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PRODUCT BMO, LITTLE BMO AND RIESZ COMMUTATORS

IN THE BESSEL SETTING

XUAN THINH DUONG, JI LI, YUMENG OU, BRETT D. WICK, AND DONGYONG YANG

∗

Abstrat. In this paper, we study the produt BMO spae, little bmo spae and their onnetions

with the orresponding ommutators assoiated with Bessel operators studied byWeinstein, Huber,

and by Mukenhoupt�Stein. We �rst prove that the produt BMO spae in the Bessel setting an

be used to dedue the boundedness of the iterated ommutators with the Bessel Riesz transforms.

We next study the little bmo spae in this Bessel setting and obtain the equivalent haraterization

of this spae in terms of ommutators, where the main tool that we develop is the haraterization

of the predual of little bmo and its weak fatorizations. We further show that in analogy with

the lassial setting, the little bmo spae is a proper subspae of the produt BMO spae. These

extend the previous related results studied by Cotlar�Sadosky and Ferguson�Sadosky on the bidis

to the Bessel setting, where the usual analytiity and Fourier transform do not apply.

1. Introdution

The study of ommutators of multipliation operators with Calderón�Zygmund operators has

its roots in omplex funtion theory and Hankel operators. This was later extended to the ase of

general Calderón�Zygmund operators by Coifman, Rohberg and Weiss [CRW℄, who showed that

the spae of bounded mean osillation introdued by John and Nirenberg is haraterized by a

family of ommutators:

‖b‖BMO(Rn) ≈ max
1≤j≤n

‖[Mb, Rj ]‖Lp(Rn)→Lp(Rn)

where Rj is the jth Riesz transform. Results of this type have then been extended by Uhiyama to

handle spaes of homogeneous type under ertain assumptions on the measures and to show that

a single Hilbert transform (Riesz transform) atually haraterizes BMO [Uh℄. These results were

further extended to the multiparameter setting showing that the produt BMO spae of Chang and

Fe�erman an also be haraterized by iterated ommutators (see Hilbert transform in [FL℄ and

Riesz transforms in [LPPW℄) and little bmo by the boundedness of two ommutators (see Hilbert

transform in [FS℄ and Riesz transforms in [DLWY3℄). The analysis here is intimately onneted to

the underlying spae Rn
and to the fat that the Riesz transforms are onneted to a partiular

di�erential operator, the Laplaian.

In 1965, B. Mukenhoupt and E. Stein in [MSt℄ introdued harmoni analysis assoiated with

Bessel operator △λ, de�ned by setting for suitable funtions f ,

△λf(x) :=
d2

dx2
f(x) +

2λ

x

d

dx
f(x), λ > 0, x ∈ R+ := (0,∞).

The related ellipti partial di�erential equation is the following �singular Laplae equation�

(1.1) △t, x(u) := ∂2
t u+ ∂2

xu+
2λ

x
∂xu = 0

studied by A. Weinstein [W℄, and A. Huber [Hu℄ in higher dimensions, where they onsidered

the generalised axially symmetri potentials, and obtained the properties of the solutions of this

equation, suh as the extension, the uniqueness theorem, and the boundary value problem for

ertain domains. In [MSt℄ they developed a theory in the setting of △λ whih parallels the lassial
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one assoiated to the standard Laplaian, where results on Lp(R+, dmλ)-boundedness of onjugate
funtions and frational integrals assoiated with △λ were obtained for p ∈ [1,∞) and dmλ(x) :=
x2λ dx.

We also point out that Haimo [H℄ studied the Hankel onvolution transforms ϕ♯λf assoiated

with the Hankel transform in the Bessel setting systematially, whih provides a parallel theory to

the lassial onvolution and Fourier transforms. It is well-known that the Poisson integral of f
studied in [MSt℄ is the Hankel onvolution of the Poisson kernel with f , see [BDT℄. Sine then,

many problems in the Bessel ontext were studied, suh as the boundedness of the Bessel Riesz

transform, Littlewood�Paley funtions, Hardy and BMO spaes assoiated with Bessel operators,

Ap weights assoiated with Bessel operators (see, for example, [K, AK, BFBMT, V, BFS, BHNV,

BCFR, YY, DLWY, DLWY2, DLMWY℄ and the referenes therein).

The aim of this paper is to study the produt BMO and little bmo spaes via Riesz ommutators

in the Bessel setting. In partiular, the two main results we obtain an be seen as the analogs in the

Bessel setting of the orresponding results in the lassial setting. Notably in our proof we bypass

the use of analytiity and Fourier transform sine they are not appliable in this Bessel operator

setting. We �rst show that the produt BMO spae in the Bessel setting an be used to prove the

boundedness of the iterated ommutators with the Bessel Riesz transforms. We next study the

little bmo spae in this Bessel setting and obtain the equivalent haraterization of this spae in

terms of ommutators. We further show, again in analogy with the lassial setting, that the little

bmo spae is a proper subspae of the produt BMO spae.

To be more preise, for every interval I ⊂ R+, we denote it by I := I(x, t) := (x− t, x+ t)∩ R+.

The measure of I is de�ned as mλ(I(x, t)) :=
∫
I(x, t) y

2λdy. And reall that the Riesz transform

R∆λ
(f) is de�ned as follows

R∆λ
(f)(x) :=

∫

R+

−
2λ

π

∫ π

0

(x− y cos θ)(sin θ)2λ−1

(x2 + y2 − 2xy cos θ)λ+1
dθ f(y)dmλ(y).(1.2)

In the produt setting R+ × R+, we de�ne dµλ(x1, x2) := dmλ(x1) × dmλ(x2) and Rλ := (R+ ×
R+, dµλ(x1, x2)). We denote by R∆λ,1 the Riesz transform on the �rst variable and R∆λ,2 the

seond.

The �rst main result of this paper is the upper bound of the iterated Riesz ommutators

[[b,R∆λ,1], R∆λ,2] in terms of produt BMO spae BMO∆λ
(Rλ). For the de�nition of BMO∆λ

(Rλ)
we refer to De�nition 2.5 in Setion 2.

Theorem 1.1. Let b ∈ BMO∆λ
(Rλ). Then we have

‖[[b,R∆λ,1], R∆λ,2]‖L2(Rλ)→L2(Rλ) ≤ C‖b‖BMO∆λ
(Rλ).(1.3)

For simpliity we only state the result for the ase of two iterations; though the proof we provide

works just as well for any number of parameters.

The proof strategy we employ to show this result is now the standard way to prove upper

bounds for ommutator estimates, see for example [LPPW, LPPW2℄ and [DO℄ in the Eulidean

setting. We express the Riesz transforms as averages of Haar shift type operators and then study

the boundedness of the ommutator with eah Haar shift. These an be broken into paraprodut

operators for whih the boundedness follows by the BMO assumption. The main novelty in this

proof is that we atually demonstrate a more general result by showing that a version of the above

Theorem holds in produt spaes of homogeneous type X1×X2 in terms of the produt BMO spae

BMO(X1 ×X2) (for the de�nition, we refer to Setion 2, see also De�nition 2.6 in [DLWY℄). We

provide a statement of the main result in this diretion as follows, whih will be proved in Setion

2.

Theorem 1.2. Let (Xi, ρi, µi) be a spae of homogeneous type. Let Ti be the Calderón�Zygmund

operator on Xi and let b ∈ BMO(X1 ×X2). Then we have

‖[[b, T1], T2]‖L2(X1×X2,µ1×µ2)→L2(X1×X2,µ1×µ2) ≤ C‖b‖BMO(X1×X2).
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For preise de�nitions of the produt spaes of homogeneous type, the produt BMO spae, and

Calderón�Zygmund operators, we refer to Setion 2, see also [HLW℄. Sine we have that Rλ is

a spae of homogenous type, it is lear that Theorem 1.1 follows from the above theorem as a

orollary.

The seond main result of this paper is haraterization of the little bmo spae assoiated with

∆λ, bmo(Rλ), whih is the spae of funtions satisfying the following de�nition.

De�nition 1.3. A funtion b ∈ L1
loc(Rλ) is in bmo(Rλ) if

‖b‖bmo(Rλ) := sup
R⊂R+×R+

1

µλ(R)

∫∫

R
|b(x1, x2) −mR(b)|dµλ(x1, x2) < ∞,(1.4)

where

(1.5) mR(b) :=
1

µλ(R)

∫∫

R
b(x1, x2)dµλ(x1, x2)

is the mean value of b over the retangle R.

One an easily observe that this norm is equivalent to the following norm:

‖b‖bmo(Rλ) ≈ max

{
sup

x∈R+

‖b(x, ·)‖BMO∆λ
(R+,dmλ) , sup

y∈R+

‖b(·, y)‖BMO∆λ
(R+,dmλ)

}
;

namely these funtions are uniformly in BMO∆λ
(R+, dmλ) in eah variable separately. This leads

to the following haraterization of bmo(Rλ):

Theorem 1.4. Let b ∈ L2
loc(Rλ). The following onditions are equivalent:

(i) b ∈ bmo(Rλ);
(ii) The ommutators [b,R∆λ,1] and [b,R∆λ,2] are both bounded on L2(Rλ);
(iii) There exist f1, f2, g1, g2 ∈ L∞(Rλ) suh that b = f1+R∆λ, 1g1 = f2+R∆λ, 2g2 and moreover,

‖b‖bmo(Rλ) ≈ inf
{

maxi=1,2

{
‖fi‖L∞(Rλ), ‖gi‖L∞(Rλ)

}}
, where the in�mum is taken over all

possible deompositions of b;
(iv) The ommutator [b,R∆λ,1R∆λ,2] is bounded on L2(Rλ).

The proof of the equivalene between (i) and (ii) in this theorem, relies on a reent new result

obtained by a subset of authors in [DLWY℄, whih shows that in the one parameter setting b ∈
BMO(R+, dmλ) if and only if the ommutator [b,R∆λ

] is a bounded operator on L2(R+, dmλ).
Moreover, the proof of the equivalene between (i) and (iv) extends the result of Ferguson�

Sadosky [FS℄ to the Bessel setting, where no analytiity or Fourier transform is available. We prove

this haraterization by understanding a ertain weak fatorization of the predual of bmo(Rλ). To
obtain this, we �rst de�ne the little Hardy spae h1,∞(Rλ) in terms of (1,∞)-retangular atoms

with a one-parameter version of anellation. However, it is less diret to see how the duality

works by using only (1,∞)-retangular atoms. We also introdue the (1, q)-retangular atoms for

1 < q < ∞, and then prove that h1,∞(Rλ) an be haraterised equivalently by (1, q)-retangular
atoms. Then, by using the (1, 2)-retangular atoms, the duality of h1,∞(Rλ) with bmo(Rλ) follows
from the standard argument, see for example [CW77℄ (see also [J, Setion II, Chapter 3℄). This

fatorization partiularly uses key estimates on the kernel of the Riesz transforms, espeially the

lower bound onditions, whih was studied in [BFBMT℄ and re�ned reently by the subset of

authors [DLWY℄; these estimates are essentially di�erent from the standard Riesz transforms on

Rn
. We point out that the haraterizations of the little Hardy spae in terms of (1, q)-retangular

atoms are new even when we refer bak to the lassial ase of Ferguson�Sadosky [FS℄.

