe our numerical recipe and
numerical results for the above set of models.

A. Setup

For spherically symmetric static (ground state) solutions,
we can write the spacetime metric without loss of generality
as [18]

ds2 ¼ e2ψðrÞSðrÞdt2 − SðrÞ−1dr2 − r2dΩ2; ð13Þ

where ψ and S are constrained variables which are
functions of radius r. Here SðrÞ ¼ 1–2GMðrÞ=r, with
MðrÞ the enclosed energy up to radius r. The total
energy is

E ¼ Mðr → ∞Þ: ð14Þ

The total energy density is given by a sum over kinetic T,
gradient W, and potential V energy densities, as follows,

ρðrÞ ¼ TðrÞ þWðrÞ þ VðrÞ; ð15Þ

where

T ¼ 1

2
e−2ψS−1ω2ϕ2; W ¼ 1

2
Sϕ02: ð16Þ

Here a prime 0 denotes a derivative with respect to radius.
The enclosed energy M and the metric function ψ are then
obtained from the following pair of first-order ODEs:

M0 ¼ 4πr2ρ; ð17Þ

ψ 0 ¼ 8πGrS−1ðT þWÞ: ð18Þ

The equation of motion for the scalar field Eq. (4) in this
spherically symmetric static configuration becomes the
following second-order ODE,

e−2ψS−1ω2ϕþSϕ00 þ
�
1þS
r

−8πGrV

�
ϕ0 ¼ ∂ϕV; ð19Þ

and the conserved particle number Eq. (9) is given by the
following integral

N ¼ 4πω

Z
∞

0

drr2e−ψS−1ϕ2: ð20Þ
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B. Results

We have solved these equations numerically for a range
of values of the exponent α in the potential V. For each field
amplitude at the center ϕð0Þ, we numerically determine the
corresponding frequency ω that gives rise to a localized
solution with no nodes. This involved repeated trials of
different ω until the correct one is obtained with high
accuracy. We then determined the core density and radius
for this solution. This process is then repeated for many
different field amplitudes.
Our results are summarized in Fig. 2, where we plot the

core density [defined by ρc ¼ ρð0Þ] versus the core radius
(defined implicitly by ρðRcÞ ¼ ρð0Þ=2). We have scaled
out the mass m and gravitational constant G by measuring
Rc in units of m−1 and ρc in units of m2G−1. Then the
physics is controlled by the one residual scale F, which we
have chosen to be F ¼ 10−3=

ffiffiffiffi
G

p
(≈1016 GeV) in this plot.

We have shown three representative values of the exponent

α: α ¼ 1=2 (attractive self-interaction), α ¼ 1 (no self-
interaction), and α ¼ 2 (repulsive self-interaction).
The results in Fig. 2 show that the solution is somewhat

complicated, undergoing multiple branches for each choice
of α. As we will explain in the next section, each branch can
be described by a power law ρc ∝ 1=Rβ

c for some value of
the power β. Furthermore, some branches are stable (solid
lines) and some branches are unstable (dashed lines). As
indicated in the plot, there is no regime in which β ≈ 1.
There are branches where β ¼ 2, which is not so far off the
observational data; however, those are always unstable
solutions.
To summarize, we find that in all branches we have

(i) β ≫ 1, or (ii) β ≪ 1, or (iii) unstable solutions. So none
of these branches is compatible with the galactic data (see
Fig. 1). We find that this result persists for any choice of the
exponent α and any choice of the parameter F, and we
believe this persists for general potential functions V (some
generalizations are in Sec. VIII A 3).

VI. ANALYTICAL APPROXIMATIONS

In this section, we would like to provide an analytical
understanding of the above numerical results.

