
� �� �� � � 	 �
 � � � � � �
  � �� �� �

�� � � � � 	 
 �� � �� � � ��� � �� 	 �� � 
 ��� � �
� � � � � �� �� � � ���� �� � � �� � � 	 � ��� � 
 	 �

� � � �� �� �� � � � �� � �� � � �� � � � �� � �� ��  � �� �� �� � � 	 �� �� � � ��� � �� ��� �� � � � �� � � 	 �
� � � �� � �� �� � � � � � �� � 	 � ��� � �� � � ��� � �  �� � �  � �� � � � �  � �

� �� � � �� � 	�� � � 	  !�" � �#� � 	  !�� � �� ���$�� �  � � � � �%� ���  � � �� 	 �� � � � � � ���  �&� 	 � � �� ��  � ���� �
 � � � 	 � � 	 � �
� � � � �� �' ��  � 	 � � �  � � � �� 	 �( � � � �  � � �( � � �  � )�* � �  	 � ��� ��� � � ��  � 	 � � �  � � � �� 	 �( � � � �  � � �+� �  � �, - - . �
/*�	����,01.2)�13,4156


����������	� � � � � )77� 8�� � ���   710�61317, - - . � 13

�  � ��� � � � 	�9
 : ; �<� � ��� � � �� 	 �

� � � � �� � � � � �� � � 	�� � � � )77� � ��� � 	 � �� �	 � �71. , 1�1711. 1- 0

� � � � �� � 	�
 � � � �  =� ���	 � ��� � 	 � � �  �� �)���	 � ��� � � � �  =� �� � 	 � � �  �� � �� � � � �� � �  � � � �� � !�� �� � � � � �
� � � ��� � �  =� ���  � � � � �	  ��  �� � � � �� � �� �	  

� � � � � �� � � � � 	�% � � � �� � �%� � � � 	 � �
 � �  �� � � �� 	 � > � 	 � � � � �  � �� �� 9� �  � �
 ��?�

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/117160
http://creativecommons.org/licenses/by-nc-sa/4.0/


AN IMPROVED CALIBRATION METHOD FOR DYNAMIC TRAFFIC ASSIGNMENT
MODELS: CONSTRAINED EXTENDED KALMAN FILTER

Haizheng Zhang
Corresponding author

Massachusetts Institute of Technology
haizheng@mit.edu

Ravi Seshadri
Singapore-MIT Alliance for Research and Technology (SMART)

ravi@smart.mit.edu

Arun Prakash
Singapore-MIT Alliance for Research and Technology (SMART)

arun@smart.mit.edu

Francisco C. Pereira
Technical University of Denmark

camara@dtu.dk

Constantinos Antoniou
Technical University of Munich

c.antoniou@tum.de

Moshe Ben-Akiva
Massachusetts Institute of Technology

mba@mit.edu

Word Count: 5512 words + 5 �gure(s) + 2 table(s) = 7262words



Zhang, et al. 1

1 ABSTRACT1
The calibration of dynamic tra�c assignment (DTA) models involves the estimation of model2
parameters so as to best replicate real world measurements. A good model calibration is essential3
to accurately estimate and predict tra�c states, which are crucial for tra�c management applications4
to alleviate congestion.5

A widely used solution approach to calibrate simulation-based DTA models is the Extended6
Kalman Filter (EKF). The EKF assumes that the DTA model parameters are unconstrained, although7
they are in fact constrained � for instance, OD �ows are non-negative. This assumption is typically8
not problematic for small and medium scale networks where the EKF has been successfully applied9
in the past. However, in the case of large scale networks (which typically contain a large number10
of OD pairs with small magnitudes of �ow), the estimates may violate the constraints severely.11
In consequence, simply truncating the infeasible estimates may result in the divergence of EKF,12
leading to extremely poor state estimates and predictions. To address this issue, we present a13
Constrained EKF (CEKF) approach, which imposes constraints on the posterior distribution of14
the state estimators to obtain the maximum a posteriori (MAP) estimates that are feasible. The15
feasible MAP estimates are obtained using a heuristic followed by the coordinate descent method.16
The procedure determines the optimum and was found to be computationally faster by 31.5% over17
coordinate descent and by 94.9% over interior point method.18

Experiments on the Singapore expressway network indicate that the CEKF signi�cantly im-19
proves model accuracy and outperforms both the traditional EKF (by up to 78.17%) and Generalized20
Least Squares (by up to 17.13%) approaches in state estimation and prediction.21
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2 INTRODUCTION1
Tra�c management policies and strategies are essential in controlling congestion and mitigating2
its negative impacts. In order to be e�ective, these measures signi�cantly depend on accurate3
estimates and predictions of tra�c states. Dynamic Tra�c Assignment (DTA) systems are e�ective4
in evaluating the current and future performance of transportation facilities [1], as they model the5
complex supply and demand interactions [2] ( refer [3] for a more detailed discussion of simulation6
based DTA systems). However, for DTA systems to be e�ective, they need to be properly calibrated.7