Finally as a orollary of the haraterization of bmo(Rλ) in Theorem 1.4 and the Fe�erman�Stein

type deomposition of BMO(Rλ) as proved in [DLWY2℄, we show that:

Corollary 1.5. bmo(Rλ) is a proper subspae of BMO∆λ
(Rλ), i.e.,

bmo(Rλ) ( BMO∆λ
(Rλ).
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Again, this is in analogy with the orresponding results in the Eulidean setting. Containment

of the spaes follows from property (iii) and a similar haraterization of produt BMO in this

setting. The fat that it is a proper ontainment follows from a simple onstrution. These results,

as well as orollaries about the relevant fatorizations, an be found in Setion 3.

A natural question that arises from this work is whether the spae BMO∆λ
(Rλ) an be hara-

terized by the iterated ommutators:

‖[[b,R∆λ,1], R∆λ,2]‖L2(Rλ)→L2(Rλ) ≈ ‖b‖BMO∆λ
(Rλ).

As evidene for this we point out that in the ase of one parameter this result was answered by

a subset of the authors in [DLWY℄; and it was shown that the spae BMO∆λ
(Rλ) an indeed

be haraterized by the ommutator. We also point out that using the methods of Setion 3 it is

possible to obtain a lower bound on the iterated ommutator in terms of a �retangle BMO∆λ
(Rλ)�.

While we would like to return to this haraterization in subsequent work, we want to point out

some hallenges with obtaining the lower bound. The analogous proof in the Eulidean spaes, [FL,

LPPW℄, uses key properties of the Fourier transform, the Riesz/Hilbert transforms and wavelets.

Some of these tools do not translate well to the setting at hand and instead a new proof seems to

be needed.

2. Upper bound of iterated ommutator [[b, T1], T2]

In this setion we prove Theorem 1.2, whih extends the main result of [DO℄ to spaes of homoge-

neous type introdued by Coifman and Weiss [CW77℄. We �rst reall some neessary notation and

de�nitions on spaes of homogeneous type, inluding the produt Calderón�Zygmund operators

and produt BMO spae on spae of homogeneous type as well as some fundamental tools suh as

the Haar basis and representation theorem, whih will be ruial to the proof of Theorem 1.2.

2.1. Preliminaries. By a quasi-metri we mean a mapping ρ : X ×X → [0,∞) that satis�es the
axioms of a metri exept for the triangle inequality whih is assumed in the weaker form

ρ(x, y) ≤ A0(ρ(x, z) + ρ(z, y)) for all x, y, z ∈ X(2.1)

with a onstant A0 ≥ 1.
We de�ne the quasi-metri ball by B(x, r) := {y ∈ X : ρ(x, y) < r} for x ∈ X and r > 0. We

say that a nonzero measure µ satis�es the doubling ondition if there is a onstant Cµ suh that

for all x ∈ X and r > 0,

(2.2) µ(B(x, 2r)) ≤ Cµµ(B(x, r)) < ∞.

We reall that (X, d, µ) is a spae of homogeneous type in the sense of Coifman and Weiss

[CW77℄ if d is a quasi-metri and µ is a nonzero measure satisfying the doubling ondition.

We also denote the produt spae

X1 ×X2 := (X1, d1, µ1) × (X2, d2, µ2),(2.3)

where for eah i := 1, 2, the spae (Xi, di, µi) is a spae of homogeneous type, with the oe�ient

A0,i for the quasi-metri di as in (2.1) and with the oe�ient Cµi
for the measure µi as in (2.2),

respetively.

We now reall the BMO and produt BMO spaes on general spaes of homogeneous type. The

ase of one parameter is the following, expeted de�nition.

De�nition 2.1. A loally integrable funtion f is in BMO(X) if and only if

‖f‖BMO(X) :=
1

µ(B)

∫

B
|f(x) − fB|dµ(x) < ∞,(2.4)

where fB := µ(B)−1
∫
B f(y)dµ(y), and B is any quasi-metri ball in X.
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For the ase of produt BMO we need to introdue wavelets on spaes of homogeneous type. To

begin with, reall the set {xk
α} of referene dyadi points as follows. Let δ be a �xed small positive

parameter (for example, as noted in [AH, Setion 2.2℄, it su�es to take δ ≤ 10−3A−10
0 ). For k = 0,

let X 0 := {x0
α}α be a maximal olletion of 1-separated points in X. Indutively, for k ∈ Z+,

let X k := {xk
α} ⊇ X k−1

and X −k := {x−k
α } ⊆ X −(k−1)

be δk
- and δ−k

-separated olletions in

X k−1
and X −(k−1)

, respetively.

As shown in [AH, Lemma 2.1℄, for all k ∈ Z and x ∈ X, the referene dyadi points satisfy

d(xk
α, x

k
β) ≥ δk (α 6= β), d(x,X k) = min

α
d(x, xk

α) < 2A0δ
k.(2.5)

Also, taking c0 := 1, C0 := 2A0 and δ ≤ 10−3A−10
0 , we see that c0, C0 and δ satisfy 12A3

0C0δ ≤ c0
in [HK, Theorem 2.2℄. By applying Hytönen and Kairema's onstrution ([HK, Theorem 2.2℄). We

onlude that there exists a set of dyadi ubes {Qk
α}k∈Z,α∈X k assoiated with the referene dyadi

points {xk
α}k∈Z,α∈X k . We all the referene dyadi point xk

α the enter of the dyadi ube Qk
α. We

also identify with X k
the set of indies α orresponding to xk

α ∈ X k
. We now denote the system

of dyadi ubes as

D :=
⋃

k

Dk, with Dk := {Qk
α : α ∈ X

k}.

Note that X k ⊆ X k+1
for k ∈ Z, so that every xk

α is also a point of the form xk+1
β . We denote

Y k := X k+1\X k
and relabel the points {xk

α}α that belong to Y k
as {yk

α}α.

De�nition 2.2 ([HLW℄). We de�ne the produt BMO spae BMO(X1 ×X2) in terms of wavelet

oe�ients by BMO(X1 × X2) :=
{
f ∈ (

◦
G1, 1)

′ : C(f) < ∞}, with the quantity C(f) de�ned as

follows:

C(f) := sup
Ω

{
1

µ(Ω)

∑

R=Q
k1
α1

×Q
k2
α2

⊂Ω,

k1,k2∈Z,α1∈Y k1 ,α2∈Y k2

∣∣〈ψk1
α1
ψk2

α2
, f〉
∣∣2
}1/2

,(2.6)

where Ω runs over all open sets in X1 ×X2 with �nite measure.

Here we point out that the notation (
◦
G1, 1)

′
in the de�nition above denotes the spae of distribu-

tions in the produt setting X1 ×X2. We reall the test funtion and distribution spaes, and the

one-parameter version of whih was de�ned by Han, Müller and Yang [HMY1, HMY2℄, and then

the produt version by Han, Li and Lu [HLL℄, where the extra reverse doubling onditions of the

underlying measures are required. Here we ite the de�nition of test funtions and distributions in

both the one-parameter setting and produt setting in [HLW℄, where there is no extra assumptions

on the quasi-metri and doubling measure. Moreover, the notation ψk
α, α ∈ Y k1

, denotes the

orthonormal basis on general spaes of homogeneous type (X, d, µ) onstruted by Ausher and

Hytönen (see [AH℄ Theorem 7.1).

Next we reall the de�nition for Calderón�Zygmund operators on spaes of homogeneous type

and the representation theorems for these Calderón�Zygmund operators.

A ontinuous funtion K(x, y) de�ned on X ×X\{(x, y) : x = y} is alled a Calderón�Zygmund

kernel if there exist onstant C > 0 and a regularity exponent ε ∈ (0, 1] suh that

(a) |K(x, y)| ≤ CV (x, y)−1
;

(b) |K(x, y)−K(x, y′)|+ |K(y, x)−K(y, x′)| ≤ C

(
d(y, y′)

d(x, y)

)ε

V (x, y)−1
if d(y, y′) ≤

d(x, y)

2A0
.

Above V (x, y) := µ(B(x, d(x, y)). The smallest suh onstant C is denoted by |K|CZ . We say that

an operator T is a singular integral operator assoiated with a Calderón�Zygmund kernel K if the

operator T is a ontinuous linear operator from Cη
0 (X) into its dual suh that

〈Tf, g〉 =

∫

X

∫

X
g(x)K(x, y)f(y)dµ(y)dµ(x)
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for all funtions f, g ∈ Cη
0 (X) with disjoint supports. Here Cη

0 (X) is the spae of all ontinuous

funtions on X with ompat support suh that

‖f‖Cη
0 (X) := sup

x 6=y

|f(x) − f(y)|

d(x, y)η
< ∞.

The operator T is said to be a Calderón�Zygmund operator if it extends to be a bounded operator

on L2(X). If T is a Calderón�Zygmund operator assoiated with a kernel K, its operator norm is

de�ned by ‖T‖CZ = ‖T‖L2→L2 + |K|CZ .

We now reall the expliit onstrution in [KLPW℄ of a Haar basis {hu
Q : Q ∈ D , u = 1, . . . ,MQ−

1} for Lp(X), 1 < p < ∞, assoiated to the dyadi ubes Q ∈ D as follows. Here MQ := #H(Q) =
#{R ∈ Dk+1 : R ⊆ Q} denotes the number of dyadi sub-ubes (�hildren�) the ube Q ∈ Dk has.

Theorem 2.3 ([KLPW℄). Let (X, ρ) be a geometrially doubling quasi-metri spae and suppose

µ is a positive Borel measure on X with the property that µ(B) < ∞ for all balls B ⊆ X. For

1 < p < ∞, for eah f ∈ Lp(X), we have

f(x) =
∑

Q∈D

MQ−1∑

u=1

〈f, hu
Q〉L2(X)h

u
Q(x),

where the sum onverges (unonditionally) both in the Lp(X)-norm and pointwise µ-almost every-

where.

We now reall the deomposition of a Calderón�Zygmund operator T into dyadi Haar shifts,

(see for example [Hy, NRV, NV℄).

Theorem 2.4. Let T be a Calderón�Zygmund operator assoiated with a kernel K. Then it has a

deomposition: for f, g ∈ Cη
0 (X),

〈g, Tf〉L2(X) = c(‖T‖2→2 + |K|CZ)Ew

∞∑

m, n=0

τ(m,n)〈g, Sm, n
w f〉L2(X),(2.7)

where Ew is the expetation operator with respet to the random variable w, Dw is the random

dyadi system, Sm, n
w is a dyadi Haar shift with parameters m, n on Dw de�ned as follows

Sm, n
w (f)(x) =

∑

L∈Dw

∑

I∈Dw, I⊂L
g(I)=g(L)+m

MI−1∑

i=1

∑

J∈Dw, J⊂L
g(J)=g(L)+n

MJ−1∑

j=1

aL, I, J〈hi
I , f〉L2(X)h

j
J(x)

with

|aL, I, J | ≤

√
µ(I)

√
µ(J)

µ(L)
and τ(m,n) ≤ Cδm+n,

where δ is the small positive number satisfying δ ≤ 10−3A−10
0 with A0 the onstant in (2.1).

With these tools at hand, we note that the idea and approah of the proof of Theorem 1.2 is

similar to the main result of [DO℄. For the sake of larity, we provide an outline of the proof in the

following two subsetions.

2.2. The one parameter ase: [b, T ], b ∈ BMO(X). To begin with, we derive a deomposition

of the one-parameter ommutator [b, T ] into basi paraprodut type operators.

