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Abstract: Liquid-crystalline elastomers (LCEs) are the object of many research investigations due to
their reversible and controllable shape deformations, and their high potential for use in the field of soft
robots and artificial muscles. This review focuses on recent studies about polymer composites based
on LCEs and nanomaterials having different chemistry and morphology, with the aim of instilling
new physical properties into LCEs. The synthesis, physico-chemical characterization, actuation
properties, and applications of LCE-based composites reported in the literature are reviewed. Several
cases are discussed: (1) the addition of various carbon nanomaterials to LCEs, from carbon black to
carbon nanotubes, to the recent attempts to include graphene layers to enhance the thermo-mechanic
properties of LCEs; (2) the use of various types of nanoparticles, such as ferroelectric ceramics, gold
nanoparticles, conductive molybdenum-oxide nanowires, and magnetic iron-oxide nanoparticles,
to induce electro-actuation, magnetic-actuation, or photo-actuation into the LCE-based composites;
(3) the deposition on LCE surfaces of thin layers of conductive materials (i.e., conductive polymers and
gold nanolayers) to produce bending actuation by applying on/off voltage cycles or surface-wrinkling
phenomena in view of tunable optical applications. Some future perspectives of this field of soft
materials conclude the review.

Keywords: liquid-crystal polymers; bilayers; composites; liquid single-crystal elastomers; actuators;
artificial muscles; orientational order; NMR; nanoparticles; nanomaterials; photo-actuation;
electro-actuation; thermal actuation

1. Introduction

Liquid-crystal polymers (LCPs) are a class of materials that combine the mesophasic features of
low-molar-mass liquid crystals with the versatile physical properties of polymers [1]. A liquid-crystal
polymer not only possesses the individual properties of each of its constituents, but also exhibits
intrinsic new features. LCPs may exhibit either nematic and/or smectic phases, depending on the
chemical structure of the mesogenic molecules, the flexible spacers, and the polymer main chains [2].
Moreover, the mesomorphic behavior of LCPs can be influenced by external physical parameters,
such as temperature and pressure [3]. Liquid-crystalline elastomers (LCEs) are a particular type of
LCPs, where the polymer chains are cross-linked together via flexible or semi-flexible cross-linkers [4].
As in the case of LCPs, side-chain and main-chain systems can be distinguished: side-chain LCEs
contain liquid-crystalline molecules as pendant units, while main-chain LCEs constituted mesogenic

Polymers 2018, 10, 773; doi:10.3390/polym10070773 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-3155-8384
http://www.mdpi.com/2073-4360/10/7/773?type=check_update&version=1
http://dx.doi.org/10.3390/polym10070773
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 773 2 of 27

moieties as a part of the main-chain polymer backbone (Scheme 1a). As reported in several books
and reviews [5–13], the interplay between the elasticity of the polymer network and the spontaneous
orientational ordering of the liquid-crystalline units results in a reversible thermo-mechanical response,
as first predicted by de Gennes in 1975 [14] (Scheme 1b). Several synthetic strategies were developed
in order to obtain macroscopically aligned LCE samples [6,15–20]. The preparation of macroscopically
aligned LCEs, associated with a relatively homogeneous orientational order (S) of the local nematic (or
smectic) domains, is indeed a fundamental feature for their peculiar physical properties, such as the
macroscopic, controllable, and reversible shape changes [21]. LCEs are included in a type of materials
called “shape-memory” materials, due to their ability to memorize their macroscopic shape under
specific conditions.
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Scheme 1. (a) Sketch of the main constituents of a side-chain liquid-crystalline elastomer (LCE; on the
left) and of a main-chain LCE (on the right). (b) Top: scheme of the volume deformation of a typical
LCE system at the phase transition from a spherical shape (disordered phase) to an oblate uniaxial
shape (ordered phase). Bottom: the uniaxial elongation, reported as the ratio L/L0 versus temperature
(T) of a typical nematic LCE.

In common macroscopically aligned (monodomain) LCEs, mechanical deformation is induced by
increasing (or decreasing) the temperature across the disordered–ordered phase transition and vice
versa (Scheme 1b) [15]. However, the perspectives of applications of these materials could be widely
expanded if the reversible shape variation was induced by stimuli other than temperature, such as,
for instance, external electric or magnetic fields, as in common electro-active polymers [22–24]. Another
possibility, explored by several research groups, is the preparation of photosensitive LCEs, in order to
modulate the shape deformation and morphing geometries by means of UV-vis or infrared (IR) light
stimuli [25–29]. These are the two main directions of development in the field of LCE-based materials.

In this review, the focus is on the actual state of the art concerning the preparation,
the characterization, and the actuation properties of composite materials based on LCEs. In fact,
this field is the object of great expansion, and an increasing number of works was published in the
past five years. In particular, the main studies about LCEs prepared, or reprocessed, with micro-
and nanostructured materials [30] are reviewed, as well as composite bilayers made of LCE films
covered by conductive materials in the form of thin films. Some future perspectives of functional
nanostructured LCE composites are discussed in view of their potential applications, such as artificial
muscles, smart surfaces, micro-electromechanical systems (MEMS), and nano-electromechanical
systems (NEMS) [31–34].
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2. LCE-Based Composites with Carbon Micro- and Nanostructured Materials

The induction of electro-mechanical actuation in LCE matrices by applying external stimuli,
other than thermal actuation, was the purpose of many researches in the past 15 years. The first
attempts concerned the preparation of composites made from carbon materials, and macroscopically
aligned liquid-crystalline elastomers were obtained according to the so-called “two-step” cross-linking
procedure, first described by Kupfer et al. [35]. Various types of carbon materials are used to prepare
these LCE-based composites, such as carbon micro- and nanoparticles [36–39], carbon nanotubes
(CNT) [40–44], fullerene (C60) derivatives [45], and graphene and its derivatives [45–48]. In the
following sections, details about the preparation, physico-chemical characterization, and actuation
properties are reported and discussed.

2.1. Sample Preparation and Characterization of Carbon-Based LCE Composites

Carbon micro- and nanomaterials are considered good candidates as polymer dopants due to their
conductivity, adhesion, wide range of morphologies and sizes, and for their relatively low cost [49].
Most LCE-based composites are made by macroscopically aligned monodomain LCE films, prepared
following the “two-step” cross-linking procedure [35]. These films are also named liquid single-crystal
elastomers (LSCEs) to distinguish them from all other kinds of LCEs. Their preparation includes a
first step involving a cross-linking reaction where a pre-polymerization mixture of the polymer main
chains, monomers, and cross-linkers in a solvent (e.g., toluene) are put inside a rotor with a known and
controlled temperature and rate until a gel-like film is obtained. The second step of the cross-linking
reaction occurs by handing the gel-like film under progressive weights in order to align the monomers
along the longitudinal direction of the films [35]. This procedure gives rise to uniaxially aligned LCE
films with very reproducible thermo-mechanical and ordering properties [16]. Most known LSCE
systems are formed starting from polysiloxane-based chains, and, depending on the chemistry, they can
form ordered mesophases (typically the nematic phase), stable at room temperature. In order to induce
a response to electric, magnetic, and/or light stimuli in standard LSCEs, which are highly insulating,
various procedures were adopted.

