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Abstract

An actuator using a piezoelectric bender to deflect a trailing edge servo-flap for use
on a helicopter rotor blade was designed, built, and tested. This actuator is an
improvement over one developed previously at MIT. The design utilizes a new flexure
mechanism to connect the piezoelectric bender to the control surface. The efficiency
of the bender was improved by tapering its thickness properties with length. Also,
implementation of a nonlinear circuit allowing the application of a greater range of
actuator voltages increased the resultant strain levels.

Experiments were carried out on the bench top to determine the frequency re-
sponse of the actuator, as well as hinge moment and displacement capabilities. Flap
deflections of 11.5 deg were demonstrated while operating under no load conditions
at 10 Hz. Excessive creep at low frequencies precluded the measurement of achievable
hinge mornents, but extrapolation from deflection and voltage characteristics indicate
that if properly scaled, the present actuator will produce flap deflections greater than
5 deg at the 90% span location on an operational helicopter. In addition, the first
mode of the actuator was at seven times the rotational frequency (7/rev) of the tar-
get model scale rotor. Proper inertial scaling of this actuator could raise this modal
frequency to 10/rev on an operational helicopter, which is adequate for most rotor
control purposes.

A linear state space model of the actuator was derived. Comparisons of this
model with the experimental data highlighted a number of mild nonlinearities in
the actuator’s response. However, the agreement seen between the experiment and
analysis indicate that the model is a valid too! for predicting actuator response.
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B
b
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C
CE  stiffness matrix measured at constant field
éss output vector
€ modal damping matrix
C capacitance of one half of bender
Cr bender to flexure mechanism bond integrity coefficient
hinge moment coefficient per angle of attack
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f  frequency (Hz)
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fo natural frequency of first mode
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bender moment

equivalent mass from rotational inertia of flap
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torsional flap hinge stiffness
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J¢) inverse dielectric constant matrix
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Chapter 1

Introduction

The normal operation of a helicopter rotor can result in vibration, noise, and aero-
dynamic inefficiencies. The source of these problems is the unsteady aerodynamic
environment associated with rotor operation. The goal of helicopter rotor control is
to reduce or eliminate these problems.

There are a number of sources of rotor vibration and noise. These include atmo-
spheric turbulence, retreating blade stall, blade vortex and blade fuselage interactions,
as well as blade and rotor instabilities (ground/air resonances) [21]. The majority of
previous rotor control efforts involved blade root pitch actuation to eliminate vibra-
tions at the rotor hub, so that none are transmitted to the fuselage and passenger
compartment of the helicopter, i.e., disturbance rejection at the hub. While efforts
into this method of control have been successful, disturbance rejection in any system
is most effective when the control is applied at the point where the disturbances enter
the system. For helicopters, this suggests the presence of an actuator in the rotating
frame.

Previous research at MIT by Spangler and Hall [45] demonstrated that actuation
of a servo-flap with the use of piezoelectric ceramic benders is a feasible method
of rotating frame actuation for helicopter rotor control. While they demonstrated
appreciable flap deflections and force authority, they found that their design did not
work entirely as expected, due to hinge friction and backlash present in the linkage

connecting the bender and flap. This thesis describes the improvements made to this
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actuator concept, resulting in a design with the potential for integration into a blade
cross-section capable of producing adequate performance for rotor control.

In the following sections, a brief discussion of the methods used for rotor control
is presented, and a survey is presented on the different approaches taken by previous
researchers to affect the aerodynamics of airfoils and rotor systems. The chapter
concludes by outlining the goals of this thesis and the specific organization of the

following four chapters.

1.1 Rotor Control Methodologies

Rotor control is performed using blade pitch command inputs to reduce vibration,
noise and/or aerodynamic inefficiencies. Two common types of rotor control are
higher harmonic control (HHC) and individual blade control (IBC). The difference
between these two types of rotor control is in what each treats as the plant. Higher
harmonic control applies inputs to the rotor system, treating the group of N blades
as the plant. Individual blade control is different, because it treats each blade as a
separate plant and wraps a feedback loop around each blade in the rotating frame
[26], [21].

Shaw et al. [43] applied higher harmonic control in a wind tunnel study of a 1/6
scale CH-47D demonstrating the possibilities of HHC. Using swashplate controlling
electro-hydraulic actuators with the ability to actuate up to the 4/rev frequency, they
were able to demonstrate a 90% decrease in vibratory shears at the hub (at the cost of
a 20% increase in hub moments) or performance improvements of 4% and 6% drops in
required power at advanced ratios of 0.37 and 0.31, respectively. Nguyen and Chopra
[39] performed an analytical study of the same rotor and confirmed many of these
results.

Individual blade control may be considered an improvement over HHC. In addition
to attacking the problems addressed by HHC, using IBC the designer may address
additional problems such as gust alleviation, attitude stabilization, lag damping aug-

mentation, flapping stability at high advance ratios and individual blade tracking. As
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shown by Ham [21], all of these tasks can be achieved to some degree using the conven-
tional swashplate. Obviously, since the swashplate only provides a maximum of three
degrees of freedom, however, for rotors with four or more blades, less improvement is
obtained by applying IBC with just ihe swashplate.

Placing one actuator on each rotor blade provides the necessary degrees of freedom
to take full advantage of IBC algorithms. Furthermore, in addition to the benefits
discussed above, Kretz et al. [26], [27] have suggested that putting actuators on
each blade could eliminate the need for the swashplate. This is desired because
the swashplate is a coupling path between blades that leads to monocyclic pitch
variations.

In the past, placing actuators in the rotating frame added either a substantial
amount of weight or complexity to the rotor system design. Nevertheless, because
there are so many benefits from placing an actuator in the rotating frame, the problem
has been the subject of a number of studies. The next section provides a brief review

of the subject.

1.2 Rotating Frame Actuation

The easiest location to place an actuator in the rotating frame is at the blade root,
because little or no modification to the blades is required. However, such an actuator
would only be able to provide root pitch actuation. Placing actuators over the span
of the blade allows for spanwise varying pitch commands.

Advantages from applying a spanwise varying pitch schedule have been described
in the literature. An analysis performed over 20 year ago addressed the effect of the
built-in twist of a rotor blade on its aerodynamics [31]. The discussion in that study
recognized the fact that the vibratory loads of a helicopter are a strong function of
the blade twist. To minimize vibratory loads, a decreased negative twist is necessary
on the advancing side while a simultaneous increased negative twist should be present
on the retreating side. A torsionally flexible blade along with moment control inputs

at the blade tip and root would accommodate such a twist schedule, significantly
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improving the vibration reduction ability of a rotor systein. More recently two studies
at MIT have also demonstrated the benefits of blade mounted actuation. Specitically,
Hall, Yang and Hall [20] determined that actual rotor systems operate with induced
power losses 14% greater than would exist given a maximum coefficient of lift, Cy, =
1.5 and the ability to prescribe a specific lift patiern over the entire rotor area.
A spanwise varying pitch command could therefore improve the efficiency of the
rotor. In addition, Garcia [18] performed a linear scate space analysis of an H-34
helicopter rotor equipped with blade mounted servo-flaps. The model included rigid
blade flapping and elastic torsion. The results predicted control loads much less than
those necessary for root pitch control in hover and forward flight. Finally, a study
by Millott and Friedmann [37] also reported that the power requirements necessary
to twist a flexible blade and perform rotor control are lower than those needed to
perform full blade feathering control at the root.

From the above discussion, it is clear that it would be useful to have an actuator
that can operate in the rotating frame, while providing acceptable amounts of con-
trol authority. The remainder of this survey will focus on methods that have been
proposed for the control of the aerodynamics of wing sections, with the emphasis on
actuators that are capable of introducing a spanwise varying pitch distribution on a

rotor blade. This survey is broken down into passive and active methods.

1.2.1 Passive Methods

Landgrebe and Davis performed analytical studies on an aeroelastically tuned tab
placed on the trailing edge of a helicopter blade [28]. The goal of the tab was to
introduce a harmonic airload forcing so that, if sized and phased correctly, could
reduce the harmonic vibration of the rotor blades. Results showed that while this
approach leads to small reductions of in-plane shears at the hub, the increase in
vertical shears there are too great for this method of control to succeed.

Following an idea used for fixed wing tips, Stroub et al. [46] designed and built a
rotor blade, consisting of a conventional blade design with its outer 10% connected

to the rest of the blade with a tension/torsion device. The centrifugal force pulls the
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tip section away against the tension/torsion strap, forcing the strap to torque the tip
section, rotating it nose up. The aerodynamic forces balance this motion and the
result is net positive aerodynamic lift located at the tip. Wind tunnel results show a
12% reduction in power at cruise speeds. Additional benefits include 40-70% smaller
blade bending moments along with reduced sensitivity to gusts. A stability analysis

of such a free-tip blade was performed by Chopra [9].

1.2.2 Active Methods

The first study in actively controlling a blade mounted helicopter actuator was per-
formed by Carpenter and Paulnock in 1950 [8]. This was an experiment run on the
Langley helicopter tower, and was designed only to check the stability of a rotor
controlled with blade mounted servo-flaps. Vibration effects were not addressed. An
external airfoil of 15.5% span was mounted just behind the trailing edge and centered
at the 75% spanwise location. The actuation of this flap was achieved using a pitch
link system. Actuating flap deflections up to 15 deg, 1500 lbs of thrust and +7 deg
of rotor tilt were demonstrated. However, due to the extra drag associated with the
external flap, there was a 6.5% increase in required power.

An experimental study performed in 1965 analyzed the propulsive force of a rotor
with the inner 50% span following a different pitch schedule than the outer 50% [15].
The motivation behind this design came from the fact that a helicopter’s maximum
advance ratio is limited by the retreating blade stall. Using this design, the effects of
this retreating blade stall were delayed enough to allow this rotor to reach substan-
tially higher advance ratios than those of conventional helicopter rotors. Future work
recommended in this study included determination if the design could be simplified
by reducing the independent control surface into a large chord trailing edge flap.

One type of control used in a number of rotor studies for actuation in the rotating
frame is circulation control [48]. Circulation control essentially consists of blowing a
thin tangential jet of air out of the leading and trailing edges of an (usually ellipti-
cal) airfoil. This influx of air boosts the lift coefficients of the blade section. This

technology has been applied in the X-wing project, a rotor system that can stop in
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mid-flight and operate as a fixed wing aircraft with blades swept forward and back at
45 degree angles. Circulation control provides the lift and control necessary to make
the transition from rotating to fixed wing operation and to operate as a fixed wing
aircraft.

Some researchers have suggested using active materials for macroscopic shape
control of an airfoil [3], [14], [29], [42]. Rossi et al. [42] used magnetostrictive struts
to perform shape control on a fixed wing airfoil. While the design is too big and heavy
for helicopter control, it does show excellent response upon activation of a closed loop
shape control system utilizing LVDT sensors.

Others have investigated bending and twisting of entire lifting surfaces with surface
bonded piezoelectric ceramics. Lazarus et al. [29] investigated inducing torsion in
lifting surfaces using bending-twist and extension-twist coupled plates. Separately,
Ehlers and Weishaar [14] have also investigated the same subject. These studies
showed that for typical fixed wing aircraft, bending or torsion strain actuation may
be as effective as trailing edge control surfaces [29]. However, because helicopter
blades have such large aspect ratios, such an actuation method is not feasible for
rotor control.

Research by Barrett [3] showed that by partially attaching piezoelectric ceramics,
the stiffness of the attachment becomes larger in one particular direction. The force
transmitted by such a piezoelectric ceramic is thus concentrated along this direction.
By proper alignment, these Directionally Attached Piezos (DAP’s) may induce twist-
ing in a wing. Although no wind tunnel tests were performed, analytical studies
predict that wings equipped with DAP’s may induce a ACy, of 0.65 for Mach number
up to 0.7, using reasonable electric fields.

Loewy and Tseng [32] analyzed a system with an aileron/tab configuration. By
making the aileron/tab configuration unstable and using a simple feedback loop to
stabilize it, the system becomes very sensitive to control inputs. Therefore, small tab
deflections get amplified into larger aileron deflections.

The results of studies by Lemnios et al. [31] led Kaman Corporation to the de-
velopment of their Controllable Twist Rotor (CTR). The CTR uses standard H-34
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blades, with a servo-flap (essentially a small airfoil) appended behind the trailing edge,
centered at the 89% span location. A conventional swashplate was used for root con-
trol of the blades, while the servo-flaps were connected to a second swashplate (below
the first) with a pitch link system. Wind tunnel tests performed by Lemnios et al.
[30] demonstrated blade loadings 20% greater than those seen in conventional H-34
rotors. This was attributed to stall alleviation of the system at high advance ratios.
McCloud and Weisbrich [35] performed an additional wind tunnel investigation of
this same rotor, applying multicyclic control inputs. The study showed the ability
to decrease blade bending moments, while simultaneously decreasing control loads.
The one problem discovered from these studies was that the external flap produced a
tremendous amount of extra drag, resulting in higher power requirements to operate
the rotor. The improvement suggested to overcome this problem was to fair the flap
inside the blade, creating a control surface which operated much like an aileron on
a fixed wing [30]. In the literature, this improved configuration has been termed the
advanced controllable twist rotor [34].

As an attempt to design a flap deflecting mechanism compatible with an advanced
CTR design, Fabunmi [16] has suggested a complex resonant ratchet mechanism for
producing blade servo-flap deflections. By actuating a spring mass system at its
resonance with a piezoelectric stack, attached to the airfoil’s main spar, the system
effectively cranks the flap up or down using a ratchet mechanism. This study was
analytical only, but a bench test model was proposed as future work.