Theorem 2.5. Let b ∈ BMO(X), f ∈ Cη
0 (X), and T be a Calderón�Zygmund operator. Then,

(i) for a anellative dyadi shift Sm, n
ω , [b, Sm, n] an be represented as a �nite linear ombination

of operators of the form

(2.8) Sm, n
ω (Bk(b, f)), Bk(b, S

m, n
ω f)

where k ∈ Z, 0 ≤ k ≤ max(m,n) and the total number of terms is bounded by C(1 + max(m,n))
for some universal onstant C;
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(ii) for a nonanellative dyadi shift S0, 0
ω with symbol a, [b, S0, 0

ω ]f an be represented as a �nite

linear ombination of operators of the form

(2.9) S0, 0
ω (B0(b, f)), B0(b, S

0, 0
ω f), B̃0(b, S

0, 0
ω f), P (b, a, f), P ∗(b, a, f)

and the total number of terms is bounded by a universal onstant.

The paraprodut like operators in the above theorem are de�ned as the following. The generalized

dyadi paraprodut

(2.10) Bk(b, f) :=
∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

〈b, hi′

I(k)〉L2(X)〈f, h
i
I〉L2(X)h

i
I h

i′

I(k) ,

where I(k)
denotes the k-th dyadi anestor of I. Observe that when k = 0, this is the lassial

paraprodut

(2.11) B̃0(b, f) :=
∑

I

MI−1∑

i=1

〈b, hi
I〉L2(X)〈f, h

0
I〉L2(X)h

0
I h

i
I .

And the trilinear operator

(2.12) P (b, a, f) :=
∑

I

MI−1∑

i=1

〈b, hi
I〉L2(X)〈f, h

i
I〉L2(X)h

i
Ih

i
I

∑

J, J(I

MJ−1∑

j=1

〈a, hj
J 〉L2(X)h

j
J ,

with P ∗
being understood as the adjoint of P with b and a �xed. The important property of the

above operators is that they are uniformly bounded on L2
with BMO symbols.

Lemma 2.6. Given a, b ∈ BMO(X) and k ≥ 0, we have

‖Bk(b, f)‖L2(X) . ‖b‖BMO(X)‖f‖L2(X),

‖B̃0(b, f)‖L2(X) . ‖b‖BMO(X)‖f‖L2(X),

and

‖P (a, b, f)‖L2(X) . ‖a‖BMO(X)‖b‖BMO(X)‖f‖L2(X).

The lemma is well-known for B̃0(b, f), whih is the lassial paraprodut. For Bk(b, f), k ≥ 1
and for P (b, a, f), the boundedness follows from adaptations and modi�ations of [DO, Lemma

3.6 and 3.7℄ to the spaes of homogeneous type. The relevant properties of spaes of homogeneous

type here are the orthogonality of the Haar bases {hj
J}J,j , H

1
-BMO duality, dyadi square funtion

haraterization of dyadi H1
and the John-Nirenberg inequality.

The proof of Theorem 2.5 follows essentially the same strategy of [DO, Theorem 3.2℄. Unlike the

Eulidean setting, where assoiated with any Q ∈ D are a �xed number of Haar funtions that are

onstant on eah hild (of the same measure) of Q, in spaes of homogeneous type, there are MQ

Haar funtions hu
Q for any Q ∈ D and the measure of eah hild of Q an be di�erent. Fortunately,

by losely examining the argument in [DO℄, one observes without muh di�ulty that the only

properties of the Haar systems it relies on are the martingale struture:

∑

J : I(J

MJ−1∑

j=1

〈f, hj
J〉L2(X,µ)h

j
Jh

i
I = 〈f, h0

I〉L2(X,µ)h
0
Ih

i
I .(2.13)

and the fat that the dyadi ubes in D are properly nested. We omit the details of the proof.

In partiular, Theorem 2.5, together with Lemma 2.6 and the representation of Calderón-

Zygmund operators by Haar shifts (Theorem 2.4), implies almost immediately the upper bound of

the ommutator [b, T ] in spaes of homogeneous type:

‖[b, T ]‖L2(X)→L2(X) ≤ C‖b‖BMO(X),(2.14)

whih reovers the upper bound result of [CRW, KL, BC℄. More importantly, Theorem 1.2 follows

from iterating Theorem 2.5 and BMO estimates of ertain bi-parameter paraprodut like operators,

whih we explain in the next subsetion.
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2.3. The iterated ase: [[b, T1], T2]. Applying the representation theorem (Theorem 2.4) in both

variables, one ould obtain Theorem 1.2 by proving for any f ∈ Cη
0 (X1 ×X2) that

∥∥∥∥
∞∑

m1, m2, n1, n2=0

τ(m1, n1)τ(m2, n2)[[b, S
m1,n1
1 ], Sm2,n2

2 ]f

∥∥∥∥
L2(X1×X2)

(2.15)

. ‖b‖BMO(X1×X2)‖f‖L2(X1×X2).

By an iteration of Theorem 2.5, one an represent [[b, Sm1, n1
1 ], Sm2, n2

2 ] as a �nite linear ombination

of basi operators whih are essentially tensor produts of the operators Bk, B̃0 and P in the one-

parameter setting as in (2.10), (2.11) and (2.12), and the total number of terms is no greater than

C(1+max(m1, n1))(1+max(m2, n2)). Estimate (2.15) then follows from the uniform boundedness

of these operators whih we onlude in Lemma 2.7 below. The proof of Theorem 1.2 is thus

omplete.

More preisely, we need to onsider the following paraprodut like operators in the bi-parameter

setting (to ondense notation that we omit the subsript L2(X1 ×X2) on the inner produts). To

begin with, we let a, b ∈ BMO(X1 × X2), a
1 ∈ BMO(X1) and a2 ∈ BMO(X2). The generalized

bi-parameter dyadi paraprodut

Bk,l(b, f) :=
∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
i
I ⊗ hj

J〉hi
I h

i′

I(k) ⊗ hj
J h

j′

J(l) .

Parallel to (2.11), we also have

B̃
(1)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
0
I ⊗ hj

J〉h0
I h

i′

I(k) ⊗ hj
J h

j′

J(l) ,

B̃
(2)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
i
I ⊗ h0

J 〉hi
I h

i′

I(k) ⊗ h0
J h

j′

J(l) ,

B̃
(3)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
0
I ⊗ h0

J〉h0
I h

i′

I(k) ⊗ h0
J h

j′

J(l) .

The trilinear operator

PP (b, a, f) :=
∑

I

MI−1∑

i=1

∑

J

MJ−1∑

j=1

〈b, hi
I ⊗ hj

J〉〈f, hi
I ⊗ hj

J〉hi
Ih

i
I ⊗ hj

Jh
j
J ·

∑

I1: I1(I

MI1
−1∑

i′=1

∑

J1:J1(J

MJ1
−1∑

j′=1

〈a, hi′
I1 ⊗ hj′

J1
〉hi′

I1 ⊗ hj′

J1
,

where all the Haar funtions are anellative. And the new mixed type trilinear operators

BPk(b, a
2, f) :=

∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj
J〉〈f, hi

I ⊗ hj
J〉hi

Ih
i′

I(k) ⊗ hj
Jh

j
J ·

∑

J1:J1(J

MJ1
−1∑

j′=1

〈a2, hj′

J1
〉2h

j′

J1
,
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B̃Pk(b, a
2, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj
J〉〈f, h0

I ⊗ hj
J〉h0

Ih
i′

I(k) ⊗ hj
Jh

j
J ·

∑

J1: J1(J

MJ1
−1∑

j′=1

〈a2, hj′

J1
〉2h

j′

J1
,

PBl(b, a
1, f) :=

∑

I

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi
I ⊗ hj′

J(l)〉〈f, h
i
I ⊗ hj

J〉hi
Ih

i
I ⊗ hj

J h
j′

J(l) ·

∑

I1: I1(I

MI1
−1∑

i′=1

〈a1, hi′
I1〉1h

i′
I1 ,

P B̃l(b, a
1, f) :=

∑

I

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi
I ⊗ hj′

J(l)〉〈f, h
i
I ⊗ h0

J〉hi
Ih

i
I ⊗ h0

J h
j′

J(l) ·

∑

I1: I1(I

MI1
−1∑

i′=1

〈a1, hi′

I1〉1h
i′

I1.

Lemma 2.7. Given a, b ∈ BMO(X1 ×X2), a
1 ∈ BMO(X1) and a2 ∈ BMO(X2), we have

‖PP (b, a, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a‖BMO(X1×X2)‖f‖L2(X1×X2)

and the same for PP1(b, a, f), whih denotes the partial adjoint of PP in the �rst variable with

respet to the third input funtion; moreover, for k, l ≥ 0, we have

‖Bk,l(b, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖f‖L2(X1×X2)

and the same for B̃
(1)
k,l (b, f), B̃

(2)
k,l (b, f) and B̃

(3)
k,l (b, f);

‖BPk(b, a
2, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a

2‖BMO(X2)‖f‖L2(X1×X2)

and the same for B̃Pk(b, a
2, f);

‖PBl(b, a
1, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a

1‖BMO(X1)‖f‖L2(X1×X2)

and the same for PB̃l(b, a
1, f).

The above result an be derived similarly as in [DO, Lemmas 4.1, 4.2, and 4.5℄, therefore we omit

most of the details. We point out that a key fat that is ruial is the following multi-parameter

John-Nirenberg inequality in the homogeneous setting. The multiparameter John-Nirenberg in-

equality was �rst introdued in [CF, Setion III℄ for the produt BMO spae de�ned via the

wavelet basis (see also [Tao, Proposition 4.1℄ for dyadi produt BMO on R × R de�ned via Haar

basis). We note that this John-Nirenberg inequality also holds with the Haar system in the setting

of spae of homogeneous type. For the details, we refer to [CF, pp.199�200℄ and omit it here.

Lemma 2.8. Given b ∈ BMO(X1 ×X2) and p ∈ (1,∞), there holds

∥∥∥∥
( ∑

R=I×J⊂Ω

MI−1∑

i=1

Mj−1∑

j=1

∣∣〈b, hi
Ih

j
J〉
∣∣2 χR

µ(R)

)1/2∥∥∥∥
Lp(X1×X2)

≤ C‖b‖BMO(X1×X2)µ(Ω)1/p.(2.16)

3. Proof of Theorem 1.4

3.1. Proof of (i)⇐⇒(ii). Suppose that b ∈ bmo(Rλ). Then we know that for any �xed x2 ∈ R,
b(x1, x2) as a funtion of x1 is in the standard one-parameter BMO(R+, dmλ), a symmetri result

holds for the roles of x1 and x2 interhanged. Moreover, we further have that

‖b‖bmo(Rλ) ≈ sup
x1∈R+

‖b(x1, ·)‖BMO(R+,dmλ) + sup
x2∈R+

‖b(·, x2)‖BMO(R+,dmλ),(3.1)
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where the impliit onstants are independent of the funtion b.
Next, we reall a reent result by a subset of the authors [DLWY℄, where they obtained that

‖b‖BMO(R+,dmλ) ≈ ‖[b,R∆λ
]‖L2(R+,dmλ)→L2(R+,dmλ),(3.2)

where BMO(R+, dmλ) is the standard one-parameter BMO spae on (R+, dmλ).
Combining (3.1) and (3.2), we obtain that

‖b‖bmo(Rλ) ≈ sup
x1∈R+

‖[b(x1, ·), R∆λ, 2]‖L2(R+,dmλ)→L2(R+,dmλ)

+ sup
x2∈R+

‖[b(·, x2), R∆λ, 1]‖L2(R+,dmλ)→L2(R+,dmλ),

whih implies that (i)⇐⇒(ii).

3.2. Proof of (i)⇐⇒(iii). From [BDT℄, we know that H1(R+, dmλ) an be haraterized via

Bessel Riesz transforms, i.e., f ∈ H1(R+, dmλ) if and only if f,R∆λ
(f) ∈ L1(R+, dmλ), and

‖f‖H1(R+,dmλ) ≈ ‖f‖L1(R+,dmλ) + ‖R∆λ
(f)‖L1(R+,dmλ).

