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A binned Dalitz plot analysis of B± → D K ± decays, with D → K 0
S π+π− and D → K 0

S K + K −, is
performed to measure the CP-violating observables x± and y± which are sensitive to the CKM angle γ .
The analysis exploits 1.0 fb−1 of data collected by the LHCb experiment. The study makes no model-
based assumption on the variation of the strong phase of the D decay amplitude over the Dalitz plot,
but uses measurements of this quantity from CLEO-c as input. The values of the parameters are found to
be x− = (0.0 ± 4.3 ± 1.5 ± 0.6) × 10−2, y− = (2.7 ± 5.2 ± 0.8 ± 2.3) × 10−2, x+ = (−10.3 ± 4.5 ± 1.8 ±
1.4) × 10−2 and y+ = (−0.9 ± 3.7 ± 0.8 ± 3.0) × 10−2. The first, second, and third uncertainties are the
statistical, the experimental systematic, and the error associated with the precision of the strong-phase
parameters measured at CLEO-c, respectively. These results correspond to γ = (44+43

−38)
◦, with a second

solution at γ → γ + 180◦, and rB = 0.07 ± 0.04, where rB is the ratio between the suppressed and
favoured B decay amplitudes.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

A precise determination of the Unitarity Triangle angle γ (also
denoted as φ3), is an important goal in flavour physics. Measure-
ments of this weak phase in tree-level processes involving the in-
terference between b → cūs and b → uc̄s transitions are expected
to be insensitive to new physics contributions, thereby providing a
Standard Model benchmark against which other observables, more
likely to be affected by new physics, can be compared. A powerful
approach for measuring γ is to study CP-violating observables in
B± → D K ± decays, where D designates a neutral D meson recon-
structed in a final state common to both D0 and D̄0 decays. Ex-
amples of such final states include two-body modes, where LHCb
has already presented results [1], and self CP-conjugate three-body
decays, such as K 0

S π+π− and K 0
S K +K − , designated collectively as

K 0
S h+h− .

The proposal to measure γ with B± → D K ± , D → K 0
S h+h−

decays was first made in Refs. [2,3]. The strategy relies on com-
paring the distribution of events in the D → K 0

S h+h− Dalitz plot
for B+ → D K + and B− → D K − decays. However, in order to de-
termine γ it is necessary to know how the strong phase of the
D decay varies over the Dalitz plot. One approach for solving this
problem, adopted by BaBar [4–6] and Belle [7–9], is to use an am-
plitude model fitted on flavour-tagged D → K 0

S h+h− decays to pro-
vide this input. An attractive alternative [2,10,11] is to make use of
direct measurements of the strong-phase behaviour in bins of the

✩ © CERN for the benefit of the LHCb Collaboration.

Dalitz plot, which can be obtained from quantum-correlated D D̄
pairs from ψ(3770) decays and that are available from CLEO-c [12],
thereby avoiding the need to assign any model-related systematic
uncertainty. A first model-independent analysis was recently pre-
sented by Belle [13] using B± → D K ± , D → K 0

S π+π− decays. In
this Letter, pp collision data at

√
s = 7 TeV, corresponding to an in-

tegrated luminosity of 1.0 fb−1 and accumulated by LHCb in 2011,
are exploited to perform a similar model-independent study of the
decay mode B± → D K ± with D → K 0

S π+π− and D → K 0
S K +K − .

The results are used to set constraints on the value of γ .

2. Formalism and external inputs

The amplitude of the decay B+ → D K + , D → K 0
S h+h− can be

written as the superposition of the B+ → D̄0 K + and B+ → D0 K +
contributions as

AB
(
m2+,m2−

) = Ā + rB ei(δB+γ ) A. (1)

Here m2+ and m2− are the invariant masses squared of the K 0
S h+

and K 0
S h− combinations, respectively, that define the position of

the decay in the Dalitz plot, A = A(m2+,m2−) is the D0 → K 0
S h+h−

amplitude, and Ā = Ā(m2+,m2−) the D̄0 → K 0
S h+h− amplitude. The

parameter rB , the ratio of the magnitudes of the B+ → D0 K +
and B+ → D̄0 K + amplitudes, is ∼ 0.1 [14], and δB is the strong-
phase difference between them. The equivalent expression for the
charge-conjugated decay B− → D K − is obtained by making the
substitutions γ → −γ and A ↔ Ā. Neglecting CP violation, which
is known to be small in D0 − D̄0 mixing and Cabibbo-favoured
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Fig. 1. Binning choices for (a) D → K 0
S π+π− and (b) D → K 0

S K + K − . The diagonal line separates the positive and negative bins.
D meson decays [15], the conjugate amplitudes are related by
A(m2+,m2−) = Ā(m2−,m2+).

Following the formalism set out in Ref. [2], the Dalitz plot is
partitioned into 2N regions symmetric under the exchange m2+ ↔
m2− . The bins are labelled from −N to +N (excluding zero), where
the positive bins satisfy m2− > m2+ . At each point in the Dalitz
plot, there is a strong-phase difference δD(m2+,m2−) = arg Ā − arg A
between the D̄0 and D0 decay. The cosine of the strong-phase dif-
ference averaged in each bin and weighted by the absolute decay
rate is termed ci and is given by

ci =
∫
Di

(|A|| Ā| cos δD)dD√∫
Di

|A|2 dD
√∫

Di
| Ā|2 dD

, (2)

where the integrals are evaluated over the area D of bin i. An
analogous expression may be written for si , which is the sine of
the strong-phase difference within bin i, weighted by the decay
rate. The values of ci and si can be determined by assuming a
functional form for |A|, | Ā| and δD , which may be obtained from
an amplitude model fitted to flavour-tagged D0 decays. Alterna-
tively direct measurements of ci and si can be used. Such mea-
surements have been performed at CLEO-c, exploiting quantum-
correlated D D̄ pairs produced at the ψ(3770) resonance. This has
been done with a double-tagged method in which one D meson
is reconstructed in a decay to either K 0

