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PRODUCT BMO, LITTLE BMO AND RIESZ COMMUTATORS
IN THE BESSEL SETTING

XUAN THINH DUONG, JI LI, YUMENG OU, BRETT D. WICK, AND DONGYONG YANG"*

ABSTRACT. In this paper, we study the product BMO space, little bmo space and their connections
with the corresponding commutators associated with Bessel operators studied by Weinstein, Huber,
and by Muckenhoupt—Stein. We first prove that the product BMO space in the Bessel setting can
be used to deduce the boundedness of the iterated commutators with the Bessel Riesz transforms.
We next study the little bmo space in this Bessel setting and obtain the equivalent characterization
of this space in terms of commutators, where the main tool that we develop is the characterization
of the predual of little bmo and its weak factorizations. We further show that in analogy with
the classical setting, the little bmo space is a proper subspace of the product BMO space. These
extend the previous related results studied by Cotlar—-Sadosky and Ferguson—Sadosky on the bidisc
to the Bessel setting, where the usual analyticity and Fourier transform do not apply.

1. INTRODUCTION

The study of commutators of multiplication operators with Calderén—Zygmund operators has
its roots in complex function theory and Hankel operators. This was later extended to the case of
general Calderon—Zygmund operators by Coifman, Rochberg and Weiss [CRW], who showed that
the space of bounded mean oscillation introduced by John and Nirenberg is characterized by a
family of commutators:

HbHBMO(Rn) ~ gjagn |[My, R;] ||Lp(Rn)_>Lp(Rn)

where R; is the jth Riesz transform. Results of this type have then been extended by Uchiyama to
handle spaces of homogeneous type under certain assumptions on the measures and to show that
a single Hilbert transform (Riesz transform) actually characterizes BMO [Uch]. These results were
further extended to the multiparameter setting showing that the product BMO space of Chang and
Fefferman can also be characterized by iterated commutators (see Hilbert transform in [FL] and
Riesz transforms in [LPPW]) and little bmo by the boundedness of two commutators (see Hilbert
transform in [FS] and Riesz transforms in [DLWY3]). The analysis here is intimately connected to
the underlying space R™ and to the fact that the Riesz transforms are connected to a particular
differential operator, the Laplacian.

In 1965, B. Muckenhoupt and E. Stein in [MSt] introduced harmonic analysis associated with
Bessel operator Ay, defined by setting for suitable functions f,

d? 2)\ d
A,\f(x)::@f(x)—i—?%f(x), A>0, zeRy:=(0,00).

The related elliptic partial differential equation is the following “singular Laplace equation”
2\

(1.1) ANy p(u) == 8t2u+8§u+ —yu=0
x

studied by A. Weinstein [W], and A. Huber [Hu| in higher dimensions, where they considered
the generalised axially symmetric potentials, and obtained the properties of the solutions of this
equation, such as the extension, the uniqueness theorem, and the boundary value problem for
certain domains. In [MSt] they developed a theory in the setting of Ay which parallels the classical
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one associated to the standard Laplacian, where results on LP(R, dmj)-boundedness of conjugate
functions and fractional integrals associated with Ay were obtained for p € [1,00) and dmy(z) :=
=2 dz.

We also point out that Haimo [H]| studied the Hankel convolution transforms ¢fy f associated
with the Hankel transform in the Bessel setting systematically, which provides a parallel theory to
the classical convolution and Fourier transforms. It is well-known that the Poisson integral of f
studied in [MSt] is the Hankel convolution of the Poisson kernel with f, see [BDT]. Since then,
many problems in the Bessel context were studied, such as the boundedness of the Bessel Riesz
transform, Littlewood—Paley functions, Hardy and BMO spaces associated with Bessel operators,
A, weights associated with Bessel operators (see, for example, [K, AK, BFBMT, V, BFS, BHNV,
BCFR, YY, DLWY, DLWY2, DLMWY]| and the references therein).

The aim of this paper is to study the product BMO and little bmo spaces via Riesz commutators
in the Bessel setting. In particular, the two main results we obtain can be seen as the analogs in the
Bessel setting of the corresponding results in the classical setting. Notably in our proof we bypass
the use of analyticity and Fourier transform since they are not applicable in this Bessel operator
setting. We first show that the product BMO space in the Bessel setting can be used to prove the
boundedness of the iterated commutators with the Bessel Riesz transforms. We next study the
little bmo space in this Bessel setting and obtain the equivalent characterization of this space in
terms of commutators. We further show, again in analogy with the classical setting, that the little
bmo space is a proper subspace of the product BMO space.

To be more precise, for every interval I C R, we denote it by I := I(x,t) := (x —t,z +t) NR,.
The measure of [ is defined as my(I(z,t)) == [ (1) y* dy. And recall that the Riesz transform
RA, (f) is defined as follows

‘ 2\ [™ (x — ycosf)(sinf)* !

(1.2 Ra (@) = [ L ey 40 T Wm0
In the product setting Ry x Ry, we define duy(x1,x2) := dmy(x1) X dmy(xz2) and Ry := (Ry x
Ry, dpx(x1,22)). We denote by Ra, 1 the Riesz transform on the first variable and Ra, o the
second.

The first main result of this paper is the upper bound of the iterated Riesz commutators
[[b, Ra, 1], Ra, 2] in terms of product BMO space BMOa, (Ry). For the definition of BMOa, (R))
we refer to Definition 2.5 in Section 2.

Theorem 1.1. Let b € BMOa, (Ry). Then we have
(1.3) 116, Ray 1], Ry 2lllzey)—r2®y) < ClibllBymos, ®y)-

For simplicity we only state the result for the case of two iterations; though the proof we provide
works just as well for any number of parameters.

The proof strategy we employ to show this result is now the standard way to prove upper
bounds for commutator estimates, see for example [LPPW, LPPW2| and [DO] in the Euclidean
setting. We express the Riesz transforms as averages of Haar shift type operators and then study
the boundedness of the commutator with each Haar shift. These can be broken into paraproduct
operators for which the boundedness follows by the BMO assumption. The main novelty in this
proof is that we actually demonstrate a more general result by showing that a version of the above
Theorem holds in product spaces of homogeneous type X; X X in terms of the product BMO space
BMO(X; x X9) (for the definition, we refer to Section 2, see also Definition 2.6 in [DLWY]). We
provide a statement of the main result in this direction as follows, which will be proved in Section
2.

Theorem 1.2. Let (X;, pi, ;) be a space of homogeneous type. Let T; be the Calderén—Zygmund
operator on X; and let b € BMO(X; x X3). Then we have

H[[b7 Tl]’ T2]||L2(X1 XXQ,/J,1><IU,2)*>L2(X1 ><X2,,u1 ></J,2) S C||b||BMO(X1 ><X2)'
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For precise definitions of the product spaces of homogeneous type, the product BMO space, and
Calderén—Zygmund operators, we refer to Section 2, see also [HLW]|. Since we have that R) is
a space of homogenous type, it is clear that Theorem 1.1 follows from the above theorem as a
corollary.

The second main result of this paper is characterization of the little bmo space associated with
Ay, bmo(Ry), which is the space of functions satisfying the following definition.

Definition 1.3. A function b € Li (R,) is in bmo(R}) if

loc

1

(1.4) [0llbmo(ry) ==  SUP  ———= // b(w1, 22) — mpR(b)|dux(w1,22) < 00,
RcRy xRy HA(R) JJR
where
1

(1.5) m®) i= o [ [ baraa)dis(or.a)

px(R) JJr

is the mean value of b over the rectangle R.

One can easily observe that this norm is equivalent to the following norm:

Hbemo(R/\) ~ max {ISEURIL [[b(z, ~)HBMOAA(R+,dm>\) ’yselﬁﬁ ||b('7y)||BMOA/\(R+,dm/\)} ;

namely these functions are uniformly in BMOAa, (R4, dmy) in each variable separately. This leads
to the following characterization of bmo(R)):

Theorem 1.4. Let b € L} (R)). The following conditions are equivalent:
(i) b € bmo(Ry);
(ii) The commutators [b, Ra, 1] and [b, Ra, 2] are both bounded on L*(R,);
(iii) There ezist f1, f2, 91,92 € L(Ry) such thatb = fi+Ra, 101 = fo+Ra, 292 and moreover,

||b||brno(]R>\) =~ inf { max;—i 2 {Hfi”Loo(]R)\), Hgi”Loo(]R)\)} , where the infimum is taken over all

possible decompositions of b;
(iv) The commutator [b, Ra, 1RA, 2] is bounded on L*(R)).

The proof of the equivalence between (i) and (ii) in this theorem, relies on a recent new result
obtained by a subset of authors in [DLWY], which shows that in the one parameter setting b €
BMO(R,, dm,) if and only if the commutator [b, Ra,] is a bounded operator on L*(R.,dmy).

Moreover, the proof of the equivalence between (i) and (iv) extends the result of Ferguson—
Sadosky [F'S] to the Bessel setting, where no analyticity or Fourier transform is available. We prove
this characterization by understanding a certain weak factorization of the predual of bmo(R)). To
obtain this, we first define the little Hardy space h*°(R)) in terms of (1, 00)-rectangular atoms
with a one-parameter version of cancellation. However, it is less direct to see how the duality
works by using only (1, 0o)-rectangular atoms. We also introduce the (1, g)-rectangular atoms for
1 < ¢ < oo, and then prove that h"*°(R},) can be characterised equivalently by (1,q)-rectangular
atoms. Then, by using the (1, 2)-rectangular atoms, the duality of h°°(R)) with bmo(R}) follows
from the standard argument, see for example [CWT77] (see also [J, Section II, Chapter 3]). This
factorization particularly uses key estimates on the kernel of the Riesz transforms, especially the
lower bound conditions, which was studied in [BFBMT| and refined recently by the subset of
authors [DLWY]; these estimates are essentially different from the standard Riesz transforms on
R™. We point out that the characterizations of the little Hardy space in terms of (1, ¢)-rectangular
atoms are new even when we refer back to the classical case of Ferguson-Sadosky [FS].