Then by the duality of H1(R+, dmλ) with BMO(R+, dmλ), and following the same approah as in

[FS℄, we obtain the following deomposition for BMO(R+, dmλ):

b ∈ BMO(R+, dmλ) if and only if there exist f, g ∈ L∞(R+, dmλ) suh that

b = f +R∆λ
g.(3.3)

Moreover,

‖b‖BMO(R+,dmλ) ≈ inf{‖f‖L∞(R+,dmλ) + ‖g‖L∞(R+,dmλ)},

where the in�mum is taken over all possible deompositions of b as in (3.3). As a onsequene, the

argument (i)⇐⇒(iii) follows from (3.1) and (3.3).

3.3. Proof of (i)⇐⇒(iv).

3.3.1. Proof of (i)=⇒(iv). We point out that the proof of the upper bound of [b,R∆λ, 1R∆λ, 2] fol-
lows diretly from the property of bmo(Rλ) and the L2

boundedness of the Bessel Riesz transforms

R∆λ, 1 and R∆λ, 2.

To see this, for b ∈ bmo(Rλ), we remark that

[b,R∆λ, 1R∆λ, 2] = R∆λ, 1[b,R∆λ, 2] + [b,R∆λ, 1]R∆λ, 2.

Then based on (3.1) and the result of [DLWY℄, we know that

∥∥[b,R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)
+
∥∥[b,R∆λ, 1]

∥∥
L2(Rλ)→L2(Rλ)

. sup
x1∈R+

‖b(x1, ·)‖BMO(R+,dmλ) + sup
x2∈R+

‖b(·, x2)‖BMO(R+,dmλ)

. ‖b‖bmo(Rλ).

Then, denote by Id1 and Id2 the identity operator on L2(R+, dmλ) for the �rst and seond

variable, respetively. We further have

[b,R∆λ, 1R∆λ, 2] = (R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2] + [b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2),

where we use T1 ◦ T2 to denote the omposition of two operators T1 and T2. Thus, we obtain that

∥∥[b,R∆λ, 1R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)

=
∥∥(R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2] + [b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2)

∥∥
L2(Rλ)→L2(Rλ)

≤
∥∥(R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2]

∥∥
L2(Rλ)→L2(Rλ)

+
∥∥[b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2)

∥∥
L2(Rλ)→L2(Rλ)

≤
∥∥R∆λ, 1‖L2(Rλ)→L2(Rλ)

∥∥[b,R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)

+
∥∥[b,R∆λ, 1]

∥∥
L2(Rλ)→L2(Rλ)

∥∥R∆λ, 2

∥∥
L2(Rλ)→L2(Rλ)

. ‖b‖bmo(Rλ),
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whih implies (i)=⇒(iv).

3.3.2. Proof of (i)⇐=(iv). We begin with some preliminaries.

Proposition 3.1 ([DLWY℄). The Riesz kernel R∆λ
(x, y) satis�es:

(i) There exist K1 > 2 large enough and a positive onstant CK1, λ suh that for any x, y ∈ R+

with y > K1x,

(3.4) R∆λ
(x, y) ≥ CK1, λ

x

y2λ+2
.

(ii) There exist K2 ∈ (0, 1) small enough and a positive onstant CK2, λ suh that for any

x, y ∈ R+ with y < K2x,

(3.5) R∆λ
(x, y) ≤ −CK2, λ

1

x2λ+1
.

(iii) There exist K3 ∈ (0, 1/2) small enough and a positive onstant CK3,λ suh that for any

x, y ∈ R+ with 0 < y/x− 1 < K3,

R∆λ
(x, y) ≥CK3,λ

1

xλyλ

1

y − x
.

De�nition 3.2. Suppose q ∈ (1,∞]. A q-atom on Rλ is a funtion a ∈ Lq(Rλ) supported on a

retangle R ⊂ Rλ with ‖a‖Lq(Rλ) ≤ µλ(R)
1
q
−1

and satisfying the anellation property

∫

R+×R+

a(x1, x2)dµλ(x1, x2) = 0.

Let Atomq(Rλ) denote the olletion of all suh atoms.

De�nition 3.3. Suppose q ∈ (1,∞]. The atomi Hardy spae h1,q(Rλ) is de�ned as the set of

funtions of the form

f =
∑

i

αiai(3.6)

with {ai}i ⊂ Atomq(Rλ), {αi}i ⊂ C and

∑
i |αi| < ∞. Moreover, h1,q(Rλ) is equipped with the

norm ‖f‖h1,q(Rλ) := inf
∑

i |αi| where the in�mum is taken over all possible deompositions of f in

the form (3.6).

For these little Hardy spaes, we �rst have the following onlusion.

Theorem 3.4. Let q ∈ (1,∞). Then the spaes h1, q(Rλ) and h1, ∞(Rλ) oinide with equivalent

norms.

We �rst reall the following Whitney type overing lemma from [CW77℄.

Lemma 3.5. Suppose U $ R+ × R+ is an open bounded set and C̃ ∈ [1,∞). Then there exists a

sequene of ubes {Qj}j satisfying

(i) U = ∪jQj = ∪jC̃Qj ;

(ii) there exists a positive onstant M suh that no point of R+ × R+ belongs to more than M

of the balls C̃Qj, whih is alled as the M -disjointness of {C̃Qj}j ;

(iii) 3C̃Qj ∩ (R+ × R+ \ U) 6= ∅ for eah j.

Now we establish a useful lemma whih is a variant of [CW77, Lemma (3.9)℄. To this end, we

reall the strong maximal funtion de�ned by setting, for all (x1, x2) ∈ R+ × R+,

Msf(x1, x2) := sup
R∋(x1,x2)

1

µλ(R)

∫

R
|f(y1, y2)| dµλ(y1, y2).

It is already known that Ms is bounded on Lp(Rλ), with p ∈ (1,∞).
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Lemma 3.6. If f ∈ L1
loc (µλ) has support in R0 := I0 × J0 entered at (x1

0, x
2
0), then there exists

a positive onstant C1 suh that

Uα := {(x1, x2) ∈ Rλ : Msf(x1, x2) > α} ⊂ 3R0

whenever α ∈ (C1mR0(|f |),∞), where mR(f) is as in (1.5).

Proof. We only need to prove that, if α ∈ (C1mR0(|f |),∞), then Rλ \ (3R0) ⊂ Rλ \ Uα
.

For any x := (x1, x2) /∈ 3R0, we have |x1 − x1
0| ≥ |I0| and |x2 − x2

0| ≥ |J0|. Then it is easy to

show that, for any retangle R ∋ (x1, x2) satisfying |I| ≤ |I0| or |J | ≤ |J0|, R ∩R0 = ∅. Then

Msf(x) = sup
I∋x1, |I|≥|I0|

sup
J∋x2, |J |≥|J0|

1

mλ(I)mλ(J)

∫

I

∫

J
|f(y1, y2)| dµλ(y1, y2).

For any retangle R := I × J ∋ (x1, x2) suh that |I| ≥ |I0|, |J | ≥ |J0| and R ∩ R0 6= ∅, it is easy
to see that R0 ⊂ 3R. This, together with supp (f) ⊂ R0 implies that

1

µλ(R)

∫

R
|f(y1, y2)| dµλ(y1, y2) ≤

µλ(R0)

µλ(R)

1

µλ(R0)

∫

R0

|f(y1, y2)| dµλ(y1, y2)

≤
µλ(3R)

µλ(R)
mR0(|f |) ≤ C1mR0(|f |).

Thus, we have Msf(x) ≤ C1mR0(|f |). Moreover, if α > C1mR0(|f |), then α > Msf(x1, x2), that
is, (x1, x2) /∈ Uα

, whih ompletes the proof of Lemma 3.6. �

Proof of Theorem 3.4. We have observed that h1, ∞(Rλ) ⊂ h1, q(Rλ) for q ∈ (1,∞). Thus, we only
need to establish the onverse. We do so by showing that for any (1, q)-atom a with supp (a) ⊂ R0,

b := µλ(R0) ·a has an atomi deomposition b =
∑∞

i=0 αibi, where eah bi, i ∈ Z+, is a (1,∞)-atom
and

∞∑

i=0

|αi| . 1.

We show this by indution. In order to state the indutive hypothesis we �rst introdue some

neessary notation.

For eah positive integer n, let Nn
denote the n-fold Cartesian produt of the natural numbers

N, N0 := {0}. We write in to represent a general element of Nn
. The indutive hypothesis we

establish is the following one:

There exists a olletion of retangles {Ril}, il ∈ Nl
for l ∈ {1, 2, . . .}, suh that, for eah n ∈ N,

b=

n−1∑

l=1

∑

il∈Nl

MCλα
l+1µλ(3Ril)ail +

∑

in∈Nn

hin =: Gn + Hn,(3.7)

where p ∈ (1, q), α ∈ (1,∞) is large enough whih depends on p, q and is to be �xed later, Cλ

satis�es for any retangle R ⊂ Rλ, µλ(9R) ≤ Cλµλ(R), and

(I) ail is a (1,∞)-atom supported in 3Ril, l ∈ {1, 2, . . . , n− 1}, il ∈ Nl
;

(II) ∪in∈NnRin ⊂ {x ∈ Rλ : Ms, pb(x) > αn/2}, where p ∈ (1, q) and Ms, p(f) := [Ms(|f |p)]1/p ;

(III) {3Ril} is an M l
-disjoint olletion;

(IV) the funtion hin is supported in Rin for eah in ∈ Nn
;

(V)

∫
Rλ
hin(x) dµλ(x) = 0 for eah in ∈ Nn

;

(VI) |hin(x)| ≤ |b(x)| + 2C
1/p
λ αnχRin

(x) for eah in ∈ Nn
, where χRin

is the harateristi

funtion of Rin ;

(VII) [mRin
(|hin |p)]1/p ≤ 2C

1/p
λ αn

for eah in ∈ Nn
.

We begin with proving that

Ip :=
1

µλ(R0)

∞∑

n=1

∑

in∈Nn

MCλα
n+1µλ (3Rin) . 1.(3.8)
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Indeed, from (III), (II), b = µλ(R0)a and the boundedness of Ms, p from Lq(Rλ) to Lq, ∞(Rλ), we
dedue that

∑

in∈Nn

µλ (3Rin) ≤CλM
nµλ

(
⋃

in∈Nn

Rin

)
(3.9)

≤CλM
nµλ ({x ∈ Rλ : Ms, pb(x) > αn/2})

.CλM
n2qα−nq‖b‖q

Lq(Rλ)

.CλM
n2qα−nqµλ(R0).

This fat implies that

Ip .MCλ

∞∑

n=1

αn+1CλM
n2qα−nq ≈ MC2

λα2q
∞∑

n=1

(α1−qM)n . 1,

if α is large enough suh that α1−qM < 1, whih gives (3.8).

By (IV), (VII), Hölder's inequality and (3.9), we obtain

∫

Rλ

|Hn(x)| dµλ(x) ≤
∑

in∈Nn

∫

Rλ

|hin(x)| dµλ(x)

≤ 2C
1/p
λ αn

∑

in∈Nn

µλ (Rin)

. 2C
1/p
λ αnCλM

n2qα−nq‖b‖q
Lq(Rλ)

.
(
Mα1−q

)n
‖b‖q

Lq(Rλ).