The Extended Kalman Filter (EKF) is one of the classical approaches used to calibrate8
DTA systems. The EKF assumes that the state vector (which represents model parameters to9
be calibrated) is unconstrained, whereas in fact, some parameters like OD �ows violate this10
assumption because they are non-negative. In the past, for simpler networks, the EKF has shown11
satisfactory performance despite this assumption [4]. However, on larger networks� like the12
Singapore expressway network considered in this study� the origin-destination �ow estimates13
from EKF tend to intermittently violate the non-negativity constraints. Truncating the infeasible14
OD �ow estimates to zero can result in erroneous estimates and can arti�cially induce extra demand.15
To overcome this issue, we propose a Constrained Extended Kalman Filter (CEKF) that explicitly16
models the constraints on the parameters. The constraints are imposed by determining the maximum17
a posteriori (MAP) estimates subject to the constraints.18

The contributions of this work to the existing literature are as follows. First, we adapt the19
CEKF to the DTA context and analyze its performance on a large real-world network, considering20
both state estimation and state prediction. Second, we apply a procedure that iteratively adds21
equality constraints followed by the coordinate descent method to obtain the MAP estimates.22
Third, we demonstrate that CEKF improves over the EKF signi�cantly in both state estimation (by23
up to 78.17%) and state prediction (by up to 76.38%). Results show that it also outperforms the24
GLS approach in both estimation and prediction (by up to 17.13%).25

3 LITERATURE REVIEW26
The calibration of simulation-based DTA models has received considerable attention in the literature27
in primarily two contexts, o�ine and online. The o�ine calibration problem typically involves28
estimating historical values for simulation parameters to ensure that the simulator can closely29
replicate average tra�c conditions for a given network [5]. In contrast, the online problem involves30
updating the historical parameters in real-time based on prevailing tra�c conditions [4]. For a31
detailed review of online and o�ine calibration of DTA systems refer [4] and [5] respectively.32

The existing approaches to both the o�ine and online problems are based on either opti-33
mization formulations or state space formulations. The former involve primarily generalized least34
squares (GLS) approaches such as that of [6, 7] for the dynamic OD estimation problem. Although35
the GLS approach explicitly handles non-negativity constraints on the OD �ows it assumes a linear36
mapping between the measurements and parameters making it di�cult to incorporate supply side37
parameters. Balakrishna et al. [8] propose a more generic solution method for the o�ine problem38
based on the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm to simultane-39
ously calibrate demand and supply parameters that can incorporate any type of measurement.40

The second class of approaches are Kalman �ltering (KF) based techniques which have also41
been applied to both the o�ine and online versions of the calibration problem. Ashok [9] proposed a42
Kalman �ltering method where the state variables are deviations of OD �ows from historical values43
(rather than the OD �ows themselves). Building on this, Ashok and Ben-Akiva [10] proposed a44
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modi�ed approach that explicitly accounts for stochasticity in the assignment matrix (which maps1
OD �ows to tra�c counts). The Kalman �lter has also been applied to the real time estimation of2
OD �ows by Zhou and Mahmassani [11] where the transition equation is a polynomial trend �lter3
designed to capture historical trends and structural deviations.4

Antoniou et al. [12] further extended the work of Ashok [9] to jointly estimate demand5
and supply parameters of dynamic tra�c assignment (DTA) systems. The authors propose three6
extensions of the Kalman �ltering algorithm including the extended Kalman �lter (EKF), the7
limiting EKF (LimEKF), and the unscented Kalman �lter. Numerical experiments on a small8
network indicated that the LimEKF yields an accuracy that is comparable to the other algorithms9
but with vastly superior computational performance.10

The KF based algorithms are attractive for both the o�ine and online calibration problems11
as they can handle any calibration parameters and any type of measurement data [13]. However,12
one limitation of these approaches is the assumption that the state variables are unconstrained.13
Although this is not an issue for smaller networks, the violation of constraints (such as the non-14
negativity of OD �ows) can be severe for large networks (as numerical experiments in Section 715
suggest) and naive truncation procedures can lead to inaccurate estimates and predictions.16

The problem of modeling constraints within a Kalman Filter has received attention in other17
domains (see for instance, [14, 15] ), but has largely been ignored in the context of KF methods18
for DTA calibration. Moreover, the performance of the KF algorithms has not been systematically19
tested on large scale networks. This study aims to address these issues by adapting a constrained20
EKF model to the DTA calibration problem and testing the performance of this algorithm on the21
Singapore expressway network.22

4 STATE SPACE FORMULATION23
The calibration problem for DTA systems lends itself to a state space formulation which is a classic24
approach to model dynamic systems. A state space model is de�ned by a state vector that succinctly25
captures the state of the system through a set of variables, a transition equation that captures the26
evolution of the state vector over time and a measurement equation that maps the state vector to27
the measurements. We denote the state vector byxh which consists of selected parameters of the28
DTA model to be calibrated (for a given time intervalh) and typically includes the time-dependent29
OD �ows, segment-based supply parameters and route choice parameters. The time-dependent30
measurements from the real world are denoted byM h. Thus, the state space model can be written31
as:32