Spangler and Hall [45] presented a method of deflecting a faired flap within a rotor
blade. Their actuator used piezoelectric ceramics to deflect a 10% trailing edge flap.
Piezoelectric ceramics are normally large force, small displacement devices. Their
usefulness in this application is produced by amplifying the piezoelectric ceramic de-
flections in two ways. The first amplification comes from bonding two piezoelectric
plates together, and actuating them in bending. By doing this, the piezoelectric
ceramic becomes a moderate force, moderated displacement actuator. The second
amplification comes from using a lever arm arrangement to actuate angular deflec-

tions. By making the lever arm sufficiently short, the small tip deflections from the
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bender translate into relatively large servo-flap deflections. For such a lever arm
arrangement to work, however, in addition to the flap hinge degree of freedom, two
additional hinge degrees nf freedom are necessary to avoid encountering any geometric
stiffening effects in actuating the flap deflections [45]. In their design, Spangler and
Hall used small model aircraft hinges to provide these degrees of freedom. Spangler
and Hall built and performed wind tunnel tests on a scaled rotor blade typical section.
In their experiments, they encountered substantial reductions in performance due to
large amounts of friction and backlash caused by these hinges. This thesis presents
improvements over this original design, as discussed below in Section 1.3.
Independent of the research presented in this thesis, Walz and Chopra [47] are
currently developing a flap deflection mechanism based on this piezoelectric bender
idea of Spangler and Hall. The main difference implemented by Walz and Chopra
is in the connection between piezoelectric bender and flap. They abandoned the
three hinge mechanism for one involving a molded rod attached to the end of the
piezoelectric bender and a precision machined cusp, such that the rod is able to slide
and rotate as the piezoelectric bender deflects. Using this rod-cusp configuration,
they were able to achieve 10% flap authority in a bench test experiment of their
actuator. Incorporation of this model in an airfoil is currently underway and planned

for hover and forward flight tests at the University of Maryland.

1.3 Thesis Objectives and Overview

1.3.1 Goals

As discussed in the previous sections, there are many benefits that may be obtained in
helicopter rotor control by implementing an actuator in the rotating frame. The main
goal of this thesis, therefore, was to improve on the design of Spangler and Hall [45], in
order to develop an actuator capable of meeting the force and deflection requirements
needed for a trailing edge servo-flap to exert useful control on the aerodynamics of

a rotor. Furthermore, bench tests of the re-designed actuator were recognized as a

24



necessary measure of the degree to which this proposed goal was met.

1.3.2 Thesis Organization

This thesis is involved only with the re-design of Spangler and Hall’s original actu-
ator, which is defined, in this thesis, as the piezoelectric bender, servo-flap and the
linkage connecting the two. The conceptual view of the proposed actuator located
inside the cross-section of a target rotor blade is shown in Figure 1-1. This figure is
a scale drawing of how the actuator presented in this thesis will fit within an airfoil.
As shown, the bender is attached directly to the main airfoil spar, and its length
is consistent with an airfoil possessing a 20% trailing edge flap. Two of the major
improvements to the design that are discussed in this thesis are easily seen in the
figure. The first and most important improvement is the use of the flexure mecha-
nism to couple the bender and flap deflections. As shown, with this mechanism, the
three hinges of Spangler and Hall’s design have been replaced with three flexures.
In addition, the aerodynamic surface has been included as an integrated member of
the flexure mechanism part. As will be shown in this thesis, the use of the flexure
mechanism results in the complete elimination of the friction and backlash problems
encountered by Spangler and Hall. The second improvement shown is the use of a
bender with tapered thickness properties. Using a taper increases the efficiency of
the bender, while providing additional inertial and size benefits.

Each of the elements of the actuator along with its predicted and observed response
are discussed in this thesis. The subjects contained specifically in each chapter are as
follows. Chapter 2 describes the fundamental mechanisms that cause the piezoelec-
tric effect, and a derivation of a state space model of the actuator, based on Classical
Laminated Plate Theory, is given. The derivation presented there is made general
enough to allow the incorporation of benders of other active materials, such as elec-
trostrictive ceramics, into the design of the actuator. This model will be used for
comparison purposes when the experimental data of the actuator is analyzed. The
chapter concludes with a comparison of the results predicted when the actuator is

modeled as a plate as opposed to a beam.
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Chapter 3 presents the original design equations of Spangler and Hall [45] and then
treats the effect of the bender’s geometry on its efficiency. Specifically, a discussion
is presented on how tapering the properties of the bender can significantly increase
its efficiency. Furthermore, the force requirements for such an actuator to operate
effectively are estimated, and the scaling laws necessary for proper model tests of
the proposed actuator are derived. The design of a nonlinear circuit which increases
the maximum applied electric field and the associated circuit diagram (Appendix B)
are presented. The chapter concludes by describing the design and fabrication of the
flexure mechanism.

Chapter 4 discusses the construction and results of the bench test experiments
of the designed actuator. Finally, Chapter 5 concludes the thesis by outlining the
accomplishments and improvements of the present design and suggests a course for

future research into this actuation mechanism.
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Chapter 2

Modeling of the Actuator

This chapter presents the derivation of the state space equation of motion of the
actuatcr, where, as discussed in Section 1.3, the actuator is defined as the bender
connected to a trailing edge servo flap using the flexure mechanism. While the bender
used in the present study is a piezoelectric multi-morph, the derivation is made general
enough to include benders of different types of active materials such as electrostrictive
ceramics. However, because the material used in this study is piezoelectric ceramic,
before the equation of motion is derived, the fundamental mechanisms behind the
operation of piezoelectric ceramics are presented as a motivation for the governing

equations used to describe their electro-mechanical behavior.

2.1 Piezoelectric Fundamentals

2.1.1 The Piezoelectric Effect

In Greek, the word piezein means to press. Thus, materials which generate an electric
charge when mechanically deformed (and, reciprocally, those that mechanically de-
form when given an electric charge) are described as piezoelectric. Many materials in
nature exhibit a certain amount of piezoelectricity. Examples include natural quartz
crystal, and even human bone [41]. While the effect does exist, natural manifestations

of piezoelectricity are rarely pronounced. However, specially manufactured ceramics
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exhibit the property of piezoelectricity to such a degree that they find engineering
applications.

To understand the mechanism that causes a material to possess piezoelectric
properties, it is necessary to consider its behavior at the molecular level. A phe-
nomenon called spontaneous polarization causes the piezoelectric effect [41]. In this
phenomenon, the electron clouds in the atoms of the piezoelectric material displace
to one side of their positively charged nucleus. In addition, positive ions in the crys-
tal structures of the material also displace relative to their negative ions. Both of
these effects create tiny electric dipoles out of the atoms and crystals. In a piece of
untreated piezoelectric ceramic, all of these dipoles are oriented in a random fashion,
making it impossible for any real piezoelectric effect to manifest itself. Figure 2-1(a)
presents a conceptual view of this situation where a small cross-section of the material
is shown with these randomly oriented dipoles. A macroscopic piezoelectric effect in
the ceramic is obtained by poling it. A poled ceramic is one where the dipoles are
aligned in the poling direction, as shown in Figure 2-1(b).

Poling is induced by placing a large electric field, referred to as the poling field,
over the ceramic for an extended period of time. In Figure 2-1, this is represented by
applying the poling voltage, Vp, over the thickness of the ceramic, where the poling
voltage is simply the poling field times the ceramic thickness. The poling voltage in
Figure 2-1(b) is positive. Because of this, the negatively charged sides of the dipoles
are attracted to it and the positively charged sides are repelled from it, causing them
to rotate and align with the electric field. Furthermore, because of these electrical
forces, in addition to the rotation, the dipoles also stretch as shown in Figure 2-1(b).
This dipole motion causes the ceramic to expand in the poling direction and, from
Poisson effects, contract in the transverse directions. Upon removal of the poling
field, the ceramic returns to its un-poled dimensions, but the dipoles remain aligned
in the poling direction, which is what gives the ceramic its piezoelectric properties.

It must be acknowledged that this dipole model is a simplification of the true
piezoelectric mechanism in two ways. The first simplification is that in the actual

case, electric dipoles with similar orientation group themselves into tiny domains and
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Figure 2-1: The change in dipole alignment upon poling a piezoelectric ce-
ramic. (a) Randomly oriented dipoles do not allow piezoelectric
effect to manifest itself. (b) Poling of ceramic aligns dipoles,
leading to a macroscopic piezoelectric effect.

it is these domains which get aligned with the electric field upon polarization. The
second simplification is that not all of these domains are able to completely align with
the electric field due to micro-mechanical effects. However, enough do align to deliver
the desired piezoelectric effect {41].

The environment necessary to pole a piezoelectric ceramic is not fixed. It is a
function of the electric field level used, the length of time the electric field is applied
and the temperature the ceramic is at during the process. For example, the piezoelec-
tric ceramics used in the experiment discussed in Chapter 4 were poled by applying a
40 V/mil electric field over the ccramics at room temperature for 20 minutes. Larger
electric fields may be used over shorter periods of time and vice-versa. Furthermore,
if the temperature of the ceramic is raised, for example by immersing it in an oil

bath, smaller electric fields and shorter periods of time are required to complete the
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poling process. The maximum electric field that may be applied to a piezoelectric
ceramic in the poling direction is limited only by the electrical breakdown level of the
piezoelectric ceramic. This occurs at electric fields between 80 to 100 V/mil [41].

Obviously, an important characteristic of the poling field is its orientation. The
poling vector is used to define this property. By convention, the poling vector points
from the positive to negative poling electrodes and, furthermore, this direction is
always defined as the 3 axis of the ceramic [41]. These conventional definitions of the
poling vector and axis system of piezoelectric ceramics are shown in Figure 2-1.

Poling a piece of piezoelectric ceramic has a fundamental effect on both its elec-
trical and mechanical properties. Because of the dipole alignment that occurs, the
characteristics of the material in the poling direction, i.e., along the 3 axis, become
quite different from those in the plane defined by the 1 and 2 axes. Furthermore,
within this plane, the properties become isotropic, meaning that the material ex-
hibits the same characteristics, whether electrical or mechanical, in all directions.
In elasticity, materials such as this, that exhibit isotropic behavior within one of its
planes of symmetry, are sometimes referred to as transversely isotropic [25]. In the fol-
lowing discussion, this will be the term used to describe this property in piezoelectric
ceramics.

It is possible to depole a piezoelectric ceramic by applying the coercive field across
it. The coercive field is an electric field oriented in an opposite sense to the poling
field. As with the poling field, the definition of the coercive field is not fixed. It
is a function of the field level, time of application and temperature. For example,
the coercive field is 30 V/mil while actuating the piezoelectric ceramic at 60 Hz but
15 V/mil for operation at DC. The line differentiating AC and DC operation, however,
is not clearly defined and because exceeding the coercive field adversely affects the
poled properties of the ceramic, it is important to set a coercive field limit appropriate

to the actuation frequencies at which the ceramic operates.
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2.1.2 Piezoelectric Constitutive Laws

In mechanics, Hooke’s law relates the vectors of stress, T, and strain, S, in a material

according to
§ =ST (2.1)

where S is the compliance matrix of the material. In general, to describe the elastic
state of a differential element of material, there are six components in the stress and
strain vectors, denoted in engineering notation using subscripts from 1 to 6. The
components of these vectors with subscripts of 1, 2 or 3 represent normal stress or
strain in directions corresponding to the 1, 2 or 3 axis, respectively. Furthermore, the
components with subscripts of 4, 5 or 6 represent shear stress or strain around the 1, 2
or 3 axis, respectively. To relate the stress and strain vectors, the compliance matrix,
S, must be a 6 x 6 matrix. The compliance matrix is symmetric [6]. Because of this,
for a completely anisotropic material, it contains 21 independent constants. For ma-
terials such as piezoelectric ceramics, which exhibit transversely isotropic properties,
however, the number of independent constants in the compliance matrix reduces to

five and its form is [25]

[ 511 512 S13 0 ]
S12 811 513 0
s13 S13 S33 0
0 0 0 S44
0O 0 0 0O S44
1 0O 0 0 0 0 2(8.‘ - 812) i

0
0
0

2.2
. (22)

0
0
0
0
0

In electricity and magnetism, Gauss’s law for electricity relates the vectors of

electric field, E, and charge density, 5, according to
D=¢cE (2.3)

where € is the matrix of dielectric constants. The electric field and charge density vec-

tors have only 3 components. Each component represents either the electric field or
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charge density directed in one of the main axial directions at a point in a body. In or-
der to relate these two vectors, € must be a 3 x 3 matrix. Because most piezoelectric
ceramics have no cross-dielectric terms, the dielectric matrix is diagonal. Further-
more, because of the transversely isotropic property of piezoelectric ceramics, their
dielectric constants in the 1 and 2 directions are equal.

For most linear materials, Hooke’s Law and Gauss’s Law can be applied indepen-
dently of each other. However, because piezoelectric ceramics transduce mechanical
and electrical energy, there is also a coupling term in the constitutive relations of
piezoelectric ceramics that relates the electrical and mechanic properties. There are
four equivalent forms of the coupling matrices, implying that there are four equiv-
alent forms of the constitutive relations of these materials, depending on the choice
of dependent and independent mechanical and electrical variables. These coupling
matrices d, e, g and h are termed the piezoelectric strain, stress, voltage, and stiff-
ness matrices according to the IRE Standards of Piezoelectric Crystals [23],[24]. Each
of these coupling matrices have three rows and six columns. The four forms of the

constitutive relations are [4]

T CE —¢ S
S SE d T
S | sP ¢ T
{E}‘ -5 A" {D} (20

_(;D __;; } {g’} (2.7)

where the prime (') symbol in these equations denotes the matrix transpose operation.
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These four equations are equivalent representations of the electro-mechanical state
of the material they describe. The relationship of the terms in each are easily found
by performing some simple matrix algebra on these equations {4]. For example, to
transform Equation (2.5) into a form where the stress and charge density are the
independent variables, as in Equation (2.6), the relation for the charge density in

Equation (2.5) is rearranged to give

- -1 - -1 -

E=-["] dT +["] " D (2.8)
Substituting Equation (2.8) into the relation for the strain in Equation (2.5) gives

§= [sE ~a[e7)” d] T+d "D (2.9)

Comparing Equations (2.8) and (2.9) with Equation (2.6), it can be seen that

SP=SF-d'[¢7]'d (2.10)
g= [e"‘]'l d (2.11)
AT = e (2.12)

Using a similar process, the relationship of all the parameters in these constitutive
equations may be obtained.

Because the piezoelectric ceramics couple electrical and mechanical properties,
the parameters used to describe them must also specify what boundary conditions
existed on the material upon measurement of its properties. The superscripts in
Equations (2.4), (2.5), (2.6) and (2.7) denote these conditions. The superscripts T
and S refer to dielectric measurements taken at constant stress (free) and constant
strain (blocked) boundary conditions, respectively, while the superscripts E and D
refer to elasticity measurements made at constant field (short circuited) and constant
charge density (open circuited) boundary conditions, respectively.