Finally as a corollary of the characterization of bmo(R}) in Theorem 1.4 and the Fefferman-Stein
type decomposition of BMO(R)) as proved in [DLWY2]|, we show that:

Corollary 1.5. bmo(R)) is a proper subspace of BMOa, (R)), i.e.,
me(R)\) g BMOAA(R)\)
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Again, this is in analogy with the corresponding results in the Euclidean setting. Containment
of the spaces follows from property (iii) and a similar characterization of product BMO in this
setting. The fact that it is a proper containment follows from a simple construction. These results,
as well as corollaries about the relevant factorizations, can be found in Section 3.

A natural question that arises from this work is whether the space BMOa, (Ry) can be charac-
terized by the iterated commutators:

116, Bay ], Ras2lllz2@y)—r2®y) = I0llBMOL, (Ry)-

As evidence for this we point out that in the case of one parameter this result was answered by
a subset of the authors in [DLWY]; and it was shown that the space BMOa, (Ry) can indeed
be characterized by the commutator. We also point out that using the methods of Section 3 it is
possible to obtain a lower bound on the iterated commutator in terms of a “rectangle BMOa, (Ry)”.
While we would like to return to this characterization in subsequent work, we want to point out
some challenges with obtaining the lower bound. The analogous proof in the Euclidean spaces, [FL,
LPPW], uses key properties of the Fourier transform, the Riesz/Hilbert transforms and wavelets.
Some of these tools do not translate well to the setting at hand and instead a new proof seems to
be needed.

2. UPPER BOUND OF ITERATED COMMUTATOR [[b, T1], T3]

In this section we prove Theorem 1.2, which extends the main result of [DO]| to spaces of homoge-
neous type introduced by Coifman and Weiss [CW77]. We first recall some necessary notation and
definitions on spaces of homogeneous type, including the product Calderén-Zygmund operators
and product BMO space on space of homogeneous type as well as some fundamental tools such as
the Haar basis and representation theorem, which will be crucial to the proof of Theorem 1.2.

2.1. Preliminaries. By a quasi-metric we mean a mapping p: X x X — [0,00) that satisfies the
axioms of a metric except for the triangle inequality which is assumed in the weaker form

(2.1) p(z,y) < Aop(z,2) + p(z,y)) forall x,y,z € X

with a constant Ay > 1.

We define the quasi-metric ball by B(z,r) :== {y € X : p(z,y) < r} for x € X and r > 0. We
say that a nonzero measure y satisfies the doubling condition if there is a constant C), such that
forall z € X and r > 0,

(2.2) u(B(z,2r)) < Cup(B(x,r)) < oo.

We recall that (X,d,u) is a space of homogeneous type in the sense of Coifman and Weiss
[CWTT] if d is a quasi-metric and y is a nonzero measure satisfying the doubling condition.
We also denote the product space

(23) Xl X X2 = (thlaul) X (X27d27lu’2)7

where for each i := 1,2, the space (X;,d;, u;) is a space of homogeneous type, with the coefficient
Ag; for the quasi-metric d; as in (2.1) and with the coefficient C),, for the measure y; as in (2.2),
respectively.

We now recall the BMO and product BMO spaces on general spaces of homogeneous type. The
case of one parameter is the following, expected definition.

Definition 2.1. A locally integrable function f is in BMO(X) if and only if
1

2.4 = —— - d

(24) llevioce = =z [ 1£(e) = Foldn(e) < o,

where fp = pu(B)™! [5 f(y)du(y), and B is any quasi-metric ball in X.
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For the case of product BMO we need to introduce wavelets on spaces of homogeneous type. To
begin with, recall the set {z*} of reference dyadic points as follows. Let & be a fixed small positive
parameter (for example, as noted in [AH, Section 2.2|, it suffices to take § < 10_3A610). For k = 0,
let 270 := {29}, be a maximal collection of 1-separated points in X. Inductively, for k € Z,
let 2% := {2k} D 2%V and 2% .= {z;%} € 2~(* =1 be §*- and 6 F-separated collections in
251 and 2~k =1 respectively.

As shown in [AH, Lemma 2.1|, for all k € Z and = € X, the reference dyadic points satisfy

(2.5) d(ajg,azg) > 6k (o £ 3), d(z, %) = min d(x, %) < 2406

Also, taking ¢g := 1, Cy := 24y and § < 10_3A610, we see that ¢y, Cy and d satisfy 12A8005 < ¢
in [HK, Theorem 2.2|. By applying Hytonen and Kairema’s construction (|[HK, Theorem 2.2|). We
conclude that there exists a set of dyadic cubes {Qg}kez,ae o+ associated with the reference dyadic
points {xﬁ}kez,ae&rk. We call the reference dyadic point 2% the center of the dyadic cube Q. We
also identify with 2% the set of indices a corresponding to z¥ € 2%, We now denote the system
of dyadic cubes as

2 =P, with 2, :=={QL: ac 27"}
k

Note that 2% C 2%+ for k € Z, so that every z* is also a point of the form $§+1_ We denote
k.= 2k1\ 2°F and relabel the points {z¥}, that belong to Z* as {y*}..

Definition 2.2 (|[HLW|). We define the product BMO space BMO(X; x X3) in terms of wavelet

coefficients by BMO(X; x X,) := {f € (6171)’ : C(f) < oo}, with the quantity C(f) defined as
follows:

1/2
-— su L k1, ko 2
(2:6) C(f) = p{um) ) [(aivas. )| } :

k k
R:Qall XQa22 C97
k1,k2€Z,01 €T F1 ane k2

where €2 runs over all open sets in X7 x Xy with finite measure.

Here we point out that the notation (é 1,1)" in the definition above denotes the space of distribu-
tions in the product setting X; x X5. We recall the test function and distribution spaces, and the
one-parameter version of which was defined by Han, Miiller and Yang [HMY1, HMY?2|, and then
the product version by Han, Li and Lu [HLL], where the extra reverse doubling conditions of the
underlying measures are required. Here we cite the definition of test functions and distributions in
both the one-parameter setting and product setting in [HLW], where there is no extra assumptions
on the quasi-metric and doubling measure. Moreover, the notation wfw a € @k denotes the
orthonormal basis on general spaces of homogeneous type (X,d, u) constructed by Auscher and
Hytonen (see [AH| Theorem 7.1).

Next we recall the definition for Calderén—Zygmund operators on spaces of homogeneous type
and the representation theorems for these Calderén—Zygmund operators.

A continuous function K (z,y) defined on X x X\{(z,y) : ¢ = y} is called a Calderdn-Zygmund
kernel if there exist constant C' > 0 and a regularity exponent ¢ € (0, 1] such that

(a) [K(z.)] < OV (e, 9)"
(b) 1K () K (z,9/)| + K (y,2) — K(,2')] < c(

d(y,y')\° IR o d(z,y)
d(x’y)> Viz,y)~" if d(y,y) < I

Above V(z,y) := pu(B(z,d(z,y)). The smallest such constant C' is denoted by |K|cz. We say that
an operator T is a singular integral operator associated with a Calder6n-Zygmund kernel K if the
operator 7' is a continuous linear operator from C{(X) into its dual such that

(Tf.g) = /X /X 9(2) K (2, 9) f () dpu(y)dps(z)
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for all functions f,g € C¢(X) with disjoint supports. Here C(X) is the space of all continuous
functions on X with compact support such that

) —
I lcge) = sup lfe) = /@)l <d(>x’yf;§y>‘ <o

The operator T is said to be a Calderén—Zygmund operator if it extends to be a bounded operator
on L?(X). If T is a Calder6n-Zygmund operator associated with a kernel K, its operator norm is
defined by ||Tllcz = [|T|r2— 2 + [Klcz-

We now recall the explicit construction in [KLPW] of a Haar basis {h{): Q € Z,u = Mg —
1} for LP(X), 1 < p < 00, associated to the dyadic cubes Q € Z as follows Here Mg := #H(Q)
#{R € Dy+1: RCQ} denotes the number of dyadic sub-cubes (“children”) the cube @ € % has.

Theorem 2.3 (|[KLPW]). Let (X, p) be a geometrically doubling quasi-metric space and suppose
W is a positive Borel measure on X with the property that pw(B) < oo for all balls B C X. For
1 <p< oo, for each f € LP(X), we have

Mg—1
= > Y (L hd) o b (),
Qe u=l1
where the sum converges (unconditionally) both in the LP(X)-norm and pointwise p-almost every-
where.

We now recall the decomposition of a Calder6n-Zygmund operator T' into dyadic Haar shifts,
(see for example [Hy, NRV, NV]).

Theorem 2.4. Let T be a Calderon—Zygmund operator associated with a kernel K. Then it has a
decomposition: for f,g € Cl(X),

o0

(2.7) (9. T 120x) = cllIT =2 + | Klcz) Ew Y T(m,n)(g, 55" f) 12(x),

m, n=0

where E,, is the expectation operator with respect to the random wvariable w, 2, is the random
dyadic system, Sy " is a dyadic Haar shift with parameters m, n on 9, defined as follows

My—1 My—1

St @) =" > 3T >N an by el ()

LEDw 1€Dw,ICL i=1 JEDy,,JCL j=1
g(I)=g(L)+m g(N)=g(L)+n

M and 7(m,n) < C6m™,
(L)

where § is the small positive number satisfying o < 10_3A610 with Ag the constant in (2.1).

with

lar,1,7] <

With these tools at hand, we note that the idea and approach of the proof of Theorem 1.2 is
similar to the main result of [DO|. For the sake of clarity, we provide an outline of the proof in the
following two subsections.

