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Abstract
Social capital has been studied in economics, sociology and political science as one of
the key elements that promote the development of modern societies. It can be
defined as the source of capital that facilitates cooperation through shared social
norms. In this work, we investigate whether and to what extent synchronization
aspects of mobile communication patterns are associated with social capital metrics.
Interestingly, our results show that our synchronization-based approach well
correlates with existing social capital metrics (i.e., Referendum turnout, Blood
donations, and Association density), being also able to characterize the different role
played by high synchronization within a close proximity-based community and high
synchronization among different communities. Hence, the proposed approach can
provide timely, effective analysis at a limited cost over a large territory.

Keywords: Social capital; Mobile phone data; Computational social science

1 Introduction
Synchronization is a process that allows the automatic coordination of units and events in
time. Across many domains in nature, it is a mechanism that permits to reduce uncertainty
and risk without the need for a centralized mechanism of control. Synchronization is a
widespread phenomenon observed everywhere in nature, from animals [1] to neurons [2]
and heart cells [3], and up to more complex entities like human beings [4, 5].

In humans, synchronization emerges as a spontaneous coordination mechanism that
provides benefits to groups and the individuals that live within [6]. In an evolutionary
perspective, synchronization increases the probability of group survival, by reducing the
individual costs required by the engagement of coordinated and cooperative action [7]:
in a multilevel selection mechanism, a group of cooperators has indeed higher chances of
evolutionary success than a group of defectors. The positive effect of synchronization is
also found in the behavior of people within groups, where synchronous activity has been
found to enhance the level of cooperativeness [8] even without muscular bonding [9] or
shared positive emotions [10, 11]. Synchronized groups should then in principle be more
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cooperative ones, and by comparing the level of synchronization between different groups,
we may be able to measure their relative level of cooperativeness. In the present study, we
propose two synchronization indices: (i) within synchronization representing the relative
level of cooperation within a close proximity-based community (i.e., municipality level),
and (ii) between synchronization representing the level of cooperation among different
communities in a larger geographical area (i.e., province level). More specifically, these
indices capture the synchronization of human activity in an area through mobile phone
data. Mobile phone data capture rich information about human activities and the structure
of the social interactions therein [12]. They have been used to estimate the socioeconomic
status of territories [13] and individuals [14], to analyze the dynamics of cities [15], to
model the spreading of diseases [16], and to predict crime levels [17]. Our hypothesis
is that the two synchronization indices, capturing the degree of cooperativeness among
human activities, can describe traditional measures of social capital, which is the source
of capital that facilitates cooperation through shared social norms [18].

The relevance of social capital for economic growth is largely acknowledged [19]; it re-
duces the transaction costs associated with formal coordination mechanisms, [20] pre-
dicts strong economic performance [21] and financial development [22], and reduces cor-
ruption by inducing political and civic participation [23, 24].

An important distinction in the social capital literature is the one between bonding and
bridging patterns of relations [25]. In his work, the political scientist Putnam states that
bonding social capital provides emotional support and a sense of belonging in which the
members of a community sustain each other [25]. This form of social capital is usually
observed in homogeneous groups with strong cooperation, such as families or circles of
close friends. Bridging social capital, instead, stems from relations between groups, that
is, between individuals from heterogeneous backgrounds [25]. A community exploring
novel interactions and co-operation with other communities can be considered to have a
high amount of bridging social capital [26]. This form of social capital has been described
as potentially useful for achieving instrumental goals since a larger variety of resources
becomes available by interacting with people of diverse status, occupation or ethnicity
[26].

Previous research on capturing bonding and bridging social capital, and their effect on
economic prosperity, from mobile phone and social media data has analyzed this issue
focusing on the role played by different network structural properties (e.g., topological
network diversity, network density, etc.) [13, 27]. To the best of our knowledge, the cur-
rent work is the first study that analyzes whether and to what extent synchronization as-
pects of human communication are associated with traditional social capital metrics (i.e.,
Referendum turnout, Blood donations, and Association density).