The coupling coefficient matrices for piezoelectric ceramics are not full. For exam-

ple, the piezoelectric strain constant matrix for many commercially available piezo-
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Figure 2-2: Schematic of d;5 effect in piezoelectric ceramics. (a) Poled piezo-
electric ceramic with no electric field applied. (b) Application of
positive electric field in the negative 1 direction causes shearing
around the 2 axis.

electric ceramics has the form

0 0 0 O ds5?0
d=|0 0 0 ds 0 0 (2.13)
d3; d3; dsz 0 0 O

In each of the constituents of Equation (2.13), the first subscript denotes the direction
of the applied electric field and the second subscript indicates the resultant motion
that the coefficient governs. The transversely isotropic nature of the piezoelectric
ceramics make the coefficients relating to the 1 and 2 directions the same. Using the
dipole model developed in Section 2.1.1, one can gain a physical understanding of
each of these strain coefficients.

The effect of the d,5 strain coefficient depends on the electric field present in the 1
(or 2) direction. An electric field applied in the 1 (or 2) direction causes a shearing of
the piezoelectric ceramic around the 2 (or 1) axis, as shown in Figure 2-2. Assuming
a positive electric field, E;, the dipoles rotate, aligning their negative ends with the

positive terminal (and vice-versa), shearing the material around the 2 axis, as shown.
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Figure 2-3: Schematic of d3; and d3; effect in piezoelectric ceramics. (a)
Poled piezoelectric ceramic with no electric field applied. (b)
Application of positive electric field in the negative 3 direction
causes extension and the 3 direction and contraction in the 1
(and 2) direction.

Figure 2-3 shows the motions governed by the ds3 and d3; coefficients upon appli-
cation of an electric field in the 3 direction. In terms of the dipole model discussed
earlier, when an electric field, Fj, is applied in the poling direction, the dipoles and
ceramic move as they did during polarization. The negative ends of the dipoles move
closer to the positive terminal while the positive half of the dipoles undergo the re-
verse motion. The material therefore extends in the 3 direction. The amount of
strain produced in this direction for a given applied electric field is expressed by the
dss coefficient. In addition, due to Poisson effects and additional alignment of the
dipoles, the ceramic also contracts in the 1 and 2 directions. The amount of strain
produced in these transverse directions for a given applied field is expressed by the
ds; coefficient. If 3 becomes negative, both ends of the dipoles get repulsed towards
the center of the cross-section, contracting the piezoelectric ceramic in the 3 direction

and necessarily extending it in the other two directions.
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Figure 2-4: Operation of piezoelectric bender.

In the operation of a bender, it is the strain in the transverse direction, governed
by the dj; coeflicient, that actually bends the structure. This is done by bonding
two piezoelectric plates together, as shown in Figure 2-4. If one of the plates has an
electric field placed over it in the poling direction, like that shown in Figure 2-3, it will
try to contract in its transverse directions. However, if the other plate has an electric
field placed over it, oriented in the coercive field direction, z.e., directly opposite to
that shown in Figure 2-3, it will try to expand in its transverse directions. Because
these plates are rigidly bonded together, each will constrain the other’s motion. The
result will be a bending deflection of the aggregate structure in a direction towards
the plate in compression, i.e., toward the plate with the electric field oriented in the

poling direction, as shown in Figure 2-4.

2.2 Actuator Equation of Motion

2.2.1 Assumptions

Because assumptions will be made below about the stress and electric field present

in the bender, Equation (2.5) is used as a starting point in the derivation. The full
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9 x 9 constitutive law is given by

(S1) [sB s s& 0 0 0 0 0 dy|[T)
32 31132 31131 811‘33 0 0 O 0 0 d31 T2
S3 SFs 31133 3:13‘:3 0 0 0 0 0 d33 T3
S, 0 0 0 s o0 o 0 dys 0 T,
S, 0 0 0 0 s& o ds 0 0 T:
$ 0t = g L O { 78 f (2.14)
Se 0 00 0 0s& 00 0]]Ts
D1 0 0 0 0 d15 0 €1 0 0 El
D2 0 0 0 d15 0 0 0 €11 0 E2
L D3 J _d31 d31 d33 0 0 0 0 0 €33 1 { E3 )

where

ssEe = 2(-"'1131 - 3]132)

In general, solving these nine coupled equations for the resultant response of the
piezoelectric material is unnecessary because, in most cases, reasonable simplifying
assumptions may be made to reduce these equations. This is also the case in the
present situation, and the assumptions made are motivated by considering the oper-
ation of the actuator.

In analyzing the bender, the first fact to realize is that it is a plate. This is evident
from the fact that for the bender used in the present study, its free length to width
ratio is 1.33. In addition, the thickness of this bender is less than 5% of its length
at all points. For these reasons, it is valid to reduce the three dimensional elasticity
relations in Equation (2.14) to two dimensions by making a plane stress assumption
[6]. Specifically, a plane stress assumption specifies that all components of stress in

the 3 direction are zero. This implies that
T3 = T4 == T5 =0

The second assumption is generated from the fact that the electric field is applied
only in the 3 direction. Therefore, the component of the electric field in the 1 and 2

directions are set to zero.
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Using these two assumptions on the electric field and stress, Equation (2.14) re-

duces to . R .
S _ SE d T (2.15)
Dy N d’ €3 A )
where
511 s, 0
| 0 3?6
1
d=|1
|0
i [ da,
d=|dy
| 0
=2
d3

and sf; has the same definition as in Equation (2.14). Note that the applied electric
field term, E3, has been replaced by a general actuation strain term, A, according to
the discussion of Crawley and Anderson [10]. For the piezoelectric benders used in
the present study, A = d3; F3. However, this form of the actuation term allows the
substitution of benders of other active materials, such as electrostrictive ceramics,
into this derivation by calculating and including an appropriate value for A at this
point in the derivation.

The ultimate goal of this study was to demonstrate the actuator’s performance
characteristics in a bench top model only. Because of this, no aerodynamic terms will

be included in this derivation.

2.2.2 Rayleigh Ritz Analysis

While an exact solution of the partial differential equation of motion of this actuator

would be useful, the effort involved in obtaining such a solution is not warranted
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because only an estimate of the low frequency dynamics, i.e., those frequencies less
than the second modal frequency of the system, is desired for this study. Therefore, an
approximate solution method is utilized here to predict the response of the actuator.

The Rayleigh-Ritz energy method is used to obtain the equation of motion [36].
In this method, one expresses the potential energy, kinetic energy and work terms of
the structure being analyzed. The potential energy is the sum of the strain energy in
the bender and the potential energy from the stiffness of the flexures in the flexure

mechanism. The strain energy in a plate undergoing pure bending is [10]

1 v o
Vie= - / 2K'CER 4V, (2.16)
2Jv
where CE is the stiffness matrix of the piezoelectric ceramic and K is the vector of
curvatures. The stiffness matrix is related to the compliance matrix of Equation (2.15)

as
ct=[s7]” (2.17)

and the curvature vector is defined as

IqY!

Il

]
VI
@NIEN

(2.18)

?w
2 0zdy )

k

In this derivation, w(z,y) represents the transverse deflection of the bender. The
transverse deflections act in the z direction, which corresponds to the piezoelectric
ceramic 3 axis, consistent with the coordinate definition of Figure 2-4. The transverse
deflections are a function of two variables, z and y. The lengthwise z axis corresponds
to the piezoelectric ceramics’ 1 axis, also shown in Figure 2-4. Furthermore, by the
right hand rule, the spanwise y axis, corresponding to the piezoelectric ceramics’ 2
axis, is therefore oriented into the page in Figure 2-4. In this analysis, the coordinate

origin is located at the bender support with 2z = 0 and ¥ = 0 corresponding to the
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center of the bender’s cross-section there.
Using Classical Laminated Plate Theory [25], a bending inertia matrix D is defined
as

D= / 22CEdz (2.19)

Combining this definition with Equation (2.16) gives the plate strain energy as
1 / =,
Vi =~ / K'DK dy dz (2.20)
2z My

In Figure 1-1, the relationship of the bender to the flexure mechanism was shown.
Because of the stiffness contributed by the flexures and the inertia of the flap, the
effects of the flexure mechanism must be taken into account in this model. The
stiffness of the flexure mechanism is modeled as a linear spring located at the tip
of the bender, £ = l. Its spring constant, ky, represents a stiffness per unit span.
Therefore, a spanwise integration must be performed to find the potential energy

stored by this spring. This potential energy is

— 1 2
W = 2kMLw (lv y) dy: (221)

Summing Equations (2.20) and (2.21) gives the total potential energy in the system
by

Viotal = % { f /y K'DR dy dz + kn L w¥(l, y) dy} (2.22)

The kinetic energy is also a sum of the kinetic energy of the bender and that due
to the rotational inertia of the flap. The inertia of the flap will have a large effect on
the dynamics of the actuators. The lever arm distance between the flap hinge and
the point where the vertical forces from the bender are applied is represented by the
symbol s. From the small angles forinula, the flap deflections, 4, are then related to

the bender’s tip deflections as
_ Juw(,y)dy
b="—2 (2.23)

where b is the width of the bender. Using this expression, the kinetic energy from
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the flap is found and added to that of the bender, giving the total actuator kinetic

energy as
et _ 1 . 9 IF .9
Troa = 3 { [ [ mit(e,v) dyde + 5 [ 0(,9)dy}, (224)

where () is the derivative with respect to time, m is the mass per unit area of the
bender and Ir is the mass moment of inertia per unit span of the flap about the flap
hinge.

The work done on the system by actuating the bender is [10]

Wonstal = / / K M dy dz, (2.25)
zJy
where the moment created by the piezoelectric ceramics is given by
My = / 2CEA(2) dz (2.26)

In the Rayleigh-Ritz analysis, assumed mode shapes are chosen, describing the
bender’s transverse deflections. The actual mode shapes chosen must satisfy the
geometric boundary conditions of the actuator [36]. These mode shapes comnsist of
a non-dimensional spatial shape multiplied by a dimensional (with units of length)

temporal modal amplitude, so that

w(z,y,t) = Zq.(t () (b?i), (2.27)

where n is the number of mode shapes used. Note that the non-dimensional spatial

mode shapes consist of uncoupled lengthwise, ¢;, and spanwise, &;, components.
Substituting this expression for w intc Equations (2.22), (2.24) and (2.25) yield a

stiffness and mass matrix along with a forcing vector [36]. The entry at the ith row

and jth column of the stiffness matrix is

K= /z /y (¢i,z¢j=,Du§i§j + 6i.. 0 D126, + 0i05.. Dn &, &+
$i6;Dnki, &5, + 46i.65. Desti, &, ) dy dz +
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Table 2.1: Assumed transverse mode shapes.

Mode Lengthwise Spanwise
Number Component Component
i ¢:(%) &i(E)

1-5 | cosh(Ai}) — cos(A:¥) — o; (sinh(,\.-%) - sin(/\,-%)) 1
6-10 | cosh();%) — cos(A;Z) — o; (sinh();2) — sin(A;2)) | (¥)?

kmei(1)$;(1) /y &idy (2.28)

Likewise, the ,jth term in the mass matrix is

bn
My = [ [ motsttsdvds + 5a060) [ 66 (2.29)

Finally, the entry in the ith row of the forcing vector is

Q= [ [~ (#ubsM, + 66, Mr,) dy s, (2.30)

where the subscripts 7 and 2 on the M, terms refer to the first and second component
of the vector in Equation (2.26).

The mode shapes chosen in the present study were motivated by the analysis of
Anderson [2]. Ten mode shapes were used. They are shown in Table 2.1. Note that
Jj =1 —5 for the lengthwise components of the last five mode shapes in this table. In
addition, the values of \; and o; for each mode appear in Appendix A. The ten mode
shapes may be grouped into two sets of five. The lengthwise components in each
set correspond to the first five exact modes of a cantilever beam [7]. The spanwise
components of the first set are constant, reflecting the fact that the first five mode
shapes represent pure cantilever bending. The spanwise components of the second
set of five mode shapes allow for some parabolic bending to occur across the width

of the bender. Spanwise bending such as this is often referred to as anticlastic.
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Because the lengthwise and spanwise components of the mode shapes are uncou-
pled, the integrations in the stiffness, mass and forcing expressions of Equations (2.28),
(2.29) and (2.30) can be performed independently in each direction. The spanwise
components of these expressions integrate easily. The mode shapes in the x direction,
however, involve more complicated functions. For a uniform plate or beam, these
integrals are easily found in a good reference book such as Blevins [7]. However, for
the present study, the bender used possessed a specific layered geometry as discussed
in Section 4.1. For this reason, these integrations were calculated numerically. A
Simpson’s rule integration easily provides results with acceptable accuracy. However,
to maximize the accuracy for this analysis, a more lengthy numerical integration rou-
tine, an adaptive recursive Newton Cotes 8 panel rule, implemented in Matlab using
the QUADS8 command [33] was used. The integrations took a great deal of time to
run, even considering that, from symmetry arguments, just over % of all the entries in
Equation (2.28) required computation. After completion, a number of the calculated
values were checked using a simple Simpson’s rule program and it was determined that
using Simpson’s rule provided equivalent answers up to the third or fourth significant
figure. Considering the time involved, Simpson’s rule integration is sufficient.

Once computed, the results of the integrations are stored in a look-up matrix
for use with a Matlab script file in order to assemble the mass, stiffness and forcing

matrices. The resultant equation of motion is
MG+ Ki=Q (2.31)

Equation (2.31) includes no damping term. However, piezoelectric ceramics are
inherently lossy materials. This means that if a piezoelectric ceramic is driven at a
certain frequency, in each period of oscillation a finite amount of energy is dissipated as
heat in the ceramic. While the amount of damping in the ceramic is not overwhelming,
in order to accurately predict the response of the bender, its effect should be accounted
for.