S h+h− or K 0
L h+h− , and the

other D meson is reconstructed either in a CP eigenstate or in a
decay to K 0

S h+h− . The efficiency-corrected event yields, combined
with flavour-tag information, allow ci and si to be determined [2,
10,11]. The latter approach is attractive as it avoids any assumption
about the nature of the intermediate resonances which contribute
to the K 0

S h+h− final state; such an assumption leads to a system-
atic uncertainty associated with the variation in δD that is difficult
to quantify. Instead, an uncertainty is assigned that is related to
the precision of the ci and si measurements.

The population of each positive (negative) bin in the Dalitz plot
arising from B+ decays is N+

+i (N+
−i ), and that from B− decays is

N−
+i (N−

−i). From Eq. (1) it follows that

N+
±i = hB+

[
K∓i + (

x2+ + y2+
)

K±i + 2
√

Ki K−i(x+c±i ∓ y+s±i)
]
,

N−
±i = hB−

[
K±i + (

x2− + y2−
)

K∓i + 2
√

Ki K−i(x−c±i ± y−s±i)
]
,

(3)

where hB± are normalisation factors which can, in principle, be
different for B+ and B− due to the production asymmetries, and

Ki is the number of events in bin i of the decay of a flavour-tagged
D0 → K 0

S h+h− Dalitz plot. The sensitivity to γ enters through the
Cartesian parameters

x± = rB cos(δB ± γ ) and y± = rB sin(δB ± γ ). (4)

In this analysis the observed distribution of candidates over the
D → K 0

S h+h− Dalitz plot is used to fit x± , y± and hB± . The pa-
rameters ci and si are taken from measurements performed by
CLEO-c [12]. In this manner the analysis avoids any dependence
on an amplitude model to describe the variation of the strong
phase over the Dalitz plot. A model is used, however, to provide
the input values for Ki . For the D0 → K 0

S π+π− decay the model
is taken from Ref. [5] and for the D0 → K 0

S K +K − decay the model
is taken from Ref. [6]. This choice incurs no significant systematic
uncertainty as the models have been shown to describe well the
intensity distribution of flavour-tagged D0 decay data.

The effect of D0 − D̄0 mixing is ignored in the above discussion,
and was neglected in the CLEO-c measurements of ci and si as well
as in the construction of the amplitude model used to calculate Ki .
This leads to a bias of the order of 0.2◦ in the γ determination [16]
which is negligible for the current analysis.

The CLEO-c study segments the K 0
S π+π− Dalitz plot into 2 × 8

bins. Several bin definitions are available. Here the ‘optimal bin-
ning’ variant is adopted. In this scheme the bins have been chosen
to optimise the statistical sensitivity to γ in the presence of a low
level of background, which is appropriate for this analysis. The op-
timisation has been performed assuming a strong-phase difference
distribution as predicted by the BaBar model presented in Ref. [5].
The use of a specific model in defining the bin boundaries does
not bias the ci and si measurements. If the model is a poor de-
scription of the underlying decay the only consequence will be to
reduce the statistical sensitivity of the γ measurement.

For the K 0
S K +K − final state ci and si measurements are avail-

able for the Dalitz plot partitioned into 2 × 2, 2 × 3 and 2 × 4 bins,
with the guiding model being that from the BaBar study described
in Ref. [6]. The bin boundaries divide the Dalitz plot into bins of
equal size with respect to the strong-phase difference between the
D0 and D̄0 amplitudes. The current analysis adopts the 2 × 2 op-
tion, a decision driven by the size of the signal sample. The binning
choices for the two decay modes are shown in Fig. 1.

3. The LHCb detector

The LHCb detector [17] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5. The detector includes
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a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector (VELO) located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift-tubes placed downstream. The com-
bined tracking system has a momentum resolution of (0.4–0.6)% in
the range of 5–100 GeV/c, and an impact parameter (IP) resolu-
tion of 20 μm for tracks with high transverse momentum (pT).
The dipole magnet can be operated in either polarity and this
feature is used to reduce systematic effects due to detector asym-
metries. In the data set considered in this analysis, 58% of data
were taken with one polarity and 42% with the other. Charged
hadrons are identified using two ring-imaging Cherenkov (RICH)
detectors. Photon, electron and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorime-
ter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

A two-stage trigger is employed. First a hardware-based deci-
sion is taken at a frequency up to 40 MHz. It accepts high trans-
verse energy clusters in either the electromagnetic calorimeter or
hadron calorimeter, or a muon of high pT. For this analysis, it is
required that one of the charged final-state tracks forming the B±
candidate points at a deposit in the hadron calorimeter, or that the
hardware-trigger decision was taken independently of these tracks.
A second trigger level, implemented in software, receives 1 MHz
of events and retains ∼0.3% of them [18]. It searches for a track
with large pT and large IP with respect to any pp interaction point
which is called a primary vertex (PV). This track is then required
to be part of a two-, three- or four-track secondary vertex with a
high pT sum, significantly displaced from any PV. In order to max-
imise efficiency at an acceptable trigger rate, the displaced vertex
is selected with a decision tree algorithm that uses pT, impact pa-
rameter, flight distance and track separation information. Full event
reconstruction occurs offline, and a loose preselection is applied.

