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2-COMPLEXES WITH LARGE 2-GIRTH

DOMINIC DOTTERRER, LARRY GUTH, AND MATTHEW KAHLE

Abstract. The 2-girth of a 2-dimensional simplicial complex X is
the minimum size of a non-zero 2-cycle in H2(X;Z=2). We consider
the maximum possible girth of a complex with n vertices and m
2-faces. If m = n2+� for � < 1=2, then we show that the 2-girth
is at most 4n2�2� and we prove the existence of complexes with
2-girth at least c�;�n

2�2���. On the other hand, if � > 1=2, the
2-girth is at most C�. So there is a phase transition as � passes
1=2.

Our results depend on a new upper bound for the number of
combinatorial types of triangulated surfaces with v vertices and f
faces.

1. Introduction

In this paper, we study a 2-dimensional analogue of the girth of a
graph. Recall that the girth of a graph is the shortest length of a non-
trivial cycle in the graph. If X is a 2-dimensional simplicial complex,
then the 2-girth of X is de�ned to be the minimum number of 2-faces
in a non-zero 2-cycle with coe�cients in Z=2. We address the following
question: if X has n vertices and m 2-faces, what is the maximum
possible size of the 2-girth of X? We prove upper and lower bounds
which match pretty closely. They show a phase transition as m passes
n2:5.

For context, let us �rst recall the situation for graphs. Let g(n;m)
denote the maximum possible girth of a graph with n vertices and m
edges. We note that g(n; n) = n, because any graph with n vertices and
n edges must contain a cycle, and the number of edges in the cycle is at
most the total number of edges in the graph. As we increase the number
of edges, g(n;m) decreases rapidly. For instance, g(n; 2n) = O(log n),
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and for any � > 0, g(n; n1+�) � C�. These estimates are special cases
of the Moore bounds (cf. [1] ).

Now we turn to 2-dimensional simplicial complexes. Let g2(n;m) de-
note the maximum possible 2-girth of a 2-dimensional simplicial com-
plex X with n vertices and m 2-faces. A graph with n vertices has
at most

�
n
2

�
edges. If m =

�
n
2

� � n + 2, then a dimension counting
argument implies that H2(X;Z=2) 6= 0, and so X contains a non-zero
2-cycle. Therefore,

g2(n;

�
n

2

�
� n+ 2) �

�
n

2

�
� n+ 2 � n2:

As we add 2-faces to a simplicial complex X, its 2-girth can only
decrease, and so g2(n;m) is decreasing in m. In analogy with the
case of graphs, one might expect g2(n;m) to decrease very sharply
as m increases. For instance, we initially expected that g2(n; 2n

2) =
O(log n). But it turns out that this is not the case. Aronshtam, Linial,
Luczak, and Meshulam introduced techniques in [2] which show that
g2(n;Kn

2) � cKn
2 for every constant K > 0 { see Section 6 for more

discussion of their work.
We study the behavior of g2(n;m) as m increases further. We prove

two upper bounds for g2(n;m).

Theorem 3.1. If � � 0 and

m � n2+�;

then
g2(n;m) � 4n2�2�:

In the case � > 1=2, there is a much better upper bound on g2(n;m).
This was studied implicitly by S�os, Erd}os, and Brown [8], in the con-
text of Tur�an theory for hypergraphs. We include their argument for
the sake of completeness, to show the following.

Theorem 3.2. If m � n2+�, where � > 1=2, then

g2(n;m) � C�;

where C� is a constant which depends only on �.

Our most di�cult result is a lower bound on g2(n;m) that roughly
matches the upper bound from Theorem 3.1 in the regime 0 � � < 1=2.
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Figure 1. Comparing the large-scale behavior of
g(n;m) and g2(n;m), on a log-log scale.

Theorem 4.1. Let 0 < � < 1=2, and � > 0. For su�ciently large
n, there exist simplicial complexes � with n vertices and with at least
m = n2+� faces, and 2-girth at least n2�2���.

Notice that if � is slightly less than 1=2, then g2(n; n
2+�) is roughly

n, while if � is slightly more than 1=2, then g2(n; n
2+�) is bounded by

a constant. Figure 1 compares the behavior of g(n;m) and g2(n;m).
The proof of Theorem 4.1 is based on random simplicial complexes.

Linial and Meshulam [7] introduced the following random model of
simplicial complexes, called Y (n; p). Take the complete graph on n
vertices. There are

�
n
3

�
possible 2-simplices that we could add to this

graph. Include each independently with probability p. If p = n��1,
then with high probability the resulting simplicial complex Y has on
the order of n2+� 2-faces. We count inclusion-minimal 2-cycles in Y ,
and we show that with high probability Y contains only a small number
of inclusion-minimal 2-cycles of size less than n2�2���. By removing a
2-face from each of these cycles, we get a complex with 2-girth at least
n2�2��� and with roughly n2+� 2-faces.

Let �
(2)
n denote the 2-skeleton of the simplex on n vertices. We have

Y � �
(2)
n . If z is an inclusion-minimal 2-cycle in �

(2)
n with f faces,

then z will be included in Y 2 Y (n; p) with probability pf . So to prove
our main theorem, we have to count the number of inclusion minimal

2-cycles in �
(2)
n . This turns out to be a complicated counting problem.

We organize the inclusion minimal 2-cycles according to combinatorial
type, which is de�ned as follows. Given z an inclusion minimal 2-
cycle, there is a triangulated surface � and a simplicial map � !
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�
(2)
n realizing z. Because z is inclusion-minimal, � is connected. The

combinatorial type of z is the combinatorial type of the surface �.
(Two surfaces are of the same combinatorial type if they agree up
to simplicial isomorphism, i.e. if there is a bijection between vertices,
edges, and faces, preserving incidences.)

It's not so hard to count the number of inclusion minimal 2-cycles of
any particular combinatorial type. It turns out to be harder to count
and organize the possible combinatorial types. The most di�cult step
in the argument is an estimate about the set of possible combinatorial
types.

Theorem 4.1. Let T (f; w) be the set of connected, triangulated closed
surfaces with f 2-faces and w vertices, up to simplicial isomorphism.
For every � > 0, there is a constant C� so that

jT (f; w)j � Cf
� f

f=2w�(1��)w:

Using this counting argument, we study the sizes of cycles in a ran-
dom simplicial complex Y chosen from Y (n; p). A similar method gives
an estimate about the isoperimetric properties of Y :

Theorem 6.1 Let � 2 [0; 1=2) and � > 0. Suppose p = n��1, so the
expected number of faces in Y (n; p) is n2+�. Let A be the �lling area
of the cycle 123 in Y . Then with high probability

n2�2��� � A � n2�2�+�:

2. Notation and Concepts

De�nition 2.1. Let S = f1; 2; : : : ; ng. A simplicial complex, �, on the
underlying set S is a collection of subsets X � 2S such that if A � S
is an element of � and B � A, then B is an element of �.

We refer to the elements of � of order 1, 2, and 3 as vertices, edges
and faces, respectively. We denote the set of vertices, edges and faces
as �(0), �(1) and �(2) respectively.

De�nition 2.2. If we set

Ck� := fc : �(k) ! Fg;
we obtain a chain complex

� � � ! Ck+1�
@! Ck�

@! Ck�1� ! � � �
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whose chain maps, @ = @k : Ck� ! Ck�1� are de�ned by

@c(�) :=
X

x2S; �\fxg2�
c(� \ fxg):

We de�ne Zk� := ker @k, the subspace of k-cycles, Bk�1� := im@k,
the subspace of (k � 1)-boundaries, and Hk(�;F) := Zk�=Bk�; the
k-th homology of �.

De�nition 2.3. For F = Z=2, we use the Hamming \norm": for c 2
Ck�, de�ne

kck := supp(c) = jf� 2 �(k) j c(�) = 1gj:

3. Upper bounds on g2(n;m)

Theorem 3.1. If

m � n2+�;

where 0 < � � 1=2, then

g2(n;m) � 4n2�2�:

So Theorem 3.1 bounds the size of the 2-girth for m up to n5=2. For
m much larger than this, the 2-girth is bounded in size.

Theorem 3.2. [S�os, Erd}os, and Brown] Let � be a 2-dimensional
simplicial complex with n vertices and m faces. If m � n2+�, where
1=2 < � < 1, then the 2-girth of � is bounded by C� where C� is a
constant which depends only on �.

Theorem 3.2 is a result of S�os, Erd}os, and Brown [8], but we include
a proof here for the sake of completeness.

3.1. Proof of Theorem 3.1.

Lemma 3.3. Let � be a 2-dimensional complex with n vertices and m
faces. If m � n2=2, then H2(�) 6= 0.