ˆ Transition equation

xh = f ¹xh� 1; :::;xh� pº + wh (1)

ˆ Measurement equation

M h = g¹xh; :::;xh� q+1º + vh (2)

where,h is the time interval index,h 2 H = f 1; 2; :::;Hg; p is the number of previous states33
that are believed to be related toxh; q is the number of previous states that a�ect the current34
measurementM h; f represents the relationship between state vectors of di�erent intervals (or35
temporal dependence) ;g is the simulation model (Dynamic tra�c assignment system in our36
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context) which maps the state vectorxh to the measurement vectorM h ; wh andvh are random1
errors.2

The transition equation is typically modeled as an autoregressive process [10, 12] and hence,3
we have,4

xh =
h� 1Õ

k=h� p

F k
hxk + wh (3)

where,p andq are the same as in Equations (1) and (2); matrixF k
h is a matrix of autoregressive5

coe�cients that relate the state vector in time intervalk to the state vector in the current time6
intervalh.7

The Idea of Deviations8
Although the autoregressive process in Equation (3) captures temporal dependencies between the9
state variables, it does not represent structural information about trip patterns. Along the lines10
of [9], the state space model can be formulated in terms of deviations from historical values to11
better capture structural relationships (for instance, spatial and temporal distribution of activities12
and characteristics of the transportation system). The use of deviations is also more amenable to13
the application of Kalman �iter based solution approaches which assume a Gaussian distribution14
for the state vector. Thus, the deviations are de�ned as:15

@xh = xh � xH
h (4)

@M h = M h � M H
h (5)

where,@xh and@M h are the deviations for state vectorxh and measurement vectorM h. xH
h and16

M H
h are the corresponding historical values. The transition and measurement equations can now17

be written in terms of deviations as,18

@xh =
h� pÕ

k=h� 1

F k
h@xk + wh (6)

@M h = g¹@xh + xH
h ; :::; @xh� q+1 + xH

h� q+1º � M H
h + vh (7)

where,p is the same as in Equation (1); matrixF k
h is a matrix of autoregressive coe�cients that19

relates the deviation of the DTA parameters from historical values in time intervalk to the deviations20
in the current time intervalh. It is noted that state vector is a term in state space formulation and21
used in Kalman �lters. In the rest of this paper, deviations are used as state vector.22

5 EXTENDED KALMAN FILTER (EKF)23
This section brie�y describes approaches to solve the state space model formulated in the last24
section. The classical Kalman Filter (KF) which is the optimal minimum mean square error25
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(MMSE) estimator for linear state-space models [4] is �rst discussed followed by a brief outline of1
the Extended Kalman Filter (EKF) which handles the non-linearity in the measurement equation2
(Equation (7)). Note that for the application of the KF based methods, we impose an additional3
assumption we useon the error termswh andvh (Equations (6) and (7)), namely that they are zero4
mean Gaussian variables.5

The main steps of the KF algorithm are as follows. Assuming we have the optimal estimates6
of the previous time steph � 1: @̂xh� 1jh� 1 and Ph� 1jh� 1 (covariance matrix of the state vector),7
a time updatephase makes a prediction of the state@̂xhjh� 1 and its covariance matrixPhjh� 1 for8
the next time interval. These are termed the prior estimates. The measurement update phase then9
incorporates the new information about the measurement vector and uses it to correct the prediction10
of the state made during the time update. The updated estimates@̂xhjh andPhjh are called posterior11
estimates. For a detailed description of the KF algorithm refer [4].12

The original KF algorithm applies to linear systems, i.e. it assumes linearity of both the13
transition and measurement equations. The most straightforward extension of the KF methodology14
to handle non-linearity is the Extended Kalman Filter (EKF) which employs a linearization of15
the non-linear relationship (measurement equation in our case) using a �rst order Taylor series16
expansion. Thus, the measurement equation is approximated by,17

@M h =
h� q+1Õ

k=h

H k
h@xk + vh (8)

where, now theH k
h represents the linear relation between@M h and@xk. Since the measurement18

equation involves the DTA model, it does not have an analytical representation and hence, in order19
to perform the linearization it is necessary to usenumerical derivatives. We use a standard central20
�nite di�erence method to compute the gradient ofgh.21

Limitation of the EKF22
As noted previously, the standard KF, EKF algorithms assume that the state vector is unconstrained23
and the error termswh and vh (Equations (8) and (6)) are Gaussian. However, the parameters24
of DTA models (that are to be calibrated) are in fact constrained. For instance, OD �ows are25
necessarily non-negative, and hence, if the state vector consists of only the time-dependent OD26
�ows, we must have,27

xh � 0 =) @xh + xH
h � 0 (9)