Approximately three million simulated events for each of the
modes B± → D(K 0

S π+π−)K ± and B± → D(K 0
S π+π−)π± , and

one million simulated events for each of B± → D(K 0
S K +K −)K ±

and B± → D(K 0
S K +K −)π± are used in the analysis, as well as

a large inclusive sample of generic B → D X decays for back-
ground studies. These samples are generated using a version of
Pythia 6.4 [19] tuned to model the pp collisions [20]. EvtGen [21]
encodes the particle decays in which final state radiation is gener-
ated using Photos [22]. The interaction of the generated particles
with the detector and its response are implemented using the
Geant4 toolkit [23] as described in Ref. [24].

4. Event selection and invariant mass spectrum fit

Selection requirements are applied to isolate both B± → D K ±
and B± → Dπ± candidates, with D → K 0

S h+h− . Candidates se-
lected in the Cabibbo-favoured B± → Dπ± decay mode provide
an important control sample which is exploited in the analysis.

A production vertex is assigned to each B candidate. This is the
PV for which the reconstructed B trajectory has the smallest IP
χ2, where this quantity is defined as the difference in the χ2 fit
of the PV with and without the tracks of the considered particle.
The K 0

S candidates are formed from two oppositely charged tracks
reconstructed in the tracking stations, either with associated hits
in the VELO detector (long K 0

S candidate) or without (downstream
K 0

S candidate). The IP χ2 with respect to the PV of each of the
long (downstream) K 0

S daughters is required to be greater than
16 (4). The angle θ between the K 0

S candidate momentum and the
vector between the decay vertex and the PV, expected to be small

given the high momentum of the B meson, is required to satisfy
cos θ > 0.99, reducing background from combinations of random
tracks.

The D meson candidates are reconstructed by combining the
long (downstream) K 0

S candidates with two oppositely charged
tracks for which the values of the IP χ2 with respect to the PV
are greater than 9 (16). In the case of the D → K 0

S K +K − a loose
particle identification (PID) requirement is placed on the kaons
to reduce combinatoric backgrounds. The IP χ2 of the candidate
D with respect to any PV is demanded to be greater than 9 in
order to suppress directly produced D mesons, and the angle θ

between the D candidate momentum and the vector between the
decay and PV is required to satisfy the same criterion as for the
K 0

S selection (cos θ > 0.99). The invariant mass resolution of the
signal is 8.7 MeV/c2 (11.9 MeV/c2) for D mesons reconstructed
with long (downstream) K 0

S candidates, and a common window of
±25 MeV/c2 is imposed around the world average D0 mass [15].
The K 0

S mass is determined after the addition of a constraint that
the invariant mass of the two D daughter pions or kaons and
the two K 0

S daughter pions have the world average D mass. The
invariant mass resolution is 2.9 MeV/c2 (4.8 MeV/c2) for long
(downstream) K 0

S decays. Candidates are retained for which the
invariant mass of the two K 0

S daughters lies within ±15 MeV/c2

of the world average K 0
S mass [15].

The D meson is combined with a candidate kaon or pion bach-
elor particle to form the B candidate. The IP χ2 of the bachelor
with respect to the PV is required to be greater than 25. In or-
der to ensure good discrimination between pions and kaons in the
RICH system only tracks with momentum less than 100 GeV/c are
considered. The bachelor is considered as a candidate kaon (pion)
according to whether it passes (fails) a cut placed on the output
of the RICH PID algorithm. The PID information is quantified as a
difference between the logarithm of the likelihood under the mass
hypothesis of a pion or a kaon. Criteria are then imposed on the
B candidate: that the angle between its momentum and the vec-
tor between the decay and the PV should have a cosine greater
than 0.9999 for candidates containing long K 0

S decays (0.99995 for
downstream K 0

S decays); that the B vertex-separation χ2 with re-
spect to its PV is greater than 169; and that the B IP χ2 with
respect to the PV is less than 9. To suppress background from
charmless B decays it is required that the D vertex lies down-
stream of the B vertex. In the events with a long K 0

S candidate,
a further background arises from B± → Dh± , D → π+π−h+h−
decays, where the two pions are reconstructed as a long K 0

S can-
didate. This background is removed by requiring that the flight
significance between the D and K 0

S vertices is greater than 10.
In order to obtain the best possible resolution in the Dalitz plot

of the D decay, and to provide further background suppression, the
B , D and K 0

S vertices are refitted with additional constraints on the
D and K 0

S masses, and the B momentum is required to point back
to the PV. The χ2 per degree of freedom of the fit is required to
be less than 5.

Less than 0.4% of the selected events are found to contain two
or more candidates. In these events only the B candidate with the
lowest χ2 per degree of freedom from the refit is retained for sub-
sequent study. In addition, 0.4% of the candidates are found to have
been reconstructed such that their D Dalitz plot coordinates lie
outside the defined bins, and these too are discarded.

The invariant mass distributions of the selected candidates are
shown in Fig. 2 for B± → D K ± and B± → Dπ± , with D →
K 0

S π+π− decays, divided between the long and downstream K 0
S

categories. Fig. 3 shows the corresponding distributions for final
states with D → K 0

S K +K − , here integrated over the two K 0
S cate-

gories. The result of an extended, unbinned, maximum likelihood
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Fig. 2. Invariant mass distributions of (a, c) B± → D K ± and (b, d) B± → Dπ± candidates, with D → K 0
S π+π− , divided between the (a, b) long and (c, d) downstream K 0

S
categories. Fit results, including the signal and background components, are superimposed.