2.2. The one parameter case: [b,7], b € BMO(X). To begin with, we derive a decomposition
of the one-parameter commutator [b, 7] into basic paraproduct type operators.

Theorem 2.5. Let b € BMO(X), f € CJ(X), and T be a Calderén-Zygmund operator. Then,
(i) for a cancellative dyadic shift Si°", [b, S™™] can be represented as a finite linear combination

of operators of the form

(2.8) SV (Bi(b, f)), Br(b, S50 f)

where k € 7,0 < k < max(m,n) and the total number of terms is bounded by C(1 4+ max(m,n))
for some universal constant C;
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(ii) for a noncancellative dyadic shift SO0 with symbol a, [b, S O]f can be represented as a finite
linear combination of operators of the form

(2.9) 2 *(Bo(b, £)), Bo(b, S%° f), Bo(b, S3° ), P(b,a, f), P*(b,a, f)
and the total number of terms is bounded by a universal constant.

The paraproduct like operators in the above theorem are defined as the following. The generalized
dyadic paraproduct

Moy =1 Mp—1
(2.10) Z Z Z (b, B ) L2x) (s BE) 2 oy B
=1 i=1

where %) denotes the k-th dyadic ancestor of I. Observe that when k = 0, this is the classical
paraproduct

Mr—1
(2.11) Z Z (b, P 120y BD) L2y k] B
And the trilinear operator
M;-1 My—1
(2.12) P(b,a, f): Z Z (b, W) r2 ) (D 2o hihs Y Y (a b)) rax

J,JCI j=1

with P* being understood as the adjoint of P with b and a fixed. The important property of the
above operators is that they are uniformly bounded on L? with BMO symbols.

Lemma 2.6. Given a,b € BMO(X) and k > 0, we have
1Bk (b F)ll2(x) S lI0llBMox) HfHL2(X )s
1Bo(b, Fllz2x) S Ibllsmocollfllz2cx

and
1P(a, b, F)llz2x) S llallsmox)lbllBmo o 112 x)-

The lemma is well-known for By (b, f), which is the classical paraproduct. For By(b, f), k > 1
and for P(b,a, f), the boundedness follows from adaptations and modifications of [DO, Lemma
3.6 and 3.7| to the spaces of homogeneous type. The relevant properties of spaces of homogeneous
type here are the orthogonality of the Haar bases {h’;};, H LBMO duality, dyadic square function
characterization of dyadic H' and the John-Nirenberg inequality.

The proof of Theorem 2.5 follows essentially the same strategy of [DO, Theorem 3.2|. Unlike the
Euclidean setting, where associated with any () € D are a fixed number of Haar functions that are
constant on each child (of the same measure) of @), in spaces of homogeneous type, there are Mg
Haar functions hQé for any @) € D and the measure of each child of () can be different. Fortunately,
by closely examining the argument in [DO], one observes without much difficulty that the only
properties of the Haar systems it relies on are the martingale structure:

My—1
(2.13) Z Z (f, 1 L2(X,u Wiy = (f, h) r2(x . hehy-
JiICT =1

and the fact that the dyadic cubes in D are properly nested. We omit the details of the proof.

In particular, Theorem 2.5, together with Lemma 2.6 and the representation of Calder6n-
Zygmund operators by Haar shifts (Theorem 2.4), implies almost immediately the upper bound of
the commutator [b,T] in spaces of homogeneous type:

(2.14) 116, TN 22 (x)—r2(x) < Cllbll Baro(x)s

which recovers the upper bound result of [CRW, KL, BC|. More importantly, Theorem 1.2 follows
from iterating Theorem 2.5 and BMO estimates of certain bi-parameter paraproduct like operators,
which we explain in the next subsection.
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2.3. The iterated case: [[b,T1],T2]. Applying the representation theorem (Theorem 2.4) in both
variables, one could obtain Theorem 1.2 by proving for any f € Cf(X; x X») that

(215) Do rlmam)r(ma,na)llb, ST, 8P S

H >
mi,me,ni,n2=0

L2(X1 XXQ)

S bl Brocxxxa) 1 F 2 x, x x)-

By an iteration of Theorem 2.5, one can represent [[b, S7"** "], S5'>"""?] as a finite linear combination
of basic operators which are essentially tensor products of the operators By, By and P in the one-
parameter setting as in (2.10), (2.11) and (2.12), and the total number of terms is no greater than
C(14 max(mi,n1))(14 max(ma,n2)). Estimate (2.15) then follows from the uniform boundedness
of these operators which we conclude in Lemma 2.7 below. The proof of Theorem 1.2 is thus
complete.

More precisely, we need to consider the following paraproduct like operators in the bi-parameter
setting (to condense notation that we omit the subscript L?(X; x X3) on the inner products). To
begin with, we let a,b € BMO(X; x X3), a' € BMO(X;) and a? € BMO(X3). The generalized
bi-parameter dyadic paraproduct

My ey=1 py—1 M,y=1ar,-1

Bi(b, f) : Z Z Z Z Z Z (b, hij(k) ®h§u>><fv 3‘®h§>h3‘ h?(k) ®h§ h5(1>-
j=1

J =1
Parallel to (2.11), we also have

M k) —1 M= Mmy—1 . .
=3 Z 3 Z ST (b bl @ W ) (F. G © WK iy @ B W
Ji J = J=1
M —

MI(k) -1 —1 M ¢ —1

=

J

~ (9 Z
B](C’)( :Z Z b hI(k)®hJ(l)><f) ®h0>hz hf(k)®h<]hj(l)?
I =1 =1 J j'=1
MI(k)*l MJ(Z)fl
= Z Z Z <b7 hz](k) ®hfj(l)><f7h ®h0>h0 hz(k) ®hJ hJ(l)
1 =1 j'=1

The trilinear operator

P(b,a,f): Z
I

Mr—1 Mjy—1 . o
> (b, bt @ W) (f, by @ WY hiehs @ bR
J

i=1 =1

.

My, —1

Z {a, h§1 > ®hJ1’
CJ j'=1

where all the Haar functions are cancellative. And the new mixed type trilinear operators

My =1 prp—1 Mj—1

BPy(b,d>, f) : Z Z ZZZ b, ko @ W)V (f, By @ WD) RS RS ) @ W)
MJlfl

ZZahJ

Jii W CJ =1
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-1 My—1

BPy(b,a®, f) : Z Z Z Z (b, Dy @ W) (f, B @ W)YhGhi Gy @ WD
MJlfl

Z Z <aQ’h{7/1>2h{],1’

Ji: JiCJ j'=1

J(l) . L Sy
PBy(b,a', f) : Z Z Z Z Z By @ W) (f, b @ WYk @ W) ) -

Ii: 11C =1
— M (l)fl
PB(b,a', f) =) Z > (b, By @ B Y (f, by @ WY Rk @ b ), -
I =1 J j'=1
My, —1
> (a', b7 )1k,
I1:[1CI =1

Lemma 2.7. Given a,b € BMO(X; x X3), at € BMO(X7) and a®> € BMO(X32), we have

[PP(ba, f)ll 2x, xx2) S IblIBMO X % x2) @l BMo (X s x2) 1 F 1T L2 (X1 % x2)
and the same for PPy(b,a, f), which denotes the partial adjoint of PP in the first variable with
respect to the third input function; moreover, for k,1 > 0, we have
1 Br,i (b, F)ll2(x1xx2) S N0lBMO G xx) 1 F | 22 (31 x x02)
and the same for Blgl) (0, f), B,fl)(b, f) and Blfl) (b, f);

IBPL(b,a®, f)ll2(x1 % x2) S I0lBMo(x xx0) 162 Mo ) 1 122 (3 x x0)
and the same for BPy(b,a?, f);

IPBy(b,a’, )l z2(xixx) S IblBMox < xa) lat Iemooe 11 2(x x xa)
and the same for Pél(b, a', f).

The above result can be derived similarly as in [DO, Lemmas 4.1, 4.2, and 4.5], therefore we omit
most of the details. We point out that a key fact that is crucial is the following multi-parameter
John-Nirenberg inequality in the homogeneous setting. The multiparameter John-Nirenberg in-
equality was first introduced in [CF, Section III] for the product BMO space defined via the
wavelet basis (see also [Tao, Proposition 4.1] for dyadic product BMO on R x R defined via Haar
basis). We note that this John-Nirenberg inequality also holds with the Haar system in the setting
of space of homogeneous type. For the details, we refer to [CF, pp.199-200] and omit it here.

Lemma 2.8. Given b € BMO(X; x X3) and p € (1,00), there holds

e (X TS amre)”

R=IxJCQ i=1 j=1

< CIbllpnox, x xa) 1) 2.

Lp(Xl ><X2)

3. PROOF OF THEOREM 1.4

3.1. Proof of (i)<=-(ii). Suppose that b € bmo(R)). Then we know that for any fixed z2 € R,
b(x1,x2) as a function of 1 is in the standard one-parameter BMO(R, dmy ), a symmetric result
holds for the roles of 1 and x9 interchanged. Moreover, we further have that

(3.1) [6lbmory) = sup [[b(z1,-)llBMO®S dmy) T SUP |00, 22)llBMO RS dmy)s
$1€R+ $2€R+
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where the implicit constants are independent of the function b.

Next, we recall a recent result by a subset of the authors [DLWY], where they obtained that
(32) ||b||BMO(R+,dmA) ~ || [b? RAA] ||L2(R+,dmA)HL2(R+,dmA)7
where BMO(R, dmy) is the standard one-parameter BMO space on (R4, dm,)).

