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Abstra
t. In this paper, we study the produ
t BMO spa
e, little bmo spa
e and their 
onne
tions

with the 
orresponding 
ommutators asso
iated with Bessel operators studied byWeinstein, Huber,

and by Mu
kenhoupt�Stein. We �rst prove that the produ
t BMO spa
e in the Bessel setting 
an

be used to dedu
e the boundedness of the iterated 
ommutators with the Bessel Riesz transforms.

We next study the little bmo spa
e in this Bessel setting and obtain the equivalent 
hara
terization

of this spa
e in terms of 
ommutators, where the main tool that we develop is the 
hara
terization

of the predual of little bmo and its weak fa
torizations. We further show that in analogy with

the 
lassi
al setting, the little bmo spa
e is a proper subspa
e of the produ
t BMO spa
e. These

extend the previous related results studied by Cotlar�Sadosky and Ferguson�Sadosky on the bidis


to the Bessel setting, where the usual analyti
ity and Fourier transform do not apply.

1. Introdu
tion

The study of 
ommutators of multipli
ation operators with Calderón�Zygmund operators has

its roots in 
omplex fun
tion theory and Hankel operators. This was later extended to the 
ase of

general Calderón�Zygmund operators by Coifman, Ro
hberg and Weiss [CRW℄, who showed that

the spa
e of bounded mean os
illation introdu
ed by John and Nirenberg is 
hara
terized by a

family of 
ommutators:

‖b‖BMO(Rn) ≈ max
1≤j≤n

‖[Mb, Rj ]‖Lp(Rn)→Lp(Rn)

where Rj is the jth Riesz transform. Results of this type have then been extended by U
hiyama to

handle spa
es of homogeneous type under 
ertain assumptions on the measures and to show that

a single Hilbert transform (Riesz transform) a
tually 
hara
terizes BMO [U
h℄. These results were

further extended to the multiparameter setting showing that the produ
t BMO spa
e of Chang and

Fe�erman 
an also be 
hara
terized by iterated 
ommutators (see Hilbert transform in [FL℄ and

Riesz transforms in [LPPW℄) and little bmo by the boundedness of two 
ommutators (see Hilbert

transform in [FS℄ and Riesz transforms in [DLWY3℄). The analysis here is intimately 
onne
ted to

the underlying spa
e Rn
and to the fa
t that the Riesz transforms are 
onne
ted to a parti
ular

di�erential operator, the Lapla
ian.

In 1965, B. Mu
kenhoupt and E. Stein in [MSt℄ introdu
ed harmoni
 analysis asso
iated with

Bessel operator △λ, de�ned by setting for suitable fun
tions f ,

△λf(x) :=
d2

dx2
f(x) +

2λ

x

d

dx
f(x), λ > 0, x ∈ R+ := (0,∞).

The related ellipti
 partial di�erential equation is the following �singular Lapla
e equation�

(1.1) △t, x(u) := ∂2
t u+ ∂2

xu+
2λ

x
∂xu = 0

studied by A. Weinstein [W℄, and A. Huber [Hu℄ in higher dimensions, where they 
onsidered

the generalised axially symmetri
 potentials, and obtained the properties of the solutions of this

equation, su
h as the extension, the uniqueness theorem, and the boundary value problem for


ertain domains. In [MSt℄ they developed a theory in the setting of △λ whi
h parallels the 
lassi
al
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one asso
iated to the standard Lapla
ian, where results on Lp(R+, dmλ)-boundedness of 
onjugate
fun
tions and fra
tional integrals asso
iated with △λ were obtained for p ∈ [1,∞) and dmλ(x) :=
x2λ dx.

We also point out that Haimo [H℄ studied the Hankel 
onvolution transforms ϕ♯λf asso
iated

with the Hankel transform in the Bessel setting systemati
ally, whi
h provides a parallel theory to

the 
lassi
al 
onvolution and Fourier transforms. It is well-known that the Poisson integral of f
studied in [MSt℄ is the Hankel 
onvolution of the Poisson kernel with f , see [BDT℄. Sin
e then,

many problems in the Bessel 
ontext were studied, su
h as the boundedness of the Bessel Riesz

transform, Littlewood�Paley fun
tions, Hardy and BMO spa
es asso
iated with Bessel operators,

Ap weights asso
iated with Bessel operators (see, for example, [K, AK, BFBMT, V, BFS, BHNV,

BCFR, YY, DLWY, DLWY2, DLMWY℄ and the referen
es therein).

The aim of this paper is to study the produ
t BMO and little bmo spa
es via Riesz 
ommutators

in the Bessel setting. In parti
ular, the two main results we obtain 
an be seen as the analogs in the

Bessel setting of the 
orresponding results in the 
lassi
al setting. Notably in our proof we bypass

the use of analyti
ity and Fourier transform sin
e they are not appli
able in this Bessel operator

setting. We �rst show that the produ
t BMO spa
e in the Bessel setting 
an be used to prove the

boundedness of the iterated 
ommutators with the Bessel Riesz transforms. We next study the

little bmo spa
e in this Bessel setting and obtain the equivalent 
hara
terization of this spa
e in

terms of 
ommutators. We further show, again in analogy with the 
lassi
al setting, that the little

bmo spa
e is a proper subspa
e of the produ
t BMO spa
e.

To be more pre
ise, for every interval I ⊂ R+, we denote it by I := I(x, t) := (x− t, x+ t)∩ R+.

The measure of I is de�ned as mλ(I(x, t)) :=
∫
I(x, t) y

2λdy. And re
all that the Riesz transform

R∆λ
(f) is de�ned as follows

R∆λ
(f)(x) :=

∫

R+

−
2λ

π

∫ π

0

(x− y cos θ)(sin θ)2λ−1

(x2 + y2 − 2xy cos θ)λ+1
dθ f(y)dmλ(y).(1.2)

In the produ
t setting R+ × R+, we de�ne dµλ(x1, x2) := dmλ(x1) × dmλ(x2) and Rλ := (R+ ×
R+, dµλ(x1, x2)). We denote by R∆λ,1 the Riesz transform on the �rst variable and R∆λ,2 the

se
ond.

The �rst main result of this paper is the upper bound of the iterated Riesz 
ommutators

[[b,R∆λ,1], R∆λ,2] in terms of produ
t BMO spa
e BMO∆λ
(Rλ). For the de�nition of BMO∆λ

(Rλ)
we refer to De�nition 2.5 in Se
tion 2.

Theorem 1.1. Let b ∈ BMO∆λ
(Rλ). Then we have

‖[[b,R∆λ,1], R∆λ,2]‖L2(Rλ)→L2(Rλ) ≤ C‖b‖BMO∆λ
(Rλ).(1.3)

For simpli
ity we only state the result for the 
ase of two iterations; though the proof we provide

works just as well for any number of parameters.

The proof strategy we employ to show this result is now the standard way to prove upper

bounds for 
ommutator estimates, see for example [LPPW, LPPW2℄ and [DO℄ in the Eu
lidean

setting. We express the Riesz transforms as averages of Haar shift type operators and then study

the boundedness of the 
ommutator with ea
h Haar shift. These 
an be broken into paraprodu
t

operators for whi
h the boundedness follows by the BMO assumption. The main novelty in this

proof is that we a
tually demonstrate a more general result by showing that a version of the above

Theorem holds in produ
t spa
es of homogeneous type X1×X2 in terms of the produ
t BMO spa
e

BMO(X1 ×X2) (for the de�nition, we refer to Se
tion 2, see also De�nition 2.6 in [DLWY℄). We

provide a statement of the main result in this dire
tion as follows, whi
h will be proved in Se
tion

2.

Theorem 1.2. Let (Xi, ρi, µi) be a spa
e of homogeneous type. Let Ti be the Calderón�Zygmund

operator on Xi and let b ∈ BMO(X1 ×X2). Then we have

‖[[b, T1], T2]‖L2(X1×X2,µ1×µ2)→L2(X1×X2,µ1×µ2) ≤ C‖b‖BMO(X1×X2).
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For pre
ise de�nitions of the produ
t spa
es of homogeneous type, the produ
t BMO spa
e, and

Calderón�Zygmund operators, we refer to Se
tion 2, see also [HLW℄. Sin
e we have that Rλ is

a spa
e of homogenous type, it is 
lear that Theorem 1.1 follows from the above theorem as a


orollary.

The se
ond main result of this paper is 
hara
terization of the little bmo spa
e asso
iated with

∆λ, bmo(Rλ), whi
h is the spa
e of fun
tions satisfying the following de�nition.

De�nition 1.3. A fun
tion b ∈ L1
loc(Rλ) is in bmo(Rλ) if

‖b‖bmo(Rλ) := sup
R⊂R+×R+

1

µλ(R)

∫∫

R
|b(x1, x2) −mR(b)|dµλ(x1, x2) < ∞,(1.4)

where

(1.5) mR(b) :=
1

µλ(R)

∫∫

R
b(x1, x2)dµλ(x1, x2)

is the mean value of b over the re
tangle R.

One 
an easily observe that this norm is equivalent to the following norm:

‖b‖bmo(Rλ) ≈ max

{
sup

x∈R+

‖b(x, ·)‖BMO∆λ
(R+,dmλ) , sup

y∈R+

‖b(·, y)‖BMO∆λ
(R+,dmλ)

}
;

namely these fun
tions are uniformly in BMO∆λ
(R+, dmλ) in ea
h variable separately. This leads

to the following 
hara
terization of bmo(Rλ):

Theorem 1.4. Let b ∈ L2
loc(Rλ). The following 
onditions are equivalent:

(i) b ∈ bmo(Rλ);
(ii) The 
ommutators [b,R∆λ,1] and [b,R∆λ,2] are both bounded on L2(Rλ);
(iii) There exist f1, f2, g1, g2 ∈ L∞(Rλ) su
h that b = f1+R∆λ, 1g1 = f2+R∆λ, 2g2 and moreover,

‖b‖bmo(Rλ) ≈ inf
{

maxi=1,2

{
‖fi‖L∞(Rλ), ‖gi‖L∞(Rλ)

}}
, where the in�mum is taken over all

possible de
ompositions of b;
(iv) The 
ommutator [b,R∆λ,1R∆λ,2] is bounded on L2(Rλ).

The proof of the equivalen
e between (i) and (ii) in this theorem, relies on a re
ent new result

obtained by a subset of authors in [DLWY℄, whi
h shows that in the one parameter setting b ∈
BMO(R+, dmλ) if and only if the 
ommutator [b,R∆λ

] is a bounded operator on L2(R+, dmλ).
Moreover, the proof of the equivalen
e between (i) and (iv) extends the result of Ferguson�

Sadosky [FS℄ to the Bessel setting, where no analyti
ity or Fourier transform is available. We prove

this 
hara
terization by understanding a 
ertain weak fa
torization of the predual of bmo(Rλ). To
obtain this, we �rst de�ne the little Hardy spa
e h1,∞(Rλ) in terms of (1,∞)-re
tangular atoms

with a one-parameter version of 
an
ellation. However, it is less dire
t to see how the duality

works by using only (1,∞)-re
tangular atoms. We also introdu
e the (1, q)-re
tangular atoms for

1 < q < ∞, and then prove that h1,∞(Rλ) 
an be 
hara
terised equivalently by (1, q)-re
tangular
atoms. Then, by using the (1, 2)-re
tangular atoms, the duality of h1,∞(Rλ) with bmo(Rλ) follows
from the standard argument, see for example [CW77℄ (see also [J, Se
tion II, Chapter 3℄). This

fa
torization parti
ularly uses key estimates on the kernel of the Riesz transforms, espe
ially the

lower bound 
onditions, whi
h was studied in [BFBMT℄ and re�ned re
ently by the subset of

authors [DLWY℄; these estimates are essentially di�erent from the standard Riesz transforms on

Rn
. We point out that the 
hara
terizations of the little Hardy spa
e in terms of (1, q)-re
tangular

atoms are new even when we refer ba
k to the 
lassi
al 
ase of Ferguson�Sadosky [FS℄.