Several studies have highlighted the role and the benefits played by the synchronization
of activities among individuals and groups. Indeed, synchronization is argued to improve
cooperation and trust in a community [5, 8]. Hence, we expect that communities with
strong synchronization may experience richer opportunities for cooperation, decreased
costs of market interactions, less reliance on formal business regulations and increased
informal money circulation and investments, all aspects enabled by high levels of trust
[5, 8, 28]. Thus, our first hypothesis is that high levels of call activity’s synchronization in
a tight area (that we associate to a municipality) are likely to reflect bonding patterns as
people interact and communicate within a close proximity-based social group. In par-
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ticular, high levels of within synchronization in a proximity-based community capture
frequent communication patterns and connections among people living in this commu-
nity.

Interaction among diverse groups of individuals and communities have been linked to
higher exploration of possibilities, thus promoting the flow of information and novel ideas
that affect economic prosperity [2, 6]. Following Paxton [29], bridging social capital occurs
when members of one group connect with members of other groups to seek access, sup-
port or to gain information. On this basis, our second hypothesis is that the interaction
of a given community (i.e., a given municipality) with many different communities can
be found in the high synchronization of their communication patterns. In particular, we
expect that municipalities with more synchronization with other municipalities may ex-
perience a communication with a more diverse array of communities (i.e., having bridging
ties spreading to many different municipalities) and gain novel ideas and information, and
thus may show higher levels of bridging social capital.

Interestingly, our results show that a synchronization-based approach well correlates
with traditional social capital measures (i.e., Referendum turnout, Blood donations, and
Association density), being also able to characterize the different role played by high syn-
chronization within a close proximity-based community and high synchronization among
different communities.

2 Materials and methods
For this study we use an aggregated and anonymized Call Detail Records (CDRs) dataset
provided by the largest Italian mobile phone operator (34% of market share) over a period
of one month: from March 31, 2015 to April 30, 2015. CDRs are collected for billing pur-
poses by mobile network operators: every time a phone interacts with the network, a CDR
recording the time and location (in terms of cell network’s antenna) of the user is created.a

The data we use is spatially aggregated and completely anonymized by the mobile phone
operator as it is not possible to connect different calls of the same user.

Italy is an ideal playground in this domain because Italian regions present very different
levels of economic development, although they have experienced the same formal insti-
tutions, laws, language and currency for many years now. Many scholars have identified
the root of this persistent divergence in differential endowments of social capital [30, 31].
For these reasons, Italy has been widely studied in social capital economic literature [23,
25]. As a byproduct, there are several survey-based data sources for obtaining social cap-
ital measures that can be used as a ground-truth. More specifically, following examples
in the economics literature [22, 25, 32], we use Referendums turnout, Association density
and Blood donations as our ground-truth. Referendums turnout are usually considered as
proxy of the desire of civic participation, as voting at referendums is not mandatory in
Italy and the issues on the ballot in referendums are less related to local interests. Associa-
tion density is defined as the number of associations per 100,000 inhabitants. Associations
can be cultural, leisure, artistic, sports, environmental, and any kind of nonprofit associ-
ations with the exclusion of professional and religious associations [19]. Blood donations
are measured as the instances of donations per 1000 inhabitants.

In our analysis, we select both large provinces (NUTS-3 regions) with more than one
million inhabitants, and smaller provinces known for high and low levels of social capital
(according to the aforementioned social capital survey-based measures). The indicators
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Figure 1 Analyzed data from large NUTS-3 regions (> 1M inhabitants), and medium NUTS-3 regions known
for high/low levels of social capital [34]. (Right inset) Enlargement of Rome NUTS-3 region highlighting
municipalities (LAU-2 regions). Data are collected at a sub-municipality resolution

of level of social capital used to select small NUTS-3 regions—intended with a population
between 200,000 and 500,000 inhabitants—are the data available for Italy on association
density, referendum participation and blood donations [30, 33, 34]. Specifically, consid-
ered NUTS-3 regions are:

• Turin, Milan, Venice, Rome, Naples, Bari, Palermo (large NUTS-3 regions);
• Caltanissetta, Siracusa, Benevento, Campobasso (defined as low-social capital

NUTS-3 regions [34]);
• Siena, Ravenna, Ferrara, Asti, Modena (defined as high-social capital NUTS-3

regions [34]).
These areas represent the smallest areal units available for social capital data. NUTS-3

regions are therefore our unit of analysis. The choice of these NUTS-3 regions is partly
data-driven, but we select them also as they exhibit different levels of social capital. Fig-
ure 1 shows the map of Italy with the NUTS-3 regions under analysis.