Proof. Since � is a simplicial complex, the number of edges of � is at
most

�
n
2

�
< n2=2. If m � n2=2, then the boundary map in simplicial

homology from 2-chains to 1-chains has a nontrivial cycle, in which
case H2(�) 6= 0. �

We will restrict our attention to Z=2-cycles, and we will restrict
ourselves to the ones which are irreducible in the following sense:
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De�nition 3.4. A Z=2-cycle, z 2 Z2(�) is called inclusion-minimal if
for any other cycle z0 2 Z2(�), supp(z0) � supp(z) implies that z0 = z.

Lemma 3.5. For a 2-dimensional complex on n vertices, every inclusion-
minimal 2-cycle has fewer than n2=2 faces.

Proof. If there are more than n2=2 faces in a cycle, then delete faces
arbitrarily until no more than n2=2 faces remain. By Lemma 3.3, there
still remains at least one cycle. So an inclusion-minimal cycle can not
have more than n2=2 faces. �

Proof of Theorem 3.1. Let D be a random subcomplex of �, chosen as
follows. Let V be a set of exactly k vertices, chosen uniformly over all�
n
k

�
such subsets, and let D = D(V ) be the induced subcomplex of �

on V .
So D is a simplicial complex with k vertices. What is the expected

number of 2-faces E[f2(D)]? For a 2-face T = fx; y; zg in �, T is a
face in D if and only if x; y; z 2 V . We have

P[x; y; z 2 V ] =

�
n�3
k�3
�

�
n
k

�
� k3

2n3
;

as long as n � k � 6.
Now,

E[f2(D)] � k3

2n3
f2(�)

� k3

2n3
n2+�

Setting k = 2n1��,

E[f2(D)] � 8n3�3�

2n3
n2+�

= 4n2�2�

= k2:

Since this is the average, there must exist some subcomplex D0 on
k vertices, such that f2(D

0) � k2. Applying Lemma 3.3, we have that
H2(D

0) 6= 0. Applying Lemma 3.5, D0 contains a non-trivial 2-cycle
with at most k2 faces. Since k = 2n1��, we get the desired bound. �
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3.2. Proof of Theorem 3.2.

Lemma 3.6. If H is a graph on at most n vertices, and with at least
n1+� edges with � > 0, then H contains a cycle of length at most

C� = 2

�
1

�

�
+ 1:

Proof of Lemma 3.6. A graph H of average degree d contains a sub-
graph H 0 of minimum degree d0 � d=2. (See for example Proposition
1.2.2 in [4].) Here

d = 2n1+�=n = 2n�

and we restrict our attention to a subgraph H 0 � H, which has mini-
mum degree at least n�.

Let v 2 H 0 be a vertex, and consider the distance of every vertex in
H 0 to v. If any pair of the distance-1 vertices are adjacenet, we have
g(H) � g(H 0) � 3. If any two of the distance-1 vertices have a common
neighbor, g(H) � 4. Similarly, if any two of the distance-2 vertices are
adjacent, then g(H) � 5, and so on. Now, every vertex at distance k
must have at least n��1 neighbors at distance k+1. So if there are no
cycles in a ball of radius D centered at v, then by the minimum degree
requirement, we have at least

1 + n� + n�
�
n� � 1

�
+ n�

�
n� � 1

�2
+ � � �+ n�

�
n� � 1

�D�1
distinct vertices. If there are no cycles of length less than 2d1=�e +
1, then choosing D greater than 1=� implies there are more than n
vertices, a contradiction. �

Proof of Theorem 3.2. De�ne the degree deg(e) of an edge e to be num-
ber of 2-dimensional faces containing it. ThenX

e

deg(e) = 3m

and m � n5=2+� by assumption. Note that the average edge degree is
then at least b6n1=2+�c.

Let P denote the number of pairs of 2-dimensional faces in � which
share an edge. Then

P =
X
e

�
deg(e)

2

�
:

Note that if a+ 2 � b, then�
a+ 1

2

�
+

�
b� 1

2

�
�
�
a

2

�
+

�
b

2

�
;
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so the sum
P

e

�
deg(e)

2

�
is minimized when the parts are as close together

as possible.
Then even if each edge e had degree b6n1=2+�c, we still have

P �
�
n

2

��b6n1=2+�c
2

�
� n3+2�

for large enough n.
Now for every pair of vertices a; b, let T (a; b) denote the graph lk(a)\

lk(b). I.e. the vertices in T (a; b) correspond to the intersection of the
neighborhoods of a and b, and the edges xy in T (a; b) correspond to
pairs of triangles axy, bxy.

If we sum up the number of edges in T (a; b) over all
�
n
2

�
pairs a; b,

this gives P . So by the pigeonhole principle, there must be at least
one pair a; b such that T (a; b) has at least n1+2� edges. Then applying
Lemma 3.6, this graph must contain a cycle C on at most C� edges.

In the simplicial complex � then, there exists a subcomplex isomor-
phic to a bipyramid, i.e. a suspension of the cycle C. In particular,
there exists a 2-cycle with at most 2C� 2-faces.

�

4. Complexes with large girth

4.1. Overview. We prove the existence of simplicial complexes with
large girth.

Theorem 4.1. Let 0 < � < 1=2, and � > 0. For su�ciently large
n, there exist simplicial complexes � with n vertices and with at least
m = n2+� faces, and 2-girth at least n2�2���.

Our strategy is to start with a random 2-dimensional simplicial com-
plex. We recall the Linial{Meshulam model of random simplicial com-
plexes Y (n; p) from [7]. A complex Y in Y (n; p) has n vertices, and�
n
2

�
edges, and each 2-face is included independently with probability

p. We choose p = n�1+�, where 0 < � < 1=2 is as in Theorem 4.1.
We say that an event occurs with high probability (w.h.p.) if the

probability approaches one as n ! 1. We will show that with high
probability, a complex Y in Y (n; p) contains only a few small 2-cycles.
We construct the complex � in Theorem 4.1 by starting with a random
2-dimensional complex Y from Y (n; p), and then removing a small
number of 2-faces to destroy all the small 2-dimensional cycles.

Let �
(2)
n denote the 2-skeleton of the simplex on n vertices so that

Y � �
(2)
n . If z is a 2-cycle in �

(2)
n with f 2-faces, then z is included
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in Y with probability pf . To estimate the number of small 2-cycles in

Y , we have to organize the set of 2-cycles in �
(2)
n . It turns out to be a

good idea to study inclusion-minimal 2-cycles. We say that a 2-cycle z
is inclusion minimal if there is no 2-cycle supported on a proper subset
of the 2-faces in the support of z.

Let Z(f; v) denote the number of inclusion-minimal 2-cycles in �
(2)
n

with vertex support [v] = f1; 2; : : : ; vg, and with exactly f faces.

Lemma 4.2. Z(f; v) = 0 unlessp
2f � v � f=2 + 2:

Proof. The Euler formula for a �nite 2-dimensional complex is that

v � e+ f = �0 � �1 + �2:

For a minimal 2-cycle, we have that �0 = �2 = 1, so

(�) v � e+ f = 2� �1:

Since e � �v
2

�
, this gives that

f �
�
v

2

�
� v + 2� �1 � v2

2
;

so v � p
2f .

For the other inequality, we �rst assume without loss of generality
that every edge is contained in at least one 2-dimensional face|if not,
then the edge can be deleted without a�ecting either v or f . Since it
is a 2-cycle, every edge is then contained in at least two 2-faces, so

2e � 3f:

Combining with (*) to eliminate the variable e, we have that

f � 2v � 4 + 2�1:

Since �1 � 0, the inequality v � f=2 + 2 follows.
�

We will also require an upper bound on Z(f; v), namely that for any
�xed � > 0, and large enough f and v, we have that

Z(f; v) � Cf
� f

f=2v�f :

We establish this bound in Section 4.5.
We will use � and � consistently throughout the section. Since � <

1=2, we may assume without loss of generality that � is small enough
that 2� + � < 1.

Now we de�ne constants � and M which only depend on � and �,
and which we also use throughout the rest of the section.
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First we set

� = min

�
1� 2�

4
;

�

3(2� 2�� �)

�
:

and

M =

�
8

1� 2�

�
+ 1:

First, we consider small cycles, where 4 � v �M: We will show that
with high probability the total number of such cycles is small relative
to the number of 2-dimensional faces. Then we can delete one face out
of every small cycle without signi�cantly a�ecting the number of faces.

Next, we consider intermediate cycles, where 2M � 2 � f � n. By
Lemma 4.2, if v �M + 1 then f � 2M � 2, so there is no gap between
small and intermediate cycles. We show that with high probability
there are no intermediate cycles.

Finally, we consider large cycles, where n � f � n2�2���: Again, we
show that with high probability there are no such cycles.

The conclusion is that w.h.p., the modi�ed random 2-complex only
has very-large cycles, i.e. cycles of area greater than n2�2���.

4.2. Small cycles. For a simplicial complex � and a number M , let
C�(M) denote the number of cycles supported on at most M vertices.