Finally as a 
orollary of the 
hara
terization of bmo(Rλ) in Theorem 1.4 and the Fe�erman�Stein

type de
omposition of BMO(Rλ) as proved in [DLWY2℄, we show that:

Corollary 1.5. bmo(Rλ) is a proper subspa
e of BMO∆λ
(Rλ), i.e.,

bmo(Rλ) ( BMO∆λ
(Rλ).
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Again, this is in analogy with the 
orresponding results in the Eu
lidean setting. Containment

of the spa
es follows from property (iii) and a similar 
hara
terization of produ
t BMO in this

setting. The fa
t that it is a proper 
ontainment follows from a simple 
onstru
tion. These results,

as well as 
orollaries about the relevant fa
torizations, 
an be found in Se
tion 3.

A natural question that arises from this work is whether the spa
e BMO∆λ
(Rλ) 
an be 
hara
-

terized by the iterated 
ommutators:

‖[[b,R∆λ,1], R∆λ,2]‖L2(Rλ)→L2(Rλ) ≈ ‖b‖BMO∆λ
(Rλ).

As eviden
e for this we point out that in the 
ase of one parameter this result was answered by

a subset of the authors in [DLWY℄; and it was shown that the spa
e BMO∆λ
(Rλ) 
an indeed

be 
hara
terized by the 
ommutator. We also point out that using the methods of Se
tion 3 it is

possible to obtain a lower bound on the iterated 
ommutator in terms of a �re
tangle BMO∆λ
(Rλ)�.

While we would like to return to this 
hara
terization in subsequent work, we want to point out

some 
hallenges with obtaining the lower bound. The analogous proof in the Eu
lidean spa
es, [FL,

LPPW℄, uses key properties of the Fourier transform, the Riesz/Hilbert transforms and wavelets.

Some of these tools do not translate well to the setting at hand and instead a new proof seems to

be needed.

2. Upper bound of iterated 
ommutator [[b, T1], T2]

In this se
tion we prove Theorem 1.2, whi
h extends the main result of [DO℄ to spa
es of homoge-

neous type introdu
ed by Coifman and Weiss [CW77℄. We �rst re
all some ne
essary notation and

de�nitions on spa
es of homogeneous type, in
luding the produ
t Calderón�Zygmund operators

and produ
t BMO spa
e on spa
e of homogeneous type as well as some fundamental tools su
h as

the Haar basis and representation theorem, whi
h will be 
ru
ial to the proof of Theorem 1.2.

2.1. Preliminaries. By a quasi-metri
 we mean a mapping ρ : X ×X → [0,∞) that satis�es the
axioms of a metri
 ex
ept for the triangle inequality whi
h is assumed in the weaker form

ρ(x, y) ≤ A0(ρ(x, z) + ρ(z, y)) for all x, y, z ∈ X(2.1)

with a 
onstant A0 ≥ 1.
We de�ne the quasi-metri
 ball by B(x, r) := {y ∈ X : ρ(x, y) < r} for x ∈ X and r > 0. We

say that a nonzero measure µ satis�es the doubling 
ondition if there is a 
onstant Cµ su
h that

for all x ∈ X and r > 0,

(2.2) µ(B(x, 2r)) ≤ Cµµ(B(x, r)) < ∞.

We re
all that (X, d, µ) is a spa
e of homogeneous type in the sense of Coifman and Weiss

[CW77℄ if d is a quasi-metri
 and µ is a nonzero measure satisfying the doubling 
ondition.

We also denote the produ
t spa
e

X1 ×X2 := (X1, d1, µ1) × (X2, d2, µ2),(2.3)

where for ea
h i := 1, 2, the spa
e (Xi, di, µi) is a spa
e of homogeneous type, with the 
oe�
ient

A0,i for the quasi-metri
 di as in (2.1) and with the 
oe�
ient Cµi
for the measure µi as in (2.2),

respe
tively.

We now re
all the BMO and produ
t BMO spa
es on general spa
es of homogeneous type. The


ase of one parameter is the following, expe
ted de�nition.

De�nition 2.1. A lo
ally integrable fun
tion f is in BMO(X) if and only if

‖f‖BMO(X) :=
1

µ(B)

∫

B
|f(x) − fB|dµ(x) < ∞,(2.4)

where fB := µ(B)−1
∫
B f(y)dµ(y), and B is any quasi-metri
 ball in X.
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For the 
ase of produ
t BMO we need to introdu
e wavelets on spa
es of homogeneous type. To

begin with, re
all the set {xk
α} of referen
e dyadi
 points as follows. Let δ be a �xed small positive

parameter (for example, as noted in [AH, Se
tion 2.2℄, it su�
es to take δ ≤ 10−3A−10
0 ). For k = 0,

let X 0 := {x0
α}α be a maximal 
olle
tion of 1-separated points in X. Indu
tively, for k ∈ Z+,

let X k := {xk
α} ⊇ X k−1

and X −k := {x−k
α } ⊆ X −(k−1)

be δk
- and δ−k

-separated 
olle
tions in

X k−1
and X −(k−1)

, respe
tively.

As shown in [AH, Lemma 2.1℄, for all k ∈ Z and x ∈ X, the referen
e dyadi
 points satisfy

d(xk
α, x

k
β) ≥ δk (α 6= β), d(x,X k) = min

α
d(x, xk

α) < 2A0δ
k.(2.5)

Also, taking c0 := 1, C0 := 2A0 and δ ≤ 10−3A−10
0 , we see that c0, C0 and δ satisfy 12A3

0C0δ ≤ c0
in [HK, Theorem 2.2℄. By applying Hytönen and Kairema's 
onstru
tion ([HK, Theorem 2.2℄). We


on
lude that there exists a set of dyadi
 
ubes {Qk
α}k∈Z,α∈X k asso
iated with the referen
e dyadi


points {xk
α}k∈Z,α∈X k . We 
all the referen
e dyadi
 point xk

α the 
enter of the dyadi
 
ube Qk
α. We

also identify with X k
the set of indi
es α 
orresponding to xk

α ∈ X k
. We now denote the system

of dyadi
 
ubes as

D :=
⋃

k

Dk, with Dk := {Qk
α : α ∈ X

k}.

Note that X k ⊆ X k+1
for k ∈ Z, so that every xk

α is also a point of the form xk+1
β . We denote

Y k := X k+1\X k
and relabel the points {xk

α}α that belong to Y k
as {yk

α}α.

De�nition 2.2 ([HLW℄). We de�ne the produ
t BMO spa
e BMO(X1 ×X2) in terms of wavelet


oe�
ients by BMO(X1 × X2) :=
{
f ∈ (

◦
G1, 1)

′ : C(f) < ∞}, with the quantity C(f) de�ned as

follows:

C(f) := sup
Ω

{
1

µ(Ω)

∑

R=Q
k1
α1

×Q
k2
α2

⊂Ω,

k1,k2∈Z,α1∈Y k1 ,α2∈Y k2

∣∣〈ψk1
α1
ψk2

α2
, f〉
∣∣2
}1/2

,(2.6)

where Ω runs over all open sets in X1 ×X2 with �nite measure.

Here we point out that the notation (
◦
G1, 1)

′
in the de�nition above denotes the spa
e of distribu-

tions in the produ
t setting X1 ×X2. We re
all the test fun
tion and distribution spa
es, and the

one-parameter version of whi
h was de�ned by Han, Müller and Yang [HMY1, HMY2℄, and then

the produ
t version by Han, Li and Lu [HLL℄, where the extra reverse doubling 
onditions of the

underlying measures are required. Here we 
ite the de�nition of test fun
tions and distributions in

both the one-parameter setting and produ
t setting in [HLW℄, where there is no extra assumptions

on the quasi-metri
 and doubling measure. Moreover, the notation ψk
α, α ∈ Y k1

, denotes the

orthonormal basis on general spa
es of homogeneous type (X, d, µ) 
onstru
ted by Aus
her and

Hytönen (see [AH℄ Theorem 7.1).

Next we re
all the de�nition for Calderón�Zygmund operators on spa
es of homogeneous type

and the representation theorems for these Calderón�Zygmund operators.

A 
ontinuous fun
tion K(x, y) de�ned on X ×X\{(x, y) : x = y} is 
alled a Calderón�Zygmund

kernel if there exist 
onstant C > 0 and a regularity exponent ε ∈ (0, 1] su
h that

(a) |K(x, y)| ≤ CV (x, y)−1
;

(b) |K(x, y)−K(x, y′)|+ |K(y, x)−K(y, x′)| ≤ C

(
d(y, y′)

d(x, y)

)ε

V (x, y)−1
if d(y, y′) ≤

d(x, y)

2A0
.

Above V (x, y) := µ(B(x, d(x, y)). The smallest su
h 
onstant C is denoted by |K|CZ . We say that

an operator T is a singular integral operator asso
iated with a Calderón�Zygmund kernel K if the

operator T is a 
ontinuous linear operator from Cη
0 (X) into its dual su
h that

〈Tf, g〉 =

∫

X

∫

X
g(x)K(x, y)f(y)dµ(y)dµ(x)
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for all fun
tions f, g ∈ Cη
0 (X) with disjoint supports. Here Cη

0 (X) is the spa
e of all 
ontinuous

fun
tions on X with 
ompa
t support su
h that

‖f‖Cη
0 (X) := sup

x 6=y

|f(x) − f(y)|

d(x, y)η
< ∞.

The operator T is said to be a Calderón�Zygmund operator if it extends to be a bounded operator

on L2(X). If T is a Calderón�Zygmund operator asso
iated with a kernel K, its operator norm is

de�ned by ‖T‖CZ = ‖T‖L2→L2 + |K|CZ .

We now re
all the expli
it 
onstru
tion in [KLPW℄ of a Haar basis {hu
Q : Q ∈ D , u = 1, . . . ,MQ−

1} for Lp(X), 1 < p < ∞, asso
iated to the dyadi
 
ubes Q ∈ D as follows. Here MQ := #H(Q) =
#{R ∈ Dk+1 : R ⊆ Q} denotes the number of dyadi
 sub-
ubes (�
hildren�) the 
ube Q ∈ Dk has.

Theorem 2.3 ([KLPW℄). Let (X, ρ) be a geometri
ally doubling quasi-metri
 spa
e and suppose

µ is a positive Borel measure on X with the property that µ(B) < ∞ for all balls B ⊆ X. For

1 < p < ∞, for ea
h f ∈ Lp(X), we have

f(x) =
∑

Q∈D

MQ−1∑

u=1

〈f, hu
Q〉L2(X)h

u
Q(x),

where the sum 
onverges (un
onditionally) both in the Lp(X)-norm and pointwise µ-almost every-

where.

We now re
all the de
omposition of a Calderón�Zygmund operator T into dyadi
 Haar shifts,

(see for example [Hy, NRV, NV℄).

Theorem 2.4. Let T be a Calderón�Zygmund operator asso
iated with a kernel K. Then it has a

de
omposition: for f, g ∈ Cη
0 (X),

〈g, Tf〉L2(X) = c(‖T‖2→2 + |K|CZ)Ew

∞∑

m, n=0

τ(m,n)〈g, Sm, n
w f〉L2(X),(2.7)

where Ew is the expe
tation operator with respe
t to the random variable w, Dw is the random

dyadi
 system, Sm, n
w is a dyadi
 Haar shift with parameters m, n on Dw de�ned as follows

Sm, n
w (f)(x) =

∑

L∈Dw

∑

I∈Dw, I⊂L
g(I)=g(L)+m

MI−1∑

i=1

∑

J∈Dw, J⊂L
g(J)=g(L)+n

MJ−1∑

j=1

aL, I, J〈hi
I , f〉L2(X)h

j
J(x)

with

|aL, I, J | ≤

√
µ(I)

√
µ(J)

µ(L)
and τ(m,n) ≤ Cδm+n,

where δ is the small positive number satisfying δ ≤ 10−3A−10
0 with A0 the 
onstant in (2.1).

With these tools at hand, we note that the idea and approa
h of the proof of Theorem 1.2 is

similar to the main result of [DO℄. For the sake of 
larity, we provide an outline of the proof in the

following two subse
tions.

2.2. The one parameter 
ase: [b, T ], b ∈ BMO(X). To begin with, we derive a de
omposition

of the one-parameter 
ommutator [b, T ] into basi
 paraprodu
t type operators.