One method was proposed by Chambers et al. [36–39] with carbon-black spherical nanoparticles,
with an average diameter of 30 nm, and carbon nanohorns of about 30–50 nm in length and 4 nm
in diameter. Standard monodomain LCE films, namely LSCEs, were swollen in different solvents
(methanol, cyclohexane, and toluene) with a concentration of nanoparticles ranging from 0.05 g/L
to 5 g/L [36]. According to this swelling procedure [36,37], the carbon nanomaterials, which are
dispersed in the solvents, are able to partially penetrate the LSCE matrix only in the gel-like swollen
state. The optimal penetration depth and nanocarbon layer thickness were reached with a mixture of
cyclohexane/toluene, and it was found to be a few micrometers. The process of absorption/desorption
of the nanoparticles to the swollen LSCE films was studied by applying the Langmuir theory [50],
and the conductivity of the obtained LSCE-based composites in the swollen state was evaluated
through their effective resistivity (ρ, Ω/cm).

As observed in Figure 1a, a minimum in resistivity, associated with a saturation of nanocarbon
absorption, was observed around 7.5 g/L and 20 g/L [37] in LSCEs reprocessed with carbon black
and carbon nanohorns, respectively. The swelling procedure described by Chambers et al. [36,37]
produces LSCE films with integrated external layers of various thicknesses with a volume fraction of
carbon nanoparticles (p) which is dependent on the initial nanoparticle concentration (c; Figure 1b).
The mechanism of swelling/deswelling of both LCEs and LCE composites was the object of several
experimental and theoretical investigations [51–55]. Most of them refer to pristine liquid-crystalline
elastomers swelled in appropriate low-molecular-mass LCs (LMMLCs) to study different geometrical
distortions of the nematic director, electrical deformations, and electro-optical and mechanical
properties [51]. Torsional actuation was studied in hierarchically patterned LCE materials under
the effect of chemical vapor in view of applications as chemo-responsive systems [52]. LCEs swollen
with nematic solvents featuring different swelling ratios still retained their main elastic properties,
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such as the soft and semisoft elasticity typical of LCEs [53]. Recent theoretical investigations [54,55]
confirmed these findings showing potential applications of swollen LCEs as sensors, actuators, and
micro-swimmers. Few studies, however, shed light on swollen LCE composites [36–39].
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Figure 1. Liquid single-crystal elastomer (LSCE) reprocessed with carbon nanoparticles. (a) Effective
resistivity (ρ) of the macroscopic LSCE as a function of concentration (c) for carbon black (blue squares)
and carbon nanohorn (red circles) particles of a reprocessed side-chain siloxane-based LSCE film.
Top: picture of carbon-black-reprocessed LSCE samples. (b) Particle fraction (p) versus concentration (c)
for carbon black (black squares) and carbon nanohorns (red circles). The best-fit lines of the Langmuir
equation are also shown [50]. Adapted with permission from the authors of [37]. © IOP Publishing.
Reproduced with permission. All rights reserved.

An alternative approach to producing LCE-based composites was reported by Marshall et al. [40]
using carbon nanotubes (CNTs), which are able to absorb light in a wide range of wavelengths,
and which can convert light into heat. The procedure described by the authors of [40] consists of
a functionalization of the CNTs with pirene-ending polymer chains acting as a dispersing agent
to avoid the aggregation of CNTs. The functionalized CNTs are then dispersed in toluene at a
known concentration, and the pre-polymerization constituents (polysiloxane chains, mesogens, and
cross-linkers) are added. The obtained dispersion with all starting reactants is then introduced
in the rotor following the “two-step” cross-linking procedure [35]. Unlike Chambers’s swelling
method [36–39], in this approach [40], the carbon nanomaterials are added before the preparation of
the LSCE films. As a main result, the distribution of the functionalized CNTs within the LSCE matrix
is more homogeneous in the volume with respect to the previous method. As in many other cases,
the concentration of the nanomaterials is rather crucial in determining the physical properties of the
LCE-based composites, as discussed in the later sections.

A completely different synthetic procedure was reported by Lama et al. [44] to produce
epoxy-based LCE composites with multi-walled carbon nanotubes (MWCNTs). The synthesis of
the epoxy polymer (labeled “DOMS_SA”, Figure 2a) involves the mixing of the epoxy precursor with
sebacic acid in the presence of a catalyst, obtaining a viscous mixture at 160 ◦C. The mixture is then
poured between two Teflon-coated glasses, and is cured in the oven to finalize the polymerization. The
synthesis of epoxy-based LCE-MWCNT composites implies the functionalization of the MWCNTs with
the epoxy pre-polymer. The curing reaction is then performed by adding sebacic acid to the dispersion
of epoxy-functionalized MWCNTs in the oven, as described for the pure epoxy polymer [44]. Several
samples in the form of thick plates (10 mm × 10 mm × 0.25 mm) were obtained with varying nanotube
content, indicated as DS_xCNT, with x = 0.75 wt %, 1.5 wt % and 3.0 wt %. An important step in the
preparation of homogeneous LCE composites is represented by the functionalization of the MWCNTs
and the formation of the epoxy precursor–MWCNT adducts, as revealed by the optical, SEM and TEM
images (Figure 2b). The mesophase behavior of the LCE and LCE-based composites indicates the
occurrence of a smectic phase (see differential scanning calorimetry (DSC) in Figure 2c). However, a
concentration, x, of MWCNTs higher than 1.5 wt% destabilizes the mesomorphic behavior, as observed
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in other LCE composites [37,40–44]. As shown in Figures 1d and 1e, both dynamic mechanical analysis
and stress–strain measurements confirm the physical properties typical of liquid-crystalline elastomers.
The storage modulus (E’) and dissipation factor (tan δ) indicate an increasing stiffness of the LCE
composites when the concentration of MWCNT is increased (Figure 1d). Stress–strain curves (σ versus
ε%) refer to the uniaxial mechanical stress applied to the rubber state of the samples, which is able
to align the network. The typical soft-elasticity response of LCEs is also observed in the composites
(Figure 1e). As reported and discussed in Reference [44], the presence of MWCNTs has interesting
effects on the thermo-mechanical behavior. In particular, at x = 0.75 wt%, the LCE-based composites
show a dramatic enhancement in thermal actuation and a very high orientational order, probably due
to alignment of the nanotubes along the smectic director.
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Figure 2. (a) Scheme of the synthetic procedure to prepare smectic epoxy-based elastomer film samples
(named DOMS_SA). (b) Optical image (left), SEM micrograph (center), and bright-field TEM image
(right) of a smectic film doped with multi-walled carbon nanotubes (sample DS_1.5CNT). (c) Differential
scanning calorimetry (DSC) curves of the investigated samples. (d) Storage modulus (E’) and tan δ of
the investigated samples. (e) Stress–strain curves (σ versus ε%) of the investigated samples. Adapted
with permission from the authors of [44]. Copyright (2018) American Chemical Society.