Thus, from Equations Equations (8) and (9), and given thatH k
h contains non-negative elements28

(whenxh consists of OD �ows andM h consists of sensor counts) we must have,29

vh � @M h +
h� q+1Õ

k=h

H k
hxH

k (10)

In other words, due to the constraints on the state vector, the error term in the measurement30
equation is also constrained such that the probability density for some values are strictly zero. Thus,31
strictly speaking, modeling it with a Gaussian distribution is not correct.32
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In practice, when we have constraints on the state vector, a simple way to impose them1
is to project the estimated state vector onto the feasible region. When the constraints are in the2
form of lower and upper bounds, we can simply project each element of the state vector onto its3
corresponding feasible region. We refer to this element-wise projection astruncation. Although4
e�cient, this procedure is not necessarily correct, because estimators of di�erent dimensions are5
correlated. Truncating one variable while keeping others intact disregards its relationship with6
other variables.7

In DTA calibration, this truncation is consequential particularly when the true values of the8
OD �ows are zero or close to zero, and the estimated variance is large. In this case, the Kalman �lter9
tends to give estimates with noise around the true value. For the OD pairs with 0 as true values,10
the estimates will be either positive or negative. Then, due to the truncation, the negative values11
will be set to zero leading to an overestimation of total demand. Since this overestimation happens12
for each interval, the error would accumulate leading to poor state estimates. To address this issue,13
in the next section, we present a modi�cation of the EKF that explicitly handles constraints on the14
state we usevector.15

6 CONSTRAINED EXTENDED KALMAN FILTER16
This section discusses the proposed Constrained Extended Kalman Filter (CEKF) method. The17
intuition and theoretical basis are �rst presented followed by a description of the solution algorithm.18

Optimization Formulation for Constrained Kalman Filter Estimates19
In this section, for ease of presentation, we usexh to denote the state vector which is understood20
to be the deviations from historical values. The EKF estimatesx̂hjh at time steph are essentially21
the maximuma posteriori(MAP) estimates, which are obtained from the measurements and the22
prior distribution (based on the transition equation). The posterior Gaussian distribution of the23
state estimate is given by:24

fXh jh ¹xº =
1

p
¹2� ºnjPhjhj

exp
�
�

1
2

¹x � x̂hjhº> Phjh
� 1¹x � x̂hjhº

�
(11)

where,n is the dimension of vectorx, andPhjh is the posterior covariance matrix.25
For example, consider the case where we have two state variables¹x; yº and assume that the26

posterior distribution is given by¹x; yº � N¹ � ; � º, where,27

� = »0:5; � 1¼>

� =
�

1 0:7
0:7 1

�

A contour plot of the posterior probability density function (PDF) is shown in Figure 1. We28
can see that the �cross� is the center of the PDF, which is the MAP estimate for the unconstrained29
EKF. Now assume that the state variables are non-negative. When we directly impose the constraints30
x � 0; y � 0, i.e sety = 0, we obtain the �circle� point. But in terms of maximizinga posteriori31
probability density under the constraints, the �circle� point is clearly sub-optimal. The true MAP32
estimate is the �asterisk� point.33
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FIGURE 1 : 2-D Posterior PDF Contour and Di�erent Estimators

Formally, the problem of computing the MAP estimate under the constraints is termed the1
Kalman �lter with state inequality constraints and is discussed at length in [14, 15]. It can be2
formulated as a quadratic program subject to linear inequality constraints:3

max
x

fXh jh ¹xº , min
x

¹x � x̂hjhº> Phjh
� 1¹x � x̂hjhº (12)

s.t. Dx � d (13)

where,D is a knowns � n constant matrix,s is the number of constraints,n is the number of state4
variables, ands � n; Further,D is assumed to be a full rank matrix, i.e. its rank iss. If the rank of5
D is less thans, we can always drop the redundant constraints to make it full rank.6

An E�cient Near-Optimal Algorithm for EKF with Bound Constraints in DTA Calibration7
In the context of DTA calibration, the constraints are usually in the form of bounds on model8
parameters. For instance, in OD estimation (where the state vectorx consists of OD �ows; for9
brevity, we drop the time interval subscript), we havex � 0. Similarly, supply parameterss, could10
have both upper bounds and lower bounds, i.e.slb � s � sub. Thus, for the DTA calibration11
problem, we have the following optimization formulation after each measurement update of the12
EKF:13

min
x

¹x � xº> � � 1¹x � xº (14)

s.t. x lb � x � xub

where,x = x̂hjh; � = Phjh, x lb andxub are the lower and upper bounds for the state vectorx.14
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An intuitive method of solving the above optimization problem is based on the concept of1
truncation described earlier. For simplicity, assume there exists a lower boundx lb onx, but no upper2
bound. When we truncatex, we set the elements that violate the lower bounds to the corresponding3
elements inx lb. In essence, we are introducing equality constraints to the optimization problem.4
Let A denote the set of indices of the state variables on which truncation is performed and letxA5
denote the corresponding vector. In addition, letA c denote the complement of the setA and let6
xA c denote the corresponding vector. In order to compute the MAP subject to the constraints, we7
need to maximize the following conditional PDF:8

max
xA c

fX
�
xA c jxA = ¹x lbºA

�
(15)