De�ne a subcomplex of Y on v vertices as barely-dense if it has
exactly 2v � 4 faces. Let T�(M) denote the number of barely-dense
subcomplexes of � with at most M vertices. Note that T�(M) �
C�(M) for every � and M . Indeed, every cycle has f � 2v� 4 and so
contains a barely-dense subcomplex so one can remove all the cycles
by removing one face from every barely-dense subcomplex.

Again, letting � = Y = Y (n; p) and by linearity of expectation,

E [TY (M)] =
MX
v=4

�
n

v

�� �
v
3

�
2v � 4

�
p2v�4:

Since M is a constant which only depends on �, this is a �nite
sum and v is bounded. Moreover, the terms in the sum are strictly
decreasing as v increases for large enough n, so the �rst term in the
sum dominates.

Then

E [TY (M)] � O
�
n4p4

�
= n4�:
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On the other hand, the expected number of 2-faces E[f2(Y )] is

�
n

3

�
p � n2+�

6
:

The number of faces is a binomial random variable, therefore it is tight-
ly concentrated around its mean (by Cherno� bounds, for example).

By Markov's inequality,

P
�
TY (M) � n2+�=2

�
= O

�
n4�

n2+�=2

�
;

which tends to zero as n!1 since � < 1=2.
Since TY (M) dominates CY (M), with high probability we can remove

one face from every small cycle and still be left with almost all of the
faces.

4.3. Intermediate cycles. The sum

n�4X
f=2M�2

f=2+2X
v=
p
2f

�
n

v

�
Z(f; v)pf

is a union bound on the probability that there are any intermediate
cycles: cycles whose number of faces f satis�es 2M � 2 � f � n.

Since f � n and v � f=2 + 2 � n=2, we have that

�
n

v

�
�
�

n

f=2 + 2

�
;

and then we may use the estimate

�
n

f=2 + 2

�
�
�
en

f

�f=2+2

;

valid for f � 4.
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nX
f=2M�2

f=2+2X
v=
p
2f

�
n

v

�
Z(f; v)pf �

nX
f=2M�2

f=2+2X
v=
p
2f

�
en

f

�f=2+2

Cf
� f

f=2v�fpf ;

=
nX

f=2M�2

f=2+2X
v=
p
2f

�
en

f

�2�
en

f

�f=2
Cf
� f

f=2v�fpf ;

� n2
nX

f=2M�2

f=2+2X
v=
p
2f

 �
en

f

�1=2

C�f
1=2v�p

!f

� n2
nX

f=2M�2

f=2+2X
v=
p
2f

�
(en)1=2C�v

�n�1+�
�f

� n2
nX

f=2M�2

f=2+2X
v=
p
2f

�
C 0
�n

�n�1=2+�
�f
;

� n3
nX

f=2M�2

�
C 0
�n

��1=2+��f ;
where C 0

� is a constant which only depends on �.
This sum can be bounded, term by term, by the in�nite geometric

series

a+ ar + ar2 + � � � =
a

1� r
;

where

a = n3
�
C 0
�n

��1=2+��2M�2

and

r = C 0
�n

��1=2+�:

We have chosen � such that

� � 1� 2�

4
;

so

� � 1

2
+ � � 2�� 1

4
< 0:

We have chosen M so that

2M � 2 � 16

1� 2�
> 0:

So

(� � 1=2 + �)(2M � 2) � �4;
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and
a = O

�
n�1
�
:

Since � � 1=2 + � < 0, we also have that r = o(1).
Since a! 0 and r ! 0 as n!1, we also have that a=(1� r) ! 0,

and the probability that there are any intermediate cycles tends to
zero.

4.4. Large cycles. Finally, we show that for any �xed 0 < � < 1=2
and � > 0,

n2�2���X
f=n

f=2+2X
v=
p
2f

�
n

v

�
Z(f; v)pf ! 0;

as n!1, so by the union bound, w.h.p. there are no large cycles.
We require the estimate jZ(f; v)j � Cf

� f
f=2v�v again.

n2�2���X
f=n

f=2+2X
v=
p
2f

�
n

v

�
Z(f; v)pf �

n2�2���X
f=n

f=2+2X
v=
p
2f

�
n

v

�
Cf
� f

f=2v�fpf

�
n2�2���X
f=n

Cf
� f

f=2pf
f=2+2X
v=
p
2f

�
n

v

�
v�f ;

�
n2�2���X
f=n

Cf
� f

f=2pf2nf �f ;

�
n2�2���X
f=n

�
C�f

1=2+�p
�f

2n;

�
n2�2���X
f=n

�
C 0
�f

1=2+�n�1+�
�f
;

�
n2�2���X
f=n

�
C 0
�n

(2�2���)(1=2+�)n�1+�
�f
:

Since we chose � > 0 such that

� <
�

2(2� 2�� �)
;

we have
(2� 2�� �)(1=2 + �)� 1 + � < 0;

in which case we can bound the sum by a geometric series whose �rst
term and ratio are tending to zero.
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4.5. Cycle counts from counting triangulated surfaces. Recall
that Z(f; v) is the set of inclusion-minimal 2-cycles on vertex set [v] =
f1; 2; : : : ; vg with exactly f faces. We bound jZ(f; w)j by bounding
jT (f; w)j, the number of combinatorial isomorphism types of connected
triangulated surfaces on f faces and w vertices. Theorem 5.1 gives the
following bound on jT (f; w)j: for any � > 0, there is a constant C� so
that

(1) jT (f; w)j � Cf
� f

f=2w�(1��)w:

Next we note that jZ(f; v)j is related to jT (f; w)j by the following
inequality:

(2) jZ(f; v)j �
X
w�v

jT (f; w)jvw:

We can see Inequality 2 as follows. Any 2-cycle can be realized as the
image of a simplicial map from a triangulated surface which is injective
on 2-dimensional faces. If the 2-cycle is minimal, then the triangulated
surface must be connected. For a �xed triangulated surface with w
vertices, the number of simplicial maps to the simplex with v vertices
is at most vw.

Combining (1) and (2), we have

jZ(f; v)j �
X
w�v

jT (f; w)jvw

�
f=2+2X
w=v

~Cf
� f

f=2w�(1��)wvw

= ~Cf
� f

f=2

f=2+2X
w=v

(v=w1��)w

� ~Cf
� f

f=2(f=2 + 2)v�(f=2+2)

� Cf
� f

f=2v�f ;

for large enough v and f , where C� is a constant which only depends
on � > 0.
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5. Counting triangulated surfaces

Recall that T (f; w) is the set of connected triangulated surfaces with
f faces and w vertices, counted up to simplicial isomorphism. In this
section, we prove an upper bound for jT (f; w)j.
Theorem 5.1. For every � > 0, there exists a constant C� so that for
all f; w,

jT (f; w)j � Cf
� f

f=2w�(1��)w:

In order to estimate jT (f; w)j, we imagine starting with f simplices
and gluing together edges one at a time until we get a closed surface.
This point of view was suggested by Brooks and Makover, [3].

We make a formal de�nition of this gluing process. Let �1; : : : ;�f

be copies of the standard 2-simplex. Each of them has three edges,
�j;a with a = 0; 1; 2. A gluing story for these f simplices is a sequence
of 3f=2 gluing maps g1; : : : ; g3f=2. Each gluing map gk is a simplicial
isomorphism from an edge �j(k);a(k) to another edge �j0(k);a0(k). (A
gluing map is allowed to map one edge of a simplex to another edge
of the same simplex, but it is not allowed to map an edge to itself.)
The maps gk make a gluing story if each edge is involved in exactly one
gluing map gk. We abbreviate a gluing story by ~g, and we let GS(f)
denote the set of all gluing stories for f 2-simplices.

It's straightforward to count the total number of gluing stories.

Proposition 5.2. jGS(f)j = (3f)!23f=2.

Proof. We �rst need to list the sequence of domains of gk and ranges
of gk. This amounts to listing the 3f edges of the triangles �j in some
order, so there are (3f)! choices. After choosing the domain and range
of each gk, we have two choices for each map gk, because there are two
simplicial isomorphisms from one interval to another. �

Given a gluing story ~g, we can de�ne a 2-dimensional surface X(~g)
by starting with the f simplices �1; : : : ;�f and identifying points p
and q if one of the gluing maps takes p to q. The resulting object is not
always a triangulated surface. It is a slightly more general object called
a pseudomanifold. For example, X(~g) could consist of two triangles,
one on top of the other, with corresponding edges glued together. The
resulting surface is homeomorphic to S2, but it is not a triangulated
surface. (Recall that a triangulated surface is a simplicial complex
which is homeomorphic to a 2-dimensional manifold. This last example
is not a simplicial complex.) We will discuss pseudomanifolds more
below.
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Here is an outline of the proof of Theorem 5.1. Each surface X 2
T (f; w) is simplically isomorphic to X(~g) for some g 2 GS(f). In fact,
each surface X 2 T (f; w) can be realized by many di�erent gluing
stories, and we have to estimate the size of this overcount.