In addition to carbon nanoparticles and carbon nanotubes, recent studies reported the preparation
of liquid-crystalline elastomers with graphene [45–47] and fullerene derivatives [45]. An original
synthetic approach was proposed by Meng et al. [45] to produce shape-memory elastomers without
chemical cross-linkers, which are substituted by physically cross-linker points. These materials are
main-chain liquid-crystalline polymers (labeled PBDPS, Figure 3) obtained using biphenyl-phenyl
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succinate derivatives, where the adjacent phenyl rings are stacked together forming strong π–π
interactions [45]. PBDPS exhibits physical properties typical of chemically cross-linked LC polymers,
such as a large maximum strain (>220%) and shape-recovery ratio (>99%). The addition of
low concentrations of carbon nanomaterials (~0.5 wt%) was investigated by means of several
physico-chemical techniques, such as TEM, polarized optical microscopy (POM; Figure 3), X-ray,
fluorescence spectroscopy (Figure 4a,b), and dynamic mechanical analysis (Figure 4c,d).

The liquid-crystalline textures of the pristine elastomer matrix, named PBDPS, and the
corresponding LCE composites containing 0.5 wt% of the carbon-based nanomaterials can be
characterized using POM, as reported in Figure 3. The smectic A phase of the LCP gives rise to
typical Schliren textures with fourfold singularities. The presence of the carbon nanomaterials sensibly
does not change the textures, thus indicating that the birefringence properties are retained [45].
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carbon nanotubes; PG, composite sample made of PBDPS including graphene. Reproduced with
permission from the authors of [45]. Copyright © 2018 Elsevier.
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Fluorescence spectra of PBDPS and PBDPS/carbon nanofiller composites at concentrations of 1 mg/mL
(a) and 5 mg/mL (b). Dynamic mechanical results of the testing samples: (c) recovery stress–strain
curves at 40 ◦C; (d) storage modulus as a function of temperature. Labels: PBDPS, phenyl
succinate-based main chain LC polymer; PC60, composite sample made of PBDPS including fullerene
C60; PCNT, composite sample made of PBDPS including carbon nanotubes; PG, composite sample
made of PBDPS including graphene. Adapted with permission from the authors of [45]. Copyright ©
2018 Elsevier.

The fluorescence emission of PBDPS doped with small concentrations of carbon nanofillers,
in particular C60 and graphene (see Figure 4a), is enhanced, thus confirming that the presence
of nanomaterials acts as an additional physical cross-link of the polymer network. At higher
concentrations, the quenching phenomena are more pronounced due to the energy transfer activated
by the strong interactions between the nanocarbon materials and the π–π groups. This effect is also
evident from dynamic mechanical analysis, showing that the addition of CNTs, C60, or graphene
(at low wt%) increases the recovery stress (Figure 4c) and the storage modulus (Figure 4d), especially
in the case of graphene. When the concentration of graphene is higher than 0.5 wt%, however, the
effect is opposite and the LC ordering is partially destroyed, probably due to the relatively bigger size
of graphene with respect to other carbon nanofillers [45].

2.2. Applications of the Carbon-Based LCE Composites

The incorporation of carbon nanomaterials into the LCE matrix was often motivated by the
possibility of extending the actuation mechanisms of LCE-based composite systems in view of
possible applications as artificial muscles and electro-active actuators. For instance, the swollen
LSCE/carbon-black-integrated layer systems described by Chambers et al. [36–39] showed actuation
properties via resistive “Joule” heating under several cycles of direct current (DC) electric power. When
a square-wave current–voltage function is applied to the reprocessed LSCE film, the length of the film
decreases, reaching the isotropic (paranematic) phase (actuation state: L0) due to the “Joule heating
effect”. When the current is off, the film recovers its pristine length assumed at room temperature
(relaxed state: L). A maximum elongation of 50% is obtained and the process is reproducible after
hundreds of cycles [39]. This value of elongation is similar to that obtained by thermo-mechanical
measurements in standard LSCEs, showing that the presence of a carbon-black layer does not prevent
the actuation mechanism.

A completely new actuation process was observed in the case of LCE-based composites prepared
with functionalized CNTs, as reported by Marshall et al. [40]. In this case, the reversible and controllable
shape variation of the LCE-composite films is obtained when light is used as actuation stimulus.
The photo-actuation of these composites is maximum in the infrared-visible region due to the selective
absorption of these wavelengths by the CNTs. In Figure 5a, a typical thermo-mechanical behavior of
an LCE-based composite with 0.1 wt% of functionalized CNTs is reported, while Figure 5b illustrates
the stress measured on the same system when a uniform light excitation of 620-nm wavelength at
various power densities is applied [43].
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Figure 5. Actuation curves of a stretched LCE sample containing 0.1 wt% of embedded carbon
nanotubes (CNTs). (a) Contraction ratio (L/L0) under uniform heating measured as a function
of temperature. Pictures in the inset demonstrate the contraction/elongation phenomenon at the
mesophase transition. (b) Actuation-stress curves measured under the application of various power
densities. The inset presents the scheme of the set-up used for testing. Adapted with permission from
the authors of [43]. Copyright © 2018 Elsevier.

The use of various concentrations of functionalized CNTs in the LCE matrix is indeed the
basis of several applications in the field of micro-optical devices [40–43], Braille-based displays [56],
solar-energy harvesting [57], and tactile and piezoelectric devices [42,58]. The possibility of
using LCE composites as light concentrators and heat collectors was recently demonstrated by
showing the artificial heliotropism for solar cells, utilizing fiber-network/SWCNT/LCE actuators [57].
These systems can be directly driven by sunlight instead of relying on other power-consuming
components for tracking the sun and actuation. Further studies are in progress to optimize several
parameters, such as the contraction ratio, the threshold of response to the sunlight, and the loading
capability. Another concrete application is related to tactile and haptic displays [56,58], where
micro-patterning techniques were used to create arrays of dots able to change their shape either
due to LED illumination or variations in temperature.

3. LCE-Based Composites with Other Nanomaterials

In addition to the large use of carbon-based nanostructured materials as fillers and dopants
of LCE systems, several researches report LCE-based composites prepared using a wide variety of
nanomaterials, such as ferroelectric ceramic nanoparticles [59,60], conductive molybdenum-oxide
nanowires [61], magnetic iron-oxide nanoparticles [62–65], and gold nanomaterials [66–68]. In the
following sections, the synthesis, properties, and applications of these composites are reviewed.

3.1. Preparation of Nanomaterial-Based LCE Composites

One of the first attempts to produce composite materials combining the thermo-mechanic
and thermo-elastic properties of LCEs and the ferroelectricity of nanoparticles was reported in
Reference [59], where the possibility of inducing a macroscopic shape deformation using non-spherical
ferroelectric nanoparticles aligned along the main direction of monodomain LCE films was described.
Several nanostructured materials were chosen as potential candidates to produce electro-mechanical
active composites, such as conductive nanowires made of molybdenum oxides (MoO3−x) [61]
(Figure 6a,b), and ferroelectric ceramic nanoparticles, namely lead titanates (PbTiO3) [59,60] (Figure 6c).
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Figure 6. Structured nanomaterials used to prepare LCE-based composites. (a) TEM image of
the MoO3−x nanowires, and (b) SEM image of the MoO3−x nanowires, revealing their electrical
conductivity under 10-keV conditions. Adapted with permission from the authors of [61]. Copyright ©
2018 Springer Nature. (c) A field-emission SEM picture of PbTiO3 quasi-spherical nanoparticles with
an average diameter of 100 nm. Adapted with permission from the authors of [60]. Copyright (2018)
American Chemical Society.