The area of each region is spatially divided in an irregular grid, provided by the mobile
phone operator, based on the size of the underlying antennas’ coverage area. The cells have
area ranging from 0.04 km2 in the city center to 40 km2 in the suburbs.

For each cell, we aggregate the number of CDRs at an hourly time scale to obtain a time
series recording the level of activity on an hourly basis.

We normalize each ith cell’s time series xi
t=day,h with a z-score computed on an hourly

basis. μi
h and σ i

h are the 24 means and standard deviations of xi
day,h for each hour. Thus, we

obtain: zi
day,h = (xi

day,h – μi
h)/σ i

h. Using different μi
h and σ i

h for different hours is very impor-
tant because otherwise the circadian trend in our data would notably bias the synchro-
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Figure 2 Example of daily rhythm in a mobile phone cell. (A) Original behaviour extracted from mobile
phone data; (B) z-score scaled behaviour extracted from mobile phone data

nization among the time series (i.e., all time series would be highly synchronized because
the day-night trend would cover more subtle differences).

The resulting time series (see Fig. 2) highlights deviations of the mean activity in differ-
ent hours of the day on the one hand and on the other they are sufficiently stationary to ap-
ply standard statistics to measure the correlation (i.e., synchronization) of two time series.

For each NUTS-3 region, we compute two synchronization metrics: within synchroniza-
tion is the average daily synchronization among cells assigned to the same municipality;
between synchronization is the average daily synchronization among cells assigned to dif-
ferent municipalities (cells are assigned to municipalities based on the quantity of their
overlapping area). Specifically, for each couple of cells i and j, we compute the average
daily Mutual Information between zi

day,h and zj
day,h: 1

N
∑N

day=1 I(zi
day,h; zj

day,h).
Mutual information is a natural measure of non-linear dependence quantifying the

amount of information obtained about one time-series through the other one. Therefore,
it measures how synchronized the two series are, and it is computed as:

I
(
zi

day,h; zj
day,h

)
=

∫

zi
day,h

∫

zj
day,h

p
(
zi

day,h, zj
day,h

)
log

( p(zi
day,h, zj

day,h)

p(zi
day,h)p(zj

day,h)

)

.

This approach computes a single average (within and between) synchronization for the
whole time of observation (one month with our data). So, even if short-term events can
spur sudden synchronization, the average value reflects longer-term trends in the behav-
ioral patterns in the regions.

Figure 3 shows the distribution of between and within synchronization for the NUTS-3
regions under analysis. We consider the mean (among cells) of between and within syn-
chronization as the reference value for each region (to be used in the regression model
described below).

As aforementioned in the Introduction Section, we postulate that:
• High levels of within synchronization reflect the tendency of people to communicate

together within their spatial cluster (i.e., municipality).
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Figure 3 Violin plots, ordered by the median within synchronization, showing the average between and within
synchronization of each city

• High levels of between synchronization reflect instead the tendency of people to
communicate together across different spatial clusters (i.e., municipalities).

We therefore use these two synchronization measures, computed from passively col-
lected human behavioural data, to describe traditional proxies for social capital used in
economics literature such as Referendums turnout, Association density and Blood dona-
tions.

In summary, for each of the 16 NUTS-3 regions under analysis, we compute the respec-
tive synchronization indices (i.e., within and between synchronization) and extract the tra-
ditional proxies for social capital. We check via Moran’s I test that the obtained variables
are not spatially auto-correlated, then we apply the linear regression analysis described in
the following section.

2.1 Regression analysis
To validate our hypotheses, we describe the three social capital measures (i.e., Referen-
dums turnout, Blood donations, and Association density) by means of three Ordinary
Least Squares (OLS) models where the independent variables are: (i) within synchroniza-
tion, (ii) between synchronization, and (iii) per-capita income. In principle many factors
could affect the level of social capital and thus affect our estimation: the quality of insti-
tutions, the level of education, the degree of income inequality, to mention some. Follow-
ing Alesina et al. [35] and Guiso et al. [36] we here consider per-capita income as a sole
co-variate for the regression, to keep our estimates parsimonious, and use the level of per-
capita income as a general proxy for these factors. Indeed higher per-capita income has
been shown to be related to the strength of local institutions [37] and to the quality of
education systems [18]. In Appendix C we report an additional set of regression analyses
using the fraction of illiterate population, a good proxy for the level of education, as a sole
covariate for the regression.

