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Motivated by the question whether the empirical fitting of data by neural networks can yield the same structure of
physical laws, we apply neural networks to a quantum-mechanical two-body scattering problem with short-range
potentials—a problem that by itself plays an important role in many branches of physics. After training, the neural
network can accurately predict s-wave scattering length, which governs the low-energy scattering physics. By
visualizing the neural network, we show that it develops perturbation theory order by order when the potential
depth increases, without solving the Schrödinger equation or obtaining the wave function explicitly. The result
provides an important benchmark to the machine-assisted physics research or even automated machine learning
physics laws.
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Introduction. Human physicists have made great achieve-
ments in discovering laws of physics during the last several
centuries. Based on experimental observations, they interpret
data and build theories using logical inference and rigorous
mathematical reasoning. Artificial intelligence, which has
recently been extensively applied to physics research [1–37],
interprets data empirically by, for example, fitting on statistical
models.

While physicists hope that the artificial intelligence could
help discover new physics in unexplored areas, there are
certainly challenges to overcome due to the different nature
of “knowledge” among human physicists and artificial intelli-
gence. First, the great complexity of machine learning models,
such as deep neural networks with more than millions of
fitting parameters, makes it difficult for humans to understand
whether machines have successfully captured the underlying
laws of physics. Second, despite the great success of artificial
intelligence in many disciplines outside physics [38], its
weakness [39,40] leads people to believe that it lacks the ability
of sophisticated reasoning [41]. Therefore, it is important to
ask the question whether these two approaches of distilling
knowledge from data will yield the same answer when facing
the same problem. The positive answer will mark an important
step forward to the machine-assisted physics research or even
automated machine learning physics laws.

Motivated by this question, we let the machine supervisedly
learn a quantum-mechanical scattering problem. We show that
the machine could not only correctly produce the scattering
length for a given interaction potential, but also give a hu-
man tractable decision-making process. More concretely, the
machine will develop perturbation theory order by order with
increasing the potential strength.

Two-body scattering problem. The scattering problem plays
an important role in many branches of physics, including
atomic and molecular physics, nuclear physics, and particle
physics [42]. In this work, we focus on the two-body scat-
tering problems in three dimensions with spherical potentials.

Consider the Schrödinger equation in the relative frame(
− h̄2

2m̄
∇2 + V (r )

)
� = E�, (1)

where m̄ is the reduced mass of two particles and V (r ) is
the interaction potential. The wave function can be expanded
through partial wave decomposition [43] as

�(r) =
+∞∑
l=0

χkl (r )

kr
Pl (cos θ ), (2)

where k is the wave vector and l labels different angular
momentum. χkl is the radial wave function and Pl (cos θ )
represents the angular part. For s-wave scattering, one can
show that the asymptotic behavior of the radial wave function
χk,l=0 ∝ sin(kr + δk ). We can therefore determine the impor-
tant quantity of the s-wave scattering length as as tan δk =
−kas + o(k2) [43].

In this way, we establish a mapping between V (r ) and as,
which is to be learned by the neural network. In the following,
we first train neural networks with V (r ) as the input and as

as the output. Here as is obtained by numerically solving the
Schrödinger equation (see Appendices). In practice, as can be
extracted from experimental data of low-energy collision. After
training, the neural network can predict as directly from V (r ).

Perturbation theory. Before presenting the results of neural
networks, let us first review a textbook method for computing
the scattering length. One can compute the scattering am-
plitude T analytically through perturbative Born expansion
[43]. In fact, the perturbation theory is by far the most well-
established approach to compute observables in interacting
quantum mechanics or quantum field theory. Particularly
in our two-body scattering problem, T is given by T =
V + V G0V + V G0V G0V + · · · , where G0 is the Green’s
function for free Hamiltonian with V (r ) = 0. Keeping only the
s-wave component and taking the low-energy limit, we obtain
as = 2π2〈0|T |0〉, where |0〉 denotes the zero-momentum state.
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FIG. 1. (a) Schematic of the fully connected neural network.
(b) Schematic of the input data, which is a finite-range potential
discretized at N0 different points. (c) The error ε of the neural network
after training as a function of maximum scattering length ãs, with
different number of neurons N1 in the first hidden layer. See main
text for the definition of ε and ãs.