Theorem 2.5. Let b ∈ BMO(X), f ∈ Cη
0 (X), and T be a Calderón�Zygmund operator. Then,

(i) for a 
an
ellative dyadi
 shift Sm, n
ω , [b, Sm, n] 
an be represented as a �nite linear 
ombination

of operators of the form

(2.8) Sm, n
ω (Bk(b, f)), Bk(b, S

m, n
ω f)

where k ∈ Z, 0 ≤ k ≤ max(m,n) and the total number of terms is bounded by C(1 + max(m,n))
for some universal 
onstant C;
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(ii) for a non
an
ellative dyadi
 shift S0, 0
ω with symbol a, [b, S0, 0

ω ]f 
an be represented as a �nite

linear 
ombination of operators of the form

(2.9) S0, 0
ω (B0(b, f)), B0(b, S

0, 0
ω f), B̃0(b, S

0, 0
ω f), P (b, a, f), P ∗(b, a, f)

and the total number of terms is bounded by a universal 
onstant.

The paraprodu
t like operators in the above theorem are de�ned as the following. The generalized

dyadi
 paraprodu
t

(2.10) Bk(b, f) :=
∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

〈b, hi′

I(k)〉L2(X)〈f, h
i
I〉L2(X)h

i
I h

i′

I(k) ,

where I(k)
denotes the k-th dyadi
 an
estor of I. Observe that when k = 0, this is the 
lassi
al

paraprodu
t

(2.11) B̃0(b, f) :=
∑

I

MI−1∑

i=1

〈b, hi
I〉L2(X)〈f, h

0
I〉L2(X)h

0
I h

i
I .

And the trilinear operator

(2.12) P (b, a, f) :=
∑

I

MI−1∑

i=1

〈b, hi
I〉L2(X)〈f, h

i
I〉L2(X)h

i
Ih

i
I

∑

J, J(I

MJ−1∑

j=1

〈a, hj
J 〉L2(X)h

j
J ,

with P ∗
being understood as the adjoint of P with b and a �xed. The important property of the

above operators is that they are uniformly bounded on L2
with BMO symbols.

Lemma 2.6. Given a, b ∈ BMO(X) and k ≥ 0, we have

‖Bk(b, f)‖L2(X) . ‖b‖BMO(X)‖f‖L2(X),

‖B̃0(b, f)‖L2(X) . ‖b‖BMO(X)‖f‖L2(X),

and

‖P (a, b, f)‖L2(X) . ‖a‖BMO(X)‖b‖BMO(X)‖f‖L2(X).

The lemma is well-known for B̃0(b, f), whi
h is the 
lassi
al paraprodu
t. For Bk(b, f), k ≥ 1
and for P (b, a, f), the boundedness follows from adaptations and modi�
ations of [DO, Lemma

3.6 and 3.7℄ to the spa
es of homogeneous type. The relevant properties of spa
es of homogeneous

type here are the orthogonality of the Haar bases {hj
J}J,j , H

1
-BMO duality, dyadi
 square fun
tion


hara
terization of dyadi
 H1
and the John-Nirenberg inequality.

The proof of Theorem 2.5 follows essentially the same strategy of [DO, Theorem 3.2℄. Unlike the

Eu
lidean setting, where asso
iated with any Q ∈ D are a �xed number of Haar fun
tions that are


onstant on ea
h 
hild (of the same measure) of Q, in spa
es of homogeneous type, there are MQ

Haar fun
tions hu
Q for any Q ∈ D and the measure of ea
h 
hild of Q 
an be di�erent. Fortunately,

by 
losely examining the argument in [DO℄, one observes without mu
h di�
ulty that the only

properties of the Haar systems it relies on are the martingale stru
ture:

∑

J : I(J

MJ−1∑

j=1

〈f, hj
J〉L2(X,µ)h

j
Jh

i
I = 〈f, h0

I〉L2(X,µ)h
0
Ih

i
I .(2.13)

and the fa
t that the dyadi
 
ubes in D are properly nested. We omit the details of the proof.

In parti
ular, Theorem 2.5, together with Lemma 2.6 and the representation of Calderón-

Zygmund operators by Haar shifts (Theorem 2.4), implies almost immediately the upper bound of

the 
ommutator [b, T ] in spa
es of homogeneous type:

‖[b, T ]‖L2(X)→L2(X) ≤ C‖b‖BMO(X),(2.14)

whi
h re
overs the upper bound result of [CRW, KL, BC℄. More importantly, Theorem 1.2 follows

from iterating Theorem 2.5 and BMO estimates of 
ertain bi-parameter paraprodu
t like operators,

whi
h we explain in the next subse
tion.
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2.3. The iterated 
ase: [[b, T1], T2]. Applying the representation theorem (Theorem 2.4) in both

variables, one 
ould obtain Theorem 1.2 by proving for any f ∈ Cη
0 (X1 ×X2) that

∥∥∥∥
∞∑

m1, m2, n1, n2=0

τ(m1, n1)τ(m2, n2)[[b, S
m1,n1
1 ], Sm2,n2

2 ]f

∥∥∥∥
L2(X1×X2)

(2.15)

. ‖b‖BMO(X1×X2)‖f‖L2(X1×X2).

By an iteration of Theorem 2.5, one 
an represent [[b, Sm1, n1
1 ], Sm2, n2

2 ] as a �nite linear 
ombination

of basi
 operators whi
h are essentially tensor produ
ts of the operators Bk, B̃0 and P in the one-

parameter setting as in (2.10), (2.11) and (2.12), and the total number of terms is no greater than

C(1+max(m1, n1))(1+max(m2, n2)). Estimate (2.15) then follows from the uniform boundedness

of these operators whi
h we 
on
lude in Lemma 2.7 below. The proof of Theorem 1.2 is thus


omplete.

More pre
isely, we need to 
onsider the following paraprodu
t like operators in the bi-parameter

setting (to 
ondense notation that we omit the subs
ript L2(X1 ×X2) on the inner produ
ts). To

begin with, we let a, b ∈ BMO(X1 × X2), a
1 ∈ BMO(X1) and a2 ∈ BMO(X2). The generalized

bi-parameter dyadi
 paraprodu
t

Bk,l(b, f) :=
∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
i
I ⊗ hj

J〉hi
I h

i′

I(k) ⊗ hj
J h

j′

J(l) .

Parallel to (2.11), we also have

B̃
(1)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
0
I ⊗ hj

J〉h0
I h

i′

I(k) ⊗ hj
J h

j′

J(l) ,

B̃
(2)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
i
I ⊗ h0

J 〉hi
I h

i′

I(k) ⊗ h0
J h

j′

J(l) ,

B̃
(3)
k,l (b, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi′

I(k) ⊗ hj′

J(l)〉〈f, h
0
I ⊗ h0

J〉h0
I h

i′

I(k) ⊗ h0
J h

j′

J(l) .

The trilinear operator

PP (b, a, f) :=
∑

I

MI−1∑

i=1

∑

J

MJ−1∑

j=1

〈b, hi
I ⊗ hj

J〉〈f, hi
I ⊗ hj

J〉hi
Ih

i
I ⊗ hj

Jh
j
J ·

∑

I1: I1(I

MI1
−1∑

i′=1

∑

J1:J1(J

MJ1
−1∑

j′=1

〈a, hi′
I1 ⊗ hj′

J1
〉hi′

I1 ⊗ hj′

J1
,

where all the Haar fun
tions are 
an
ellative. And the new mixed type trilinear operators

BPk(b, a
2, f) :=

∑

I

M
I(k)−1∑

i′=1

MI−1∑

i=1

∑

J

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj
J〉〈f, hi

I ⊗ hj
J〉hi

Ih
i′

I(k) ⊗ hj
Jh

j
J ·

∑

J1:J1(J

MJ1
−1∑

j′=1

〈a2, hj′

J1
〉2h

j′

J1
,
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B̃Pk(b, a
2, f) :=

∑

I

M
I(k)−1∑

i′=1

∑

J

MJ−1∑

j=1

〈b, hi′

I(k) ⊗ hj
J〉〈f, h0

I ⊗ hj
J〉h0

Ih
i′

I(k) ⊗ hj
Jh

j
J ·

∑

J1: J1(J

MJ1
−1∑

j′=1

〈a2, hj′

J1
〉2h

j′

J1
,

PBl(b, a
1, f) :=

∑

I

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

MJ−1∑

j=1

〈b, hi
I ⊗ hj′

J(l)〉〈f, h
i
I ⊗ hj

J〉hi
Ih

i
I ⊗ hj

J h
j′

J(l) ·

∑

I1: I1(I

MI1
−1∑

i′=1

〈a1, hi′
I1〉1h

i′
I1 ,

P B̃l(b, a
1, f) :=

∑

I

MI−1∑

i=1

∑

J

M
J(l)−1∑

j′=1

〈b, hi
I ⊗ hj′

J(l)〉〈f, h
i
I ⊗ h0

J〉hi
Ih

i
I ⊗ h0

J h
j′

J(l) ·

∑

I1: I1(I

MI1
−1∑

i′=1

〈a1, hi′

I1〉1h
i′

I1.

Lemma 2.7. Given a, b ∈ BMO(X1 ×X2), a
1 ∈ BMO(X1) and a2 ∈ BMO(X2), we have

‖PP (b, a, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a‖BMO(X1×X2)‖f‖L2(X1×X2)

and the same for PP1(b, a, f), whi
h denotes the partial adjoint of PP in the �rst variable with

respe
t to the third input fun
tion; moreover, for k, l ≥ 0, we have

‖Bk,l(b, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖f‖L2(X1×X2)

and the same for B̃
(1)
k,l (b, f), B̃

(2)
k,l (b, f) and B̃

(3)
k,l (b, f);

‖BPk(b, a
2, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a

2‖BMO(X2)‖f‖L2(X1×X2)

and the same for B̃Pk(b, a
2, f);

‖PBl(b, a
1, f)‖L2(X1×X2) . ‖b‖BMO(X1×X2)‖a

1‖BMO(X1)‖f‖L2(X1×X2)

and the same for PB̃l(b, a
1, f).

The above result 
an be derived similarly as in [DO, Lemmas 4.1, 4.2, and 4.5℄, therefore we omit

most of the details. We point out that a key fa
t that is 
ru
ial is the following multi-parameter

John-Nirenberg inequality in the homogeneous setting. The multiparameter John-Nirenberg in-

equality was �rst introdu
ed in [CF, Se
tion III℄ for the produ
t BMO spa
e de�ned via the

wavelet basis (see also [Tao, Proposition 4.1℄ for dyadi
 produ
t BMO on R × R de�ned via Haar

basis). We note that this John-Nirenberg inequality also holds with the Haar system in the setting

of spa
e of homogeneous type. For the details, we refer to [CF, pp.199�200℄ and omit it here.

Lemma 2.8. Given b ∈ BMO(X1 ×X2) and p ∈ (1,∞), there holds

∥∥∥∥
( ∑

R=I×J⊂Ω

MI−1∑

i=1

Mj−1∑

j=1

∣∣〈b, hi
Ih

j
J〉
∣∣2 χR

µ(R)

)1/2∥∥∥∥
Lp(X1×X2)

≤ C‖b‖BMO(X1×X2)µ(Ω)1/p.(2.16)

3. Proof of Theorem 1.4

3.1. Proof of (i)⇐⇒(ii). Suppose that b ∈ bmo(Rλ). Then we know that for any �xed x2 ∈ R,
b(x1, x2) as a fun
tion of x1 is in the standard one-parameter BMO(R+, dmλ), a symmetri
 result

holds for the roles of x1 and x2 inter
hanged. Moreover, we further have that

‖b‖bmo(Rλ) ≈ sup
x1∈R+

‖b(x1, ·)‖BMO(R+,dmλ) + sup
x2∈R+

‖b(·, x2)‖BMO(R+,dmλ),(3.1)
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where the impli
it 
onstants are independent of the fun
tion b.
Next, we re
all a re
ent result by a subset of the authors [DLWY℄, where they obtained that

‖b‖BMO(R+,dmλ) ≈ ‖[b,R∆λ
]‖L2(R+,dmλ)→L2(R+,dmλ),(3.2)

where BMO(R+, dmλ) is the standard one-parameter BMO spa
e on (R+, dmλ).
Combining (3.1) and (3.2), we obtain that

‖b‖bmo(Rλ) ≈ sup
x1∈R+

‖[b(x1, ·), R∆λ, 2]‖L2(R+,dmλ)→L2(R+,dmλ)

+ sup
x2∈R+

‖[b(·, x2), R∆λ, 1]‖L2(R+,dmλ)→L2(R+,dmλ),

whi
h implies that (i)⇐⇒(ii).