Two common types of damping found in structures are modal damping and hys-
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teretic damping. The response of the actuator presented in Sections 4.2.2 and 4.2.3,
suggests that hysteretic damping is the predominant damping mechanism in the oper-
ation of piezoelectric ceramics. Unfortunately, hysteresis is a nonlinear phenomenon,
independent of frequency. For this reason, it would be very difficult to include its
effect in the equation of motion. Modal damping, on the other hand, which is a func-
tion of frequency, can easily be accounted for in the equation of motion by including

a viscous damping term so that Equation (2.31) becomes
MG+ Ci+Kg=0Q (2.32)

The amount of damping in a structure, whether it is modal or hysteretic, is propor-
tional to the square of the amplitude of motion [36]. Therefore, for lightly damped
structures such as piezoelectric benders, the effects of damping are only predominant
at the resonances of the structure. So even if hysteretic damping is predominant, its
effect can be adequately approximated by using the viscous damping model of Equa-
tion (2.32), with a damping level equivalent to the experimentally measured levels
present at the first modal frequency of the actuator.

Modal damping is a useful model to account for the damping because it implies
that the damping matrix, if transformed into modal coordinates, is proportional to
the modal mass and stiffness matrices. Therefore, using the eigenvector matrix, V, of

the homogeneous form of Equation (2.31), the modal damping matrix is given by [36]
VICV =¢c = 2(mw; ) (2.33)

where w; and 77i; are the natural frequency and modal mass of the ith mode, respec-
tively, and ( is the viscous damping factor. For reasons discussed above, the size
of the viscous damping factor is found from experimental measurements of the ac-
tuator’s first mode. The method used to do this is described in Section 4.2.2. This

experimentally determined value of the viscous damping factor is substituted into
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Equation (2.33) and the damping matrix used in Equation (2.32) is obtained by

C= (V) 'g(Vv)! (2.34)

g=91
q

Equation (2.32) transforms to a state space model of the form

Using the state vector

%= A + Bou (2.35)
Where A, and B"ss are
0 I - -
A, = B, = M™!
[ -M-1K —M'IC] @

The input to the model, u, is an electric field level while the output, o, is the trailing

edge flap deflection, given by y, = C-";si’ where 6 is

o= 2[#11) 2(1) - du(®) 00 - 0]

Using this model, the frequency response of the system is obtained for comparison

with the experimental data presented in Chapter 4.

2.3 Plate and Beam Model Comparisons

In the above derivation, the bender was modeled as a plate. In the previous study of
this actuation mechanism, however, Spangler and Hall [45] modeled the bender as a
beam. In their experiment, they noted that there was a visible amount of anticlastic
bending present. While visible amounts of anticlastic bending are not expected from
the present actuator because it is 72 times as stiff as that used by Spangler and
Hall, it will still be of interest to see how the predictions of the model change when

allowing plate as opposed to beam degrees of freedom. Such a comparison is shown in
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Figure 2-5: Comparison of high frequency predictions of plate and beam an-
alytic models.

Figures 2-5 and 2-6. Each of these plots are the result of the analytical model derived
above. The plate solution was found by running the model using all ten mode shapes
in Table 2.1 while the beam solution was found by running the model with only the
first five mode shapes in Table 2.1. The fact that the beam solution has half as
many modes is not a large source of error, because five modes were determined to be
sufficient enough to guarantee numerical convergence of the model.

The magnitude plot in each figure gives the flap deflection in degrees for a given

electric field applied to the bender. The absolute magnitudes of these plots are not
the important point in this particular discussion, however. The characteristic that
these figures attempt to highlight is the difference between the predictions of the
model in using beam as opposed to plate mode shapes.

Figure 2-5 shows the frequency response comparison from 1 to 1000 Hz. Although
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Figure 2-6: Comparison of low frequency magnitude predictions of plate and
beam analytic models.

the proposed actuator will never operate at such high frequencies, if feedback control
is implemented with these actuators, it will be useful to know the location of high
frequency dynamics. The fact illuminated by this figure is that by using the beam
model, the presence of a pole and zero at approximately 800 Hz is not predicted.

A more important difference, however, is uncovered by examining the low fre-
quency characteristics of the predicted actuator responses. In order to do this, a
close up of their magnitudes at low frequency is presented in Figure 2-6. The beam
model over-predicts the location of the first modal frequency by 2 Hz. However, this
represents only a 1.7% error, and is not overwhelmingly significant. The more impor-
tant difference between the two model predictions is that the beam model predicts
a magnitude response 13% greater than the plate for frequencies below that of the
first mode, indicating that it is important to account for the mechanism of anticlastic
bending in predicting the response of the actuator at these low frequencies.

Overall, the beam and plate models follow the same general trends. Indeed, for
general calculations, use of the beam model does provide acceptable results. However,
if the detailed behavior of the actuator response is desired, a plate model becomes

necessary.
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Chapter 3

Actuator Design and Construction

Issues

This chapter is concerned with the design and construction of an actuator consisting
of a piezoelectric bender that is used to deflect a trailing edge servo flap on a helicopter
blade. In order for such a design to be successful, efficient and dependable methods
must be found to transform the bender energy into the servo-flap deflections. Spangler
and Hall [45] designed and built the original prototype of this actuation mechanism.
They used commercially available piezoelectric benders that were connected to a
trailing edge flap using small hinges. The present study improves on this design
in a number of ways. The most significant improvement is the use of flexures as
opposed to hinges in the bender to flap attachment. A second improvement is in
the use of a bender with tapered thickness properties. Tapering the bender increases
its efficiency in actuating a vertical tip force while providing cther beneficial inertial
and size effects. A third major improvement is the implementation of a nonlinear
amplifier to increase the maximum electric field applied to the bender by 50%. Each

of these improvements is discussed in detail in this chapter.
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3.1 Sizing the Actuator

While the volume of piezoelectric ceramic present determines the amount of energy
available, the efficiency with which this energy is used depends on the geometry of
the bender and the size of the lever arm chosen between the tip of the bender and
the flap hinge. This section presents the design equations of the actuator using an
impedance matching argument, and discusses the benefits provided by a bender with
tapered properties. Furthermore, because the design of the actuator is fundamentally
dependent on the necessary aerodynamic hinge moments, this section concludes by
presenting an estimate of the required hinge moments to operate a servo-flap on
a typical model rotor and the scaling laws used to relate the model and full-scale
parameters.

The analytical derivation in Chapter 2 made the valid argument that the actuator
is best modeled as a plate and not a beam. Unfortunately, closed form analytical
solutions for plates with complicated boundary conditions are not easily obtained.
Using the analytical model, a comparison between the approximate solution of the
equation of motion for the case of plate and beam degrees of freedom was discussed
in Section 2.3. While the effects of the anticiastic bending reduce the predicted
magnitude response of the bender by approximately 13%, the solutions found with
both sets of degrees of freedom follow the same trends. For this reason, a beam model
is sufficient for use as a static design tool. Therefore, the derivation of the actuator
design equations originally presented by Spangler and Hall [45] is utilized here to

produce a preliminary design of the actuator.

3.1.1 The Impedance Matching Condition

The fundamental issue in designing the actuator rests in finding the configuration
that maximizes the transfer of energy from the bender to the flap. The conversion
of bender energy into flap deflection energy may be broken down into two main
parts. One part is the transfer of piezoelectric ceramic strain energy into bender tip

deflection energy, and the other part is the transfer of that tip deflection energy into
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energy expended by deflecting the flap in the airstream. The former is discussed
below in Section 3.1.2 on designing an efficient bender, and the latter is discussed in
this section.

The hinge moment needed to deflect a flap increases with flap deflection, . This
resistance to flap deflections can be modeled as a torsional spring, with spring con-

stant, M;. The flap hinge moment is then
My = M;sé (3.1)

Two-dimensional airfoil theory is used to relate this spring constant to the aerody-

namics of the airfoil as

1
M; = 'ipUzC?CHS (32)

where p and U are the density and free stream velocity of the fluid, ¢; is the flap chord
length, and Cy; is an aerodynamic coefficient reflecting the change in hinge moment
per flap deflection. The value of Cy, for a servo flap located on a typical helicopter
rotor blade is estimated in Section 3.1.3.

For the impedance matching argument presented in this section, it is useful to
model the contribution of this flap spring force as a linear spring, k;, located at the
tip of the bender, as shown in Figure 3-1. Also shown in Figure 3-1 is the specific
cross-sectional geometry of most commercially available uniform benders. This cross-
section consists of two piezoelectric wafers, sandwiching a middle shim. The thickness
of each wafer is t,, and the distance between their centers is h. A thickness parameter
used to describe such uniform benders is defined as n = h/t, and can never be less
than unity.

The relation between the two spring constants, ks and Mj;, comes from realizing

that the energy stored in each for a given flap deflection must be equal. This flap
deflection energy is

Vg = ’;‘MJ(SZ = %k&'wi (3.3)

where w, is the tip deflection of the bender. Assuming small angle flap deflections,
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Figure 3-1: Schematic of uniform piezoelectric bender with tip flap spring.

the relationship between bender tip deflections and flap deflections is
d=— (3.4)

where s is the lever arm distance, originally shown in Figure 1-1. Therefore, using
Equations (3.2), (3.2) and (3.4),

Obviously, the spring stiffness, ks, is dependent on the air speed, U. When the
airspeed goes to zero, the value of ks also goes to zero, and the structural model of
the bender reduces to a cantilevered beam. For easy reference, when operating with
zero airspeed, the bender will be referred to as “free”. Conversely, when operating at
a non-zero airspeed, the bender will be referred to as “constrained”.

To relate the transfer of energy from the bender to the flap, it is necessary to
express the constrained bender tip deflections, wa, to those of the free bender, wr.
A constant vertical force, F, applied to the tip of the bender results in two different

tip deflections for the constrained and free cases. They are

_ F
" ks+kp

Wa (3.6)
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F

where kp is the tip stiffness of the free bender. Since the force is the same for both

cases, the relationship between the free and constrained tip deflection is

1
k
1+ 8

Wp = wg (38)

Substituting Equation (3.8) into Equation (3.3) gives the flap deflection energy as

1 ks
Vs = Skpwi—22— (3.9)
2 k
(1+%)

Because the tip deflection energy of the free bender is
1, 2
Ve = Eka'wF (3.10)

the flap deflection energy is identified as the product of the bender tip deflection

energy and an impedance matching efficiency, 7,,
Vs = Vpnq (3.11)

This efficiency factor takes on a maximum value of 0.25 when kg = ks. This is
the impedance matching condition originally described by Spangler and Hall [45].
By ensuring ks = kg, the maximum amount of the bender’s tip deflection energy is
converted into flap deflections.

The parameter used to enforce the impedance matching condition is the lever arm

distance, s. The necessary value of this impedance matching lever arm is

_ _M_J_ _ PUI?)C?CHJ
sopt - \/kB - ‘/ 2kB (312)

where Up is the design point airspeed.

Once the actuator is designed and built, all the design parameters are set. It
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is therefore instructive to see how the flap deflections of the actuator change with
airspeed. Dividing both sides of Equation (3.8) by the lever arm length gives the

relation of flap deflections for the constrained and free case as

R

1+

If the proper impedance match was made to the design point airspeed, the tip stiffness
is
kp = 22054 Cte (3.14)
Sopt
and the ratio of the bender and flap stiffness becomes

Substituting Equation (3.15) into Equation (3.13) gives

1
6n = ——30r (3.16)
U
1+ (%)
At the design point, U = Up, the constrained flap deflection, d4,,, equals one half the
free flap deflection. Normalizing Equation (3.16) by this design point flap deflection

gives
0a 2

o1 ()

which expresses the variation of the flap deflection from the design point as the

(3.17)

airspeed changes.

3.1.2 Designing an Efficient Bender

As discussed in the previous section, choosing a properly impedance matched lever
arm distance maximizes the conversion of energy from the bender to the flap. There-
fore, the only additional way to increase the amount of energy converted into flap

deflections is to increase the efficiency with which the bender converts its strain en-
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ergy into useful tip deflection energy. It is therefore logical to define a bender efficiency
% 1. .2
—ka
= 22"F 3.18
= (3.18)
where the numerator is the amount of energy transferred into tip deflections and Vg

is the strain energy of the bender. V3 is given by
1 2
Vo= /V EA2dV (3.19)

where E is the Young’s Modulus and A is the actuation strain discussed in the last
chapter. The volume integral of Equation (3.19) is taken only over the volume of
piezoelectric ceramic present in the bender. This efficiency is a function of the geom-

etry of the bender.

Efficiency of a Uniform Bender

For a commercially available bender, possessing uniform properties over its length,

such as the one shown in Figure 3-1, the strain energy is

Va = EA%lt,, (3.20)
The tip stiffness for this bender is
3EI

If the bending inertia of the middle shim is neglected, the moment of inertia is

o e

I=-=2(1+3n? (3.22)

If the bond between the two sides of a bender is perfect, allowing no shear lag, the
induced strain of the piezoelectric ceramics may be modeled as a moment acting at

the tip of the bender [11]. Therefore, the bending moment at each point in the beam
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is

M = EAtin (3.23)
From elementary beam theory, the resultant tip deflection of the free bender is then

M2

W
Using Equations (3.20), (3.21), (3.22), (3.23) and (3.24), the uniform bender efficiency

= () () = -

The first efficiency, 7, equals 3/4 and represents the fraction of energy a beam in

reduces to

bending converts into vertical tip deflections. For a uniform beam, it is a constant.
However, as discussed in the next section, by tapering the properties of the bender,
the value of 7, can be increased.

The second efficiency in Equation (3.25), 7., represents the local efficiency of the
bender in actuating a moment. It is not a function of the geometry or the boundary
conditions of the bender. In actuating a force or displacement, 100% efficiency from
an infinitesimal element of a piezoelectric ceramic is attained when it is allowed to
strain without constraint. However, actuating a piezoelectric plate in bending forces
the stress (and strain) distribution to vary linearly through the thickness, with one
half in tension and one half in compression. Because of this, the work done by the
material becomes more inefficient the farther it is from the surface of the bender. This
loss in efficiency from the interior piezoelectric material is the cause of the efficiency
factor, n.. This factor increases from a value of 0.75 when n = 1 to a value of 1 when
n = oo. It reflects the fact that as the two piezoelectric plates of the uniform bender
move farther apart, the induced strain over the thickness of the plate becomes less
constrained and the efficiency of the bender increases.