This, together with q > 1, shows that Gn onverges to b in L1(µ). Then the representation (3.7)

holds true in L1(Rλ).
Let us show that the hypothesis is valid for n = 1. Let

Uα := {(x1, x2) ∈ Rλ : Ms, pb(x1, x2) > α} .

Observe that mR0(|b|) ≤ 1. By this and Lemma 3.6, we �nd that Uα ⊂ 3R0 provided αp > C1

therein. Moreover, Uα
is a bounded open set. By the boundedness of Ms, p from Lq(Rλ) to

Lq, ∞(Rλ), we onlude that there exists a positive onstant Cp, q suh that,

µλ (Uα) ≤ Cp, qα
−q ‖b‖q

Lq(Rλ) ≤Cp, qα
−qµλ(R0).

If αq > Cp, q, then µλ(Uα) < µλ(R0) < ∞. We see that, Rλ \ Uα
an not be empty. Applying

Lemma 3.5 with C̃ = 3 therein, we obtain a sequene of retangles (ubes atually) {Ri}i satisfying

(i) through (iii) therein. Let χi := χRi
,

ηi(x) :=





χi(x)∑
k χk(x)

, if x ∈ Uα
;

0, otherwise,

g0(x) :=





b(x), if x /∈ Uα
;

∑

i

mRi
(ηib)χi(x), if x ∈ Uα

and

hi(x) := ηi(x)b(x) −mRi
(ηib)χi(x)

for all x ∈ R+ × R+. It follows that b = g0 +
∑

i hi. For almost every x /∈ Uα
, we see that

|g0(x)| = |b(x)| ≤ Ms, pb(x) ≤ α.
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If x ∈ Uα
, by the Hölder inequality, (ii) and (iii) of Lemma 3.5 and the de�nition of Uα

, we obtain

|g0(x)| ≤
∑

i

1

µλ(Ri)

∫

Ri

|ηi(y)b(y)| dµλ(y)χi(x)(3.10)

≤
∑

i

µλ(9Ri)

µλ(Ri)

[
1

µλ(9Ri)

∫

9Ri

|b(y)|p dµλ(y)

]1/p

χi(x)

≤
∑

i

Cλαχi(x)

≤MCλα.

Combining these two estimates, we onlude that, for almost every x ∈ R+ × R+,

(3.11) |g0(x)| ≤ MCλα.

We have seen that Uα ⊂ 3R0 and that, for x /∈ Uα
, g(x) = b(x). By supp (b) ⊂ 3R0, we onlude

that supp (g) ⊂ 3R0. Also,

(3.12) supp (hi) ⊂ Ri

and

(3.13)

∫

Rλ

hi(x) dµλ(x) = 0

for any i. Sine {Ri}i are M -disjoint, we have

∑

i

‖hi‖L1(Rλ) ≤ 2
∑

i

‖ηib‖L1(Rλ) ≤ 2
∑

i

∫

Ri

|b(x)| dµλ(x)(3.14)

≤ 2M

∫

Uα

|b(x)| dµλ(x)

≤ 2Mµλ(R0).

Observe that

∫
Rλ
g0(x) dmλ(x) = 0. Thus,

(3.15) a0 := g0/(MCλαµλ(3R0))

is a (1,∞)-atom supported in 3R0, and we have

b=MCλαµλ(3R0)a0 +
∑

i

hi.

This shows (I).

Now observe that⋃

i

Ri = Uα = {x ∈ R+ × R+ : Ms, pb(x) > α} ⊂ {x ∈ R+ × R+ : Ms, pb(x) > α/2} .

This shows (II).

Sine 0 ≤ ηi ≤ 1, arguing as in (3.10), we obtain

|hi(x)| ≤ |ηi(x)b(x)| + |mRi
(ηib)|χi(x)

≤ |b(x)| + [mRi
(|b|p)]1/p χi(x)

≤ |b(x)| + C
1/p
λ αχi(x).

Thus, (VI) holds true. From this together with the de�nition of Uα
and Lemma 3.5 (iii), we further

dedue that

[mRi
(|hi|

p)]1/p ≤ [mRi
(|b|p)]1/p + C

1/p
λ α

≤

[
µλ(9Ri)

µλ(Ri)
m9Ri

(|b|p)

]1/p

+ C
1/p
λ α

≤ 2C
1/p
λ α,
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whih implies (VII). Moreover, (III) is a onsequene of Lemma 3.5(ii), and (IV) holds true by

(3.12) and (V) holds true by (3.13). This shows that the indution holds true for n = 1.
We now assume that the hypothesis holds true for n and show that it is also valid for n+ 1. Let

Uα
in :=

{
x ∈ Rλ : Ms, phin(x) > αn+1

}
.

By (IV) for n, we have supp (hin) ⊂ Rin . Moreover, it follows, from (VII) for n, provided αp >
2pC1Cλ, that

C1mRin
(|hin |p) ≤ C1Cλ(2αn)p < α(n+1)p.

By Lemma 3.6, we see that

(3.16) Uα
in =

{
x ∈ Rλ : Ms (|hin |p) (x) > α(n+1)p

}
⊂ 3Rin .

Let retangles {Rin, k}k be a Whitney overing of Uα
in . From (i) and (ii) of Lemma 3.5 and (3.16),

it follows that ⋃

k

3Rin, k = Uα
in ⊂ 3Rin

and {3Rin, k}k is M -disjoint. Sine, from (III) for n, we know {3Rin}in are Mn
-disjoint, it follows

that the totality of retangles (ubes) in the family {3Rin, k}k, in areMn+1
-disjoint. This establishes

(III) for n+ 1.
We now put

gin(x) :=




hin(x), if x /∈ Uα

in ;∑

k

mRin, k
(ηin

k hin)χRin, k
(x), if x ∈ Uα

in

and

hin, k := ηin
k hin −mRin, k

(ηin
k hin)χRin, k

,

where

ηin
k (x) := χRin, k

(x)
/∑

k

χRin, k
(x)

for x ∈ Uα
in
, and is 0 if x /∈ Uα

in
. If x ∈ Uα

in
, then

|gin(x)| ≤
∑

k

∣∣∣mRin, k
(ηin

k hin)χRin, k
(x)
∣∣∣

≤
∑

k

µλ(9Rin, k)

µλ(Rin, k)

1

µλ(9Rin, k)

∫

9Rin, k

|hin(y)| dµλ(y)χRin, k
(x)

≤MCλα
n+1,

while if x /∈ Uα
in
, then

|gin(x)| = |hin(x)| ≤ Ms, phin(x) ≤ αn+1.

In any ase, we have

‖gin‖L∞(µ) ≤ MCλα
n+1.

Sine the support of hin is within Rin ⊂ 3Rin and Uα
in ⊂ 3Rin , it follows that the support of gin

is inluded in 3Rin . Moreover,

∫
Rλ
hin, k(x) dµλ(x) = 0 (whih shows that property (V) is valid for

n+ 1). By an argument used in the estimate for (3.14), it is easy to see that

∑

k

‖hin, k‖L1(Rλ) ≤ 2M ‖hin‖L1(Rλ) .

It then follows from this that

hin = gin +
∑

k

hin, k

is valid in L1(µ) and
∫

Rλ
gin(x) dµλ(x) = 0.

Let

ain := gin/
{
MCλα

n+1 [µλ (3Rin)]
}
.
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Then ain is a (1,∞)-atom supported in the retangle 3Rin . From this, we dedue that (3.7) holds

true for n+ 1 and so does (I). Property (IV) is trivially true. Moreover, by the de�nition of hin, k,

(VI) for n and Lemma 3.5(iii), we onlude that

|hin, k(x)| ≤



|hin(x)| +

[
Cλ

1

µλ(9Rin, k)

∫

9Rin, k

|hin(x)|p dµλ(x)

]1/p


χRin, k

(x)

≤
{

|b(x)| + 2C
1/p
λ αn + C

1/p
λ αn+1

}
χRin, k

(x)

≤
{

|b(x)| + 2C
1/p
λ αn+1

}
χRin, k

(x)

if α > 2. This establishes (VI) for n+ 1.
On the other hand, by the de�nitions of hin, k and Uα

in , we have

[
mRin, k

(|hin, k|
p)
]1/p

≤ 2
[
mRin, k

(|hin |p)
]1/p

≤ 2
[
Cλm9Rin, k

(|hin |p)
]1/p

≤ 2C
1/p
λ αn+1,

whih shows (VII).

Finally, from (VI) for n, we dedue that

Ms, p(hin)(x) ≤ Ms, p(b)(x) + 2C
1/p
λ αn.

Thus, if x ∈ Uα
in , then

αn+1 < Ms, p(hin)(x) ≤ Ms, p(b)(x) + 2C
1/p
λ αn.

It follows that, if α > 4C
1/p
λ , then αn+1/2 < Ms, p(b)(x). Thus,

⋃

in, k

Rin, k =
⋃

in

⋃

k

Rin, k ⊂
⋃

in

Uα
in ⊂

{
x ∈ Rλ : Ms, p(b)(x) > αn+1/2

}

and (II) is valid for n+ 1. This �nishes the proof of Theorem 3.4. �

Based on Theorem 3.4, we now denote by h1(Rλ) the little Hardy spae, and we have the

following result on the duality of h1(Rλ) with bmo(Rλ).

Theorem 3.7. The predual of bmo(Rλ) is h1(Rλ).

Proof. The duality of h1,2(Rλ) with bmo(Rλ) follows from a standard argument, see for example

[CW77℄ (see also [J, Setion II, Chapter 3℄). Hene, by Theorem 3.4, the predual of bmo(Rλ) is

h1,∞(Rλ). �

Our main result of this setion is the following.

Theorem 3.8. For every f ∈ h1(Rλ), there exist sequenes {αk
j }j ∈ ℓ1 and funtions gk

j , h
k
j ∈

L∞(Rλ) with ompat support, suh that

f =
∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(3.17)

in the sense of h1(Rλ), where Π(g, h) is the bilinear form de�ned as

Π(g, h) := g ·R∆λ, 1R∆λ, 2(h) − h · R̃∆λ,1R̃∆λ,2(g),(3.18)

where R̃∆λ,1 and R̃∆λ,2 are the adjoints of R∆λ, 1 and R∆λ, 2, respetively.

Moreover, we have that

‖f‖h1(Rλ) ≈ inf
{ ∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2(Rλ)

∥∥∥hk
j

∥∥∥
L2(Rλ)

}
,
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where the in�mum is taken over all representations of f in the form (3.17) and the impliit onstants

are independent of f .

To prove Theorem 3.8, we study the property of the bilinear form Π(f, g) as de�ned in (3.18),

whih onnets to the ommutator [b,R∆λ, 1R∆λ, 2].

Proposition 3.9. For every g, h ∈ L∞(Rλ) with ompat support, the bilinear form Π(g, h) is in

h1(Rλ) with the norm satisfying

‖Π(g, h)‖h1(Rλ) ≤ C‖g‖L2(Rλ)‖h‖L2(Rλ).(3.19)

Proof. First, it is lear that for every g, h ∈ L∞(Rλ) with ompat support, the bilinear form

Π(f, g) is in L1(Rλ) with ompat support and satis�es

∫

R+×R+

Π(g, h)(x1, x2)dmλ(x1)dmλ(x2) = 0.

