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Abstract

Imagine we want to recover an unknown vector given many noisy copies of it, except each
copy is cyclically shifted by an unknown offset (this is “multi-reference alignment”). Or
imagine we want to reconstruct an unknown 3D structure (e.g. a molecule) given many
noisy pictures of it taken from different unknown angles (this is “cryo-EM”). These problems
(and many others) involve the action of unknown group elements drawn randomly from a
compact group such as Z/p or SO(3).

In this thesis we study two statistical models for estimation in the presence of group
actions. The first is the synchronization model in which we attempt to learn an unknown
collection of group elements based on noisy pairwise comparisons. The second is the orbit
recovery model in which we observe noisy copies of a hidden signal, each of which is acted
upon by a random group element. For both of these models, we explore the fundamen-
tal statistical limits as well as the fundamental computational limits (i.e. how well can a
polynomial-time algorithm perform?). We use methods from a wide variety of areas, in-
cluding statistical physics, approximate message passing, representation theory, contiguity
and the associated second moment method, invariant theory, algebraic geometry, and the
sum-of-squares hicrarchy.

Thesis Supervisor: Ankur Moitra
Title: Associate Professor of Mathematics
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Chapter 1

Introduction

1.1 Motivation

Many computational problems throughout the sciences exhibit rich symmetry and geometry,
especially in fields such as signal and image processing, computer vision, and microscopy.
One example is multi-reference alignment (MRA) [17, 13, 118, a problem from signal pro-
cessing [155, 123| with further relevance to structural biology [60, 144]. In this problem,
there is an unknown signal # € RP and we observe many noisy copies of it, each with its co-
ordinates cyclically shifted by a random unknown offset. More formally, we observe samples
of the form y; = Ry,0 + & where &; is noise, ¢; € {0,1,...,p — 1} is a random offset, and R,
is the cyclic shift operator (R.0); = 6;_, where the subscript i — ¢ is taken modulo p. Thus
we have a statistical estimation problem involving a group action: namely, the cyclic group
Z/p acts on RP via cyclic shift.

Another problem involving a group action is the reconstruction problem in cryo-electron
microscopy (cryo-EM) [5, 142, 115], an imaging technique in structural biology that was
recently awarded the 2017 Nobel Prize in Chemistry. This is a technique for determining the |
3-dimensional structure of a large molecule, such as a protein. The idea is to freeze many
copies of the molecule and take a 2-dimensional image (tomographic projection) of each one.

In each image, the molecule is rotated 3-dimensionally to a random unknown orientation.
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To make matters worse, cach image is extremely noisy. The core computational challenge
in cryo-EM is to take this data and build a denoised 3-dimensional model of the molecule.
To mathematically abstract this problem, we take our unknown signal to be the density 6
of the molecule, considered as a function R® — R. We have access to observations of the
following form: our microscopy sample contains many rotated copies R;0 of the molecule,
where R; € SO(3) are random unknown 3D rotations, and we observe the noisy projections
II(R;0) + &;, where II denotes tomographic projection (in a fixed direction) and &; is noise.
Thus we have a statistical estimation problem involving a group action by the 3-dimensional

rotation group SO(3).

Computational problems involving group actions arise in many other settings, including
community detection [56], time synchronization in networks [71], sensor network localiza-
tion [51], simultaneous localization and mapping in robotics [130], surface reconstruction in
computer vision [6], phase alignment in signal processing [17], and many other areas (see
e.g. [14]). These problems exhibit a range of group structure, including rotation groups,

Euclidean groups, and cyclic groups.

While various methods have been proposed to solve these types of problems in practice,
they often lack provable guarantees or strong theoretical justifications. The aim of this thesis
is to build a theoretical foundation for statistical estimation in the presence of group actions.
In particular, this includes (i) defining statistical models that capture the core difficulties of
such problems, (ii) determining the fundamental statistical limits of thesc models, and (iii)
finding efficient (polynomial-time) algorithms that achieve these limits. In some cases we
will see that (iii) is likely impossible due to inherent statistical-to-computational tradeoffs; in
such cases we aim to understand the fundamental limits of efficient algorithms. Our results
are in high generality as we often work over an arbitrary compact group and allow a wide

variety of observation models.
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1.2 Models

In this thesis, we define and study two different statistical models: the Gaussian synchro-

nization model and the orbit recovery model.

1.2.1 Synchronization

In the context of group actions, the synchronization approach is to estimate the unknown
group elements, e.g. the rotation of the molecule in each image. In a synchronization problem
(see e.g. [14]), there is an unknown vector of group elements (g, ..., g,) and for each pair
t < j, we are given a noisy measurement of the relative group element gigj‘l. The goal is
to use this weak pairwise information to recover all the group elements g; (up to a global
right-multiplication by some group element, since we can only hope to recover the relative
group elements).

For example, in cryo-EM we have an unknown rotation g; € SO(3) for each image.
One can compare two images to obtain weak information about their relative angle g;g; !
[147, 149, 142]. (A more precise explanation is as follows. By the Fourier projection—slice
theorem, the Fourier transforms of the tomographic projections are 2D slices of the Fourier
transform of the molecule density. Given a hypothesis as to the angles of two projections
(slices), we can predict a 1D line of intersection along which those slices should agree. By
measuring correlation along that common line, we obtain some weak information by which
to confirm or refute our hypothesized angles. Indeed, this test only depends on the relative
angle of the slices, thus providing weak information about the value of gigfl.) We can then
use a synchronization algorithm to recover the g; using this information. Once the g; are
known, it is straightforward to reconstruct the molecule.

Synchronization problems have been studied previously and various methods for solving
them have been proposed, including spectral methods [141, 142] and semidefinite program-
ming [141, 142, 17, 18, 14, 29]. We define the first statistical observation model for a large
class of synchronization problems, allowing us to investigate the fundamental statistical lim-

its of these problems.
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For intuition, consider the following extremely simple Gaussian model for synchronization
over the group Z/2 = {%1}, which was introduced by [56] as a simplification of community

detection. One observes the n X n matrix

A 1
Y =2gg" +— 1.1
~99 +\/77W’ (1.1)

where g € {£1}" is the signal to be recovered, W is a GOE matrix!, and X\ > 0 is a signal;
to-noise parameter. Each entry Y;; represents a noisy measurement of the pairwise relative
alignment g;g;. (Note that in Z/2, g; = g; 1)

In Chapters 2 and 3 we present and analyze our statistical model for synchronization,
which generalizes the above model to all compact groups. For each pair of group elements,
we observe g,-gj_1 plus Gaussian noise. Note that in general, it is not obvious how to add
Gaussian noise to a group element; our solution, which we believe is the most natural one,
uses representation theory to represent group elements as matrices. Our model captures
a wide variety of observation models, allowing for different signal strengths on different

frequency channels (which correspond to irreducible representations of the group).

1.2.2 Orbit recovery

For some applications, such as cryo-EM and MRA, the synchronization model has some
shortcomings. For instance, in cryo-EM there is independent noise on each image (group el-
ement), whereas our Gaussian synchronization model has independent noise on each pairwise
comparison of group elements. An even more problematic flaw is that when the noise level is
large, no consistent estimation of the group elements g; is possible [7]. This is because even
if we knew the true molecule structure, each individual image is too noisy for us to be able
to reliably determine the associated rotation. It is the high-noise regime that is practically
relevant for many applications, including cryo-EM, where the presence of large noise is a

primary obstruction to current techniques [140]. Thus, we should not aim to estimate the

!Gaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries A'(0, 1), diagonal
entries N(0,2), and all entries independent (up to symmetry).
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group elements but instead to directly estimate the signal of interest (the molecule). This

idea originates from [13] in the context of MRA.

The considerations above motivate studying the following orbit recovery model which
more directly captures problems like cryo-EM. Fix a compact group G acting (by orthogonal
transformations) on a finite-dimensional vector space V = RP. Let § € V be the unknown
signal. We receive noisy measurements of its orbit as follows: for ¢ = 1,...,n we observe a

sample of the form

Yi=0i 0+¢&

where g; is drawn randomly from G (according to Haar measure, the “uniform distribution”
on the group) and & ~ N(0,0%1) is noise. Since e.g. we cannot hope to distinguish between
different rotations of the same molecule, the goal is to recover the orbit {g-6 : g € G} of

6, i.e. to output a vector in (or close to) the orbit.

This model is a straightforward generalization of a popular model for MRA (which, recall,

is the special case where G is the cyclic group Z/p acting via cyclic shifts) [17, 13, 118, 35].

The above model, already a rich object of study, neglects the tomographic projection in
cryo-EM; we will also study a generalization of the problem which allows such a projection.
We will also consider the additional extension of heterogeneity [83, 93, 94, 35|, where mixtures
of signals are allowed: we have K signals 0y,...,0k, and each sample y; = g; - Ok, + &
comes from a random choice 1 < k; < K of which signal is observed. This extension is of
paramount importance for cryo-EM in practice, since the laboratory samples often contain
one protein in multiple conformations, and understanding the range of conformations is key

to understanding the function of the protein.

1.3 Summary of contributions

In this section we summarize the main results in each chapter of this thesis.
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1.3.1 Synchronization: analysis via statistical physics

In Chapter 2 we define our Gaussian synchronization model and analyze its statistical and
computational limits using methods from statistical physics, including the approximate mes-

sage passing framework.

It is well known that there are deep connections between Bayesian inference and statisti-
cal physics (see e.g. [154]). The core connection is that in inference problems, the posterior
distribution (of the unknown signal given the observed data) often follows a Gibbs (or Boltz-
mann) distribution and thus behaves similarly to a disordered physical system (such as a
magnet or a spin glass). Various tools from statistical physics, such as the replica and cavity
methods, can be applied to Bayesian inference problems. These often come in the form
of non-rigorous heuristics that give extremely precise predictions about the behavior of the
system. Similar to physical systems, Bayesian inference problems often exhibit phase tran-
sitions, i.e. sharp boundaries in parameter space that separate regions in which the problem

is computationally easy, computationally hard, or statistically impossible.

Ideas from statistical physics have inspired a powerful framework for algorithm design,
known as approzimate message passing (AMP). The first AMP algorithm was proposed by
[63] and later rigorously analyzed by [23, 81]. Since then, AMP algorithms have been derived
in numerous settings and have often been shown to achieve optimal statistical performance.
In particular, for the simple Gaussian model for Z/2 synchronization (1.1), AMP is known
to achieve statistically optimal mean squared error (in the limit n — oo) for every value of
the signal-to-noise parameter X [56].

Recall that our Gaussian synchronization model is a generalization of (1.1). It is therefore
natural for us to attempt to extend the AMP algorithm of [56] to our more general setting.
We do this in Chapter 2, leading to a sharp analysis of both the statistical and computational
limits of the model. We expect that our AMP algorithm achieves optimal performance among
all polynomial-time algorithms. However, unlike the Z/2 case, we predict that under certain
conditions there are statistical-to-computational gaps, i.c. an inefficient estimator outperforms

AMP. Most of the results in this chapter are non-rigorous, but are based on well-established
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ideas from statistical physics, many of which have been rigorously verified in related settings.

1.3.2 Synchronization: contiguity and rigorous bounds

In Chapter 3 we complement the above non-rigorous results with some rigorous (albeit
less sharp) statistical lower and upper bounds. A central concept to this chapter is the
notion of contiguity [92] which captures whether two (sequences of) distributions cannot be
consistently distinguished. Associated with contiguity is a particular second moment method
that we use to show that the Gaussian synchronization model is statistically impossible in
certain regimes. We also give statistical upper bounds by analyzing an inefficient exhaustive

search algorithm.

1.3.3 Orbit recovery: statistical limits

In Chapter 4 we determine the statistical sample complexity of the orbit recovery problem
in the high-noise regime, i.e. we determine how the number of samples n needs to scale with

2 — 00. Here we generalize prior work on the special

the noise variance o2 in the limit o
case of MRA (cyclic shifts) which shows that the method of invariants achieves optimal
sample complexity [13]. The idea behind the method of invariants is to use the samples
to estimate invariant features of the signal which are unaffected by the group action. This
leaves us with an algebraic question of determining how many invariants are needed in order
to uniquely determine the signal (up to orbit). Our main contribution is a method to answer
this question using tools from invariant theory and algebraic geometry. One result of this
is that similarly to MRA, cryo-EM requires invariants up to degree 3 and thus has sample
complexity n = ©(0?).

There are some caveats to this result. For instance, instead of unique recovery of the
signal, we only show list recovery wherein we output a finite list of candidate solutions, one

of which is close to the true orbit. Furthermore, our recovery procedure is inefficient, leaving

open the question of finding a polynomial-time algorithm for cryo-EM.
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1.3.4 Orbit recovery: computational limits

In Chapter 5 we discuss issues of computational efficiency for solving the orbit recovery
problem. We first survey existing results on provable efficient recovery, which have been
restricted to the case of MRA. We then give a general conjecture about what we expect
are the fundamental computational limits of orbit recovery. Finally we prove a result on
heterogeneous MRA, showing that if the signals are random then polynomial-time recovery

is possible up to the conjectured threshold.

1.4 Preliminaries on groups and representations

In this section we review some basic concepts from group theory and representation theory
that will be essential in the coming chapters. Further preliminaries will be covered as needed
in the individual chapters.

For a standard reference on this material, we refer the reader to e.g. [40]. We assume the
reader is familiar with the algebraic notion of a group. We will restrict our study to compact

groups, which are algebraically well-behaved in many ways.

Definition 1.4.1. A topological group is a group G along with a topology on G for which
the group’s binary operator and inverse function are continuous. A compact group is a

topological group that is compact with respect to its topology.

Examples of compact groups include all finite groups (such as the cyclic group Z/p for
any positive integer p), and compact Lie groups such as SO(2) (2 x 2 rotation matrices),
SO(3) (3 x 3 rotation matrices), and U(1) (the unit circle in C; note that U(1) is isomorphic
to SO(2)).

One crucial property of compact groups is that they admit a Haar measure. This can
be thought of as the ‘uniform distribution’ on the group. (For finite groups, Haar measure

coincides with the uniform distribution.)

Definition 1.4.2. For a compact group G, Haar measure is the unique positive measure

p on G that is invariant under left and right translation by any group element, normalized
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so that pu(G) = 1. Formally, for every g € G and every Borel subset S C G, we have
1(gS) = u(S) = p(Sg).
We will use some basic notions from representation theory.

Definition 1.4.3. A (linear) representation of a group G over a field k (e.g. R or C) is
a homomorphism p : G — GL(V) where V is a vector space over k. A representation is

denoted by (V, p), or simply by p.

We will be exclusively concerned with finite-dimensional representations in which V' is a
finite-dimensional vector space kP for some positive integer p (called the dimension of the
representation). In this case GL(V) is the set of invertible p x p matrices with entries in k.
Thus we should think of a representation as a way to assign a matrix to each group element

(in a way that respects group multiplication and inverse).

Definition 1.4.4. A representation (V, p) gives rise to a linear group action. For g € G and

x € V, the action of g on z is given by g -z £ p(g)z.

Definition 1.4.5. A subrepresentation of a representation (V) p) is given by a subspace W
of V for which g-z € W for all g € G and all z € W. This is a representation (W, ¢) where
©(g) € GL(W) is the restriction of p(g) to W.

Definition 1.4.6. A representation is irreducible if it has only two subrepresentations,

namely {0} and itself. Otherwise it is reducible.

Definition 1.4.7. The trivial representation is the 1-dimensional representation in which

every group element acts as the constant 1.

We will often restrict ourselves to working with representations that are unitary (or

orthogonal), which is justified by the following.

Fact 1.4.8. Let G be a compact group. For any finite-dimensional representation (V, p) of
G over C, there is a basis for V such that the representation s unitary, i.e. p(g) is a unitary
matriz for every g € G. Similarly, if the representation is over R, there is a basis in which

it is orthogonal (p(g) is an orthogonal matriz).
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Chapter 2

Synchronization: analysis via statistical

physics

This chapter is adapted (with minor modifications) from joint work with Amelia Perry,

Afonso Bandeira, and Ankur Moitra [121].

2.1 Introduction

Among the most common data problems in the sciences and machine learning is that of
recovering low-rank signal present in a noisy matrix. The standard tool for such problems
is principal component analysis (PCA), which estimates the signal by the top eigenvectors.
One example out of many is in macroeconomics, where large, noisy correlation matrices
reveal useful volatility and yield predictions in their top eigenvectors [99, 65]. However,
many particular applications involve extra structure such as sparsity in the signal, and this
structure is ignored by conventional PCA, leading to sub-optimal estimates. Thus, a major
topic of recent interest in machine learning is to devise efficient algorithms for sparse PCA
[10, 28], non-negative PCA [110], general Bayesian PCA with a prior [30], and other variants.
These problems pose a major computational challenge. While significant advances have

appeared, it is also expected that there are fundamental gaps between what is statistically
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possible and what can be done efficiently [27, 96, 97, 101], and thus carried out in practice
on very large datasets that are now prevalent.

A number of low-rank recovery problems involve symmetry and group structure in an
integral way, and have been studied together under the general heading of synchronization
problems. Broadly, the goal of such problems is to recover a list of group elements g,
from noisy pairwise measurements of the relative alignments g,g;*. Such problems arise in
community detection [56], cryo-electron microscopy [142], time synchronization in networks
[71], sensor network localization [51], simultaneous localization and mapping in robotics
[130], surface reconstruction in computer vision [6], phase alignment in signal processing
[17], and many other settings [14]. These problems exhibit a range of group structure,
including rotation groups, Euclidean groups, and cyclic groups. Among the most common
approaches to such problems is to linearize the observations into a matrix and then take
top eigenvectors (“spectral methods”); thus, synchronization is often studied as a low rank
recovery problem, with a great richness of extra structure to be exploited. We now examine

a few of these problems in detail, along with the algorithmic challenges that they pose.

Community detection as Z/2 synchronization. The problem of partitioning a graph
into two well-connected subcommunities can be viewed as synchronization over the group
{#£1} = Z/2: each vertex has a latent group element g, € {£1}, its community identity, and
cach edge is a noisy measurement of the relative status g,g;' [14]. Spectral methods have
a long history of use in such community detection and minimum cut problems (e.g. [104]);
here one hopes to recover the community structure as the second eigenvector of an adjacency
or Laplacian matrix. However, this approach breaks down in sparse graphs: localized noise
eigenvectors associated to high-degree vertices dominate the spectrum. This is essentially a
failure of PCA to adequately exploit the problem structure, as these localized eigenvectors
lie far from the constraint that the truth is entrywise {£1}. A number of more structured
approaches have been shown to improve over PCA, including modified spectral methods
[103, 112, 132, 91, 90} and semidefinite programming [2, 75, 74, 1, 111]. A major algorithmic

challenge in this problem is to obtain an efficient algorithm that optimally exploits this
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structure, to obtain the minimum possible estimation error. It is widely believed that belief

propagation achieves this limit, with significant progress in this direction [53, 113, 56].

Gaussian Z/2 synchronization. The following Gaussian model of Z/2 synchronization

was introduced by [56] as a simplification of community detection. One observes

A 1
Y =Zzz' + —W,
n

i

where z € {£1}" is the signal to be recovered, W is a GOE matrix!, and A > 0 is a signal-
to-noise parameter. Each entry of Y represents a noisy measurement of the pairwise relative
alignment z,x,.

This estimation problem may be approached through ordinary PCA (top eigenvector),
which one might perform by initializing with a small random guess v and repeatedly assigning
v < Yv; this is the method of power iteration. Random matrix theory implies that in the
limit n — oo, this method achieves a nontrivial result as soon as A > 1 [69, 25]; it is known
that this threshold is tight in the sense that nontrivial estimation is information-theoretically
impossible when A < 0 [56, 120]. However, PCA does not achieve the minimum possible
estimation error when A > 1.

Aiming to better exploit group structure, Boumal [34] proposes? to iterate v < sgn(Yv),
where sgn rounds each entry to £1, thus projecting to the group. This method is highly
efficient, and is moreover observed to produce a better estimate than PCA once the signal-to-
noise parameter A is sufliciently large. However, this method does not appear to produce a
meaningful estimate until A is somewhat larger® than 1. This Behavior poses two challenges:
can we devise an efficient iterative method combining the best features of PCA and the
projected power method, which outperforms both statistically? As studied by [56], iterative

methods based on approzimate message passing are very effective in this setting, achieving

lGaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries A/(0, 1), diagonal
entries N'(0,2), and all entries independent (up to symmetry).

2Boumal’s paper targets the close variant of U(1) synchronization. Projected power methods have ap-
peared earlier, e.g. [110]. Their application to synchronization problems also appears in [41].