When no shim is present between the two halves of the bender, n = 1 and 7, =
0.75. For a uniform bender, this makes the overall bender efficiency g = 0.5625. By

increasing the thickness of the middle shim, both of these efficiencies increase. As a
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Figure 3-2: Schematic of piezoelectric bender with optimum thickness taper.

note, in the theoretical limit where n = 0o, 7. = 1 and the bender efficiency increases
to 75%. However, this overestimates the true efficiency that would result because
the bending inertia of the shim was assumed to be negligible in Equation (3.22).
Therefore if the bending inertia of the shim becomes large enough to invalidate this
assumption, the expression given by Equation (3.22) should be modified to include

the effects from the shim.

Efficiency of a Tapered Bender

In the expression for the uniform bender efficiency, Equation (3.25), n, was described
as the efficiency of the bender in converting its strain energy into vertical tip de-
flections. For a bender with constant lengthwise thickness properties, this efficiency
is a constant 3/4. However, tapering the properties yields values of 7, greater than
3/4 and, in the theoretical limit, makes 7, = 1. Tapering the bender properties also
creates more room for bender tip deflections and a center of gravity located closer to
the leading edge of the airfoil. All of these issues are discussed in this section.
Theoretically, there exists an exact thickness distribution that raises 7, from 3/4
to 1. It will be instructive to find this distribution. The bender analyzed here is

shown schematically in Figure 3-2. This theoretical bender is modeled as two tapered
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Figure 3-3: Distribution of strain in a uniform bending structure.

piezoelectric plates bonded directly to one another. For simplicity, no middle shim
was included in the make-up of this bender.

The goal is to determine the effect a certain thickness distribution has on the
bender’s ability to actuate a tip def. >ction. However, due to the non-uniform thickness
properties of this bender, presenting a closed form analytical solution for this problem
would overshadow, with mathematical complexity, the governing motivation behind
why a tapered bender is useful. A straightforward way to understand the problem
recognizes that by Maxwell’s Law of Reciprocal Deflections [6], predicting the tip
deflections caused by a piezoelectric actuation strain is equivalent to predicting the

strain caused by an applied tip force. The strain at any point from a tip force is

M-z =F(l—:z:)z (3.26)

§= El(z)  EI(z)

which expresses that the strain at any cross-section of a beam in bending varies
linearly with z. This is illustrated in Figure 3-3 for a uniform cantilevered beam
with an applied tip force. Also shown in Figure 3-3 is the strain distribution at five
different cross-sectional locations. As shown, the amount of strain over a cross-section
decreases upon moving toward the tip. By the Law of Reciprocal Deflections, this

implies that the piezoelectric material at the tip of a uniform bender contributes very
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little in actuating a tip displacement.

Because the amount of strain at any cross-section is proportional to the strain at
the beam surface, the change of the surface strain with z is a valid way to measure
how the overall cross-sectional strain changes with length. The moment of inertia of

the tapered beam of Figure 3-2 is

3
I(z) = —2t°3($) (3.27)
Substituting ¢, in for z in Equation (3.26) and using Equation (3.27), the surface

strain is expressed as
3F(l-12x)
Sy = ——=——" 3.28
° 2Et2(z) (3:28)
By keeping the surface strain constant over the length of the beam, the amount of
induced strain from the tip force is maximized, and, reciprocally, the amount of tip
deflection from a given piezoelectrically actuated strain is also maximized. A constant

surface strain is attained by prescribing the thickness distribution as

to(2) = tuy[1 — ? (3.29)

The definition of the bender efficiency, Equation (3.18), and strain energy, Equa-
tion (3.19), still hold for this tapered bender. The strain energy is

2EA%t,1

{
VB.=EA2tw/0 (- 3ds="2

(3.30)

and the tip stiffness and free bender deflection, found using elementary beam theory,

are
Et3

kB_ = —ls—' (331)
A2

Wr, = t_ (3.32)

Substituting Equations (3.30), (3.31) and (3.32) into Equation (3.18) shows that the

efficiency of this square root tapered bender is 75%. However, this 76% efficiency is
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accounted for by considering that the value of 7., which is a local efficiency, inde-
pendent of geometry, is 75% when there is no middle shim in the bender. Therefore,
by introducing the square root taper, the efficiency, 7, has increased by 33% to its
maximum possible value of one.

Another benefit of the bender with the square root taper is that its center of
gravity is closer to the leading edge of the airfoil. Since having weight near the
trailing edge of an airfoil leads to undesired effects such as flutter instabilities [5], any
modification that shifts the center of gravity of these actuators toward the leading
edge is very useful.

The final benefit from using & tapered bender is one related to the size constraint
on the design. The thickness of the airfoil at the chord location corresponding to the
tip of the bender governs how thick the actuator may be. The actuator is constrained
to be small enough to fit within this thickness while also allowing enough room for
the necessary bender tip deflections. Tapering the properties of the bender decreases
its thickness at the tip, greatly relieving this thickness constraint in the design.

Benders with square root tapers are not feasible, because it is almost impossible to
apply a voltage over such a bender that will create a uniform electric field throughout.
However, by constructing a bender with uniform piezoelectric plates, separated by a
linearly tapered shim, a great deal of the improved efficiency is realized. This tapered
bender design is shown in Figure 1-1. The equation for the curvature of the bender

at any cross-section is

0 i) (s () )

w'(z) = (3.33)

where the shim thickness, t;, is now a linear function of z. By integrating this func-
tion numerically, the tip deflections and stiffness may be calculated. Performing an
iterative search of different shim thicknesses yields a design maximizing the efficiency
of the bender. For example, by using an aluminum shim with a wall thickness of

0.068 in that tapers to a point at the bender tip, along with two piezoelectric ceramic
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Figure 3-4: Concept of the layered piezoelectric bender.

plates, each 0.030 in thick, an efficiency of 74.8% was calculated. Of course, by using a
middle shim to achieve the tapered geometry, in addition to the increase in efficiency
from tapering the bender, this calculated efficiency also reflects the extra efficiency
gained from having a non-zero shim thickness over the length of the bender.

The construction of a workable bender with a tapered shim was not possible, due
to time constraints. Therefore, a second, simpler method was used to create a bender
with a tapered cross-section. This consisted of a layered geometry with eight thin
piezoelectric wafers possessing different lengths, as shown in Figure 3-4. Integrating
numerically and iterating to find the optimum set of lengths which maximized the
efficiency led to the actuator used in the experiments presented in Chapter 4. The
dimensions of this actuator are presented in Section 4.1. No middle shim was used in
its construction.

In actuality, obtaining efficiencies from this layered bender on the order of 70 -
75% becomes impossible when the extra stiffness from the electrodes present on each
of the individual wafers is taken into account. However, if the the extra stiffness from
any electrodes present on the piezoelectric wafers is neglected, a 70.6% efficiency is
calculated for this bender. This is a 26% improvement over the efficiency of a uniform
bender with no middle shim.

Although manufacturing benders with tapered thickness properties is more diffi-

cult than producing uniform benders, considering all of the benefits they provide in
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the particular application of deflecting a trailing edge flap on a helicopter blade, it

makes sense to include them in all future designs of this actuation method.

Basic Actuator Design Procedure

From the above discussion, a basic actuator design procedure can be formulated. The
thickness of the airfoil at the bender tip, Tii,, presents a major thickness constraint
on the design of the actuator because the tip thickness of the bender, %, must be
small enough to fit within this gap while also providing enough room for its necessary

displacements. This thickness constraint is expressed as
ot + 2wa < Tip (3.34)

Another constraint on the design is the allowable bender length. This constraint is a
structural one. The bender is clamped directly to the main airfoil spar, as shown in
Figure 1-1. The length of the bender must be small enough to ensure that the loss
of main spar material at the clamp location does not seriously affect the structural
integrity of the blade.

The desi_gn process begins by choosing a desired flap deflection size. By Equa-
tion (3.4), this is translated into an equivalent bender tip deflection using an initial
guess of the lever arm size. Using Equation (3.34), the allowable bender thickness is
found. Following the efficiency discussion above, reasonable piezoelectric wafer and
ghim thicknesses are then chosen. The last bender parameter specified is its length.
It is chosen long enough such that the desired bender tip deflections may be achieved
without seriously affecting the structural integrity of the airfoil, as discussed above.
In a separate calculation, a design point airspeed is identified and the flap spring stiff-
ness, Mj, is estimated according to the discussion of Section 3.1.3. The impedance
matching condition, Equation (3.12), is then enforced to find the necessary lever arm
length, s. Using this updated lever arm length, the resultant flap deflections are
checked to ensure that they are large enough. If they are not, the dimensional prop-

erties of the bender are adjusted and the process repeated. By iterating with this
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Table 3.1: Target model rotor parameters

Model Parameter Value
Rotor Blade Radius, R 4.5 ft
Rotational Speed, §2 780 RPM
Blade Cross-Sectional Shape | RC 410
Blade Chord, ¢ 4.454 in

Blade Thickness 10%

procedure, the necessary actuator dimensions may be set so that it yields the maxi-
mum amount of useful control authority over the aerodynamics in which it operates,

while not substantially affecting the structural characteristic of the rotor blade.

3.1.3 Actuator Force Requirements and Scaling

The design of an actuator capable of operating at a design point location on a target
helicopter blade depends, from the impedance matching arguments of Section 3.1.1,
on finding an accurate estimate of the expected flap hinge stiffness, M, at that point.
The target rotor for this study was a model scale rc:or used for operation in Freon.
Its parameters are specified in Table 3.1. In this section, the hinge moments expected
along the blade span of this rotor are estimated in order to determine the necessary
design point flap stiffness. Furthermore, since the fundamental concern in the model
scale studies of this actuator is to determine useful information about its full-scale
applications, the scaling laws relating model and full-scale actuator parameters are

also presented.

Servo-Flap Hinge Moment Estimates

In the discussion of Section 3.1.1, the hinge moment was expressed as a function of

only the flap deflection angle, . However, a more accurate representation of the hinge
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moment is

1
My = -z-pUzc? {Cy,a + Cy,6} (3.35)

where « is the airfoil angle of attack and Cy_ is an aerodynamic coefficients expressing
the sensitivity of the hinge moments to changes in angle of attack. This equation
expresses the fact that while the hinge moments increase with flap deflection, the
angle of attack of the airfoil also affects the hinge moment magnitudes. Because the
aerodynamics of a helicopter rotor are so complex, the values for the angle of attack
and the hinge moment coefficients, Cy, and Cy;, are not constant. The value of Cy;
used in Equation (3.2) must therefore be an average aerodynamic coefficient relating
the sensitivity of the hinge moment at a certain design speed to changes in the flap
deflection angle. Furthermore, because of the dependence of the hinge moments on
angle of attack, the choice of this average value must also take into account the effects
from non-zero angles of attack.

Glauert [19] determined an analytical expression for the expected hinge moments
using thin airfoil theory. Defining the flap chord length as ¢; = Eic, the aerodynamic

coefficients are

= 2 (3 ) (BT B~ (328 (; - s )

_ 2(a2Ch, — boCL.)
CL.

b — 2(1 — Efzr\E/fif(l — Ey) [12[ _ arccos \/Ef —JE(1 - Ef)]
ap = %CL.. (1 - ;2r- [arccos \/1—3; - VE(1— Ef)])

For airfoils with very large aspect ratios (> 20), such as rotor blades, the lift curve

Ch;,

slope is approximated as Cp, = 2m.
Abbott and Von Doenhoff [1] present a simple formula for the hinge moment
coefficient as
dCy dCy

_1 22 2 J 0Cn oCy
My = 2pU ¢ (Exc) {BCL CL+ 2% } (3.36)

The value of Cy, is plotted in [1] as aerodynamic data as a function of collective angie
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Figure 3-5: Calculated hinge moment stiffness with blade span for a rotor in
hover, using several computation methods.

of attack, a, and flap deflection, § and values for %%ff and Q,%ﬂ are found with thin
airfoil theory. For an airfoil with a 20% flap to chord ratio, %—%‘: and ’%f’;ﬂ are —0.09
and —0.65, respectively. Abbott and Von Doenhoff remark, however, that while thin
airfoil theory can be used to get values for hinge moments, the accuracy of these
numbers is sometimes poor due to viscous effects at the trailing edge.

An additional source used to verify hinge moment magnitudes was XFOIL [12],
a 2-D panel method accounting for compressibility and viscous forces. The hinge
moment stiffness magnitudes, Mj, calculated using the above three sources are plotted
in Figure 3-5 as a function of span location on a blade of the target rotor operating
in hover.

Considering the 0 deg angle of attack data first, the agreement between the cal-

culations of Glauert and Abbott and Von Doenhoff is good. This is expected, since
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both are based on thin airfoil theory. However, they serve as a check on one another,
validating the hinge moment magnitudes predicted. The numbers found with XFOIL
for 0 deg angle of attack are smaller than the predictions found with thin airfoil the-
ory. The viscous forces on an airfoil tend to increase the boundary layer thickness,
which lowers the necessary hinge moments.

The hinge moments for a 5 deg collective angle of attack were also calculated using
the methods of Abbott and Von Doenhoff and XFOIL. As shown, at the tip, XFOIL
no longer underestimates the hinge moment magnitudes found with thin airfoil theory.
This increase can be attributed to compressibility effects that are largest at the tip
of the rotor.

In this study, the goal is to demonstrate that a piezoelectrically actuated servo-
flap can operate effectively at the highest dynamic pressure present on a typical rotor
system. This would usually imply impedance matching to the aerodynamics at the
rotor tip. However, because of the tip loss associated with a helicopter rotor, the
actuator in the present study was designed tc operate at the 90% span location of the
target rotor blade. From Figure 3-5, to operate at the 90% span location, a reasonable
estimate of the flap hinge stiffness, Mj, is 1.8 in-1b/in/rad.

Usually this value for M; can immediately be applied to the actuator design
process described in Section 3.1.2. However, as discussed below in Section 3.3.1,
extra stiffness is added from the flexure mechanism, which couples the bender and
flap deflections. Because of this fact, the value of M; used in the design of the actuator

for this study is slightly larger than 1.8, as discussed in Section 3.3.1.