Here and throughout the rest of this work, we take m = h̄ = 1
for simplicity. Combining these equations, we get as = a(1)

s +
a(2)

s + · · · , with

a(1)
s = 2π2〈0|V |0〉 =

∫
V (r )r2dr (3)

as the first-order Born approximation and

a(2)
s = 2π2〈0|V G0V |0〉

= −1

2

∫
V (r )V (r ′)K(r, r ′)dr dr ′ (4)

as the second-order Born approximation. Here

K(r, r ′) = rr ′(r + r ′ − |r − r ′|). (5)

The Born expansion is based on the potential strength, and is
a very good approximation for weak potentials.

Neural network. In order to keep the size of the input data
finite, we consider short-range attraction potentials V (r ), i.e.,
V (r ) < 0 for r < R and V (r ) = 0 for r � R. For simplicity,
we restrict the depth of V (r ) to be before the first resonance
so that as < 0. We first generate the potential randomly (see
Appendices) and then discretize it uniformly along r = 0 to
r = R into N0 pieces, as shown in Fig. 1(b). The input data is
thus an N0-dimensional vector

V =
[
V

(
R

N0

)
, V

(
2R

N0

)
, . . . , V (R)

]T

. (6)

Before the first resonance, the larger the potential depth, the
larger the absolute value of scattering lengths in general.

We use a fully connected neural network as our machine
learning model, whose structure is schematically shown in
Fig. 1(a). It is composed of three fully connected layers. The
effect of the first (hidden) layer can be mathematically sum-
marized as Y = f (WV + B), where V is the N0-dimensional
input vector defined previously, Y is an N1-dimensional output

vector, W is an N1 × N0 weight matrix, and B is an N1-
dimensional bias vector. f is the activation function that is
applied elementwisely to the vector and is chosen to be rectified
linear units f (x) = max{0, x}. A similar hidden layer taking Y
as its input comes after the first hidden layer. Its weight matrix
is of size N2 × N1, and its output is linearly mapped to the
final single value output, which is interpreted as the scattering
length as. In our work, we set N0 = 64, N2 = 32 fixed and
change N1 of the neural network.

We train the neural network by minimizing the mean
squared error on 3 × 104 randomly generated {V, aT

s (V)} pairs
in units of {1/R2, R}, where aT

s (V) is the scattering length
obtained from solving the Schrödinger equation given dis-
cretized potential V. In the training data set, aT

s (V) is uniformly
distributed in the range of (ãs, 0). We set L2 regularization
strength to be 0.1 to prove weight matrix visualization. After
training, the neural network should be able to make a prediction
of the scattering length, denoted as aP

s (V), directly from the
input potential V. This prediction may deviate from the true
scattering length aT

s (V). We characterize the performance of
the trained neural network by calculating the averaged error ε

defined as

ε = 1

Nt

∑
l

∣∣∣∣a
P
s (Vl ) − aT

s (Vl )

aT
s (Vl )

∣∣∣∣, (7)

on a test set of similar {V, aT
s (V)} pairs. Here Vl denotes the lth

potential in the test set and Nt = 103 is the size of the testing
set. As shown in Fig. 1(c), the network can always predict the
scattering length as with high accuracy for different ãs and with
different number of neurons in the first layer (denoted by N1).

To understand how the neural network computes the scat-
tering length, it is very informative to visualize the weight
matrix W in the first hidden layer that maps the input data V
to the first intermediate vector Y. We plot W in Fig. 2 for

FIG. 2. Visualization of the matrix W [(a) and (b)] and a typical
N0-dimensional vector ζ α = {Wαi, i = 1, . . . , N0} as a function of
r/R = i/N0 [(c) and (d)], for ãs/R = −0.1 [(a) and (c)] and for
ãs/R = −0.5 [(b) and (d)]. The solid line in (c) is a fitting of ζ α=46.
The orange (lower) and green (upper) solid lines in (d) are fittings of
ζ α1=46 and ζ α2=54 as linear combinations of ξ and ζ .
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two neural networks trained on a very small magnitude of
ãs/R = −0.1 and on a relatively large magnitude of ãs/R =
−0.5, respectively. For both networks, most of their matrix
elements automatically vanish and are thus not responsible for
producing the scattering length. In the following, we analyze
the remaining matrix elements for these two scenarios.