3A heuristic analysis similar to Section 2.6.3 suggests that A > /w/2 ~ 1.253 is required.
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an optimal estimation error that beats both methods discussed above (Figure 2-1). Moving
forward, can we find analogous iterative methods for groups other than Z/2, and for more

complicated observation models?

log error

14 1.6 1.8 2.0 22 24 26 28
A

Figure 2-1: Comparison of iterative algorithms for Gaussian Z/2 synchro-
nization; log-error In(1 — |(z,Z)/n|) versus SNR A. The three curves are
projected power iteration (green), PCA (blue), and the AMP algorithm
of the present thesis (black). (The special case of our AMP algorithm for
Z/2 appears in [56].) Each data point is an average of 200 trials with
n = 2000 vertices.

Angular synchronization and Gaussian U(1) synchronization. Singer [141] intro-
duced a PCA approach for angular synchronization, a 2D analogue of the problem above
with symmetry over U(1) (unit-norm complex numbers: z € C with |z| = 1), in which one
estimates the orientations of noisy, randomly rotated copies of an unknown image. Again, a

Gaussian simplification has been studied in [34]: one observes a matrix

A 1
Y = —zx*+ —=W,
n n

vn

where z € U(1)" is the signal to be recovered, a vector of unit complex numbers, and W is a

GUE matrix. Boumal’s algorithm now iterates v «— f(Yv), where f divides each entry by its
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norm, thus projecting to the unit circle. Again this method beats PCA only in a sufficiently
high SNR regime, leaving open the question: can we achieve optimal estimation through an
almost-linear-time, iterative algorithm? Results are known for slower convex programs [16].

The Gaussian model above is a rather drastic simplification of the problem of synchroniz-
ing entire images, however. A more elaborate Gaussian model (which the author and others
first introduced in [120]) is the following: instead of observing only the matrix Y as above,
suppose we are given matrices corresponding to different Fourier modes:

A 1
Y, = #xw + —ﬁWI,

A 1
Yy = 222 (a?) + =W,
n n

vn

Ak . 1
Yi = ——n—:cK(mK) + %WK,

where zF denotes entrywise power, and W}, are independent GUE matrices. Due to Fourier
theory, a very large class of measurement models for U(1) synchronization decomposes into
matrix-based observations on different frequencies, in a manner resembling the model above.

With a PCA-based approach, it is not clear how to effectively couple the information
" from these matrices to give a substantially better estimate than could be derived from only
one. Indeed, many spectral approaches to this synchronization problem and others apply
PCA to only the first Fourier mode, discarding a great deal of useful data on other modes.
Bandeira et al. [18] introduced a very general semidefinite relaxation for synchronization
problems such as above, but its performance remains unclear even empirically: while this
convex program can be solved in polynomial time, it is large enough to make experiments or
application difficult. Can we hope for some efficient iterative algorithm to strongly leverage

data from multiple ‘frequencies’ or ‘channels’ such as this?

Cryo-electron microscopy. Perhaps the biggest concrete goal in the study of synchro-

nization is the orientation problem in cryo-electron microscopy (cryo-EM), a modern alter-
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native to x-ray crystallography for imaging large biomolecules. One is given many noisy
2D projections (microscopy images) of an unknown molecule, each taken from a different
unknown 3D orientation. The goal is to estimate the orientations, in order to assemble the
images into an estimate of the molecule structure [142]. Thus, one is tasked with learning
elements g, of SO(3), one for each image u, based on some loss function derived from the
observed images. This loss function depends only on the relative alignments g, g;*, as there
is no a priori reference frame. One previous approach to this problem, due to [43, 142],
produces a matrix of pairwise image comparisons, and then attempts to extract the rota-
tions g, from the top eigenvectors of this matrix. However, it is reasonable to imagine that
this approach could be significantly sub-optimal, for the reasons seen above: PCA does not
exploit the significant group structure of the signal, and by linearizing into a single matrix,
PCA only exploits the first “Fourier mode” of the observations, as in the previous problem.

Another method used in practice for cryo-EM and related problems is alternating mini-
mization, which alternates between estimating the rotations by aligning the images with a
previous guess of the molecule structure, and then estimating the molecule structure from
the images using these rotations. This method only appears to succeed given a strong initial
guess of the molecule structure, and then it is unclear whether the final estimate mainly
reflects the observations or simply the initial guess, leading to a problem of model bias; see
e.g. [42]. In this thesis we are interested in de novo estimation without a substantial initial
guess, steering clear of this pitfall.

The complexity of the observation model and the group present a host of challenges, but
centrally: can an improved iterative algorithm for the previous synchronization problems

generalize to the noncommutative setting of groups such as SO(3)?

In this chapter we present an iterative algorithm to meet all of the challenges above.
Our algorithm aims to solve a general formulation of the synchronization problem: it can
apply to multiple-frequency problems for a large class of observation models, with symmetry
over any compact group. Our approach is statistically powerful, empirically providing a

better estimate than both PCA and the projected power method on U(1) synchronization,
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and leveraging multiple frequencies to give several orders of magnitude improvement in
estimation error in experiments (see Figures 2-4 and 2-5). Indeed, we conjecture based on
ideas from statistical physics that in many regimes our algorithm is statistically optimal,
providing a minimum mean square error (MMSE) estimator asymptotically as the matrix
dimensions become infinite (see Section 2.8). Finally, our approach is highly efficient, with
each iteration taking time linear in the (matrix) input, and with roughly 15 iterations sufficing

for convergence in experiments.

Our algorithm follows the framework of approzimate message passing (AMP), based on
belief propagation on graphical models [117] and the related cavity method in statistical
physics [106]. Following a general blucprint, AMP algorithms have previously been derived
and analyzed for compressed sensing [63, 64, 23, 81], sparse PCA [57], non-negative PCA
[110], cone-constrained PCA [59], planted clique [58] and general structured PCA [125]. In
fact, AMP has already been derived for Z/2 synchronization under a Gaussian observation
model [56], and our algorithm will generalize this one to all compact groups. A striking
feature of AMP is that its asymptotic performance can be captured exactly by a particular
fixed-point equation called state evolution, which has enabled the rigorous understanding of
its performance on some problems [23, 81]. AMP is provably statistically optimal in many
cases, including Gaussian Z/2 synchronization (modulo a technicality whereby the proof

supposes a small warm-start) [56].

AMP algorithms frequently take a form similar to the projected power method of Boumal
described above, alternating between a matrix—vector product with the observations and an
entrywise nonlinear transformation, together with an extra ‘Onsager’ correction term. In
the case of Z/2 or U(1) synchronization, we will see that the AMP derivation reproduces
Boumal’s algorithm, except with the projection onto the unit circle replaced by a soft,
sigmoid-shaped projection function to the unit disk (see Figure 2-2), with the magnitude
maintaining a quantitative measure of confidence. A “low-temperature limit” of AMP then
recovers exactly Boumal’s algorithm, while the “high-temperature limit” is ordinary PCA; we

will see that belief propagation suggests an optimal intermediate temperature based on the
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signal-to-noise ratio. Integrating the usual AMP blueprint with the representation theory
of compact groups, we obtain a broad generalization of this method, to synchronization
problems with multiple frequencies and noncommutative groups such as SO(3). In full
generality, the nonlinear transformation has a simple interpretation through representation

theory and the exponential function.

The rest of this chapter is organized as follows. We begin in Section 2.2 with an outline
of our methods in the simplified cases of synchronization over Z/2 and U(1), motivating our
approach from a detailed discussion of prior work and its shortfalls. In Section 2.3 we provide
our general algorithm and the general model for which it is designed. Several experiments
on this Gaussian model and other models are presented in Section 2.4, demonstrating strong
empirical performance. We then offer two separate derivations of our AMP algorithm: in
Section 2.5, we derive our algorithm as a simplification of belief propagation, and then in
Section 2.6 we give an alternative self-contained derivation of the nonlinear update step and
use this to provide a non-rigorous analysis of AMP (based on standard assumptions from
statistical physics). In particular, we derive the state evolution equations that govern the
behavior of AMP, and use these to identify the threshold above which AMP achieves non-
trivial reconstruction. Namely, we see that AMP has the same threshold as PCA (requiring
the SNR A to exceed 1 on at least one frequency), but AMP achieves considerably better
recovery error above the threshold. In Section 2.7 we argue for the correctness of the above
non-rigorous analysis, providing both numerical and mathematical evidence. It is known
that inefficient estimators can beat the A = 1 threshold (see Chapter 3) but we conjecture
that no efficient algorithm is able to break this barrier, thus concluding in Section 2.8 with an
exploration of statistical-to-computational gaps that we expect to exist in synchronization

problems, driven by ideas from statistical physics.
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2.2 Intuition: iterative methods for Z/2 and U(l) syn-

chronization

We begin with a discussion of synchronization methods over the cyclic group Z/2 = {£1}
and the group of unit-norm complex numbers (or 2D rotations) U(1). These examples will
suffice to establish intuition and describe much of the novelty of our approach, while avoiding
the conceptual and notational complication of representation theory present in the general
case. Sections 2.2.1, 2.2.2) and some of 2.2.3 discuss prior work on these problems in more

depth, while Sections 2.2.3 and 2.2.4 develop a special case of our algorithm.

2.2.1 Z/2 synchronization

The problem of Gaussian Z/2 synchronization is to estimate a uniformly drawn signal z €
{#£1}" given the matrix
A 1
Y = Zax’ + —=W,
n

vn
where W is a symmetric matrix whose off-diagonal® entries are distributed independently
(up to symmetry) as N(0,1), and A > 0 is a signal-to-noise parameter. With this scaling,
the signal and noise are of comparable size in spectral norm; we can not hope to recover z
exactly, but we can hope to produce an estimate ¥ € {+1} that is corrclated nontrivially
with z, i.e. there exists ¢ > 0 (not depending on n) such that 25 (z,Z)? > e with probability

1—o(1l) asn — oco. Aszzx' = (—x)(—z)"

, we can only hope to estimate x up to sign; thus
we aim to achieve a large value of (z,7)%. We now review three algorithmic methods for this

problem.

Spectral methods. With the scaling above, the spectral norm of the signal %:m:T is A,

while that of the noise %W is 2. By taking the top eigenvector of Y, x may be estimated

4The diagonal entries are irrelevant because the diagonal entries of Y contain no information about z.
Various conventions for the diagonal entries can be taken, such as Y;; = 0 or W;; ~ N(0,2). Any such
reasonable choice of diagonal entries will have negligible effect on the algorithms discussed here, e.g. the
diagonal component of Y is o(1) in spectral norm.
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with significant correlation provided that A is a large enough constant.

Specifically, the generative model for Y above is a special case of the spiked Wigner model,
and the eigenvalues and eigenvectors of such spiked models are among the main objects of
study in random matrix theory. When A > 1, the (unit norm) top eigenvector vmax(Y)
correlates nontrivially with z; more specifically, as n — oo, we have %(z, Vmax(Y))2 —
1 — 1/)? in probability [69, 25]. When A < 1, this squared correlation tends to zero; in
fact, this is known to be true of all estimators [56, 120], reflecting a sharp statistical phase
transition.

Note that a top eigenvector may be computed through power iteration as follows: an
initial guess v is drawn randomly, and then we iteratively compute v® = Yv(t=1), rescaling
the result as appropriate. Thus each entry is computed as o) = D ow Yuwvg_l); we can
imagine that each entry w sends a ‘message’ Yuwv,(,f'l) to each entry u — the ‘vote’ of entry w
as to the identity of entry u — and then each entry sums the incoming votes to determine its
new value. The result has both a sign, reflecting the weighted majority opinion as to whether
that entry should ultimately be +1 or —1, and also a magnitude, reflecting a confidence and
serving as the weight in the next iteration. Thus we can envision the spectral method as a
basic “message-passing algorithm.”

While this approach is effective as qu;:mtiﬁed above, it would seem to suffer from two

drawbacks:

e the spectral method is rotation-invariant, and thus cannot exploit the entrywise +1

structure of the signal;

e the vertex weights can grow without bound, potentially causing a few vertices to exert

undue influence.

Indeed, these drawbacks cause major issues in the stochastic block model, a variant of the
model above with the Gaussian observations replaced by low-probability Bernoulli observa-
tions, usually envisioned as the adjacency matrix of a random graph. Here a few sporadically
high—degree vertices can dominate the spectral method, causing asymptotically significant

losses in the statistical power of this approach.
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Projected power iteration. Our next stepping-stone toward AMP is the projected power
method studied by [34, 41], a variant of power iteration that exploits entrywise structure.
Here each iteration takes the form v® = sgn(Yv®V), where the sign function sgn : R —
{1} applies entrywise. Thus each iteration is a majority vote that is weighted only by the
magnitudes of the entries of Y'; the weights do not become more unbalanced with further
iterations. Further, this algorithm is basis-dependent in a way that plausibly exploits the
41 structure of the entries.

Empirically, this algorithm obtains better correlation with the truth, on average, when
A > 2.4 approximately; sec Figure 2-3. However, for very noisy models with 1 < A < 2.4,
this method appears weaker than the spectral method. The natural explanation for this
weakness is that this projected power method forgets the distinction.between a 51% vote
and a 99% vote, and thus is over-influenced by weak entries. This is particularly problematic
for low signal-to-noise ratios A, for which 51% votes are common. In fact, a heuristic analysis
similar to Section 2.6.3 suggests that this method does not achieve the correct threshold for

A, failing to produce nontrivial correlation with the truth whenever A < (/7/2 =~ 1.253.

Soft-threshold power iteration. A natural next step is to consider iterative algorithms
of the form v(® = f(Y V), where f applies some function R — [—1, 1] entrywise (by abuse
of notation, we will also denote the entrywise function by f). Instead of the identity function,
as in the spectral method, or the sign function, as in the projected power method, we might
imagine that some continuous, sigmoid-shaped function performs best, retaining some sense
of the confidence of the vote without allowing the resulting weights to grow without bound.
It is natural to ask what the optimal function for this purpose is, and whether the resulting
weights have any precise meaning.

Given the restriction to the interval [—1,1], one can imagine treating each entry as a
sign with confidence in a more precise way, as the expectation of a distribution over {+1}.
At each iteration, each entry u might then obtain the messages Yuwvg_l) from all others,
and compute the posterior distribution, summarized as an expectation vq(f) . As one can

compute, this corresponds to the choice of transformation f(¢) = tanh(At) where X is the
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signal-to-noise parameter from above (sce Figure 2-2). The resulting algorithm is similar to

[56].

Figure 2-2: Soft threshold functions used by AMP. The solid line is
f(t) = tanh(t), used for Z/2 synchronization. The dashed line is
f(t) = Li(2t)/I(2t), used for U(1) synchronization with one frequency.
(I denotes modified Bessel functions of the first kind.)

2.2.2 Belief propagation and approximate message passing

The soft-projection algorithm above may remind the reader of belief propagation, due to [117]
in the context of inference, and to [106| as the cavity method in the context of statistical
physics. We may envision the problem of estimating z as probabilistic inference over a
graphical model. The vertices of the model represent the unknown entries of z, and every
pair of vertices u, w participates in an edge interaction based on the matrix entry Y, = Y.
Specifically, it may be computed that the posterior distribution for z € {£1}" after observing
Y is given by
Pr(z) H exp(AYuw Luu),

u<w
which is precisely the factorization property that a graphical model captures.
Given such a model, belief propagation proceeds in a fashion reminiscent of the previ-
ous algorithm: each vertex w sends a message to each neighbor u encoding the posterior

distribution of z, based on the previous distribution of x,, and the direct interaction \Y,.
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Each vertex u then consolidates all incoming messages into a new ‘posterior’ distribution on
x, given these messages, computed as if the messages were independent. However, belief
propagation introduces a correction to this approach: rather than letting information passed
from w to u propagate back to w on the next iteration, belief propagation is designed to
pass information along only those paths that do not immediately backtrack. Specifically, at
each iteration, the message from w to u is based on only the synthesis of messages (to w)
from all vertices except u from the previous iteration.

This algorithm differs from the iterative methods presented above, both in this non-
backtracking behavior, and in the fact that the transformation from the distribution at w to
the message w — u is not necessarily linear (as in the multiplication Y,,,v, above). Both of
these differences can be reduced by passing to the framework of approzimate message passing
[63], which simplifies belief propagation in dense models with weak interactions, through the

following two observations (inspired by [145] in the theory of spin glasses):

e As the interaction Y, is small, scaling as O(1/y/n) as n — o0, we may pass to
an expansion in small Y,,, when computing the message w — u from the mean w.
In this example, we find that the message w — u should be Rademacher with mean
)\Yuwvg -1 + O(wa), where vg_l) is the mean of the distribution for z,, in the previous
iteration. This linear expansion ensures that the main message-passing step can be

expressed as a matrix—vector product.

e Rather than explicitly computing non-backtracking messages, which is computationally
more involved, we may propagate the more naive backtracking messages and then
subtract the bias due to this simplification, which concentrates well. This correction
term is called an Onsager correction. If vertex w passes messages to all neighbors based
on its belief at iteration ¢ — 2, and then all of these neighbors send return messages
based on their new beliefs at time ¢ — 1, then when updating the belief for vertex w
at time ¢, one can explicitly subtract off the ‘reflected’ influence of the previous belief
at time ¢t — 2. It turns out that this is the only correction necessary: all other error

contributions (e.g. 3-cycles) are o(1).

35



Following these simplifications, one can arrive at an approzimate message passing (AMP)

algorithm for Z/2 synchronization:

Algorithm 2.2.1 (AMP for Z/2 synchronization [56]).
e Initialize v(® to small (close to zero) random values in [—1, 1]. Initialize v~ = 0.
o Iterate for 1 <t < T:

— Set ¢c® = AY0® D — A2(1 — ((v¢Y)2))v-2)| the Onsager-corrected sum of in-

. coming messages.

— Set v = tanh(c,(f)) for each vertex u, the new estimated posterior mean.

e Return 7 = v(™) (or the approximate MAP estimate Z = sgn(v(?)) if a proper estimate

in {£1}" is desired).

Here {(v®~1)?) denotes the average of the squared entries of v*~1. Detailed derivations of
this algorithm appear in Sections 2.5 and 2.6 in much higher generality.

In the setting of Z/2 synchronization, an algorithm equivalent to the above approach
appears in [56], where a statistical optimality property is proven: if AMP is warm-started
with a state v(®) with nontrivial correlation with the truth, then it converges to an estimate of
z that achieves minimum mean-squared error (MMSE) asymptotically as n — co. The warm-
start requirement is technical and likely removable: if AMP is initialized to small randomness,
with trivial correlation O(1/+/n) with the truth, then its early iterations resemble PCA and
should produce nontrivial correlation in O(logn) iterations. The statistical strength of AMP
is confirmed empirically, as it appears to produce a better estimate than either PCA or the

projected power method, for every A > 1; see Figure 2-3.

2.2.3 AMP for Gaussian U(1) synchronization with one frequency

As a first step toward higher generality, consider the following Gaussian synchronization

model over the unit complex numbers U(1). The goal is to estimate a uniformly drawn
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signal z € U(1)™ given the matrix

Y = %mx* + 71_7;W,
where W is a Hermitian matrix whose entries are distributed independently (up to Hermitian
symmetry) as CN(0, 1), the complex normal distribution given by N (0,1/2) + N (0, 1/2)s,
and where A > 0 is a signal-to-noise parameter. As xz* is invariant under a global phase
shift of z, we can only hope to estimate up to the same ambiguity, and so we would like an
estimator Z that maximizes |(z,Z)|?, where the inner product is conjugated in the second

variable. Many of the previously discussed iterative techniques adapt to this new case.

Spectral methods. The same analysis of the spectral method holds in this case; thus
when A > 1, the top eigenvector achieves nontrivial correlation with x, while for A < 1, the

spectral method fails and nontrivial estimation is provably impossible [120].

Projected power method. After each matrix-vector product, we can project v® entry-
wise onto the unit circle, preserving the phase of each entry while setting the magnitude to
1. This algorithm is analyzed in [34] in a lower-noise regime, where it is shown to converge to
the maximum likelihood estimator. A heuristic analysis similar to Section 2.6.3 suggests that

this method does not achieve nontrivial correlation with the truth unless A > 2/y/7 ~ 1.128.

Soft-threshold power method. One might imagine applying some entrywise function
after each matrix—vector product, which preserves the phase of each entry while mapping
the magnitude to [0,1]. Thus the vector entries v, live in the unit disk, the convex hull of

the unit circle; these might be envisioned as estimates of the posterior expectation of x,.

Belief propagation & AMP. Belief propagation is somewhat problematic in this setting:
all messages should express a distribution over U(1), and it is not a priori clear how this
should be expressed in finite space. However, under the simplifications of approximate

message passing, the linearity of the message-passing stage enables a small summary of this
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distribution to suffice: we need only store the expectation of each distribution, a single value

in the unit disk. Approximate message passing takes the following form:
Algorithm 2.2.2 (AMP for U(1) synchronization with one frequency).
e Initialize v to small random values in the unit disk conv(U(1)). Initialize v(-) = 0.

e Iteratefor 1 <t < T:

— Set ¢® = AY oD — A2(1 — (|v®Y?))u(t=2) | the Onsager-corrected sum of incom-

ing messages.