3.2. Proof of (i)⇐⇒(iii). From [BDT℄, we know that H1(R+, dmλ) 
an be 
hara
terized via

Bessel Riesz transforms, i.e., f ∈ H1(R+, dmλ) if and only if f,R∆λ
(f) ∈ L1(R+, dmλ), and

‖f‖H1(R+,dmλ) ≈ ‖f‖L1(R+,dmλ) + ‖R∆λ
(f)‖L1(R+,dmλ).

Then by the duality of H1(R+, dmλ) with BMO(R+, dmλ), and following the same approa
h as in

[FS℄, we obtain the following de
omposition for BMO(R+, dmλ):

b ∈ BMO(R+, dmλ) if and only if there exist f, g ∈ L∞(R+, dmλ) su
h that

b = f +R∆λ
g.(3.3)

Moreover,

‖b‖BMO(R+,dmλ) ≈ inf{‖f‖L∞(R+,dmλ) + ‖g‖L∞(R+,dmλ)},

where the in�mum is taken over all possible de
ompositions of b as in (3.3). As a 
onsequen
e, the

argument (i)⇐⇒(iii) follows from (3.1) and (3.3).

3.3. Proof of (i)⇐⇒(iv).

3.3.1. Proof of (i)=⇒(iv). We point out that the proof of the upper bound of [b,R∆λ, 1R∆λ, 2] fol-
lows dire
tly from the property of bmo(Rλ) and the L2

boundedness of the Bessel Riesz transforms

R∆λ, 1 and R∆λ, 2.

To see this, for b ∈ bmo(Rλ), we remark that

[b,R∆λ, 1R∆λ, 2] = R∆λ, 1[b,R∆λ, 2] + [b,R∆λ, 1]R∆λ, 2.

Then based on (3.1) and the result of [DLWY℄, we know that

∥∥[b,R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)
+
∥∥[b,R∆λ, 1]

∥∥
L2(Rλ)→L2(Rλ)

. sup
x1∈R+

‖b(x1, ·)‖BMO(R+,dmλ) + sup
x2∈R+

‖b(·, x2)‖BMO(R+,dmλ)

. ‖b‖bmo(Rλ).

Then, denote by Id1 and Id2 the identity operator on L2(R+, dmλ) for the �rst and se
ond

variable, respe
tively. We further have

[b,R∆λ, 1R∆λ, 2] = (R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2] + [b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2),

where we use T1 ◦ T2 to denote the 
omposition of two operators T1 and T2. Thus, we obtain that

∥∥[b,R∆λ, 1R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)

=
∥∥(R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2] + [b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2)

∥∥
L2(Rλ)→L2(Rλ)

≤
∥∥(R∆λ, 1 ⊗ Id2) ◦ [b,R∆λ, 2]

∥∥
L2(Rλ)→L2(Rλ)

+
∥∥[b,R∆λ, 1] ◦ (Id1 ⊗R∆λ, 2)

∥∥
L2(Rλ)→L2(Rλ)

≤
∥∥R∆λ, 1‖L2(Rλ)→L2(Rλ)

∥∥[b,R∆λ, 2]
∥∥

L2(Rλ)→L2(Rλ)

+
∥∥[b,R∆λ, 1]

∥∥
L2(Rλ)→L2(Rλ)

∥∥R∆λ, 2

∥∥
L2(Rλ)→L2(Rλ)

. ‖b‖bmo(Rλ),
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whi
h implies (i)=⇒(iv).

3.3.2. Proof of (i)⇐=(iv). We begin with some preliminaries.

Proposition 3.1 ([DLWY℄). The Riesz kernel R∆λ
(x, y) satis�es:

(i) There exist K1 > 2 large enough and a positive 
onstant CK1, λ su
h that for any x, y ∈ R+

with y > K1x,

(3.4) R∆λ
(x, y) ≥ CK1, λ

x

y2λ+2
.

(ii) There exist K2 ∈ (0, 1) small enough and a positive 
onstant CK2, λ su
h that for any

x, y ∈ R+ with y < K2x,

(3.5) R∆λ
(x, y) ≤ −CK2, λ

1

x2λ+1
.

(iii) There exist K3 ∈ (0, 1/2) small enough and a positive 
onstant CK3,λ su
h that for any

x, y ∈ R+ with 0 < y/x− 1 < K3,

R∆λ
(x, y) ≥CK3,λ

1

xλyλ

1

y − x
.

De�nition 3.2. Suppose q ∈ (1,∞]. A q-atom on Rλ is a fun
tion a ∈ Lq(Rλ) supported on a

re
tangle R ⊂ Rλ with ‖a‖Lq(Rλ) ≤ µλ(R)
1
q
−1

and satisfying the 
an
ellation property

∫

R+×R+

a(x1, x2)dµλ(x1, x2) = 0.

Let Atomq(Rλ) denote the 
olle
tion of all su
h atoms.

De�nition 3.3. Suppose q ∈ (1,∞]. The atomi
 Hardy spa
e h1,q(Rλ) is de�ned as the set of

fun
tions of the form

f =
∑

i

αiai(3.6)

with {ai}i ⊂ Atomq(Rλ), {αi}i ⊂ C and

∑
i |αi| < ∞. Moreover, h1,q(Rλ) is equipped with the

norm ‖f‖h1,q(Rλ) := inf
∑

i |αi| where the in�mum is taken over all possible de
ompositions of f in

the form (3.6).

For these little Hardy spa
es, we �rst have the following 
on
lusion.

Theorem 3.4. Let q ∈ (1,∞). Then the spa
es h1, q(Rλ) and h1, ∞(Rλ) 
oin
ide with equivalent

norms.

We �rst re
all the following Whitney type 
overing lemma from [CW77℄.

Lemma 3.5. Suppose U $ R+ × R+ is an open bounded set and C̃ ∈ [1,∞). Then there exists a

sequen
e of 
ubes {Qj}j satisfying

(i) U = ∪jQj = ∪jC̃Qj ;

(ii) there exists a positive 
onstant M su
h that no point of R+ × R+ belongs to more than M

of the balls C̃Qj, whi
h is 
alled as the M -disjointness of {C̃Qj}j ;

(iii) 3C̃Qj ∩ (R+ × R+ \ U) 6= ∅ for ea
h j.

Now we establish a useful lemma whi
h is a variant of [CW77, Lemma (3.9)℄. To this end, we

re
all the strong maximal fun
tion de�ned by setting, for all (x1, x2) ∈ R+ × R+,

Msf(x1, x2) := sup
R∋(x1,x2)

1

µλ(R)

∫

R
|f(y1, y2)| dµλ(y1, y2).

It is already known that Ms is bounded on Lp(Rλ), with p ∈ (1,∞).
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Lemma 3.6. If f ∈ L1
loc (µλ) has support in R0 := I0 × J0 
entered at (x1

0, x
2
0), then there exists

a positive 
onstant C1 su
h that

Uα := {(x1, x2) ∈ Rλ : Msf(x1, x2) > α} ⊂ 3R0

whenever α ∈ (C1mR0(|f |),∞), where mR(f) is as in (1.5).

Proof. We only need to prove that, if α ∈ (C1mR0(|f |),∞), then Rλ \ (3R0) ⊂ Rλ \ Uα
.

For any x := (x1, x2) /∈ 3R0, we have |x1 − x1
0| ≥ |I0| and |x2 − x2

0| ≥ |J0|. Then it is easy to

show that, for any re
tangle R ∋ (x1, x2) satisfying |I| ≤ |I0| or |J | ≤ |J0|, R ∩R0 = ∅. Then

Msf(x) = sup
I∋x1, |I|≥|I0|

sup
J∋x2, |J |≥|J0|

1

mλ(I)mλ(J)

∫

I

∫

J
|f(y1, y2)| dµλ(y1, y2).

For any re
tangle R := I × J ∋ (x1, x2) su
h that |I| ≥ |I0|, |J | ≥ |J0| and R ∩ R0 6= ∅, it is easy
to see that R0 ⊂ 3R. This, together with supp (f) ⊂ R0 implies that

1

µλ(R)

∫

R
|f(y1, y2)| dµλ(y1, y2) ≤

µλ(R0)

µλ(R)

1

µλ(R0)

∫

R0

|f(y1, y2)| dµλ(y1, y2)

≤
µλ(3R)

µλ(R)
mR0(|f |) ≤ C1mR0(|f |).

Thus, we have Msf(x) ≤ C1mR0(|f |). Moreover, if α > C1mR0(|f |), then α > Msf(x1, x2), that
is, (x1, x2) /∈ Uα

, whi
h 
ompletes the proof of Lemma 3.6. �

Proof of Theorem 3.4. We have observed that h1, ∞(Rλ) ⊂ h1, q(Rλ) for q ∈ (1,∞). Thus, we only
need to establish the 
onverse. We do so by showing that for any (1, q)-atom a with supp (a) ⊂ R0,

b := µλ(R0) ·a has an atomi
 de
omposition b =
∑∞

i=0 αibi, where ea
h bi, i ∈ Z+, is a (1,∞)-atom
and

∞∑

i=0

|αi| . 1.

We show this by indu
tion. In order to state the indu
tive hypothesis we �rst introdu
e some

ne
essary notation.

For ea
h positive integer n, let Nn
denote the n-fold Cartesian produ
t of the natural numbers

N, N0 := {0}. We write in to represent a general element of Nn
. The indu
tive hypothesis we

establish is the following one:

There exists a 
olle
tion of re
tangles {Ril}, il ∈ Nl
for l ∈ {1, 2, . . .}, su
h that, for ea
h n ∈ N,

b=

n−1∑

l=1

∑

il∈Nl

MCλα
l+1µλ(3Ril)ail +

∑

in∈Nn

hin =: Gn + Hn,(3.7)

where p ∈ (1, q), α ∈ (1,∞) is large enough whi
h depends on p, q and is to be �xed later, Cλ

satis�es for any re
tangle R ⊂ Rλ, µλ(9R) ≤ Cλµλ(R), and

(I) ail is a (1,∞)-atom supported in 3Ril, l ∈ {1, 2, . . . , n− 1}, il ∈ Nl
;

(II) ∪in∈NnRin ⊂ {x ∈ Rλ : Ms, pb(x) > αn/2}, where p ∈ (1, q) and Ms, p(f) := [Ms(|f |p)]1/p ;

(III) {3Ril} is an M l
-disjoint 
olle
tion;

(IV) the fun
tion hin is supported in Rin for ea
h in ∈ Nn
;

(V)

∫
Rλ
hin(x) dµλ(x) = 0 for ea
h in ∈ Nn

;

(VI) |hin(x)| ≤ |b(x)| + 2C
1/p
λ αnχRin

(x) for ea
h in ∈ Nn
, where χRin

is the 
hara
teristi


fun
tion of Rin ;

(VII) [mRin
(|hin |p)]1/p ≤ 2C

1/p
λ αn

for ea
h in ∈ Nn
.

We begin with proving that

Ip :=
1

µλ(R0)

∞∑

n=1

∑

in∈Nn

MCλα
n+1µλ (3Rin) . 1.(3.8)



PRODUCT BMO, LITTLE BMO AND RIESZ COMMUTATORS 13

Indeed, from (III), (II), b = µλ(R0)a and the boundedness of Ms, p from Lq(Rλ) to Lq, ∞(Rλ), we
dedu
e that

∑

in∈Nn

µλ (3Rin) ≤CλM
nµλ

(
⋃

in∈Nn

Rin

)
(3.9)

≤CλM
nµλ ({x ∈ Rλ : Ms, pb(x) > αn/2})

.CλM
n2qα−nq‖b‖q

Lq(Rλ)

.CλM
n2qα−nqµλ(R0).

This fa
t implies that

Ip .MCλ

∞∑

n=1

αn+1CλM
n2qα−nq ≈ MC2

λα2q
∞∑

n=1

(α1−qM)n . 1,

if α is large enough su
h that α1−qM < 1, whi
h gives (3.8).