Fig. 3. Invariant mass distributions of (a) B± → D K ± and (b) B± → Dπ± candidates, with D → K 0
S K + K − , shown with both K 0

S categories combined. Fit results, including

the signal and background components, are superimposed.

fit to these distributions is superimposed. The fit is performed
simultaneously for B± → D K ± and B± → Dπ± , including both
D → K 0

S π+π− and D → K 0
S K +K − decays, allowing several param-

eters to be different for long and downstream K 0
S categories. The

fit range is between 5110 MeV/c2 and 5800 MeV/c2 in invariant
mass. At this stage in the analysis the fit does not distinguish be-
tween the different regions of Dalitz plot or B meson charge. The
purpose of this global fit is to determine the parameters that de-
scribe the invariant mass spectrum in preparation for the binned
fit described in Section 5.

The signal probability density function (PDF) is a Gaussian func-
tion with asymmetric tails where the unnormalised form is given
by

f (m;m0,αL,αR ,σ )

=
{

exp[−(m − m0)
2/(2σ 2 + αL(m − m0)

2)], m < m0;
exp[−(m − m0)

2/(2σ 2 + αR(m − m0)
2)], m > m0; (5)

where m is the candidate mass, m0 the B mass and σ , αL , and
αR are free parameters in the fit. The parameter m0 is taken as
common for all classes of signal. The parameters describing the
asymmetric tails are fitted separately for events with long and
downstream K 0

S categories. The resolution of the Gaussian func-
tion is left as a free parameter for the two K 0

S categories, but
the ratio between this resolution in B± → D K ± and B± → Dπ±
decays is required to be the same, independent of category. The
resolution is determined to be around 15 MeV/c2 for B± → Dπ±
decays of both K 0

S classes, and is smaller by a factor 0.95 ± 0.06
for B± → D K ± . The yield of B± → Dπ± candidates in each cat-
egory is determined in the fit. Instead of fitting the yield of
the B± → D K ± candidates separately, the ratio R = N(B± →
D K ±)/N(B± → Dπ±) is a free parameter and is common across
all categories.

The background has contributions from random track combina-
tions and partially reconstructed B decays. The random track com-
binations are modelled by linear PDFs, the parameters of which are
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Table 1
Yields and statistical uncertainties in the signal region from the invariant mass fit, scaled from the full fit mass range, for candidates passing the
B± → Dh± , D → K 0

S π+π− selection. Values are shown separately for candidates containing long and downstream K 0
S decays. The signal region is

between 5247 MeV/c2 and 5317 MeV/c2 and the full fit range is between 5110 MeV/c2 and 5800 MeV/c2.

Fit component B± → D K ± selection B± → Dπ± selection

Long Downstream Long Downstream

B± → D K ± 213 ± 13 441 ± 25 – –
B± → Dπ± 11 ± 3 22 ± 5 2809 ± 56 5755 ± 82
Combinatoric 9 ± 4 29 ± 6 22 ± 3 90 ± 7
Partially reconstructed 11 ± 1 25 ± 2 25 ± 1 55 ± 1

Table 2
Yields and statistical uncertainties in the signal region from the invariant mass fit, scaled from the full fit mass range, for candidates passing the
B± → Dh± , D → K 0

S K + K − selection. Values are shown separately for candidates containing long and downstream K 0
S decays. The signal region is

between 5247 MeV/c2 and 5317 MeV/c2 and the full fit range is between 5110 MeV/c2 and 5800 MeV/c2.

Fit component B± → D K ± selection B± → Dπ± selection

Long Downstream Long Downstream

B± → D K ± 32 ± 2 70 ± 4 – –
B± → Dπ± 1.6 ± 1.2 3.4 ± 1.8 417 ± 20 913 ± 29
Combinatoric 0.6 ± 0.5 2.5 ± 0.9 4.8 ± 1.4 18 ± 2
Partially reconstructed 2.2 ± 0.4 2.9 ± 0.5 3.7 ± 0.3 7.7 ± 0.5
floated separately for each class of decay. Partially reconstructed
backgrounds are described empirically. Studies of simulated events
show that the partially reconstructed backgrounds are dominated
by decays that involve a D meson decaying to K 0

S h+h− . Therefore
the same PDF is used to describe these backgrounds as used in a
similar analysis of B± → D K ± decays, with D → K ±π∓ , K +K −
and π+π− [1]. In that analysis the shape was constructed by ap-
plying the selection to a large simulated sample containing many
common backgrounds, each weighted by its production rate and
branching fraction. The invariant mass distribution for the surviv-
ing candidates was corrected to account for small differences in
resolution and PID performance between data and simulation, and
two background PDFs were extracted by kernel estimation [25];
one for B± → D K ± and one for B± → Dπ± decays. The partially
reconstructed background PDFs are found to give a good descrip-
tion of both K 0

S categories.
An additional and significant background component exists in

the B± → D K ± sample, arising from the dominant B± → Dπ±
decay on those occasions where the bachelor particle is misiden-
tified as a kaon by the RICH system. In contrast, the B± → D K ±
contamination in the B± → Dπ± sample can be neglected. The
size of this background is calculated through knowledge of PID and
misidentification efficiencies, which are obtained from large sam-
ples of kinematically selected D∗± → Dπ± , D → K ∓π± decays.
The kinematic properties of the particles in the calibration sam-
ple are reweighted to match those of the bachelor particles in the
B decay sample, thereby ensuring that the measured PID perfor-
mance is representative of that in the B decay sample. The effi-
ciency to identify a kaon correctly is found to be around 86%, and
that for a pion to be around 96%. The misidentification efficien-
cies are the complements of these numbers. From this information
and from knowledge of the number of reconstructed B± → Dπ±
decays, the amount of this background surviving the B± → D K ±
selection can be determined. The invariant mass distribution of the
misidentified candidates is described by a Crystal Ball function [26]
with the tail on the high mass side, the parameters of which are
fitted in common between all the B± → D K ± samples.