Moreover, for b ∈ bmo(Rλ) and for every g, h ∈ L∞(Rλ) with ompat support, we have

∣∣∣〈b,Π(g, h)〉L2(Rλ)

∣∣∣ =

∣∣∣∣
〈
b, gR∆λ, 1R∆λ, 2h− hR̃∆λ,1R̃∆λ,2g

〉
L2(Rλ)

∣∣∣∣(3.20)

=
∣∣∣〈[b,R∆λ, 1R∆λ, 2] f, g〉L2(Rλ)

∣∣∣
. ‖b‖bmo(Rλ)‖f‖L2(Rλ)‖g‖L2(Rλ),

This, together with the duality result as in Theorem 3.7, implies that for every g, h ∈ L∞(Rλ)
with ompat supports, the bilinear form Π(f, g) is in h1(Rλ). Moreover, the h1(Rλ) norm of

Π(f, g) satis�es (3.19). In fat, we point out that from the fundamental fat as in [Gra, Exerise

1.4.12 (b)℄, we have

‖Π(g, h)‖h1(Rλ) ≈ sup
b: ‖b‖bmo(Rλ)≤1

∣∣〈b,Π(g, h)〉L2 (Rλ)

∣∣,

whih, together with (3.20), immediately implies that (3.19) holds. �

Next, we provide the following approximation to eah h1,∞(Rλ) atom via the bilinear form

de�ned as in (3.18).

Theorem 3.10. Let ǫ be an arbitrary positive number. Let a(x1, x2) be an ∞-atom as de�ned in

De�nition 3.2. Then there exist two funtions f, g ∈ L∞(Rλ) with ompat supports and a onstant

C(ǫ) depending only on ǫ suh that

‖a− Π(f, g)‖h1(Rλ) < ǫ,

where ‖f‖L2 (Rλ)‖g‖L2 (Rλ) ≤ C(ǫ).

To prove Theorem 3.10, we �rst provide a tehnial lemma as follows.

Lemma 3.11. Let R := I(x0,1, r1)×I(x0,2, r2) and R̃ := I(y0,1, r1)×I(y0,2, r2) be two retangles in

R+ × R+ with r1 ≤ min{x0,1, y0,1} and r2 ≤ min{x0,2, y0,2}. Moreover, assume that |x0,1 − y0,1| ≥
4r1 and |x0,2 − y0,2| ≥ 4r2.

Let f : R2 → C with supp f ⊆ R ∪ R̃. Further, assume that

|f(x1, x2)| . C̃1χR(x1, x2) + C̃2χR̃(x1, x2)

and that f has a mean value zero property:∫

R+×R+

f(x1, x2) dmλ(x1)dmλ(x2) = 0.(3.21)

Then there exists a positive onstant C independent of x0,1, x0,2, y0,1, y0,2, r1, r2, C̃1 and C̃2 suh

that

‖f‖h1(Rλ) ≤ C

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
C̃1µλ(R) + C̃2µλ(R̃)

)
.
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Proof. Suppose f satis�es the onditions as stated above. We will show that f has an atomi

deomposition as the form in De�nition 3.3. To see this, we �rst de�ne two funtions f1(x1, x2)
and f2(x1, x2) by

f1(x1, x2) = f(x1, x2), (x1, x2) ∈ R; f1(x1, x2) = 0, (x1, x2) ∈ R2 \R, and

f2(x1, x2) = f(x1, x2), (x1, x2) ∈ R̃; f2(x1, x2) = 0, (x1, x2) ∈ R2 \ R̃.

Then we have that f = f1 + f2 and that

|f1(x1, x2)| . C̃1χR(x1, x2) and |f2(x1, x2)| . C̃2χR̃(x1, x2).

De�ne

g1
1(x1, x2) :=

χ2R(x1, x2)

µλ(2R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2),

f1
1 (x1, x2) := f1(x1, x2) − g1

1(x1, x2),

α1
1 := ‖f1

1 ‖L∞(Rλ)µλ(2R).

Then we laim that a1
1 := (α1

1)
−1f1

1 is a retangle atom as in De�nition 3.2. First, it is diret that

a1
1 is supported in 2R. Moreover, we have that

∫

R+×R+

a1
1(x1, x2) dmλ(x1)dmλ(x2)

= (α1
1)

−1

∫

R+×R+

(
f1(x1, x2) − g1

1(x1, x2)
)
dmλ(x1)dmλ(x2)

= (α1
1)

−1

(∫

R+×R+

f1(x1, x2) dmλ(x1)dmλ(x2) −

∫

R+×R+

f1(x1, x2)dmλ(x1)dmλ(x2)

)

= 0

and that

‖a1
1‖L∞(Rλ) ≤ |(α1

1)
−1|‖f1

1 ‖L∞(Rλ) =
1

µλ(2R)
.

Thus, a1
1 is an ∞-atom as in De�nition 3.2. Moreover, we have

α1
1 = ‖f1

1 ‖L∞(Rλ)µλ(2R) ≤ ‖f1‖L∞(Rλ)µλ(2R) + ‖g1
1‖L∞(Rλ)µλ(2R) . C̃1µλ(R),

where the impliit onstant depends only on λ. We now have

f1(x1, x2) = f1
1 (x1, x2) + g1

1(x1, x2) = α1
1a

1
1 + g1

1(x1, x2).

For g1
1(x1, x2), we further write it as

g1
1(x1, x2) = g1

1(x1, x2) − g2
1(x1, x2) + g2

1(x1, x2) =: f2
1 (x1, x2) + g2

1(x1, x2)

with

g2
1(x1, x2) :=

χ4R(x1, x2)

µλ(4R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2).

Again, we de�ne

α2
1 := ‖f2

1 ‖L∞(Rλ)µλ(4R) and a2
1 := (α2

1)
−1f2

1 ,

and following similar estimates as for a1
1, we see that a

2
1 is an ∞-atom as in De�nition 3.2 with

‖a2
1‖L∞(Rλ) ≤

1

µλ(4R)
and α2

1 . C̃1µλ(R),

where the impliit onstant depends only on λ.
Then we have

f1(x1, x2) =
2∑

i=1

αi
1a

i
1 + g2

1(x1, x2).
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Continuing in this fashion we see that for i ∈ {1, 2, ..., i0},

f1(x1, x2) =

i0∑

i=1

αi
1a

i
1 + gi0

1 (x1, x2),

where for i ∈ {2, ..., i0},

gi
1(x1, x2) :=

χ2iR(x1, x2)

µλ(2iR)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2),

f i
1(x1, x2) := gi−1

1 (x1, x2) − gi
1(x1, x2),

αi
1 := ‖f i

1‖L∞(Rλ)µλ(2iR) and

ai
1 := (αi

1)
−1f i

1.

Here we hoose i0 to be the smallest positive integer suh that

i0 ≥ log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2
.

Moreover, for i ∈ {1, 2, ..., i0}, we have

αi
1 ≤ ‖f i

1‖L∞(Rλ)µλ(2iR) ≤
(
‖gi−1

1 ‖L∞(Rλ) + ‖gi
1‖L∞(Rλ)

)
µλ(2iR)

≤ µλ(2iR)

(
1

µλ(2i−1R)

∫∫

R
|f1(y1, y2)|dmλ(y1)dmλ(y2)

+
1

µλ(2iR)

∫∫

R
|f1(y1, y2)|dmλ(y1)dmλ(y2)

)

. µλ(2iR)
1

µλ(2i−1R)
‖f1‖L∞(Rλ)µλ(R)

. C̃1µλ(R),

where the impliit onstant depends only on λ.
Following the same steps, we also obtain that for i ∈ {1, 2, ..., i0},

f2(x1, x2) =

i0∑

i=1

αi
2a

i
2 + gi0

2 (x1, x2),

where for i ∈ {2, ..., i0},

gi
2(x1, x2) :=

χ
2iR̃

(x1, x2)

µλ(2iR̃)

∫∫

R̃
f2(y1, y2)dmλ(y1)dmλ(y2),

f i
2(x1, x2) := gi−1

2 (x1, x2) − gi
2(x1, x2),

αi
2 := ‖f i

2‖L∞(Rλ)µλ(2iR̃) and

ai
2 := (αi

2)
−1f i

2.

Similarly, for i ∈ {1, 2, ..., i0}, we have

αi
2 . C̃2µλ(R̃).

Combining the deompositions above, we obtain that

f(x1, x2) =

2∑

j=1

i0∑

i=1

αi
ja

i
j + gi0

j (x1, x2).

We now onsider the tail gi0
1 (x1, x2)+ gi0

2 (x1, x2). To handle that, onsider the retangle R de�ned

as

R := I
(x0,1 + y0,1

2
, (2i0 + 1)r1

)
× I
(x0,2 + y0,2

2
, (2i0 + 1)r2

)
.
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∗

Then, it is lear that R ∪ R̃ ⊂ R, and that 2i0R, 2i0R̃ ⊂ R. Thus, we get that

χR(x1, x2)

µλ(R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2) +

χR(x1, x2)

µλ(R)

∫∫

R
f2(y1, y2)dmλ(y1)dmλ(y2) = 0.

Hene, we write

gi0
1 (x1, x2) + gi0

2 (x1, x2) =

(
gi0
1 (x1, x2) −

χR(x1, x2)

µλ(R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2)

)

+

(
gi0
2 (x1, x2) −

χR(x1, x2)

µλ(R)

∫∫

R
f2(y1, y2)dmλ(y1)dmλ(y2)

)

=: f i0+1
1 + f i0+1

2 .

We now de�ne

αi0+1
1 := ‖f i0+1

1 ‖L∞(Rλ)µλ(2i0+1R), αi0+1
2 := ‖f i0+1

2 ‖L∞(Rλ)µλ(2i0+1R̃)

ai0+1
1 := (αi0+1

1 )−1f i0+1
1 and ai0+1

2 := (αi0+1
2 )−1f i0+1

2 .

Again we an verify that ai0+1
1 is an ∞-atom as in De�nition 3.2 with

‖ai0+1
1 ‖L∞(Rλ) =

1

µλ(2i0+1R)
.

Moreover, we also have

αi0+1
1 . C̃1µλ(R).

Similarly, ai0+1
2 is an ∞-atom as in De�nition 3.2 with

‖ai0+1
2 ‖L∞(Rλ) =

1

µλ(2i0+1R̃)
,

and we also have

αi0+1
2 . C̃1µλ(R̃).

Thus, we obtain that

f(x1, x2) =
2∑

j=1

i0+1∑

i=1

αi
ja

i
j ,

whih implies that f ∈ h1(Rλ) and

‖f‖h1(Rλ) ≤
2∑

j=1

i0+1∑

i=1

αi
j

≤ C

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
C̃1µλ(R) + C̃2µλ(R̃)

)
.

Therefore, we �nish the proof of Lemma 3.11. �

Proof of Theorem 3.10. Suppose a is an atom of h1(Rλ) supported in a retangle

R := I(x0,1, r1) × I(x0,2, r2),

as in De�nition 3.2. Observe that if r1 > x0,1, then I(x0,1, r1) = (x0,1 − r1, x0,1 + r1) ∩ R+ =

I(
x0,1+r1

2 ,
x0,1+r1

2 ). Therefore, without loss of generality, we may assume that r1 ≤ x0,1, and

similarly assume that r2 ≤ x0,2. Let K2 and K3 be the onstants appeared in (ii) and (iii) of

Proposition 3.1 respetively, and K0 > max{ 1
K2
, 1

K3
} + 1 large enough. For any ǫ > 0, let M̃ be a

positive onstant large enough suh that M̃ ≥ 100K0 and

log2 M̃

M̃
< ǫ.

We now onsider the following four ases.

Case (a): x0,1 ≤ 2M̃r1, x0,2 ≤ 2M̃r2.
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In this ase, let y0,1 := x0,1 + 2M̃K0r1 and y0,2 := x0,2 + 2M̃K0r2 and

R̃ := I(y0,1, r1) × I(y0,2, r2).