By (IV), (VII), Hölder's inequality and (3.9), we obtain

∫

Rλ

|Hn(x)| dµλ(x) ≤
∑

in∈Nn

∫

Rλ

|hin(x)| dµλ(x)

≤ 2C
1/p
λ αn

∑

in∈Nn

µλ (Rin)

. 2C
1/p
λ αnCλM

n2qα−nq‖b‖q
Lq(Rλ)

.
(
Mα1−q

)n
‖b‖q

Lq(Rλ).

This, together with q > 1, shows that Gn 
onverges to b in L1(µ). Then the representation (3.7)

holds true in L1(Rλ).
Let us show that the hypothesis is valid for n = 1. Let

Uα := {(x1, x2) ∈ Rλ : Ms, pb(x1, x2) > α} .

Observe that mR0(|b|) ≤ 1. By this and Lemma 3.6, we �nd that Uα ⊂ 3R0 provided αp > C1

therein. Moreover, Uα
is a bounded open set. By the boundedness of Ms, p from Lq(Rλ) to

Lq, ∞(Rλ), we 
on
lude that there exists a positive 
onstant Cp, q su
h that,

µλ (Uα) ≤ Cp, qα
−q ‖b‖q

Lq(Rλ) ≤Cp, qα
−qµλ(R0).

If αq > Cp, q, then µλ(Uα) < µλ(R0) < ∞. We see that, Rλ \ Uα

an not be empty. Applying

Lemma 3.5 with C̃ = 3 therein, we obtain a sequen
e of re
tangles (
ubes a
tually) {Ri}i satisfying

(i) through (iii) therein. Let χi := χRi
,

ηi(x) :=





χi(x)∑
k χk(x)

, if x ∈ Uα
;

0, otherwise,

g0(x) :=





b(x), if x /∈ Uα
;

∑

i

mRi
(ηib)χi(x), if x ∈ Uα

and

hi(x) := ηi(x)b(x) −mRi
(ηib)χi(x)

for all x ∈ R+ × R+. It follows that b = g0 +
∑

i hi. For almost every x /∈ Uα
, we see that

|g0(x)| = |b(x)| ≤ Ms, pb(x) ≤ α.
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If x ∈ Uα
, by the Hölder inequality, (ii) and (iii) of Lemma 3.5 and the de�nition of Uα

, we obtain

|g0(x)| ≤
∑

i

1

µλ(Ri)

∫

Ri

|ηi(y)b(y)| dµλ(y)χi(x)(3.10)

≤
∑

i

µλ(9Ri)

µλ(Ri)

[
1

µλ(9Ri)

∫

9Ri

|b(y)|p dµλ(y)

]1/p

χi(x)

≤
∑

i

Cλαχi(x)

≤MCλα.

Combining these two estimates, we 
on
lude that, for almost every x ∈ R+ × R+,

(3.11) |g0(x)| ≤ MCλα.

We have seen that Uα ⊂ 3R0 and that, for x /∈ Uα
, g(x) = b(x). By supp (b) ⊂ 3R0, we 
on
lude

that supp (g) ⊂ 3R0. Also,

(3.12) supp (hi) ⊂ Ri

and

(3.13)

∫

Rλ

hi(x) dµλ(x) = 0

for any i. Sin
e {Ri}i are M -disjoint, we have

∑

i

‖hi‖L1(Rλ) ≤ 2
∑

i

‖ηib‖L1(Rλ) ≤ 2
∑

i

∫

Ri

|b(x)| dµλ(x)(3.14)

≤ 2M

∫

Uα

|b(x)| dµλ(x)

≤ 2Mµλ(R0).

Observe that

∫
Rλ
g0(x) dmλ(x) = 0. Thus,

(3.15) a0 := g0/(MCλαµλ(3R0))

is a (1,∞)-atom supported in 3R0, and we have

b=MCλαµλ(3R0)a0 +
∑

i

hi.

This shows (I).

Now observe that⋃

i

Ri = Uα = {x ∈ R+ × R+ : Ms, pb(x) > α} ⊂ {x ∈ R+ × R+ : Ms, pb(x) > α/2} .

This shows (II).

Sin
e 0 ≤ ηi ≤ 1, arguing as in (3.10), we obtain

|hi(x)| ≤ |ηi(x)b(x)| + |mRi
(ηib)|χi(x)

≤ |b(x)| + [mRi
(|b|p)]1/p χi(x)

≤ |b(x)| + C
1/p
λ αχi(x).

Thus, (VI) holds true. From this together with the de�nition of Uα
and Lemma 3.5 (iii), we further

dedu
e that

[mRi
(|hi|

p)]1/p ≤ [mRi
(|b|p)]1/p + C

1/p
λ α

≤

[
µλ(9Ri)

µλ(Ri)
m9Ri

(|b|p)

]1/p

+ C
1/p
λ α

≤ 2C
1/p
λ α,
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whi
h implies (VII). Moreover, (III) is a 
onsequen
e of Lemma 3.5(ii), and (IV) holds true by

(3.12) and (V) holds true by (3.13). This shows that the indu
tion holds true for n = 1.
We now assume that the hypothesis holds true for n and show that it is also valid for n+ 1. Let

Uα
in :=

{
x ∈ Rλ : Ms, phin(x) > αn+1

}
.

By (IV) for n, we have supp (hin) ⊂ Rin . Moreover, it follows, from (VII) for n, provided αp >
2pC1Cλ, that

C1mRin
(|hin |p) ≤ C1Cλ(2αn)p < α(n+1)p.

By Lemma 3.6, we see that

(3.16) Uα
in =

{
x ∈ Rλ : Ms (|hin |p) (x) > α(n+1)p

}
⊂ 3Rin .

Let re
tangles {Rin, k}k be a Whitney 
overing of Uα
in . From (i) and (ii) of Lemma 3.5 and (3.16),

it follows that ⋃

k

3Rin, k = Uα
in ⊂ 3Rin

and {3Rin, k}k is M -disjoint. Sin
e, from (III) for n, we know {3Rin}in are Mn
-disjoint, it follows

that the totality of re
tangles (
ubes) in the family {3Rin, k}k, in areMn+1
-disjoint. This establishes

(III) for n+ 1.
We now put

gin(x) :=




hin(x), if x /∈ Uα

in ;∑

k

mRin, k
(ηin

k hin)χRin, k
(x), if x ∈ Uα

in

and

hin, k := ηin
k hin −mRin, k

(ηin
k hin)χRin, k

,

where

ηin
k (x) := χRin, k

(x)
/∑

k

χRin, k
(x)

for x ∈ Uα
in
, and is 0 if x /∈ Uα

in
. If x ∈ Uα

in
, then

|gin(x)| ≤
∑

k

∣∣∣mRin, k
(ηin

k hin)χRin, k
(x)
∣∣∣

≤
∑

k

µλ(9Rin, k)

µλ(Rin, k)

1

µλ(9Rin, k)

∫

9Rin, k

|hin(y)| dµλ(y)χRin, k
(x)

≤MCλα
n+1,

while if x /∈ Uα
in
, then

|gin(x)| = |hin(x)| ≤ Ms, phin(x) ≤ αn+1.

In any 
ase, we have

‖gin‖L∞(µ) ≤ MCλα
n+1.

Sin
e the support of hin is within Rin ⊂ 3Rin and Uα
in ⊂ 3Rin , it follows that the support of gin

is in
luded in 3Rin . Moreover,

∫
Rλ
hin, k(x) dµλ(x) = 0 (whi
h shows that property (V) is valid for

n+ 1). By an argument used in the estimate for (3.14), it is easy to see that

∑

k

‖hin, k‖L1(Rλ) ≤ 2M ‖hin‖L1(Rλ) .

It then follows from this that

hin = gin +
∑

k

hin, k

is valid in L1(µ) and
∫

Rλ
gin(x) dµλ(x) = 0.

Let

ain := gin/
{
MCλα

n+1 [µλ (3Rin)]
}
.
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Then ain is a (1,∞)-atom supported in the re
tangle 3Rin . From this, we dedu
e that (3.7) holds

true for n+ 1 and so does (I). Property (IV) is trivially true. Moreover, by the de�nition of hin, k,

(VI) for n and Lemma 3.5(iii), we 
on
lude that

|hin, k(x)| ≤



|hin(x)| +

[
Cλ

1

µλ(9Rin, k)

∫

9Rin, k

|hin(x)|p dµλ(x)

]1/p


χRin, k

(x)

≤
{

|b(x)| + 2C
1/p
λ αn + C

1/p
λ αn+1

}
χRin, k

(x)

≤
{

|b(x)| + 2C
1/p
λ αn+1

}
χRin, k

(x)

if α > 2. This establishes (VI) for n+ 1.
On the other hand, by the de�nitions of hin, k and Uα

in , we have

[
mRin, k

(|hin, k|
p)
]1/p

≤ 2
[
mRin, k

(|hin |p)
]1/p

≤ 2
[
Cλm9Rin, k

(|hin |p)
]1/p

≤ 2C
1/p
λ αn+1,

whi
h shows (VII).

Finally, from (VI) for n, we dedu
e that

Ms, p(hin)(x) ≤ Ms, p(b)(x) + 2C
1/p
λ αn.

Thus, if x ∈ Uα
in , then

αn+1 < Ms, p(hin)(x) ≤ Ms, p(b)(x) + 2C
1/p
λ αn.

It follows that, if α > 4C
1/p
λ , then αn+1/2 < Ms, p(b)(x). Thus,

⋃

in, k

Rin, k =
⋃

in

⋃

k

Rin, k ⊂
⋃

in

Uα
in ⊂

{
x ∈ Rλ : Ms, p(b)(x) > αn+1/2

}

and (II) is valid for n+ 1. This �nishes the proof of Theorem 3.4. �

Based on Theorem 3.4, we now denote by h1(Rλ) the little Hardy spa
e, and we have the

following result on the duality of h1(Rλ) with bmo(Rλ).

Theorem 3.7. The predual of bmo(Rλ) is h1(Rλ).

Proof. The duality of h1,2(Rλ) with bmo(Rλ) follows from a standard argument, see for example

[CW77℄ (see also [J, Se
tion II, Chapter 3℄). Hen
e, by Theorem 3.4, the predual of bmo(Rλ) is

h1,∞(Rλ). �

Our main result of this se
tion is the following.

Theorem 3.8. For every f ∈ h1(Rλ), there exist sequen
es {αk
j }j ∈ ℓ1 and fun
tions gk

j , h
k
j ∈

L∞(Rλ) with 
ompa
t support, su
h that

f =
∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(3.17)

in the sense of h1(Rλ), where Π(g, h) is the bilinear form de�ned as

Π(g, h) := g ·R∆λ, 1R∆λ, 2(h) − h · R̃∆λ,1R̃∆λ,2(g),(3.18)

where R̃∆λ,1 and R̃∆λ,2 are the adjoints of R∆λ, 1 and R∆λ, 2, respe
tively.

Moreover, we have that

‖f‖h1(Rλ) ≈ inf
{ ∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2(Rλ)

∥∥∥hk
j

∥∥∥
L2(Rλ)

}
,
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where the in�mum is taken over all representations of f in the form (3.17) and the impli
it 
onstants

are independent of f .

To prove Theorem 3.8, we study the property of the bilinear form Π(f, g) as de�ned in (3.18),

whi
h 
onne
ts to the 
ommutator [b,R∆λ, 1R∆λ, 2].

Proposition 3.9. For every g, h ∈ L∞(Rλ) with 
ompa
t support, the bilinear form Π(g, h) is in

h1(Rλ) with the norm satisfying

‖Π(g, h)‖h1(Rλ) ≤ C‖g‖L2(Rλ)‖h‖L2(Rλ).(3.19)

Proof. First, it is 
lear that for every g, h ∈ L∞(Rλ) with 
ompa
t support, the bilinear form

Π(f, g) is in L1(Rλ) with 
ompa
t support and satis�es

∫

R+×R+

Π(g, h)(x1, x2)dmλ(x1)dmλ(x2) = 0.