Maximizing the conditional probability in Equation (15) is equivalent to maximizing the9
joint probability fX

�
xA c; xA = ¹x lbºA

�
, since:10

fX
�
xA c jxA = ¹x lbºA

�
=

fX
�
xA c; xA = ¹x lbºA

�

fX
�
xA = ¹x lbºA

�

and the denominator is constant for a givenx and� . Thus, we have,11

max
xA c

fX
�
xA c; xA = ¹x lbºA

�
, min

xA c
¹x � xº> � � 1¹x � xº

�
�
� xA = ¹x lbºA (16)

With some algebraic manipulation (refer [16]), it can be shown that the solution to the optimization12
problem in Equation (16) is given by,13

xA c = xA c + � A c;A ¹� A ;A º� 1
�
xA � xA

�
(17)

xA = ¹x lbºA (18)

where� A c;A is the covariance matrix betweenxA c andxA , and� A ;A is the covariance matrix of14
xA .15

In a similar fashion, for the general case in Equation (14), when the MAP estimates of the16
unconstrained EKF violate the bounds (whose indices are in SetA ), we can project them back17
to the boundary, and then obtain the conditional MAP withxA �xed to the bounds, according to18
Equation (17). Note that this conditional MAP solution is not guaranteed to satisfy the bounds for19
xA c . Thus, this procedure needs to be performed iteratively, where the indices of state variables20
whose bounds are violated from setA c are added to setA . We then re-estimate the conditional21
MAP, until all elements whose indices are in setA c are in the feasible region. The near-optimal22
algorithm is referred to as Algorithm 1, wherexA = »xA¹ 1º; :::;xA¹jAjº ¼> , A¹ j º is the j -th element23
in SetA , jAj is the cardinality of SetA ; Similarly, � A c;A = »� i; j ¼

�
�
i; j 2A c �A .24

Based on our experiments, this algorithm gives an objective function (Equation (14)) value25
less than 0.1% worse than the true optimal (obtained by solving the original quadratic programming26
problem exactly), but is more e�cient. This is discussed in more detail in the next subsection.27



Zhang, et al. 9

Algorithm 1 EKF with Iterative Addition of Equality Constraints

Run EKF and obtain state estimatex and variance estimate� , n is the dimension ofx
Initialize

I  ?

A  ?

x  x

do
if I , ? then

Adjust invalid state elements

xI lb  x lb
I lb

(19)

xI ub  xub
I ub

(20)

Find conditional MAP estimates

A  A
Ø

I (21)

A c  f 1; 2; :::;ng n A (22)

xA c = xA c + � A c;A ¹� A ;A º� 1
�
xA � xA

�
(23)

end if

I lb  ?

I ub  ?

Identify invalid state indices
for j = 1 to n do

if x j < x lb
j then I lb  I lb

Ð
f j g

else if x j > xub
j then I ub  I ub

Ð
f j g

end if
end for

I  I lb

Ø
I ub (24)

while I , ?
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Coordinate Descent Algorithm with Near-Optimal Initialization1
When we are interested in computing the true optimum solution to the optimization problem in2
Equation (14), Algorithm 1 can serve to provide an initial estimate or a starting point for solution3
of the quadratic program. Since the DTA calibration problem involves independent constraints4
for each element, a coordinate descent method can be applied to solve the quadratic programming5
problem. The coordinate descent algorithm is referred to as Algorithm 2.6

Algorithm 2 Coordinate Descent

Initialize

x  x0

�  0:001

Q  � � 1

b  � � � 1x

Objthis  ¹ x � xº> � � 1¹x � xº

do
for j = 1 ton do

x j = x j �
1

Qj; j

�
Qj;1:nx + b j

�
(25)

x j  max¹x j; x lb
j º (26)

x j  min¹x j; xub
j º (27)

end for

Objlast  Objthis (28)

Objthis  ¹ x � xº> � � 1¹x � xº (29)

while Objlast � Objthis > �

Several remarks are in order regarding the coordinate descent algorithm. First, the step size7
in each update is �xed to 1

Qj ; j
. Since the objective function is quadratic, an update using this step8

size will yield the optimal solution forx j , when other dimensions are �xed. Second, this algorithm9
is computationally inexpensive, because there are no matrix multiplications in Equation (25). Last10
but not least, in the speci�c context of OD estimation, other objective functions could be used as11
the stopping rule. For instance, a distance measurement (likeL1 norm) between the current and the12
last estimated state vector could be used as the objective function. When the improvement of the13
objective function is less than� , the algorithm terminates.14