Then for i = 1, 2,

(1 +K0)x0,i ≤ y0,i ≤ (1 + 2M̃K0)x0,i.

De�ne

g(x1, x2) := χ
R̃
(x1, x2)(3.22)

and

h(x1, x2) := −
a(x1, x2)

R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
.(3.23)

We �rst point out that by the fat that yi/x0,i > K−1
2 for any yi ∈ I(y0,i, ri), i = 1, 2, and

Proposition 3.1 (ii), we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.24)

=
∣∣∣
∫ y0,1+r1

y0,1−r1

R̃∆λ,1(y1, x0,1)dmλ(y1)

∫ y0,2+r2

y0,2−r2

R̃∆λ,1(y2, x0,2)dmλ(y2)
∣∣∣

&

∫ y0,1+r1

y0,1−r1

1

y1
dy1

∫ y0,2+r2

y0,2−r2

1

y2
dy2 ∼

r1
y0,1

r2
y0,2

∼
1

M̃2
.

Then from the de�nitions of g and h above, we have

‖g‖L2 (Rλ) = µλ(R̃)
1
2

and

‖h‖L2 (Rλ) =
1

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣
‖a‖L2 (Rλ) ≤

µλ(R)−
1
2

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣
.

Thus, from (3.24), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2µλ(R̃)
1
2µλ(R)−

1
2 . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

) 1
2

. M̃2+2λ.

Now, write

a(x1, x2) − Π(g, h)(x1, x2)

=
(
a(x1, x2) + h(x1, x2)R̃∆λ,1R̃∆λ,2(g)(x1, x2)

)
− g(x1, x2)R∆λ, 1R∆λ, 2(h)(x1, x2)

=: w1(x1, x2) + w2(x1, x2).

Moreover, we de�ne

D1 :=
mλ(I(y0,1, r1))

mλ(I(x0,1, r1))mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

and

D2 :=
1

mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))
.

First, onsider w1. Observe that supp w1 ⊆ R and

|w1(x1, x2)| = |a(x1, x2)|

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2) − R̃∆λ,1R̃∆λ,2(g)(x1, x2)
∣∣∣

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣

.

Then as (x1, x2) ∈ R, we an estimate

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2) − R̃∆λ,1R̃∆λ,2(g)(x1, x2)
∣∣∣
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∗

=

∣∣∣∣
∫

R̃

[
R̃∆λ,1(x0,1, y1)R̃∆λ,2(x0,2, y2) − R̃∆λ,1(x1, y1)R̃∆λ,2(x2, y2)

]
dmλ(y1)dmλ(y2)

∣∣∣∣

.

∫

R̃

[
|x1 − x0,1|

|y1 − x0,1|mλ(I(x0,1, |y1 − x0,1|))mλ(I(x0,2, |y2 − x0,2|))

+
|x2 − x0,2|

|y2 − x0,2|mλ(I(x0,2, |y2 − x0,2|))mλ(I(x1, |y1 − x1|))

]
dmλ(y1)dmλ(y2)

. µλ(R̃)

[
r1

|y0,1 − x0,1|mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
r2

|y0,2 − x0,2|mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
.

Combining the above estimates, (3.24), and the de�nition of w1 immediately gives:

|w1(x1, x2)| . M̃2‖a‖L∞(R)µλ(R̃)

[
r1 mλ(I(y0,1, r1))

|y0,1 − x0,1|mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
r2 mλ(I(y0,2, r2))

|y0,2 − x0,2|mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
χR(x1, x2)

.

[
mλ(I(y0,1, r1))

mλ(I(x0,1, r1))mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
mλ(I(y0,2, r2))

mλ(I(x0,2, r2))mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
χR(x1, x2)

. D1χR(x1, x2).

Now, onsider w2(x1, x2). Note that

w2(x1, x2) =
1

R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
χR̃(x1, x2)R∆λ, 1R∆λ, 2(a)(x1, x2).

Clearly, supp w2 ⊆ R̃. Furthermore, using the mean value zero property of a(x1, x2), we have:

R∆λ, 1R∆λ, 2(a)(x1, x2) =

∫

R

(
R∆λ, 1(x1, y1)R∆λ, 2(x2, y2) −R∆λ, 1(x1, x0,1)R∆λ, 2(x2, x0,2)

)

× a(y1, y2)dmλ(y1)dmλ(y2).

Then following similar estimates as in w1 above, we have

|w2(x1, x2)| . M̃2‖a‖L∞(R)µλ(R̃)

[
r1 mλ(I(x0,1, r1))

|x1 − x0,1|mλ(I(x0,1, |x1 − x0,1|))mλ(I(x0,2, |x2 − x0,2|))

+
r2 mλ(I(x0,2, r2))

|x2 − x0,2|mλ(I(x0,2, |x2 − x0,2|))mλ(I(x0,1, |x1 − x0,1|))

]
χR̃(x1, x2)

.

[
1

mλ(I(x0,1, |x1 − x0,1|))mλ(I(x0,2, |x2 − x0,2|))

+
1

mλ(I(x0,2, |x2 − x0,2|))mλ(I(x0,1, |x1 − x0,1|))

]
χR̃(x1, x2)

. D2χR̃
(x1, x2).

Combining the estimates of w1 and w2, we an onlude that a− Π(f, g) has support ontained
in

R ∪ R̃

and satis�es ∫

R+×R+

(a(x1, x2) − Π(f, g)(x1, x2)) dmλ(x1)dmλ(x2) = 0.
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Then, from Lemma 3.11, we have

‖a− Π(f, g)‖h1 (Rλ) .

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
D1µλ(R) +D2µλ(R̃)

)

.

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)( r1
|x0,1 − y0,1|

+
r2

|x0,2 − y0,2|

)

.
log2 M̃

M̃
. ǫ.

Case (b): x0,1 > 2M̃r1, x0,2 ≤ 2M̃r2.

In this ase, let y0,1 := x0,1 − M̃r1
K0

and y0,2 := x0,2 + 2M̃K0r2 and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respetively.

Then

2K0−1
2K0

x0,1 < y0,1 < x0,1. For every y1 ∈ I(y0,1, r1), from the fats thatK0 > max{ 1
K2
, 1

K3
}+

1 and M ≥ 100K0, we have

0 <
x0,1

y1
− 1 < K3.

To ontinue, for the �rst variable, we use Proposition 3.1 (iii) and the fat that y1 ∼ y0,1 ∼ x0,1

for any y1 ∈ I(y0,1, r1); and for the seond variable, we use Proposition 3.1 (ii) the fat that

y2/x0,2 > K−1
2 for any y2 ∈ I(y0,2, r2). Then we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.25)

=
∣∣∣
∫ y0,1+r1

y0,1−r1

R̃∆λ,1(y1, x0,1)dmλ(y1)

∫ y0,2+r2

y0,2−r2

R̃∆λ,1(y2, x0,2)dmλ(y2)
∣∣∣

&

∫ y0,1+r1

y0,1−r1

1

xλ
0,1y

λ
0,1

1

x0,1 − y1
dmλ(y1)

∫ y0,2+r2

y0,2−r2

1

y2
dy2

∼

∫ y0,1+r1

y0,1−r1

1

x0,1 − y0,1
dy1

r2
y0,2

∼
1

M̃2
.

Thus, from (3.25), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

)1
2

. M̃2+λ.

Then to estimate a(x1, x2)− Π(g, h)(x1, x2), we de�ne w1 and w2 to be the same as in Case (a).

And following the same estimates as in Case (a), we obtain that

w1(x1, x2) . D1χR(x1, x2) and w2(x1, x2) . D2χR̃(x1, x2).

Then, the fat that ‖a − Π(f, g)‖h1 (Rλ) . ǫ now immediately follows from Lemma 3.11 and the

argument in Case (a).

Case (): x0,1 ≤ 2M̃r1, x0,2 > 2M̃r2.

In this ase, let y0,1 := x0,1 + 2M̃K0r1 and y0,2 := x0,2 − M̃r2
K0

and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respetively. Then, by handling the

estimates symmetrially to Case (b), we obtain that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣ &

1

M̃2
,(3.26)
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whih gives

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2+λ.

Again we obtain that ‖a− Π(f, g)‖h1 (Rλ) . ǫ.

Case (d): x0,1 > 2M̃r1, x0,2 > 2M̃r2.

In this ase, let y0,1 := x0,1 − M̃r1
K0

and y0,2 := x0,2 − M̃r2
K0

and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respetively. Then for i = 1, 2, 2K0−1
2K0

x0,i <

y0,i < x0,i. For every yi ∈ I(y0,i, ri), from the fats that K0 > max{ 1
K2
, 1

K3
} + 1 and M̃ ≥ 100K0,

we have

0 <
x0,i

yi
− 1 < K3.

To ontinue, we use Proposition 3.1 (iii) and the fat that yi ∼ y0,i ∼ x0,i for any yi ∈ I(y0,i, ri)
for i = 1, 2. Then we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.27)

&

∫ y0,1+r1

y0,1−r1

1

xλ
0,1y

λ
0,1

1

x0,1 − y1
dmλ(y1)

∫ y0,2+r2

y0,2−r2

1

xλ
0,2y

λ
0,2

1

x0,2 − y2
dmλ(y2)

∼

∫ y0,1+r1

y0,1−r1

1

x0,1 − y0,1
dy1

∫ y0,2+r2

y0,2−r2

1

x0,2 − y0,2
dy2 ∼

1

M̃2
.

Thus, from (3.27), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

)1
2

. M2.

Again we obtain that ‖a− Π(f, g)‖h1 (Rλ) . ǫ. �

Proof of Theorem 3.8. We �rst point out that from (3.19), for every g, h ∈ L∞(Rλ) with om-

pat support,

‖Π(g, h)‖h1 (Rλ) . ‖g‖L2 (Rλ)‖h‖L2 (Rλ).

Based on this upper bound, for every f ∈ h1 (Rλ) having the representation (3.17) with

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

< ∞,

we have that

‖f‖h1 (Rλ) .

∞∑

k=1

∞∑

j=1

|αk
j |
∥∥∥Π
(
gk
j , h

k
j

) ∥∥∥
h1 (Rλ)

.

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

,

whih gives that

‖f‖h1 (Rλ) . inf





∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

: f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)


 .

It remains to show that for every f ∈ h1 (Rλ), f has a representation as in (3.17) with

(3.28) inf





∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

: f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)


 . ‖f‖h1 (Rλ).
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To this end, assume that f has the following atomi representation f =

∞∑

j=1

α1
ja

1
j with

∞∑

j=1

|α1
j | ≤

C̃0‖f‖h1 (Rλ) for ertain absolute onstant C̃0 ∈ (1,∞). We show that for every ǫ ∈
(
0, C̃−1

0

)
and

every K ∈ N, f has the following representation

(3.29) f =

K∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
+ EK ,

where

(3.30)

∞∑

j=1

∣∣∣αk
j

∣∣∣ ≤ ǫk−1C̃k
0 ‖f‖h1 (Rλ),

and EK ∈ h1 (Rλ) with

(3.31) ‖EK‖h1 (Rλ) ≤ (ǫC̃0)
K‖f‖h1 (Rλ),

and gk
j ∈ L2 (Rλ), hk

j ∈ L2 (Rλ) for eah k and j, {αk
j }j ∈ ℓ1 for eah k satisfying that

(3.32)

∥∥∥gk
j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

. C(ǫ)

with the absolute onstant C(ǫ) = M̃2+2λ
, where M is the onstant in the proof of Theorem 3.10

satisfying M̃ ≥ 100K0 and

log2 M̃

M̃
< ǫ.