A. Nonrelativistic regime

Firstly, the standard regime of interest in light scalar dark
matter models is the nonrelativistic regime, where fields are
small allowing the potential to be approximated as
V ≈m2jΦj2 þ gjΦj4, gravity is given by the weak field
Newtonian limit, and gradient energies are small compared
to kinetic energies. In this nonrelativistic limit, the above
total energy reduces to the following sum of mass energy,
gradient energy, self-interaction energy, and gravitational
energy, respectively [19,20],

E ¼ Nmþ 4π

Z
∞

0

drr2
�
ϕ02

2
þ κ

4
ϕ4

�

−
Gm4

2
ð4πÞ2

Z
∞

0

drr2
Z

∞

0

dr0r02
ϕðrÞ2ϕðr0Þ2

r>
; ð21Þ

where r> is the greater of the pair fr; r0g, and the particle
number in this limit is simply

N ¼ 4πm
Z

∞

0

drr2ϕ2: ð22Þ

Note that these equations are identical to the nonrelativistic
limit of a real scalar, which is in fact the classic form of
fuzzy dark matter, including ultralight axions. Following
Ref. [19], we take a simple exponential ansatz for the
spatial profile as ϕðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðπmR3

cÞ
p

expð−r=RcÞ (here
Rc is the radius at which the density is e−2 of its central
value, which can be trivially rescaled to give the radius at

FIG. 2. Core density ρc versus core radius Rc for dif-
ferent exponents α in the potential functions V¼
m2F2ðð1þjΦj2=F2Þα−1Þ=α. Here we have scaled out the
constants m and G, and chosen F ¼ 10−3=

ffiffiffiffi
G

p
(≈1016 GeV).

The lower red curve is for α ¼ 1=2 (attractive self-interaction),
the middle blue curve is for α ¼ 1 (no self-interaction), and
the upper green curve is for α ¼ 2 (repulsive self-interaction).
The solid branches represent stable solutions (true ground states),
while the dashed branches represent unstable solutions.
The different branches all asymptote to power law behavior
ρc ∝ 1=Rβ

c with the value of β labelled for each branch. The
dotted black line indicates the boundary of the black hole regime,
above which the scalar field would be trapped inside its own
Schwarzschild radius; since the cores of galaxies are in the weak
gravity regime, the important region of this plot is the part well
below the dotted black line.
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which the density is 1=2 of its central value if desired).
Then we obtain the following energy:

E ¼ Nmþ N
2mR2

c
þ κN2

32πm2R3
c
−
5Gm2N2

16Rc
: ð23Þ

Static solutions arise from extremizing this energy with
respect to core radius Rc at fixed particle number N.
For large radii, we need to balance the second (gradient)

and fourth (gravitational) energies in Eq. (23). This requires
Rc ∝ 1=N. So thenE ≈ Nm ∝ 1=Rc. Then usingρc ∼ E=R3

c,
this implies

ρc ∝
1

R4
c
; largeRc ðstableÞ; ð24Þ

wherewe have indicated that this solution is stable, since it is
a localminimumof the above energy function. This accounts
for the lower right β ¼ 4 region of Fig. 2, which is obeyed by
all potential models, independent of α, in this gravitationally
dominated limit. This is an important result: when ultralight
axions are in the standard regime in which their behavior
is governed by Newtonian gravity, the model predicts
ρ ∝ 1=Rβ

c with β ¼ 4, rather than β ≈ 1, which is favored
by the data.
For repulsive self-interactions (α > 1 and κ > 0),

another branch of solutions emerges as we go to higher
particle number N. In this case, the third (self-interaction)
and fourth (gravitational) energies in Eq. (23) can balance
each other. Since they both scale as N2, this requires
Rc ¼ const, leading to a vertical line, which we can express
heuristically as

ρc ∝
1

R∞
c
; repulsive only ðstableÞ: ð25Þ

This accounts for the vertical branch of the repulsive
(green) case in Fig. 2.
For attractive self-interactions (α < 1 and κ < 0) a differ-

ent type of solution emerges aswe decrease radiusRc. In this
case, the second (gradient) and third (self-interaction)
energies in Eq. (23) can balance each other. This requires
Rc ∝ N. So then E ≈ Nm ∝ Rc, which implies

ρc ∝
1

R2
c
; attractive only ðunstableÞ: ð26Þ

Note that since this only leads to an extremum if g < 0, this
gives rise to a local maximum of the above energy function,
leading to an unstable branch. This accounts for the centrally
located dashed (red) branch in Fig. 2 with β ¼ 2.