Moreover, for b ∈ bmo(Rλ) and for every g, h ∈ L∞(Rλ) with 
ompa
t support, we have

∣∣∣〈b,Π(g, h)〉L2(Rλ)

∣∣∣ =

∣∣∣∣
〈
b, gR∆λ, 1R∆λ, 2h− hR̃∆λ,1R̃∆λ,2g

〉
L2(Rλ)

∣∣∣∣(3.20)

=
∣∣∣〈[b,R∆λ, 1R∆λ, 2] f, g〉L2(Rλ)

∣∣∣
. ‖b‖bmo(Rλ)‖f‖L2(Rλ)‖g‖L2(Rλ),

This, together with the duality result as in Theorem 3.7, implies that for every g, h ∈ L∞(Rλ)
with 
ompa
t supports, the bilinear form Π(f, g) is in h1(Rλ). Moreover, the h1(Rλ) norm of

Π(f, g) satis�es (3.19). In fa
t, we point out that from the fundamental fa
t as in [Gra, Exer
ise

1.4.12 (b)℄, we have

‖Π(g, h)‖h1(Rλ) ≈ sup
b: ‖b‖bmo(Rλ)≤1

∣∣〈b,Π(g, h)〉L2 (Rλ)

∣∣,

whi
h, together with (3.20), immediately implies that (3.19) holds. �

Next, we provide the following approximation to ea
h h1,∞(Rλ) atom via the bilinear form

de�ned as in (3.18).

Theorem 3.10. Let ǫ be an arbitrary positive number. Let a(x1, x2) be an ∞-atom as de�ned in

De�nition 3.2. Then there exist two fun
tions f, g ∈ L∞(Rλ) with 
ompa
t supports and a 
onstant

C(ǫ) depending only on ǫ su
h that

‖a− Π(f, g)‖h1(Rλ) < ǫ,

where ‖f‖L2 (Rλ)‖g‖L2 (Rλ) ≤ C(ǫ).

To prove Theorem 3.10, we �rst provide a te
hni
al lemma as follows.

Lemma 3.11. Let R := I(x0,1, r1)×I(x0,2, r2) and R̃ := I(y0,1, r1)×I(y0,2, r2) be two re
tangles in

R+ × R+ with r1 ≤ min{x0,1, y0,1} and r2 ≤ min{x0,2, y0,2}. Moreover, assume that |x0,1 − y0,1| ≥
4r1 and |x0,2 − y0,2| ≥ 4r2.

Let f : R2 → C with supp f ⊆ R ∪ R̃. Further, assume that

|f(x1, x2)| . C̃1χR(x1, x2) + C̃2χR̃(x1, x2)

and that f has a mean value zero property:∫

R+×R+

f(x1, x2) dmλ(x1)dmλ(x2) = 0.(3.21)

Then there exists a positive 
onstant C independent of x0,1, x0,2, y0,1, y0,2, r1, r2, C̃1 and C̃2 su
h

that

‖f‖h1(Rλ) ≤ C

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
C̃1µλ(R) + C̃2µλ(R̃)

)
.
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Proof. Suppose f satis�es the 
onditions as stated above. We will show that f has an atomi


de
omposition as the form in De�nition 3.3. To see this, we �rst de�ne two fun
tions f1(x1, x2)
and f2(x1, x2) by

f1(x1, x2) = f(x1, x2), (x1, x2) ∈ R; f1(x1, x2) = 0, (x1, x2) ∈ R2 \R, and

f2(x1, x2) = f(x1, x2), (x1, x2) ∈ R̃; f2(x1, x2) = 0, (x1, x2) ∈ R2 \ R̃.

Then we have that f = f1 + f2 and that

|f1(x1, x2)| . C̃1χR(x1, x2) and |f2(x1, x2)| . C̃2χR̃(x1, x2).

De�ne

g1
1(x1, x2) :=

χ2R(x1, x2)

µλ(2R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2),

f1
1 (x1, x2) := f1(x1, x2) − g1

1(x1, x2),

α1
1 := ‖f1

1 ‖L∞(Rλ)µλ(2R).

Then we 
laim that a1
1 := (α1

1)
−1f1

1 is a re
tangle atom as in De�nition 3.2. First, it is dire
t that

a1
1 is supported in 2R. Moreover, we have that

∫

R+×R+

a1
1(x1, x2) dmλ(x1)dmλ(x2)

= (α1
1)

−1

∫

R+×R+

(
f1(x1, x2) − g1

1(x1, x2)
)
dmλ(x1)dmλ(x2)

= (α1
1)

−1

(∫

R+×R+

f1(x1, x2) dmλ(x1)dmλ(x2) −

∫

R+×R+

f1(x1, x2)dmλ(x1)dmλ(x2)

)

= 0

and that

‖a1
1‖L∞(Rλ) ≤ |(α1

1)
−1|‖f1

1 ‖L∞(Rλ) =
1

µλ(2R)
.

Thus, a1
1 is an ∞-atom as in De�nition 3.2. Moreover, we have

α1
1 = ‖f1

1 ‖L∞(Rλ)µλ(2R) ≤ ‖f1‖L∞(Rλ)µλ(2R) + ‖g1
1‖L∞(Rλ)µλ(2R) . C̃1µλ(R),

where the impli
it 
onstant depends only on λ. We now have

f1(x1, x2) = f1
1 (x1, x2) + g1

1(x1, x2) = α1
1a

1
1 + g1

1(x1, x2).

For g1
1(x1, x2), we further write it as

g1
1(x1, x2) = g1

1(x1, x2) − g2
1(x1, x2) + g2

1(x1, x2) =: f2
1 (x1, x2) + g2

1(x1, x2)

with

g2
1(x1, x2) :=

χ4R(x1, x2)

µλ(4R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2).

Again, we de�ne

α2
1 := ‖f2

1 ‖L∞(Rλ)µλ(4R) and a2
1 := (α2

1)
−1f2

1 ,

and following similar estimates as for a1
1, we see that a

2
1 is an ∞-atom as in De�nition 3.2 with

‖a2
1‖L∞(Rλ) ≤

1

µλ(4R)
and α2

1 . C̃1µλ(R),

where the impli
it 
onstant depends only on λ.
Then we have

f1(x1, x2) =
2∑

i=1

αi
1a

i
1 + g2

1(x1, x2).
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Continuing in this fashion we see that for i ∈ {1, 2, ..., i0},

f1(x1, x2) =

i0∑

i=1

αi
1a

i
1 + gi0

1 (x1, x2),

where for i ∈ {2, ..., i0},

gi
1(x1, x2) :=

χ2iR(x1, x2)

µλ(2iR)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2),

f i
1(x1, x2) := gi−1

1 (x1, x2) − gi
1(x1, x2),

αi
1 := ‖f i

1‖L∞(Rλ)µλ(2iR) and

ai
1 := (αi

1)
−1f i

1.

Here we 
hoose i0 to be the smallest positive integer su
h that

i0 ≥ log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2
.

Moreover, for i ∈ {1, 2, ..., i0}, we have

αi
1 ≤ ‖f i

1‖L∞(Rλ)µλ(2iR) ≤
(
‖gi−1

1 ‖L∞(Rλ) + ‖gi
1‖L∞(Rλ)

)
µλ(2iR)

≤ µλ(2iR)

(
1

µλ(2i−1R)

∫∫

R
|f1(y1, y2)|dmλ(y1)dmλ(y2)

+
1

µλ(2iR)

∫∫

R
|f1(y1, y2)|dmλ(y1)dmλ(y2)

)

. µλ(2iR)
1

µλ(2i−1R)
‖f1‖L∞(Rλ)µλ(R)

. C̃1µλ(R),

where the impli
it 
onstant depends only on λ.
Following the same steps, we also obtain that for i ∈ {1, 2, ..., i0},

f2(x1, x2) =

i0∑

i=1

αi
2a

i
2 + gi0

2 (x1, x2),

where for i ∈ {2, ..., i0},

gi
2(x1, x2) :=

χ
2iR̃

(x1, x2)

µλ(2iR̃)

∫∫

R̃
f2(y1, y2)dmλ(y1)dmλ(y2),

f i
2(x1, x2) := gi−1

2 (x1, x2) − gi
2(x1, x2),

αi
2 := ‖f i

2‖L∞(Rλ)µλ(2iR̃) and

ai
2 := (αi

2)
−1f i

2.

Similarly, for i ∈ {1, 2, ..., i0}, we have

αi
2 . C̃2µλ(R̃).

Combining the de
ompositions above, we obtain that

f(x1, x2) =

2∑

j=1

i0∑

i=1

αi
ja

i
j + gi0

j (x1, x2).

We now 
onsider the tail gi0
1 (x1, x2)+ gi0

2 (x1, x2). To handle that, 
onsider the re
tangle R de�ned

as

R := I
(x0,1 + y0,1

2
, (2i0 + 1)r1

)
× I
(x0,2 + y0,2

2
, (2i0 + 1)r2

)
.
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Then, it is 
lear that R ∪ R̃ ⊂ R, and that 2i0R, 2i0R̃ ⊂ R. Thus, we get that

χR(x1, x2)

µλ(R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2) +

χR(x1, x2)

µλ(R)

∫∫

R
f2(y1, y2)dmλ(y1)dmλ(y2) = 0.

Hen
e, we write

gi0
1 (x1, x2) + gi0

2 (x1, x2) =

(
gi0
1 (x1, x2) −

χR(x1, x2)

µλ(R)

∫∫

R
f1(y1, y2)dmλ(y1)dmλ(y2)

)

+

(
gi0
2 (x1, x2) −

χR(x1, x2)

µλ(R)

∫∫

R
f2(y1, y2)dmλ(y1)dmλ(y2)

)

=: f i0+1
1 + f i0+1

2 .

We now de�ne

αi0+1
1 := ‖f i0+1

1 ‖L∞(Rλ)µλ(2i0+1R), αi0+1
2 := ‖f i0+1

2 ‖L∞(Rλ)µλ(2i0+1R̃)

ai0+1
1 := (αi0+1

1 )−1f i0+1
1 and ai0+1

2 := (αi0+1
2 )−1f i0+1

2 .

Again we 
an verify that ai0+1
1 is an ∞-atom as in De�nition 3.2 with

‖ai0+1
1 ‖L∞(Rλ) =

1

µλ(2i0+1R)
.

Moreover, we also have

αi0+1
1 . C̃1µλ(R).

Similarly, ai0+1
2 is an ∞-atom as in De�nition 3.2 with

‖ai0+1
2 ‖L∞(Rλ) =

1

µλ(2i0+1R̃)
,

and we also have

αi0+1
2 . C̃1µλ(R̃).

Thus, we obtain that

f(x1, x2) =
2∑

j=1

i0+1∑

i=1

αi
ja

i
j ,

whi
h implies that f ∈ h1(Rλ) and

‖f‖h1(Rλ) ≤
2∑

j=1

i0+1∑

i=1

αi
j

≤ C

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
C̃1µλ(R) + C̃2µλ(R̃)

)
.

Therefore, we �nish the proof of Lemma 3.11. �

Proof of Theorem 3.10. Suppose a is an atom of h1(Rλ) supported in a re
tangle

R := I(x0,1, r1) × I(x0,2, r2),

as in De�nition 3.2. Observe that if r1 > x0,1, then I(x0,1, r1) = (x0,1 − r1, x0,1 + r1) ∩ R+ =

I(
x0,1+r1

2 ,
x0,1+r1

2 ). Therefore, without loss of generality, we may assume that r1 ≤ x0,1, and

similarly assume that r2 ≤ x0,2. Let K2 and K3 be the 
onstants appeared in (ii) and (iii) of

Proposition 3.1 respe
tively, and K0 > max{ 1
K2
, 1

K3
} + 1 large enough. For any ǫ > 0, let M̃ be a

positive 
onstant large enough su
h that M̃ ≥ 100K0 and

log2 M̃

M̃
< ǫ.

We now 
onsider the following four 
ases.

Case (a): x0,1 ≤ 2M̃r1, x0,2 ≤ 2M̃r2.
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In this 
ase, let y0,1 := x0,1 + 2M̃K0r1 and y0,2 := x0,2 + 2M̃K0r2 and

R̃ := I(y0,1, r1) × I(y0,2, r2).

Then for i = 1, 2,

(1 +K0)x0,i ≤ y0,i ≤ (1 + 2M̃K0)x0,i.