Model Scaling Laws

Before an aerodynamic device is implemented into a full-scale prototype, a model of
it and the aerodynamic structure it is a part of is typically built and tested. The
purpose of building a model is to obtain data that can predict how the device will
operate in the full scale prototype. However, in order to insure that tests of a model
accurately characterize the full-scale prototype, the designer must ensure that the

aerodynamic conditions for the model and full-scale tests are dynamically similar.
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Two aerodynamic flows are dynamically similar when identical types of forces are
parallel and related by a constant scale factor [17]. This is done by setting equal
appropriate non-dimensional groups of the model and fuil scale flows.

The appropriate groups to use are found by non-dimensionalizing the governing
equations of motion of the phenomenon under study. In the present case, by treat-
ing the hinge moment applied by the bender as an externally applied moment, the
dynamic equation of motion of the flap is

5 1

EAtgs
oz T2’

Ip ]

U2c?0356 = Cp

(3.37)

where C, is a constant factor, depending on the geometry of the bender (tapered or
uniform). According to the Buckingham II Theorem [17], to non-dimensionalize this
equation, three dimensional parameters must be chosen such that by combining them
into certain ratios yields factors with dimensions equal to the equation’s primary
dimensions. The primary dimensions in the above equation are length, mass and
time. For this reason, the density, rotor blade radius, R, and free stream velocity are
chosen as the dimensional parameters used to non-dimensionalize Equation (3.37).
The lengths in Equation (3.37) are easily non-dimensionalized by normalizing
them by the rotor blade radius, so that & = ¢;/R, {, = t,/R, 5=s/Rand [ = l/R.

The non-dimensional flap mass moment of inertia and the time variable are

- Ip
Ir = :
- tU
t= 3 (3.39)
Substituting these non-dimensional parameters into Equation (3.37) gives
- 0% E CyAt:s
Ir— +Cy,b = E 4

This equation shows that in order to perform meaningful tests of a geometrically

scaled model of this actuator, the non-dimensional mass moment of inertia and the
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modulus to dynamic pressure ratio,

E

v (3.41)

must be equal in the model and full-scale tests. Because Young’s modulus, E, for
piezoelectric ceramics does not. change between the model and full-scale, this implies
that the dynamic pressure for the model and full-scale flows must be equal.

In addition to the above requirements on the scaling between model and full scale,
because compressibility forces play a major role in the aerodynamics of a rotor system,
the Mach number represents the last non-dimensional parameter that should be equal
between model and full-scale in order to ensure dynamic similarity.

Setting equal the model and full-scale values of the non-dimensional parameters
specified above will yield the necessary scaling laws. Geometric similarity requires

that all dimensions scale according to
Rg = — (3.42)

where, in the following, the subscripts “m” and “f” denote model and full-scale pa-
rameters and the subscript “S” denotes a constant factor representing the full-scale
to model ratio. Furthermore, enforcing the Mach number requirement forces the
velocities to scale as

_ U

=4
Us = . (3.43)

where a is the speed of sound of each aerodynamic medium. And, finally, in order to
have equal dynamic pressures, the model and full-scale fluid densities must be related

as
pm _ Ut
e U2

= U2 (3.44)

The inertial scaling between model and full-scale requires only that the non-
dimensionalized mass moment of inertia, defined in Equation (3.38), be the same
for both cases. Because of this, the inertial scaling for these tests may be satisfied

independently of the other scaling laws derived above.
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In the present study, the frequency behavior, flap deflections and achievable hinge
moments will be important parameters to relate between the model and a full-scale
helicopter. The flap deflections are the ratio of the lever arm length to bender tip
deflections. Because the model is geometrically scaled, this ratio and therefore the
flap deflections will be equal between model and full-scale.

The frequency scaling law is found by using the definition of the velocity at any

point on the rotor as

_Us _ RSy
Us = 5 = pg (3.45)
Q _ Us
et (3.46)

In helicopter control, it is typical to normalize the frequencies associated with a rotor
in terms of its rotational speed, €2, thereby expressing frequencies as a number of
cycles per revolution of a rotor blade. For example, the bandwidth of the actuator
of the present study can be specified as the frequency of the first structural mode.
The value of the first modal frequency will change between model and full-scale tests
according to Equation (3.46). However, its normalized value, i.e., the modal frequency
divided by the rotational frequency of the rotor, will be the same in the model and
full scale tests. This is discussed further in Section 4.2.2.

The hinge moment scaling law is found by considering the full-scale to model ratio
of any of the terms in Equation (3.37). For example, taking the ratio of the static

hinge moment term gives
Mu, _ ()2 (Cuy)s

MHm B (cf)?n(cﬂs)m

where the subscripts outside the parenthesis stand for full or mode! scale. The hinge

(3.47)

moment coefficient, Cy;,, is dependent only on the flap chord ratio [19]. Therefore, if
the same flap chord ratio is used in model and full-scale (which is necessary due to

geometric scaling), the hinge moments scaling law becomes

MH: P2
My = Rg (3.48)

All of the above scaling laws are summarized in Table 3.2. Each scaling relation-
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Quantity Ratio of Full-Scale to Model

Geometry Rs
Velocity Us

: 1
Density Uz

U,
Frequency A
Hinge Moment R?

Table 3.2: Scaling laws from model to full-scale.

ship in the second column of this table represents the ratio of the full scale to model
scale value. The relationships expressed in Table 3.2 are the correct scaling laws to
ensure dynamic similarity for rotating model scale tests of the piezoelactric actuator.

The actuator in the present study was designed for incorporation into the model
rotor specified in Table 3.1. This is a Mach-scaled rotor, but the dynamic pressures
associated with it are approximately 35% smaller than those of a full-scale helicopter.
This will not affect the measurements parformed in the present study, because it
consists only of bench top experiments, independent of any specified aerodynamic
environment but it will be an important fact to take into account when the fuil-scale
capabilities of the present actuator are determined. In the above discussion un the
estimated hinge moments, the designed actuator location was specified as the 90%
span point on the target model rotor in Freon. If the actuator in the bench top
experiment is properly impedance matched to this span location, by Equation (3.13),
the deflections measured on the bench will be twice those expected at the 90% span
location on the target model rotor in Freon. If the dynamic pressures were equal
between model and full-scale, the bench top measurements would also be twice as
large as the expected flap deflections from a full-scale actuator located at the 90%
span point on an operational helicopter. However, because the full-scale dynamic
pressures are larger than the model scale, Equation (3.13) must be used with an

appropriate value chosen for ks to relate the model and full-scale flap defiections.
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This will be discussed further in Section 4.2.3.

3.2 The Nonlinear Circuit

The poling and coercive field limits for a piezoelectric ceramic differ by at least a
factor of two. It is possible to take advantage of this fact by using a nonlinear circuit
to drive the piezoelectric bender. The motivation behind this circuit and its design
is presented in this section.

From the discussion of Section 2.1.1, determining an exact value for the poling and
coercive fields is not possible, because the definition of each is not fixed. It is possible
to apply electric fields in the poling direction that are very large indeed. The field level
in the poling direction is limited only by the electrical breakdown of the piezoelectric
material, which occurs between 80 and 100 V/mil [41]. For this reason, it is not
unusual to apply poling fields as high as 60 V/mil over a piezoelectric ceramic. The
coercive field, on the other hand, is extremely dependent on the actuation frequency.
For example, its value at DC is specified as 15 V/mil, while for AC operation at 60
Hz, it is given as 30 V/mil [41]. In most cases, the operation of the actuators for
helicopter control will not occur at frequencies near DC. For this reason, a coercive
field limit of 30 V/mil is allowable in the operation of the piezoelectric bender for
helicopter control.

If a pure sinusoidal voltage is applied to a piezoelectric ceramic, to avoid depoling
it, its amplitude is constrained to ensure the resultant applied electric field remains
less than the coercive field limit. The relationship of such an applied voltage signal
to the poling and coercive voltages, Vp and V¢, is shown in Figure 3-6(a). Obviously,
using such an input driving signal would not take advantage of the capacity of piezo-
electric ceramics to withstand high electric fields oriented in the poling direction.

A common method of making use of the difference in poling and coercive field
limits in the operation of piezoelectric stacks, which provide only extension and com-
pression, is to add a DC bias, Vj, in the poling direction and actuate with a sinusoid

of appropriate amplitude, such that both the poling and coercive voltage limits are
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Figure 3-6: Piezoelectric ceramic input voltage driving signals.

reached, as shown in Figure 3-6(b). However, if such an input is used to actuate a
bender, the maximum DC bias that can be applied is also limited by the coercive
field. Therefore, if the ratio of the poling to coercive field limits is set greater than
three, this limit on the DC bias will also place a limit on the amplitude of the applied
AC signal so that the resultant electric field remains below the coercive limit over its
entire period of oscillation. When the ratio of the poling to coercive field limits is
significantly greater than three, these limits will constrain the applied electric ficld to
levels far below the maximum allowable poling field constraint. For this reason, this
is also not an optimum way to drive a piezoelectric bender.

A better way to take advantage of the antisymmetric voltage limits of the piezo-
electric bender is to construct a nonlinear circuit such that an input sinusoid, Vi,

produces the trace shown in Figure 3-6(c). Such a trace is obtained by constructing
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Figure 3-7: Input to output characteristic of nonlinear amplifier.

the nonlinear amplifier so that it Las the input to output voltage characteristic shown
in Figure 3-7.

As discussed in Section 3.1.2, the stress and strain vary linearly through tne thick-
ness of a structure in bending, with one half in tension and the other in compression.
In light of the fact that the electric fields in the poling and coercive directions actuate
compression and tension in the transverse direction, respectively, it is clear that at
any given time in the operation of the bender, one half will have an electric field
oriented in the poling direction, and the other half will have an electric field oriented
in the coercive direction. Therefore, in order to implement the above described non-
linear circuit in the operation of a bender, two nonlinear amplifiers with input to
output voltage characteristics similar to Figure 3-7 are needed, one for each half of
the bender.

In order to create the necessary input to output voltage characteristic of each
nonlinear amplifier, diodes were used in the make-up of the circuit. When forward
biased, a diode may be modeled as an infinitely conductive short circuit, while a
reverse biased diode behaves like an open circuit. Ideally, the break between the

short and open circuit regimes of a diode would occur when the voltage difference
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Figure 3-8: Block diagram of nonlinear circuit with feedback linearization.

across the diode changed signs. In actuality, however, when the diode is forward
biased, it cannot be assumed to be infinitely conductive until the voltage difference
across it exceeds approximately 0.6 V. The input to output voltage characteristic
of Figure 3-7 shows the change in slopes of the input to output characteristic to
occur at the origin. However, the presence of the non-zero 0.6 V activation voltage
of the diodes moves the point where the slopes change away from the origin, which
distorts the desired input signal trace of Figure 3-6(c). This distortion was eliminated
using feedback linearization. By summing the output of the two nonlinear amplifiers,
feeding a fraction of that signal back to the input, and introducing a largé linearizing
gain, the distortion was virtually eliminated. This feedback loop is shown in Figure 3-
8 and the actual circuit used in this study is presented in Appendix B.

The circuit in Appendix B is set up for operation between poling and coercive field

limits that differ by a factor of two. As discussed at the beginning of this section, it is
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possible to operate the bender using the field limits of 60 and 30 V/mil. However, for
conservative reasons, in the present study the applied poling and coercive electric field
limits were limited to 40 and 20 V/mil, respectively. In the experiments presented
in the next chapter, these limits were never exceeded. It is important to realize
this when predicting the achievable performance of the actuator from the bench top
measurements, as discussed in Section 4.2.3.

If the nonlinear circuit discussed in this section were not implemented, to avoid
depoling the ceramic, an applied bender input voltage signal similar to that shown
in Figure 3-6(a) would be necessary. However, if the poling and coercive field limits
differ by a factor of two, use of the nonlinear circuit increases the average applied
electric field by 50%, which will significantly increase the actuated response of the

bender.

3.3 Design and Fabrication of the Flexure
Mechanism

The most critical part to succeeding in actuating a trailing edge flap with a bender
is to find a way to effectively connect the bender to the flap, while providing three
separate degrees of freedom for proper operation.

Spangler and Hall used hinges in their design [45]. Not only are hinges a source -
of some mechanical backlash in the system, they were not feasible for the present
design, due to its small scale. A better way to provide for the degrees of freedom
is to use flexures. This was done by creating a part consisting of the three separate
flexures in a very specific arrangement. The cross-section of the first generation
flexure mechanism is shown in Figure 3-9. As shown, the flexure mechanism includes
the aerodynamic control surface, three flexures, as well as two surfaces used to bond
the flexure mechanism to the bender and to the airfoil’s top surface. Besides the
obvious advantage of using flexures as opposed to hinges, another distinct advantage
of this design is that the lever arm distance, s, is now set precisely upon fabrication

of the part.

77



Airfoil Skin
Attachment Point

| — s

Flexures

Bender /Control Surface

Attachment Point

Figure 3-9: Geometry of first generation flexure mechanism.

The flexure mechanism is manufactured by hot pressing a piece of Delrin, using
precision machined dies. Delrin is an acetal resin, made by Dupont, with exceptional
fatigue properties. It has a sharp melting point at 347 F, a modulus of elasticity of
450,000 psi, a tensile strength of 10,000 psi, and a specific gravity of 1.42 [13]. As
discussed in the next chapter, some problems existed with Delrin’s bond integrity to
the bender. For this reason, other materials might be investigated for better bonding

properties, while retaining the strength and fatigue properties of Delrin.

3.3.1 Geometric Stiffening

Obviously, the use of flexures adds additional stiffness to the system. To insure that
this extra stiffness did not seriously detract from the operation of the actuator, the
summed contribution of the stiffnesses from the three flexures was specified to remain
less than 10% of the hinge moment stiffness, Mj;.