Between and within synchronization across NUTS-3 regions are highly correlated
(ρ = 0.9), raising multicollinearity issues. Having correlated regressors, we have to rely on
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multiple metrics to illustrate the statistical significance and importance of the variables
in our model [38]. Thus, we report and discuss the variable importance through the beta
weights, structure coefficients [39], commonality analysis components [40], dominance
analysis [41] and Lindeman, Merenda, and Gold’s (LMG) method [42].

Beta weights are often relied on to assess regressors’ importance [39]. Beta weights
indicate the expected increase/decrease in the dependent variable (e.g., Referendums
turnout), expressed in standard deviation units, given a one standard deviation increase in
such independent variable with all other independent variables held constant. However,
the sole reliance on beta weights to interpret the contribution of each independent vari-
able is justified only when the independent variables are perfectly uncorrelated [43]. In
fact, beta weights may receive credit for explained variance shared with other regressors,
while beta weights of the other regressors are not given credit for this shared variance [43].
Therefore, the contribution of the other regressors to the regression effect may be not fully
captured. Moreover, beta weights have also limitations in determining suppression effects
in a regression, that is, a regressor that contributes little or no variance to the dependent
variable but it may have a large non-zero beta weight because it purifies one or more re-
gressors of their irrelevant variance, thereby increasing its or theirs predictive power [44].

Structure coefficients quantify the strength of the bi-variate relationship between each
regressor and the dependent variable in isolation from other correlations between regres-
sors and dependent variable. Hence, they are a useful measure of the direct effect of a
regressor [39]. Being only a measure of direct effect, they are unable to identify regressors
sharing explained variance in the dependent variable, and thus to quantify the amount of
this shared variance [39]. Instead, the LMG measure can be thought as the average im-
provement of regressor X1, over all models of size s without X1 [42].

In order to quantify the contribution that each regressor shares with every other set of
regressors, we also perform a commonality analysis [40]. This technique decomposes R2,
and thus the total effect (TotCA), into its unique (UCA) and common (CCA) effects. Unique
effects indicate how much variance is uniquely accounted for by a single regressor; while
common effects indicate how much variance is common to each set of regressors [40].
It is worth noting that if the regressors are all uncorrelated, the contributions of all re-
gressors are unique effects, as no variance is shared between independent variables in the
prediction of the dependent variable.

Moreover, we use dominance analysis [41] to determine the importance of a regressor
based on comparisons of unique variance contributions of all pair of independent variables
to regression equations involving all possible subsets of regressors. Interestingly, domi-
nance analysis is a technique able to quantify (i) the direct effect of a regressor in isolation
from other regressors, as the subset containing no other regressors includes zero-squared
correlations, (ii) the total effect, as it compares the unique variance contributions of the
regressors when all of them are included in the model, and (iii) the partial effect, as it
compares the unique variance contributions of the regressors for all the possible subsets
of them.

3 Results
Results of OLS models are shown in Table 1, where we report the adjusted R2

adj
b of the OLS

using between synchronization, within synchronization and per-capita income as covari-
ates.
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Table 1 Referendums turnout, Blood donations, Association density represented by between and
within synchronization, controlled for per-capita income were tested using commonality analysis. As
for statistical significance of the beta weights, we use the following notation: ∗p < 0.05, ∗∗p < 0.01

β (95% CI) rs UCA CCA TotCA LMG

Referendums turnout
(R2adj : 0.68)
Between sync –0.12∗∗ (–0.20, –0.05) –0.76 0.27 0.16 0.43 0.38
Within sync 0.09∗ (0.01, 0.18) –0.63 0.13 0.16 0.30 0.20
Per-capita income 0.06∗∗ (0.02, 0.10) 0.75 0.30 0.12 0.42 0.40