Lemma 5.3. There is a constant C > 0 so that the following holds.
For every X 2 T (f; w), there are at least C�ff 5f=2 gluing stories ~g so
that X(~g) is simplicially isomorphic to X.

This lemma is similar to results in [3], but we will give a self-
contained proof.

Next we will estimate the number of gluing stories that produce tri-
angulated surfaces with w vertices. This estimate is the new ingredient
in the proof of Theorem 5.1.

Lemma 5.4. For any � > 0, there is a constant C� so that for any
f; w, the number of gluing stories ~g 2 GS(f) on f so that X(~g) is a

connected triangulated surface with w vertices is � Cf
� f

3fw�(1��)w.

Combining Lemma 5.3 and Lemma 5.4 gives Theorem 5.1.
If we compare Proposition 5.2 and Lemma 5.4, we see that the frac-

tion of gluing stories ~g 2 GS(f) so that X(~g) is a triangulated surface
with w vertices is at most roughly w�w. In particular, gluing stories
that produce triangulated surfaces with many vertices are quite rare.

Here is the intuition behind our argument. Imagine that we carry
out the gluings one map at a time. Before the �rst gluing, we have f
disjoint triangles. At each step of the process, we glue together two
of the edges in the boundary. After performing k gluings, we have a
surface with boundary, called Xk(~g). After using all 3f=2 gluing maps,
we have X(~g). A vertex of Xk(~g) is called a boundary vertex if it lies in
the boundary of Xk(~g), and an internal vertex otherwise. Let Vint(Xk)
be the set of internal vertices of Xk(~g). Since X(~g) has no boundary,
every vertex of X(~g) is internal. On the other hand, X0(~g) has zero
internal vertices. The only way that Xk+1(~g) can have more internal
vertices than Xk(~g) is if gk+1 glues together two edges of @Xk(~g) that
share a vertex. This is a rare event. The number of edges in @Xk(~g) is
3f � 2k. Each boundary edge shares a vertex with at most two other
edges. If we randomly pick two edges of @Xk(~g), the probability that
they share a vertex is on the order of (3f � 2k)�1. This suggests that
gluing stories that produce many vertices are quite rare.

In our proof, we turn this intuition into a precise estimate. Getting
the quantitative result that we need from this approach was technically
tricky, and we discuss this more below. For example, it is much easier
to prove that jT (f; w)j � Cff f=2w�w=2. However, this weaker estimate
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is too weak for our applications in the paper, and we need to do some
work to get the best estimate that we can.

In subsection 5.1 we estimate the overcounting and prove Lemma
5.3. In subsection 5.2 we prove Lemma 5.4.

5.1. Gluing stories for a given triangulated surface. In this sec-
tion, we prove Lemma 5.3. If X is a connected triangulated surface
with f faces, then we have to prove that there are at least C�ff 5f=2 d-
i�erent gluing stories ~g 2 GS(f) so that X(~g) is simplicially isomorphic
to X.

The simplicial automorphisms of a triangulated surface X will be
involved in the proof. Let Aut(X) be the group of simplicial automor-
phisms of X. We will need the following well-known estimate.

Lemma 5.5. If X is a connected triangulated surface with f faces,
then jAut(X)j � 6f:

Proof. Let �1 be a face in X. There are 6f simplicial isomorphisms
from �1 to one of the faces of X. We claim that each of these maps
extends to at most one simplicial isomorphism from X to itself.

Let �1; �2 : X ! X be simplicial isomorphisms, and suppose that
�1 and �2 agree on a 2-face �. We say that two faces �;�0 � X are
adjacent if they have a common edge. We will show that �1 and �2
also agree on each simplex adjacent to �. Suppose that �0 is adjacent
to � and that e = �\�0 is the edge that they both contain. We know
that �1 and �2 agree on the edge e. Now �1(e) = �2(e) is an edge of X,
and so it lies in exactly two faces of X. We know that �1(�) = �2(�)
is one of these faces. Since �1 and �2 are both simplicial isomorphisms,
they must both map � to the other of these faces. Now �1 and �2
agree on the edge e, and so they must also agree on the third vertex of
�0, and so �1 and �2 agree on �0.

Now suppose �1; �2 are simplicial isomorphisms X ! X that agree
on �1. By the result of the last paragraph, they must agree on all
the simplices that are adjacent to �1. Iterating the argument, they
must agree on all the simplices adjacent to these simplices. Since X
is connected, by iterating this argument, we see that �1 and �2 must
agree everywhere. �

Now we turn to the proof of Lemma 5.3.

Proof. Let X be a connected triangulated surface with f faces. First
we check that there is a gluing story ~g 2 GS(f) so that X is simplicially
isomorphic to X(~g). Number the faces of X as F1, . . . , Ff . For each
face Fj, pick an identi�cation of the face with a standard simplex �j.
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Now number the edges of X from 1 to 3f=2. Suppose that ek is the kth

edge, and that it lies in faces Fj(k) and Fj0(k). The edge ek corresponds
to an edge �j(k);a(k) � �j(k) and to an edge �j0(k);a0(k) � �j0(k). Since
these two edges are identi�ed in X, we get a simplicial isomorphism
gk : �j(k);a(k) ! �j0(k);a0(k). The sequence of gk make a gluing story
~g 2 GS(f) and X(~g) is simplically isomorphic to X.

Given a gluing story ~g, we now produce many other gluing stories
that lead to the same surface X(~g). These other gluing stories come
from relabelling the characters in the initial gluing story ~g. There are
two di�erent kinds of relabelling that we can do. We can reorder the
gluing maps gk. In other words, we can consider a gluing story with
the same set of gluing maps in a di�erent order. Reordering the gluing
maps gk de�nes an action of the symmetric group S3f=2 on GS(f). We
can also relabel the simplices �1; : : : ;�f . This relabelling gives an
action of Sf on GS(f). These two actions commute, and so we get an
action of S3f=2�Sf on GS(f). If ~g and ~g0 are in the same orbit of this
action, then X(~g) and X(~g0) are simplicially isomorphic.

This action is not necessarily free. We note that jS3f=2 � Sf j =

(3f=2)!f ! � C�ff 5f=2. Recall that we found an element ~g 2 GS(f) so

that X(~g) is simplicially isomorphic to our given X. For every ~h in the

S3f=2 � Sf -orbit of ~g, X(~h) is also simplicially isomorphic to X. The
size of this orbit is jS3f=2 � Sf j=jStab(~g)j. (Here Stab(~g) � S3f=2 � Sf
is the stabilizer subgroup: the set of group elements  2 S3f=2 � Sf so
that  (~g) = ~g.)

To �nish the proof, we will check that jStab(~g)j � jAut(X)j. By
Lemma 5.5 above, jAut(X)j � 6f . To see that jStab(~g)j � jAut(X)j,
we will construct a natural injection Stab(~g) ! Aut(X(~g)).

Suppose that ( 1;  2) 2 Stab(~g), where  1 2 S3f=2 and  2 2 Sf .
We use  2 to de�ne a simplicial map from X(~g) to itself. The map
sends �j to � 2(j) by the identity (remember, the �j are all copies
of the standard 2-simplex). We have to check that this map respects
all of the gluings. But if gk glues �j(k);a(k) to �j0(k);a0(k), then g 1(k)
glues � 2(j(k));a(k) to � 2(j0(k));a0(k) by the same simplicial isomorphism.
Therefore, our map does respect all the gluings, and it gives a simplicial
map. Applying the same construction with ( �11 ;  �12 ) we get an inverse
simplicial map, so ( 1;  2) was mapped to a simpicial isomorphism
X ! X.

We now have a group homomorphism Stab(~g) ! Aut(X(g)). We
next show that this homomorphism is injective. Suppose that ( 1;  2) 2
Stab(~g) corresponds to the identity map X ! X. By construction, we
see that  2 is the identity. But just reordering the gluing maps will
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produce a di�erent gluing story unless  1 is the identity also. So the
kernel of the homomorphism is the identity. �

5.2. Gluing stories with many vertices. In this section, we prove
Lemma 5.4. Recall that Lemma 5.4 gives a bound on the number of
gluing stories ~g 2 GS(f) so that X(~g) is a connected triangulated
surface with w vertices.

Let ~g 2 GS(f) be a gluing story. For 0 � k � 3f=2, let Xk(~g) be the
space formed from the simplices �1; : : : ;�f by making identi�cations
using the �rst k gluing maps, g1; : : : ; gk. The space X0(~g) is just a
disjoint union of f simplices, and X3f=2(~g) = X(~g). To help understand
the number of vertices in X(~g), we will consider the vertices of Xk(~g)
for every k and keep track of how they change as k increases.