— Set vff) = f(cq(f)) for each vertex u, the new estimated posterior mean. Here
f applies the function f(t) = I;(2t)/Io(2t) to the magnitude, leaving the phase

unchanged.

e Return 7 = v0 (or the approximate MAP estimate Z = phase(v(™)) if a proper

estimate in U(1)" is desired).

Here I} denotes the modified Bessel functions of the first kind. The function f is depicted
in Figure 2-2. Detailed derivations of this algorithm appear in Sections 2.5 and 2.6 in much

higher generality.

2.2.4 AMP for Gaussian U(1) synchronization with multiple fre-

quencies

Consider now the following more elaborate synchronization problem. The goal is to estimate

a spike ¢ € U(1)" from the observations

A1 1
= — * e
Y; nacx + \/ﬁwl’

1
Y, = égazz(mz)" + —=Ws,
n n

7
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A 1
YK = '—KQ,'K(.’I,'K)* + "“—WK,
n n

NG

where the W, are independent Hermitian matrices whose entries are distributed indepen-
dently (up to Hermitian symmetry) as CA(0, 1), the Ay > 0 are signal-to-noise parameters,
and z¥ denotes the entrywise kth power of z. This multifrequency Gaussian model was first
introduced by the author and others in [120]. The associated MAP estimation problem is

an instance of the non-unique games framework, introduced by [18].

Thus we are given K independent noisy matrix-valued observations of x; we can imagine
these observations as targeting different frequencies or Fourier modes. Given two indepen-
dent draws of A zz*/n + W/+/n as in the previous section, the spectral method applied to
their average will produce a nontrivial estimate of z as soon as A > 1/v/2. However, under
the multiple frequencies model above, with K = 2 and A\; = Ay = A, nontrivial estimation
is provably impossible for A < 0.937 (see Chapter 3); we present non-rigorous evidence in
Section 2.8 that the true statistical threshold should in fact remain A = 1. Thus the multiple
frequencies model would seem to confound attempts to exploit the multiple observations
together. However, we will discuss how AMP enables us to obtain a much better estimate

when A\ > 1 than is possible with one matrix alone.

Let us return to the issue of belief propagation over U(1), and of how to represent
distributions. One crude approach might be to discretize U(1) and express the density on
a finite subset of points; however, this is somewhat messy (e.g. the discretization may not
be preserved under rotation) and only becomes worse for more claborate groups such as
SO(3) (here one can not even find arbitrarily fine discretizations on which the group acts

transitively).

Instead, we could exploit the rich structure of Fourier theory, and express a distribution

on U(1) by the Fourier series of its density®. Thus, if ,ug) is the belief distribution at vertex

5A dense subset of distributions satisfies appropriate continuity assumptions to discuss their densities
with respect to uniform measure, a Fourier series, etc., and we will not address these analytic technicalities
further.
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w and time ¢, we can express:
(t)

dptw Z k8
= Vy,k€
dé/2n o
with v, = 1 and vy, _x = Upx. Computing the distributional message m—, from w to u,

we obtain

dm::-—l)u =1+ Z A (Y) ik0+0((y )2 )
d0/27r - k\1k)uw vw,k:e o uw/r
1<|k|<K

where we take Y_, = Y. As (Yi)ww is order 1/+/n in probability, this approximation will
be asymptotically accurate. Thus it suffices to represent distributions by the coefficients
vk With |k| < K. By conjugate symmetry, the coeflicients with 1 < k < K suffice. The

sufficiency of this finite description of each belief distribution is a key insight to our approach.

The other crucial observation concerns the remaining BP step of consolidating all incom-
ing messages into a new belief distribution. Aseach incoming message is a small perturbation
of the uniform distribution, the approximation log(1l + z) ~ z allows us to express the log-

density of the message distribution:

t+1

dm i
log —__wohu Z )\k(Yk)uw vakezkf? + O((Y.)'lzl’w)
dé/2n LK

We now add these log-densities to obtain the log-density of the new belief distribution, up

to normalization:

log ggg; + const. = Z (E /\k(Yk)uwvw,k> e* + O((YL)2,)-
1<Ik|SK \w#u

We thus obtain the Fourier coeflicients of the log-density of the new belief from the Fourier

coefficients of the density of the old belief, by matrix—vector products. Remarkably, this

tells us that the correct per-vertex nonlinear transformation to apply at each iteration is

the transformation from Fourier coefficients of the log-density to those of the density! In

other words, the transformation acts on Fourier series as composition with exp, followed

by normalization. (In section 2.6 we will see an alternative interpretation of this nonlinear
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transformation as an MMSE estimator.)

The only constraints on a valid log-density are those of conjugate symmetry on Fourier
coefficients; thus log-densities form an entire linear space. By contrast, densities are subject
to non-negativity constraints, and form a nontrivial convex body in R¥X. The latter space
is the analogue of the unit disk or the interval [—1,1] in the preceding examples, and this
transformation from the Fourier series of a function to those of its exponential (together with
normalization) forms the analogue of the preceding soft-projection functions.

We thus arrive at an AMP algorithm for the multiple-frequency problem:

Algorithm 2.2.3 (AMP for U (1) synchronization with multiple frequencies).

e For each 1 < k < K and each vertex u, initialize vff,)c to small random values in C and

initialize vf‘;l) =0.
e Iterate for 1 <t < T:

1. For each 1 < k < K, set c,(ct) = /\kka,(ct_l) —22(1 = (™)) the vector
of kth Fourier components of the estimated posterior log-densities, with Onsager
correction.

2. Compute 'v,(ct), the vector of kth Fourier components of the estimated posterior

densities.

e Return 7 = ng) (or some rounding if a proper estimate in U(1)" is desired, or even

the entire per-vertex posteriors represented by c(T)).

Again, a more detailed derivation can be found in Sections 2.5 and 2.6.

It is worth emphasizing that only the expansion

dpl
do/2n

log + const. = 2Re Z c,(;zveikg

1<k<K

is an accurate expansion of the estimated vertex posteriors. While this log-density is band-

limited, this still allows for the density to be a very spiked, concentrated function, without
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suffering effects such as the Gibbs phenomenon. By contrast, the finitely many v coefficients
that this algorithm computes do not suffice to express the Fourier expansion of the density,
and a truncated expansion based on only the computed coefficients might even become
negafive.

We conclude this section by noting that nothing in our derivation depended crucially
on the Gaussian observation model. The choice of model tells us how to propagate beliefs
along an edge according to a matrix—vector product, but we could carry this out for a larger
class of graphical models. The essential properties of a model, that enables this approach to

adapt, are:

The model can be expressed as a graphical model with only pairwise interactions:

Pr(z) « H LTy, Toy)-

ulw

e The interaction graph is dense (at least a constant fraction of pairs interact), with all

pair potentials individually weak (1 + O(1/+/n)).

e The pair potentials L,(T,, Z,,) depend only on the group ratio z,z;'. (This is the

core property of a synchronization problem.)

e The pair potentials £, are band-limited as a function of z,z', to some finite collection
of Fourier modes. This assumption (or approximation) allows the potentials to be

expressed by a finite number of parameters.

e The noise is independent across edges, and the noise on different Fourier modes is
uncorrelated. This is satisfied by the Gaussian model and is used in our derivation of

the Onsager correction.

The formulation of AMP for general models of this form is discussed in the next section.
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2.3 AMP over general compact groups

The approach discussed above for U(1) synchronization with multiple frequencies readily
generalizes to the setting of an arbitrary compact group G, with Fourier theory generalized
to the representation theory of G. Just as the Fourier characters are precisely the irreducible
representations of U(1), we will represent distributions over G by an expansion in terms of
irreducible representations, as described by the Peter—Weyl theorem. Under the assump-
tion (or approximation) of band-limited pairwise observations, it will suffice to store a finite
number of coefficients of this expansion. (Note that finite groups have a finite number of irre-
ducible representations and so the band-limited requirement poses no restriction in this case.
For infinite groups, the observations may not be band-limited, but we can approximately
them arbitrarily-well as such by taking sufficiently many of the most important irreducible

representations and discarding the rest.)

A geometric view on this is as follows. Belief propagation ideally sends messages in the
space of distributions on G; this is a form of formal convex hull on G, and is illustrated
in the case of Z/2 synchronization by sending messages valued in [—1,1]. When G is in-
finite, however, this space is infinite-dimensional and thus intractable. We could instead
ask whether the convex hull of G taken in some finite-dimensional embedding is a sufficient
domain for messages. The key to our approach is the observation that, when observations
are band-limited, it suffices to take an embedding of G described by a sum of irreducible

representations.

This section will be devoted to presenting our AMP algorithm in full generality, along
with the synchronization model that it applies to. In particular, the algorithm can run on the
general graphical model formulation of Section 2.3.2, but when we analyze its performance

we will restrict to the Gaussian observation model of Section 2.3.4.
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2.3.1 Representation theory preliminaries
Haar measure

A crucial property of compact groups is the existence of a (normalized) Haar measure, a
positive measure p on the group that is invariant under left and right translation by any
group element, normalized such that u(G) = 1 [40]. This measure amounts to a concept of
‘uniform distribution’ on such a group, and specializes to the ordinary uniform distribution

on a finite group. Throughout this chapter, integrals of the form

/G flg)dg,

are understood to be taken with respect to Haar measure.

Peter—Weyl decomposition

Fix a compact group G. We will be working with the density functions of distributions over
G. In order to succinctly describe these, we use the representation-theoretic analogue of
Fourier series: the Peter~-Weyl decomposition. The Peter-Weyl theorem asserts that L?(G)
(the space of square-integrable, complex scalar functions on G) is the closure of the span
(with coefficients from C) of the following basis, which is furthermore orthonormal with

respect to the Hermitian inner product on L*(G) [40]:

Rpar(9) = v/d, p(9)ats

indexed over all complex irreducible representations p of G, and all 1 < a < d,, 1 <b <
d, where d, = dimp. The representations are assumed unitary (which is without loss of
generality because any representation is isomorphic to a unitary one). The inner product is
taken to be conjugate-linear in the second input.

Since we want our algorithm to be able to store the description of a function using finite

space, we fix a finite list P of irreducible representations to use. From now on, all Peter—Weyl

44



decompositions will be assumed to only use representations from P; we describe functions
of this form as band-limited. We exclude the trivial representation from this list because we
will only need to describe functions up to an additive constant. Given a real-valued function

f: G — R, we will often write its Peter-Weyl expansion in the form
flg) = Z(fm Ry(9)),
p

where f; and R,(g) = \/E; p(g) are d, x d, complex matrices. Here p ranges over the
irreducibles in P; we assume that the functions f we are working with can be expanded
in terms of only these representations. The matrix inner product used here is defined by
(A, B) = Tr(AB*). The Peter—Weyl coefficients of a function can be extracted by integration

against the appropriate basis functions:
fo= [ Ree)f(0) 0

By analogy to Fourier theory, we will sometimes refer to the coefficients ]/‘;, as Fourier coef-

fictents, and refer to the irreducible representations as frequencies.

Representations of real, complex, and quaternionic type

Every irreducible complex representation of a compact group G over C is of one of three
types: real type, complex type, or quaternionic type [40]. We will need to deal with each of
these slightly differently. In particular, for each type we are interested in the properties of
the Peter—Weyl coefficients that correspond to the represented function being real-valued.

A complex representation p is of real type if it can be defined over the reals, i.e. it is
isomorphic to a real-valued representation. Thus in this case we assume without loss of
generality that we are working with a real-valued p. In this case it is clear that if f is a
real-valued function then (by integrating against R,) }; is real. Conversely, if ﬁ, is real then
the term (ﬁ, R,(9)) (from the Peter-Weyl expansion) is real.

A representation p is of complez type if p is not isomorphic to its conjugate representation
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p, which is the irreducible representation defined by p(g) = p(g). We will assume that the
complex-type representations in our list P come in pairs, i.e. if p is on the list then so is p.
If f is real-valued, we see (by integrating against R, and R,) that f:, = fT,;. Conversely, if
%, = f5 holds then (f,, R,(9)) + {f5 R5(g)) is real.

Finally, a representation p is of quaternionic type if it can be defined over the quaternions
in the following sense: d, is even and p(g) is comprised of 2 x 2 blocks, each of which encodes

a quaternion by the following relation:

) _ a+bi c+di
a+bi+ci+dk &

—c+di a—bi
Note that this relation respects quaternion addition and multiplication. Furthermore, quater-
nion conjugation (negate b,c, d) corresponds to matrix conjugate transpose. If a matrix is
comprised of 2 x 2 blocks of this form, we will call it block-quaternion. Now let p be of quater-
nionic type (and assume without loss of generality that p takes the above block-quaternion
form), and let f be a real function G — R. By integrating against R, we see that fp must
also be block-quaternion. Conversely, if f; is block-quaternion then (ﬁ,, R,(g)) is real; to see
this, write (fp, R,(9)) = Tr(ﬁRp(g)*), note that prR,,(g)* is block-quaternion, and note that

the trace of any quaternion block is real.

2.3.2 Graphical model formulation

As in Section 2.2.2, we take the standpoint of probabilistic inference over a graphical model.
Thus we consider the task of estimating g € G™ from observations that induce a posterior

probability factoring into pairwise likelihoods:

Pr(g) o [ Luw(gu, 9u)- 2.1)

u<w

We assume that the pair interactions L4, (gy, g») are in fact a function of gug;l € G, de-

pending only on the relative orientation of the group elements. This factorization property
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amounts to a graphical model for g, with each entry g, € G corresponding to a vertex u,

and each pair interaction £,,, represented by an edge of the model.

Taking a Peter—Weyl decomposition of log(L.,,,) as a function of g,g;* allows us to write:
'u,'w(gua gw - eXp Z < uw? p gugw > bl

where p runs over all irreducible representations of G. We require coefficients Y2, € C%>%
for which this expansion is real-valued (for all g,g;'). We also require the symmetry
Louww(Gu> 9w) = Lwu(gw, gu), which means Y2 = (Y2,)*. Let Y, be the nd, X nd, matrix
with blocks Y2 . For all u, define £,, =1 and Y2, = 0.

The input to our synchronization problem will simply be the coefficients Y,. These
define a posterior distribution u on the latent vector g of group elements, and our goal is to

approximately recover g up to a global right-multiplication by some group element.

We suppose that the observations are band-limited: Y, = 0 except on a finite set P of
irreducible representations. This will allow us to reduce all Peter~-Weyl decompositions to a
finite amount of relevant information. We will always exclude the trivial representation from
P: this representation can only contribute a constant factor to each pair likelihood, which
then disappears in the normalization, so that without loss of generality we can assume the

coefficient of the trivial representation to always be zero.

Many synchronization problems (for instance, sensor localization) have noise on each
pairwise measurement, and fit this graphical model formulation well. Other synchronization
problems (for instance, cryo-EM) are based on per-vertex measurements with independent
randomness; one can derive pairwise information by comparing these measurements, but
these pairwise measurements do not have independent noise and do not strictly fit the model
described above. Prior work has run into the same issue and achieved strong results nonethe-

less. Specifically, the non-unique games (NUG) model of [18] suggests the optimization
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problem of minimizing an objective

> fuwl(9uga))-

u<w

Such problems can be artificially placed into our framework by viewing them as the maximum

likelihood estimation problem corresponding to the graphical model above, with

Luw(9us gw) = exp(—B fuw(gugy’)) (2:2)

for an arbitrary positive ‘inverse temperature’ 5. For true probabilistic models, our approach
attempts Bayes-optimal inference (minimizing mean squared error), while the NUG approach
attempts maximum likelihood estimation which may have higher expected error. In our
approach, the maximum likelihood problem can be recovered by scaling up all potentials,
i.e. taking the low-temperature limit 8 — oo in (2.2).

One might also formulate a version of our model that allows node potentials, as seen for

instance in image segmentation [72] and some community detection problems [152]:

Pr(g) o< (H Euv(Qquw)) (H@(%)) ,

u<w

expressing a nontrivial prior or observation on each group element. Although this model
is compatible with our methods (so long as the node potentials are also band-limited), we

suppress this generality for the sake of readability.

2.3.3 AMP algorithm

We now state our AMP algorithm. The algorithm takes as input the log-likelihood coefficients
Y, € Crdexnde for each p in a finite list P of irreducibles (which must not contain the
trivial representation; also for each complex-type representation p in the list, p must also
appear in the list). The algorithm’s state at time ¢ is comprised of the Fourier coefficients

C;(,t) € Cndexd which are updated as follows.
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Algorithm 2.3.1 (AMP for synchronization over compact groups).

e For each p € P and each vertex u, initialize qu,o,,) to small random values in C and

initialize VJ,;I) =0.
o Iteratefor 1 <¢t<T:

— For cach p € P, set

CO =d;" Y Ve VD — d Ve PV " (d I — (VD) VY)Y,

wH#u w
the Fourier coefficients of the estimated posterior log-densities, with Onsager cor-

rection. Here |Y}% |* denotes the average squared-norm of the entries of Y.

— For each u and each p € P, set Vu(f,g = Ep(Ci(f)), where as in Section 2.2.4, the

nonlinear transformation

£,C) = [ Rig)exp (Z (Cors Ry (9)) ) dof [ exo ( (Cos B, <g>>)
(2.3)
takes the Fourier coefficients for a function f on G and returns those of expof,
re-normalized to have integral 1. These Vu(,t} are the Fourier coefficients of the

estimated posterior densities, truncated to the contribution from irreducibles P,

which suffice for the next iteration.

e Return the posteriors represented by Cg,), or some rounding of these (e.g. the per-

vertex MAP estimate).

This algorithm follows the intuition of Section 2.2, and derivations can be found in Sec-
tions 2.5 and 2.6.

Note that each iteration runs in time O(n?), which is linear in the input matrices. This
runtime is due to the matrix—vector products; the rest of the iteration takes O(n) time. We

expect O(logn) iterations to suffice, resulting in a nearly-lincar-time algorithm with respect
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to the matrix inputs. Some applications may derive from per-vertex observations that are
pairwise compared to produce edge observations, hacked into this framework by an abuse
of probability; our algorithm then takes nearly-quadratic time with respect to the vertex
observations. However, some such per-vertex applications produce matrices with a low-rank
factorization Y, = U,U, ;'— , for which the matrix—vector product can be performed in O(n)

time.

2.3.4 Gaussian observation model

Our AMP algorithm handles the general graphical model formulation above, but we will
be able to analyze its performance in more detail when restricted to the following concrete
Gaussian observation model (which we first introduced in [120]), generalizing the Gaussian
models of Section 2.2. First, latent group elements g, are drawn independently and uniformly
from G (from Haar measure). Then for each representation p in P, we observe the nd, x nd,

matrix
1

vnd,

Here X, is the nd, x d, matrix formed by vertically stacking the d, x d, matrices p(g.)

A
M, = %EX,,XF*, +

W,.

for all vertices u. A, is a signal-to-noise parameter for the frequency p. The noise W, is a
Gaussian random matrix drawn from the GOE, GUE, or GSE, depending on whether p is
of real type, complex type, or quaternionic type, respectively. In any case, W, is normalized
so that each off-diagonal® entry has expected squared-norm 1. To be concrete, in the real
case the entries are A(0,1) and in the complex case, the real and imaginary parts of each
entry are A (0,1/2). For the quaternionic case, each 2 x 2 block encodes a quaternion value
a + bi + ¢j + dk in the usual way (see Section 2.3.1) where a, b, ¢, d are N'(0,1/2). The noise
matrices W, are independent across representations except when we have a conjugate pair
of complex-type representations we draw M, randomly as above and define M; = ]_\_/.7; and

A5 = A,. Note that the normalization is such that the signal term has spectral norm A, and

5The diagonal entries (or diagonal 2 x 2 quaternion blocks) are unimportant, as discussed previously. One
natural choice is to zero out those entries of M,. Another is to take W, with diagonal entries (or blocks)
N(0,2) (real case), N(0,1) (complex case), or N'(0,1)Iz (quaternion case).
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the noise term has spectral norm 2.

The author and others first introduced the above Gaussian synchronization model in
[120]. Special cases of this model have been studied previously for synchronization over Z/2
or U(1) with a single frequency [16, 56, 82, 34] (previously implicit in {141]). In fact, [56]
derives AMP for the Z/2 case and proves that it is information-theoretically optimal. The
idea of optimizing objective functions that have information on multiple frequencies comes
from [18].

In Appendix A.1, we show how the Gaussian observation model fits into the graphical
model formulation by deriving the corresponding coefficient matrices Y,. In particular, we

show that Y, = d,\,M,, a scalar multiple of the observed Gaussian matrix.

2.3.5 Representation theory of some common examples

In this section we discuss the representation theory of a few central examples, namely Z/L,

U(1), and SO(3), and connect the general formalism back to the examples of Section 2.2.