The performance of Algorithm 1, Algorithm 2, Algorithm 2 with initial solution obtained15
from Algorithm 1 (termed Algorithm 1+2), and an interior point algorithm to directly solve the16
quadratic program (implemented using thequadprogfunction in MATLAB) are compared using 517
arbitrary time intervals from the simulation experiments described in Section 7. In order to reach18
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TABLE 1 : Objective Function Value and Computation Time of 5 Examples in Calibration

# Truncate Alg1 Alg2 Alg1+Alg2 quadprog

Objective
Function

Value

1 337.33710 297.78574 297.78572 297.78572 297.78572
2 379.27500 319.66499 319.59357 319.59357 319.59357
3 244.22211 178.54625 178.54420 178.54420 178.54420
4 444.13678 346.88061 346.88060 346.88060 346.88060
5 635.38129 448.67091 448.66981 448.66981 448.66981

Computation
Time

(milliseconds)

1 0.1 70.8 853.4 470.5 10613.3
2 0.1 75.3 1138.7 650.0 10002.9
3 0.1 137.9 832.3 485.4 9537.3
4 0.1 167.2 1003.4 524.2 14143.3
5 0.1 605.0 2950.2 2514.2 47432.4

the same precision, the convergence criterion of Algorithm 2, Algorithm 1+2 andquadprogis all1
set tokxi � xi � 1k < 10� 3, wherexi is the solution obtained from current iteration.2

The results indicate that in all tests cases the objective function value using the naive3
truncation procedure is signi�cantly worse than all the four aforementioned solution methods4
which yield similar objective function values. In terms of computational time, clearly Algorithm5
1 is substantially faster than the other procedures and Algorithm 1 + 2 signi�cantly outperforms6
Algorithm 2. However, given that optimality is not guaranteed for Algorithm 1, we choose7
Algorithm 1 + 2 (over algorithm 2, andquadprog) for all the subsequent experiments in view8
of its superior computational performance. It is noted that although the quadratic programming9
algorithms have polynomial complexity, performance may still deteriorate signi�cantly for higher10
dimensions. In such cases, dimensionality reduction procedures (e.g. PCA, factor analysis) may11
be used to maintain computational tractability.12

7 APPLICATION ON SINGAPORE EXPRESSWAY NETWORK13
In this section, we test the performance of the EKF, CEKF, and a Generalized Least Squares method14
(GLS) [10] on the Singapore expressway network. We adopt an open loop framework where the15
DTA system interacts with a microsimulator that emulates the real world.16

Simulation Setup17
The experiment was conducted on Singapore expressway network (dark orange links in Figure 2)18
using DynaMIT [3] as the real-time DTA system. The network consists of 939 nodes and 115719
links, 1623 origin-destination (OD) pairs with time-dependent �ows, and 650 segment speci�c20
sensors. As per the notation in Equations (6) and (7),@xh is the deviation in OD �ow for interval21
h, and@M h is the deviation between real-time sensor counts and historical sensor counts.22

For the experiment, the calibration variables are the time-dependent origin-destination �ows.23
The supply parameters and behavioral parameters were obtained from a prior o�ine calibration24
using the W-SPSA algorithm [17]. The simulation period was from 17:00 to 21:30, which includes25
the evening peak. The chosen estimation interval was 5 minutes and the prediction interval was 1526
minutes. Note that, as the experiment is in the online setting, parameters are calibrated interval-wise27
sequentially.28

For the simulation setup, we used an open-loop framework, wherein a tra�c microsimulator29
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FIGURE 2 : Singapore Road Network (source: Google Maps, 2016)

(MITSIMLab [18]) emulates the real-world, generates the surveillance data and feeds it to the DTA1
system. Then the DTA system utilizes those data and performs calibration.2

Demand generation3
To setup the open-loop environment, MITSIMlab was calibrated against the real-world sensor data4
using the W-SPSA algorithm [17]. However, as the calibrated time-dependent demand displayed5
high �uctuation between consecutive intervals, it was smoothed using a Gaussian kernel with a6
bandwidthh of 10 minutes. The resulting demand is more representative of the real-world and is7
termed the �actual� demand, which is an input to MITSIMLab.8

The historical demand for DynaMIT was generated by perturbing the �actual� demand in9
MITSIMLab. The rationale being that the historical demand is generally a reasonable approximation10
of the true demand. The historical demand in DynaMIT was accordingly constructed as follows:11

xH
h;i = ¹0:75+ 0:15zº � xtrue

h;i (30)

z � N¹� = 0; � 2 =
1
9

º (31)

whereh is the time interval,i is the index of the OD pair andxtrue
h;i indicates the actual demand for12

i -th OD pair at timeh. z is a zero mean Gaussian random number with� = 1
3 so that statistically13