The number of B± → D K ± candidates in all categories is de-
termined by R, and the number of B± → Dπ± events in the
corresponding category. The ratio R is determined in the fit and
measured to be 0.085 ± 0.005 (statistical uncertainty only) and is
consistent with that observed in Ref. [1]. The yields returned by

the invariant mass fit in the full fit region are scaled to the sig-
nal region, defined as 5247–5317 MeV/c2, and are presented in
Tables 1 and 2 for the D → K 0

S π+π− and D → K 0
S K +K − selec-

tions respectively. In the B± → D(K 0
S π+π−)K ± sample there are

654 ± 28 signal candidates, with a purity of 86%. The correspond-
ing numbers for the B± → D(K 0

S K +K −)K ± sample are 102 ± 5
and 88%, respectively. The contamination in the B± → D K ± selec-
tion receives approximately equal contributions from misidentified
B± → Dπ± decays, combinatoric background and partially recon-
structed decays. The partially reconstructed component in the sig-
nal region is dominated by decays of the type B → Dρ , in which
a charged pion from the ρ decay is misidentified as the bachelor
kaon, and B± → D∗π± , again with a misidentified pion.

The Dalitz plots for B± → D K ± data in the signal region for the
two D → K 0

S h+h− final states are shown in Fig. 4. Separate plots
are shown for B+ and B− decays.

5. Binned Dalitz fit

The purpose of the binned Dalitz plot fit is to measure the
CP-violating parameters x± and y± , as introduced in Section 2.
Following Eq. (3) these parameters can be determined from the
populations of each B± → D K ± Dalitz plot bin given the external
information that is available for the ci , si and Ki parameters. In or-
der to know the signal population in each bin it is necessary both
to subtract background and to correct for acceptance losses from
the trigger, reconstruction and selection.

Although the absolute numbers of B+ and B− decays integrated
over the Dalitz plot have some dependence on x± and y± , the ad-
ditional sensitivity gained compared to using just the relative bin-
to-bin yields is negligible, and is therefore not used. Consequently
the analysis is insensitive to any B production asymmetries, and
only knowledge of the relative acceptance is required. The relative
acceptance is determined from the control channel B± → Dπ± . In
this decay the ratio of b → uc̄d to b → cūd amplitudes is expected
to be very small (∼ 0.005) and thus, to a good approximation,
interference between the transitions can be neglected. Hence the
relative population of decays expected in each B± → Dπ± Dalitz
plot bin can be predicted using the Ki values calculated with the
D → K 0

S h+h− model. Dividing the background-subtracted yield ob-
served in each bin by this prediction enables the relative accep-
tance to be determined, and then applied to the B± → D K ± data.
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Fig. 4. Dalitz plots of B± → D K ± candidates in the signal region for (a, b) D → K 0
S π+π− and (c, d) D → K 0

S K + K − decays, divided between (a, c) B+ and (b, d) B− . The
boundaries of the kinematically-allowed regions are also shown.
In order to optimise the statistical precision of this procedure, the
bins +i and −i are combined in the calculation, since the efficien-
cies in these symmetric regions are expected to be the same in the
limit that there are no charge-dependent reconstruction asymme-
tries. It is found that the variation in relative acceptance between
non-symmetric bins is at most ∼ 50%, with the lowest efficiency
occurring in those regions where one of the pions has low mo-
mentum.

Separate fits are performed to the B+ and B− data. Each fit
simultaneously considers the two K 0

S categories, the B± → D K ±
and B± → Dπ± candidates, and the two D → K 0

S h+h− final states.
In order to assess the impact of the D → K 0

S K +K − data the fit
is then repeated including only the D → K 0

S π+π− sample. The
PDF parameters for both the signal and background invariant mass
distributions are fixed to the values determined in the global fit.
The yields of all the background contributions in each bin are free
parameters, apart from bins where a very low contribution is de-
termined from an initial fit, in which case they are fixed to zero,
to facilitate the calculation of the error matrix. The yields of sig-
nal candidates for each bin in the B± → Dπ± sample are also free
parameters. The amount of signal in each bin for the B± → D K ±
sample is determined by varying the integrated yield and the x±
and y± parameters.

A large ensemble of simulated experiments are performed to
validate the fit procedure. In each experiment the number and
distribution of signal and background candidates are generated

according to the expected distribution in data, and the full fit pro-
cedure is then executed. The values for x± and y± are set close
to those determined by previous measurements [14]. It is found
from this exercise that the errors are well estimated. Small biases
are, however, observed in the central values returned by the fit
and these are applied as corrections to the results obtained on
data. The bias is (0.2–0.3) × 10−2 for most parameters but rises
to 1.0 × 10−2 for y+ . This bias is due to the low yields in some
of the bins and is an inherent feature of the maximum likelihood
fit. This behaviour is associated with the size of data set being fit,
since when simulated experiments are performed with larger sam-
ple sizes the biases are observed to reduce.

The results of the fits are presented in Table 3. The system-
atic uncertainties are discussed in Section 6. The statistical un-
certainties are compatible with those predicted by simulated ex-
periments. The inclusion of the D → K 0

S K +K − data improves the
precision on x± by around 10%, and has little impact on y± . This
behaviour is expected, as the measured values of ci in this mode,
which multiply x± in Eq. (4), are significantly larger than those
of si , which multiply y± . The two sets of results are compatible
within the statistical and uncorrelated systematic uncertainties.