The preparation method proposed in References [59–61] is similar to that adopted by
Marshall et al. [40]. The nanomaterials, either ferroelectric nanoparticles or conductive nanowires,
were dispersed in toluene at a known concentration, and the pre-polymerization components (polymer
chains, monomers, and cross-linkers) were added in stoichiometric amounts before adding the catalyst.
The mixture was introduced to the rotor at 75 ◦C for about 1 h until a gel-like film was obtained, and
then, it was hanged with progressive weights inside an oven at 80 ◦C for about three days in order to
get a monodomain LCE-composite stripe.

Similar approaches, which refer to the “two-step” cross-linking reaction proposed by
Kupfer et al. [35], were followed to obtain magneto-active LCE composites made of magnetic
iron-oxide nanoparticles and side-chain polysiloxane-based LCEs [62–65]. In most cases, the iron-oxide
nanoparticles were made of a core of magnetite (Fe3O4) surface-coated with oleic acid, N-oleylsarcosine,
or analogous functionalization chemicals. A scheme of the preparation and the main chemical
components of these magneto-active LCEs, as described in Reference [65], are shown in Figure 7.

Polymers 2018, 10, x FOR PEER REVIEW  9 of 27 

 

  
(a) (b) (c) 

Figure 6. Structured nanomaterials used to prepare LCE-based composites. (a) TEM image of the 
MoO3−x nanowires, and (b) SEM image of the MoO3−x nanowires, revealing their electrical conductivity 
under 10-keV conditions. Adapted with permission from the authors of [61]. Copyright © 2018 
Springer Nature. (c) A field-emission SEM picture of PbTiO3 quasi-spherical nanoparticles with an 
average diameter of 100 nm. Adapted with permission from the authors of [60]. Copyright (2018) 
American Chemical Society. 

The preparation method proposed in References [59–61] is similar to that adopted by Marshall 
et al. [40]. The nanomaterials, either ferroelectric nanoparticles or conductive nanowires, were 
dispersed in toluene at a known concentration, and the pre-polymerization components (polymer 
chains, monomers, and cross-linkers) were added in stoichiometric amounts before adding the 
catalyst. The mixture was introduced to the rotor at 75 °C for about 1 h until a gel-like film was 
obtained, and then, it was hanged with progressive weights inside an oven at 80 °C for about three 
days in order to get a monodomain LCE-composite stripe.  

Similar approaches, which refer to the “two-step” cross-linking reaction proposed by Kupfer et 
al. [35], were followed to obtain magneto-active LCE composites made of magnetic iron-oxide 
nanoparticles and side-chain polysiloxane-based LCEs [62–65]. In most cases, the iron-oxide 
nanoparticles were made of a core of magnetite (Fe3O4) surface-coated with oleic acid, N-
oleylsarcosine, or analogous functionalization chemicals. A scheme of the preparation and the main 
chemical components of these magneto-active LCEs, as described in Reference [65], are shown in 
Figure 7. 

 
Figure 7. Scheme of the preparation of the composites made from magnetic iron-oxide nanoparticles 
and a side-chain LCE matrix. Chemical structure of the liquid-crystalline elastomer precursors: the 
polysiloxane chain (PMHS), the flexible cross-linker (11UB), and the mesogenic monomer (MBB). 
Reproduced with permission from the authors of [65]. Copyright © 2018 Elsevier. 

A new synthetic strategy was recently proposed by Wjjcik et al. [68] to prepare LCE-based 
composites including gold nanoparticles (GNPs) in the LCE matrix. The approach, shown in Figure 
8, consists of the synthesis of gold nanoparticles functionalized with an olefin mesogenic ligand (L2) 

Figure 7. Scheme of the preparation of the composites made from magnetic iron-oxide nanoparticles
and a side-chain LCE matrix. Chemical structure of the liquid-crystalline elastomer precursors:
the polysiloxane chain (PMHS), the flexible cross-linker (11UB), and the mesogenic monomer (MBB).
Reproduced with permission from the authors of [65]. Copyright © 2018 Elsevier.
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A new synthetic strategy was recently proposed by Wjjcik et al. [68] to prepare LCE-based
composites including gold nanoparticles (GNPs) in the LCE matrix. The approach, shown in
Figure 8, consists of the synthesis of gold nanoparticles functionalized with an olefin mesogenic
ligand (L2) to obtain metal nanoparticles acting as cross-linking agents (GNP@L2) for the polymer
backbones (PMHS).
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Figure 8. Scheme of the preparation of the LCE-based composites (label LCE-GNP) made of
functionalized gold nanoparticles (label GNP@L2) and side-chain LCEs based on polysiloxane chains
(PMHS). Mesogenic monomers (label L1) are used as pendant units. Standard LCEs were also prepared
with cross-linkers L3 or L4. Reproduced with permission from the authors of [68]. Copyright © 2018
Wiley Online Library.

Following a synthetic procedure similar to the “two-step” cross-linking reaction, the final
LCE-based composites contain metal nanoparticles covalently attached to the polymer chain
(LCE-GNP), without any problems of uncontrolled aggregation, ensuring a homogeneous distribution
of nanoparticles within the polymer matrix [68].

3.2. Alignment of Nanomaterials in the LCE-Based Composites and Orientational-Ordering Properties

As seen for LCE-based composites made of carbon nanomaterials (Section 2), the distribution of
nanostructured fillers in the polymer matrix and the degree of orientational order in the LC phase
formed by LCE composites are fundamental features in view of the physical properties of these
materials. The main experimental techniques used to investigate the alignment of the nanomaterials
and the surface morphology of the composites are SEM, TEM, and AFM, while the degree of ordering
in the bulk and the orientational order parameters in the mesophase are typically studied by means of
X-ray scattering (wide-angle (WAXS) and small-angle (SAXS)) and NMR spectroscopy.

In the case of PbTiO3/LCE-based composites [60] and MoO3−x nanowire/LCE-based
composites [61], the nanomaterials were not homogeneously distributed in the volume of the LCE
matrix, but instead, they concentrated on one side of the LCE film. The nanomaterial-rich surface layer
was clearly observable by means of SEM and AFM (Figures 9 and 10). In both cases, the nanomaterials
were distributed in a layer of about 10-µm depth, showing a particular alignment, visible at the top
surface, with respect to the nematic director (parallel to the elongation direction).
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Figure 10. Atomic force microscopy (AFM) topography image (a) and phase image (b) of the surface 
of a composite LCE film showing MoO3−x nanowires dipping into the polymer matrix. (c) Surface of 
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Figure 9. (a) Field-emission SEM image obtained on a small piece of a monodomain LCE stripe
doped with 5% of PbTiO3 nanoparticles. The cross-section of the sample reveals an inhomogeneous
distribution of the nanoparticles along the thickness of the stripe. (b) Field-emission SEM image of
the PbTiO3 nanoparticles distributed on the top surface of the composite at 50-µm magnification.
The direction of the nematic director (n) is indicated by a white arrow. Adapted with permission from
the authors of [60]. Copyright (2018) American Chemical Society.