Blood donations
(R2adj : 0.55)
Between sync –24.91∗∗ (–40.44, –9.37) –0.79 0.36 0.03 0.40 0.52
Within sync 19.49∗ (2.45, 36.54) –0.58 0.18 0.03 0.21 0.24
Per-capita income 8.49∗ (0.67, 16.31) 0.57 0.16 0.04 0.21 0.22

Association density
(R2adj : 0.52)
Between sync –21.88∗∗ (–37.54, –6.23) –0.48 0.29 –0.15 0.14 0.30
Within sync 22.96∗ (5.78, 40.14) –0.31 0.27 –0.21 0.06 0.27
Per-capita income 13.00∗∗ (5.12, 20.88) 0.71 0.41 –0.09 0.31 0.42

Figure 4 (Upper) Lindeman, Merenda and Gold relative importance of the independent variables we used in
our model; (lower) total, common and unique contribution of the independent variables we used in our
model. (BS): between synchronization. (I): per-capita income. (WS): within synchronization

The variable importance of the independent variables is reported through the Beta
weights, the structure coefficients [39], the commonality analysis components [40], the
dominance analysis [41] and the Lindeman, Merenda, and Gold’s (LMG) method [42].
Figure 4 summarizes the results of two of the most used variable importance metrics.
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Table 2 Referendums turnout: Dominance analysis output. The� symbol represents the
dominance of a variable A on B. The × symbol represents the dominance of a variable B on A. In
empty cells dominance could not be established between regressors

Dominance Complete Conditional General

Between sync > within sync � � �
Between sync > per-capita income ×
Within sync > per-capita income × × ×

Table 3 Blood donations: Dominance analysis output. The� symbol represents the dominance of a
variable A on B

Dominance Complete Conditional General

Between sync > within sync � � �
Between sync > per-capita income � � �
Within sync > per-capita income � � �

Here we provide a detailed analysis of each social capital proxy used in economics liter-
ature.

Referendums turnouts. The first group of rows of Table 1 shows that between syn-
chronization contributes the most to the regression equation (β = –0.12), while hold-
ing all other regressors constant. It is the most correlated variable with the predicted
Referendums turnout (rs = –0.76) and the major contributor to the regression effect
(TotCA = 0.43), where 27.2% of regression effects is unique and 16.2% is in common with
the other variables. The relative importance of between synchronization (TotCA = 0.43 and
LMG = 0.38) is closely related to the one of per-capita income (TotCA = 0.42 and
LMG = 0.40). Dominance analysis confirms this importance (see Table 2).

The second most important beta weight is within synchronization that, besides its posi-
tive value, has negative correlation with Referendums turnout (rs = –0.63). This may indi-
cate that the regression effect was confounded by all the variables included in the model
but they all contribute substantially in the explanation of Referendums turnout (all CCA

and TotCA values are greater than zero).
Blood donations. From the second group of rows of Table 1 we observe that between syn-

chronization holds the highest contribution to the regression in all the metrics, account-
ing for 52% of the importance in the model (β = –24.91), highest total (TotCA = 0.40) and
unique contribution (UCA = 0.36).

The second most important beta weight is within synchronization that, besides its pos-
itive value, has negative correlation with Blood donations (rs = –0.580). This may indicate
that the regression effect was confounded by all the variables included in the model but
they all contribute substantially in the explanation of Blood donations (all CCA and TotCA

values are greater than zero). The importance of within synchronization is very close to
the importance of per-capita income, but from the Dominance analysis (see Table 3) we
have that per-capita income has a minor role in the regression.

Associations density. The last group of rows in Table 1 shows that within synchronization
and between synchronization obtained the largest beta weights (β = 22.96 and β = –21.88
respectively), demonstrating the most important contributions to the regression equa-
tion, while holding all other regressors constant. Despite this, per-capita income accounts
for 42% of the importance in the model, having also the highest total (TotCA = 0.42) and
unique contribution (UCA = 0.41). From the Dominance analysis (see Table 4) it is possible
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Table 4 Association density: Dominance analysis output. The� symbol represents the dominance
of a variable A on B. The × symbol represents the dominance of a variable B on A

Dominance Complete Conditional General

Between sync > within sync � � �
Between sync > per-capita income × × ×
Within sync > per-capita income × × ×

Figure 5 (A) Relation between actual referendums turnout (as reported in the official ISTAT statistics) and
predicted referendums turnout (as inferred from mobile phone data); (B) relation between actual association
density and predicted association density; (C) relation between actual blood donations and predicted blood
donations

to see that the most important variable is indeed per-capita income, followed by between
synchronization and within synchronization.