99.7% of the coe�cients (multipliers in Equation (30)) are between 0.6 to 0.9. The randomness14
ensures that historical demand has a di�erent pattern from the actual demand, as the true demand15
is generally not known. The historical demand was underestimated to avoid the DTA system from16
being oversaturated because of the historical scenario.17

Inputs for calibration18
The inputs for the calibration procedure include the autoregressive model, historical demand,19
historical measurements, initial state vector in deviations@x0, covariance matrix of transition error20
Qh, covariance matrix of measurement errorRh and initial covariance matrix for state vectorP0.21
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An autoregressive process of degree 1 is adopted based on preliminary tests. The generation of1
historical demand was discussed in the previous section. The historical measurements are the2
measurements resulting from the historical demand. To calculate historical measurements, we ran3
DynaMIT with the historical demand 5 times and averaged the results to account for stochasticity4
in the simulator.5

The state vector@x0 is set to zero as it represents the deviation from historical values. The6
covariance matricesQh andRh are constructed assuming that the random errors (elements ofvh)7
are independent of each other. This assumption has been made, because estimating covariances8
is data-intensive. It requires OD �ow estimates for a number of days, where each day forms a9
single observation in the estimation procedure [4]. Speci�cally, the diagonal elements ofQh which10
represent variance ofwh is set as11

Qh =

2
6
6
6
6
6
6
6
4

maxf q0; � j@xh;1jg2 0 : : : 0
0 maxf q0; � j@xh;2jg2 : : : 0
:::

:::
: : :

:::
0 0 : : : maxf q0; � j@xh;njg2

3
7
7
7
7
7
7
7
5

(32)

where,@xh;j is the j -th element of random vector@xh; � is a fraction to tune. The diagonal12
elements forQh are set such that the standard deviation ofwh;j is � times the magnitude of@xh;j .13
In order to handle the situation where@xh has near zero values, the standard deviation of random14
variablewh;j is set tomaxf q0; � j@xh;j jg. In our case,� is set to 0.3,q0 is set to 1, allowing elements15
in @xh with 0 values to change during the online calibration procedure.16

Similarly, the elements of covarianceRh, which represent the variance ofvh are set as17

Rh =

2
6
6
6
6
6
6
6
4

maxf r0; � jMh;1jg2 0 : : : 0
0 maxf r0; � jMh;2jg2 : : : 0
:::

:::
: : :

:::
0 0 : : : maxf r0; � jMh;njg2

3
7
7
7
7
7
7
7
5

(33)

The fraction� is chosen to be 0.1, meaning standard deviation is 10% of the sensor readings.r018
is set to 10, considering the magnitude of sensor readings. Note that the imperfection of local19
linearization in Equation (2) is also captured inRh.20

Finally, P0 is initialized asQ0. It follows from the initialization of@x0 = 0, asP0 is a21
diagonal matrix withq0.22

Results and Discussion23
In order to quantify the e�ectiveness of the calibration process in replicating the observed mea-24
surements, we used the Root Mean Square Normalized error (RMSN) which is de�ned as25

RMSN= 100�

q
N

Í N
j=1¹M̂ j � M j º2

Í N
j=1¹M j º

% (34)
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where, M j is the j -th observed (true) measurement value andM̂ j is the j -th simulated1
(estimated) measurement value.N is the number of sensors. The RMSNs are calculated both2
interval-wise and for the complete simulation period.3

TABLE 2 : Overall Algorithm Performance

(a) RMSN for State Estimation and Prediction

Algorithm Estimation RMSN
Prediction RMSN

Step 1 Step 2 Step 3
Historical 36.50% 36.43% 36.53% 36.66%

EKF 80.08% 80.05% 80.84% 81.92%
GLS 20.05% 22.82% 25.85% 28.29%

CEKF 17.48% 18.91% 21.86% 24.54%
(b) CEKF's Improvement over Other Algorithms for State Estimation and Prediction

Base Algorithm Estimation Improvement
Prediction Improvement

Step 1 Step 2 Step 3
Historical 52.11% 48.09% 40.16% 33.06%

EKF 78.17% 76.38% 72.96% 70.04%
GLS 12.82% 17.13% 15.44% 13.26%

(a) Sensor RMSN in State Estimation (b) Sensor RMSN in 1/2/3-Step State Prediction

FIGURE 3 : Sensor RMSN in State Estimation and Prediction

The aggregate RMSNs in sensor counts for the entire simulation period are presented in4
Table 2 along with the percentage improvements of CEKF with respect to the base case (historical5
or no calibration), EKF and GLS. Figure 3 presents the plots of sensor count RMSNs with respect6
to time-of-day for each of the methods. The RMSNs in the context of estimation are depicted in7
Figure 3a and those of prediction in Figure 3b.8

The EKF yields an aggregate RMSN of 80.08% in state estimation, which is signi�cantly9
worse than without calibration (36.50%). As is shown in Figure 3a, the initial errors for the EKF10
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(a) 17:10-17:15