Before turning to the proof, we should talk briey about what type
of object Xk(~g) is. We observed above that for a general gluing story
~g 2 GS(f), the space X(~g) may not be a triangulated surface. In
Lemma 5.4, we can restrict attention to gluing stories so that X(~g) is
a triangulated surface. But even if X(~g) is a triangulated surface, the
spaces Xk(~g) may not all be triangulated surfaces with boundary. For
example, consider the second-to-last space X(3f=2)�1(~g). The boundary
of this space must consist of two edges, and the last gluing map g3f=2
glues together these two edges. These two edges must form a loop
of length 2, which means that they have the same boundary vertices.
Therefore, X(3f=2)�1(~g) is not a simplicial complex, and so it is certainly
not a triangulated surface with boundary.

The spaces Xk(~g) are always pseudomanifolds with boundary. In
Subsection 5.3, we give an appendix recalling all the de�nitions and
facts about pseudomanifolds with boundary that we need.

For a general gluing story ~g, the boundary of Xk(~g) consists of a dis-
joint union of loops, and each loop consists of at least one edge. These
loops are called the connected components of the boundary of Xk(~g).
For general ~g, the boundary of Xk(~g) may contain a loop with only one
edge. However, if X(~g) is a triangulated surface, then each component
of the boundary of Xk(~g) contains at least two edges. We can see this
as follows. Since X(~g) is a triangulated surface, in particular a simpli-
cial complex, there is no edge in X(~g) from a vertex to itself. But then
Xk(~g) cannot contain any edge from a vertex to itself either. For more
details, see Subsection 5.3.

The pseudomanifold with boundary Xk+1 is formed from Xk by glu-
ing together two of the boundary edges of Xk by the gluing map gk+1.
To prove Lemma 5.4, we will pay attention to whether we glue together
\nearby" edges or "far apart" edges. We say that two edges of @Xk are
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adjacent if they share a vertex. We say that edges e and e0 in @Xk are
D-near if there is a string of adjacent edges in @Xk, e = e0 adjacent to
e1, ej adjacent to ej+1 for 1 � j < D, and eD = e0. We will show that
if X(~g) is a triangulated surface with many vertices, then many of the
gluing maps gk must glue together nearby edges. Here is a lemma that
makes this precise.

Lemma 5.6. For any � > 0, there is a D� so that the following holds.
Suppose that ~g 2 GS(f) is a gluing story and that X(~g) is a triangulated
surface with V (X) vertices and H(X) connected components. Suppose
that N of the gluing steps gk glue together edges that are D�-near. Then

V (X) � (1 + �)N +H(X):

In particular, if X(~g) is a connected triangulated surface, then

V (X) � (1 + �)N + 1:

First we prove that Lemma 5.6 implies Lemma 5.4.

Proof of Lemma 5.4 assuming Lemma 5.6. The point of the proof is
that there are not very many ways to glue two nearby edges of @Xk.
For any Xk, there are at most 12D�f gluing maps gk+1 between edges
that are D� near. This is because there are at most 3f edges for the
domain of gk+1. Then there are at most 2D� edges that are D� near to
the �rst edge. Then there are at most two gluings from the �rst edge
to the second edge. There are at most 2(3f)2 = 18f 2 possible gluing
maps gk+1. Suppressing the constants, the number of possible gluing
maps between nearby edges is � C�f , and the total number of possible
gluing maps is � Cf 2.

The number of gluing stories in GS(f) with exactly N D�-near moves
is at most

�
3f=2

N

�
(C�f)N(Cf 2)(3f=2)�N � (3f=2)N(N !)�1(C�f)N(Cf 2)(3f=2)�N

� Cf
� f

3f (N !)�1

� Cf
� f

3fN�N :

In other words:

(3) jf~g 2 GS(f) j ~g has exactly ND�-near movesgj � Cf
� f

3fN�N :
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Let GSw(f) � GS(f) be the set of gluing stories ~g 2 GS(f) so that
X(~g) is a connected triangulated surface with w vertices. Lemma 5.6
implies that for any ~g 2 GSw(f), the number of D�-near gluing maps
in ~g is at least w�1

1+�
. By equation 3, we see that

jGSw(f)j �
X

N�(w�1)=(1+�)
Cf
� f

3fN�N � Cf
� f

3fw�w=(1+�):

Since � > 0 is arbitrary, this proves Lemma 5.4. �

Remark. We will give below a short proof that V (X) � 2N . This
bound is not strong enough to prove Lemma 5.4. Using the bound
V (X) � 2N in place of Lemma 5.6 in the argument above leads to the
estimate jT (f; w)j � Cff f=2w�w=2. This bound is much weaker than
Theorem 5.1 when w is large. In Lemma 5.6, in the bound V (X) �
(1 + �)N +H(X), it is important to get the right constant in front of
the N .

Next we discuss why the number of connected components plays a
role in Lemma 5.6. Consider gluing together a tetrahedron from four
faces, �0;�1;�2;�3. For the �rst three moves, we attach �1;�2;
and �3 to the three edges of �0. These steps are gluings between
edges in di�erent components. Then we do three more gluings and
get a tetrahedron. The last three gluings connect nearby edges. If
f is a multiple of 4, we can repeat this procedure f=4 times to get
f=4 tetrahedra. The f=4 tetrahedra have V = f vertices. In this
story, the number of gluings between nearby edges is N = 3f=4. So in
this example V = (4=3)N , which is too large. But this example also
has H = f=4 connected components. So we see that V = N + H.
This example shows that we need to include the number of connected
components in our estimate.

Next we classify gluing moves according to how they a�ect the num-
ber of internal vertices of Xk. Before we do this, it is helpful to remark
that if X(~g) is a triangulated surface, then every edge of every Xk must
have two di�erent endpoints.

Suppose that gk+1 is a gluing map from e1 to e2. If e1 and e2 share
no vertices, we say that gk+1 is a gluing of type A. In this case, the
gluing gk+1 creates no new internal vertices: Vint(Xk+1) = Vint(Xk). If
e1 and e2 share exactly one vertex, we say that gk+1 is a gluing of type
B. In this case, gk+1 creates one new internal vertex: Vint(Xk+1) =
Vint(Xk) + 1. It can also happen that e1 and e2 share two vertices! In
other words, e1 and e2 are both edges between the same two vertices
v; v0. In this case, we say that gk+1 is a gluing of type C, and we note
that Vint(Xk+1) = Vint(Xk) + 2.
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The gluing maps of type C are crucial in our story, so we take a
moment to describe an example. Such examples can occur even when
X(~g) is a triangulated surface. Suppose that f = 6 so that the glu-
ing story has 3f=2 = 9 moves. The boundary of X7 has four edges.
Suppose that X7 has one boundary component which consists of four
edges. (This is not di�cult to arrange.) Next suppose that g8 glues
together two adjacent edges of this boundary. So g8 is a gluing map
of type B. Now X8 has one boundary component consisting of two
edges. The gluing map g9 must glue together these two edges. So g9 is
a gluing map of type C. Notice that the number of vertices of X(~g) is
Vint(X9) = Vint(X8) + 2.

The number of vertices of X(~g) is Vint(X3f=2) = B + 2C, where we
write B for the number of type B gluing maps in ~g, and similarly for C.
Gluing maps of type B or C are 1-near, and so we see that V (X) � 2N .
As we discussed above, this estimate is not strong enough to prove
Theorem 5.1. We need to be more careful in how we deal with gluing
maps of type C.

Now we begin the rigorous proof of Lemma 5.6:

Proof of Lemma 5.6. Here is the frame of the proof. We set D� = 101=�.
We will de�ne some function F (Xk) and check the following properties.

(1) F (X0) = 0.
(2) F (X3f=2) = V (X)�H(X).
(3) If gk+1 glues together two D�-near edges, then

F (Xk+1) � F (Xk) + 1 + �:

If gk+1 glues together two edges which are not D�-near, then

F (Xk+1) � F (Xk):

Given these properties, it is easy to �nish the proof of the lemma. By
Property 2, V (X)�H(X) = F (X3f=2). By Property 3, F (X3f=2) � (1+
�)N+F (X0). By Property 1, this is equal to (1+�)N . So all together,
we have V (X)�H(X) � (1 + �)N . Hence V (X) � (1 + �)N +H(X).

The main di�culty is to craft a function F that obeys these prop-
erties. The function F (Xk) will be the number of internal vertices of
Xk plus some other terms. Before writing down the detailed formula,
we try to motivate these other terms. A gluing of type C increases
the number of internal vertices by 2, and it gets rid of a boundary
component of length 2. Since F is only allowed to increase by 1 + �,
we decide that a boundary component of length 2 should contribute
approximately 1� � to F . Now a gluing of type C only increases F by
1 + �.
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But this patch creates new issues. For instance, if we glue together
two edges in a boundary component of length 6, we can get two bound-
ary components of length 2. The two boundary components of length
2 contribute approximately 2 � 2� to F . Since F is only allowed to
increase by 1 + �, we decide that a boundary component of length 6
should contribute approximately 1 � 3� to F . In general, a boundary
component of length l contributes �(l) to F , where �(l) decreases s-
lowly to zero. Note that if we glue together two edges that are D� far
apart, we can create a new boundary component of length D�. When
we glue far apart edges, F (Xk) cannot increase at all, so we have to
arrange that �(l) = 0 for l � D�.