Particularly, besides the positive value of within synchronization’s beta weight, it is neg-
atively correlated with Association density (rs = –0.31). Together, the very small structure
coefficient (r2

s = 0.09) and the negative common effect (CCA = –0.21) may indicate [45]
the suppression role of within synchronization in the regression that purifies the variance
explained by the other variables.

4 Discussion
Taken together, our results show that the models can explain the 68% of the varia-
tion in Referendums turnout (R2

adj = 0.68), the 55% of the variation in Blood donations
(R2

adj = 0.55) and the 52% of the variation in Association density (R2
adj = 0.52). Figure 5

shows the distribution of the fitted points.
Particularly, within synchronization correlates positively with social capital metrics

(β = 0.09 for Referendums turnout, β = 19.49 for Blood donations, and β = 22.96 for
Association density). Thus, this indicator informs us on the intensity of cohesion within
close-proximity groups and communities, which approximates “. . . the instantiated infor-
mal norm that promotes co-operation between two or more individuals. . . [18]”.
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In Larssen et al., individuals with strong social bonding (i.e., association and trust among
neighbors) are more likely to take civic action.

Our second indicator, between synchronization, captures the tendency of a given com-
munity (i.e., a given municipality) to communicate with many different communities
(i.e., other municipalities). Thus, more between synchronization implies more interac-
tion among multiple groups (i.e., municipalities); while less between synchronization im-
plies less interaction and more isolation among groups. Interestingly, our results correlate
negatively a high level of between synchronization with standard social capital metrics
(β = –0.12 for Referendums turnout, β = –24.91 for Blood donations, and β = –21.88 for
Association density). These findings are in line with a number of theoretical and empirical
works claiming that diversity undermines a sense of community and social cohesion [20,
35, 46–49]. For example, Alesina and La Ferrara [46] have studied whether and how much
the degree of heterogeneity in communities influences the amount of participation in dif-
ferent types of groups. Using survey data on group membership and data on localities in
United States, they found that, after controlling for many individual characteristics, par-
ticipation in associations (e.g., religious groups, hobby clubs, youth and sport groups, etc.)
is significantly lower in more different, unequal, and racially or ethnically fragmented lo-
calities.

Our results are obtained including per-capita income in the regressions, similarly to
what is done in the literature [22, 35]; controlling for wealth at the level of the NUTS-3
regions. The role of per-capita income is indeed important. We find that per-capita income
has a strong relevance in describing the Association density, while it shows a minor role
in explaining the higher Referendums turnout and Blood donations.

5 Conclusion
In this paper, we have introduced a couple of novel synchronization metrics (i.e., within
and between synchronization) that represent an innovative and efficient way to describe
traditional social capital measures (i.e., Referendum turnouts, Blood donations, and As-
sociation density). The proposed approach is, at the best of our knowledge, the first one
that combines synchronization metrics and mobile phone data, which are always up to
date and available for a very large fraction of the world population. A further merit of
our approach is the ability to identify and analyze individually the role played by the level
of cooperation within a close proximity-based community (i.e., within synchronization),
and the one played by the level of cooperation among different communities in a larger
geographical area (i.e., between synchronization). Moreover, our approach does not need
individual-level data, which is rarely shared by telecommunication operators to ensure
data confidentiality. It is also worth noting that our synchronization-based approach can
be extended easily to other sources of information such as activities on social media plat-
forms, mobility routines captured from transportation data, etc.