First-order Born approximation. Let us first focus on the
case of shallow potentials. For convenience, we represent W

using N0-dimensional row vectors, known as “neurons”: W =
(ζ 1, ζ 2, . . . , ζN1

)T. The effect of the first (hidden) layer can
then be represented as Yi = f (ζ T

i V + Bi ). The j th component
of the ith neuron is denoted as ζi,j . From Fig. 2(a), one can see
that nearly all nonvanishing ζ α behave similarly. A typical ζ α

is plotted in Fig. 2(c).
Importantly, we find that typical ζα,j can be quite accurately

described by ∼j 2. As shown in Fig. 2(c), ζ α and normalized
ζ ∝ (1, 4, . . . , N2

0 ) correspond very well. This means that the
αth neuron in the first hidden layer performs the calculation

Yα =
∑

j

ζα,jVj ∝
∑

j

j 2V

(
jR

N0

)
. (8)

This is precisely the discrete version of the first-order Born
approximation shown in Eq. (3). If one uses a similar neural
network to study scattering volume or supervolume for p-wave
or d-wave scattering, one obtains that typical ζ α for the shallow
potential behaves as ∼j 4 or ∼j 6, respectively, which are
both consistent with the first-order Born approximation (see
Appendices).

Second-order Born approximation. As the potential depth
increases, more features begin to emerge in W . There are many
neurons whose behavior cannot be fitted by j 2 discussed in the
previous section, shown in Figs. 2(b) and 2(d). It is natural to
suspect that this new neuron pattern comes from the second-
order Born approximation. To verify this, we first notice that
the discretized version of Eq. (4) is

a(2)
s = −

∑
ij

V

(
iR

N0

)
V

(
jR

N0

)
Kij , (9)

where K is a N0 × N0 matrix constructed as

Kij = 1

N3
0

ij (i + j − |i − j |). (10)

K matrix can be diagonalized, and let us denote ξα as its
eigenvector associated with eigenvalue �α . In this way, we
can rewrite Eq. (9) as

a(2)
s = −VTKV = −

∑
α

�α

(
ξT

αV
)2

. (11)

Moreover, since the largest eigenvalue �1 is an order of
magnitude larger than the second largest eigenvalue �2, i.e.,
�1/�2 ∼ 16.38, we can approximate Eq. (11) further by only
keeping the contribution of the largest eigenvalue as

a(2)
s ∝ (

ξT
1 V

)2
. (12)

Indeed, if we train the neural network with the same
architecture as before, but using a(2)

s calculated using Eq. (4)
as the output instead of the exact as, the neural network could
compute a(2)

s accurately. In this new network, neurons in the
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FIG. 3. Neural network with the same architecture as that in Fig. 2,
but trained with a(2)

s as the output instead of as. (a) Visualization of the
matrix W . (b) A typical vector ζ α=32 as a function of r/R = i/N0 for
ãs/R = −0.5. It is compared with the eigenvector of K matrix with
the largest eigenvalue ∼ξ shown by the solid line. The inset of (b)
is the eigenvectors associated with first two largest eigenvalues. For
N0 = 64, the blue solid curve shows ∼ξ 1 with the largest eigenvalue
�1 = 29.5, and the orange dashed curve shows ∼ξ 2 with the second
largest eigenvalue �2 = 1.8.

first hidden layer have only one pattern, and can be well fitted
by ξ 1 defined above, as illustrated in Fig. 3. In this way,
neurons in the first hidden layer compute ξTV with ξ ≡ ξ 1
and the second hidden layer simply fits a function x2 in order
to compute a(2)

s .
Equipped with the vector ζ introduced for the first-order

Born approximation and the vector ξ introduced for the
second-order Born approximation, we find neurons in W with
new features for a deeper potential can be well fitted by
αζ − bξ , as shown in Fig. 2(d). In this way, in the first hidden
layer, all ingredients for the first-order and the second-order
Born approximation are already computed. With a proper
polynomial function implemented in the second hidden layer,
the neural network produces as = a(1)

s + a(2)
s as its final output.

The key observations so far can be summarized as follows:
(i) When the potential is shallow, the neural network only
captures the first-order perturbation as it is already accurate
enough to reach a certain level of accuracy. (ii) As the potential
becomes deeper, the neural network gradually develops the
structure to capture at least the second-order perturbation. It is
quite remarkable that, by empirical fitting, the neural network
develops the same kind of perturbation theory as that developed
by human physicists. At least in this example, we understand
how the neural network works and provides a positive answer
to the question raised in the Introduction, namely, human
physicists and neural networks can yield the same answer when
facing the same problem.

An empirical formula. Last but not least, we bring out a
different aspect: If one can tolerate a certain amount of error,
the neural network can also inspire an empirical formula that
works quite well even beyond the perturbative regime, although
the formula lacks rigorous mathematical reasoning.