But this scheme leads to another issue. The initial con�guration X0

has many boundary components of length 3. We want F (X0) = 0.
To �x this problem, we only count some of the boundary components.
More precisely, for each component X 0

k � Xk, we don't include the
boundary contribution from the longest boundary component of X 0

k.
In particular, each component of X0 has only a single boundary com-
ponent and so the boundary contribution of X0 is zero, as desired.

This modi�cation creates yet another small issue. Suppose that we
do a gluing move of type C on a boundary component of length 2
which is the only boundary component of some component X 0

k � Xk.
The boundary component of length 2 no longer contributes to F (Xk),
and we still create two new internal vertices. In this situation, we also
create a new closed connected component of Xk+1. (A connected com-
ponent X 0

k � Xk is closed if it has no boundary.) We decide that each
closed component of Xk contributes �1 to F (Xk). In this situation, the
number of internal vertices goes up by two, but the number of closed
components goes up by 1, and so F increases by only 1.

With this motivation, we are ready to give the precise de�nition of
F (Xk) and check all of the properties. The function F (Xk) is a sum of
three terms:

F (Xk) = Vint(Xk)�Hcl(Xk) +B(Xk);

The terms are as follows. Vint is the number of interior vertices of
Xk. Hcl(Xk) is the number of closed components of Xk: the number
of components of Xk which are pseudomanifolds without boundary.
And B(Xk) is a boundary term involving the lengths of the boundary
components of Xk.

For l � 1, we de�ne �(l) = max(0; 1 � � log10 l). We have �(l) � 0,
with �(l) = 0 for all l � D� = 101=�. We see that �(1) = 1, and we
note that � is decreasing.
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For a connected component Y � @Xk, we let l(Y ) denote the length
of Y (i.e. the number of edges in Y ). For a connected component
X 0
k � Xk, we de�ne

lmax(X
0
k) := max

Y a conn. compon. of X0

k

l(Y ):

For a connected component X 0
k � Xk, we de�ne B(X 0

k) as follows:

B(X 0
k) =

0
@ X
Y a conn. compon. of X0

k

�(l(Y ))

1
A� �(lmax(X

0
k)):

Finally, we de�ne B(Xk) as a sum of contributions from the connect-
ed components:

B(Xk) :=
X

X0

k
a conn. compon. of Xk

B(X 0
k):

This �nishes the de�nition of F (Xk), and now we have to check
Properties 1-3.
Property 1. We know that X0 is a disjoint union of f 2-simplices. It

has no interior vertices. It has no closed components. Each component
of X0 has a single boundary component of length 3, and so B(X0) = 0.
Therefore, F (X0) = 0 proving Property 1.
Property 2. It's also easy to analyze F (X3f=2). We know that

X3f=2 = X(~g) has no boundary, so the complicated term B(X3f=2) van-
ishes. That leaves F (X3f=2) = Vint(X3f=2) � Hcl(X3f=2). Since X3f=2

has no boundary, all its vertices are interior vertices, and all its con-
nected components are closed. Therefore, F (X3f=2) = V (X) �H(X),
proving Property 2.
Property 3. We have to compare F (Xk+1) and F (Xk). We consider

separately the cases that gk+1 has type A;B, or C. We begin with type
C, because it plays such an important role in the problem.

Suppose that gk+1 has type C. By the de�nition of type C, the
map gk+1 glues together two edges that share two vertices. A map
of type C is 1-near, so we have to show that F (Xk+1) � F (Xk) +
1 + �. The map gk+1 creates two new interior vertices: Vint(Xk+1) =
Vint(Xk) + 2. The two edges that are glued together by gk+1 form a
boundary component Y of length 2 in @Xk. Suppose that Y � @X 0

k

for a connected component X 0
k � Xk. Now we consider two cases.

� Suppose that Y is the whole boundary of X 0
k. In this case, the

gluing step does not change the boundary term: B(Xk+1) =
B(Xk). Also, the number of closed components increases by
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1: Hcl(Xk+1) = Hcl(Xk) + 1. Assembling all the terms, we get
F (Xk+1) = F (Xk) + 1.

� Suppose that X 0
k has other boundary components. In this case,

the gluing step reduces the boundary term by �(2): B(Xk+1) =
B(Xk) � �(2). The number of closed components remains the
same. Assembling all the terms, we get F (Xk+1) = F (Xk) +
2� �(2) = F (Xk) + 1 + � log10(2).

Next, we suppose that gk+1 has type B. The map glues together
two adjacent edges in a boundary component of some length l � 3. A
gluing of type B is 1-near, so again we have to prove that F (Xk+1) �
F (Xk) + 1 + �. The gluing creates one new interior vertex. It does
not change the number of closed components. The boundary term
may increase by at most �(l � 2) � �(l) � � log10

l
l�2 � � log10 3 � �.

Therefore, F (Xk+1) � F (Xk) + 1 + �.
Finally we suppose that gk+1 has type A. In this case, the number of

interior vertices and the number of closed components do not change,
so we only need to analyze the boundary term. A gluing map of type A
may or may not be D�-near. The type A case has a number of sub-cases
as follows.

(1) The map gk+1 glues together two edges in the same component
of @Xk.

(2) The map gk+1 glues together two edges in di�erent components
of @Xk, but in the same component of Xk.

(3) The map gk+1 glues together two edges in di�erent components
of Xk.

We �rst consider Case 1: the map gk+1 glues together two edges in
the same component of @Xk. Suppose that this boundary component
has length l � 3. After the gluing, depending on the orientation of
the gluing, the boundary component of length l either becomes two
boundary components of lengths l1; l2 � 2 where l1+l2+2 = l, or else it
becomes one boundary component of length l�2. The most interesting
case is when the boundary component splits into two components of
lengths l1, l2. We discuss this case �rst. We begin by noting that
l � max(l1; l2).

We let X 0
k be the component of Xk that contains the edges where

gk+1 acts. We let X 0
k+1 be the corresponding component of Xk+1. Now

the change in the boundary term is

(4)
B(Xk+1)�B(Xk) = ��(l)+�(l1)+�(l2)+�(lmax(X

0
k))��(lmax(X

0
k+1):
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If the gluing gk+1 is D�-far, then l1; l2; l are all at least D�, and hence
lmax(X

0
k) and lmax(X

0
k+1) are also at least D�. Therefore, all the terms

on the right-hand side of equation 4 vanish.
If the gluing gk+1 isD�-near, then we note that lmax(X

0
k+1) � lmax(X

0
k).

Therefore,

B(Xk+1)�B(Xk) � ��(l) + �(l1) + �(l2):

This increase is acceptable by the following lemma:

Lemma 5.7. Suppose that l1; l2 � 2 and l � 3 are integers with l1 +
l2 + 2 = l. Then �(l1) + �(l2)� �(l) � 1 + �.

Proof. We can assume that l1 � l2. Since l1; l2 � 2, we have l � l1; l2.
If �(l2) = 0, then �(l1) + �(l2) � �(l) � �(l1) � 1. So we can assume
that �(l1) and �(l2) are positive. Then we get

�(l1) + �(l2)� �(l) � (1� � log10(l1)) + (1� � log10(l2))� (1� � log10(l))

= 1 + � (log10(l)� log10(l1)� log10(l2)) :

It su�ces to prove that the expression in parentheses is � 1. Since
2 � l1 � l2, we have l1l2 � l1 + l2 and so

log10(l1) + log10(l2) � log10(l1 + l2)

= log10(l � 2):

So we have

log10(l)� log10(l1)� log10(l2) � log10(l)� log10(l � 2)

= log10(
l

l � 2
)

� log10 3

� 1:

�

Now we turn to the simpler possiblity that gk+1 glues together two
edges of a boundary component of length l, turning it into a single com-
ponent of length l � 2. (The orientation of the gluing map determines
whether the boundary component of length l splits into two boundary
components or remains a single connected component of the boundary
of Xk+1.) In this case,
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B(Xk+1)�B(Xk) = ��(l) + �(l � 2) + �(lmax(X
0
k))� �(lmax(X

0
k+1)

� ��(l) + �(l � 2):

If gk+1 is D�-far, then all the terms vanish. If gk+1 is D�-near, then
��(l) + �(l � 2) � � log10

l
l�2 � �.