Representations of Z/L and U(1). The irreducible representations of these groups are
one-dimensional, described by the discrete Fourier transform and the Fourier series, respec-
tively. U(1) has frequencies indexed by k € Z, given by p(g) = g* where g € U(1) (i.e.
a unit-norm complex number). All of these representations are of complex type. We will
say “U(1) with K frequencies’ to refer to the frequencies 1,..., K along with their con-
jugates, the frequencies —1,..., —K. Similarly, if we identify Z/L with the complex Lth
roots of unity, we have frequencies defined the same way as above, except to avoid redun-
dancy we restrict the range of k as follows. If L is odd, we allow k € {1,2,...,(L — 1)/2}
along with their conjugates (negations). If L is even, we have complex-type representations
ke{l1,2,...,L/2 — 1} (along with their conjugates), plus an additional real-type represen-
tation k = L/2. Again, “Z/L with K frequencies” means we take frequencies 1,..., K along
with their conjugates (when applicable).

For the case of Z/2 we can now see how the tanh function from the AMP algorithm of
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Section 2.2.2 arises as a special case of the nonlinear transformation £ occurring in AMP.
The only nontrivial representation of Z/2 is the ‘parity’ representation in which —1 acts as
—1. In this context, £ will first input the Fourier series of a log-density with respect to the
uniform measure on {£1}:

dfty
log Pu + const. = cz

dz

and evaluate this at =1 to obtain the values £c. We then compute the exponential of this
at each point to obtain the un-normalized density of e™¢ at —1 and e at 1. Normalizing,

the density values are e=¢/(e™¢ + €°) and e°/(e™¢ + €), so that the new parity coefficient is

o€ — e=¢
Eparity (€) = P tanh c.
Representations of SO(3). This group has one irreducible representation p;, of each odd
dimension d; = 2k + 1; the k = 0 representation is the trivial representation po(g) = 1,
and the k£ = 1 representation is the standard representation of SO(3) as rotations of three-
dimensional space. All of these representations are of real type, and may be described as
the action of rotations on the 2k + 1-dimensional space of homogeneous degree k spherical
harmonics. Frequently in the literature (for instance in molecular chemistry), a complex
basis for the spherical harmonics is given, and the representation matrices are the complex-
valued Wigner D-matrices; however, the representation can be defined over the reals, as is
demonstrated by any real orthogonal basis for the spherical harmonics. See e.g. Section I1.5 of
[40] for a more detailed account. As in the cases above, we will often refer to synchronization

problems over “SO(3) with K frequencies”, in which the observations are assumed to be

band-limited to the first K nontrivial irreducibles with 1 < & < K.

2.4 Experimental results

We present a brief empirical exploration of the statistical performance of AMP in various
settings, and as compared to other algorithms.

In Figure 2-3 we compare the performance of the spectral method, projected power
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Figure 2-3: Comparison of iterative algorithms for Gaussian Z/2 synchro-
nization. The horizontal axis represents the signal-to-noise ratio A, and
the vertical axis depicts the log-error In(1— |(z, Z)/n|) where z € {£1}" is
the ground truth and 7 € {£1}" is the (rounded) output of the algorithm.
The four curves are projected power iteration (green), soft-threshold power
iteration (red), spectral method (blue), and AMP (black). Each data point
is an average of 200 trials with n = 2000 vertices.

iteration, soft-threshold power iteration without an Onsager correction, and full AMP (see
Sections 2.2.1 and 2.2.2) for Gaussian Z/2 synchronization. The spectral method achieves
the optimal threshold of A = 1 as to when nontrivial recovery is possible, but does not achieve
the optimal correlation afterwards. The projected power method appears to asymptotically
achieve the optimal correlation as A — oo, but performs worse than the spectral method
for small A. Soft-thresholding offers a reasonable improvement on this, but the full AMP
algorithm strictly outperforms all other methods. This reflects the optimality result of [56]
and highlights the necessity for the Onsager term. The gains are fairly modest in this setting,
but increase with more complicated synchronization problems.

Figures 2-4 and 2-5 compare the performance of AMP on Gaussian U(1) synchronization
with multiple frequencies; see Section 2.2.4 for the model. In sharp contrast to spectral
methods, which offer no reasonable way to couple the frequencies together, AMP produces

an estimate that is orders of magnitude more accurate than what is possible with a single
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Figure 2-4: Gaussian U(1) synchronization
with K frequencies; from bottom to top,
K = 1,...,6. The signal-to-noise ratios
A, are all equal, with the common value
given by the horizontal axis. Each curve de-
picts the correlation |(x,Z)/n| between the
ground truth and the AMP estimate. Each
data point is an average of 50 trials with
n = 1000 vertices.

Figure 2-5: Here the vertical axis depicts
the log-error In(1 — |{z,Z)/n|). From top to
bottom: K =1,...,6:

frequency.

In Figures 2-6 and 2-7, we see similar results over SO(3), under the Gaussian model of
Section 2.3.4. This also demonstrates that AMP is an effective synchronization algorithm
for more complicated, non-abelian Lie groups.

This ability to exploit multiple frequencies represents a promising step toward improved
algorithms for cryo-electron microscopy, which may be viewed as a synchronization problem
over SO(3). Some previous approaches to this problem effectively band-limit the observa-
tions to a single frequency and then apply a spectral method [142], and the experiments in
Figures 2-4-2-7 demonstrate that our algorithm stands a compelling chance of achieving a

higher-quality reconstruction.

We remark that some numerical issues arise when computing the nonlinear transformation
£ in our AMP algorithm, which involves integration over the group. Our implementation of

& for U(1) and SO(3) is based on evaluating each log-density on a discretization of the group,
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Figure 2-6: Gaussian SO(3) synchroniza- | v —
tion with K frequencies; from bottom to e

top, K = 1,2,3. The signal-to-noise
ratios A, are all equal, with the com-
mon value given by the horizontal axis.
Each curve depicts the squared correlation
| X T X||¢/(nv3) between the ground truth
and the AMP estimate. Here X and X are
3n x n matrices where each 3 x 3 block en-
codes an element of SO(3) via the standard
representation (rotation matrices). Each
data point is an average of 5 trials with
n = 100 vertices.

Figure 2-7: Here the vertical axis depicts
the log-error In(1—||X T X||¢/(nV3)). From
top to bottom: K =1,2,3.

taking the pointwise exponential, and thus approximating each integral by a discrete sum.
This approach is somewhat crude but appears to work adequately in our experiments; there is
undoubtedly room for this numerical procedure to be improved. More sophisticated methods
may be necessary to obtain adequate results on any higher-dimensional Lie groups. Note also
that if the vertex posterior in question is extremely concentrated near a point, the numerical
value of each integral will depend significantly on whether this spike lies near a discretization
point; however, this should affect both the numerator and denominator integrals in (2.3) by

approximately equal factors, so as to have a minimal effect on the normalized value of £,.
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2.5 Derivation of AMP from belief propagation

In this section we derive the general AMP algorithm of Section 2.3 starting from belief

propagation, similarly to [64]. We begin with the belief propagation update step (see e.g.
[105]), writing messages ugﬂm as densities with respect to Haar measure:

dm(Hv dug—}u)
(t) H / Cuw gu7 gw)

g u—)v wHu,v

Here t denotes the timestep and Zu_ﬂ, is the appropriate normalization constant. Expand this
(positive) probability density as the exponential of an L? function, expressed as a Peter—Weyl

expansion:

= €Xp Z —w ,pab Rpab(gu) .

We can extract these Fourier coefficients C” by integrating against the basis func-

u—v,pab

tions above. Assume that p is not the trivial representation; then:

(¢-1)
Cz(ztlw ,pab T /Rpab(gu) IOg N“‘*“ d

d/.llz(j—}u)
/Rpab gu)log (t 1) H /ﬁuw(guagw d Juw dgu

u—)v wu,v Jw

(t-1)
/ Rour(gu) > log ( / exp (Z <Yu’;ﬁ,, p’(gu9;1)>) d‘;’;”“ dgw) dgu.

wH#u,v 4

/ . . . -
As the Y/ are small, we can pass to a linear expansion about these, incurring o(1) error as

n — o<

/ Rpab (gu
(t 1)

=>. > / / Rpab(QU) Y, P (9ugs )> ;”“d wdgu.

wH#u,v o

wH#u

o6

dpi=) dpl=R) dpls =
(log/ i dg +Z/ Y2, 0 (9ugm )> = gw// ig_’ dgw | dgu
Gw G w



To progress further, we will expand the middle factor of the integrand:

(Y £ (9u92")) = (Y80, 0/( gu)pTgw)*>

Z uw, a’b’ gu a'e’ P (gw)b’c’
a’b'c

Returning to the previous derivation:

Ct(tlv,pab = Z Z Z / / Rpab gu) uw, a'b'P (gu)ac 44 (gw)b' 4 dg dgw dgu

wHupy p adbc

(t-1)

- du=h
- Z ZZ uwa’b’/Rpab(gu)p,(gu)a/c’ dgu'/p,(gw)bfc/ l;_) dgw
G Guw

wFu,v pf a'bc

(t-1)

=d;'1 Z Z Z uwa'b’/ Rpab gu) p'a’c’(gu dgu /R o' ¢! gw)du::u dgw

w#u,w p a't'c

” dpis)
- d Z Z Z uw,a’b’ pp’(sa,a'(sb,c' / RP'b’C'(gw)d—_} dgw
w#uw p a’td G Quw
" dug 2
= d Z Z ww,ab’ / pr’b(gw - dgw
w#u,v W gw
In matrix form,
¢ dﬂg—gu)
01(‘2’” P d_ Z / R,(9w)——— dgu-
w#u,v

Let £: P, Cdxdr 5 P , Cde*de denote the transformation from the nontrivial Fourier

. (£) . . (t)
coefficients C,_,,, , of log %‘;i"— to the Fourier coefficients of Q’fizﬂ. Then we have

C, =4, Y YEE(CIT)).
wF#u,v
The map £ amounts to exponentiation in the evaluation basis, except that the trivial Fourier
coefficient is missing from the input, causing an unknown additive shift. This corresponds
(t)
to an unknown multiplicative shift in the output, which we correct for by noting that 9%‘5:—’—”-

should normalize to 1. Thus £ amounts to exponentiation followed by normalization.
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Explicitly, we can let

Loay(C) = /G Roa(9) exp (Z Cﬂa’URp'a'b'(Q)) dg.

pl albl

Then &Epu(C) = Lpab(C)/Liriv(C') where triv denotes the trivial representation Rev(g) = 1.

2.5.1 Onsager correction

In this section we complete the derivation of AMP by replacing the non-backtracking nature
by an Onsager correction term, reducing the number of messages from n? to n. This is

similar to the derivation in Appendix A of [23].

In order to remove the non-backtracking nature of the AMP recurrence, let us define

CH =d* Y YL E(CET))

’w—)u
w#u
= OQ(Q-M) P + 531)1) N3
where 63, p=d'YLE (C’Q(,t_)i)) Then, substituting cimy) =l — 585Y | we have

8 = d;" SoVaE, ({08, — 4y Yo (CSD)y)

u—w
w#u

~ A5 SO VEE(CE™) = 4 Y VE,DE | e-n ({47 VEE/(CL} |
wH#u wH#u

where D denotes the total derivative

~ a3 VEE(CE™) = 4N Y YELDE | s ({451 Y EE/(CE D}y ]
w#u w#u

Under the assumption that Y consists of per-edge O(n~='/2) noise and O(n™!) signal, the

error incurred in these two steps should be o(1). We thus reach an entirely non-backtracking
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recurrence where the first term is a message-passing step and the second term is the so-called
Onsager correction. It remains to simplify this. We focus on a single matrix coefficient of

the correction:

Ons{f) , =d' "> V8, 1DE,| cumn [{d 1Y £, (CU™ 2))}]

wF#u ¢
O o - )
—d ZZ "wacan |CS‘1)(dp’lY£u8p’(C£t 2)))€f
w#u p'cef
o€, cb _ ’ _
_d 12 Z uw acacp f'Cf.,tvl)dp’ly;ﬁu,ehgp'hf(ol(} 2)).
w#u p'cefh

As in the derivation of [23], we now make a few simplifying approximations which we expect
to be correct in the large-n limit. We expect sufficiently little correlation between the

quantity Y2, Y?”

uw.ac” wu,eh

and the other factors that, by the law of large numbers (since there
are many terms in the sum), we can replace this quantity by its expectation. We assume, as
in the Gaussian model, that the noise component of Y is independent across edges, across
frequencies, and across matrix entries (other than explicit dependencies such as symmetry).

It follows that the only terms in which Y2 Y” . has signiﬁcantly nonzero mean is when

uw,ac” wu,eh

Further replacing this

p=p,a=h,and ¢ = e. In this case we have Y = |Y4,, acl®-

uw,ac wu eh —

by its expected value (which we assume depends only on p) yields

O
O El.t)pab = d 2IY;:’;p' Z gpaf C(t 2)) Z Z s b C(t—l)

wFu €

where |Y{ |* denotes the average squared-norm of the entries of Y,,.

|2
typ

An interlude, understanding derivatives of &:

Ol pap

aC’p,cd :/G pab(g)Rp red\ g Cxp Z Op"a’b’Rp”a’b’( )dg

pl/ a/bl
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In particular,

Oliv _ PN
5C = /G R,ab(9) exp Z CoavRyay(g)dg

pa’t!

= Ipap.

Note the following convenient identity:

oI = Rl
> acpcic N (Z Rpcb(g)RpCf(g)> exp Y CoavRyan(9) dg
c pe c

G pa’t’

= d /G (Z p(g)cbp(g‘l)fc) exp ) CpavRywy(9)dg

pla’t!

=dp /G p(g7'9)pexp Y Caw Ryav(g)dg

pa'b
= dp5bf/ exp Z CyravRyav(9)dg
G pla’'ty

= dp(sbf.[triv(C).
Recalling that £,,(C) = Ipa(C)/Iiv(C), we have

1 F—
agpcb _ Liviv Ec BC,,:; - Zc LoevLpey
—~ 0Cpes IZ

triv

= dpbss = D Exer(C)Epes (C)

= (dp] — £,(C)*E,(C)) 1y

Thus we obtain the following form for the Onsager correction:

Ons,ff,)p =d, 2|Yt§'p|

25p(‘cq(‘t—2))M’£t), M;()t) = Z de B gp(cg_l))*gp(og—l))a
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with each AMP iteration reading as

e =d;? Z Y2,E,(CEY) — Ons{).

wAU

2.6 MMSE derivation and state evolution

The goal of this section is to derive the state evolution equations that govern the behavior of
AMP on the Gaussian synchronization model of Section 2.3.4 (in the large n limit). Along
the way, we will give an alternative derivation of the algorithm (excluding the Onsager term)
which shows that the nonlinear function £ has an interpretation as an MMSE (minimum
mean squared error) estimator. This derivation is similar to [56] and based on ideas first
introduced by [63]. We do not give a proof that the state evolution equations derived here

are correct (i.e. that AMP obeys them) but we will argue for their correctness in Section 2.7.

2.6.1 MMSE estimator

We begin by defining a ‘scalar’ problem: a simplification of the Gaussian synchronization
model where we attempt to recover a single group element from noisy measurements. We
will be able to analyze the Gaussian synchronization model by connection to this simpler
model. (This is the idea of single letterization from information theory.) Suppose there
is an unknown group element g drawn uniformly from G (Haar measure) and for each
irreducible representation p in our list P we are given a measurement u, = p,p(g) + 0,2,
(for some constants y,,0,). Here z, is a d, x d, non-symmetric matrix of Gaussian entries
(real, complex, or block-quaternion, depending on the type of p) with all entries (or blocks)
independent and each entry normalized to have expected squared-norm 1. (Note that z, is
the same as an off-diagonal block of the matrix W, from Section 2.3.4.) For p of complex
type, we only get a measurement u, for one representation in each conjugate pair, and
define u; = %,. The MMSE estimator for p(g) (minimizing the matrix mean squared error

—

Ellp(g) — p(9)|%) is simply the conditional expectation
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E [p(g)|{uq}q] = /h P exp (—Ziglluq*uqq(h)ll%) / /h GGexp( > 5o 2II’uq qu(h)II%>
= [ _omyexp (Z " g )/ | exp< §<uq,q<h)>)
=5, <{%uq} )

where

Folfund) = [ othyexs (qu,q(h») /[ ew (Z<wq,q<h») .

Here ¢ ranges over irreducible representations in our list P (which includes both ¢ and g for
representations of complex type). The likelihoods used in the above computation are derived
similarly to those in Appendix A.1. We recognize F as a rescaling of the function £ from

the AMP update step.

2.6.2 AMP update step

Consider the Gaussian observation model M, = i\;LBXpX; + \/—l—Tl—Wp from Section 2.3.4.
ndp
Similarly to [56], the MMSE-AMP update step (without Onsager term) is

()

where ¢ indicates the timestep and p!, o}, will be defined based on state evolution below.

Here the AMP state U; is nd, x d, with a d, x d, block for each vertex. F, is applied to
each of these blocks separately. We will motivate this AMP update step below, but notice
its similarity to the MMSE estimator above.
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2.6.3 State evolution

The idea of state evolution is that the AMP iterates can be approximately modeled as
‘signal’ plus ‘noise’ [63]. Namely, we postulate that Ult, = uf,Xp + o‘f)Zp for some constants
i, 0¢, where Z, is a nd, x d, Gaussian noise matrix with each d, x d, block independently
distributed like z, (from the scalar model) with Z; = Z_p for conjugate pairs. Recall X, has
blocks p(g,), the ground truth. Note that this sheds light on the AMP update step above:

at each iteration we are given U; , a noisy copy of the ground truth; the first thing we do is

to apply the MMSE estimator entrywise.

We will derive a recurrence for how the parameters 11, and o, change after one iteration.
To do this, we assume that the noise W, is independent from Z, at each timestep. This
assumption is far from true; however, it turns out that AMP’s Onsager term corrects for
this (e.g. [23]). In other words, we derive state evolution by omitting the Onsager term and
assuming independent noise at each timestep. Then if we run AMP (with the Onsager term
and the same noise at cach timestep), it behaves according to state evolution. We now derive

state evolution:

it
o =7, (o))
A 1 ut
— | 2ex x* q t ¢
< - X, ,+ _ndep) Fo ({ (02)2 (quq + (quq) }q)

. /\P * 1 t t
_ (?XPXP + ﬁwp) 7 ({quq n 7qu}q>

e\ 2
t _ (#
where v, = (E?)

A, 1

= 22X, X, F, ({*yéXq + ygzq}) N R ({7;Xq + 'ngq}() .
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First focus on the signal term:

Y .
2X,X; F, ({W;Xq + 'y};Zq}q) ~AX,E, ., [p(g) 7, ({7;(;(9) + \/’Ezq}q)]

where g is drawn from Haar measure on G, and z, is a non-symmetric Gaussian matrix of
the appropriate type (as in Section 2.6.1). Define Af, € C%*% to be the second matrix in

the expression above:

AL =E,., [p(g)*fp ({Wf,q(g) + \/’7_3211}(1)] :

We will see shortly that Af, is a multiple aﬁ, € R of the identity and so we can now write the

: t ; S
signal term as Apa,X,. Therefore our new signal parameter is ;" = Aya,.

We take a short detour to state some properties of Af), which we prove in Appendix A.2.

Lemma 2.6.1. A is a real multiple of the identity: A, = all,, for some af, € R. Further-

more, we have the following equivalent formulas for af,:
(i) Eqpz, [p(g)* 7 ({ta(9) + 2z}, )]
(1) By [Fp ()" Fp ()]
(iti) E,, [J—"p ({7;qu + ﬁzq}q)]
(i) Bz [Fp(--)" Fo(---)]
where --- denotes the argument to F, from the previous line.

Returning to state evolution, we now focus on the noise term:

1 t
ﬁW,,f-,, ({7qu + 7;zq}q) .
Each entry of this nd, x d, matrix is Gaussian. The variance (expected squared-norm) of
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entry (4, 7) is (approximately)

ndp 2 dp 2
1 1
f(thJr 7t2> — (7 7t2>
nd, pat o { " a q}q b dp kz { ad e q}q ki
1 *
d_ [fp( ) ]:p("')}jj
]
1
d_p( )J]
1
=d—paf,

. at
We therefore have the new noise parameter (o5t')* = =

t
a
To summarize, we now have the state evolution recurrence pbt' = Ayaf and (o5H)? = 22

2.6.4 Simplified AMP update step

Note that the state evolution recurrence implies the relation

t+1
Ho

(Urt>+1)2

=d,),.

Provided our initial values of p,,0, satisfy this relation (which can always be arranged by

scaling the initial U, appropriately), our AMP update step (without Onsager term) becomes
Ut = M, F, ({a,0U},)

This is convenient because we can implement AMP without keeping track of the state evolu-
tion parameters ,uﬁ,, of,. Also note that this variant of AMP matches the original derivation

after the rescaling C} = 1/d,\,U} (and excluding the Onsager term).