As reported in Reference [60], the presence of PbTiO3 nanoparticles in various percentages (up to
5 wt%) is responsible for a shift in the transition temperature of a few degrees with respect to the
standard LCE prepared with the same procedure and chemical composition. This means that the
nanomaterials do not significantly influence the mesomorphic properties. The LCE-based films are
indeed transparent, thus indicating a good macroscopic alignment of the nematic directors. However,
as shown in Figure 9, the distribution of PbTiO3 nanoparticles on the top surface is regular and
anisotropic. In fact, the nanoparticles are distributed along parallel stripes perpendicular to the
nematic director (n) with a typical period of few micrometers.
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Figure 10. Atomic force microscopy (AFM) topography image (a) and phase image (b) of the surface
of a composite LCE film showing MoO3−x nanowires dipping into the polymer matrix. (c) Surface of
the composite LCE film with MoO3−x nanowires showing characteristic undulations. Adapted with
permission from the authors of [61]. Copyright © 2018 Springer Nature.
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A similar anisotropic distribution of nanomaterials was observed in MoO3−x
nanowire/LCE-based composites [61]. Most of the MoO3−x nanowires are indeed distributed
on the top surface of the composite films. This is due to the fact that, during the first cross-linking
step of the “two-step” cross-linking reaction, the nanowires tend to separate from the other
pre-polymerization components, as noted in the case of ferroelectric nanoparticles [60], because of the
different relative weight. The analysis of SEM and TEM images [61] reveals a uniform alignment of the
nanowires along the director n, thus indicating that the adopted procedure allowed us to induce a
preferred alignment of the nanowires into the top surface of the LCE matrix. Topography and phase
AFM imaging modes were used to investigate the surface of composite films. This study indicates
that the nanowires are located close to the surface of the LCEs (Figure 10a,b), well-embedded into the
surface layer of the polymer matrix. Moreover, characteristic surface deformations are observed on the
top surface of the LCE composites (Figure 10c), probably due to Euler strut instabilities typical of
adjacent systems having a different Young’s modulus [61].

Despite the inhomogeneous distribution of nanomaterials in the LCE matrix, and the formation of
a surface layer with a high density of nanofillers (either MoO3−x nanowires or PbTiO3 nanoparticles),
the thermo-mechanical properties of the LCE-based composite films are similar to those of the pristine
LCE materials (Figure 11a). The addition of 1 wt% and 5 wt% of lead-titanate nanoparticles reduces
the maximum elongation from 68% to about 55% in both cases [60]. Similarly, the presence of
molybdenum-oxide nanowires reduces the maximum elongation of the LCE films by about 10%
with respect to standard LCEs [61]. The increased stiffness of the LCE composites, however, has little
effect on the mesomorphic properties, except for a slight shift in the paranematic-to-nematic phase
transition (see Figure 11a).

An important aspect of these LCE-based systems is related to the degree of orientational order as
the temperature is varied from T > TN-PN to room temperature and vice versa. Deuteron (2H) NMR
studies of selectively labeled LCE and LCE-based composites were of help in deeply investigating this
aspect [21,60,69–74]. The temperature dependence of the measured 2H NMR spectra, and the trends
of the quadrupolar splitting can be analyzed to obtain the local orientational-order parameter, S(T),
which indicates the average degree of order of the principal mesophase director (n). A typical trend
of S(T) in an LCE system (standard or composite) is reported in Figure 11b, showing the continuous
increase in local order at the paranematic–nematic transition upon decreasing the temperature.
The continuous characteristics of the temperature dependence of S is a clear indication of the criticality
(or super-criticality) of the paranematic–nematic transition [69,70], which can be modeled through a
modified Landau–de Gennes theory of the free-energy density of LCE systems. This approach [69,70]
gives rise to a complete description of the microscopic properties of LCEs, and it associates the critical
characteristics of the mesophase transition to the presence of internal mechanical fields in the LCE
network, quantified by a parameter, g. According to this analysis, the presence of nanomaterials in the
LCE matrix increases the parameter g to values five times larger than the critical value (gc) shifting the
mesophase transition from a critical to a supercritical one.
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and LCE films doped with 1% (red symbols) and 5% (black symbols) PbTiO3 nanoparticles.
Temperature transitions between the paranematic and nematic phases are indicated by vertical lines.
(b) Temperature dependence of the orientational-order parameter (S) determined by analyzing the
2H NMR quadrupolar splittings in terms of the Landau–de Gennes modified theory, as described
in References [21,69,70]. A dashed line corresponds to the transition temperature obtained from the
fitting of the orientational order. Adapted with permission from the authors of [60]. Copyright (2018)
American Chemical Society.

Moreover, as shown in Figure 11b, the value of the orientational order (S) at room temperature
is comparable with that measured in standard LCEs [60,69–72]. Relatively high values of the
orientational-order parameter (S), obtained from X-ray diffraction analysis, were also found in
magneto-active LCE-based composites prepared with iron-oxide nanoparticles [65]. Another common
technique used to determine the orientational-order parameter in LCEs is indeed based on X-ray
diffraction (XRD) as reported in Figure 12. LCEs with and without the inclusion of magnetic
nanoparticles, for instance, have S values between 0.5 and 0.6 at low temperatures (Figure 12d).
The high value of S in the ordered phase indicates that the degree of order in the low-temperature
phase is not significantly reduced by the addition of the nanoparticles [65]. The X-ray patterns can
give information not only about the average order, but also about the homogeneity of distributions,
and about the nature of the mesophases. Both Figure 12a,b evidence the occurrence of lamellar
(smectic) structures for two gold-nanoparticle LCE composites, namely LCE-GNP1 and LCE-GNP2 [68],
with layer spacings in the range of 39–44 Å (Figure 12c), thus indicating the presence of a partially
interdigitated structure. The diffuse XRD signal observed at high angles, corresponding to 4.5 Å,
reflects the liquid-like order of mesogens within the smectic layers. Moreover, temperature-dependent
X-ray measurements (upon cooling and heating the samples) show that the gold nanoparticles remain
well-dispersed in the polymer network, with a highly homogeneous distribution without the formation
of nanoparticle agglomerations.
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Figure 12. (a,b) Two-dimensional (2D) X-ray diffraction (XRD) patterns taken in the broad-angle range
for smectic phases of polymers. (a) LCE-GNP with a hybrid gold-nanoparticle cross-linker; (b) standard
LCE prepared with L3 as the cross-linker. (c) Temperature dependence of smectic-layer thickness for
LCE-GNP (black circles) and LCE (red circles). Reproduced with permission from the authors of [68].
Copyright © 2018 Wiley Online Library. (d) Order parameter (S) as a function of the reduced temperature
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(T/Tni) of LCE composites containing various percentages of iron-oxide nanoparticles, as obtained
using small-angle X-ray scattering (SAXS) measurements: LCE pristine matrix ( ), 0.2 wt% (�), 0.5
wt% (∆), and 0.7 wt% (u) nanoparticle content. Reproduced with permission from the authors of [65].
Copyright © 2018 Elsevier.

The polymer conformation and chain anisotropy of liquid-crystalline elastomers were also the
object of several studies, based on a combination of X-ray techniques (namely SAXS and WAXS) [75,76]
and small-angle neutron scattering (SANS) [77–79]. However, to our knowledge, no such studies were
performed to investigate the ordering and structural properties of nanomaterial/LCE composites.