B. Large scalar field regime

There are two basic ways in which the above non-
relativistic theory can breakdown. The first is if the field

amplitude becomes sufficiently large that the potential V is
no longer dominated by its mass term, meaning frequencies
are no longer near m, as we now explore.
At large field amplitudes, jΦj ¼ ϕ=

ffiffiffi
2

p
≫ F, the poten-

tial can be approximated as

V ≈ ξϕ2α; ð27Þ

where ξ≡m2F2−2α=ð2ααÞ. As above this can permit a
regime in which the self-interaction is dominant and gravity
is negligible; however, we need to now operate fully
relativistically. In this case, the total energy becomes

E ¼ 4π

Z
∞

0

drr2
�
ω2ϕ2

2
þ ϕ02

2
þ ξϕ2α

�
; ð28Þ

with particle number N ¼ 4πω
R∞
0 drr2ϕ2. By again taking

a simple exponential ansatz for the spatial profile as
ϕðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðπωR3

cÞ
p

expð−r=RcÞ, we obtain the energy

E ¼ ωN
2

þ N
2ωR2

c
þ ξ̃

R3−3α
c Nα

ωα ; ð29Þ

where ξ̃≡ π1−αξ=α3. By extremizing E with respect
to both ω and Rc, one can show that solutions only
exist for α < 1, ω ∼ 1=Rc, and Rc ∝ Nð1−αÞ=ð4−2αÞ. So then.
E ∼ N=Rc ∝ Rð3−αÞ=ð1−αÞ

c , which implies

ρc ∝ R
2α
1−α
c ; attractive only ðstableÞ; ð30Þ

which can be readily shown to be a stable branch. This
accounts for the upper (red) attractive case in Fig. 2, which
for α ¼ 1=2, gives β ¼ −2. These types of solutions are
often referred to as “Q-balls” in the literature [21]. Since
0 < α < 1 for these solutions to exist, they always give a
core density that grows with radius, in clear contradiction to
the galactic data.

C. Strong gravity regime

The second way in which the nonrelativistic theory can
break down is when we enter the strong gravity regime with
gravitational potential GM=r ¼ Oð1Þ. Such a regime is
invariably associated with orbital speeds that are a signifi-
cant fraction of the speed of light, which cannot possibly
account for the behavior near the cores of galaxies on scales
∼kpc, which are measured to have v ∼ 10−4 c − 10−3 c.
Nevertheless, we include this here for completeness.
As we explore solutions with smaller and smaller radii

and higher densities, the core radius Rc gets closer and
closer to its Schwarzschild radius RS ¼ 2GM; the radius of
a spherically symmetric black hole. To indicate this region,
let us define a critical density:
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ρS ≡ 3M
4πR3

S

¼ 3

8πGR2
S
: ð31Þ

At a fixed radius, any density above this critical value will
be a region that is trapped inside its own Schwarzschild
radius and will collapse to a black hole. We have indicated
this critical density by a dotted black line in Fig. 2.
Note that all scalar field static solutions stay below, but

become close and parallel to, this critical density in the
upper left region of the figure. These solutions are evidently
not black holes, but are in the strong gravity regime with a
radius that is only a factor of a few larger than their
Schwarzschild radius. Hence, these solutions are charac-
terized by the same power law as the black hole, namely,

ρc ∝
1

R2
c
; smallRc ðunstableÞ: ð32Þ

Such solutions are unstable as they can collapse to
a black hole under the appropriate perturbation.