2.6.5 Reduction to single parameter (per frequency)

We will rewrite the state evolution recurrence in terms of a single parameter per frequency.

£\ 2
This parameter will be 7%, which was introduced earlier: 7! = (%ﬁi) . Recall the state
P
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t
evolution recurrence pb = A,al, and (o%t!)? = %ﬁ. We therefore have the update step
t+1y 2 (A,at)2
,Yt-!-l — Fp — P d - A2at.
P af;"l az /dp P p"p

Using part (iii) of Lemma 2.6.1 we can write this as:
’yf)H = /\f)]Equr F, ({')’;qu + ’Yé%}q) : (2.4)

This is the final form of our state evolution recurrence. The relation between p,,0,,7, can
be summarized as 7, = d,\pp, = dZA2072.

We expect that the state evolution recurrence (2.4) exactly governs the behavior of AMP
in the large n limit. Although the derivation above was heuristic, we discuss its correctness
in Section 2.7. There is a caveat regarding how it should be initialized (see Section 2.7)
but in practice we can imagine the initial « value is a small random vector. (Note that the
initialization v = 0 is problematic because state evolution will never leave zero.) We expect
that state evolution converges to some fixed point of the recurrence. Some complications
arise if there are multiple fixed points (see Section 2.8) but we expect there to be a unique
fixed point that is reached from any small initialization. This fixed point v* describes the
output of AMP in the sense that (following the postulate of state evolution) the final AMP
iterate is approximately distributed as U, =~ p; X, + 0,Z,, which in terms of v* is (up to
scaling) U, = v, X, + /73 Z,. (See [23] for the precise sense in which we expect this to be
true.) Note that one can use this to translate a v* value into any measure of performance,
such as MSE. This gives an exact asymptotic characterization of the performance of AMP
for any set of A, values. The most prominent feature of AMP’s performance is the threshold
at A = 1, which we derive in the next section.

One can check that our state evolution recurrence matches the Bayes-optimal cavity and
replica predictions of [82] for Z/2 and U(1) with one frequency. Indeed, we expect AMP to
be statistically optimal in these settings (and many others too; see Section 2.8), and this has

been proven rigorously for Z/2 [56].
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2.6.6 Threshold at A =1

In this section we use the state evolution occurrence to derive the threshold above which
AMP achieves nontrivial recovery. In particular, if A, < 1 for all frequencies p then the AMP
fixed point v* is equal to the zero vector and so AMP gives trivial performance (random
guessing) in the large n limit. On the other hand, if A, > 1 for at least one frequency p then

~* is nonzero and AMP achieves nontrivial recovery.

The zero vector is always a fixed point of state evolution. Whether or not AMP achieves
nontrivial performance depends on whether the zero vector is a stable or unstable fixed point.
Therefore we consider the regime where 7, is small for all p. When the input {wy}, to F, is

small, we can approximate F, by its linearization.

7 ({wad,) ~ / o(h) {1 n Z<wq,q(h>>} = / p(h) 3 (wy, a(h))

and so

7o ((nd) = f ot 2 i

gcd

= Z Wyed / p(h)abq(h)cd

ged h

1

= Z Wyed ?d'_épab,ch

ged [
_ Wpab

dp

which means 7, ({wq}q> ~ %f. Now the state evolution update step becomes

117 =BT ({1tha + i)
~ XE, Tr— (141 ¢
~ p g d Yo dp+ To*a
P

a2t
——/\p’yp.
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This means that when « is small (but nonzero), v, shrinks towards zero if A, < 1 and grows

in magnitude if A, > 1. We conclude the threshold at A = 1.

2.7 Correctness of state evolution?

In this section we justify the heuristic derivation of state evolution in the previous section
and argue for its correctness. We first discuss prior work that provides a rigorous foundation
for the methods we used, in related settings. We then show numerically that our AMP

algorithm obeys the state evolution equations.

2.7.1 Rigorous work on state evolution

State evolution was introduced along with AMP by [63], based on density evolution in the
sparse setting of LDPC codes [126]. It was later proven rigorously that AMP obeys state
evolution in the large n limit (in a particular formal sense) for certain forms of the AMP
iteration [23, 81]. In particular, Z/2 synchronization with Gaussian noise (a special case of
our model) falls into this framework and thus admits a rigorous analysis [56]. Although the
proofs of [23, 81] only consider the case of real-valued AMP, it has been stated [102] that the
proof extends to the complex-valued case. This covers our synchronization model over U(1)
with one frequency. In order to cover our general formulation of AMP over any group with
any number of frequencies, one needs to replace the complex numbers by a different real
algebra (namely a product of matrix algebras). We expect that this generalization should
follow from the existing methods.

There is, however, an additional caveat involving the initialization of state evolution. In
practice, we initialize AMP to small random values. Recall that we only need to recover
the group elements up to a global right-multiplication and so there exists a favorable global
right-multiplication so that our random initialization has some correlation with the truth.
However, this correlation is o(1) and corresponds to 4 = 0 in the large n limit. This means

that technically, the formal proof of state evolution (say for Z/2) tells us that for any fixed
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¢, AMP achieves v = 0 after ¢ iterations in the large n limit. Instead we would like to show
that after w(1) iterations we achieve a nonzero . It appears that proving this would require
a non-asymptotic analysis of AMP, such as [131]. It may appear that this initialization issue
can be fixed by initializing AMP with a spectral method, which achieves (1) correlation with
the truth; however this does not appear to easily work due to subtle issue about correlation
between the noise and iterates. In practice, the initialization issue is actually not an issue
at all: with a small random initialization, AMP consistently escapes from the trivial fixed
point (provided some A exceeds 1). One way to explain this is that when the AMP messages
are small, the nonlinear function F is essentially the identity (see Section 2.6.6) and so AMP
is essentially just the power method; this roughly means that AMP automatically initializes

itself to the output of the spectral method.

2.7.2 Experiments on state evolution

We now present experimental evidence that AMP obeys the state evolution equations. In
Figure 2-8 we show two experiments, one with U(1) and one with SO(3). In both cases we
see that the performance of AMP closely matches the state evolution prediction. We see
some discrepancy near the A = 1 threshold, which can be attributed to the fact that here we

are running AMP with finite n whereas state evolution describes the n — co behavior.

2.8 Statistical-to-computational gaps

In various settings it has been shown, using standard but non-rigorous methods from statis-
tical physics, that the analysis of AMP and state evolution yields a complete picture of the
various “phase transitions” that occur in a computational problem (e.g. [97, 96]). In some
settings, certain features of these predictions have been confirmed rigorously (e.g. [89, 22]).
In this section we will use these methods to give non-rigorous predictions about statistical-
to-computational gaps in the Gaussian synchronization model.

In Section 2.6.6 we have seen that (in the large n limit) AMP achieves nontrivial recovery
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Figure 2-8: AMP compared to the state evolution equations experimentally. Left: U(1)
with K frequencies, for K = 1,2,3,4 (from top to bottom) with n = 100. The solid line
is AMP and the dotted line is the state evolution prediction. The horizontal axis is the
signal-to-noise ratio A, which we take to be equal on all frequencies. The vertical axis is the
natural logarithm of error, which is defined as error = 1 — |(z,7)/n| € [0, 1] where z € U(1)"
is the truth and z € U(1)" is the (rounded) output of AMP. In particular, a log error value
of zero (top of the figure) indicates trivial recovery (random guessing), and lower values are
better. Right: SO(3) with K frequencies, for K = 1,2 (from top to bottom), with n = 50.
Now error is measured as error = 1 — ﬁ”X TX [lwe [0,1] where X, X are 3n x n matrices

whose 3 x 3 blocks encode elements of SO(3) via the standard representation (3D rotation
matrices).

if and only if A > 1 on at least one frequency. In this section, we will see that it is sometimes
statistically possible to succeed below this threshold, although no known efficient algorithm
achieves this. A rigorous analysis of an inefficient estimator has indeed confirmed that the
A = 1 threshold can be beaten in some cases (see Chapter 3); the non-rigorous computations

in this section give sharp predictions for exactly when this is possible.

2.8.1 Free energy

Recall the parameter v = {y,}, from the state evolution recurrence (2.4); v captures the
amount of information that AMP’s current state has about each frequency, with v, = 0
indicating no information and -, — oo indicating complete knowledge.

An important quantity is the Bethe free energy per variable (also called the replica sym-

metric potential function) of a state v, which for the Gaussian synchronization model is given
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(up to constants) by

1 1 1)
f('Y) = _Z de/\ﬁ + 5 Z dp7p + ZZ xg‘ - Ez lOg]Eg €xp (Z(p(g)a’}’pldp + \/’Y_PZP>>
p p p P P

where z, is a d, x d, matrix of ii.d. standard Gaussians (of the appropriate type: real,
complex, or quaternionic, depending on p), and g is drawn from Haar measure on the group.
We do not include the derivation of this expression, but it can be computed from belief
propagation (as in [96]) or from the replica calculation (as in [82]).

Roughly speaking, the interpretation of the Bethe free energy is that it is the objective
value that AMP is trying to minimize. AMP can be thought of as starting from the origin
v = 0 and performing naive gradient descent in the free energy landscape until it reaches a
local minimum; the value of 4 at this minimum describes the final state of AMP. (It can be
shown that the fixed points of the state evolution recurrence (2.4) are precisely the stationary
points of the Bethe free energy.) As is standard for these types of problems, we conjecture
that AMP is optimal among all polynomial-time algorithms. However, with no restriction on
efficiency, the information-theoretically optimal estimator is given by the global minimum of
the free energy. (This has been shown rigorously for the related problem of rank-one matrix
estimation [22].) The intuition here is that the optimal estimator should use exhaustive
search to enumerate all fixed points of AMP and return the one of lowest Bethe free energy.
Note that just because we can compute the v value that minimizes the Bethe free energy
it does not mean we can achieve this v with an efficient algorithm; = represents correlation
between the AMP iterates and the ground truth, and since the truth is unknown it is hard

to find iterates that have a prescribed 4.

2.8.2 Examples

We now examine the Bethe free energy landscapes of some specific synchronization problems
at various values of X, and discuss the implications. Our primary examples will be U(1)

and Z/L with various numbers of frequencies, as discussed in Section 2.3.5. Recall that
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references to U(1) or Z/L “with K frequencies” means that observations are band-limited to
the Fourier modes e**? with |k| < K.

Our first example is U(1) with a single frequency, shown in Figure 2-9. Here we sce
that the problem transitions from (statistically) ‘impossible’ to ‘casy’ (AMP achieves non-
trivial recovery) at A = 1, with no (computationally) ‘hard’ regime. In particular, AMP is

statistically optimal for every value of \.

0.2 - -0.62
0.1 -0.64
0.0
~0.66
-0.1
Y Y-, —0.68
=0.2
-0.70}
-0.3
i -0.72
—o. . i ’
%.O 0.2 0.4 0.6 0.8 1.0 1.2 0 7%.0 0.2 0.4 0.6 0.8 1.0 1.2
¥ ¥

Figure 2-9: Free energy landscape for U(1) with 1 frequency. Left: A < 1. The global
minimum of free energy occurs at v = 0, indicating that AMP or any other estimator
achieves zero correlation with the truth. Right: A > 1. Now the global minimum occurs at
nonzero 7, and this is achieves by AMP. Therefore AMP achieves the statistically optimal
MSE (mean squared error). This MSE departs continuously from zero at the A = 1 threshold.

Our next example is a single-frequency problem that exhibits a computational gap (a
‘hard’ phase). In Figure 2-10 we take the alternating group A, with its irreducible 3-
dimensional representation as the rotational symmetries of a tetrahedron. When A > 1,
AMP achieves statistically optimal performance but when X is below 1 but sufficiently large,
AMP gives trivial performance while the statistically optimal estimator gives nontrivial per-
formance. This means we have a computational gap, i.c. there are values of A below the
AMP threshold (A = 1) where nontrivial recovery is statistically possible.

Next we move on to some 2-frequency problems, where v is now a 2-dimensional vector.
In Figure 2-11 we see an example with no computational gap, and an example with a com-

putational gap. Note that the free energy landscape at the AMP threshold A = (1,...,1)

72



-1.845

—-1.850f

—1.855}

—1.860}

-1.865

1935 s 10 s 20 25 3.0 00 02 04 06 08 10 12z 14 1
g ]
(a) A = 0.8, impossible (b) A = 0.91, impossible
-2.6
-1.896
-2
-1.898}
~1.900 -28
o, ~1902 Mol
-=1.904}
-30
-1906}
-1.908 =31
-1.910 A -3.2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 16 o 1 2 3 4 5
v Y
(c) A =0.92, hard (d) A= 1.1, easy

Figure 2-10: Free energy landscape for A4 with 1 frequency: the standard 3-dimensional
representation (rigid motions of a tetrahedron). (a) A = 0.8. The global minimizer is v = 0
so no estimator achieves nontrivial recovery. (b) A = 9.1. A new local minimum in the free
energy has appeared, but the global minimum is still at ¥ = 0 and so nontrivial recovery
remains impossible. (¢) A = 9.2. AMP is stuck at 7 = 0 but the (inefficient) statistically
optimal estimator achieves a nontrivial v (the global minimum). AMP is not statistically
optimal. This computational gap appears at A ~ 0.913, at which point the global minimizer
transitions discontinuously from v = 0 to some positive value. (d) A = 1.1. AMP achicves
optimal recovery. The AMP ~ value transitions discontinuously from zero to optimal at

A=1

reveals whether or not a computational gap exists: there is a gap if and only if the global

minimum of free energy does not occur at the origin.
We now state some experimental results regarding which synchronization problems have
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Figure 2-11: Free encrgy landscape for 2-frequency problems at the critical value A = (1, 1).
Darker colors indicate lower free energy. Left: Z/6 with 2 frequencies. Here the origin is the
global minimizer of free energy and so there is no computational gap, i.e. nontrivial recovery
is statistically impossible when both A; and A, are below 1. Right: Z/5 with 2 frequencies.
Here the global minimizer (marked with an X) does not lie at the origin and so there is a
computational gap, i.c. there is a regime where nontrivial recovery is statistically possible
yet AMP fails.

computational gaps. For U(1) with (the first) K frequencies, there is a gap iff K > 3. For
Z/L with K frequencies, there is a gap for K > 3 and no gap for K = 1; when K = 2 there
is only a gap for L = 5. For SO(3) with K frequencies, there is a gap for all K > 1.

In Chapter 3 we will give some rigorous lower bounds for Gaussian synchronization
problems, showing for instance that U(1) with one frequency is statistically impossible below
A = 1. The non-rigorous results above predict further results that we were unable to show
rigorously, e.g. U(1) with two frequencies and Z/3 (with one frequency) are statistically
impossible below the A = 1 threshold.

In the examples above we saw that when every A is below 1, AMP gives trivial perfor-
mance, and when some A exceeds 1, AMP gives statistically optimal performance. However,
the behavior can be more complicated, namely AMP can exhibit nontrivial but sub-optimal

performance. In Figure 2-12 we show such an example: Z/25 with 9 frequencies.
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Figure 2-12: An example where AMP gives nontrivial but sub-optimal performance. Here we
take Z/25 with 9 frequencies. Set Ay = 0.8 for k = 1,...,8 and A\g = 1.1. Since we cannot
visualize the free energy landscape in 9 dimensions, we instead plot the state evolution
recurrence as it evolves over time (number of iterations t) from two different starting points.
The bottom two curves correspond to AMP’s performance, where we initialize v to be small:
v = (0.05,0.05). The solid line is 79 and the dashed line is v, (which is representative
of y2,...,7s). The top two curves correspond to a “warm start” v = (0.7,0.7). We sec
that with the warm start, state evolution converges to a different fixed point with larger ~
values, and thus better correlation with the truth. Furthermore, this fixed point has lower
free energy (not shown) than the lower one, indicating that the information-theoretically
optimal estimator outperforms AMP.
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Chapter 3

Synchronization: contiguity and rigorous

bounds

This chapter is adapted from joint work with Amelia Perry, Afonso Bandeira, and Ankur
Moitra [120]. The journal version [122] is comprised of the first part of the preprint [120];

this chapter is based primarily on the second part but shares some content with [122].

3.1 Introduction

In the previous chapter we gave a sharp but non-rigorous analysis of the Gaussian synchro-
nization model, determining the optimal mean squared error achievable for any given value
of the signal-to-noise parameter(s) A. In particular, we identified a threshold at A = 1, above
which AMP (or simply PCA) achieves nontrivial correlation with the truth. The goal of
this chapter is to rigorously investigate whether the A = 1 threshold is optimal, i.e. whether

there is any estimator that can succeed when A < 1.

Take for example, the simple case of Z/2 synchronization: we observe

A 1
Y =22z + = 3.1
~zz + \/T_LW, (3.1)
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where z € {£1}" is the signal to be recovered, W is a GOE matrix!, and A > 0 is the
signal-to-noise parameter.

We are interested in the following statistical questions:

e Detection: For what values of \ is it possible to consistently distinguish (with proba-
bility 1 —o(1) as n — o) between a random matrix Y drawn from the Z/2 model and

a pure noise matrix (A = 0)?

e Recovery: For what values of A does there exist an estimator that achieves non-

vanishing correlation with z as n — co0?

Random matrix theory gives a precise analysis of PCA (top eigenvector) for the Z/2

model:
Theorem 3.1.1 ([69, 25]). Let Y be drawn from the Z/2 model (3.1).

o If A < 1, the top eigenvalue of Y converges almost surely to 2 as n — oo, and the
top (unit-norm) eigenvector v has trivial correlation with the spike: (v,z)? — 0 almost

surely.

e If )\ > 1, the top eigenvalue converges almost surely to \A+1/\ > 2 and v has nontrivial

correlation with the spike: (v,z)? — 1 —1/)? almost surely.

Therefore PCA solves the detection and recovery problems precisely when A > 1. Our goal
is now to investigate whether any method (perhaps having nothing to do with eigenvalues
or eigenvectors) can beat this threshold. (Recall that although AMP outperforms PCA in
terms of mean squared error once above the threshold, it does not achieve a better threshold.
In this chapter, we will only be concerned with the threshold.)

Our focus in this chapter will be on proving non-detection lower bounds, i.e. proving
that the detection problem is statistically impossible when A is below a certain value. To do

this, we will use a second moment method associated with the classical notion of contigusty

1Gaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries A’(0,1), diagonal
entries A'(0,2), and all entries independent (up to symmetry).
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[92]. If we can compute a particular second moment and show that it is finite, non-detection
follows immediately. This method has been used recently to study detection thresholds in

the stochastic block model {114, 19] and other planted models [109, 20}.

Curiously, there is no formal relation between detection and recovery in general; there
are simple (but pathological) example of problems for which one is possible but not the
other. However, for all the problems considered in this chapter, we expect that the detection
and recovery thresholds are identical. (This is known to be true, for instance, for the Z/2
model: both the detection and recovery thresholds occur at A = 1 [56, 120].) For models
with Gaussian noise, [20] give a general method to transfer non-detection lower bounds to

non-recovery lower bounds.

To give a broader perspective, we remark that the Z/2 model above is a special case of the
spiked Wigner model from random matrix theory, in which the signal (“spike”) z is any vector
of norm \/n (not necessarily entrywise £1). Theorem 3.1.1 holds in this more general setting
and so PCA exhibits a threshold at A = 1. An analogous spectral threshold (the celebrated
BBP transition [12]) occurs in the related spiked Wishart (covariance) model. Work by
the author and collaborators [120, 119] uses the second moment method to investigate the
statistical detection threshold for spiked Wigner, spiked Wishart, and spiked tensor models;

various assumptions on the structure of the signal x are considered.

The second moment method does not always give a sharp lower bound on the detection
threshold. In cases where it is loose, it can sometimes be strengthened by conditioning
away from certain “bad” events that are extremely rare but cause the second moment to
blow up. In this chapter, we will make use of a variant of this idea due to [19]. More
involved conditioning methods (due to the author and others) can give even tighter bounds
[119, 20]. More generally, modified second moment methods of a similar nature have appeared
in contexts such as branching Brownian motion [39], branching random walks [8, 36}, the
Gaussian free field [33, 38, 37], cover times for random walks [54], community detection
in random networks [11, 150], and thresholds for random satisfiability problems (e.g. k-

colorability, k-sat) [48, 49, 47, 45, 46].
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For the related question of determining the recovery threshold, sharp bounds have been
achieved in some settings using methods based on the I-MMSE formula (e.g. [56, 57]), and
interpolation methods (e.g. [22, 95]). Some of these methods also give sharp bounds on the
detection threshold [44, 9].

In this chapter we study the Gaussian synchronization model defined in the previous
chapter, as well as a simpler “truth-or-Haar” model for synchronization over finite groups.
As discussed above, we give lower bounds on the detection threshold using the notion of
contiguity and the associated second moment method. We furthermore give upper bounds
on the detection threshold by analyzing inefficient algorithms based on exhaustive search.