Combining (3.1) and (3.2), we obtain that

[0llbmo(ry) = sup |[[b(z1, ), Ra,, 2]l z2®  dmy) L2 R dimy)
r1€ERY

+ sup || [b(? 33‘2), RAA, 1] ‘|L2(R+,dmk)—>L2(R+,dmA)v
ro€R

which implies that (i)<=(ii).
3.2. Proof of (i)<=(iii). From [BDT], we know that H'(R,,dm)) can be characterized via
Bessel Riesz transforms, i.e., f € HY(Ry,dm,) if and only if f, Ra, (f) € L*(R4,dm,), and

1 e @y dmy) = Ny amy) + 1 Bay (Ol ®y dmy)-

Then by the duality of H'(R, dm,) with BMO(R ., dm,), and following the same approach as in
[F'S], we obtain the following decomposition for BMO (R, dm,)):

b € BMO(R,,dmy) if and only if there exist f,g € L°(Ry,dm)) such that
(3.3) b=f+ Ra,g9.
Moreover,

[0l BMOR S dmy) = I fl| oo (®dmy) T 19]l oo Ry dma) )

where the infimum is taken over all possible decompositions of b as in (3.3). As a consequence, the
argument (i)<=>(iii) follows from (3.1) and (3.3).
3.3. Proof of (i)<=(iv).
3.3.1. Proof of (i)=>(iv). We point out that the proof of the upper bound of [b, Ra, 1RA, 2] fol-
lows directly from the property of bmo(Ry) and the L? boundedness of the Bessel Riesz transforms

RAA,I and RA/MQ.
To see this, for b € bmo(R} ), we remark that

[b, Ra,, 1R, 2] = Ray 1[b Ray 2] + [b, Ray 1] Ra,, 2
Then based on (3.1) and the result of [DLWY], we know that

H[b’ RAMQ]HL2(R,\)—>L2(RA) + H[b7 RA/\71]HL2(RA)—>L2(R,\)

S sup [[b(z1,0)IBMO®RS dmy) T SUP 160, Z2) [ BMO(RY dmy)

11€R+ 12€R+
S 1llbmo(®,y)-

Then, denote by Id; and Idy the identity operator on L?(R,,dmy) for the first and second
variable, respectively. We further have

[0, Ra,,1Ra, 2] = (Ray,1 ®Idg) o [b, Ra, 2] + [b, Ra, 1] o (Id1 ® R, 2),
where we use 77 o T to denote the composition of two operators 77 and 7T5. Thus, we obtain that
H[b7 RA/\v1RA/\72]HL2(]RA)HL2(]RA)
= [[(Ra,,1 @ 1d2) o [b, Ra, 2] + [b, Ray 1] © (Id1 ® Ray,2)|| oy 2 ey
< ||(Ray,1 ©1d2) o [b, RAMQ]HLQ(]R)\)HLQ(R)\) +[|[b, Ray 1] o (dr ® RANQ)HLQ(RA)HLQ(RA)
< HRAA71||L2(RA)—’L2(R>\)H[b’ RAMQ]HL2(R,\)—>L2(RA)
{16, Raxlll 2z ) 2 1BaN 2l 2@y 22
S bllbmo(ry)
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which implies (i)==(iv).
3.3.2. Proof of (i)<=/(iv). We begin with some preliminaries.

Proposition 3.1 ([DLWY]). The Riesz kernel Ra, (x,y) satisfies:

(i) There exist K1 > 2 large enough and a positive constant Cr, x such that for any x, y € Ry
with y > Kz,

T
(3.4) Ra,(2,y) 2 CKI,)\W'

(ii) There exist Ko € (0,1) small enough and a positive constant Cr, » such that for any
z,y € Ry with y < Koz,
1
(3.5) Ra,(z,y) < _CK27)\W'
(iii) There exist K3 € (0,1/2) small enough and a positive constant Cg,  such that for any
z,y € Ry with 0 <y/z—1< Ks,
>C ! !
Ra,(z,y) > Kg,)\x,\—y)\y?-
Definition 3.2. Suppose ¢ € (1,00]. A g-atom on R) is a function a € LI(R)) supported on a
1
rectangle R C Ry with [|al|pemr,) < pa(R)a " and satisfying the cancellation property

/ a(xy, xe)dpy (1, x2) = 0.
R+XR+

Let Atomy(R)) denote the collection of all such atoms.

Definition 3.3. Suppose ¢ € (1,00]. The atomic Hardy space h9(R)) is defined as the set of
functions of the form

(3.6) f= Zaiai

with {a;}; C Atom,(R)), {a;}i € C and >, || < co. Moreover, h14(R,) is equipped with the
norm || f|lp1e(r,) := inf >, || where the infimum is taken over all possible decompositions of f in
the form (3.6).

For these little Hardy spaces, we first have the following conclusion.

Theorem 3.4. Let q € (1,00). Then the spaces h''9(Ry) and h''*°(Ry) coincide with equivalent
norms.

We first recall the following Whitney type covering lemma from [CW77].
Lemma 3.5. Suppose U ; Ry x Ry is an open bounded set and Ce [1,00). Then there exists a
sequence of cubes {Q;}; satisfying
(i) U=U;Q; = U;CQy;
(i) there ezists a positive constant M such that no point of Ry x Ry belongs to more than M
of the balls CQj, which is called as the M-disjointness of {C'Q;};;
(iii) 3CQ; N (Ry x Ry \U) # 0 for each j.
Now we establish a useful lemma which is a variant of [CW77, Lemma (3.9)]. To this end, we
recall the strong maximal function defined by setting, for all (z1,z2) € Ry x R4,

1
M, f(z1,02) = sup / )| dia (91, 92):
R>(z1,z2) H)\(R) R

It is already known that M is bounded on LP(Ry), with p € (1, 00).
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Lemma 3.6. If f € Ll .(u\) has support in Ry := Iy x Jy centered at (z},23), then there ewists
a positive constant C1 such that

U .= {(331,332) €Ry: Msf(.Tl,QfQ) > a} C 3Ry
whenever o € (Ciymp,(|f|),00), where mg(f) is as in (1.5).
Proof. We only need to prove that, if a« € (Cimpg,(|f]),00), then Ry \ (3Rp) C Ry \ U?.

For any z := (z1,72) ¢ 3Ro, we have |z1 — x}| > |I| and |xg — 23| > |Jo|. Then it is easy to
show that, for any rectangle R > (z1,x2) satistying |I| < |Ip| or |J| < |Jo|, RN Ry = (). Then

1
Mf(z) =  sup sup // (1, y2)| dux(yr, y2)-
° 521, |1|>|1o] Jowa, |= 00| TAD)mA(T) J1 J‘ |

For any rectangle R := I x J 3 (x1,22) such that |I| > [Iy|,|J| > |Jo| and RN Ry # 0, it is easy
to see that Ryp C 3R. This, together with supp (f) C Ry implies that

g [l i) < 28 [l dis 1.0

<$ﬁgmmww<am%wu

Thus, we have M f(z) < Cympg,(|f]). Moreover, if & > Cymp,(|f]), then a > M, f(x1,x2), that
is, (x1,x9) ¢ U%, which completes the proof of Lemma 3.6. O

Proof of Theorem 3.4. We have observed that h''**(Ry) C h'9(Ry) for ¢ € (1,00). Thus, we only
need to establish the converse. We do so by showing that for any (1, ¢)-atom a with supp (a) C Ry,
b:= px(Rp)-a has an atomic decomposition b = Y -2 a;b;, where each b;, i € Z, is a (1, 00)-atom

and
o
D el S 1
=0

We show this by induction. In order to state the inductive hypothesis we first introduce some
necessary notation.

For each positive integer n, let N denote the n-fold Cartesian product of the natural numbers
N, N := {0}. We write i, to represent a general element of N™. The inductive hypothesis we
establish is the following one:

There exists a collection of rectangles {R;,},i; € N! for 1 € {1,2,...}, such that, for each n € N,

n—1
(3.7) b=> > MCx!'un(BRi)ai, + Y hi, =t Gy + Hy,

I=1 4,eN! in €ENT

where p € (1,q), a € (1,00) is large enough which depends on p, q and is to be fized later, C)
satisfies for any rectangle R C Ry, ux(9R) < Chux(R), and

(I) a;, is a (1,00)-atom supported in 3R;,, | € {1, 2, — 1}, iy € NI

(IT) Uj,ennRi, C{x € Ry: M pb(x) > a™/2}, wherep € (1 q) and M p(f) == [M (\f\p)]l/p;
i b 1s an 18joint collection;

I {3R;, M'-d u

(V) Jg, I du)\( ) =0 for each i, € N";

(VI) |hg, (x )\ < |b(z)| + QC)I\/pa"XRin (w) for each i, € N", where xg, is the characteristic
function of R;,;
(VID) [mg,, (|hi, [P)]Y/P < 2C/Pam for each i, € N™.

We begln with proving that

(3.8) I,:= Z > MCha™pa(3R;,) $1

n=1 i, EN"

)
)

( V) the functwn hi, 1is supported in R; for each i, € N";
)
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Indeed, from (III), (II), b = pr(Ro)a and the boundedness of M, ,, from LI(Ry) to L9 *°(R)), we
deduce that

(3.9) D (3Rz‘n)<0,\MnM,\< U Rin>

in EN™ in ENT
<COAM"py ({x € Ry 0 M, pb(z) > o™ /2})
S CAMTLQQ _anbHLq(RA
SONM™29% ™y (Ry).
This fact implies that

o o0
L SMC\ Y o O\M 2007 ~ MC3a20 Y (o'~ IM)" < 1,

n=1 n=1

if o is large enough such that o'=9M < 1, which gives (3.8).
By (IV), (VII), Holder’s inequality and (3.9), we obtain

/RA‘H( ) dan(a Z/ i (@) dun(@)

in€NT

<20)%a" 37 (Ri,)

in ENT
< 20y/Pa"CA M 2% )14,
— n
< (Mal q) HbH%q(RA)
This, together with ¢ > 1, shows that G,, converges to b in L'(x). Then the representation (3.7)

holds true in L1(Ry).
Let us show that the hypothesis is valid for n = 1. Let

Ci={(71,72) € Ry 0 M pb(w1,22) > .