De�ne

g(x1, x2) := χ
R̃
(x1, x2)(3.22)

and

h(x1, x2) := −
a(x1, x2)

R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
.(3.23)

We �rst point out that by the fa
t that yi/x0,i > K−1
2 for any yi ∈ I(y0,i, ri), i = 1, 2, and

Proposition 3.1 (ii), we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.24)

=
∣∣∣
∫ y0,1+r1

y0,1−r1

R̃∆λ,1(y1, x0,1)dmλ(y1)

∫ y0,2+r2

y0,2−r2

R̃∆λ,1(y2, x0,2)dmλ(y2)
∣∣∣

&

∫ y0,1+r1

y0,1−r1

1

y1
dy1

∫ y0,2+r2

y0,2−r2

1

y2
dy2 ∼

r1
y0,1

r2
y0,2

∼
1

M̃2
.

Then from the de�nitions of g and h above, we have

‖g‖L2 (Rλ) = µλ(R̃)
1
2

and

‖h‖L2 (Rλ) =
1

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣
‖a‖L2 (Rλ) ≤

µλ(R)−
1
2

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣
.

Thus, from (3.24), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2µλ(R̃)
1
2µλ(R)−

1
2 . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

) 1
2

. M̃2+2λ.

Now, write

a(x1, x2) − Π(g, h)(x1, x2)

=
(
a(x1, x2) + h(x1, x2)R̃∆λ,1R̃∆λ,2(g)(x1, x2)

)
− g(x1, x2)R∆λ, 1R∆λ, 2(h)(x1, x2)

=: w1(x1, x2) + w2(x1, x2).

Moreover, we de�ne

D1 :=
mλ(I(y0,1, r1))

mλ(I(x0,1, r1))mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

and

D2 :=
1

mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))
.

First, 
onsider w1. Observe that supp w1 ⊆ R and

|w1(x1, x2)| = |a(x1, x2)|

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2) − R̃∆λ,1R̃∆λ,2(g)(x1, x2)
∣∣∣

∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣

.

Then as (x1, x2) ∈ R, we 
an estimate

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2) − R̃∆λ,1R̃∆λ,2(g)(x1, x2)
∣∣∣
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=

∣∣∣∣
∫

R̃

[
R̃∆λ,1(x0,1, y1)R̃∆λ,2(x0,2, y2) − R̃∆λ,1(x1, y1)R̃∆λ,2(x2, y2)

]
dmλ(y1)dmλ(y2)

∣∣∣∣

.

∫

R̃

[
|x1 − x0,1|

|y1 − x0,1|mλ(I(x0,1, |y1 − x0,1|))mλ(I(x0,2, |y2 − x0,2|))

+
|x2 − x0,2|

|y2 − x0,2|mλ(I(x0,2, |y2 − x0,2|))mλ(I(x1, |y1 − x1|))

]
dmλ(y1)dmλ(y2)

. µλ(R̃)

[
r1

|y0,1 − x0,1|mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
r2

|y0,2 − x0,2|mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
.

Combining the above estimates, (3.24), and the de�nition of w1 immediately gives:

|w1(x1, x2)| . M̃2‖a‖L∞(R)µλ(R̃)

[
r1 mλ(I(y0,1, r1))

|y0,1 − x0,1|mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
r2 mλ(I(y0,2, r2))

|y0,2 − x0,2|mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
χR(x1, x2)

.

[
mλ(I(y0,1, r1))

mλ(I(x0,1, r1))mλ(I(x0,1, |y0,1 − x0,1|))mλ(I(x0,2, |y0,2 − x0,2|))

+
mλ(I(y0,2, r2))

mλ(I(x0,2, r2))mλ(I(x0,2, |y0,2 − x0,2|))mλ(I(x1, |y0,1 − x1|))

]
χR(x1, x2)

. D1χR(x1, x2).

Now, 
onsider w2(x1, x2). Note that

w2(x1, x2) =
1

R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
χR̃(x1, x2)R∆λ, 1R∆λ, 2(a)(x1, x2).

Clearly, supp w2 ⊆ R̃. Furthermore, using the mean value zero property of a(x1, x2), we have:

R∆λ, 1R∆λ, 2(a)(x1, x2) =

∫

R

(
R∆λ, 1(x1, y1)R∆λ, 2(x2, y2) −R∆λ, 1(x1, x0,1)R∆λ, 2(x2, x0,2)

)

× a(y1, y2)dmλ(y1)dmλ(y2).

Then following similar estimates as in w1 above, we have

|w2(x1, x2)| . M̃2‖a‖L∞(R)µλ(R̃)

[
r1 mλ(I(x0,1, r1))

|x1 − x0,1|mλ(I(x0,1, |x1 − x0,1|))mλ(I(x0,2, |x2 − x0,2|))

+
r2 mλ(I(x0,2, r2))

|x2 − x0,2|mλ(I(x0,2, |x2 − x0,2|))mλ(I(x0,1, |x1 − x0,1|))

]
χR̃(x1, x2)

.

[
1

mλ(I(x0,1, |x1 − x0,1|))mλ(I(x0,2, |x2 − x0,2|))

+
1

mλ(I(x0,2, |x2 − x0,2|))mλ(I(x0,1, |x1 − x0,1|))

]
χR̃(x1, x2)

. D2χR̃
(x1, x2).

Combining the estimates of w1 and w2, we 
an 
on
lude that a− Π(f, g) has support 
ontained
in

R ∪ R̃

and satis�es ∫

R+×R+

(a(x1, x2) − Π(f, g)(x1, x2)) dmλ(x1)dmλ(x2) = 0.
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Then, from Lemma 3.11, we have

‖a− Π(f, g)‖h1 (Rλ) .

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)(
D1µλ(R) +D2µλ(R̃)

)

.

(
log2

|x0,1 − y0,1|

r1
+ log2

|x0,2 − y0,2|

r2

)( r1
|x0,1 − y0,1|

+
r2

|x0,2 − y0,2|

)

.
log2 M̃

M̃
. ǫ.

Case (b): x0,1 > 2M̃r1, x0,2 ≤ 2M̃r2.

In this 
ase, let y0,1 := x0,1 − M̃r1
K0

and y0,2 := x0,2 + 2M̃K0r2 and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respe
tively.

Then

2K0−1
2K0

x0,1 < y0,1 < x0,1. For every y1 ∈ I(y0,1, r1), from the fa
ts thatK0 > max{ 1
K2
, 1

K3
}+

1 and M ≥ 100K0, we have

0 <
x0,1

y1
− 1 < K3.

To 
ontinue, for the �rst variable, we use Proposition 3.1 (iii) and the fa
t that y1 ∼ y0,1 ∼ x0,1

for any y1 ∈ I(y0,1, r1); and for the se
ond variable, we use Proposition 3.1 (ii) the fa
t that

y2/x0,2 > K−1
2 for any y2 ∈ I(y0,2, r2). Then we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.25)

=
∣∣∣
∫ y0,1+r1

y0,1−r1

R̃∆λ,1(y1, x0,1)dmλ(y1)

∫ y0,2+r2

y0,2−r2

R̃∆λ,1(y2, x0,2)dmλ(y2)
∣∣∣

&

∫ y0,1+r1

y0,1−r1

1

xλ
0,1y

λ
0,1

1

x0,1 − y1
dmλ(y1)

∫ y0,2+r2

y0,2−r2

1

y2
dy2

∼

∫ y0,1+r1

y0,1−r1

1

x0,1 − y0,1
dy1

r2
y0,2

∼
1

M̃2
.

Thus, from (3.25), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

)1
2

. M̃2+λ.

Then to estimate a(x1, x2)− Π(g, h)(x1, x2), we de�ne w1 and w2 to be the same as in Case (a).

And following the same estimates as in Case (a), we obtain that

w1(x1, x2) . D1χR(x1, x2) and w2(x1, x2) . D2χR̃(x1, x2).

Then, the fa
t that ‖a − Π(f, g)‖h1 (Rλ) . ǫ now immediately follows from Lemma 3.11 and the

argument in Case (a).

Case (
): x0,1 ≤ 2M̃r1, x0,2 > 2M̃r2.

In this 
ase, let y0,1 := x0,1 + 2M̃K0r1 and y0,2 := x0,2 − M̃r2
K0

and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respe
tively. Then, by handling the

estimates symmetri
ally to Case (b), we obtain that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣ &

1

M̃2
,(3.26)
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whi
h gives

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2+λ.

Again we obtain that ‖a− Π(f, g)‖h1 (Rλ) . ǫ.

Case (d): x0,1 > 2M̃r1, x0,2 > 2M̃r2.

In this 
ase, let y0,1 := x0,1 − M̃r1
K0

and y0,2 := x0,2 − M̃r2
K0

and

R̃ := I(y0,1, r1) × I(y0,2, r2).

We also let g and h be the same as in (3.22) and (3.23), respe
tively. Then for i = 1, 2, 2K0−1
2K0

x0,i <

y0,i < x0,i. For every yi ∈ I(y0,i, ri), from the fa
ts that K0 > max{ 1
K2
, 1

K3
} + 1 and M̃ ≥ 100K0,

we have

0 <
x0,i

yi
− 1 < K3.

To 
ontinue, we use Proposition 3.1 (iii) and the fa
t that yi ∼ y0,i ∼ x0,i for any yi ∈ I(y0,i, ri)
for i = 1, 2. Then we see that

∣∣∣R̃∆λ,1R̃∆λ,2(g)(x0,1, x0,2)
∣∣∣(3.27)

&

∫ y0,1+r1

y0,1−r1

1

xλ
0,1y

λ
0,1

1

x0,1 − y1
dmλ(y1)

∫ y0,2+r2

y0,2−r2

1

xλ
0,2y

λ
0,2

1

x0,2 − y2
dmλ(y2)

∼

∫ y0,1+r1

y0,1−r1

1

x0,1 − y0,1
dy1

∫ y0,2+r2

y0,2−r2

1

x0,2 − y0,2
dy2 ∼

1

M̃2
.

Thus, from (3.27), we have that

‖g‖L2 (Rλ)‖h‖L2 (Rλ) . M̃2

(
y2λ
0,1 r1 y

2λ
0,2 r2

x2λ
0,1 r1 x

2λ
0,2 r2

)1
2

. M2.

Again we obtain that ‖a− Π(f, g)‖h1 (Rλ) . ǫ. �

Proof of Theorem 3.8. We �rst point out that from (3.19), for every g, h ∈ L∞(Rλ) with 
om-

pa
t support,

‖Π(g, h)‖h1 (Rλ) . ‖g‖L2 (Rλ)‖h‖L2 (Rλ).

Based on this upper bound, for every f ∈ h1 (Rλ) having the representation (3.17) with

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

< ∞,

we have that

‖f‖h1 (Rλ) .

∞∑

k=1

∞∑

j=1

|αk
j |
∥∥∥Π
(
gk
j , h

k
j

) ∥∥∥
h1 (Rλ)

.

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

,

whi
h gives that

‖f‖h1 (Rλ) . inf





∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

: f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)


 .

It remains to show that for every f ∈ h1 (Rλ), f has a representation as in (3.17) with

(3.28) inf





∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

: f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)


 . ‖f‖h1 (Rλ).



PRODUCT BMO, LITTLE BMO AND RIESZ COMMUTATORS 25

To this end, assume that f has the following atomi
 representation f =

∞∑

j=1

α1
ja

1
j with

∞∑

j=1

|α1
j | ≤

C̃0‖f‖h1 (Rλ) for 
ertain absolute 
onstant C̃0 ∈ (1,∞). We show that for every ǫ ∈
(
0, C̃−1

0

)
and

every K ∈ N, f has the following representation

(3.29) f =

K∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
+ EK ,

where

(3.30)

∞∑

j=1

∣∣∣αk
j

∣∣∣ ≤ ǫk−1C̃k
0 ‖f‖h1 (Rλ),

and EK ∈ h1 (Rλ) with

(3.31) ‖EK‖h1 (Rλ) ≤ (ǫC̃0)
K‖f‖h1 (Rλ),

and gk
j ∈ L2 (Rλ), hk

j ∈ L2 (Rλ) for ea
h k and j, {αk
j }j ∈ ℓ1 for ea
h k satisfying that

(3.32)

∥∥∥gk
j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

. C(ǫ)

with the absolute 
onstant C(ǫ) = M̃2+2λ
, where M is the 
onstant in the proof of Theorem 3.10

satisfying M̃ ≥ 100K0 and

log2 M̃

M̃
< ǫ.