The rest of this chapter is organized as follows. In Section 3.2 we define contiguity and
present the second moment method which will be the core of our proofs. In Section 3.3 we
define the truth-or-Haar model and give both lower and upper bounds. In Section 3.4 we

recall the Gaussian synchronization model and give both lower and upper bounds.

3.2 Contiguity and the second moment method

Contiguity and related ideas will play a crucial role in this chapter. To give some back-
ground, contiguity was first introduced by [92] and since then has found many applications
throughout probability and statistics. This notion and related tools such as the small sub-
graph conditioning method have been used to establish many fundamental results about
random graphs (e.g. [128, 80, 108]; see [153] for a survey). It has also been used to show
the impossibility of detecting community structure in certain regimes of the stochastic block
model [114, 19]. We will take inspiration from many of these works, in how we go about

establishing contiguity. It is formally defined as follows:

Definition 3.2.1 ([92]). Let distributions P,, @, be defined on the measurable space
(Q, Fn). We say that the sequence P, is contiguous to @,, and write P, < @y, if for

any sequence of events A,, @Qn(A4,) > 0 = P,(4,) = 0asn — oco.

Contiguity implies that the distributions P, and @,, cannot be reliably distinguished in the
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following sense:

Claim 3.2.2. If P, <@, then there is no a statistical test D that takes a sample from either
P, or @, (say each is chosen with probability ) and correctly outputs which of the two

distributions it came from with error probability o(1) as n — oo.

Proof. Suppose that such a test D exists. Let A, be the event that D outputs ‘P,.” Since
D succeeds reliably when the sample comes from @Q,,, we have Q,(A4,) — 0 (as n — o0). By
contiguity this means P,(A,) — 0. But this contradicts the fact that D succeeds reliably

when the sample comes from P,,. O

Note that P, < @, and @, < P, are not the same. Nevertheless either of them implies
non-distinguishability. Also, showing that two distributions are contiguous does not rule out
the existence of a test that distinguishes between then with constant probability. In fact, for
many pairs of contiguous random graph models, such tests do exist.

Our goal in this chapter is to show thresholds below which planted and pure noise models
are contiguous. We will do this through computing a particular second moment, related to

the x?-divergence as 1 + x?(P,||Q.), through a form of the second moment method:

Lemma 3.2.3 (explicit in [109], implicit in earlier work). Let {P,} and {Q,} be two se-

quences of probability measures on (2, F,.). If the second moment

g(52)]

ezists and remains bounded as n — oo, then P, < Q,.

All of the contiguity results in this chapter will follow through Lemma 3.2.3. The roles
of P, and @, are not symmetric, and we will always take P, to be the spiked distribution
(where a planted signal is present) and take @,, to be the unspiked (pure noise) distribution,
as the second moment is more tractable to compute in this direction. We include the proof

of Lemma 3.2.3 here for completeness:
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Proof. Let {A,} be a sequence of events. Using Cauchy-Schwarz,

PA) = [ dP,=

Mk AndQndQ"—\//n (i) @[ 2@

(dQn) VQn{Aa)

The first factor is bounded; so if Q,(A,) — 0 as n — oo, we must also have P,(A,) =0, as

desired. O

There will be times when the above second moment is infinite but we are still able to
prove contiguity using a modified second moment that conditions on ‘good’ events. This

idea is based on [19].

Lemma 3.2.4. Let w, be a ‘good’ event that occurs with probability 1 — o(1) under P,. Let
P be the conditional distribution of P given wy. If

~ 2
E dP,
Qn |\ d@n

remains bounded as n — oo, then P, < Q,,.

Proof. By Lemma 3.2.3 we have P, <1Q,. This implies P, <Q,, because Pn(An) — 0 implies
P,(A,) — 0 (since P,(w,) — 1). O

3.3 The truth-or-Haar model

3.3.1 Main results

In this section we study a very simple model for synchronization over finite groups: for each
pair of group elements we either observe the true relative group element, or a uniformly

random one.

82



Definition 3.3.1. Let G be a finite group and let p > 0. In the truth-or-Haar model
ToH(p, G) we first draw a vector g € G* where each coordinate g, is chosen independently
from uniform (Haar) measure on G. For each unordered pair {u,v} (with u # v), with
probability p = —\% let Yy = gug;!, and otherwise let Yy, be drawn uniformly from G.
Define Y,, = (Yu)™' and Y,, = 1 (the identity element of G). We reveal the matrix

Y e G

The truth-or-Haar model is not interesting for infinite groups G. This is because if G is
infinite, the detection problem can be solved for any p > 0 by checking whether there is a
consistent triangle, i.e. three vertices u, v, w such that Y,,Y, Y., = 1.

This problem has been studied previously by [141] for the case where the group G is the
cyclic group Z/L. It is important to note that since we only have pairwise measurements,
we can only hope to recover the group elements up to a global right-multiplication by some
group element.

(141] shows that for G = Z/L there is a spectral approach that succeeds at detection and
recovery above the threshold p > 1. Specifically, the spectral method identifies each group
element with a complex Lth root of unity and takes the top eigenvalue (and eigenvector) of
the complex-valued observed matrix Y. We expect that an efficient algorithm for detection
exists for any finite group above this p = 1 threshold: for instance, if the group has a Z/L
quotient (for any L) we can apply the Z/L spectral algorithm.

Using the second moment method, we will prove the following lower bound for the truth-

or-Haar model:

Theorem 3.3.2. Let G be a finite group of order L and let p > 0. If

- v a [2(L—=1)log(L—1)
p<pL_\/ L(L-2)

then ToH(G, p) is contiguous to ToH(G,0). For L = 2, p5 = 1 (the limit value of the 0/0
expression,).
The proof will span Sections 3.3.2 and 3.3.3. We provide some numerical values for the
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critical value p*.

L2 3 4 5 6 10 100
p* || 1]0.961|0.908 | 0.860 | 0.819 | 0.703 | 0.305

Note that this lower bound matches the spectral threshold 5 = 1 when L = 2, but does
not match it for L > 3. We also give an upper bound for the truth-or-Haar model using an

inefficient algorithm:

Theorem 3.3.3. Let G be a finite group of order L > 2. If

4log L
L-1

p>

there is a computationally inefficient algorithm that can distinguish between the spiked and

unspiked models.

The proof will be given in Section 3.3.4.

For small L, this theorem is not very interesting because the right-hand side exceeds the
spectral threshold of 1. However, for L > 11, the right-hand side drops below 1, indicating
that it is information-theoretically possible to go below the spectral threshold. However, we
expect that no efficient algorithm can beat the spectral threshold.

As L — o0, this upper bound differs from the lower bound of Theorem 3.3.2 by a factor of
V2. Here we expect that the upper bound is asymptotically tight and that the lower bound
can be improved by a factor of v/2 (asymptotically) using a more sophisticated conditioning
method of the author and others [119]; here the event conditioned on depends not only on

the signal but also on the noise.

3.3.2 Second moment computation

We will now establish contiguity results in the truth-or-Haar model. Let p = % Let P, be
the ‘spiked’ model ToH,(p,G) and let @, = ToH,(0,G) be the ‘unspiked’ model in which
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the observations are completely random. We give an upper bound on the second moment:

dQn gH 1/L ’

u<v

=E HY E (PL1{Yur = 9u9," ]+ 1= P)(PLL Y = g,(61) 7] +1 =)

~5 1l

dr,\?
(dQn )

E (P°L*2g.9," = Yur = 9u9,"] +P(1 = D)L 1[Yay = 95,

+p(1—p)L1[Y, =g,(g,) "1+ (1 —p)?)

= E [[0+ 9 (L1lgs = 6,097 - 1))

9.9

n

u<v
= E [[+p*(L1lg;'g, = g;7g] — 1))
9.9 u<v
< E [[exp [P*(L1]g;" gl = g7'9)] — 1)]
9.9 u<v
< E,chp [ (L1lg; g, = 95 9,) — 1)]
9.9

—n2p2 —
=e " E exp{ Zlgu g;=gv19;]}

3.3.3 The conditioning method

Our next step will be to make use of a result of [19] (Proposition 5) involving boundedness
of a particular expectation involving multinomial random variables. We refer to this as the
conditioning method because it involves conditioning away from bad events via Lemma 3.2.4.
For convenience, we restate the setup and result of [19].

Let A, denote the simplex {(m,...,mg) : m >0, >, m = 1}. For m € Ay, let Ap(n)

denote the set of ¢ X ¢ matrices whose row- and column-sums are given by m, namely:

q q
qu(ﬂ') = {Ot € quq Qg Z OVZ], ZOLL']' =T V], Zaij = T VZ}

i=1 Jj=1
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Fix a ¢ X ¢° matrix A and some 7 € A,. Let @ € Ap(n) be given by @; = mm;, let
N ~ Multinomial(n, &), and X = (N —na&)/+/n. Fix a sequence a,, such that \/n < a, K n
and define 2, to be the event that | >, N;; — nm;| < a, Vj and IZ] N;j — nm| < a, Vi
Since v/n < a,, the probability of §2,, converges to 1.

Proposition 3.3.4 ([19] Proposition 5). Define

2 sup (a— a)TA(_a —a)
aEqu(ﬂ) D(a’a a)

m

where D is the KL divergence: D(a, &) = }_,; aijlog(aij/@i;). If m <1 then
E[lg, exp(XTAX)] = Eexp(ZT AZ) < oo,
as n — oo, where Z ~ N(0,diag(a) — &a'). If instead m < 1 then
E[lq, exp(XTAX)] = oo

as n — o0.

The intuition behind the above result is the following. Think of & = N/n so that
X = \/n(a—&). Thus we can write exp(X T AX) = exp(n(a—a&)" A(a—a)). The probability

that a particular « occurs is asymptotically exp(—nD(a, @)). This means

E[lq, exp(X T AX)] ~ / exp[n((a — @)" A(a — @) — D(a, @))] (3.2)

(s

where the integral is over a values for which Q,, holds. Now apply the saddle point method
(also called Laplace’s method): as n becomes large, (3.2) is dominated by the value of o for
which

(a —a)"A(a — @) — D(a, @) (3.3)

is maximized. In particular, (3.2) is bounded as n — oo if (3.3) is negative for every

a € Apz(m). Rearranging this yields the condition m < 1 in Proposition 3.3.4. The fact that
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we are restricting to the event 2, helps us here; if we did not include the indicator 1q , we
would have to change Apz(7) to Agp (the simplex of dimension ¢?) in the definition of m,

which in some cases gives a larger value of m and thus a weaker result.

Let us now see how to use Proposition 3.3.4 to bound a conditional variant of the second
moment from Section 3.3.2. Let ¢ = L and = = (1/L,...,1/L) € A,. For a vector g € G",
let w,(g) be the event

{u s 9= a}l =n/L| < an.

- 2 ~
We will compute the conditional second moment Eg, [(ggn) ] where P is the conditional
distribution P,|w,(g). Our goal is to show that this conditional second moment remains

bounded as n — oo so that contiguity P, < @, follows from Lemma 3.2.4.

Similarly to Section 3.3.2, we compute

dP,
dQn,

_n 2L - _
< (L+o(1))e™™ 2 E walg)wn(g) exp [pT > 1gtg. =g 192]] :

u,v

Let Ny = [{u]g. = a, g}, = b}| and note that N ~ Multinomial(n, &) where & = 751;2.

Define Q,, as above (depending on N). Let X = % € RY, and let A be the L? x L?

matrix Agp oy = ‘i—l‘ll{a"lb = a7} where (recall) p = % We can now write
dpP,

dQ, < (1+0(1)) E[1q, exp(X TAX)]

.\ 2
and so by Proposition 3.3.4 we have that Eg, l:(gg:) ] is bounded provided

sup (o —a)TA(a — @)

— < 1.
€A 2 (m) D(a, @)
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Rewrite the numerator:

(a—a)"A(a—a) =a'Aa —2a"Aa +a' Aa

~2
— p L -1y _ =137 2 1
—T(Z aabaa:b:]l{a b=a b}_f+f

aba’t!

~2
_p°L s 1
_T<Zah‘2>

heG

where an = 37, 1 es, @b and Sy = {(a,b)[a”'b = h}.
In Appendix B.1 we prove the following result which provides the solution to the opti-

mization problem above and thus completes the proof of Theorem 3.3.2.

Proposition 3.3.5. For L > 2,

su L (Checoi — 1) L(L - 2)
2 D(a,a) | 2(L—1)log(L —1)

where a ranges over (vectorized) nonnegative L x L matrices with row- and column-sums
equal to . When L = 2, the right-hand side is taken to equal 1 (the limit value of the 0/0

expression).
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3.3.4 Upper bound via exhaustive search

In this subsection, we show that exhaustive search outperforms spectral methods in the

Truth-or-Haar Model when L is large enough. Specifically, we prove Theorem 3.3.3.

We will use an inefficient algorithm based on exhaustive search over all candidate solutions
g € G". Given an observed matrix Y valued in G, let T(g) be the number of edges satisfied
by g, i.e. the number of unordered pairs {u,v} (with u # v) such that Y,, = g.g;*. The
algorithm will distinguish between P, = ToH(G,p) and @, = ToH(G,0) by thresholding

T = maxgecn T(g) (at some cutoff to be determined later).

Suppose Y is drawn from P, and let ¢* € G™ be the true spike. Then T'(g) ~ Binom(N, p’)
where N = (g) and p' =p+ l—iﬂ. By Hoeffding’s inequality,

o 242
Po(T(g") < Np'— k) S exp { ——~
which in turn implies P, (T(g*) < Np' — nlogn) = o(1).

Now suppose Y is drawn from @,, and fix any g € G™. Then T'(g) ~ Binom(N,1/L). By
the Chernoff bound,
Qn(T(9) 2 k) < exp (-ND(k/N||1/L))

where D (a | b) = alog(a/b) + (1 — a)log((1 — a)/(1 — b)). By a union bound over all L"

)

choices for g,

Np' —nlogn
N

1-— 1 1
= exp (nlogL— ND (p+ Te —(’)(Oin) “ Z))

=exp(nlogL — ND(1/L+ A|1/L))

Qn(T > Np' —nlogn) < L™ exp (—ND (
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where A = p(1 —1/L) — O (*%2) = ’3(1‘\/5[41) -0 (%)

n

= exp —nlogL ~N ((1/L+A)log(1 +LA)+(1-1/L — A)log (1 - %))]

=exp |nlog L — N((l/L + A)(LA — %LQAZ)

L-1 LA L2A?
+< L _A) (_L—1_2(L—1)2)+0(1/n))]
[ 1 L LA?
_ log [ — 2 _lraz_ L a2 BT
exp -n og N (A-i—LA 2LA A+ 7 lA 2L -1 +o(1/n)>]

[ n? .1 L
= log [ — —A2Z —_—
exp_noc 2A2(L+L_l>+o(n)]

_1\2/ 2
= exp nlogL—%ﬁ2 (LLI) (L]i— 1)+0(n)}

= exp n log L — %ﬁz([/ -1+ o(n)]

= o(1)

provided log L < p*(L — 1)/4, i.e.
4log L
L-1"

p>

Therefore, it is possible to reliably distinguish P, and @Q,, by thresholding T" at Np' —nlogn.

3.4 The Gaussian synchronization model

3.4.1 The model

Recall that the truth-or-Haar model is only meaningful for finite groups. Thus, to study
synchronization problems over infinite groups such as U(1) (unit-norm complex numbers)
we need the noise to be continuous in nature. This motivates our Gaussian synchronization

model in which we add Gaussian noise to the true relative group elements g, g, . This model
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was defined in Section 2.3.4), and we gave a sharp non-rigorous analysis of the statistical and
computational limits of the model in Chapter 2. We repeat the definition of the model here
for the reader’s convenience. (We will also use a slightly different convention for quaternionic-
type representations in this chapter; see Remark 3.4.4 below.) The model is very general,
allowing for any compact group, and for observations on different ‘frequencies’ (irreducible

representations of the group).

We now define the model. In order to have a sensible notion of adding Gaussian noise
to a group eclement, we need to introduce some representation theory. We will assume the
reader is familiar with the basics of representation theory. See Section 1.4 or e.g. [40] for an

introduction.

Since we will be discussing representations of quaternionic type, we need to recall basic
facts about quaternions. (Quaternions and quaternionic-type representations can be skipped
on a first reading.) Quaternions take the form ¢ = a + bi + ¢j + dk where a,b,c,d € R

and (non-commutative) multiplication follows the rules i? = ;2 = k% = ijk = —1. Like

complex numbers, quaternions support the operations norm |g| = Va2 + b2 + ¢2 + d?, real
part Re(g) = a, and conjugate ¢ = a — bi — ¢j — dk satisfying 1 = @ @1 and ¢7 = gq = |q|*.
These allow for the natural notions of unitarity and conjugate transpose A* for quaternion-

valued matrices A. The algebra of quaternions is denoted by H.

Let G be a compact group. The irreducible representations of G over C are finite dimen-
sional. Every irreducible representation of G over C has one of three types: real, complex,
or quaternionic. Representations of real type can be defined over the reals (i.e. each group
clement is assigned a matrix with real-valued entries). Representations of complex type are
(unlike the other types) not isomorphic to their complex conjugate representation p. Repre-
sentations of quaternionic type can be assumed to take the following form: each 2 x 2 block

of complex numbers encodes a quaternion value using the correspondence

] , a+bi c+de
a+bi+cj+dk

—c+di a—bi
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Alternatively, we can think of quaternionic-type representations as being defined over the
quaternions (i.e. each group element is assigned a quaternion-valued matrix) with dimension
half as large. We will assume that our irreducible representations (over C) are defined over
R, C, or H, depending on whether their type is real, complex, or quaternionic (respectively).
Representations of complex type come in conjugate pairs. Without loss of generality, all
these representations can be taken to be unitary.

Let d, be the dimension of representation p. For quaternionic-type representations we
let d, be the quaternionic dimension, which is half the complex dimension (this differs from
our convention in Chapter 2; see Remark 3.4.4 below). (For real-type representations, the
real and complex dimensions are the same.) In defining our Gaussian model we need to fix

a finite list of representations (‘frequencies’) to work with.

Definition 3.4.1. Let G be a compact group. A list of frequencies ¥ is a finite set of
non-isomorphic irreducible (over C) representations of G. We do not allow the trivial repre-
sentation to be included in this list. For representations of complex type, we do not allow p

and its conjugate p to both appear in the list.

We need to introduce Gaussian noise of various types. The type of noise used will

correspond to the type of the representation in question.

Definition 3.4.2. A standard Gaussian of real, complex, or quaternionic type is defined to

be

e for real type, N'(0,1)

e for complex type: N(0,1/2) + N(0,1/2):

e for quaternionic type: N(0,1/4) + N(0,1/4)i + N(0,1/4) 7 + N(0,1/4) k
where each component is independent.

Note that the normalization ensures that the expected squared norm is 1.
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Definition 3.4.3. Let a GOE, GUE, or GSE (respectively) matrix be a random Hermitian
matrix where the off-diagonals are standard Gaussians of real, complex, or quaternionic
type (respectively), and the diagonal entries are real Gaussians N(0,2/3) where § =1,2,4
(respectively) depending on the type. All entries are independent except for the Hermitian

constraint.

These matrices are the well-known Gaussian orthogonal (resp. unitary, symplectic) ensembles

from random matrix theory.

Remark 3.4.4. We point out that we have used slightly different conventions from Chap-
ter 2. Namely, for quaternionic-type representations we have decreased (by a factor of 2)
both the definition of d, and the variance of quaternionic Gaussian noise. These conventions
will be more convenient in this chapter. Roughly speaking, in Chapter 2 we wanted to think
of quaternionic representations as defined over C, whereas here we think of them defined

over the quaternions H.
We can now formally state the Gaussian synchronization model over any compact group.

Definition 3.4.5. Let G be a compact group and let ¥ be a list of frequencies. For each
p € V¥, let A, > 0. The Gaussian synchronization model GSynch({\,},G,¥) is defined
as follows. To sample from the nth distribution, draw a vector ¢ € G™ by sampling each
coordinate independently from Haar (uniform) measure on G. Let X, be the nd, x d,
matrix formed by stacking the matrices p(g,) for all u. For each frequency p € ¥, reveal the

nd, x nd, matrix
1

vnd,

where W, is an nd, x nd, Hermitian Gaussian matrix (GOE, GUE, or GSE depending on

A
Y, = 2X,X0 + W,

whether p has real, complex, or quaternionic type, respectively). If we write a scalar A in

place of {)\,} we mean that A\, = X for all p.

When A, > 1 for at least one p, we can use PCA (top eigenvalue) to reliably distin-
guish between P, = GSynch,({),},G,¥) and @, = GSynch,(0,G, ¥); this follows from
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Theorem 3.1.1. If given K frequencies, all with the same ), it may appear that one should
be able to combine the frequencies in order to achieve the threshold A > 1/VK; after all,
this would be possible if given K independent observations of a single frequency. However,
our contiguity results will show that A > 1/ VK is not sufficient. In fact, we conjecture that
A > 1is required for any efficient algorithm to succeed at detection (see Chapter 2), although

there are inefficient algorithms that succeed below this (as we will show in Section 3.4.6).