3.3. Actuation Properties and Applications of Nanomaterial-Based LCE Composites

As seen in the previous section, the addition of nanomaterials does not alter the
thermo-mechanical behavior, preserving the ability of the LCE-based composites to act as
shape-memory actuators subject to temperature variations. However, in some cases, the nanostructured
dopants induce new properties, such as the magneto-mechanical response of LCE-composite
films prepared with iron-oxide nanoparticles [62–65]. Kaiser et al. [62] reported a reversible
magnetic-field-induced shape change in LCE-doped systems under on/off cycles of various
electromagnetic-field amplitudes (from 8.5 to 42.6 kA/m), reaching a contraction of the starting
composite films comparable to the thermally induced contraction. Herrera-Posada et al. [65] confirmed
the potential of LCEs doped with 0.5 and 0.7 wt% oleic-acid-coated iron-oxide nanoparticles as
magneto-active elastomers. In Figure 13a–d, the temperature evolution of the magnetic elastomers
determined from thermal infrared images is reported, while the superposition of the instant
temperature of the magneto-active elastomers during actuation, and the contraction percentage profiles
are shown in Figure 13e. The application of an alternating field of 48.24 kA/m and an oscillating
frequency of 298 kHz causes relaxation and hysteresis phenomena in the magnetic nanoparticles,
leading to energy dissipation or heat loss [65]. This mechanism is at the origin of the thermally driven
isotropic–nematic transition from the heat generated by the magnetic nanoparticles.

In this work [65], the possibility of using magnetic iron-oxide nanoparticle/LCE composites in
biological environments was investigated by studying the magneto-mechanical response in deionized
water and in a model cell-growth medium (labeled DMEM). The time profiles of the contraction of
LCE-based composites, and the fluid temperature close to the films and at the bottom of the container
are reported in Figure 13f,g, respectively. As a main result, the LCE-composite systems have a lower
contraction in deionized water than in air, because the surrounding water acts as a heat sink which
dissipates the heat generated by the magnetic nanoparticles in the LCE matrix. When DMEM fluid is
used instead of water, the magneto-mechanical response increases during each successive cycle, and
this is probably due to the presence of salts and electrolytes. Even though the magnetically-induced
contractions in DMEM are lower than in air, they are reproducible, and the temperature of the fluid
remains lower than 41 ◦C.
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Figure 13. Thermal images of LCE-based composites with 0.5 wt% of iron-oxide nanoparticles when
subjected to an alternating magnetic field of 48.24 kA/m and 298-kHz oscillating frequency at (a) 0,
(b) 27, (c) 159, and (d) 926 s. (e) Superposition of the temperature (unfilled symbols) and contraction
(filled symbols) profiles of the LCE composites with 0.5 wt% ( ) and 0.7 wt% (�) of iron-oxide
nanoparticles obtained in a magnetic-actuation experiment. Crosses in thermal images represent the
reference points where the temperature data were collected using the infrared camera’s software.
Mechanical deformation (f) and temperature increments (g) of LCE-based composites with 0.5 wt% of
iron-oxide nanoparticles in response to an applied alternating magnetic field of 34.73 kA/m at 298 kHz
over five eight-minute on/off cycles submerged in water (�) and in a model cell-growth medium
(labeled DMEM; ). Filled and unfilled symbols in the bottom figure correspond to temperatures
measured close to the surface of the elastomer and at the bottom of the reservoir, respectively.
T0 corresponds to the initial temperature at t = 0. Reproduced with permission from the authors
of [65]. Copyright © 2018 Elsevier.

Additional results reported in Reference [65] demonstrate that collagen treatment applied to the
surface of LCE films, with and without magnetic nanoparticles, allowed for the effective attachment
and proliferation of a special kind of fibroblast. This study opens up several new applications in
the field of bio-medical devices, overcoming the limitations due to the inherent hydrophobicity of
polysiloxane matrices.

The addition of gold nanoparticles to LCEs was investigated by several groups [66–68,80],
with the aim of producing photo-thermal effects related to the localized surface plasmon resonance
of gold nanoparticles. Several works [66,67,80] proposed the doping of LCE micro-particles or LCE
micro-pillars with gold nanoparticles to induce shape deformations, rotations, and/or translations
using optical manipulation. Liu et al. [80] fabricated micro-sized polyacrylate-based LCEs doped with 1
wt% of gold nanoparticles (and gold nanorods), and they were able to induce a maximum strain of 30%
of the initial LCE length using a laser of 635-nm wavelength. Sun et al. [66] used a different synthetic
approach based on a soft lithography molding technique to produce micrometer-sized cylindrical LCE
actuators. They discussed the mechanism of manipulation of the shape of these colloidal birefringent
elastomeric micro-particles [66] using infrared laser beams and polarized-light optical tweezers. In
this work [66], a 1064-nm laser source was selected, since this wavelength is about double that of
the maximum absorption wavelength of the pristine gold nanoparticles, thus allowing an efficient
two-photon absorption process. Moreover, infrared light has several advantages with respect to
visible light, since it can penetrate into the bulk of LCEs, reducing the scattering. A special profile
of the local nematic director (n) was achieved by means of nonlinear optical polarizing microscopy,
including coherent anti-Stokes Raman scattering polarizing microscopy (Figure 14). The shrinking of
the LCE micro-particle’s length and an increase in its diameter are normally observed when heated,
due to the increase in local temperature across the nematic–isotropic phase transition. When the
LCE micro-particles are doped with gold nanoparticles, the same effect can be observed due to
photo-thermal transfer of energy into heat. Interestingly, the shape variation of the micro-cylinder
quickly relaxes back to the original shape within about one second. As demonstrated by Sun et al. [66],
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optical manipulation of LCE micro-particles doped with gold nanoparticles can be achieved with
robust and reproducible spatial (translational and rotational) control, opening up an opportunity for
new technological applications.
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Figure 14. (a–f) Examples of reversible morphing of LCE micro-particles including gold nanoparticles,
shaped by means of unidirectional laser-beam scanning along the blue arrows. The inset in
(e) shows a typical coherent anti-Stokes Raman scattering polarizing microscopy image of an LCE
gold-nanoparticle-doped micro-particle that was bent using a scanning laser beam. (g) Scheme
of director distributions in the LCE micro-particle during the bending induced by the laser beam.
(h) Scheme showing the effect of local manipulation of LCE orientational ordering by a scanned laser
beam along the direction marked by the blue arrow. The scanning causes nonreciprocal unidirectional
motion of a molten region (red), and a modification of the LCE polymeric network in the vicinity of
the “hot” scanning region (orange), eventually leading to the stable modification of the particle shape,
persisting after the laser is turned off. Reproduced with permission from the authors of [66]. Copyright
© 2018 AIP Publishing.

A very recent work [81] deals with anisotropy shape deformation of swollen LCE micro-pillars
doped with gold nanoparticles, with the possibility of using either UV or IR light stimuli. Additional
potential applications of gold-nanoparticle-doped LCEs range from contact-free actuation of colloidal
micro-particles to micro-fluidics and opto-mechanics, as also supported by recent theoretical
investigations [82]. Very recent works on nanostructured LCE-based materials were published aiming
to introduce copper-sulfide nanoparticles [83] and silver nanoparticles [84] into the LCE matrix to
induce photo-actuation mechanisms.