VII. VIRIALIZED BEHAVIOR

In the analysis above, we have assumed that the scalar
field has condensed into its ground state at the core
of a galaxy. Since the gravitational thermalization rate Γ ∼
8πGρ=ðmv2Þ gave a value 1=Γ ∼ 5 Myr for typical input
parameters, this assumption seems at least plausible.
However, we do not have a proof that this would happen,
so it is useful to consider the case in which the field has yet
to fall into its ground state.
In this case, we still expect the field’s velocity distribu-

tion to virialize. Let us focus here on the simplest version of
ultralight scalar dark matter in which self-interactions are
negligible and the dynamics is governed by Newtonian
gravity. The virialized speed at the core radius is

v ¼
ffiffiffiffiffiffiffiffiffiffi
GMc

Rc

s
; ð33Þ

where Mc is the enclosed mass up to radius Rc. In the
vicinity of the core, we take the density profile to be given
by the fiducial form in Eq. (1). Integrating this gives the
core mass as

Mc ¼ ð4 − πÞπρcR3
c: ð34Þ

Now a nonrelativistic quantum particle has a de Broglie
wavelength set by its characteristic speed v as

λ ¼ h
mv

: ð35Þ

By using Eqs. (33) and (34), this expression gives the de
Broglie wavelength in the vicinity of the core of a galaxy as
a function of core density and radius. This is given in Fig. 3

as a function of core radius for a range of observed galaxies,
where we have used the corresponding core density data
from Fig. 1. We chose a particle mass of m ¼ 10−22 eV
for illustrative purposes. We have also included the
corresponding best fit curve (dashed orange), which is
λ ∝ 1=R1−β=2

c with β ¼ 1.3 for this data set.
Note that the data indicate that the de Broglie wavelength

is a decreasing function of the galactic core radius.
However, this appears to go in the opposite direction to
the idea behind the ultralight or “fuzzy” dark matter
proposal. To illustrate this we have also plotted as the
dotted cyan curve λ ¼ 2Rc. Any galaxies that lie well above
this line would have a core diameter that is much smaller
than the corresponding scale over which the particles are
localized, which we consider to be an unphysical prediction
of the model. On the other hand, any galaxies that lie well
below this line have a core diameter that is much bigger
than the size of the particle’s wave packet. While this latter
scenario can be perfectly physical, it begs the question as to
what is then actually responsible for the large core size,

FIG. 3. de Broglie wavelength λ ¼ h=ðmvÞ versus core radius
Rc for a range of galaxies in the fuzzy dark matter hypothesis.
Black dots correspond to the data from Ref. [4] that we used in
Fig. 1. We have taken the velocity v that determines the de
Broglie wavelength to be the virial speed corresponding to the
core density ρc for that radius Rc, and we have taken the dark
matter particle mass to be m ¼ 10−22 eV for the sake of
illustration (since λ ∝ 1=m, other values of m involves a simple
re-scaling of the vertical axis). Dashed orange curve is the
corresponding best fit power law λ ∝ 1=R1−β=2

c from Fig. 1 with
β ¼ 1.3 for this data set. The dotted cyan curve is λ ¼ 2Rc; for
points that lie well above this line, the theoretical model is
unphysical, and for points that lie well below this line, the core
seems to require some alternate explanation.
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since the proposal of fuzzy dark matter is that the core
arises from the particle’s de Broglie wavelength itself. In
fact, to match λ ¼ 2Rc, the data should follow ρc ∝ 1=R4

c.
Since the orange curve (best-fit data) and cyan curve
(theoretical prediction) are essentially orthogonal to each
other, it disfavors this proposal.

VIII. OTHER MODELS

In this section, we generalize our results to a range of
other models, including more general scalar theories,
fermions, superfluids, and general polytropes.

A. Other scalar field theories

1. Real scalars

An important subject is that of a real scalar field.
However, we expect similar behavior to the case of the
complex field studied here. In fact, in the nonrelativistic
limit, both theories obey the same equations of motion.
Hence, the standard regime of the ultralight axion scenario
is fully encompassed by our analysis here. However, for
large field amplitudes, there can be differences. In particu-
lar, there can be particle-number-changing processes
allowed. It appears unlikely that such processes could help
at all to explain galactic cores; if anything, such behavior
would limit the stability of such cores, making it even less
likely to produce a consistent model.