Observe that mpg,(|b]) < 1. By this and Lemma 3.6, we find that U* C 3Ry provided of > C}
therein. Moreover, U® is a bounded open set. By the boundedness of M, , from L?(R)) to
L%*°(Ry), we conclude that there exists a positive constant C) 4 such that,

px (U%) < Cp g HbHLq ®y) S Cp,q *pux(Ro)-
If o > Cp 4, then p\(U%) < px(Rp) < oo. We see that, Ry \ U® can not be empty. Applying

Lemma 3.5 with C' = 3 therein, we obtain a sequence of rectangles (cubes actually) {R; }; satisfying
(i) through (iii) therein. Let x; := x&;,,

7%(@ , ifxelU%
ni(x) == 2k Xk(@)
0, otherwise,
b(x), if x ¢ U,

Zmp%(mb)xi(@, ifeeU”

and
hi(z) := ni(x)b(x) — mpg, (n:b)xi(x)
for all x € Ry x R4. It follows that b= go + >, hs. For almost every « ¢ U®, we see that

|90(2)] = [b(x)] < M pb(2) < a.
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If z € U, by the Holder 1nequahty, ii) and (iii) of Lemma 3.5 and the definition of U®, we obtain

(3.10) @) <Y s [ W] i m)te)
1 (9R;) [ 1 / e
< b(y)IP dua(y)|  xi(z
; i) [inOR) Jop, " A0 | i)
< Z Chaxi()
i

< MCya.
Combining these two estimates, we conclude that, for almost every x € R x Ry,
(3.11) lgo(x)| < MCav.

We have seen that U* C 3Ry and that, for z ¢ U%, g(x) = b(x). By supp (b) C 3Ry, we conclude
that supp (¢9) C 3Ry. Also,

(3.12) supp (h;) C R;
and
(313) [ @ dia(@) =0
Ry
for any . Since {R;}; are M-disjoint, we have
(3.14) S Ihilisey <23 bl <23 [ o)) duste)
<2M [ bla)] din)
<2Mpx(Ro).
Observe that [, go(z)dmy(x) = 0. Thus,
(3.15) ap ‘= g()/(MC)\Oé,u)\(?)R()))

is a (1, 00)-atom supported in 3Ry, and we have

b=MCxapr(3Ro)ao + »_ hi.

This shows (I).
Now observe that

UR =U"={z e Ry xRy : M, ,b(x) >0} C{zeRy xRy : M, b(x) > a/2}.

(2
This shows (II).
Since 0 < n; < 1, arguing as in (3.10), we obtain

|hi(@)] < [mi(2)b(z)| + [mr, (1:0)] xi(x)
< |b(x)| + [ma, (11")]? xi(x)
<|b(z)| + C)l\/paxi(;r).

Thus, (VI) holds true. From this together with the definition of U% and Lemma 3.5 (iii), we further
deduce that

i, (hal)]? < [ma, (BIP)]) 7 + C}/Pa

IR; 1/p
e man, (1) + Y%

< ZCi/pa,
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which implies (VII). Moreover, (III) is a consequence of Lemma 3.5(ii), and (IV) holds true by
(3.12) and (V) holds true by (3.13). This shows that the induction holds true for n = 1.
We now assume that the hypothesis holds true for n and show that it is also valid for n 4+ 1. Let

Ut = {z e Ry: M, hy, (z) > a1},
By (IV) for n, we have supp (h;,) C R;,. Moreover, it follows, from (VII) for n, provided o >
2p010)\, that

Cimp,, (|hi,|P) < C1CA(20™)P < o™ TP,
By Lemma 3.6, we see that

(3.16) Ue = {33 Ry : M, (e P) () > a<"+1>p} C 3R; .

Let rectangles {R;, x}x be a Whitney covering of U;*. From (i) and (ii) of Lemma 3.5 and (3.16),
it follows that

U3BRi..c = U C 3R,

k

and {3R;, i}, is M-disjoint. Since, from (III) for n, we know {3R;, };, are M"-disjoint, it follows
that the totality of rectangles (cubes) in the family {3R;, }k. i, are M""!-disjoint. This establishes
(III) for n + 1.

We now put
h;, (), if v ¢ U
i (¥) 1= ZmRin,k(nlinhin)XRin,k(@v if v €U
k
and
R,k o= My hiy, — mRm,k(mi"hz‘n)XRin,k,
where

m (@) = Xr,, @) ) D X, (@)
k
forx € U, and is 0 if x ¢ U . If v € U, then

1960 @) Y [ma, o (0 B )X, (@)

%
(R, k) 1 /
2 o) AOFa) o, 1 )] dir 0, 0

S MO)\an-i-l’
while if z ¢ U, then
196 ()] = [, ()] < M phi, (x) < o™
In any case, we have
1gin | ooy < MCra™* .
Since the support of h;, is within R;, C 3R;, and U;® C 3R;,, it follows that the support of g;,
is included in 3R;,. Moreover, fR/\ hi,, k(z) dpx(z) = 0 (which shows that property (V) is valid for
n+ 1). By an argument used in the estimate for (3.14), it is easy to see that
Z Hh"inkaLl(RA) S 2M Hh‘inHLl(R)\) ‘
k
It then follows from this that

Rip = Gin + Y _ i k
k

is valid in L'(x) and Jr, 9in (2) dpr(x) = 0.
Let
ai, = gi,/ { MO [y (3R;,)] } -
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Then a;, is a (1, 00)-atom supported in the rectangle 3R;, . From this, we deduce that (3.7) holds
true for n + 1 and so does (I). Property (IV) is trivially true. Moreover, by the definition of h;, ,
(VI) for n and Lemma 3.5(iii), we conclude that

1/p
ﬁ/}% |hi, ()P d/h\(@] XR, i (T)

< {|b(.’£)| + QCi/pan + C)l\/panJrl} XRin,k(x)

<{lb(@)| +20,7a" by, (@)

if & > 2. This establishes (VI) for n + 1.
On the other hand, by the definitions of h;, , and U}, we have

1 1
(mr,, . (hip k)] <2 [mp,, , (i, )]
<2 [C)\ngin,k (|h2n ‘p)] Hr
< 2Ci/pa"+1,

(i, k()] < q R (2)] + | C

which shows (VII).
Finally, from (VI) for n, we deduce that

Thus, if x € U, then
< My plhi,) (@) < My p(b)(x) + 20y Pan.
It follows that, if @ > 4C}”, then a™*1/2 < M, ,(b)(x). Thus,

U Ri,r=JURi..x C UUa c{reRy: M, ,(b)(z) > a"1/2}

in k
and (II) is valid for n + 1. This finishes the proof of Theorem 3.4. O

Based on Theorem 3.4, we now denote by h!(R)) the little Hardy space, and we have the
following result on the duality of h!(Ry) with bmo(R}).

Theorem 3.7. The predual of bmo(Ry) is h*(R)).

Proof. The duality of h'2(Ry) with bmo(R}) follows from a standard argument, see for example
[CWTT] (see also [J, Section II, Chapter 3]). Hence, by Theorem 3.4, the predual of bmo(R}) is
hb(Ry). O

Our main result of this section is the following.

Theorem 3.8. For every f € h'(R)), there exist sequences {af}j € (' and functions g;-“,h? €
L>°(Ry) with compact support, such that

(317 f=3" > i (g, nf)
k=1 j=1
in the sense of h'(Ry), where I(g, h) is the bilinear form defined as

(318) H(g? h) =g- RAA,lRAA,Q(h) —h- RAAleAA72(g)’

P

where Ra, 1 and Ra, 2 are the adjoints of Ra, 1 and Ra, o, respectively.
Moreover, we have that

.
£l ey inf{ZZ\ | [lor]

L2(Ry) LQ(]RA) }
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where the infimum is taken over all representations of f in the form (3.17) and the implicit constants
are independent of f.

To prove Theorem 3.8, we study the property of the bilinear form II(f, g) as defined in (3.18),
which connects to the commutator [b, Ra, 1RA,, 2]

Proposition 3.9. For every g,h € L>®(R)) with compact support, the bilinear form I(g, h) is in
hY(Ry) with the norm satisfying

(3.19) ITL(g, M) [|n1 myy < Cllgllz@ 1Rl 2R,y )-

Proof. First, it is clear that for every g,h € L°°(R)) with compact support, the bilinear form
II(f, g) is in L'(Ry) with compact support and satisfies

/ (g, h)(z1, x2)dmy (21 )dmy () = 0.
Ry xR

Moreover, for b € bmo(R)) and for every g, h € L°°(R)) with compact support, we have

(3.20) |0,11(9, ) 12| =

<b, 9RA, 1BA, 2h — hRA, 1RA, 29

>L2(RA)

= ‘([b, Ray1Ray 2l f,9) 12k,

S blbmo@ 112y 91|22 Ry )

This, together with the duality result as in Theorem 3.7, implies that for every g,h € L*°(R})
with compact supports, the bilinear form II(f,g) is in h!'(Ry). Moreover, the h'(Ry) norm of
II(f, g) satisfies (3.19). In fact, we point out that from the fundamental fact as in [Gra, Exercise
1.4.12 (b)], we have

(g, D)@y = sup  [(b,11(g, b)) L2 my) ],
b [[bllbmo(ry) <1

which, together with (3.20), immediately implies that (3.19) holds. O

Next, we provide the following approximation to each h''*°(R,) atom via the bilinear form
defined as in (3.18).