Here the formula is inspired by the fact that even if we
reduce the first hidden layer to have only one neuron, the neural
network can still predict scattering lengths quite accurately
with errors only increasing by a small amount [Fig. 1(c)].
In Fig. 4(a), we compare W with ζ and ξ . After proper
scaling, they actually behave similarly. This implies that they
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FIG. 4. (a) When the first layer only contains one neuron, W

becomes an N0-dimensional vector. Here we compare W and different
linear combinations of ζ and ξ . (b) The relation between the actual
scattering length as and a(1)

s from the first-order Born approximation.
The black line is the empirical formula, Eq. (13), and the orange
(light-gray) dots are scattering lengths computed from first two orders
of Born approximation.

can be regarded as the same without introducing much error.
Therefore, (i) if we replace W with ζ , this simple neural
network produces nothing but a(1)

s , and (ii) if we replace ξ

also with ζ , by Eq. (12) a(2)
s can be represented by a(1)

s as
a(2)

s ∝ (a(1)
s )2/R. With these we have

as = a(1)
s + γ

(
a(1)

s

)2
/R + O

((
a(1)

s /R
)3)

≈ a(1)
s

1 − γ a
(1)
s /R

, (13)

where γ is a fitting parameter.
Equation (13) is our empirical formula for scattering

lengths. It takes a(1)
s as the input and produces as as the output.

To verify this formula, we first generate many interaction po-
tentials randomly, then compute the corresponding as exactly
from solving the Schrödinger equation, and a(1)

s from Eq. (3).
If Eq. (13) is a good approximation, these data will collapse
into a single curve that can be fitted by Eq. (13). This is
indeed the case as is shown in Fig. 4(b), where the fitting
parameter is taken to be γ = −1.2. Interestingly, Equation (13)
works quite well even when as is an order of magnitude larger
than a(1)

s , that is to say, when the potential is deep enough
to be beyond the weakly interacting regime. To compare, we
also plot {a(1)

s + a(2)
s , a(1)

s } from the same set of potentials
in Fig. 4(b). Clearly, the validity of the empirical formula,
Eq. (13), goes significantly beyond the second-order Born
approximation.

Outlook. In summary, we have trained a neural network to
predict the s-wave scattering length directly from the interac-
tion potential. By visualizing its weight matrix, we demonstrate
that the neural network develops perturbation theory order
by order as the interaction strength increases. Moreover, the
performance of the neural network also inspires us to derive a
simple approximate formula for scattering lengths that works
well beyond the perturbative regime.

Guaranteed by the great expressibility of neural networks
[44,45], our formalism can be generalized to study more
complicated quantum few-body and many-body problems. The
former is important in atomic and molecular physics, as well
as quantum chemistry. The latter is related to machine learning
phases of matter, which has already become a topic of intensive
interest [1–20]. Our understanding of how neural network

works in this simple problem can shed light on understanding
more sophisticated problems better.
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Jinmin Yi for helpful discussions. This work is supported by
MOST under Grant No. 2016YFA0301600 and NSFC Grant
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APPENDIX A: METHOD FOR GENERATING
TRAINING DATA

In this Appendix we demonstrate in detail the method for
generating our training data {V, as(V)}.

Generating potentials. To extract the universal method for
solving a physical problem, the shape of the potentials in the
training data should be diverse enough, so that the machine will
not learn features specific to some potential shape. Therefore,
we construct random potentials using random walk.

Formally, Ṽ (r ), understood as a three-dimensional spheri-
cal potential, is constructed as

Ṽ (r ) =
{
Vi, ri � r � min{ri+1, R}
0, r � R,

(A1)

where Vi and ri are generated by recurrence relations Vi =
Vi−1 + δVi and ri = ri−1 + δri , with initial value V0 uniformly
distributed from [−Ṽ0/2, Ṽ0/2] for some positive Ṽ0 and r0 =
0. δri and δVi are all random variables; each is identically and
independently distributed as θ (δri )N (δri, 4R/N0,

√
2R/N0)

and N (δVi, 0, Ṽ0/10). Here N (x, μ, σ ) is the normal dis-
tribution with expectation μ and standard deviation σ . This
procedure, on the one hand, introduces enough randomness,
and on the other hand, gives a very smooth potential. Finally
we get our purely attractive potential by V (r ) = −|Ṽ (r )|. A
schematic of the generation of potential is shown in Fig. 5.