This �nishes the analysis of Case 1, and now we turn to Case 2: the
map gk+1 glues together two edges in di�erent components of @Xk, but
in the same component X 0

k � Xk. Suppose that the two components
in @X 0

k have lengths l1; l2 and the new component in @X 0
k+1 has length

l3 = l1 + l2 � 2 � max(l1; l2). Note that in Case 2, the gluing map is
automatically D� far, and so we have to prove that B(Xk+1) � B(Xk).
We expand

(5)
B(Xk+1)�B(Xk) = ��(l1)��(l2)+�(l3)+�(lmax(X

0
k))��(lmax(X

0
k+1)):

We note that

lmax(X
0
k+1) = max(lmax(X

0
k); l3):

In the �rst case, the two lmax terms cancel in equation 5, leaving

B(Xk+1)�B(Xk) = ��(l1)� �(l2) + �(l3) � ��(l1) � 0:

In the second case, the lmax(X
0
k+1) term and the l3 term cancel in

equation 5 leaving

B(Xk+1)�B(Xk) = ��(l1)� �(l2) + �(lmax(X
0
k)) � ��(l1) � 0:

This �nishes the analysis of Case 2, and now we turn to Case 3: the
map gk+1 glues together two edges in di�erent components of Xk, say
X 0
k and X 00

k . The map gk+1 glues together an edge from a component
of X 0

k with length l1 and an edge from a component of X 00
k with length

l2. After the gluing, X 0
k and X 00

k have merged into one component
X 000
k+1 � Xk+1, and the boundary components of lengths l1 and l2 have

merged into one component of length l3 = l1 + l2�2. We note as above
that l3 � max(l1; l2). In Case 3, the gluing map gk+1 is automatically
D�-far, and so we have to prove that B(Xk+1) � B(Xk).

We expand B(Xk+1)�B(Xk) to get

(6) ��(l1)��(l2)+�(l3)+�(lmax(X
0
k))+�(lmax(X

00
k ))��(lmax(X

000
k+1)):
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We note that

lmax(X
000
k+1) = max (lmax(X

0
k); lmax(X

00
k ); l3) :

The �rst two cases are equivalent. If lmax(X
000
k+1) = lmax(X

0
k), then

those two terms cancel from equation 6, leaving B(Xk+1)�B(Xk) =

��(l1)� �(l2) + �(l3) + �(lmax(X
00
k )) � ��(l1) + �(l3) � 0:

On the hand, if lmax(X
000
k+1) = l3, then those two terms cancel from

equation 6, leaving B(Xk+1)�B(Xk) =

��(l1) + �(lmax(X
0
k))� �(l2) + �(lmax(X

00
k )) � 0:

This �nishes the analysis of Case 3. We have now checked Properties
1-3, �nishing the proof of Lemma 5.6. �

There are a number of open questions about counting surfaces with
various restrictions related to the material in this section. First of all,
it would be interesting to �nd upper and lower bounds for jT (f; w)j
that are as close together as possible. It would also be interesting
to estimate the number of connected pseudomanifolds with f faces
and w vertices, up to combinatorial equivalence. Finally, it would be
interesting to consider generalizations to higher dimensions. There
are several variations in higher dimensions. From the point of view
of studying the d-dimensional girths of d-dimensional complexes, it
would be helpful to estimate the number of connected d-dimensional
simplicial complex pseudomanifolds with f d-faces and w vertices. (A
simplicial complex pseudomanifold is a pseudomanifold which is also
a simplicial complex.) It would also be interesting to estimate the
number of connected d-dimensional pseudomanifolds with f faces and
w vertices.

5.3. Background on pseudomanifolds. In this section, we provide
background on pseudomanifolds. We recall the de�nition of a pseu-
domanifold and a pseudomanifold with boundary. We will see that
the spaces Xk(~g) are all pseudomanifolds with boundary. We will de-
�ne vertices, edges, faces, and connected components of a pseudomani-
fold. We will see that the boundary of a d-dimensional pseudomanifold
with boundary is itself a (d� 1)-dimensional pseudomanifold (without
boundary). As a result, we will see that the boundary of Xk(~g) consists
of �nitely many components and that each components is a loop with
at least one edge. Finally, if X(~g) is a triangulated surface, then we
will check that each component of the boundary of Xk(~g) contains at
least two edges.
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A d-dimensional pseudomanifold is made by gluing together d-dimensional
simplices. Suppose that �1;�2; : : : ;�f are copies of the standard
(closed) d-simplex. (In this paper, we always work with �nite pseu-
domanifolds, made from �nitely many simplices.)

We glue facets of these �j together using simplicial isomorphisms.
Each �j has d + 1 facets, which we label as �j;a with a = 0; : : : ; d. A
gluing is de�ned by specifying two (di�erent) facets, �j;a and �j0;a0 and
giving a simplicial isomorphism from �j;a to �j0;a0 . (Technical remark.
Gluing a facet �j;a to itself is not allowed. But gluing a facet �j;a to
another facet of the same simplex, �j;a0 , is allowed.)

A pseudomanifold is speci�ed by a set of gluings where each facet of
the �j is involved in exactly one gluing. Recalling the de�nition of a
gluing story, it follows immediately that for any gluing story ~g, X(~g)
is a 2-dimensional pseudomanifold.

A pseudomanifold with boundary is speci�ed by a set of gluings
where each facet of the �j is involved in at most one gluing. It follows
that for each ~g 2 GS(f) and each k, Xk(~g) is a pseudomanifold with
boundary.

A pseudomanifold (possibly with boundary) leads to an underlying
topological space by identifying any points that have been glued to-
gether. The set of points in the pseudomanifold is formally de�ned
as follows. We begin with the union of the simplices �1;�2; : : : If a
gluing map takes one point to another point, then those points are e-
quivalent. These equivalences generate equivalence classes. A point of
the pseudomanifold is an equivalence class of the original points.

We can de�ne the k-dimensional faces of a pseudomanifold (possi-
bly with boundary) in a similar way. We begin with the set of k-
dimensional faces of the simplices �j. Two k-dimensional faces are
equivalent if one of our gluing maps maps one of them onto the oth-
er. These equivalences generate an equivalence relation on the set of
k-faces. A k-face of the pseudomanifold is an equivalence class for this
relation. In particular, we can de�ne the vertices of a pseudomanifold
as the 0-dimensional faces. Two d-dimensional faces can never be glued
together, so the d-faces of a d-dimensional pseudomanifold are just the
original d-dimensional simplices �1;�2; : : :

For example, a 1-dimensional pseudomanifold without boundary is a
�nite collection of circles, where each circle is made from some number
of intervals connected end-to-end. A 1-dimensional pseudomanifold
can be made from a single interval with its two boundary points glued
together. So each circle can have any number of edges � 1.

Next we de�ne connected pseudomanifolds. Two simplices �j and
�j0 are adjacent if two of their facets have been glued together. We
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say �j is connected to �j0 if there is a sequence of adjacent simplices
starting with �j and ending with �j0 . We say that a pseudomanifold
is connected if every two simplices are connected. Any pseudomani-
fold (possibly with boundary) is a �nite union of disjoint connected
pseudomanifolds, its connected components.

Now we de�ne the boundary of a pseudomanifold with boundary.
Consider a d-dimensional pseudomanifold with boundary, X, formed
from d-simplices �1;�2; : : : by some gluing maps g1; g2; : : : A facet
�d�1
j;a � �d

j is called a boundary simplex if it is not involved in any
of the gluing maps. (We write the exponent d � 1 to recall that the
dimension of �d�1

j;a is d� 1.) It turns out that the boundary simplices
form a (d� 1)-dimensional pseudomanifold without boundary.

If �d�1
j;a is a boundary simplex, and �d�2

j;a;b � �d�1
j;a is one of its facets,

then we have to prove that the equivalence class of �j;a;b lies in exactly
one other boundary simplex. We will describe the equivalence class of
�j;a;b in terms of the gluing maps.

The facets of a boundary simplex are (d � 2)-dimensional. To help
study them, we de�ne some notation to describe the (d�2)-dimensional
facets of a d-simplex. Recall that if �j is one of our d-simplices, then
its facets are �j;a with a = 0; : : : ; d. Any (d�2)-face of �j is contained
in exactly two of the facets of �j. For any a 6= b, we write �d�2

j;a;b :=

�d�1
j;a \�d�1

j;b � �d
j .

We are considering a boundary simplex �j;a and one of its facets
�j;a;b. If �d�1

j;b is also a boundary simplex, then the equivalence class
of �j;a;b is just f�j;a;bg, and it is a facet of �j;a and �j;b. In this case,
we are done.

Now suppose that �d�1
j;b is not a boundary simplex, i.e. it is involved

in a gluing. Suppose that �d�1
j;b is glued to �d�1

j1;a1
� �d

j1
. This gluing

identi�es �d�2
j;a;b with a (d� 2)-face �d�2

j1;a1;b1
� �d�1

j1;a1
. As above, we use

the convention that �d�2
j1;a1;b1

= �d�1
j1;a1

\ �d�1
j1;b1

. If �j1;b1 is a boundary
simplex, then the equivalence class of �j;a;b is f�j;a;b;�j1;a1;b1g, and it
is a facet of exactly two boundary simplices: �j;a and �j1;b1 .