The measured values of (x±, y±) from the fit to all data, with
their statistical likelihood contours are shown in Fig. 5. The ex-
pected signature for a sample that exhibits CP violation is that
the two vectors defined by the coordinates (x−, y−) and (x+, y+)

should both be non-zero in magnitude, and have different phases.
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Table 3
Results for x± and y± from the fits to the data in the case when both D →
K 0

S π+π− and D → K 0
S K + K − are considered and when only the D → K 0

S π+π− fi-
nal state is included. The first, second, and third uncertainties are the statistical, the
experimental systematic, and the error associated with the precision of the strong-
phase parameters, respectively. The correlation coefficients are calculated including
all sources of uncertainty (the values in parentheses correspond to the case where
only the statistical uncertainties are considered).

Parameter All data D → K 0
S π+π− alone

x− [×10−2] 0.0 ± 4.3 ± 1.5 ± 0.6 1.6 ± 4.8 ± 1.4 ± 0.8
y− [×10−2] 2.7 ± 5.2 ± 0.8 ± 2.3 1.4 ± 5.4 ± 0.8 ± 2.4
corr(x−, y−) −0.10 (−0.11) −0.12 (−0.12)
x+ [×10−2] −10.3 ± 4.5 ± 1.8 ± 1.4 −8.6 ± 5.4 ± 1.7 ± 1.6
y+ [×10−2] −0.9 ± 3.7 ± 0.8 ± 3.0 −0.3 ± 3.7 ± 0.9 ± 2.7
corr(x+, y+) 0.22 (0.17) 0.20 (0.17)

Fig. 5. One (solid), two (dashed) and three (dotted) standard deviation confidence
levels for (x+, y+) (blue) and (x−, y−) (red) as measured in B± → D K ± decays
(statistical only). The points represent the best fit central values. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this Letter.)

The data show this behaviour, but are also compatible with the no
CP violation hypothesis.

In order to investigate whether the binned fit gives an adequate
description of the data, a study is performed to compare the ob-
served number of signal candidates in each bin with that expected
given the fitted total yield and values of x± and y± . The num-
ber of signal candidates is determined by fitting in each bin for
the B± → D K ± contribution for long and downstream K 0

S decays
combined, with no assumption on how this component is dis-
tributed over the Dalitz plot. Fig. 6 shows the results in effective
bin number separately for NB++B− , the sum of B+ and B− candi-
dates, which is a CP-conserving observable, and for the difference
NB+−B− , which is sensitive to CP violation. The effective bin num-
ber is equal to the normal bin number for B+ , but is defined to
be this number multiplied by −1 for B− . The expectations from
the (x± , y±) fit are superimposed as is, for the NB+−B− distribu-
tion, the prediction for the case x± = y± = 0. Note that the zero
CP violation prediction is not a horizontal line at NB+−B− = 0 be-
cause it is calculated using the total B+ and B− yields from the
full fit, and using bin efficiencies that are determined separately
for each sample. The data and fit expectations are compatible for
both distributions yielding a χ2 probability of 10% for NB++B− and
34% for NB+−B− . The results for the NB+−B− distribution are also
compatible with the no CP violation hypothesis (χ2 probability =
16%).

6. Systematic uncertainties

Systematic uncertainties are evaluated for the fits to the full
data sample and are presented in Table 4. In order to understand
the impact of the CLEO-c (ci, si) measurements the errors arising
from this source are kept separate from the other experimental
uncertainties. Table 5 shows the uncertainties for the case where
only D → K 0

S π+π− decays are included. Each contribution to the
systematic uncertainties is now discussed in turn.

The uncertainties on the shape parameters of the invariant
mass distributions as determined from the global fit when prop-
agated through to the binned analysis induce uncertainties on x±
and y± . In addition, consideration is given to certain assumptions
Fig. 6. Signal yield in effective bins compared with prediction of (x±, y±) fit (black histogram) for D → K 0
S π+π− and D → K 0

S K + K − . Figure (a) shows the sum of B+ and
B− yields. Figure (b) shows the difference of B+ and B− yields. Also shown (dashed line and grey shading) is the expectation and uncertainty for the zero CP violation
hypothesis.
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Table 4
Summary of statistical, experimental and strong-phase uncertainties on x± and y±
in the case where both D → K 0

S π+π− and D → K 0
S K + K − decays are included in

the fit. All entries are given in multiples of 10−2.

Component σ(x−) σ (y−) σ (x+) σ (y+)

Statistical 4.3 5.2 4.5 3.7
Global fit shape parameters 0.4 0.4 0.6 0.4
Efficiency effects 0.3 0.4 0.3 0.4
CP violation in control mode 1.3 0.4 1.5 0.2
Migration 0.4 0.2 0.4 0.2
Partially reconstructed background 0.2 0.3 0.2 0.2
PID efficiency 0.1 0.2 0.2 < 0.1
Shape of misidentified B± → Dπ± 0.1 0.1 0.3 < 0.1
Bias correction 0.2 0.3 0.2 0.5

Total experimental systematic 1.5 0.9 1.8 0.8

Strong-phase systematic 0.6 2.3 1.4 3.0

Table 5
Summary of statistical, experimental and strong-phase uncertainties on x± and y±
in the case where only D → K 0

S π+π− decays are included in the fit. All entries are
given in multiples of 10−2.

Component σ(x−) σ (y−) σ (x+) σ (y+)

Statistical 4.8 5.4 5.4 3.7
Global fit shape parameters 0.4 0.4 0.6 0.4
Efficiency effects 0.2 0.2 0.3 0.4
CP violation in control mode 1.2 0.5 1.5 0.2
Migration 0.4 0.2 0.4 0.2
Partially reconstructed background 0.1 0.1 0.3 0.2
PID efficiency < 0.1 0.2 < 0.1 < 0.1
Shape of misidentified B± → Dπ± 0.1 < 0.1 0.1 < 0.1
Bias correction 0.2 0.3 0.2 0.6

Total experimental systematic 1.4 0.8 1.7 0.9

Strong-phase systematic 0.8 2.4 1.6 2.7

made in the fit. For example, the slope of the combinatoric back-
ground in the data set containing D → K 0

S K +K − decays is fixed to
be zero on account of the limited sample size. The induced errors
associated with these assumptions are evaluated and found to be
small compared to those coming from the parameter uncertainties
themselves, which vary between 0.4×10−2 and 0.6×10−2 for the
fit to the full data sample.