In fat, for given ǫ and eah a1
j , by Theorem 3.10 we obtain that there exist g1

j ∈ L2 (Rλ) and

h1
j ∈ L2 (Rλ) with ∥∥g1

j

∥∥
L2 (Rλ)

∥∥h1
j

∥∥
L2 (Rλ)

. C(ǫ)

and ∥∥a1
j − Π

(
g1
j , h

1
j

)∥∥
h1 (Rλ)

< ǫ.

Now we write

f =
∞∑

j=1

α1
ja

1
j =

∞∑

j=1

α1
jΠ
(
g1
j , h

1
j

)
+

∞∑

j=1

α1
j

[
a1

j − Π
(
g1
j , h

1
j

)]
=: M1 + E1.

Observe that

‖E1‖h1 (Rλ) ≤
∞∑

j=1

∣∣α1
j

∣∣ ∥∥a1
j − Π

(
g1
j , h

1
j

)∥∥
h1 (Rλ)

≤ ǫC̃0‖f‖h1 (Rλ).

Sine E1 ∈ h1 (Rλ), for the given C̃0, there exists a sequene of atoms {a2
j}j and numbers {α2

j}j

suh that E1 =

∞∑

j=1

α2
ja

2
j and

∞∑

j=1

∣∣α2
j

∣∣ ≤ C̃0‖E1‖h1 (Rλ) ≤ ǫC̃2
0‖f‖h1 (Rλ).

Again, we have that for given ǫ, there exists a representation of E1 suh that

E1 =
∞∑

j=1

α2
jΠ
(
g2
j , h

2
j

)
+

∞∑

j=1

α2
j

[
a2

j − Π
(
g2
j , h

2
j

)]
=: M2 + E2,

and ∥∥g2
j

∥∥
L2 (Rλ)

∥∥h2
j

∥∥
L2 (Rλ)

. C(ǫ) and
∥∥a2

j − Π
(
g2
j , h

2
j

)∥∥
h1 (Rλ)

<
ǫ

2
.
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Moreover,

‖E2‖h1 (Rλ) ≤
∞∑

j=1

∣∣α2
j

∣∣ ∥∥a2
j − Π

(
g2
j , h

2
j

)∥∥
h1 (Rλ)

≤ (ǫC̃0)
2‖f‖h1 (Rλ).

Now we onlude that

f =
∞∑

j=1

α1
ja

1
j =

2∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
+ E2,

Continuing in this way, we dedue that for everyK ∈ N, f has the representation (3.29) satisfying

(3.32), (3.30), and (3.31). Thus letting K → ∞, we see that (3.17) holds. Moreover, sine ǫC̃0 < 1,
we have that

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣ ≤
∞∑

k=1

ǫ−1(ǫC̃0)
k‖f‖h1 (Rλ) . ‖f‖h1 (Rλ),

whih implies (3.28) and hene, ompletes the proof of Theorem 3.8. �

Proof of (i)⇐=(iv). Suppose that b ∈ L2
loc(Rλ). Assume that [b,R∆λ, 1R∆λ, 2] is bounded on

L2 (Rλ).
From the de�nition of h1(Rλ), given f ∈ h1(Rλ), there exists a number sequene {λj}

∞
j=1 and

atoms {aj}
∞
j=1 suh that

f =

∞∑

j=1

λjaj,

where the series onverges in the h1(Rλ) norm and ‖f‖h1(Rλ) ≈
∑∞

j=1 |λj |. Hene, we have that

fN :=
∑N

j=1 λjaj tends to f as N → +∞ in the h1(Rλ) norm, whih implies that h1(Rλ)∩L∞
c (Rλ)

is dense in h1(Rλ), where reall that L∞
c (Rλ) is the subspae of L∞(Rλ) onsisting of funtions

with ompat support in R+ × R+.

Now for f ∈ h1 (Rλ)∩L∞
c (Rλ), from Theorem 3.8, we hoose a weak fatorization of f suh that

f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(3.33)

in the sense of h1(Rλ), where the sequene {αk
j } ∈ ℓ1 and the funtions gk

j and hk
j are in L∞

c (Rλ)
satisfying

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

. ‖f‖h1(Rλ).

From the de�nition of bilinear form Π as in (3.18), we see that Π
(
gk
j , h

k
j

)
is in L2(Rλ) with ompat

support.

Sine f ∈ h1 (Rλ) ∩ L∞
c (Rλ), we see that f is in L2(U), where we use the set U to denote the

support of f . Hene, ∫

R+×R+

b(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

is well-de�ned, sine b ∈ L2
loc(Rλ) and hene in L2(U).

We now de�ne

bi(x1, x2) = b(x1, x2)χ{(x1,x2)∈R+×R+: |b(x1,x2)|≤i}(x1, x2), i = 1, 2, ...

It is lear that bi(x1, x2) → b(x1, x2) as i → ∞ in the sense of L2(U). And then we have

∫

R+×R+

b(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2) = lim
i→∞

∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2).
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Next, for eah i = 1, 2, . . ., we have that
∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

=

∫

R+×R+

bi(x1, x2)
∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(x1, x2) dmλ(x1)dmλ(x2)

=

∞∑

k=1

∞∑

j=1

αk
j

∫

R+×R+

bi(x1, x2)Π
(
gk
j , h

k
j

)
(x1, x2) dmλ(x1)dmλ(x2)

=

∞∑

k=1

∞∑

j=1

αk
j 〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)

sine bi is in L∞(U) and hene is in bmo(Rλ), (3.33) holds in h1(Rλ) and eah Π
(
gk
j , h

k
j

)
is in

h1(Rλ) as showed in Proposition 3.9.

As a onsequene, we obtain that

|〈b, f〉L2(Rλ)| = lim
i→∞

∣∣∣∣
∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

∣∣∣∣(3.34)

≤ lim
i→∞

∞∑

k=1

∞∑

j=1

|αk
j | |〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|

=

∞∑

k=1

∞∑

j=1

lim
i→∞

|αk
j | |〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|,

where the equality above holds sine all the terms are non-negative. Next, sine bi(x1, x2) →
b(x1, x2) as i → ∞ in the sense of L2(V ) and Π

(
gk
j , h

k
j

)
is in L2(V ) with V the support of

Π
(
gk
j , h

k
j

)
, we have that

lim
i→∞

〈bi,Π
(
gk
j , h

k
j

)
〉L2(Rλ) = 〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ),

whih implies that

lim
i→∞

|〈bi,Π
(
gk
j , h

k
j

)
〉L2(Rλ)| = |〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|.

This, together with (3.34), yields that

|〈b, f〉L2(Rλ)| ≤
∞∑

k=1

∞∑

s=1

|αk
j | |〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|

=
∞∑

k=1

∞∑

j=1

|αk
j | ·
∣∣∣
〈
gk
j , [b,R∆λ, 1R∆λ, 2]h

k
j

〉
L2 (Rλ)

∣∣∣,

whih is further bounded by

∞∑

k=1

∞∑

j=1

|αk
j |
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥[b,R∆λ, 1R∆λ, 2]h
k
j

∥∥
L2 (Rλ)

≤
∥∥[b,R∆λ, 1R∆λ, 2] : L2 (Rλ) → L2 (Rλ)

∥∥
∞∑

k=1

∞∑

j=1

|αk
j |
∥∥gk

j

∥∥
L2 (Rλ)

∥∥hk
j

∥∥
L2 (Rλ)

.
∥∥[b,R∆λ, 1R∆λ, 2] : L2 (Rλ) → L2 (Rλ)

∥∥ ‖f‖h1 (Rλ).

Then by the fat that {f ∈ h1 (Rλ) : f has compact support} is dense in h1 (Rλ), and the duality

between h1 (Rλ) and bmo (Rλ) (see Theorem 3.7), we �nish the proof. �
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Proof of Corollary 1.5. Suppose b ∈ bmo(Rλ). Then based on (iii) of Theorem 1.4, we obtain

that there exist f1, f2, g1, g2 ∈ L∞(Rλ) suh that b = f1 +R∆λ, 1g1 = f2 +R∆λ, 1g2 and moreover,

‖b‖bmo(Rλ) ≈ inf
{

maxi=1,2

{
‖fi‖L∞(Rλ), ‖gi‖L∞(Rλ)

}}
where the in�mum is taken over all possible

deompositions of b.
We now show that b is also in BMO∆λ

(Rλ). To see this, we reall the reent result of deompo-

sition of BMO∆λ
(Rλ) obtained in [DLWY2℄.

Theorem 3.12 ([DLWY2℄). The following two statements are equivalent.

(i) ϕ ∈ BMO∆λ
(Rλ);

(ii) There exist hi ∈ L∞(Rλ), i = 1, 2, 3, 4, suh that

ϕ = h1 +R∆λ, 1(h2) +R∆λ, 2(h3) +R∆λ, 1R∆λ, 2(h4).

Bak to the proof, we now hoose h1 = f1, h2 = g1, h3 = h4 = 0. Then it is easy to see that

b = h1 +R∆λ, 1(h2) +R∆λ, 2(h3) +R∆λ, 1R∆λ, 2(h4),

whih implies that b ∈ BMO∆λ
(Rλ).

Similarly, we an also hoose h1 = f2, h3 = g2, h2 = h4 = 0. Combining these two hoies, we

further obtain that

‖b‖BMO∆λ
(Rλ) . ‖b‖bmo(Rλ),

whih implies that

bmo(Rλ) ⊂ BMO∆λ
(Rλ).

Next we prove that bmo∆λ
(Rλ) is a proper subspae of BMO∆λ

(Rλ). To see this, we let K3

be the onstant in (iii) of Proposition 3.1. Sine R∆λ, 1R∆λ, 2 is a produt Calderón�Zygmund

operator on Rλ and hene it is bounded from L∞(Rλ) to BMO∆λ
(Rλ) (see [HLL℄). Then, it is

diret that the following funtion

b(x1, x2) := R∆λ, 1R∆λ, 2(χ(1,2)×(1,2))(x1, x2)(3.35)

is in BMO∆λ
(Rλ).

Next we laim that this funtion b(x1, x2) is not in bmo(Rλ). To see this, we �rst note that

b(x1, x2) an be written as

b(x1, x2) = R∆λ
(χ(1,2))(x1)R∆λ

(χ(1,2))(x2).

We now verify that R∆λ
(χ(1,2))(x1) is not in L

∞(R+, dmλ). In fat, by Proposition 3.1, for every

δ > 0 small enough and x1 ∈ (1 − δ, 1), we hoose ǫ = 2δ. Then we have

R∆λ
(χ(1,2))(x1) =

∫ 2

1
R∆λ

(x1, y)y
2λdy ≥

∫ (1+K3)x1

x1+ǫ
R∆λ

(x1, y)y
2λdy

≥

∫ (1+K3)x1

x1+ǫ
CK3,λ

1

xλ
1y

λ

1

y − x1
y2λdy

&

∫ (1+K3)x1

x1+ǫ

1

y − x1
dy

= ln(y − x1)
∣∣∣
(1+K3)x1

x1+ǫ

= ln(K3x1) − ln ǫ

= ln(K3x1) − ln(2δ).

Then it is diret that when δ → 0+
, R∆λ

(χ(0,1))(x1) is unbounded around the interval (1 − δ, 1).
Hene, for the funtion b(x1, x2) de�ned as in (3.35), when we �x x1, b(x1, x2) as a funtion of

x2 is in BMO∆λ
(R+, dmλ). However, it is not uniform for the variable x1. �
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