2. Kinetic corrections

Other possibilities are to include corrections to the
action, including higher-order kinetic terms, such as

ΔL ¼ γj∂Φj4 þ…; ð36Þ

for a complex field or a real field (γ is some coupling).
However, in the nonrelativistic limit, this introduces the
correction

ΔL ¼ γm4jΦj4 þ…; ð37Þ

which is merely a correction to the quartic term in the
potential function V, with Δκ ¼ −γm4. Hence, in this
nonrelativistic regime (which is the primary regime of
interest for galactic cores) this does not introduce any new
behavior that is not already captured by the earlier analysis
in this paper. There may be new behavior in the relativistic
regime, however, which we will not pursue here.

3. Potential corrections

Another possibility is to generalize the small field
expansion of the potential V in Eq. (6) to

V ¼ m2jΦj2 þ κjΦj2a þ…: ð38Þ

Previously, we considered a ¼ 2, which is the standard
form expected of the leading self-interaction term. One is
allowed to consider other values of a for the sake of
generality. We shall focus here on the nonrelativistic limit.
In this case, one may simply assume that ΔV ¼ κjΦj2a is
present in some nonrelativistic effective theory, regardless
of its origin. From this point of view, we may even allow a
to be a fractional power. In the nonrelativistic limit, the
energy becomes a simple generalization of Eq. (21) by
replacing the term κϕ4=4 → κϕ2a=2a. Once again, we have
two scenarios in which the self-interaction term can be
important. The first is if it balances the gradient energy,
which we shall study here. The second is if it balances the
gravitational energy, which we shall study in Sec. VIII D.
The self-interaction and gradient energies together

scale as

ΔE ¼ c1
κNa

maR3ða−1Þ
c

þ c2
N

mR2
c
; ð39Þ

where c1;2 are positiveOð1Þ numbers. Balancing these two
terms and using ρc ∝ N=R3

c leads to

ρc ∝
1

Rβ
c

with β ¼ 2

a − 1
: ð40Þ

For κ > 0 the existence of a solution requires a < 1 (which
would be a strange nonlocal term in the effective theory)
leading to β < 0. For κ < 0 a stable solution requires
0 < 3ða − 1Þ < 2 leading to β > 3. In either case, it is
disfavored by the data.

B. Degenerate fermions

Another possibility is to study moderately light fer-
mions, which will undergo Pauli exclusion in the
degenerate regime. This can lead to a core at the center
of galaxies if the fermion mass is sub-keV [22]. The
relationship between core density and core radius in this
scenario can be estimated as follows: In the degenerate
regime ρc ¼ mnc ∼ m=λ3 ∼ mðmvÞ3, and virialization
implies v ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMc=Rc

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GρcR2

c

p
. Eliminating v from

this pair of equations, we have

ρc ∝
1

R6
c
; ð41Þ

which is ruled out by galactic data.

C. Superfluid dark matter

An interesting proposal for the dark matter is that it
permits a type of phase transition to a superfluid state that
implements a type of MONDian dynamics on galactic
scales [23]. The effective Lagrangian for a scalar field θ

in this regime is L ∝ X
ffiffiffiffiffiffijXjp

, where X ¼ _θ −mϕN−
ð∇θÞ2=ð2mÞ. This is associated with an equation of state
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P ∝ ρ3 [23], which leads to a core (see next subsection),
with relation

ρc ∝ R2
c; ð42Þ

which is also disfavored by the data. However, this model
involves nontrivial coupling to baryons—such that dark
matter somewhat mimics MONDian gravity—which may
alter the predictions. See e.g., Ref. [24] for discussions on
MOND and its predictions.