Each flexure was modeled as a torsional spring with a stiffness of

_ Ea;

k! li )

(3.49)

where i is the flexure number, identified in Figure 3-10, [; is the flexure length, the

moment of inertia is

3
L ==+ (3.50)
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Figure 3-10: Effect of flexure mechanism geometry on its stiffness.

and t; is the flexure thickness. To determine the overall flexure mechanism stiffness,
the stiffnesses of the three flexures cannot simply be added because there are geometric
constraints relating the deflection undergone by each flexure. Figure 3-10 shows the
important geometric relation between each of the flexures. Assuming the bender
tip moves in a purely vertical direction, the relative kinematics were analyzed and
expressions for the strain energy in each of the flexures was obtained. The linearized

form of these expressions is

1

W= Eklaz (3.51)
1 Ly . 12

‘/2 = 5’&72 { [1 + L—2 Sin ﬂrJ 6} (352)
p— 1 Ll M ? 2 o

Vs = 2k3 (Z; sin ﬂ,) ) (3.53)

where L,, L, and the rigid angle, f,, are defined in Figure 3-10, ¢ is the flap deflection
and k;, ky and k3 are given by Equation (3.49). For the first generation flexure
mechanism, L; = 0.124 in, L, = 0.058 in, and §; = 36 deg. What this analysis shows

is that because of such a large non-zero rigid angle, f;, the rotations undergone by
flexure #2 are 2.2 times greater than those of flexure #1, making the energy lost
in that middle flexure five times as great. This is enough to seriously reduce the
effectiveness of the flexure mechanism. For this reason, the final design of the flexure
mechanism possessed the cross-section shown in Figure 3-11, where §, = 0. Using this

configuration, Equations (3.49) — (3.53) predict a total flexure mechanism stiffness of
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Figure 3-11: Final design of flexure mechanism.

0.16 in-lb/in/rad with flexures 0.004 in thick and 0.030 in long.

In Section 3.1.3, the design point flap hinge stiffness was specified as 1.8 in-
Ib/in/rad. The flexure mechanism adds 0.16 in-lb/in/rad of stiffness to this value.
Therefore, rounding the sum of these two stiffnesses, the flap deflection stiffness, Mj

used in the design of the actuator for this study was specified as 2.0 in-lb/in/rad.

3.3.2 Fabrication

The flexure mechanism dies were machined out of 2024 Aluminum. Because of the
special geometry of the flexure mechanism, three separate dies were needed to press
the part. The lines detailing the cross-section of the flexure mechanism in Figure 3-11
also represent the relative cross-sectional geometries and alignment of the three dies
used at the final stage of the hot press procedure. Cross-sectional views of the flexure
mechanism dies are shown in Figures 3-12 and 3-13.

A hydraulic press with plates that can be heated to a desired temperature is used
for the hot press. The bottom and side dies are placed on the bottom plate of the
press. A 0.030 in thick rectangular piece of Delrin is place between the two dies as
shown in Figure 3-12. The bottom plate and the two dies are heated up to 347 F.
Using bolts, the side die is pressed against the bottom die to form flexures #2 and 3
as well as the bender attachment surface. A triangular cross-section wedge of Delrin
is then placed onto the bottom die as shown in Figure 3-13. The top plate of the
press is heated to 347 F, and the top die is placed on dowel line-up pins and pressed
down upon the other two dies forming the desired flexure mechanism part. The dies

are then cooled and separated, yielding the finished flexure mechanism.
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Figure 3-12: Initial press: Side and bottom flexure mechanism dies.
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Figure 3-13: Final press: Top, bottom and side flexure mechanism dies.

For the hot pressing operation to work, the dies have to come together with less
than 0.001 in of error. This requires machining the flexure dies to absolutely no
more than approximately 0.005 in of error and, once the machining is complete, using
steel shims on the order of 0.001 in to adjust the final relative position of the dies.
While the machining of flexure mechanism dies requires a great amount of precision,
once made, the fabrication of a large number of flexure mechanisms can easily be

accomplished.
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As a final note, because the flexure mechanism specified above has a flap made
of solid Delrin, a relatively dense substance, it will have a significant effect on the
dynamics of the actuator. Specifically, as will be shown in the experimental data
presented in the next chapter, the inertia due to the Delrin flap wili substantially
reduce the first modal frequency of the actuatcr. For this reason, in future designs,
additional steps should be added to the above fabrication process that modify the
cross-section of the flap, perhaps by removing a large portion of the interior Delrin
and replacing it with a honeycomb stiffener. The effects of the large flap inertia will

be discussed further in Section 4.2.2.
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Chapter 4

Bench Test Experimental Results

and Discussion

Before the proposed actuator can be implemented into an operational helicopter, its
force and deflection characteristics must be demonstrated. The goal of this research,
therefore, was to demonstrate the capabilities of the actuator on the bench top. This

chapter presents the experimental set-up and results of such a bench top experiment.

4.1 Experimental Set-Up

The integration of an actuator inside a helicopter blade hes associated with it a
fundamental size constraint. For this reason, the dimensions of the bench test article
were constrained to those of the target airfoil specified in Section 3.1.3. A cross-
section of the bench test section is shown in Figure 4-1. The base of the bench test
article consisted of plexiglass, with surfaces machined for clamping the piezoelectric
bender and affixing the flexure mechanism at an angle corresponding to the airfoil’s
trailing edge top surface. The flexure mechanism was pressed out of Delrin using
the method described in Section 3.3.2 and attached to the base with a cyanoacrylate
adhesive. The flexure mechanism’s spanwise dimension measured 1.736 in. Terminal
strips affixed at the front of the article were used to anchor down the bender’s leads.

Note that the flexure mechanism and bender in the bench test articlc are oriented
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upside-down from the conventional airfoil reference frame. This was done only for
convenience in bonding the flexure mechanism to the base.

A layered construction such as that described in Section 3.1.2 was implemented co
maximize the efficiency of the bender. The actual cross-sectional dimensions of this
actuator are presented in Figure 4-2. Shown in this figure are the eight individual
piezoeiectric wafers and the glue layers separating each. The front (i.e., closest to the
leading edge of the airfoil) 0.5 in of the piezoelectric bender is reserved for clamping.
The filled arrows on the left side of the bender represent the poling vectors of the
individual piezoelectric wafers. The leads drawn on the left side show the wiring used
to actuate the multi-morph in bending. The voltages Viop and Vi, are the voltage
signals applied to the top and bottom halves of the piezoelectric bender. Using the
nonlinear circuit described in Section 3.2, these two signals oscillate between the
poling and coercive limits of 300 and 150 volts during operation at the maximum
applied voitage. To operate in bending and avoid de-poling, it is necessary for these
voltage sigaals to be out of phase, so that, for example, as V},, reaches the poling
limit of 4200 volts, V4, must reach the coercive limit of +150 volts. Note that the
lay.red bender shown demonstrates the extra benefit gained from gaining access to
t.1e electrodes between each wafer in that smaller voltages are needed for operation
than if the electric field was generated by just making electrical contact to the outer
surfaces of the bender.

The piezoelectric wafers are Type 850, obtained from American Piezo Ceram-
ics, Inc. Comparison of the properties of Type 850 piezoelectric ceramic with more
common PZT-type ceramics reveals that it has properties closely recembling those
of PZT-5A. The cross-section of each wafer consisted of 0.0075 in of piezoelectric
ceramic, sandwiched by two 0.001 in nickel electrodes. The width of each waier mea-
sured 1.5 in and the length dimensions were chosen to rnaximize efficiency according
to the discussion of Section 3.1.2, while providing a tip stiffness of 200 Ib/in/in. The
electrodes were modzled as pure nickel, rigidly bonded to each wafer for the analytical
calculations of the bender tip stiffness. Electrodes o. this thickness were used only

because of their availability. Because the electrodes take up space and add unucces-
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Figure 4-2: Sciiematic of piezoelectric actuator used in experiment.
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sary bending inertia to the multi-morph, in future designs, it is worthwhile to use the
thinnest electrode layer that is feasible.

EPO-TEX Epoxy 907 served as the adhesive between the piezoelectric wafers.
The bond layer using this adhesive measured 0.001 in. To provide electrical contact
between each layer of the bender, small oval shaped copper electrodes were inserted
between each layer, at the front end of the bender. These electrodes are 0.0015 in
thick, approximately 1 in long and 0.25 in wide. Wire leads were soldered to each
electrode. After completing the lay-up, these wires and copper electrodes were potted
in a silicone rubber adhesive sealant, RTV 118. Ali other free edges of the actuator
were insulated with M-Coat-A polyurethane coating. These meacures were taken to
guard against arcing.

Air arcs at an electric field of approximately 80 V/mil. During the operation
and poling of this actuator, an electric field of 40 V/mil was never exceeded. How-
ever, grease and dust particles are sometimes present on the sides of a piezoelectric
ceramic, promoting the chances of arcing. When an arc does occur, a deposit is oc-
casionally left behind that possesses some conductivity. If this deposit connects the
two sides of a piezoelectric cerainic, it becomes unable to sustain a charge. Apply-
ing proper insulating materials, such as silicone and polyurethane, helps avoid these
arcing problems.

The leads at the front of the piezoelectric bender were originally potted in epoxy
mixed with cotton powder. This led to a severe arcing of the individual piezoelectric
wafers, making the actuator virtually unusable. The arcing was hypothesized to have
occurred in the epoxy potting material. By dissolving away the epoxy, cleaning up the
electrodes at the front and repotting in silicone, six of the eight piezoelectric wafers
were brought back into service. Only the two innermost wafers were not in service for
these experiments. As discussed in Section 3.1.2, the efficiency of a piezoelectric wafer
in actuating a moment increases with its distance from the neutral axis. Because of
this, the reduction incurred from turning off the inner two wafers was minimal. As a
check, the analytical model of Chapter 2 was run to compare the change in frequency

response by turning off these two wafers. These computations predicted only an 8%
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loss in flap deflection magnitudes by operating with only the outer six as opposed
to all eight piezoelectric wafers. This eight percent factor will be accounted for in
Section 4.2.3 when the operating capability of the actuator is summarized.

As discussed in Section 3.1.3, the actuator used was designed to operate at the
90% span location of a properly scaled model rotor in Freon. In addition, from
Section 3.3.1, for an actuator to operate effectively at this location, it should be
designed such that the bender is impedance matched to a combined flexure mechanism
and aerodynamic flap hinge stiffness of 2.0 in-1b/in/rad. The tip stiffness of the bender
specified above was calculated as kg = 200 Ib/in/in. Using the impedance matching
condition, Equation (3.12), these stiffness magnitudes force the lever arm length, Sopts
to be 0.1 in.

The nonlinear circuit discussed in Section 3.2 was used to drive the bender. It was
built on a Global Specialties Proto-Board, Model 203A. The nature of the nonlinear
driving signal necessitated two amplifiers to operate the top and bottom sides of the
bender. KEPCO Bipolar Operational Power Supply/Amplifiers, Model BOP 1000M,
were used as these high voltage amplifiers.

The input and output devices changed depending on the measurement being made.
For hinge moment measurements and general operation, a Philips PM 5191 Pro-
grammable Function Generator provided the input to the nonlinear amplifier while a
Nicolet. Digital Oscilloscope Model 2090 displayed and stored the signal traces. For
frequency response identification, a Tektronix 2630 Fourier Analyzer calculated the
transfer functions while driving the system with a random, frequency banded input
signal. The signal analyzer takes an FFT of the input and output of the system being
identified and ratios their autospectra to find the transfer function.

A Keyence LB-11/70 Laser Displacement Sensor measured the flap deflections.
The laser was positioned vertically above the flap, measuring the displacements of the
flap tip. The flap deflections were calculated using the small angles formula, dividing
this laser measurement by the radius from the flap hinge to the laser spot location.
During the experiments, the beam from the laser was not exactly perpendicular to

the radius. However, a geometric analysis done on the accuracy of the flap deflections
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Figure 4-3: Block diagram of actuation and measurement system.

measured with this set-up indicated that the laser position used added little error to
the measurements. The instrumentation block diagram for the experiment is shown

in Figure 4-3.

4.2 Data Presentation and 1yiscussion

The flap deflections and forces created by the actuator are the characteristics cf inter-
est in this study bécause their product represents the energy created in operating the
flap. In addition, since rotor control involves actuation at high frequencies, knowledge
of the behavior of these characteristics as a function of frequency is also important.
For these reasons, a frequency response of the system showing the dynamics of the
first two modes and data addressing the achievabie hinge moments of the actuator

constituted the measurements taken in this bench top experiment.

4.2.1 Unmodeled Actuator Response

The modeling process depends, fundamentally, on making correct assumptions about
the system of study. Piezoelectric ceramics exhibit a number of well-known nonlin-

earities in their operation. Because the linear model derived in Chapter 2 will not
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account for these effects, they will cause variations between the experimental and
predicted actuator response. Furthermore, ir: preliminary tests of the actuator, two
additional sources of unexpected behavior were observed. The first involved extra
compliance identified in the flexure mechanism and its bond to the bender. The sec-
ond was a realization that the actual tip stiffness of the bender was almost a factor
of two smaller than expected from the design calculations. This section will provide
a preliminary discussion of these effects while Sections 4.2.2 and 4.2.3 will treat the
specific implications that they have on the measured data.

The equations of motion derived in Chapter 2 govern the benavior of a linear,
small-signal, layered piezoelectric multi-morph. However, the nonlinearities, such as
hysteresis, creep and nonlinear strain behavior all affect the operation of the bender
used in these experiments [10, 38, 40]. The presence of hysteresis was discussed in
Section 2.2.2 on damping. However, the additional effects of creep and nonlinear
strain behavior require some preliminary explanation.

Creep is a time dependent change in the observed strain of a material [22]. There
was a non-trivial amount of creep observed during the tests of the actuacor and, unfor-
tunately, the effects from this seriously handicapped the collection of hinge moment
data. The implications of this are discussed in Section 4.2.3

It is expected that the effects of creep are important only for frequencies less than
1 Hz. Because of this, creep should not pose many problems in helicopter N/rev
control. However, it remains a question as to how it impacts the effectiveness of
collective rotor control. Because creep is a strain dependent mechanism, the amount
of time dependent deflection seen when actuating against a constraint, i.e., a blocked
condition, is small. Therefore, it may be true that actuation in an airstream will
minimize the effect of low frequency creep, making collective rotor control achievable
using these actuators.

The resultant strain in a piezoelectric bender for a given applied electric field
is governed by the value of the d3; coefficient. Calling this parameter a coefficient,
however, is a bit of a misnomer because its value is not truly constant. It is a function

of the electric field and temperature of the ceramic.
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Figure 4-4: Microstrain vs electric field (From Crawley and Anderson [10]).