The analysis assumes an efficiency that is flat across each Dalitz
plot bin. In reality the efficiency varies, and this leads to a poten-
tial bias in the determination of x± and y± , since the non-uniform
acceptance means that the values of (ci, si) appropriate for the
analysis can differ from those corresponding to the flat-efficiency
case. The possible size of this effect is evaluated in LHCb simula-
tion by dividing each Dalitz plot bin into many smaller cells, and
using the BaBar amplitude model [5,6] to calculate the values of ci
and si within each cell. These values are then averaged together,
weighted by the population of each cell after efficiency losses, to
obtain an effective (ci, si) for the bin as a whole, and the results
compared with those determined assuming a flat efficiency. The
differences between the two sets of results are found to be small
compared with the CLEO-c measurement uncertainties. The data
fit is then rerun many times, and the input values of (ci, si) are
smeared according to the size of these differences, and the mean
shifts are assigned as a systematic uncertainty. These shifts vary
between 0.2 × 10−2 and 0.3 × 10−2.

The relative efficiency in each Dalitz plot bin is determined
from the B± → Dπ± control sample. Biases can enter the mea-
surement if there are differences in the relative acceptance over
the Dalitz plot between the control sample and that of signal
B± → D K ± decays. Simulation studies show that the acceptance
shapes are very similar between the two decays, but small vari-
ations exist which can be attributed to kinematic correlations in-

duced by the different PID requirements on the bachelor particle
from the B decay. When included in the data fit, these varia-
tions induce biases that vary between 0.1 × 10−2 and 0.3 × 10−2.
In addition, a check is performed in which the control sample
is fitted without combining together bins +i and −i in the effi-
ciency calculation. As a result of this study small uncertainties of
� 0.3 × 10−2 are assigned for the D → K 0

S K +K − measurement to
account for possible biases induced by the difference in interaction
cross-section for K − and K + mesons interacting with the detec-
tor material. These contributions are combined together with the
uncertainty arising from efficiency variation within a Dalitz plot
bin to give the component labelled ‘Efficiency effects’ in Tables 4
and 5.

The use of the control channel to determine the relative effi-
ciency on the Dalitz plot assumes that the amplitude of the sup-
pressed tree diagram is negligible. If this is not the case then the
B− final state will receive a contribution from D̄0 decays, and this
will lead to the presence of CP violation via the same mechanism
as in B → D K decays. The size of any CP violation that exists
in this channel is governed by rDπ

B , γ and δDπ
B , where the pa-

rameters with superscripts are analogous to their counterparts in
B± → D K ± decays. The naive expectation is that rDπ

B ∼ 0.005 but
larger values are possible, and the studies reported in Ref. [1] are
compatible with this possibility. Therefore simulated experiments
are performed with finite CP violation injected in the control chan-
nel, conservatively setting rDπ

B to be 0.02, taking a wide variation
in the value of the unknown strong-phase difference δDπ

B , and
choosing γ = 70◦ . The experiments are fit under the no CP vio-
lation hypothesis and the largest shifts observed are assigned as
a systematic uncertainty. This contribution is the largest source of
experimental systematic uncertainty in the measurement, for ex-
ample contributing an error of 1.5 × 10−2 in the case of x+ in the
full data fit.

The resolution of each decay on the Dalitz plot is approxi-
mately 0.004 GeV2/c4 for candidates with long K 0

S decays and
0.006 GeV2/c4 for those containing downstream K 0

S in the m2+ and
m2− directions. This is small compared to the typical width of a bin,
nonetheless some net migration is possible away from the more
densely populated bins. At first order this effect is accounted for
by use of the control channel, but residual effects enter because
of the different distribution in the Dalitz plot of the signal events.
Once more a series of simulated experiments is performed to as-
sess the size of any possible bias which is found to vary between
0.2 × 10−2 and 0.4 × 10−2.

The distribution of the partially reconstructed background is
varied over the Dalitz plot according to the uncertainty in the
make-up of this background component. From these studies an un-
certainty of (0.2–0.3) × 10−2 is assigned to the fit parameters in
the full data fit.

Two systematic uncertainties are evaluated that are associated
with the misidentified B± → Dπ± background in the B± → D K ±
sample. Firstly, there is a 0.2 × 10−2 uncertainty on the knowledge
of the efficiency of the PID cut that distinguishes pions from kaons.
This is found to have only a small effect on the measured values of
x± and y± . Secondly, it is possible that the invariant mass distribu-
tion of the misidentified background is not constant over the Dalitz
plot, as is assumed in the fit. This can occur through kinematic cor-
relations between the reconstruction efficiency on the Dalitz plot
of the D decay and the momentum of the bachelor pion from
the B± decay. Simulated experiments are performed with differ-
ent shapes input according to the Dalitz plot bin and the results of
simulation studies, and these experiments are then fitted assum-
ing a uniform shape, as in data. Uncertainties are assigned in the
range (0.1–0.3) × 10−2.
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Fig. 7. Two-dimensional projections of confidence regions onto the (γ , rB ) and (γ , δB ) planes showing the one (solid) and two (dashed) standard deviations with all uncer-
tainties included. For the (γ , rB ) projection the three (dotted) standard deviation contour is also shown. The points mark the central values.
An uncertainty is assigned to each parameter to accompany the
correction that is applied for the small bias which is present in the
fit procedure. These uncertainties are determined by performing
sets of simulated experiments, in each of which different values
of x± and y± are input, corresponding to a range that is wide
compared to the current experimental knowledge, and also encom-
passing the results of this analysis. The spread in observed bias
is taken as the systematic error, and is largest for y+ , reaching a
value of 0.5 × 10−2 in the full data fit.