Social capital is a key determinant to understand neighborhood stability for crime pre-
vention, to enforce social cohesion, e.g., immigrant integration, and to create integration
tools ind addition to language and culture training. Thus, the geographical characteriza-
tion of areas with differential levels of social capital is an important tool in the hands of
policy makers aiming at specific incentive policies, which are clearly more or less effective
depending on the underlying social capital types and levels.
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Figure 6 Relation between actual deprivation
index (as reported in the official ISTAT statistics) and
predicted deprivation index (as inferred from
mobile phone data)

Table 5 Deprivation represented by between and within synchronization, controlled for per-capita
income was tested using commonality analysis

β (95% CI) rs r2s UCA CCA TotCA LMG

R2adj : 0.68
Between sync 10.84 (–4.36, 26.05) 0.76 0.58 0.10 0.35 0.46 0.27
Within sync –4.92 (–21.68, 11.83) 0.76 0.58 0.01 0.44 0.46 0.19
Per-capita income –9.91 (–18.10, –1.75) –0.85 0.73 0.30 0.27 0.57 0.52

Table 6 Deprivation Dominance analysis output. The� symbol represents the dominance of a
variable A on B. The × symbol represents the dominance of a variable B on A

Dominance Complete Conditional General

Between sync > within sync � � �
Between sync > per-capita income × × ×
Within sync > per-capita income × × ×

Appendix A: Regression using Multiple Deprivation Index
While there seems to be a growing empirical evidence that social capital contributes sig-
nificantly to sustainable development, a number of authors raise issues and point to un-
convincing and conflicting results [30, 50]. At the heart of the problem is the multiple
definitions and metrics of both social capital and sustainable development. Following this
line of research and other similar works [13, 14], we analyze the association between our
synchronization metrics (i.e., within and between synchronization) and the Multiple De-
privation Index, see Fig. 6. Multiple Deprivation Index is a synthetic measure used for an-
alyzing social exclusion. It combines information comprising household structure, level
of education and participation in the labour market. Our data is based on official ISTAT
statistics and refer to year 2013.

Having the deprivation data available only at the NUTS-2 region level, the regression is
applied only to few data-points. This issue causes high instability of the coefficients of the
OLS regression (see 95% CI column of Table 5). For this reason we show here the results
of the analysis (Table 5) and the dominance results (Table 6) without deep explanations.
Nevertheless, the explained variance is very high, meaning that this associative relation
should be further investigated in future studies.

Appendix B: Correlation matrix among variables
To present the described correlation and dominance analysis in a more intuitive way, in
Fig. 7, we report the correlation matrix among all the variables. It is possible to see that R2
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Figure 7 Correlation matrix between all the variables. The upper panel reports R2 among pairs

among pairs is lower than in the multiple regression case. The per-capita income has an
important role as confounding factor (and has been included into the covariates for this
reason), but by no means it is able to explain the regression alone.

Appendix C: Testing the robustness
We conduct some additional analyses to test the robustness of our approach. Firstly, we
verify the impact of the temporal aggregation used to compute the (within and between)
synchronization values. While in the main text, we use CDR counts aggregated using a
1-hour temporal window, in Table 7 we also report the results obtained with a 2-hours
temporal window. Results remain similar, but due to the limited number of data points we
often lose statistical significance.

A set of additional regression analyses tests whether a different covariate, i.e., the frac-
tion of illiterate population, can substitute per-capita income in the regression model. Ta-
ble 8 shows the obtained results. It is interesting to see that the use of this covariate does
not change the basic structure of our regression: positive correlation with within synchro-
nization, negative correlation with between synchronization, although statistical signifi-
cance is weaker than in the case of per-capita income. This can be partially explained by
the low number of data-points, which can influence the p-value.
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Table 7 Regression results obtained with a 2-hours time window. As for statistical significance of the
beta weights, we use the following notation: ∗p < 0.05, ∗∗p < 0.01

Referendum turnout Blood donations Association density

Between sync –0.08∗ –18.97∗ –16.68∗
Within sync 0.05 13.21 19.11∗
Per-capita income 0.06∗ 7.78 13.78∗∗

R2adj 0.54 0.43 0.42

Table 8 Referendums turnout, Blood donations, Association density represented by between and
within synchronization, controlled for population illiteracy. As for statistical significance of the beta
weights, we use the following notation: ∗p < 0.05, ∗∗p < 0.01

Referendum turnout Blood donations Association density

Between sync –0.09∗ –21.15∗ –16.44∗
Within sync 0.08 17.51 23.26∗∗
Pop. illiterate –0.06∗∗ –8.46 –17.26∗∗

R2adj 0.61 0.50 0.69
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