Theorem 3.10. Let € be an arbitrary positive number. Let a(x1,22) be an co-atom as defined in
Definition 3.2. Then there exist two functions f,g € L (Ry) with compact supports and a constant
C(€) depending only on € such that

Ha - H(fa g)”hl(R/\) <€
where || fl| 22wy l9ll2 my) < C(€)-
To prove Theorem 3.10, we first provide a technical lemma as follows.

Lemma 3.11. Let R := I(xo,1,7r1) % I(z0,2,72) and R:= I(y0,1,7m1) x I(yo,2,72) be two rectangles in
R4 x Ry with ry < min{zg 1,901} and ro < min{zg2,yo2}. Moreover, assume that |xo1 — yo1| >
47“1 and |.1‘072 — y072| Z 4’!”2.
Let f : R? — C with supp f € RU R. Further, assume that
(21, 22)| S Cixr(z1,22) + Cox a1, 22)

and that f has a mean value zero property:
(3.21) / f(@1, z2) dmy(z1)dmy(22) = 0.
R+ XR+

Then there exists a positive constant C independent of xo1, To2, Yo,1, Yo,2, T'1, T2, 6’1 and 6’2 such
that

o1 — To9o — ~ ~  ~
|mmmnsOQ%Ji%;%ﬂ+b&Lﬁgﬂﬁ>@wxm+cwxm)



18 XUAN THINH DUONG, JI LI, YUMENG OU, BRETT D. WICK, AND DONGYONG YANG*

Proof. Suppose f satisfies the conditions as stated above. We will show that f has an atomic
decomposition as the form in Definition 3.3. To see this, we first define two functions fi(z1,z2)

and fa(x1,x2) by
fi(@e,m2) = f(z1,22), (21,22) € By fi(z1,22)
folwr,2) = f(x1,22), (x1,72) € Ry fola1,x2)
Then we have that f = f1 + fo and that

=0, (z1,22) € R*\ R, and
=0, ($1,$2) € R? \ E
[fi(z1,22)| S Cixr(zr,22) and  |fo(w1,22)] S Coxpla, 22).
Define
1, T
gi (71, 22) = % //R J1(y1, y2)dm(y1)dma(y2),
fi(z1,22) = fi(z1,22) — gi (21, 72),
ap = || fl |z ) A (2R).

Then we claim that a} := (a})7!f{ is a rectangle atom as in Definition 3.2. First, it is direct that

a} is supported in 2R. Moreover, we have that

/ a%(ajl,azg)dm)\(xl)dmA(asg)
R+><]R+
— @) [ () - gl ) dmaor)dms 22)
R+XR+

= (a%)_1</R - fl(xl,xg)dm)\(xl)dm,\(xg)—/ fl(xl,xg)dm,\(xl)dm,\(xg)>

R+ XR+
=0
and that

1
larllzee®y) < [(a1) ™ [If1 2o ®y) La(2R)

Thus, al is an co-atom as in Definition 3.2. Moreover, we have

al = |l oo @y)ia2R) < || fill e gy 2 (2R) + 191 || oo (myyir (2R) < Crua(R),
where the implicit constant depends only on A\. We now have
fi(zr,x2) = fi (21, 2) + g1 (21, 22) = a1a1 + g1 (21, 22).
For g}(z1,72), we further write it as
gi(z1,22) = g1 (21, 22) — gf (w1, 22) + gi (21, 22) = fi(21,22) + gi (21, 72)
with

haorsan) = M [ o m)dma(n)dma n).

Again, we define
2 2 2 2\—1 2
Qq = ||f1HL<><>(RA)M>\(4R) and aj:= (a1)" f,
and following similar estimates as for a}, we see that a? is an co-atom as in Definition 3.2 with

1 ~
||Q%HL°°(R,\) < (AR and o} < Crua(R),
where the implicit constant depends only on A.
Then we have
2
filar,me) =) aldl + gf (21, 22).
i=1
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Continuing in this fashion we see that for i € {1,2,...,40},

io
fi(zr,z0) = Zazlazl + 91" (21, 72),

=1
where for i € {2,...,70},
- ip(z1,T
91(z1,22) = XQ(%/ f1(y1s y2)dma(y1)dma(y2),
pA(2'R
fi(@r,@0) = g (21, 22) — gf (21, 22),

ay = | fill ooy pa(2'R) - and
ay = (a}) 7 .
Here we choose ig to be the smallest positive integer such that

XT — XT —
‘ 0,1 ?Jo,l\ —i—logg‘ 0,2 yo,2|.

19 > logy
1 )

Moreover, for i € {1,2,...,70 }, we have

of < fillze@ypa@R) < (197 iz my) + 19t 2o ®y)) 1A (2R)

<R / 11 ) (1) 32

t— i 2’R / | f1( yl,y2)|dm>\(y1)dm,\(y2)>

1
m”leLOO(RA)UA(R)

S éluk(R)a

where the implicit constant depends only on .
Following the same steps, we also obtain that for i € {1,2,...,70},

< ua(2'R)

0
folwr, ma) =) abah + g5 (1, 22),
i=1

where for i € {2,...,40},
Xoifi (9317372
pA(2'R)
fo(w1,w2) == gy (w1, w2) — gh(w1, 22),
ah = || fall oo (ryyia(2'R)  and
ah = (ab) "' f3.

Similarly, for i € {1,2,...,i0}, we have

g4 (w1, 9) 1= / Ja(y1, y2)dmy(y1)dmy(y2),

Oéé S 6210\(;3)

Combining the decompositions above, we obtain that

@y, x2) ZZO‘ 0 (21, 22).

7j=11=1

19

We now consider the tail g% (1, 22) 4 g% (1, 22). To handle that, consider the rectangle R defined

as
Zo,1 + Yo,1 (

R o= (20 (20 4+ 1y ) x (2202 ;y°’2,(2i0 +1)rz).
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Then, it is clear that R U RcC R, and that 2°R, 20R C R. Thus, we get that

T1,T T1,7
X}Lil : // fi(yr, y2)dma(y1)dm(y2) + 7)(}; Ala // fa(y1, y2)dmy(y1)dmy(y2) = 0.
AR

Hence, we write

i i i T1,T
910(961,562)+92°(x1,x2)=(910(961,:1:2) 7”;“ 2 / f yl,w)dmmyodmmw))
)\

+ (930(901’552) w/ fa y1,y2)dmx(yl)dmA(y2))
pa(R

io+1 i0+1
1 + f2 .

We now define

20+1 _ ||f{0+ ||L°° ]RA)M/\(QZO—HR) a120+1 || Zo+1HLoo RA)MA(2i0+1R)

10+1 — (al20+1) Zo+1

a’iOH = (a7t and  al 5

Again we can verify that a20+ is an oco-atom as in Definition 3.2 with

1

i0+1 .
||a X ||L°°(]RA) = HA(THR)

Moreover, we also have
o~
a? ™t < Cua(R).

OH is an oo-atom as in Definition 3.2 with

Similarly, a
1

1
||alo+ | — =0
[ONCARY Y

|L°°(]R,\) =

and we also have ' _ _
ot < Crua(R).
Thus, we obtain that

2 io9+1
[(ene) =3 ) ojd
7j=1 =1
which implies that f € h'(Ry) and
2 il
1l <D D0
j=1 i=1
< 0 (togy 20122011 g, 02 20020 (1) + Copn ().
1 2
Therefore, we finish the proof of Lemma 3.11. g

Proof of Theorem 3.10. Suppose a is an atom of h!(R)) supported in a rectangle

R = I(x(],l,T‘l) X I(.’EO’Q,TQ),
as in Definition 3.2. Observe that if 7 > z¢ 1, then I(zg1,71) = (o1 — r1,201 +71) "Ry =
I (%ﬂl, %) Therefore, without loss of generality, we may assume that r; < zg1, and
similarly assume that 7o < xp2. Let Ky and K3 be the constants appeared in (ii) and (111) of

Proposition 3.1 respectively, and Kq > maux{L L} + 1 large enough. For any € > 0, let M be a

positive constant large enough such that M > 100K, and logj\z <e€
We now consider the following four cases.

Case (a): xg1 < QMH, x02 < oM.
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In this case, let yo1 := 20,1 + QMKorl and yo,2 := xo2 + QMKOTQ and
R:=I(yo1,7m1) x I(yo2,72)-
Then for ¢ = 1,2,
(14 Ko)zo; < yoi < (14 2MKg)xo,;.

Define

(3.22) g(w1,22) == x5(1,22)
and

(3.2 By a) e a(zy,x2)

Ra, 1Ra, 2(9)(20,1,70,2)

21

We first point out that by the fact that y;/zo; > K, ' for any y; € I(yos,7i), i = 1,2, and

Proposition 3.1 (ii), we see that

(3.24) ‘RAAJRAAQ( )(960,17950,2)‘

Yo,1+71 Y0,2+72
= ‘/ Ray 1 (Y1, zo, 1)dm>\(yl)/ Ra, 1(y2, zo,2)dm(y2)
y y

0,1—7T1 0,2—72
Yo,1+71 1 Yo,2+72 1 L To 1
z —dyl —dy2 ~N N =,
yo1-r1 Y1 Yoa—r2 Y2 Yo,1Y0,2 M2

Then from the definitions of g and h above, we have

~ 1
lgllz2 (y) = HA(R)2

and .
1 pA(R) 2

1]z ®y) = —=——= lallzz ry) < — :

Ra, 1Ra, 2(9) (20,1, 70,2 | ‘RA/\,lRAA,Z(Q)(xO,ly1’0,2)‘

Thus, from (3.24), we have that

|

— =1 1
19122 @y llPll L2 gy S MPpa(R)ZuaA(R)72 < o

2\ 2\ 1
2(9017”1 9027"2)2 < Q2
TEATL TG T2 ~

Now, write
a(l‘h 1:2) - H(97 h)(xl,fEQ)

= (a(HEh x2) + h(z1,22)Ra, 1 RA, 2(9) (21, 22)

=: w1 (21, 22) + wa(x1,T2).