3.4.2 Second moment computation

Let P, be GSynch({\,}, G, ¥) and let Q, be GSynch(0,G, ¥). Let 8, = 1,2,4 for real-,
complex-, or quaternionic-type (respectively). We will use the standard Hermitian inner

product for matrices: (A, B) = Tr(AB*) where B* denotes the conjugate transpose of B.

nd /\ * 2
dP, €Xp (_B 1 p— F XX} P
=E
A Ko exp (25| y))

~g]]ex p(ﬂp)\ o e (), X, ;) - 2% | x, *lli)-
p

B (dpn)2
Qn dQn

B : w B B,A2d )

“YFQ,,X],EX,I;IGXP( 5 P2 e (¥, X, X + XyX'5) — ” "HXp Xolle = =2 1X0 X5
BpApd . . ,A2d , 5 A2d .

= XF;(H Eexp (—— = Re (¥, X, X + X, X' >— P 2\, X - XX ”F)

9

o)



Use the Gaussian moment-generating function to eliminate Y: if z is a scalar (from R, C,

or H) and y is a standard Gaussian of the same type, then Eexp(FRe(yz)) = exp(%lzP).

Recall that Y, (drawn from @,) is Hermitian with each off-diagonal entry \/17 times a stan-
nap
dard Gaussian (of the appropriate type), and each diagonal entry real Gaussian N (0, 3/2).

Continuing from above,

:X],E)(’l;'[exp (2ﬁ nd, ﬁAidigilX X5+ X' X’*||F ﬁ"i‘zdﬂ I1X, X*“F Bp/\?) 211X, X,*H )
- & TTew (B2 s ey - 2% g - 2202 )
' p
:X]%(’E[exp (6 i\nd 2Re (X, X2, X' X’*))
- & Ilow (B 1500l

3.4.3 The sub-Gaussian method

We will aim to show contiguity at a point where all A’s are equal: A, = X for all p. (Note
however that if we show contiguity at some A and we then decrease some of the individual
A,’s, we still have contiguity because the second moment above will only decrease.) Ideally
we want contiguity for all A < 1, matching the spectral threshold.

For each u € [n] let Z, be a vector in RP where D = 3 sew Bpdy, formed as follows.
First draw h, independently from Haar measure on G. For each p, vectorize the matrix
\/ﬁ—’;d—,; p(h,) into a real-valued vector of length 5pd§ by separating the 8, components of
each of the df, entries. Finally, concatenate all these vectors together to form Z,. Let Z(¢:¥)
denote the distribution that each Z, follows.

We can rewrite the second moment as




(Here h, = g;4.,.)

We will use the following definition of sub-Gaussian for vector-valued random variables.

Definition 3.4.6. We say z € R™ is sub-Gaussian with covariance prory oI if E[z] = 0

and for all vectors v € R™,

Bexp (=, 1)) < exp (30l

More generally we can allow for a covariance proxy ¥ that is not a multiple of the identity
by replacing o2||v||? by v Zv, but we will not need this here. Standard methods in the theory

of large deviations give the following multivariate sub-Gaussian tail bound.

Lemma 3.4.7. Suppose z € R™ is sub-Gaussian with covariance prozy o21. Let € > 0. For

alla >0,

P{|lz|? > a] < Cexp (_ﬂ_—>)

202

where C = C(g, m) is a constant depending only on € and the dimension m.

Proof. Let vq,...,vc € R™ be a collection of unit vectors such that for every unit vector
Z € R™, there exists i satisfying (Z,v;) > v/1—¢. If ||2]|? > a then there must exist ¢ such
that (z,v;) > y/a(l —¢). For a fixed i and for any ¢ > 0 we have

P[(z,v;) > V/a(1 - €)] = Plexp(t(2, vi)) > exp(tv/a(l — ¢))]
< Elexp({z, tv;))] exp(—t/a(l —€))
< exp (-;—(7219) exp(—ty/a(l —¢))

setting t = \/a(l — €)/0?,

— exp <_“(12;€>) .

The result now follows by a union bound over all i. O
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The following theorem gives a sufficient condition for contiguity in terms of the sub-

Gaussian property.

Theorem 3.4.8 (sub-Gaussian method). Let G be a compact group and let ¥ be a list of
frequencies. Suppose ZGY) (defined above ) is sub-Gaussian with covariance proxy o?I. If

A < 1/o then GSynch(A, G, ¥) is contiguous to GSynch(0, G, ¥).

Proof. Note that Y Z, is sub-Gaussian with covariance proxy no?l. From above we have

E dP,\? Feo A2
frg X e
2. \dQ, P\

2
e

u

)\2
< 1+/OOIP’[|]Z||2 > Q”I;gM] dM
§1+/1000exp (_(;;i)QnI;gM) an
:1+/looCexp<—Q—jo)s—2)£§§——A—/£> dM

=1+ / " OM-0-9/0) g
1

which is finite provided that (1 — €)/(¢?)?) > 1. The second inequality uses Lemma 3.4.7.

Since € was arbitrary, this completes the proof. O

Note that E[Z(&Y)] = 0 (which is a requirement for sub-Gaussianity) is automatically
satisfied; this follows from the Peter—Weyl theorem on orthogonality of matrix entries, which

we will discuss in more detail in Section 3.4.5 (see also Section 2.3.1).
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3.4.4 Applications of the sub-Gaussian method

In this section we use Theorem 3.4.8 to prove contiguity for some specific synchronization

problems.

First we consider U(1) with a single frequency. It was predicted in [82] that the statistical
threshold for this problem should be the spectral threshold A = 1; we now confirm this.

Theorem 3.4.9 (U(1) with one frequency). Consider the group U(1) of unit-norm complex
numbers under multiplication. Identify each element e of U(1) with its angle 6. Let ¥ be
the list containing the single frequency p : 0 — €. For any A < 1, GSynch(\, U(1),¥,) s
contiguous to GSynch(0, U(1), ¥,).

Proof. We have ZUW¥1) = /2 (cos#,sin ) where 0 is drawn uniformly from [0, 27]. To-

wards showing sub-Gaussianity we have, for any v € R?,
E exp ((Z(U(l)"l’l), v)) = Egexp (\/§v1 cosf + V2 vy sin 9) = Egexp (\/5 |lv]| cos 9) )
Letting w = ||v||, it is sufficient to show for all w > 0,
1 5
Eg exp (ﬁwcos&) < exp —z—w .

This can be verified numerically but we also provide a rigorous proof. Using the Taylor

expansion of exp and the identity

G=DY k even
Eg [cosk 9] = Kt
0 k odd
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we have

k/2, k k 2k w2k 2k g
Epexp (VZweost) = B,y 2 0 0 5n 2w Bocos

=0 k! = (2k)!
2k 2k Qk' _ 1)” 2k 2k
Z 2k)'(2k)” Z (Qk)ll Qk)H

2k

w 1,
< Z(Qk)!! =2 3o = P (5“’ )
k>0 £>0

The exchange of expectation and infinite sum is justified by the Fubini-Tonelli theorem,

provided we can show absolute convergence:

2k/2yk cosk 6 2K/ 2k
DB\ | < 2|
k>0 k>0
which converges by the ratio test. O

We now add a second frequency.

Example 3.4.10 (U(1) with two frequencies). Consider again U(1) but now let ¥, be the
list of two frequencies: p; : @ — € and py : 6 — %%, For any A < A* =~ 0.9371 (numerically

computed), GSynch(\, U(1), ¥3) is contiguous to GSynch(0, U(1), ¥5).

(We use “example” rather than “theorem” to indicate results that rely on numerical compu-
tations.) Although we are unable to show that the spectral threshold is optimal, note that
this rules out the possibility that the threshold for two frequencies drops to 1/ V2 (which is
what we would have if one could perfectly synthesize the frequencies). We expect that the
true statistical threshold for this problem is A = 1 and that our results are not tight here.

We now move on to the case of Z/L.

Details. We have ZUMW-¥2) = /2 (cosf,sin §, cos(26),sin(260)). Our threshold is \* = 1/0*

where

(6%)2 = sup ” I log £ ((Z(U(l) W2) ) = sup log Ey (\/i(vl cos 0 + vg sin 0 + vz cos(26) + vy sin(29))) .

llv ||
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By the change of variables 6 — 0 — 6, (for some 6y) we can rotate (v, vo) arbitrarily, and so
we can take v, = 0 and v, > 0 without loss of generality. By grid search over vy, vs, v4, we
see numerically that the maximizer is v* = (0.720, 0, 0.559, 0) which yields contiguity for all
A< A= 0.937. O

Example 3.4.11 (Z/L with one frequency). Now consider Z/L = {0,1,...,L—1} (mod L)
with L > 2 and ¥; the list of one frequency: j — exp(2mij/L). For L = 3, we have
contiguity GSynch(\,Z/L, ¥;) < GSynch(0,Z/L, ¥;) for all A < A§ ~ 0.961. For L =2 and
all L > 4, we have contiguity for all A < 1.

Details. This is shown numerically in a manner similar to the examples above. Of course
we cannot test this for all values of L, but we conjecture that the A* = 1 trend continues

indefinitely. O

We have that the spectral threshold is optimal for all L except 3. It is surprising that L = 3
is an exception here, be we expect that this is a weakness of our techniques and that the

true threshold for L = 3 is also A = 1.

Finally we give a coarse but general result for any group with any number of frequencies.

Theorem 3.4.12 (any group, any frequencies). Let G be any group and let ¥ be any list
of frequencies, with D = 3 ﬂpdf}. If A < 1/v/D then GSynch(\, G, ¥) is contiguous to
GSynch(0,G, ¥).

Proof. Since our representations p are unitary, we have ||p(9)||% = d, for any g € G, and
so ||Z¢®||2 = D. This means for any vector v we have [(Z(E¥) v)| < |ZED||v] =
V'D||v||. By Hoeffding’s Lemma this implies the sub-Gaussian condition E exp({Z ¢ v)) <
exp( D).

O

3.4.5 The conditioning method for finite groups

Here we give an alternative method to show contiguity for finite groups, based on the con-

ditioning method of [19] (see Section 3.3.3). Let G be a finite group with |G| = L. Again
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take all the X's to be equal: A\, = A for all p. For a,b € G, let Ny = |{u]|g. = a, g, = b}|.

Rewrite the second moment in terms of Ng:

A2d A2
Ex x Hexp (6’) i “X*X'pH ) =Ex x exp (% Z,dePZ(X;X'pﬁ)
p p c

where ¢ ranges over all (real-valued) coordinates of entries of p(g) (e.g. imaginary part of

top right entry)

2
2
= Eg,q exp %{ Z Bod, Z (Z p(gglg;)c)
p c u
2
2
=Eyexp ;\—n Z Bod, Z (Z Nap P(a_lb)c)
p c ab

= Ey exp (%NTAN)

=Eyexp (YTAY)

where Y = ¥=na& 7 — ﬁ]le, and A is the L? x L? matrix

aba’b’ - Zﬁpd Z’O p(a, lb,)

To justify the last step, note that @& is in the kernel of A because all row- and column-sums of
A are zero. This follows from the Peter-Weyl theorem on orthogonality of matrix coefficients,
which we will discuss in more detail shortly. By Proposition 5 in [19] (Proposition 3.3.4 in
this thesis) we have contiguity provided that

a' Aa
sup

<1
o« D(a,@)

where o ranges over (vectorized) L x L matrices with all row- and column-sums equal to +.
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Theorem 3.4.13 (conditioning method). Let G be a finite group of order L and let ¥ be a
list of frequencies. Let A be the L? x L? matriz Aab,a’b’ = %Zpe\ll Bod, > pla™tb)cp(a b)),
where a,b,a’, ¥ € G .and c ranges over (real) coordinates of matriz entries. Let D(u,v)

denote the KL divergence between two vectors: D(u,v) = Y. u;log(u;/v;). If

o’ Aa E
A < |sup D(a.3)

then GSynch(\, G, ¥) is contiguous to GSynch(0,G,¥). Here a ranges over (vectorized)

L x L matrices with all row- and column-sums equal to %

A finite group has only a finite number of irreducible representations (over C), so let us
now specialize to the case where our list ¥ contains all of them (excluding the trivial repre-

sentation, and only taking one representation per conjugate pair). Expand the numerator:

2 2
o' Ao = % D Bede (Z Aap p(a—lb») = %22 Bodp Y (Z o p(h)c)
p c \ab p c h
where an = 37, 45, @b and S, = {(a,b)|a™'b = h}. We now appeal to the Peter-Weyl
theorem on the orthogonality of matrix coefficients: the basis functions x,i;(h) = 4/dSp(h)i;
(for all irreducible p over C and matrix entries 7, j) form an orthonormal basis for C® under
the Hermitian inner product (fi, f2) £ + 3 ,cc f1(R) f2(h). Here dS is the dimension as a
complex representation, which is the same as d, for real- and complex-type but equal to
2d, for quaternionic-type. This means the above can be thought of as projecting the vector
{an}rec onto these basis elements and then computing the ¢? norm of the result. By the

basis-invariance of the £2 norm, we can rewrite the above as

2
A2L2 |1 , (1 A2L , 1
2 |22 “h‘(fzh “h) ‘T[Zh % |

The second term here corrects for the fact that the trivial representation did not appear in

our original expression. Note that the factor of § = 2 for complex representations corrects
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for the fact that we were only using one representation per conjugate pair. The factor
of 8 = 4 for quaternionic representations corrects for the fact that we were thinking of
these representations as being defined over H rather than C; the corresponding complex
representation has dimension twice as large and represents each quaternion value by the

following 2 x 2 complex matrix:

_ . a+bi c+di
a+bi+cj+dk

—c+di a—bi
(One factor of 2 comes from the fact that df = 2d, and the other factor of 2 comes from the
fact that the squared-Frobenius norm of this 2 x 2 matrix is twice the squared-norm of the
associated quaternion.)
Note that we now have exactly the same optimization problem that we arrived at for the
truth-or-Haar model with A in place of p, so we can apply Proposition 3.3.5 to immediately

obtain the following.

Theorem 3.4.14. Let G be a finite group of order L > 2 and let U,y be the list of all
frequencies (excluding the trivial one and only taking one from each conjugate pair). If for

all p € Yy,

2(L —1)log(L—-1)
A, <A} 2
P AL \/ L(L-2)
then GSynch({\,}, G, ¥.y) is contiguous to GSynch(0, G, ¥,y). For L =2, X5 =1 (the limit

wvalue of the 0/0 expression).

Here we have used the monotonicity of the second moment: if we show contiguity when
all the A,’s are equal to some A, and we then decrease some of the individual A,’s, we will
still have contiguity.

Interestingly, our critical value A} is the same as our critical value p} from the truth-or-
Haar model. As discussed previously, this matches the spectral threshold A = 1 only when
L = 2. However, for small values of L, our A} is quite close to 1 (see the table in Section 3.3).

Also note that when L = 3, Theorem 3.4.14 matches (and proves rigorously) the numerical
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value \* =~ 0.961 of Example 3.4.11 (obtained via the sub-Gaussian method). Note that when
L = 3, Z/ L only has one frequency, so these two results apply to the same problem. However,
we see that the conditioning method gains no advantage over the sub-Gaussian method in
this case. This seems to be true in general for synchronization problems because there are

no particularly ‘bad’ values for the spike due to symmetry of the group.

3.4.6 Upper bound via exhaustive search

In this subsection, we analyze the performance of exhaustive search in the Gaussian Syn-

chronization Model. Specifically, we show:

Theorem 3.4.15. Let G be a finite group of order L and let ¥ be a list of frequencies. If

> A28,d2 > 4log L
pEY
there is a computationally inefficient algorithm that can distinguish between the spiked and

unspiked models.

See Corollary 3.4.17 below for a simplification in the case of all frequencies.

Let P, = GSynch, ({A,}, G, ¥) and let Q,, = GSynch,(0, G, ¥). By the Neyman—Pearson
lemma, the most powerful test statistic for distinguishing P, from @Q,, is the likelihood ratio
%ﬁ-. Similarly to [20] we use the following modified likelihood ratio. For g € G™, let V,(g)
be the nd, x d, matrix formed by stacking the matrices p(g,). Given Y = {Y,} drawn from

either P, or Q,, our test is to compute T" = maxyegr T(g) where

T(g9) = Z AoBody Tr(V,(9)"Y,V,(9))-
peEY
IfT >3 nA2B,d5—/nlogn then we answer ‘P,’; otherwise, ‘Q,.” The definition of T(g) is
motivated by the computation of %‘: in Section 3.4; in fact, T'(g) is equal (up to constants)

to %}27(!—?;',9)2. Note that this test is not computationally-efficient because it involves testing all
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possible solutions g € G™. The best computationally-efficient test that we know of is PCA
(or AMP), which succeeds if and only if at least one ), exceeds 1.

The proof of Theorem 3.4.15 will require the following computation.

Lemma 3.4.16. Let V be a fized nd x d matriz where each d x d block is unitary of some
type (R,C,H). Let W be an nd x nd Hermitian Gaussian matriz of the corresponding type
(GOE, GUE, GSE, respectively). Let B be 1,2,4 (respectively) depending on the type. Then
Tr(V*WV) ~ N(0,2n%d/B).

Proof. Let u,v index the d x d blocks, and let a, b, ¢ index the entries within each block.

T (VWV) =) Tr (VW)

u,v

= 2TrRe (ViW,V,) + Z Tr (VW Vi)

u<v

=33 2R [(Vi)as(Wao)oe(Videa) + D D (Vi )b (W) (Vi)

u<v a,b,c u abc
= Z 229}‘3 [(V*)ab W/uv)bc ca] + Z Z 2Re [(V* ab( uu)bC( u)ca]
u<v a,b,c u a,b<c

+ Z Z(W)ab(wuu)bb(vfz)ba
=¥ Y 2w, |z (Vao(Va)eal*/B) + D D 2N (0, IZ Vi ab(V)eal*/ )

u<v b,c u b<c

+ Z ZN(O, 2| Z(‘/u*)ab(vu)balz/ﬁ)
N(O, 2ZZ|Z (V)es(Va)eal*/ B)

uv be

:N(O,QZZZ(-—VJ)M( v/ca V)ca( )ba /5)

uv be a,a’

=N(©0,2) " buw/B)

u,v a,a’

= N(0,2n%d/B).
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Proof of Theorem 8.4.15. We will now prove Theorem 3.4.15 by showing that (given the
condition in the theorem) the test T = max, T(g) (defined above) succeeds with probability

1—-0(1). If Y, is drawn from the unspiked model @, : \/IT we have
nap

1 2n%d, 25 2
Z)\pﬁp \/_Tr(V (9)WV,(9)) =¥A,,ﬁ,,d,,—\/n_—d—p/\/'( 5 ) ( , Y 2n)2B,d )

If instead Y, is drawn from the spiked model P, : Y, = %X p X, + \/——W and we take g to
P

nd

be the ground truth g* (so that V,(g) = X,), we have

* A * * 1 *
T(9*) =D ABod, Tr (;”XPXPXPX,, + mvp WV,,) =) nA2B,di+N (0, > znAgﬁ,,df,) :
P p p

Using the Gaussian tail bound P[N(0,0?%) > t] < exp (202), we have that under the spiked

model,

-1
—nl
| T < Z nA2B,d2 — \/nlog n] < exp nzogn (Z 2n/\,2,ﬂpd/2)> =o(1).
p )

Taking a union bound over all L™ choices for g € G™, we have that under the unspiked

7

model,
) 2 -1

Qn liT > Zn/\zﬁpd/z) — y/nlog n} < L”exp ~3 <Z n/\iﬂpdf, — v nlog n) <Z 2m\f,ﬁ,,df,) )

p p P

1
= exp (n log L — 1 Z n/\iﬁpdi + O(y/nlog n))
p

which is o(1) provided ) A2B,d> > 4log L. O

We can simplify the statement of the theorem in the case where all frequencies are present.
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We note that if W,y is the list of all frequencies then

> Budi=L-1.

pEVan
This follows from the “sum-of-squares” formula from the representation theory of finite
groups. (The extra 1 comes from the fact that we don’t use the trivial representation in
our list. The factor of 8 = 2 for complex-type representations accounts for the fact that we
only use one representation per conjugate pair. The factor of 8 = 4 for quaternionic-type
representations accounts for the fact that the complex dimension is twice the quaternionic

dimension.) We therefore have the following corollary.

Corollary 3.4.17. Let G be a finite group of order L > 2 and let W,y be the list of all

frequencies (excluding the trivial one and only taking one from each conjugate pair). If

4log L

A > 71

then an inefficient algorithm can distinguish the spiked and unspiked models, and so GSynch(\, G, ¥ ;)
s not contiguous to GSynch(0,G, ¥,y).