The value of the d3; coefficient increases with electric field. This trend is shown
in Figure 4-4, taken from Crawley and Anderson [10]. This figure shows the strain
measured at different electric field levels for actuation of a piezoelectric ceramic at
0.1 Hz. The slope of this strain to field curve at any point corresponds to the dj;
coefficient at that field level. The d3, coefficient specified in most piezoelectric ceramic
catalogs corresponds to the slope of the curve at low field levels, i.e., less than 1 V/mil.
Included in this figure is this small signal linear d3, relationship. As is clearly shown,
at 0.1 Hz, the amount of strain for large electric fields is two to three times that of
the linear model.

The explanation for this effect is related to the discussion on dipoles of Sec-
tion 2.1.1. In that discussion, it was explained that upon poling a piezoelectric

ceramic, the dipoles rotate to align themselves with the poling field. That expla-
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nation implied that upon removal of the poling field, the dipoles remained set in the
material. However, not all dipoles completely align nor stay aligned with the poling
field direction upon completion of the poling process. Therefore, when large electric
fields are applied during the operation of a ceramic, additional dipole rotation and
motion occurs, yielding larger strain values than predicted with a linear model.

The strain generated by additional rotation of the dipoles takes longer to occur
than that caused by the motion of those dipoles permanently aligned in the poling
field direction. Therefore, as the frequency of actuation increases, th.s additional
strain mechanism contributes less to the overall resultant strain of the material. For
high enough frequencies, the linear small signal strain to field relationship is recovered.
Indeed, this is how the strain to electric field relationship for the small signal model
is actually measured.

The use of the nonlinear circuit described in Section 3.2 will allow the application
of electric fields up to 40 V/mil in the operation of the bender, increasing the con-
tribution of the above strain mechanism. However, it is expected that this effect will
become less prevalent as the actuation frequency increases.

A second factor that may have a small impact on the size of the strain levels
in the ceramic is the temperature. Data from [38] shows that for PZT-5A, the dj;
coefficient can change by as much as 4% for a temperature change from 15 to 25 C.
There are two sources from which heat can enter an oscillating piezoelectric ceramic.
One source is the hysteresis of the material. As discussed in Chapter 2, the amount
of hysteresis in the material is a measure of the energy lost in one cycle of operation.
The second source is electrical energy lost in the dissipation of current oscillating
through the ceramic. The energy lost from both of these effects must be converted
into heat. A 4% change in strain is not a large difference but, as will be discussed
in the next section, in identifying a system with a number of nonlinear mechanisms,
the response measured becomes extremely sensitive to the system parameters at the
time the data is acquired. Therefore, even small temperature changes could have a
noticeable effect on the identified response.

The flexure mechanism was modeled as rigid, apart from the designed compliance
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Figure 4-5: Location of extra compliance in the flexure mechanism.

of the flexures. However, during testing, extra bending in the flexure mechanism was
observed between the tip of the bender and the vertical portion of the flexure mecha-
nism, identified as member AB in Figure 4-5. During testing the gap between points
A and B measured approximately 0.1 in. The design allowed for this gap to insure
that no glue seeped onto the bottom flexure when attaching the flexure mechanism
to the bender. However, due to the extra compliance that this gap introduces, future
designs should minimize this distance.

In addition to the compliance identified betw 'n point A and B in Figure 4-5,
another source of unmodeled flexibility in the system comes from the bond between
the bender and the flexure mechanism. A cyanoacrylate adhesive was used to attach
the flexure mechanism to the bender. The flexure mechanism, however, was inten-
tionally separated from and re-attached to the bender a number of times throughout
the course of the experiments, creating a rough bonding surface. Because of this,
it was suspected that the bond may not have been intact over the entire bonding
surface.

The combined effect on the system from these areas of extra compliance may be
modeled as a spring, kg, in series with the tip stiffness of the bender, kg, and the
modeled stiffness of the flexures, kv, as shown in Figure 4-6, where Mp represents
the equivalent mass contributed by the inertia of the flap. Although no good method

exists to estimate the stiffness of this spring, k;, because it is extremely dependent
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on the bond strength of the flexure mechanism to the bender, a preliminary estimate
can be made by basing the stiffness magnitude on the bending stiffness of member
AB in Figure 4-5. Using such a model, the spring stiffness is

Eyl;

kf = CfT‘ (41)
f

where [y and I; are the length and moment of inertia of member AB and the coefficient,
Cy, is chosen so as to quantify the strength of the bond layer boundary condition. In
Section 4.2.2, the value chosen for C; in order to relate experimental and analytical
results is discussed.

In Section 4.1, it was mentioned that the electrodes were modeled as pure nickel,
rigidly bonded to each piezoelectric wafer. Further checking into the makeup of these
electrodes revealed that while they are a nickel alloy, they are actually silkscreened

onto the piezoelectric wafers and not rigidly bonded. Because of this, the stiffness

contributed by the electrodes to the bending inertia of the piezoelectric multi-morph
is negligible. Their only contribution to the stiffness is in increasing the moment of
inertia of the individual piezoelectric wafers by moving them farther from the neutral
axis. Using this new model of the electrodes’ stiffness contribution, the computed

tip stiffness of the piezoelectric bender was almost halved from a design value of
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Figure 4-7: Change in flap deflection magnitudes as electrode stiffness changes.

200 !b/in/in to 113 Ib/in/in. Since the lever arm length was already set before this
error was detected, the act:ator is no longer impedance matched for the design point
span location of 90%, as discussed in Section 3.1.3.

While the tip stiffness is smaller than original predictions, because the same
amount of piezoelectric ceramic, and thus energy, is still present in the bender, the
expected flap deflections must increase. This is shown in Figure 4-7, where results
from the analytical model are presented, comparing the predicted frequency response
of the actuator for the two cases when the nickei electrodes are niodeled as rigidly
bonded and silkscreened oantc the piezoelectric wafers. Agc ¢ .pected, the flap defiec-
tions do increase. Furthermore, because the bender with silkscreened electrodes is
more compliant, the first modal frequency drops from 165 Hz to 125 Hz, befween the

rigidly bonded and silkscreened cases.
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In all future comparisons made with the analytical model, besides adding space
in between piezoelectric wafer layers, the nickel electrodes are modeled as adding no

stiffness to the bending inertia of the multi-morph.

4.2.2 Frequency Response Data
_Actuator Response .. .

Frequency response data was collected for the actuator in the configuration shown
in Figure 4-1. Figure 4-8 shows the frequency response data for the entire band of
frequencies identified in this experiment. Figure 4-9 is a close up of the low frequency
behavior from 1 to 200 Hz. Figure 4-9 is included to highlight some of the nonlinear
behavior of the actuator, discussed below. The frequency response data is presented

in the standard Bode plot format. The transfer function represented by the magnitude
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Figure 4-9: Experimental frequency response for first mode of actuator.

plot is the resultant flap deflection, in degrees, for an electric field applied over the
bender. The applied electric field used is the sum of the electric field over the top
and bottom halves of the bender. For example, the magnitude of the response given
by the data at 1 Hz is 0.207 deg/(V/mil). Therefore, if the applied electric fields over
the top and bottom half of the bender are 40 V/mil and 20 V/mil, the resultant flap

deflection is
0 = 12.42 deg

The coherence for the data of Figures 4-8 and 4-9 is presented in Figure 4-10. The
coherence is a measure of how accurately the acquired data characterizes the system.
Excessive noise or disturbances to the system, as well as ncenlinearities present in the
system, can lead to poor coherence. The coherence can take on a value between zero

and unity, where a value of unity means that the data taken exactly characterizes the
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frequency response of the system. As shown in the figure, the coherence of the data

for low frequencies is good. However, the coherence for data at frequencies greater

than approximately 200 Hz is poor.

Thereason-for the poor-coherence stems from-current-constraint-of the high-voltage -
amplifiers, which have a built in maximum current limit of 40 mA. Piezoelectric

ceramics require more current as the actuation frequency increases, according to
t=VCw (4.2)

where w is the actuation frequency in radians/sec, V' is the applied voltage, and C
is the capacitance of one side of the bender, which, for this case, is 300 nF. If the
maximum input signal is applied to the bender, the voltage signal becomes as large as
300 V during each cycle of operation. For such an input, Equation (4.2) indicates that
the amplifiers will current limit at actuation frequencies greater than 70 Hz. During
identification, however, it is not necessary to drive the system with the maximum
voltages. In particular, due to the large response around the first mode, the data
from 50'to 120 Hz was attained while driving the system with a relatively small
input signal. However, even with the lower input magnitudes, once the actuation
frequency reaches a certain level, the amplifiers do current limit, thus requiring the

applied voltage to be reduced further. For frequencies greater than about 200 Hz, the
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Chapter 5

Conclusions

In this thesis, a piezoelectric actuator intended for the control of a helicopter rotor was
designed, built, and tested on the bench top. The design used was based on a previous
study performed on this actuation mechanism by Spangler and Hall [45]. Its lengths
were chosen so that it fit within the cross-section of a model scale rotor operating in
Freon with a 4.454 in chord and a 20% flap. In this study, a number of improvements
over the original design were introduced. This chapter, the contributions of this

research are described and suggestions for future research are given.

5.1 Design Contributions and Improvements

Three major improvements to the actuator originally built by Spangler and Hall were
introduced in this thesis. The most significant of these was the use of the flexure
mechanism to transmit the bender deflections to the flap. The cffectiveness of the
actuator used by Spangler and Hall [45] was significantly reduced due to friction and
backlash generated from the use of hinges in coupling the bender and flap deflections.
The greatest benefit found in the operation of the flexure mechanism is the complete
elimination of these friction and backlash problems.

The other major improvements introduced were the tdpering of the bender’s thick-
ness properties, increasing its efficiency by over 20%, and the implementation of a

nonlinear electric circuit to increase the average electric field applied to the bender
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by 50%.

A state space model of this actuator based on Classical Laminated Plate Theory
was developed using the Rayleigh Ritz energy method. This model provided a metric
against which the experimental results were measured and highlighted the effects
of nonlinearities inherent in the operation of piezoelectric ceramics, such as creep,
hysteresis. nonlinear strain to field and nonlinear strain to temperature behavior.
A preliminary treatment of these effects was presented, but they deserve a more
thorough investigation.

On the bench top, flap deflection amplitudes of 11.5 deg were demonstrated for
actuation at 10 Hz. Because only six of the eight piezoelectric wafers in the bender
were in operation for the tests, it was calculated that this deflection was 8% below
the actuator’s actual flap deflection capability.

There was a substantial amount of creep present in the operation of the bender at
frequencies below 1 Hz. For this reason, it was not possible to obtain measurements
of the achievable hinge moments of this actuator on the bench top. However, using
an analytically determined bender tip stiffness and the experimentally measured flap
deflections, the operational characteristics of this actuator were extrapolated

The actuator was designed for operation at the 90% span location on a model
rotor in Freon. Based on the experimental results and analysis, it is concluded that a
flap deflection of 6.8 deg should be possible at frequencies below the natural frequency
for an actuator located at the 90% span location of this target model rotor. Using the
scaling laws developed in Section 3.1.3, the data also suggests that if this actuator
were properly scaled up to an operational helicopter, flap deflections of 5.0 deg at
the same electric field and relative frequency levels can be expected at the 90% span
location of an operational full-scale helicopter blade.

The experimental data showed a first modal frequency of 90.1 Hz, which corre-
sponds to the 7/rev frequency of the model rotor. From the scaling laws, this implies
that a scaled version of this actuator will also have a first modal frequency corre-
sponding to the 7/rev frequency of a full-scale rotor. Because the inertial properties

of the flap were not addressed, however, larger modal frequencies (and therefore larger
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actuator bandwidths) should be expected when this actuator is used with a lighter
servo-flap.

In summary, a trailing edge servo-flap actuator has been refined to correct the fric-
tion and backlash problems identified originally by Spangler and Hall [45]. Substantial
deflections have been demonstrated on the bench top for an actuator designed to fit
within a scaled model helicopter blade allowing for a 20% flap. The results of this
study indicate that this actuator should be able to actuate the rotor of an operational

helicopter.

5.2 Future Research Goals

There are three major suggestions for future research;

1. Demonstration of piezoelectrically actuated trailing edge servo-flap in a wind
tunnel typical section. To truly gauge the abilities of the present design, a wind
tunnel test of a typical section incorporating the improved actuator presented in this
thesis should be performed.

2. Detailed design of a model rotor system with integrated trailing edge servo-
flaps. There are many issues to be addressed in order to integrate the piezoelectric
actuators described in this thesis into an operational model rotor. One major design
consideration is the large centripetal accelerations that these actuators will encounter
in the rotor blade environment. Enough strength must be ensured to withstand accel-
erations that are on the order of hundreds of g’s. In addition, proper mass balancing
of the blades must also be addressed to overcome the stability issues associated with
placing heavy actuators in the trailing edge of an airfoil.

3. Tests on a model scale rotor. Once a viable rotor with integrated piezoelec-
trically actuated trailing edge servo-flaps is designed and constructed, tests must be
conducted to determine the ultimate usefulness of these actuators in controlling a

helicopter rotor.
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Appendix A

Assumed Mode Shapes

In Chapter 2, the assumed mode shapes in the lengthwise (z) direction correspond

to the exact mode shapes of a cantilevered beam. These shapes are

T z . x . T
cosh (A,z) — COS (/\,E) — Oj (Slllh (/\,Z) - Sin (/\.z))

where L is the beam length and the coefficients A; and o; are given in Table A.1.

Table A.1: Coefficients for first five exact cantilevered beam mode shapes

ModeNumber, i Ai o;
1 1.87510407 | 0.734095514
2 4.69409113 | 1.018467319
3 7.85475744 | 0.999224497
4 10.99554073 | 1.000033553
5 14.13716839 | 0.999998550
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Appendix B

Non-Linear Circuit

The following circuit diagram is that of the non-linear circuit used to drive the piezo-
electric bender. The motivating discussion behind this circuit is in Section 3.2. In
this diagram, Vi, is the input signal from the signal wave generator while Vj,, and
Viop are the output signals to the high voltage amplifiers which power the bottom and

top sides of the bender, respectively.
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