(b) 18:35-18:40

(c) 20:00-20:05

(d) 21:25-21:30

FIGURE 4 : Estimated vs. Observed Flow Counts for EKF, GLS and CEKF in Selected Intervals
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are low, but its performance deteriorates with time. Although the divergence appears to abate at1
around 21:30, its overall performance is still worse than when no calibration is performed.2

The GLS approach in contrast (Table 2a) performs well with an aggregate RMSN of 20.05%3
for estimation and 28.29% for step 3 prediction. The CEKF also performs well with an aggregate4
RMSN of 17.48% for estimation and 24.54% for 3 step prediction. From Table 2b, the CEKF5
improves over the historical by 52.11% in estimation and 48.09%, 40.16% and 33.06% in step 1,26
and 3 prediction, respectively. The CEKF also outperforms GLS by 12.82% in estimation and up7
to 17.13% in prediction.8

Figure 3 suggests that the constrained EKF manages to keep the overallRMSNat around9
18%, and maintain a lowRMSNuntil the calibration ends. Note that the oscillation in the �rst few10
intervals may be due to an imperfect initial covariance matrix. However, the covariance update11
process corrects this as the simulation progresses and it outperforms the GLS in the last several12
intervals.13

The previous observations are further corroborated by Figure 4. It presents the scatter plots14
of estimated vs. observed sensor counts of the three procedures for four estimation intervals. If15
the sensor counts are estimated exactly, all the points will lie on the 45 degree line. From the16
plots, the EKF consistently overestimates sensor counts in the later estimation intervals indicating17
divergence. This, we hypothesize, is the result of the truncation process normally adopted which is18
discussed in more detail in the subsequent section. On the other hand, the CEKF and GLS appear19
to estimate the sensor counts consistently well. Again, CEKF's performance improves with time20
and it eventually performs better than GLS.21

FIGURE 5 : Total Number of Vehicles Departing in each 5-Minute Interval

Divergence of EKF22
The results from the earlier section suggest that the EKF diverges. Note that the OD �ow estimates23
from the EKF can be either positive or negative. In the standard EKF, the negative OD �ow estimates24
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are truncated to 0 and the non-negative OD �ow estimates are kept unchanged. Consequently, the1
network-level OD �ow is over estimated. For example, in a given interval, assume that the network-2
level �ow is estimated to be 10,000 vehicles with the negative OD �ow estimates summing up to3
-1000 and positive �ow estimates summing up to 11000. If the negative OD �ows are truncated at4
zero, this in e�ect will yield a total demand of 11000 and results in 1,000 additional vehicles on the5
network. In the next interval, as the estimated sensor counts will be higher the EKF will attempt to6
reduce the net demand by decreasing the total number of vehicles (total OD �ows) and setting more7
OD �ows to negative values. The subsequent truncation further exacerbates the problem leading8
to the poor performance of EKF.9

The overestimation of demand is visible in the plot of total number of vehicles estimated10
in each interval for the EKF (Figure 5). It can be seen that at around 18:30, the total estimated11
OD �ow starts to deviate substantially from the actual demand. This leads to the large errors in12
both estimation and prediction which also start to increase signi�cantly at around the same time13
interval (Figure 3). Although some studies [19, 20] have observed the divergence of EKF due14
to linearization, the results here indicate that improper modeling of constraints may also result in15
divergence.16

In contrast, the proposed CEKF procedure clearly overcomes this issue and even outperforms17
the GLS method in both state estimation and prediction.18

8 CONCLUSION19
This paper addressed the problem of calibration of large scale simulation-based Dynamic Tra�c20
Assignment (DTA) models. To overcome a limitation of existing Kalman Filter (KF) based methods,21
namely the inability to model constraints on the calibration parameters, a new Constrained Extended22
Kalman Filter (CEKF) method was presented. Given the state estimates and posterior covariance23
matrix from the KF, the problem of computing the maximum a posteriori (MAP) estimates subject24
to constraints is formulated as a constrained quadratic program. In addition, a heuristic solution25
procedure is proposed to solve this quadratic program that yields solutions close the true optimum26
(around 0.001% worse in objective function value). Further, a coordinate descent algorithm is27
applied using the heuristic solution as a starting point to optimally solve for the constrained MAP28
estimates. Numerical tests have shown that the combined algorithm attains the optimum in the29
same precision as coordinate descent andquadprogin MATLAB, but 31.5% and 94.9% faster.30

Experiments using the DTA system DynaMIT on the Singapore expressway network indicate31
that the proposed CEKF has improved the standard EKF by 78.17% in state estimation and up to32
76.38% in state prediction. The CEKF also outperforms GLS method by 12.82% in state estimation33
and up to 17.13% in state prediction. The proposed method has important applications in the o�ine34
and online calibration of DTA systems which are essential for obtaining accurate estimates and35
predictions of tra�c states.36

Future directions of research include more extensive testing of the CEKF method and37
improvement of computational e�ciency to facilitate deployment in an online setting.38
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