D. General polytropes

The above models are examples of systems where the
pressure (e.g., from self-interactions or Fermi degeneracy)
is simply a function of the density, which is known as a
polytrope equation of state,

P ¼ Kρ1þ
1
p: ð43Þ

Here, p is known as the polytropic index and K is a
constant of proportionality. For κjΦj2a potential corrections
we have p ¼ 1=ða − 1Þ, for degenerate fermions we have
p ¼ 3=2, and for the above superfluid dark matter model
we have p ¼ 1=2.
In astrophysical systems, this pressure force is used to

balance against the gravitational force to achieve some
equilibrium configuration (note for ordinary scalar fields,
the “pressure” here refers to self-interactions, and not to be
confused with the “quantum pressure” or gradient energy,
which is not of the polytropic form). Since pressure is a
force per unit area, this gives rise to a pressure force of
characteristic size FP ∼ Pr2 ∝ ρ1þ

1
pr2. On the other hand,

gravity is a force of characteristic size FG ∼GM2=
r2 ∝ ρ2r4. In hydrostatic equilibrium, these forces balance
each other, leading to the following relationship between
core density and core radius,

ρc ∝
1

Rβ
c

with β ¼ 2p
p − 1

; ð44Þ

which reproduces the fermion result in Eq. (41) for
p ¼ 3=2 and the superfluid result in Eq. (42) for
p ¼ 1=2. Stable solutions from this balance between
pressure and gravity requires 0 < p < 3 (and K > 0).
Hence the exponent β is constrained to be either β < 0
or β > 3. So, once again, it can never be close to 1 in order
to match the galactic data.

IX. SUMMARY AND OUTLOOK

We have shown that it is very difficult for light dark
matter to reproduce the observed relationship between core
density and core radius in galaxies, which obeys the rough
scaling law ρc ∝ 1=Rβ

c with exponent β ≈ 1.

In particular, we have shown the following: ultralight
scalars, with negligible self-interactions, lead to β ¼ 4
when Newtonian gravity is balanced against “quantum
pressure”; large self-interactions give rise to the wrong β for
any potential and/or instabilities; the strong gravity regime
can lead to instabilities and is in any case strongly
disfavored by the data; virialized ultralight scalars predict
the wrong relation between the de Broglie wavelength
and core radius; kinetic corrections to the scalar field
Lagrangian are redundant with these results in the non-
relativistic limit; and any polytrope equation of state leads
to instabilities and/or the wrong exponent, including
potential corrections, degenerate fermions, and superfluid
dark matter.
Further work would be to generalize this class of

theories. In order to have the correct scaling in this context
of very light scalars, it would appear that we need to
involve unusual fractional derivatives, etc., which are
associated with nonlocality. Such effective theories may
be very difficult to reconcile with a range of other
observations. Other important work is to perform numerical
simulations to determine to what extent the field organizes
into its ground state versus other states.
A natural possibility is to return to heavy dark matter

particles that may exhibit more standard interactions. As
mentioned in the Introduction, if dark matter particles have
a large scattering cross section σ, they will have a finite
mean free path λMFP ¼ 1=ðnσÞ ¼ m=ðρσÞ. Interestingly, if
this mean free path sets the size of the core, and if the cross
section is velocity independent, then this naturally predicts
ρc ∝ 1=Rc. However, there are a range of constraints on
these strongly interacting models, such as from bullet
cluster observations, halo properties, etc., so this requires
careful future analysis. In any case, these types of inter-
actions, or other possible dark matter interactions, are
worthwhile exploring as a possible solution to the core-
cusp problem.
Finally, one should include baryons into simulations as

fully as possible to examine whether this may explain the
presence of cores. Since baryons tend to accumulate
towards the center of galaxies, this may be very important
and indeed may well explain the discrepancies, at least, for
largest galaxies. However, galactic cores tend to persist
even for smaller galaxies, including those that are rather
dark matter dominated, so it is unclear what the final
solution will be.
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