4. LCE-Based Bilayer Composites

Another field of research related to LCE composites concerns the preparation of bilayered or
multilayered systems obtained by coupling monodomain LCE films, mainly prepared according to
the “two-step” cross-linking procedure [35], and one or two layers of conductive materials deposited
onto the top surface of LCEs. These bilayered (or multilayered) systems were the object of several
experimental and theoretical works in the past six years [85–95]. Several new technological applications
were explored in detail based on unique phenomena characterizing the LCE-based bilayer composites,
such as bending actuation [85,87,89,91–95] and surface wrinkling [85,86,88,90,92–94], as described in
the sections below.

4.1. Preparation of Bilayered (or Multilayered) Systems

The first bilayer LCE-systems were produced by depositing conductive nanostructured thin
polymer layers on the top surface of standard polysiloxane-based LCE films (see the general schemes
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reported in Figure 15). Agrawal et al. [90] used nanolayers of poly(styrene) (PS), while Domenici,
Greco et al. [86–88] chose the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
conductive polymer.

Nanoscale PS thin films were prepared [90] by spin-casting a PS solution on a silicone-based
plate, cleaned by UV/ozone treatment, placed on the top surface of LCE films, before being put in
water at a known temperature, pealed off, and dried in vacuum. PS layers of varying thickness were
prepared, ranging from 30 nm to 400 nm, while the LCE-film thickness was typically on the scale of
0.3/0.4 mm [90].

In the case of PEDOT:PSS/LCE bilayers, several strategies were optimized [85–89].
The PEDOT:PSS material was chosen for its excellent properties of conductivity, and mechanical
and chemical stability, and for the possibility of fabricating nanolayers with very high control
and reproducibility [96,97]. The monodomain polysiloxane-based LCE films were exposed to air
plasma to improve the wettability of their surface by aqueous solutions. A filtered dispersion of
PEDOT:PSS in water was deposited with a micropipette over the LCE films. Homogeneous layers
of PEDOT:PSS of varying thickness were prepared using a spin-coating deposition, and were then
dried at room temperature [88]. An improved approach [97], used to enhance the conductivity of
the PEDOT:PSS nanolayers, was adopted via the introduction of dimethylsulfoxide (DMSO) in the
preparation procedure. To fabricate electro-active LCE-based bilayers, the LCE films were exposed to
plasma, as described above, and thin copper wires were placed on the top surface to provide a good
electrical contact for applying voltage to the actuator. Deposition of the DMSO-doped PEDOT:PSS
nanolayer was done by drop-casting of the solution onto the LCE stripes and the wires, resulting in a
good adhesion and electrical contact between the wire and the conductive layer. In all cases [85–89],
the PEDOT:PSS material was deposited onto the surface of the LCE films at room temperature, i.e., in
the nematic phase (Figure 15b).

Zupancic et al. [92] reported the preparation of bilayers (and multilayers) of LCE films reprocessed
with conductive gold nanolayers. The deposition of gold nanolayers using sputtering technology
was performed after the creation of an adhesion layer of chromium on the LCE surface. The average
thickness of the gold layer, as determined from SEM investigations, was on the scale of ~100 nm, while
the Cr adhesion layer was about a few nanometers thick. Single-sided samples, with a layer deposited
on one side of the LCE film, and double-sided samples, with layers deposited on both sides of an LCE
film, were prepared using this procedure [92].
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Figure 15. (a) Scheme of the LCE-based bilayer composites made using monodomain side-chain
LCE films and a nanostructured conductive layer [92,93]. Different temperature-induced bending
geometries of the LCE-based bilayers depending on the temperature of deposition of the conductive
layer: (b) T << TN-PN (T = 25 ◦C), LCE in the nematic (ordered) phase; and (c) T > TN-PN (T = 80 ◦C),
LCE in the paranematic or isotropic (disordered) phase.
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As reported in several works, whether experimental and theoretical [88–94], the final physical
properties of the LCE-composite bilayers depend on two parameters: (1) the ratio between the
nanolayer thickness (dnl) and the LCE thickness (dLCE), and (2) the temperature of the conductive
nanolayer deposition. The ratio (dnl)/(dLCE) is a crucial parameter, since, as discussed in the next
section, two different physical behaviors can be observed: bending actuation or surface wrinkling.
The temperature of deposition is also an important parameter. If the layer is deposited on the
LCE film at temperatures below the isotropic–nematic transition, namely in the elongated (ordered)
state, or above the isotropic–nematic transition, namely in the contracted (disordered) state, different
geometries are observed. In Figure 15b,c, for instance, a different bending geometry of the bilayer
systems is obtained depending on the temperature of the nanolayer deposition.

4.2. Bending Actuation and Surface Micro-Wrinkling Phenomena

The bending actuation of bilayer systems was the object of several investigations [98–103];
however, the fabrication of robust actuators, with good electrical contacts, and reproducible and
durable systems after thousands of on/off cycles still represents an unresolved issue. One of the main
problems is related to the compatibility (chemical and physical) between the two layers of different
materials and their intrinsically different stiffness. As demonstrated by Greco et al. [88,89], excellent
results were obtained in the case of LCE/PEDOT:PSS bilayers. PEDOT:PSS indeed has a Young’s
modulus and Poisson’s ratio very similar to those of the LCE films. This aspect is a great advantage
with respect to other bilayered systems [91,92], since PEDOT:PSS acts as an incompressible “skin”
during the temperature-induced actuation, inducing the elongation/contraction of the LCE films.
The perfect adhesion of the PEDOT:PSS nanolayer to the surface of the LCE results in the bending of
the whole bilayered structure when the temperature is varied across the nematic-to-isotropic phase
transition. In Figure 16a, the thermal-bending actuation of an LCE/PEDOT:PSS bilayer is reported.
This particular sample was prepared by depositing the PEDOT:PSS layer at T = 25 ◦C (T << TN-PN, with
TN-PN = 73.7 ◦C), and a ratio (dnl)/(dLCE) of about 20 µm/300 µm. The bilayered system was placed
on top of a Peltier cell with the PEDOT:PSS-coated side facing down. The variation in temperature
induces the bending actuation, and simultaneously, the temperature distribution across the sample is
monitored using a thermal infrared-imaging camera.
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and (4) at a temperature higher than the temperature transition. (5–8) Corresponding thermal infrared 
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Figure 16. Bending actuation of LCE/ poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) bilayer actuators. (a) Direct heating experiment using a Peltier element. Camera frames
taken (1) at room temperature, (2) at the nematic–isotropic transition onset, (3) during the transition,
and (4) at a temperature higher than the temperature transition. (5–8) Corresponding thermal infrared
camera images. (b) Joule heating experiment. Camera frames taken at (1) room temperature, (2) at
the nematic–isotropic transition onset, (3) during the transition, and (4) at a temperature higher than
the temperature transition. (5–8) Corresponding thermal infrared camera frames (scale bar: 1 mm).
Reproduced with permission from the authors of [89]. Copyright (2018) The Royal Society of Chemistry.
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A similar experimental set-up was realized to study the “Joule” heating-based actuation of an
LCE/PEDOT:PSS bilayer sample, prepared including thin copper wires embedded in the PEDOT:PSS
layer, as described in the previous section. The final PEDOT:PSS thickness was about 15 µm, and the
bilayer resistance at room temperature was about 60 Ω. The system was connected with an electrical
power supply, and several cycles of voltage were applied (V = 0–1.3 V). The bending actuation of
the bilayer was studied by recording a video with visible and thermal imaging cameras. Selected
frames are reported in Figure 14b. The very good thermal conductivity of the PEDOT:PSS nanolayers
ensures a uniform heating to the LCE. In both experiments (thermal-bending actuation and “Joule”
heating-induced actuation), the temperature of the LCE layer is almost uniform. The two mechanisms
of actuation, thermally induced and electrically induced, are indeed very correlated, since in both cases,
the driving force is given by the occurrence of a transition between a disordered state (not aligned
LCs) to an homogeneously ordered state (LC moieties aligned along the elongation direction). Such a
mesophase transition is an intrinsic property of the LCE thin films.