N—

—g(x1,22)Ra, 1RA, 2(h)(z1, 22)

Moreover, we define

Dy = mx(I(yo,1,71))
mx(I(xo,1,71))ma(L (20,1, [Y0,1 — 2o,1]))ma(I(wo,2; [Yo,2 — To.2]))

and
1

— ma(I(zo,1, lyo,1 — o1 ))ma(I(wo,2, [yo,2 — z0.2]))
First, consider wy. Observe that supp w1 C R and

ayalg)m )

‘RAA 1RA, 2(9) (0,1, 0,2) — Ra, 1RA, 2(9) (@1, 22)

lwi(z1, 22)| = |a(z1, 22)|
‘RAMIRAA 2(9) (20,1, 20.2)|

Then as (z1,22) € R, we can estimate

RA, 1RA, 2(9)(z0,1,%0,2) — Ra, 1RA, 2(9) (21, 22)

—_~— ‘
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/~ [RAA,l(l‘O,layl)RAA,Q(xO,ZyyZ) - RAA,l(xlayl)RAA,Z(l’%yZ)}dmA(yl)dm)\(yZ)
R

</[ |z1 — 20,1]
~ Jr Ly —zoama(I(zo1, [y1 — zoa]))ma(l(zo2, [y2 — To2]))

|2 — 0 2] }dmx(m)dmA(?ﬁ)
ly2 — wo2[ma(I (20,2, [y2 — wo,2))ma(I (21, [y1 — 1))

.
< pa(R) -

[\yo,l —z01|mx(L(z0,1, [Y0,1 — To,1]))ma(L (20,2, [Y0,2 — To,2]))

T2
1Y0,2 — zo2lmA(I(T0,2, [y0,2 — To2]))ma(L (21, [yo1 — ﬂfll))} '

Combining the above estimates, (3.24), and the definition of w; immediately gives:

r1 ma({(yo,1,71))
yo,1 — wo,1|mx(I(zo,1, |Yo,1 — o,1]))mA(I(zo,2, Y02 — To,2]))
o mx(L(yo,2,72))
y0,2 — wo,2lma(I (0,2, [Y0,2 — o2]))ma(I (21, [yo1 — 21
< mx(I(yo,1,71))
mx(L(zo,1,71))mA(L (0,1, [Y0,1 — Zo,1]))ma(L (w02, [Y0,2 — T02]))

|w (71, 22)| S MQHQHLOO(R)HA(E) |

))]XR(xh 2)

mx(I(yo,2,72))
XR(3317952)
ma(L(zo,2,72))mA(L (20,2, [Yo,2 — To2]))ma(L (71, [yo1 — x1]))
< Dixr(z1, 22).
Now, consider wy (1, z2). Note that
1
’LUQ(.’L'l,.TQ) i Sa———S— Xé(xla$2)RA)\,1RA>\,2(G)(J;17:C2)'

Ra,1Ra, 2(9) (20,1, %0,2)
Clearly, supp ws C R. Furthermore, using the mean value zero property of a(z1,z2), we have:

R, 1Ry 2(a)(x1,00) = /
R

(RAA,1(3317:1/1)RAA,2(332>y2) - RA)\,I(xl?xo,l)RAA,Q(xQ?m0,2)>
x a(y1, y2)dm(y1)dmx(y2)-
Then following similar estimates as in w; above, we have
1 mx(I(zo1,71))
|1 = z0,1[ma(I(20,1, |71 — wo1]))ma(L (20,2, |22 — T02]))
ro mx(I(zo2,72))
|zo — zo2lma(I(zo2, |22 — 20,2|))mA(L (20,1, |21 — o1

(e, 2)] < Wuanmmmé)[

|>>}Xﬁ(“’“)

1
mx(I(zo1, |21 — 2o,1|))ma(L (20,2, |22 — 202]))
; ! } (21, 2)
s(z1, @
ma(I(o.2, [72 — w0.2]))ma(I(wo 1, [#1 — wo.1])) | T2

< Daxg(21, 22).
Combining the estimates of w; and we, we can conclude that a — II(f, g) has support contained
in

RUR

and satisfies
/ (a(w1,22) — (£, g) (w1, 22)) dmy(z1)dmy(x2) = 0.
]R+ XR+
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Then, from Lemma 3.11, we have

o1 — Yo, T2 — Y0,2 ~
la —=TI(f, )l (my) S <log2 % + logs %) (DluA(R) + D2M,\(R))

o1 — oo — r r
5 (logQ‘ 0,1 ?Jo,l\ —i—logg‘ 0,2 yo,z\)( 1 4 2 )
I T |01 — Yol |02 — o2l

log, M
M
<e

N

Case (b): zg1 > 2Mrl, zo2 < OMry.

]‘14(21 and yo2 = Zo2 + 2MKOT2 and

In this case, let yo1 := o1 —

E = I(y071, 7“1) X I(y072, 7“2).
We also let g and h be the same as in (3.22) and (3.23), respectively.

Then 2[220( x0,1 < Yo,1 < To,1. Forevery y1 € I(yo,1,71), from the facts that Ky > max{KiQ, %3}4'
1 and M > 100K0, we have

x
0< =2l —1<Ks.
Y1
To continue, for the first variable, we use Proposition 3.1 (iii) and the fact that y1 ~ yo,1 ~ 20,1
for any y; € I(yo1,71); and for the second variable, we use Proposition 3.1 (ii) the fact that

y2/x0,2 > K2_1 for any ya € I(yo,2,72). Then we see that

(3.25) Ra, 1RA, 2(9)(%0,1,%0,2)

e~ ‘

Yo,1+71 Yo,2+72
= ‘/ Ry 1 (Y1, zo, 1)dm,\(y1)/ RA, 1(y2, zo,2)dmy(y2)
y y

0,1~ 71 0,272
Y0,1+71 1 1 Yo,2+72 1
2 [ o dmatn) [ e
yoa-r1 20,1%0,1 £0,1 — ¥ Yo2—r2 Y2

Yo,1+71 1 o 1
~ 7dy1 —_— Y =.
yo1—r1 T0,1 — Yo,1 Yo,2  M?

Thus, from (3.25), we have that
2\ 2) 1
~o (Y0171 Y0272 \2 _ o4
ol e ey 072 ( S0 ) 72
(Ry) (Rx) $%)\1 " $%)\2 T

Then to estimate a(z1,z2) — (g, h)(z1,x2), we define w; and wy to be the same as in Case (a).
And following the same estimates as in Case (a), we obtain that

wi(z1,22) S Dixr(T1,72) and  wa(z1,22) S Daxg(z1, z2).
Then, the fact that |la — II(f, g)[[n1 (r,) S € now immediately follows from Lemma 3.11 and the
argument in Case (a).
Case (C): To,1 < QMTl, To,2 > QMTQ.
Mr
Ko

In this case, let yo1 := 20,1 + QMKorl and yo,2 := 202 — and

R:=1I(yo1,7m1) x I(yo.2,72)-

We also let g and h be the same as in (3.22) and (3.23), respectively. Then, by handling the
estimates symmetrically to Case (b), we obtain that

——~—— ——~—— 1

(3.26) Ra, 1RA, 2(9)(z0,1,702)| 2 =
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which gives

2 sy 1l 2y S B2
Again we obtain that [la —TII(f, g)[ln ) S €

~

Case (d): zo1 > 2Mr1, x0,2 > OMry.

In this case, let yo,1 := 20,1 — ]‘14(21 and yp 2 = %02 — ]‘14(’;2 and

R:=1I(yo1,m1) x I(yo2,72)-
We also let g and h be the same as in (3.22) and (3.23), respectively. Then for i = 1,2, 22K x0,; <

Yo,i < xo,. For every y; € I(yo,,74), from the facts that Ky > max{[%, KLS} +1and M > 100Ky,
we have

o
0<% 1<K
Yi
To continue, we use Proposition 3.1 (iii) and the fact that y; ~ yo; ~ 2o for any y; € I(yo,7:)
for ¢ = 1,2. Then we see that

(3.27) RA,\,lRA/\,Z(g)(xO,ly$0,2)‘
Y0,1+71 1 1 Yo,2+72 1 1
2 [ o am) [ dmia(ys)
yo1—r1 £0,1%0,1 ¥0,1 — Y1 yo,2—r2  20,2Y0,2 10,2 — Y2

Yo0,1+71 1 Y0,2+72 1 1
[y [T L
yoa—r1 20,1 — Yo,1 voa—ra  L0,2 ~ Y0,2 M?