To feed the neural network with generated potentials, we
discretize the potential V (r ) uniformly from r = 0 to r = R.
As a result the input data are N0-dimensional vectors of

V1

V2

V3

Ṽ3

V4

r1

r2

r3

R r

FIG. 5. Random square well potential generated by two kinds of
Gaussian distributions.
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the form

V =
[
V

(
R

N0

)
, V

(
2R

N0

)
, . . . , V (R)

]T

. (A2)

We take N0 = 64 throughout this work.
Generating scattering lengths. After generating a potential,

we calculate the corresponding scattering length by solving the
Schrödinger equation using transfer matrix method [46] for the
discretized potential V [using the original potential V (r ) will
introduce systematic error].

Within each square well r ∈ (ri−1, ri ), the wave function
is φi = aijl (kir ) + binl (kir ). For zero-energy scattering, we
have k ∼ √−V (m = h̄ = 1). jl, nl are two spherical Bessel
functions, and l labels the angular momentum and thus the
partial wave. To avoid divergence at r = 0, φ0 = jl (k0r ). At
the boundary of each square well r = ri , the wave function
obeys continuity condition φ(r−

i ) = φ(r+
i ), φ′(r−

i ) = φ′(r+
i ).

By matching the boundary condition, we can determine all φi

for r < R.
Outside the short-range potential r → R+ the wave func-

tion is determined by scattering parameters:

s wave : ψ0 ∝ 1 − as

r
≡ φo0, (A3)

p wave : ψ1 ∝ x

3v
− 1

x2
≡ φo1, (A4)

d wave : ψ2 ∝ x2

15D
− 3

x3
≡ φo2. (A5)

Finally, by matching the boundary condition at r = R,

ψ ′
l

ψl

= φ′
n

φn

= φ′
ol

φol

, (A6)

we obtain the scattering length for different partial waves.
Data postselection. Before the first resonance, as < 0 be-

comes more negative when the potential becomes deeper.
We generate potentials with different Ṽ0, which determines
the overall depth of generated potential. We then postselect
preferred data to make our training set a uniform distribution
as ∈ (ãs, 0).

APPENDIX B: TRAINING DETAILS

We use Wolfram Mathematica [47] to train and evaluate
neural networks. All the weights are randomly initialized to a
normal distribution with Xavier method [48]. While optimizing
parameters, we minimize the loss function

L = 1

N

∑
l

[
aP

s (Vl ) − aT
s (Vl )

]2
(B1)

using Adam algorithm with batch size 32. Here aT
s (V) is the

scattering length obtained using the method introduced in the
last section. aP

s (V) is the prediction made by the network and
N is the size of the testing set. Considering there are thousands
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FIG. 6. Visualization of the matrix W [(a) and (b)] and a typical
N0-dimensional vector ζ α as a function of r/R = i/N0 [(c) and
(d)], for p-wave [(a) and (c)] and for d-wave scattering [(b) and
(d)] in the first Born approximation regime. The solid line in (c) is
ζ α=38, fitted by r4 and the solid line in (d) is ζ α=64 fitted by r6. For
p-wave training set, the scattering volumes v distribute uniformly
within v/R3 ∈ (−0.02, 0). For d-wave training set, the scattering
supervolumes D distribute uniformly with D/R5 ∈ (−0.01, 0).

of parameters in this network, the training set contains N =
3 × 104 {V, as(V)} pairs. In order to prove weight matrix
visualization, we setL2 regularization strength be 0.1, although
there is no noise in the training set. We check that there is
no overfitting by using a validation set of size Nv = 3 × 103.
It typically takes five epochs for the network to converge,
meaning the training is very easy. This is actually a hint that
the network may fit to a very simple function of as(V).

APPENDIX C: FIRST-ORDER BORN APPROXIMATION
FOR HIGH PARTIAL WAVES

In this Appendix, we report that the neural network could
capture first-order Born approximation for p-wave and d-wave
wave functions.

In the main text the first Born approximation is shown
in Eq. (3) for s partial wave. For p-wave and d-wave wave
functions, the approximation becomes

v =
∫

V (r )r4dr, (C1)

D =
∫

V (r )r6dr, (C2)

where v and D are scattering volume and supervolume, respec-
tively. We generate training data in the same way, and train
neural networks with architecture N0 = 64, N1 = 70, N2 =
32, N3 = 1. Figure 6 shows weight matrix W and the fitting
result of a typical neuron in the first hidden layer. As one
can see, neurons trained on p-wave data behave as r4, and
neurons trained on d-wave data behave as r6, as expected from
Eqs. (C1) and (C2).
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