Finally, several robustness checks are conducted to assess the
stability of the results. These include repeating the analysis with
alternative binning schemes for the D → K 0

S π+π− data and per-
forming the fits without making any distinction between K 0

S cate-
gory. These tests return results compatible with the baseline pro-
cedure.

The total experimental systematic uncertainty from LHCb-
related sources is determined to be 1.5 × 10−2 on x− , 0.9 × 10−2

on y− , 1.8 × 10−2 on x+ and 0.8 × 10−2 on y+ . These are all
smaller than the corresponding statistical uncertainties. The dom-
inant contribution arises from allowing for the possibility of CP
violation in the control channel, B → Dπ . In the future, when
larger data sets are analysed, alternative analysis methods will be
explored to eliminate this potential source of bias.

The limited precision on (ci, si) coming from the CLEO-c mea-
surement induces uncertainties on x± and y± [12]. These un-
certainties are evaluated by rerunning the data fit many times,
and smearing the input values of (ci, si) according to their mea-
surement errors and correlations. Values of (0.6–3.0) × 10−2 are
found for the fit to the full sample. When evaluated for the D →
K 0

S π+π− data set alone, the results are similar in magnitude, but
not identical, to those reported in the corresponding Belle analy-
sis [13]. Differences are to be expected, as these uncertainties have
a dependence on the central values of the x± and y± parameters,
and are sample-dependent for small data sets. Simulation stud-
ies indicate that these uncertainties will be reduced when larger
B± → D K ± data sets are analysed.

After taking account of all sources of uncertainty the correla-
tion coefficient between x− and y− in the full fit is calculated to
be −0.10 and that between x+ and y+ to be 0.22. The correla-
tions between B− and B+ parameters are found to be small and
can be neglected. These correlations are summarised in Table 3, to-
gether with those coming from the statistical uncertainties alone,
and those from the fit to D → K 0

S π+π− data.

7. Interpretation

The results for x± and y± can be interpreted in terms of the
underlying physics parameters γ , rB and δB . This is done using
a frequentist approach with Feldman–Cousins ordering [27], us-
ing the same procedure as described in Ref. [13]. In this manner
confidence levels are obtained for the three physics parameters.
The confidence levels for one, two and three standard deviations
are taken at 20%, 74% and 97%, which is appropriate for a three-
dimensional Gaussian distribution. The projections of the three-
dimensional surfaces bounding the one, two and three standard
deviation volumes onto the (γ , rB) and (γ , δB) planes are shown
in Fig. 7. The LHCb-related systematic uncertainties are taken as
uncorrelated and correlations of the CLEO-c and statistical uncer-
tainties are taken into account. The statistical and systematic un-
certainties on x and y are combined in quadrature.

The solution for the physics parameters has a two-fold ambigu-
ity, (γ , δB) and (γ + 180◦, δB + 180◦). Choosing the solution that
satisfies 0 < γ < 180◦ yields rB = 0.07 ± 0.04, γ = (44+43

−38)
◦ and

δB = (137+35
−46)

◦ . The value for rB is consistent with, but lower than,
the world average of results from previous experiments [15]. This
low value means that it is not possible to use the results of this
analysis, in isolation, to set strong constraints on the values of γ
and δB , as can be seen by the large uncertainties on these param-
eters.

8. Conclusions

Approximately 800 B± → D K ± decay candidates, with the D
meson decaying either to K 0

S π+π− or K 0
S K +K − , have been se-

lected from 1.0 fb−1 of data collected by LHCb in 2011. These
samples have been analysed to determine the CP-violating param-
eters x± = rB cos(δB ± γ ) and y± = rB sin(δB ± γ ), where rB is the
ratio of the absolute values of the B+ → D0 K − and B+ → D̄0 K −
amplitudes, δB is the strong-phase difference between them, and
γ is the angle of the unitarity triangle. The analysis is performed
in bins of D decay Dalitz space and existing measurements of
the CLEO-c experiment are used to provide input on the D de-
cay strong-phase parameters (ci, si) [12]. Such an approach allows
the analysis to be essentially independent of any model-dependent
assumptions on the strong-phase variation across Dalitz space. It is
the first time this method has been applied to D → K 0

S K +K − de-
cays. The following results are obtained
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x− = (0.0 ± 4.3 ± 1.5 ± 0.6) × 10−2,

y− = (2.7 ± 5.2 ± 0.8 ± 2.3) × 10−2,

x+ = (−10.3 ± 4.5 ± 1.8 ± 1.4) × 10−2,

y+ = (−0.9 ± 3.7 ± 0.8 ± 3.0) × 10−2,

where the first uncertainty is statistical, the second is system-
atic and the third arises from the experimental knowledge of the
(ci, si) parameters. These values have similar precision to those ob-
tained in a recent binned study by the Belle experiment [13].

When interpreting these results in terms of the underlying
physics parameters it is found that rB = 0.07 ± 0.04, γ = (44+43

−38)
◦

and δB = (137+35
−46)

◦ . These values are consistent with the world
average of results from previous measurements [15], although the
uncertainties on γ and δB are large. This is partly driven by the
relatively low central value that is obtained for the parameter rB .
More stringent constraints are expected when these results are
combined with other measurements from LHCb which have com-
plementary sensitivity to the same physics parameters.
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