If �j1;b1 is not a boundary simplex, then it is glued to some �j2;a2 .
This gluing map identi�es �j;a;b with some (d � 2)-face �d�2

j2;a2;b2
=

�d�1
j2;a2

\�d�1
j2;b2

� �j2 . The general picture is as follows. For i = 1; : : : ; t,
�ji;bi is glued to �ji+1;ai+1 , which identi�es �ji;ai;bi with �ji+1;ai+1;bi+1 .
The face �jt;bt is another boundary simplex. This procedure has to
stop with another boundary simplex, �jt;bt , because the (d � 1)-faces
�ji;ai and �ji;bi are all distinct. Now the equivalence class of �j;a;b



2-COMPLEXES WITH LARGE 2-GIRTH 31

is exactly f�j;a;b;�j1;a1;b1 ; : : : ;�jt;at;btg. It is the facet of exactly two
boundary simplices: �j;a and �jt;bt .

This �nishes our explanation of the structure of the boundary of a
pseudomanifold with boundary. In particular, we see that @Xk(~g) is a
1-dimensional pseudomanifold without boundary. By the classi�cation
we described above, @Xk(~g) is a �nite union of circles each containing
at least one edge.

Finally, we check that if X(~g) is a triangulated surface, then each
component of @Xk(~g) contains at least two edges. Since X(~g) is a
triangulated surface, each edge of X(~g) has two distinct vertices. This
implies that each edge of Xk(~g) has two distinct vertices. Therefore,
each edge of @Xk(~g) has two distinct vertices, and so each component
of @Xk(~g) contains at least two edges.

6. Comments

6.1. Filling area of cycles in random 2-complexes. Over the past
ten years or so, the topology of random 2-complexes has been well s-
tudied. This area began with Linial and Meshulam's paper [7]. The
Linial{Meshulam theorem describes the vanishing threshold for homol-
ogy.

Theorem (Linial{Meshulam, 2006). Let Y = Y (n; p).

If

p � 2 log n+ !(1)

n
then with high probability H1(Y;Z=2) = 0, and if

p � 2 log n� !(1)

n
;

then with high probability H1(Y;Z=2) 6= 0. (Here !(1) denotes any
function that tends to in�nity as n!1.)

A geometric re�nement of this picture would be to understand the
typical �lling area of cycles, i.e. in the typical number of triangles in
the minimal bounding chain for a given cycle. For instance, what is
the typical �lling area of the length 3 1-cycle 123 in Y ? The Linial-
Meshulam theorem gives an upper bound as follows. Consider the sub
complex of Y restricted to the �rst s vertices. This sub-complex is
chosen according to Y (s; p). If p > s��1 > 2 log s

s
, then with high prob-

ability the �rst homology of the sub complex vanishes by the theorem
of Linial-Meshulam. Therefore, the cycle 123 bounds a 2-chain in this
sub complex. But the number of 2-faces in the sub-complex is at most
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Cps3 with high probability. Therefore, with high probability, the �lling
area of 123 is at most Cp�2��. If p = n��1, then with high probability
Y has about n2+� 2-faces and the �lling area of 123 is at most n2�2�+�.
The techniques of this paper allow one to prove that this upper bound
is essentially sharp when 0 � � < 1=2.

Theorem 6.1. Let � 2 [0; 1=2) and � > 0. Suppose p = n��1, so the
expected number of faces in Y (n; p) is n2+�. Let A be the �lling area
of the cycle 123 in Y . Then with high probability

n2�2��� � A � n2�2�+�:

The new part of Theorem 6.1 is the lower bound. The proof of the
lower bound is very similar to the proof of Theorem 4.1. One counts
�llings of the 1-cycle 123 instead of counting 2-cycles, but the counts
are closely related since adding a triangle to a �lling results in a cycle.
The only di�erence has to do with small �llings or small cycles. A
small �lling of 123 gives rise to a small inclusion-minimal cycle which
contains the vertices 123. The number of such cycles in Y goes to zero,
although the total number of small inclusion-minimal cycles does not.
Here is a more detailed explanation.

With high probability, Y does not contain the face with vertices 123.
If c is a 2-chain in Y bounded by the cycle 123 and with a minimal
number of 2-faces, then adding the face with vertices 123 to c gives an

inclusion-minimal 2-cycle in �
(2)
n .

Recall that an inclusion-minimal 2-cycle was called small if it con-
tains at most M vertices for M = M(�) de�ned in Section 4.1. Simi-
larly, an inclusion minimal �lling of 123 is called small if it contains at
most M vertices. The small cycles in Y were estimated in Section 4.2
using barely-dense subcomplexes. Recall that a barely dense subcom-
plex of Y is a subcomplex with v vertices and 2v� 4 faces. Each small
inclusion-minimal 2-cycle contains a barely dense subcomplex. Simi-
larly, an inclusion-minimal small �lling of the cycle 123 must contain a
sub complex of Y with v vertices and 2v� 5 faces of Y , and containing
the vertices 1; 2; and 3. The expected number of such sub-complexes
in Y is

MX
v=4

�
n

v � 3

�� �
v
3

�
2v � 4

�
p2v�5:

This sum is decreasing in v, and so it is dominated by M times the
�rst term. Hence the sum is

� C�np
3 = C�n

3��2:
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Since � < 1=2, this is at most C�n
�1=2, and so with high probability,

there is no small �lling of Y . The rest of the proof of Theorem 6.1 is
the same as the proof of Theorem 4.1.

6.2. Comparison with earlier work. Aronshtam, Linial,  Luczak,
and Meshulam studied the threshold for collapsibility of random d-
dimensional simplicial complexes in [2]. In Section 4 they provide an
upper bound on Cd(n;m), the number of minimal core d-complexes
with n vertices and m facets. This is in turn gives an upper bound on
the number of inclusion-minimal cycles with n vertices and m facets,
since every cycle is a minimal core.

So their estimate can be used to count cycles in random complexes.
In the case we are interested in, d = 2, their estimate implies the
following.

Theorem 6.2.

(1) For any C > 0, for all n su�ciently large, there exist simplicial
complexes � with n vertices and with at least Cn2 faces, such
that every cycle in H2(�) is supported on at least f(C)n2 faces.

(2) For � > 0, for all n su�ciently large, there exist simplicial
complexes � with n vertices and with at least n2+� faces, such
that every cycle in H2(�) is supported on at least C�n

2�16�

faces.

Part (1) of Theorem 6.2 is slightly stronger than our Theorem 4.1
in the regime m = � (n2), and is optimal up to a constant factor by
Theorem 3.1. On the other hand, part (2) of this theorem is weaker
than Theorem 4.1 for � > 0, since

2� 16� < 2� 2�� �

for su�ciently small �.

6.3. Volume distortion. By combining Theorem 6.1 with a standard
probabilistic technique (see for example the proof of Proposition 4.2 in
[5]), another estimate is obtained:

Proposition 6.3. Let Y = Y (n; p) be a random complex with p =
n��1. Let � > 0 be given. For each 1-cycle, � , of length 3 (e.g. 123 as
above), let

FillY (�) = minfkyk j y 2 C2(Y ;Z=2) and @y = �g:
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Then for su�ciently large n (depending on �) with high probability

X
�2(n3)

(FillY (�))2 �
�
n

3

��
n2�2���

�2
:

This leads immediately to an improvement of Theorem 1.2 in [5]:

Theorem 6.4. Let Y (n; p) be as in Proposition 6.3. Let � > 0. Then
with high probability, for every map � : Y ! H from Y to a Hilbert
space H which is a�ne on each simplex,

max
�2(n3)

FillY (�)

FillH(��)
� max
�2(n3)

FillH(��)

FillY (�)
� cn2�2���;

where FillH(��) refers to the area of the convex hull of �(�). In
particular, by taking � > 0 arbitrarily small, we see that for every
� > 0, and for every large enough n > C = C�, there exists a 2-
dimensional simplicial complex, Y with complete 1-skeleton, such that
every map, � : Y ! H, from Y to a Hilbert space H, which is a�ne
on each simplex has that

max
�2(n3)

FillY (�)

FillH(��)
� max
�2(n3)

FillH(��)

FillY (�)
� cn2��:

The left hand side of this inequality is referred to in [5] as the �lling
distortion of � and is a natural homological analogue of much studied
phenomenon of metric distortion (see [6] for a survey).

The following is one way to think about this theorem. For any com-
plex Y with complete 1-skeleton, we could embed that complex into
Euclidean space by sending the n vertices to the standard basis ele-
ments of Rn. In that case, the convex hull of any triangle has area O(1)
and �lling distortion is bounded from below by max� FillY (�), which is
at most jY (2)j. If we choose � > 0 small and positive, then with high
probability jY (2)j � n2+2� and the distortion is at least around n2�2�,
which are very close to each other. For such Y , this naive, \equilateral"
embedding achieves essentially the best result.

The analogous statement in the context of graphs is the following:
for expander graphs with n vertices, every embedding into Euclidean
requires 
(log n) metric distortion, and since the diameter of such an
expander graph is at most O(log n), an embedding that sends the ver-
tices to the standard basis of Rn achieves essentially the minimal pos-
sible distortion.
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