In fa
t, for given ǫ and ea
h a1
j , by Theorem 3.10 we obtain that there exist g1

j ∈ L2 (Rλ) and

h1
j ∈ L2 (Rλ) with ∥∥g1

j

∥∥
L2 (Rλ)

∥∥h1
j

∥∥
L2 (Rλ)

. C(ǫ)

and ∥∥a1
j − Π

(
g1
j , h

1
j

)∥∥
h1 (Rλ)

< ǫ.

Now we write

f =
∞∑

j=1

α1
ja

1
j =

∞∑

j=1

α1
jΠ
(
g1
j , h

1
j

)
+

∞∑

j=1

α1
j

[
a1

j − Π
(
g1
j , h

1
j

)]
=: M1 + E1.

Observe that

‖E1‖h1 (Rλ) ≤
∞∑

j=1

∣∣α1
j

∣∣ ∥∥a1
j − Π

(
g1
j , h

1
j

)∥∥
h1 (Rλ)

≤ ǫC̃0‖f‖h1 (Rλ).

Sin
e E1 ∈ h1 (Rλ), for the given C̃0, there exists a sequen
e of atoms {a2
j}j and numbers {α2

j}j

su
h that E1 =

∞∑

j=1

α2
ja

2
j and

∞∑

j=1

∣∣α2
j

∣∣ ≤ C̃0‖E1‖h1 (Rλ) ≤ ǫC̃2
0‖f‖h1 (Rλ).

Again, we have that for given ǫ, there exists a representation of E1 su
h that

E1 =
∞∑

j=1

α2
jΠ
(
g2
j , h

2
j

)
+

∞∑

j=1

α2
j

[
a2

j − Π
(
g2
j , h

2
j

)]
=: M2 + E2,

and ∥∥g2
j

∥∥
L2 (Rλ)

∥∥h2
j

∥∥
L2 (Rλ)

. C(ǫ) and
∥∥a2

j − Π
(
g2
j , h

2
j

)∥∥
h1 (Rλ)

<
ǫ

2
.
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Moreover,

‖E2‖h1 (Rλ) ≤
∞∑

j=1

∣∣α2
j

∣∣ ∥∥a2
j − Π

(
g2
j , h

2
j

)∥∥
h1 (Rλ)

≤ (ǫC̃0)
2‖f‖h1 (Rλ).

Now we 
on
lude that

f =
∞∑

j=1

α1
ja

1
j =

2∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
+ E2,

Continuing in this way, we dedu
e that for everyK ∈ N, f has the representation (3.29) satisfying

(3.32), (3.30), and (3.31). Thus letting K → ∞, we see that (3.17) holds. Moreover, sin
e ǫC̃0 < 1,
we have that

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣ ≤
∞∑

k=1

ǫ−1(ǫC̃0)
k‖f‖h1 (Rλ) . ‖f‖h1 (Rλ),

whi
h implies (3.28) and hen
e, 
ompletes the proof of Theorem 3.8. �

Proof of (i)⇐=(iv). Suppose that b ∈ L2
loc(Rλ). Assume that [b,R∆λ, 1R∆λ, 2] is bounded on

L2 (Rλ).
From the de�nition of h1(Rλ), given f ∈ h1(Rλ), there exists a number sequen
e {λj}

∞
j=1 and

atoms {aj}
∞
j=1 su
h that

f =

∞∑

j=1

λjaj,

where the series 
onverges in the h1(Rλ) norm and ‖f‖h1(Rλ) ≈
∑∞

j=1 |λj |. Hen
e, we have that

fN :=
∑N

j=1 λjaj tends to f as N → +∞ in the h1(Rλ) norm, whi
h implies that h1(Rλ)∩L∞
c (Rλ)

is dense in h1(Rλ), where re
all that L∞
c (Rλ) is the subspa
e of L∞(Rλ) 
onsisting of fun
tions

with 
ompa
t support in R+ × R+.

Now for f ∈ h1 (Rλ)∩L∞
c (Rλ), from Theorem 3.8, we 
hoose a weak fa
torization of f su
h that

f =

∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(3.33)

in the sense of h1(Rλ), where the sequen
e {αk
j } ∈ ℓ1 and the fun
tions gk

j and hk
j are in L∞

c (Rλ)
satisfying

∞∑

k=1

∞∑

j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥∥hk
j

∥∥∥
L2 (Rλ)

. ‖f‖h1(Rλ).

From the de�nition of bilinear form Π as in (3.18), we see that Π
(
gk
j , h

k
j

)
is in L2(Rλ) with 
ompa
t

support.

Sin
e f ∈ h1 (Rλ) ∩ L∞
c (Rλ), we see that f is in L2(U), where we use the set U to denote the

support of f . Hen
e, ∫

R+×R+

b(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

is well-de�ned, sin
e b ∈ L2
loc(Rλ) and hen
e in L2(U).

We now de�ne

bi(x1, x2) = b(x1, x2)χ{(x1,x2)∈R+×R+: |b(x1,x2)|≤i}(x1, x2), i = 1, 2, ...

It is 
lear that bi(x1, x2) → b(x1, x2) as i → ∞ in the sense of L2(U). And then we have

∫

R+×R+

b(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2) = lim
i→∞

∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2).
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Next, for ea
h i = 1, 2, . . ., we have that
∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

=

∫

R+×R+

bi(x1, x2)
∞∑

k=1

∞∑

j=1

αk
j Π
(
gk
j , h

k
j

)
(x1, x2) dmλ(x1)dmλ(x2)

=

∞∑

k=1

∞∑

j=1

αk
j

∫

R+×R+

bi(x1, x2)Π
(
gk
j , h

k
j

)
(x1, x2) dmλ(x1)dmλ(x2)

=

∞∑

k=1

∞∑

j=1

αk
j 〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)

sin
e bi is in L∞(U) and hen
e is in bmo(Rλ), (3.33) holds in h1(Rλ) and ea
h Π
(
gk
j , h

k
j

)
is in

h1(Rλ) as showed in Proposition 3.9.

As a 
onsequen
e, we obtain that

|〈b, f〉L2(Rλ)| = lim
i→∞

∣∣∣∣
∫

R+×R+

bi(x1, x2)f(x1, x2) dmλ(x1)dmλ(x2)

∣∣∣∣(3.34)

≤ lim
i→∞

∞∑

k=1

∞∑

j=1

|αk
j | |〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|

=

∞∑

k=1

∞∑

j=1

lim
i→∞

|αk
j | |〈bi,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|,

where the equality above holds sin
e all the terms are non-negative. Next, sin
e bi(x1, x2) →
b(x1, x2) as i → ∞ in the sense of L2(V ) and Π

(
gk
j , h

k
j

)
is in L2(V ) with V the support of

Π
(
gk
j , h

k
j

)
, we have that

lim
i→∞

〈bi,Π
(
gk
j , h

k
j

)
〉L2(Rλ) = 〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ),

whi
h implies that

lim
i→∞

|〈bi,Π
(
gk
j , h

k
j

)
〉L2(Rλ)| = |〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|.

This, together with (3.34), yields that

|〈b, f〉L2(Rλ)| ≤
∞∑

k=1

∞∑

s=1

|αk
j | |〈b,Π

(
gk
j , h

k
j

)
〉L2(Rλ)|

=
∞∑

k=1

∞∑

j=1

|αk
j | ·
∣∣∣
〈
gk
j , [b,R∆λ, 1R∆λ, 2]h

k
j

〉
L2 (Rλ)

∣∣∣,

whi
h is further bounded by

∞∑

k=1

∞∑

j=1

|αk
j |
∥∥∥gk

j

∥∥∥
L2 (Rλ)

∥∥[b,R∆λ, 1R∆λ, 2]h
k
j

∥∥
L2 (Rλ)

≤
∥∥[b,R∆λ, 1R∆λ, 2] : L2 (Rλ) → L2 (Rλ)

∥∥
∞∑

k=1

∞∑

j=1

|αk
j |
∥∥gk

j

∥∥
L2 (Rλ)

∥∥hk
j

∥∥
L2 (Rλ)

.
∥∥[b,R∆λ, 1R∆λ, 2] : L2 (Rλ) → L2 (Rλ)

∥∥ ‖f‖h1 (Rλ).

Then by the fa
t that {f ∈ h1 (Rλ) : f has compact support} is dense in h1 (Rλ), and the duality

between h1 (Rλ) and bmo (Rλ) (see Theorem 3.7), we �nish the proof. �
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Proof of Corollary 1.5. Suppose b ∈ bmo(Rλ). Then based on (iii) of Theorem 1.4, we obtain

that there exist f1, f2, g1, g2 ∈ L∞(Rλ) su
h that b = f1 +R∆λ, 1g1 = f2 +R∆λ, 1g2 and moreover,

‖b‖bmo(Rλ) ≈ inf
{

maxi=1,2

{
‖fi‖L∞(Rλ), ‖gi‖L∞(Rλ)

}}
where the in�mum is taken over all possible

de
ompositions of b.
We now show that b is also in BMO∆λ

(Rλ). To see this, we re
all the re
ent result of de
ompo-

sition of BMO∆λ
(Rλ) obtained in [DLWY2℄.

Theorem 3.12 ([DLWY2℄). The following two statements are equivalent.

(i) ϕ ∈ BMO∆λ
(Rλ);

(ii) There exist hi ∈ L∞(Rλ), i = 1, 2, 3, 4, su
h that

ϕ = h1 +R∆λ, 1(h2) +R∆λ, 2(h3) +R∆λ, 1R∆λ, 2(h4).

Ba
k to the proof, we now 
hoose h1 = f1, h2 = g1, h3 = h4 = 0. Then it is easy to see that

b = h1 +R∆λ, 1(h2) +R∆λ, 2(h3) +R∆λ, 1R∆λ, 2(h4),

whi
h implies that b ∈ BMO∆λ
(Rλ).

Similarly, we 
an also 
hoose h1 = f2, h3 = g2, h2 = h4 = 0. Combining these two 
hoi
es, we

further obtain that

‖b‖BMO∆λ
(Rλ) . ‖b‖bmo(Rλ),

whi
h implies that

bmo(Rλ) ⊂ BMO∆λ
(Rλ).

Next we prove that bmo∆λ
(Rλ) is a proper subspa
e of BMO∆λ

(Rλ). To see this, we let K3

be the 
onstant in (iii) of Proposition 3.1. Sin
e R∆λ, 1R∆λ, 2 is a produ
t Calderón�Zygmund

operator on Rλ and hen
e it is bounded from L∞(Rλ) to BMO∆λ
(Rλ) (see [HLL℄). Then, it is

dire
t that the following fun
tion

b(x1, x2) := R∆λ, 1R∆λ, 2(χ(1,2)×(1,2))(x1, x2)(3.35)

is in BMO∆λ
(Rλ).

Next we 
laim that this fun
tion b(x1, x2) is not in bmo(Rλ). To see this, we �rst note that

b(x1, x2) 
an be written as

b(x1, x2) = R∆λ
(χ(1,2))(x1)R∆λ

(χ(1,2))(x2).

We now verify that R∆λ
(χ(1,2))(x1) is not in L

∞(R+, dmλ). In fa
t, by Proposition 3.1, for every

δ > 0 small enough and x1 ∈ (1 − δ, 1), we 
hoose ǫ = 2δ. Then we have

R∆λ
(χ(1,2))(x1) =

∫ 2

1
R∆λ

(x1, y)y
2λdy ≥

∫ (1+K3)x1

x1+ǫ
R∆λ

(x1, y)y
2λdy

≥

∫ (1+K3)x1

x1+ǫ
CK3,λ

1

xλ
1y

λ

1

y − x1
y2λdy

&

∫ (1+K3)x1

x1+ǫ

1

y − x1
dy

= ln(y − x1)
∣∣∣
(1+K3)x1

x1+ǫ

= ln(K3x1) − ln ǫ

= ln(K3x1) − ln(2δ).

Then it is dire
t that when δ → 0+
, R∆λ

(χ(0,1))(x1) is unbounded around the interval (1 − δ, 1).
Hen
e, for the fun
tion b(x1, x2) de�ned as in (3.35), when we �x x1, b(x1, x2) as a fun
tion of

x2 is in BMO∆λ
(R+, dmλ). However, it is not uniform for the variable x1. �
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