The bending actuation of LCE/PEDOT:PSS bilayer samples was studied using analysis of the
curvature-versus-temperature trend, and a simple model was developed [89] taking into account both
geometrical and elastic properties of the two components of the LCE-based composites. The very
good electrical control of the bending actuation of LCE/PEDOT:PSS bilayers opens up many practical
applications in the field of soft robotics, micro-robotics, medical devices, and space robotics. Moreover,
LCE-based composites are promising biomimetic materials, since their typical stress and strain values
are similar to those of natural skeletal muscle, and their mechanical performance is comparable to that
of dielectric elastomer actuators [6,88,89,93].

As reported in several studies of LCE-based composite bilayers [86–92], if the ratio (dnl)/(dLCE) is
lower than a critical value (which depends on the chemistry of the conductive nanolayers), bending
actuation is not observed. Instead, micro- or nanostructured surface wrinkling is obtained with the
possibility of fine-tuning their geometrical properties. Surface instabilities are the object of recent
investigations to better understand their formation in natural systems (such as wrinkles originating in
the aging human skin and in dried fruits), and to utilize the self-organization surface patterning in a
controllable way to measure thin-film properties [92]. The formation of wrinkles when a two-layered
system, made of materials with different elastic properties, is stretched or compressed is a known
phenomenon [93,102–104]. In the case of LCE-based composite layers, however, the possibility of
generating periodic, tunable, and reversible surface patterns opens up new intriguing applications.

Greco et al. [88] showed that if the PEDOT:PSS nanolayer thickness is below 200 nm,
micro-wrinkle formation is observed when the temperature is changed across the isotropic–nematic
transition. On the contrary, PEDOT:PSS layer thickness around 5–20 µm produces bending actuation.
The formation of uniaxially aligned micro-wrinkles can be observed in the LCE/PEDOT:PSS
bilayer sample after several thermal cycles, showing reproducible variations in wrinkle periodicity.
In Figure 17a,b, SEM images show the surface morphology before and after heating the sample
in the isotropic (contracted) phase. Parallel micro-wrinkles are visible in Figure 17b, showing a
particular organization with respect to local domain arrangement. The direction of parallel wrinkles is
perpendicular to the nematic director (n), corresponding to the direction of compression/elongation
at the isotropic–nematic transition temperature. As also seen using optical microscopy (Figure 17c),
vertical breaks appear when the sample is heated for the first time in the isotropic phase. These
vertical ruptures define the domain boundaries, and they do not change during several cycles of
heating/cooling, nor do they affect the micro-wrinkling phenomenon. In Figure 17d, the temperature
trend of the micro-wrinkle wavelengths is reported, and it overlaps with the thermo-mechanical
elongation/contraction (L/L0) behavior of the LCE matrix. Interestingly, the larger variation in
the micro-wrinkle wavelengths (from 10 to 40 microns) occurs in a relatively small temperature
range, and it is fully reproducible after several cycles [88]. Very similar results were reported by
Agrawal et al. [90] in PS/LCE composite bilayers, where the formation of both vertical and horizontal
wrinkle patterns is obtained by changing the temperature of PS nanolayer deposition. The reproducible
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micro-wrinkling behavior is particularly promising for optical applications, such as the formation of
tunable optical gratings and new devices for measuring mechanical properties in thin films [104–106].
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Figure 17. SEM images showing the surface of the LCE/PEDOT:PSS composite (a) before and (b) after
heating at T ≈ 73 ◦C. Direction defining nematic director (n) alignment is shown as an orange arrow.
Inset at left of image (b) shows a closer view of the surface in which uniaxial microwrinkles are
formed and organized in a domain-like arrangement. (c) Image of the surface of the LCE/PEDOT:PSS
composite, observed using an optical microscope. The temperature of the sample is about 75 ◦C, i.e.,
in the isotropic phase. Horizontal and parallel wrinkles, as well as vertical breaks, are clearly visible.
(d) Wrinkle wavelength (λ) as measured by observing several images of PEDOT:PSS/LCE composites
using an optical microscope (black squares) during the second cooling process, in the temperature
range of 90–52 ◦C. Thermo-mechanic elongation (L/L0) of the pristine LCE film (red circles) during the
second cooling run. Vertical dot lines are added in order to put in evidence the isotropic–nematic phase
transition. Reproduced with permission from the authors of [88]. Copyright (2018) Taylor & Francis.

5. General Conclusions and Perspectives

In this review, the development of a recent expanding field related to liquid-crystalline elastomers
combined with nanostructured materials to form composite systems was overviewed, focusing on the
main synthetic strategies, their unique physico-chemical properties, and their potential technological
applications. Most intriguing properties of these LCE-based composites derive from their peculiar
self-assembling behavior (i.e., the orientational order, and the nanomaterial alignment and distribution
within the LCE matrix), as well as from the physical properties of the chosen nanomaterials (i.e., electric
conductivity, photo-absorption, and ferroelectric and magnetic properties). So far, reversible and
controllable shape deformation induced by thermal stimuli represents the driving mechanism at the
basis of future applications of LCE-based composites. However, new promising mechanisms based on
photo-actuation, magneto-actuation, and “Joule”-heating electrically driven actuation were observed
and are described in this review, taking into account very recent works [107–112]. Future developments
of these polymer composite materials will probably expand to the field of biological applications and
biomimetics [65,113–116], optical tunable gratings [117–119], three-dimensional (3D) printing and 3D
morphing technologies [20,32,120–122], and flexible stretchable electrodes [123,124].
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Abbreviations

AFM Atomic force microscopy
C60 Fullerene
CNT Carbon nanotube
GNP Gold nanoparticle
DLS Dynamic light scattering
LC Liquid crystal
LCE Liquid-crystal elastomer
LCE@GNP Liquid-crystal elastomer composite including gold nanoparticles
LCP Liquid-crystal polymer
LMMLC Low-molecular-mass liquid crystal
LSCE Liquid single-crystal elastomer
MWCNT Multi-walled carbon nanotube
MEMS Micro-electromechanical systems
N Nematic phase
NEMS Nano-electromechanical systems
NMR Nuclear magnetic resonance
PEDOT Poly(3,4-ethylenedioxythiophene)
PEDOT:PSS Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
PCNT Polymer composite made of CNT
PC60 Polymer composite made of C60
PG Polymer composite made of graphene
PN Paranematic phase
PS Poly(styrene)
S Orientational-order parameter
SAXS Small-angle X-ray scattering
SANS Small-angle neutron scattering
SEM Scanning electron microscopy
SmA Smectic A phase
SWCNT
TEM

Single-walled carbon nanotube
Trasmission electron microscopy

TN-PN Temperature of the transition from the nematic to the paranematic phases
WAXS Wide-angle X-ray scattering
XRD X-ray diffraction
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