Thus, from (3.27), we have that

2\ 2 1
~o( Y0171 Yp272 \?2 2
lgllze my) 1Pl 22 = §M2<—> S M-
(Ry) (Rx) x%)\l " x%)érg

~

Again we obtain that [la —TII(f, g)[ln () S € O
Proof of Theorem 3.8. We first point out that from (3.19), for every g,h € L*°(R)) with com-
pact support,

ITL(g, P)[nr ry) S Ngllzz @ollPllLz ®y)-
Based on this upper bound, for every f € h! (R)) having the representation (3.17) with

S5 o o, I

< 00,

L2 (Ry) L2 (Ry)

we have that

100 oy S 33 o [ (5,0

k=1 j=1

)

oy = 2 2|

]

L2 (Ry) L2 (Ry)

which gives that

s 0 35 s [ = 35 )
»

It remains to show that for every f € h! (R)), f has a representation as in (3.17) with

529 0y S et o] 8 4 = ) [ S

k=1 j=1 k=1 j=1

L2 (Ry)

L2 (Ry)
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To this end, assume that f has the following atomic representation f = Zala with Z |a1\ <
7j=1

Coll Flln: (R, for certain absolute constant Co € (1,00). We show that for every € € (O, Cy ) and

every K € N, f has the following representation

K oo
(3.29) F=>>Y okn (gﬁ, hﬁf‘) + Ek,
k=1j=1
where
i~ ~
(3.30) > |ob| < I I )
j=1

and Ex € h! (Ry) with

(3.31) 1Bl ) < (€Co) [ £l 2y
and g;-“ € L% (Ry), h;? € L? (R,) for each k and 7, {a?}j € (! for each k satisfying that

(352 1952 o, 5]

with the absolute constant C'(e) = M 2+2’\, where M is the constant in the proof of Theorem 3.10
satisfying M > 100K, and logj\Q/[M < e

In fact, for given € and each a , by Theorem 3.10 we obtain that there exist g] € L% (R)) and
hj € L* (Ry) with

<
L2 (Ry) ™ cle)

L2 (Ry)

th < C(e)

H931'HL2 (Ry) HL2 (Ry) ~

and
laj =195 25) 1 g,y < €

Now we write

e¢] e¢] e¢]
=2 aja; =) ogTl(gj,hj) + > o] [aj ~TL (g}, )] = M1 + En.
j=1

j=1 j=1
Observe that

1Bl ) < D2 log] g =T (g 25) s gy < Coll fllan -

Since E; € h! (]R)\) for the given Cp, there exists a sequence of atoms {a?}j and numbers {a?}j

such that F; = Za aj and

[ee]
D131 < CollBrlln ) < CElf -
Again, we have that for given e, there exists a representation of £y such that
[e.e] (e}
2 2 12 27,2 2 )
=Dl (gf h7) + 3 af [af = TL(g], )] = Mo + B,

and

€
93122 gy 193] 2 gy < €1€) amd [|aF =T (g5 75) |1 g, < 5
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Moreover,

1Bl ey < 3 03] a2 = T (52 82) 1 gy < (Gl
j=1
Now we conclude that

00 2 oo
F= e = 3 S bt (408 + B
j=1

k=1 j=1

Continuing in this way, we deduce that for every K € N, f has the representation (3.29) satisfying
(3.32), (3.30), and (3.31). Thus letting K — 0o, we see that (3.17) holds. Moreover, since eCy < 1,

we have that
o o o
SN ek < > Mo Ul ey 5 WD s
k=

k=1 j=1
which implies (3.28) and hence, completes the proof of Theorem 3.8. O

Proof of (i)<=(iv). Suppose that b € L? (R,). Assume that [b, Ra, 1Ra,, 2] is bounded on
L% (Ry).

From the definition of h!(R,), given f € h!(R)), there exists a number sequence {Aj}52, and
atoms {a;}32; such that

o
f=2_Aaj,
=1

where the series converges in the h'(Ry) norm and || f]l51(r,) ~ Y721 |Aj|. Hence, we have that
fn = Zjvzl Ajaj tends to f as N — +oo in the h!(R)) norm, which implies that A!(Ry) N L3°(Ry)
is dense in h!(R)), where recall that L3°(R,) is the subspace of L>(R)) consisting of functions

with compact support in Ry x R;.
Now for f € h! (Ry) N LL(Ry,), from Theorem 3.8, we choose a weak factorization of f such that

(3.33) f=3" 3ok (gh nk)
k=1 j=1

in the sense of h!(R)), where the sequence {a?} € ¢! and the functions gf and h? are in L(Ry)

satisfying
S0 o o,

From the definition of bilinear form IT as in (3.18), we see that II (g;?, hf) is in L?(Ry) with compact

support.
Since f € h (Ry) N LE(Ry), we see that f is in L?(U), where we use the set U to denote the
support of f. Hence,

S Fllawy)-

L2 (Ry) L2 (Rx)

/ b(aﬁl,xQ)f(.Tl,QfQ)dm)\(afl)dm)\(l‘g)
Ry xRy

is well-defined, since b € L? (R,) and hence in L*(U).
We now define
bi(z1,22) = b(T1, T2)X{ (21 ,20)€Rs xRy : [b(ar,a0)|<i} (T1,T2), T =1,2,...

It is clear that b;(x1,22) — b(x1,22) as i — oo in the sense of L?(U). And then we have

/R . b(x1,x2) f(x1, x2) dmy(x1)dmy(x2) = lim bi(x1,x2) f(x1, x2) dmy(x1)dmy(x2).
+ X R4

o0 R+ xXR4
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Next, for each ¢ = 1,2, ..., we have that

/ bi(wr, 22) f (21, 32) dmi (1 )dims (x2)
Ry xR

= / bi(z1,22) Z Z kH(gJ , h?) (1, x2) dmy(z1)dmy(z2)

_ ZZ /l‘{ R $171‘2)H(g],h;€) (xl,xg) dmk(il)dm)\(xg)

=Y b, (g5 1Y) L2y

k=1j=1

since b; is in L>(U) and hence is in bmo(Ry), (3.33) holds in A'(R),) and each II( ;",hé‘“‘) is in
h*(R)) as showed in Proposition 3.9.
As a consequence, we obtain that

(3.34) [0, )2yl = lim

71— 00

[o¢] o0
= ZEIEOZZ |51 1(bi, TL(g}, hF)) L2y |

k=1 j=1

/ bi(z1,22) f(x1, o) dmy(z1)dmy(x2)
Ry xRy

A

oo o0

=2 > Jim |16, TU(gF, 7)) 1 ge

k=1 j=1
where the equality above holds since all the terms are non-negative. Next, since b;(z1,z2) —
b(x1,72) as i — oo in the sense of L?(V) and H(g;?’,h?) is in L?(V) with V the support of
(gj , hk) we have that

lim (bi, (g}, h5)) 12ry) = (01105 1)) 2y,

1—00
which implies that
g{g;|<bi7I1(gf7h§)>zﬂ(RA)|:=|<b7I1(gfah§)>zﬂ(RA)L
This, together with (3.34), yields that

oo o0

0, ) 2| < D> 110, T1(gF, BE)) 12my )|

bl
Il
-
@
I
—_

Mo
WE

o1 | (g5 b, Ray 1 Rasy o))

b=l =1 L2 (Ry) I
which is further bounded by
;Z‘ oj] Hga ‘ 12 (Ry) [, Ray 1Ry 2155 | 2 (Ry)
00 0o
<[l Ry 1Ry o)+ L2 (Ry) = L2 R YD lf 1152 oy 17512

=1 =1
S ||b, Ray,1Ray, 2] 2 L2 (Ry) — L2 (R || £ 1l ry)-

Then by the fact that {f € h' (Ry) : f has compact support} is dense in k' (Ry), and the duality
between h! (R,) and bmo (R)) (see Theorem 3.7), we finish the proof. O
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Proof of Corollary 1.5. Suppose b € bmo(Ry). Then based on (iii) of Theorem 1.4, we obtain
that there exist fi, f2,91,92 € L°°(Ry) such that b = f; + Ra,,191 = f2 + Ra,, 192 and moreover,

[0llbmo(r,) ~ inf { maxi—12 { || fill L (=, ng‘HLoo(R)\)}} where the infimum is taken over all possible

decompositions of b.
We now show that b is also in BMO,, (Ry). To see this, we recall the recent result of decompo-
sition of BMOa, (R)y) obtained in [DLWY?2|.

Theorem 3.12 (|[DLWY2|). The following two statements are equivalent.
(i) ¢ € BMOA, (Ry);
(ii) There exist h; € L=°(Ry), i = 1,2,3,4, such that

¢ = h1 + Ba, 1(h2) + Ra, 2(hs) + Ra, 1Ra, 2(ha).
Back to the proof, we now choose h1 = f1, ho = g1, hs = hy = 0. Then it is easy to see that
b=hy + Ra, 1(h2) + Ra, 2(h3) + Ra, 1Ra,,2(h4),

which implies that b € BMOa, (Ry).
Similarly, we can also choose h; = fa2, hg = g2, ho = hy = 0. Combining these two choices, we
further obtain that

[bllBMOa, (Ry) S NBllbmo(r,)s
which implies that
me(RA) - BMOA/\(R)\).

Next we prove that bmoa, (Ry) is a proper subspace of BMOa, (Ry). To see this, we let K3
be the constant in (iii) of Proposition 3.1. Since Ra, 1RA,, 2 is a product Calderén-Zygmund
operator on Ry and hence it is bounded from L>*(Ry) to BMOa, (R)) (see [HLL|). Then, it is
direct that the following function
(3.35) b(z1,22) = Ra,,1Ra,,2(X(1,2)x(1,2)) (%1, 72)

is in BMOa, (Ry).
Next we claim that this function b(x1,z2) is not in bmo(R)). To see this, we first note that
b(x1,x2) can be written as

b(w1,22) = Ba, (X(1,2))(T1) B, (X(1,2)) (72)-

We now verify that Ra, (x(1,2))(®1) is not in L>(R4,dm,). In fact, by Proposition 3.1, for every
9 > 0 small enough and z; € (1 — 4, 1), we choose e = 25. Then we have

2 27 (1K) 22
Ra, (x(12))(@1) = /1 R, (21, y)y2dy > / R, (21, y)y2dy
X

1t+e€
(14+K3)x1 1 1
> / Crsa— y*dy
xr1+e€ : ${‘y)‘y_$1
(14+K3)x1 1
: | d
x1+e€ y—a
(14+K3)z1
=In(y — 1
xr1+e€

Then it is direct that when § — 0%, Ra, (x(0,1))(%1) is unbounded around the interval (1 — 4, 1).
Hence, for the function b(xzq,z2) defined as in (3.35), when we fix z1, b(x1,z2) as a function of
xg is in BMOAa, (R4, dmy). However, it is not uniform for the variable ;. O
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