Note that for large L this differs from the lower bound of Theorem 3.4.14 by a factor of
V2. As for the truth-or-Haar model, we expect that the upper bound is asymptotically tight
and that the lower bound can be improved by a factor of v/2 (asymptotically) using a more
sophisticated conditioning method of the author and others [119]; here the event conditioned
on depends not only on the signal but also on the noise.

Also note that the right-hand side matches Theorem 3.3.3 (upper bound for the truth-or-
Harr model); interestingly, both our lower and upper bounds indicate that the all-frequencies
Gaussian model behaves like the truth-or-Haar model with A in place of p. In particular, we

again see that an inefficient algorithm can beat the spectral threshold once L > 11.
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Chapter 4

Orbit recovery: statistical limits

This chapter is adapted from joint work with Afonso Bandeira, Ben Blum-Smith, Amelia
Perry, and Jonathan Weed [15]. An upcoming expanded version of [15] will include Joe

Kileel as an additional author.

4.1 Introduction

Many computational problems throughout the sciences exhibit rich symmetry and geometry,
especially in fields such as signal and image processing, computer vision, and microscopy.
This is exemplified in cryo-electron microscopy (cryo-EM) [5, 142, 115], an imaging technique
in structural biology that was recently awarded the 2017 Nobel Prize in Chemistry. This
technique seeks to estimate the structure of a large biological molecule, such as a protein, from
many noisy tomographic projections (2-dimensional images) of the molecule from random
unknown directions in 3-dimensional space.

In cryo-EM, our signal of interest is the density 8 of the molecule, considered as an element
of the vector space of functions on R3. We have access to observations of the following form:
our microscopy sample contains many rotated copies R;8 of the molecule, where R; € SO(3)
are random, unknown 3D rotations, and we observe the noisy projections I1(R;0) + &;, where

II denotes tomographic projection (in a fixed direction) and &; is a large noise contribution,
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perhaps Gaussian. This specific problem motivates the following general abstraction.

Fix a compact group G acting (by orthogonal transformations) on a vector space V.
Throughout, the vector space will be taken to be R? and the group can be thought of as a
subgroup of O(p), the orthogonal group!. Let # € V be the signal we want to estimate. We
receive noisy measurements of its orbit as follows: for i = 1,...,n we observe a sample of

the form

Yi=gi-0+&

where g; is drawn randomly (in Haar measure?) from G and & ~ N (O,,a21 ) is noise. The
goal is to recover the orbit of  under the action of G. We refer to this task as the orbit
recovery problem.

This abstraction, already a rich object of study, neglects the tomographic projection in
cryo-EM; we will also study a generalization of the problem which allows such a projection.
We will also consider the additional extension of heterogeneity [83, 93, 94, 35], where mixtures
of signals are allowed: we have K signals 6;,...,0k, and each sample y; = g; - Ok, + &
comes from a random choice 1 < k; < K of which signal is observed. This extension is of
paramount importance for cryo-EM in practice, since the laboratory samples often contain
one protein in multiple conformations, and understanding the range of conformations is key

to understanding the function of the protein.

4.1.1 Prior work

Several special cases of the orbit recovery problem have been studied for their theoretical
and practical interest. Besides cryo-EM, another such problem is multi-reference alignment

(MRA) [17, 13, 118], a problem from signal processing [155, 123] with further relevance to

1We alert the reader to the fact that we will use O(p) to refer to the group of orthogonal matrices in
dimension p and O(g(n)) as the standard big-O notation: f(n) = O(g(n)) if and only if there exists a
constant C' such that f(n) < Cg(n) for all n sufficiently large. It will be clear from context which one is
meant.

2We note that any distribution of g; can be reduced to Haar by left multiplying y; by a Haar-distributed
group element. However, as illustrated in [3|, it is sometimes possible to exploit deviations from Haar
measure.
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structural biology [60, 144]. In this problem, one observes noisy copies of a signal § € R?,
cach with its coordinates permuted by a random cyclic shift. This is an example of the orbit
recovery problem when G is taken to be the cyclic group Z/p acting by cyclic permutations
of the coordinates. Since the cyclic group Z/p is simpler than SO(3), understanding MRA

has been seen as a useful stepping stone towards a full statistical analysis of cryo-EM.

Many prior methods for orbit recovery problems employ the so-called synchronization
approach where the unknown group elements g; are estimated based on pairwise compar-
ison of the samples y;. If the samples were noiseless, one would have gigj"lyj = y;; thus
noisy samples still give some weak information about g;g; ! Synchronization is the prob-
lem of using such pairwise information to recover all the group elements g; (up to a global
right-multiplication by some group element). Once the group elements g; are known, the

underlying signal can often be easily recovered.

The synchronization approach has proven to be effective both in theory and practice when
the noise is sufficiently small. However, once the noise level is large, no consistent estimation
of the group elements g; is possible [7]. Moreover, it is the high-noise regime that is the
practically relevant one for many applications, including cryo-EM, where the presence of
large noise is a primary obstruction to current techniques [140]. As a result, recent work has
focused on approaches to cryo-EM and MRA which provably succeed even in the large-noise
limit. One striking finding of this line of work is that the sample complexity of the statistical
estimation problem increases drastically as the noise level increases. For instance, for the

2

multi-reference alignment problem with noise variance o2, consistent estimation of typical

signals requires Q(c®) samples {13, 4], with significantly worse rates for atypical signals.

2 is smaller than some threshold, only O(c?) samples are required.

By contrast, when o
Moreover, in contrast with the O(o0?) rate—which would hold even in the absence of a group
action—the Q(c®) bound obtained in previous works depends on particular properties of the
cyclic group. In this work, we significantly extend this prior work by determining the sample

complexity of the estimation problem in the high-noise regime for general groups.
The leading theoretical framework for the high-noise regime is the invariant features
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approach [13, 26, 118, 35, 98]. This approach has a long history in the signal process-
ing literature [86, 133, 134] and is analogous to the well known “method of moments” in
statistics [148]. In brief, the invariant features approach bypasses entirely the problem of
estimating the group elements and focuses instead on estimating features of the signal which
are preserved by the action of the group. So long as these invariant features uniquely specify
the orbit of the original signal, the invariants are sufficient statistics for the problem of re-
covering the orbit of the original signal. This simple approach yields optimal dependence of

the sample complexity on the noise level for the multi-reference alignment problem [13, 118].

The application of invariant features to cryo-EM dates back to 1980 with the work of
Kam [86], who partially solved cryo-EM by means of degree-2 invariant features, reducing
the unknown molecule structure to a collection of unknown orthogonal matrices. Subsequent
work has explored methods to estimate these orthogonal matrices [29], including recent
work showing how two noiseless tomographic projections suffice to recover these orthogonal
matrices [98]. Our work can be viewed as a degree-3 extension of Kam’s method that fully
solves cryo-EM while circumventing the orthogonal retrieval issue, and without requiring
any noiseless projections. Our approach is ab initio, i.e. it does not require an initial guess of
what the molecule looks like and thus cannot suffer from model bias, which is a documented
phenomenon [42] where the initial guess can have a significant effect on the result. Ab initio
estimates are particularly useful to serve as a model-free starting point for popular iterative

refinement algorithms such as RELION [136].

Throughout, we focus on the case where the group elements are Haar-distributed. In the
basic orbit recovery problem (projection), any distribution of g; can be reduced to Haar by
left-multiplying each sample y; by a Haar-distributed group element. However, as illustrated
in [3], it is sometimes possible to exploit deviations from Haar measure. The situation is
different when we add projection to the problem setup, as is the case with Cryo-EM,; if the
viewing direction is not distributed uniformly then there may exist parts of the molecule
that are systematically imaged less than others, which can cause serious difficulties in recon-

struction.
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The present paper connects the orbit recovery problem to the invariant theory of groups,
a classical and well-developed branch of algebra, (see for example [84, 61, 143, 55]). Invariant
theory’s traditional goal is to describe the ring of all polynomial functions on a vector space
that are invariant under the action of a group - the invariant algebra. Since the 19th
century, culminating in the pioneering work of David Hilbert [76, 77], it has been known that
the invariant algebra is finitely generated in many cases of interest, and so a fundamental
problem has been to bound the degrees of the generators. In 2002, Derksen and Kemper
[65] introduced the notion of a separating algebra — a subring of the invariant algebra that
separates all orbits of the group action which are separated by the full invariant algebra.
Our connection to orbit recovery motivates the question of bounding the degree required to
generate a separating algebra (see Section 4.3.4), a problem which has been recently studied
[88, 62]. Our work also motivates the question of bounding the degree at which the field of
invariant rational functions is generated as a field (see Section 4.3.3), which does not appear

to have been the focus of research attention before.

4.1.2 Ouwur contributions

In this chapter we extend the results of [13] and show that the method of moments yields
optimal sample complexity for orbit recovery problems over any compact group. Specifically,
we show that optimal sample complexity is achieved by an algorithm that estimates the
moments from the samples and then solves a polynomial system of equations in order to
find a signal 6 that would produce such moments. As the sample complexity depends on
the number of moments used, this gives rise to the algebraic question of how many moments
suffice to determine the orbit of §. Using tools from invariant theory and algebraic geometry,
we investigate this question for various success criteria and obtain sharp results in a number
of settings. Our main focus is on the case where the signal is assumed to be generic and
the goal is to output a finite list of signals, one of which is the truth. In this case we give
a simple efficient algorithm for determining the number of moments required for any given

orbit recovery problem. The main step of the algorithm is to compute the rank of a particular
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Jacobian matrix.

We note that ours is an information-theoretic result rather than a computational one be-
cause even with knowledge of the number of moments required, estimating the original signal
still requires solving a particular polynomial system of equations and we do not attempt to
give a computationally-efficient method for this. There are fast non-convex heuristic methods
to solve these systems in practice [35] but we leave for future work the question of analyzing
such methods rigorously and exploring whether or not they reach the information-theoretic
limits determined in this paper. For the case of finite groups, another efficient method for
solving the polynomial system is via tensor decomposition, which has been analyzed for
MRA [118].

Concrete results for problems such as MRA and cryo-EM are in Section 4.4.

4.1.3 Motivating examples

In addition to the examples of MRA and cryo-EM, it is helpful to have the following moti-

vating examples in mind:

1. Learning a “bag of numbers™ let G be the symmetric group S,, acting on V = RP
by permutation matrices. Thus we observe random rearrangements of the entries of a

vector, plus noise.

2. Learning a rigid body: let G be the rotation group SO(p), acting on the matrix space
V = RP*™ by left-multiplication. We imagine the columns of our matrix as vertices
defining a rigid body; thus we observe random rotations of this rigid body (with vertices

labeled) plus noise.

3. S? registration: Let S? C R3 be the unit sphere. Let V be the finite-dimensional
vector space of functions on S? — R that are band-limited, i.e. linear combinations of
spherical harmonics up to some fixed degree (spherical harmonics are the appropriate
“Fourier basis” for functions on the sphere); let # € V be such a function S? — R. Let

G = SO(3), acting on the sphere by 3-dimensional rotation; this induces an action on
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V via (g-0)(z) = 6(g~! - z). Thus we observe many noisy copies of a fixed function on

the sphere, each rotated randomly.

4.1.4 Problem statement

Throughout, we consider a compact (topological) group G acting linearly, continuously, and
orthogonally on a finite-dimensional real vector space V = R?. In other words, G acts on V'
via a linear representation p : G — O(V'), and p itself is a continuous function. Here O(V)
denotes the space of real orthogonal p x p matrices. Let Haar(G) denote Haar measure (i.e.,

the “uniform distribution”) on G. We define the orbit recovery problem as follows.

Problem 4.1.1 (orbit recovery). Let V = RP and let § € V be the unknown signal. Let G
be a compact group that acts linearly, continuously, and orthogonally on V. For i € [n] =
{1,2,...,n} we observe

Y=g 0+&

where g; ~ Haar(G) and & ~ N(0,0%[,x,), all independently. The goal is to estimate 6.
Note that we can only hope to recover 6 up to action by G; thus we aim to recover the orbit

{9-0 : g€ G} ofé.

In practical applications, o is often known in advance and, when it is not, it can generally
be estimated accurately on the basis of the samples. We therefore assume throughout that
o is known and do not pursue the question of its estimation in this work.

Our primary goal is to study the sample complexity of the problem: how must the
number of samples n scale with the noise level o (as ¢ — oo with G and V fixed) in order
for orbit recovery to be statistically possible? All of our results will furthermore apply to a
generalized orbit recovery problem (Problem 4.2.3) allowing for projection and heterogeneity
(see Section 4.1.6).

Our work reveals that it is natural to consider several different settings in which to state

the orbit recovery problem. We consider the following two decisions:
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1. Do we assume that 6 is a generic signal, or do we allow for a worst-case signal? (Here

generic means that there is a measure-zero set of disallowed signals.)

2. Do we want to output a 8’ such that ¢’ (approximately) lies in the orbit of 8 (unique
recovery), or simply a finite list 61, . . ., 6, of candidates such that one of them (approx-

imately) lies in the orbit of 6 (list recovery)?

The terminology “list recovery” is borrowed from the idea of list decoding in the theory
of error-correcting codes [67]. By taking all combinations of the two options above, there
are four different recovery criteria. Strikingly, these different recovery criteria can be very
different in terms of sample complexity, as the following examples show (see Section 4.4 for

more details):

1. Multi-reference alignment (MRA): Recall that this is the case G = Z/p acting on
V = RP by cyclic shifts. It is known [118] that if € is generic then unique recovery
is possible with O(c®) samples. However, for a worst-case §, many more samples
are required (even for list recovery); as shown in [13], there are some very particular
infinite families of signals that cannot be distinguished without Q(o??) samples. This

illustrates a large gap in difficulty between the generic and worst-case problems.

2. Learning a rigid body: Let G be the rotation group SO(p) acting on the matrix space
RP*™ by left multiplication. We imagine the columns of our matrix as vertices defining
a rigid body; thus we observe random rotations of this rigid body (with vertices labeled)
plus noise. With O(o*) samples it is possible to recover the rigid body up to reflection,
so that list recovery (with a list of size 2) is possible. However, unique recovery (even

for a generic signal) requires drastically more samples: Q(c?).

We will address all four recovery criteria but our main focus will be on the case of generic
list recovery, as it is algebraically the most tractable to analyze. For the following reasons
we also argue that it is perhaps the most practically relevant case. Clearly real-world signals

are generic. Also, unique recovery is actually impossible in some practical applications; for
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instance, in cryo-EM it is impossible to determine the chirality of the molecule. (However, we
can hope for unique recovery if we work over the group O(3) instead of SO(3).) Furthermore,
one could hope to use application-specific clues to pick the true signal out from a finite list;
for instance, in cryo-EM we might hope that the spurious solutions in our finite list do not

look like “reasonable” molecules and can be thrown out.

4.1.5 Method of moments

Our techniques rely on estimation of the following moments:

Definition 4.1.2 (moment tensor). The order-d moment tensor is Ty(6) = E,[(g - 6)®%

where g ~ Haar(G).

We can estimate T4(0) from the samples by computing % 1 yi@’d plus a correction term
to cancel bias from the noise terms (see the full paper [15] for details). The moments Ty(6)
are related to polynomials that are invariant under the group action, which brings us to the

fundamental object in invariant theory:

Definition 4.1.3 (invariant ring). Let x = (z1,...,%,) be a set of coordinate functions on
V = RP, ie. a basis for the dual V*, so that R[x] £ R[zy,...,z,] is the ring of polynomial
functions V' — R. We have an action of G on R[x] given by (g- f)(:) = f(g7*(-)). (If we fix
a basis for V', we can think of x as indeterminate variables corresponding to.the entries of
6 € V.) The invariant ring R[x]¢ C R[x] is the ring consisting of polynomials f that satisfy
g-f = fforall g € G. An element of the invariant ring is called an invariant polynomial (or

simply an invariant). Invariant polynomials can be equivalently characterized as polynomials

of the form Ey[g - f] where f € R[x] is any polynomial and g ~ Haar(G).

The two objects above are equivalent in the following sense. The moment tensor 7,(6)
contains the same information as the set of evaluations f(8) for all f € R[x]“ that are homo-
geneous of degree d. In particular, for any such polynomial f, f(6) is a linear combination

of the entries of Ty(6).
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The following algebraic question will be of central importance: when do the values of
invariant polynomials (of degree < d) of 6 determine the orbit of # (in the appropriate
sense)? As we see below, the sample complexity of the statistical problem is completely

characterized by the answer to this question.

Warm up: hypothesis testing

Consider for now the simple problem of distinguishing between two fixed hypotheses 8 =
and 8 = 15, where 7, and 7» are two fixed vectors in V. One method is to find an invariant
polynomial f for which f(m) # f(72) and to estimate f(6) using the samples. The sample -
complexity of this procedure depends on the degree of f because if f has degree d, we need
O(0??) samples to accurately estimate f(#). We have the following (see the full paper [15]
for the proof).

Theorem 4.1.4 (distinguishing upper bound). Fiz 71,7 € V. If there exists a degree-d
invariant polynomial f € R[x]|® with f(r1) # f(m2) then, using O(0®?) samples, it is possible
to distinguish between 8 = 11 and 6 = 15 with type-I and type-II error probabilities each at

most 1/3.

Here, O(0??) hides factors that depend on G (and its action on V), 71, and 73, but not o; we
are most interested in how the sample complexity scales as o becomes large (with everything
else held fixed). The error probability 1/3 is arbitrary and can be boosted by taking more
samples.

Furthermore, we have a matching lower bound to show that the method of moments is
optimal: the sample complexity is driven by the minimum degree of an invariant polynomial

that separates 7 and 7.

Theorem 4.1.5 (distinguishing lower bound). Fiz 71,72 € V. Let d* be the smallest positive
integer d for which Ty(11) # Ty(r2). Then Q(0®*") samples are required to distinguish between
0 =7 and 0 = 1o with type-I and type-1I error probabilities each at most 1/3.

See the full paper [15] for the proof.
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Recovery

We now address the problem of recovering the signal # from the samples. Our goal is to

recover the orbit of 8, defined as follows.

Definition 4.1.6. For 6,,0; € V, define an equivalence relation g by letting 6, g 0, if there
exists g € G such that g - 0; = 0,. The orbit of # (under the action of G) is the equivalence
class of 6 under <, i.e. the set {9-6 : g € G}. Denote by V/G the set of orbits of V, that

is, the equivalence classes of V' modulo the relation g

We need the following definitions to capture the notion of approzimately recovering the

orbit of 6.

Definition 4.1.7. For 91, 6, € V, let
da(61,69) = min ||0; — g - Os]|-.
G( 15 2) Ig%m; ” 1—9 2”2

This pseudometric induces a metric on the quotient space V/G in the obvious way, so we
can write dg(01,02) for 01,02 € V/G. By slight abuse of notation, we write dg(61,02) for

dg(01,02), where 0, is the orbit of 6;.

Theorem 4.1.5 already shows that if the orbit of 8 is not determined by knowledge of the
first d — 1 moment tensors, then at least 2(0?¢) samples are required to recover the orbit of
§. We are now ready to (informally) state our main result on recovery (see the full paper

[15] for the proof), which provides a matching upper bound.

Theorem 4.1.8 (recovery upper bound, informal). If the moments T1(0), - - - , Ty(6) uniquely
determine the orbit of 0, then using O(c??) samples, we can produce an estimator 0 such

that dg (0, Z)\) < € with high probability.

The recovery procedure is based on estimating the moments T1(f),...,T4(8) and solving
a system of polynomial equations to recover a # that is (approximately) consistent with

those moments. The analogous result holds for list recovery (see the full paper [15]): if the
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moments determine a finite number s of possibilities for the orbit of § then we can output a
list of s estimators, one of which is close to the orbit.of 6.

We note again that O(o??) only captures the dependence on ¢ in the limit o — oo with
other parameters (such as 6 and ¢) held fixed.

Thus, we have reduced to the algebraic question of determining how many moments are
necessary to determine the orbit of 6 (either uniquely or in the sense of list recovery). In
Section 4.3 we will use tools from invariant theory and algebraic geometry in order to address

these questions.

4.1.6 Extensions: projection and heterogeneity

We now consider some extensions to the basic orbit recovery problem (Problem 4.1.1), mo-

tivated by the application of cryo-EM:

1. Projection: In cryo-EM, we do not observe a noisy 3-dimensional model of the ro-
tated molecule; we only observe a 2-dimensional projection of it. We will model this
projection by a linear map II : R? — R? that maps a 3-dimensional model to its 2-
dimensional projection (from a fixed viewing direction). The samples are then given

by yi = I(g; - 0) + & where & ~ N(0,0%I).

2. Heterogeneity: In cryo-EM we observe images of many different copies of the same
molecule, each rotated differently. However, if our sample is not pure, we may have
a mixture of different molecules and want to recover the structure of all of them. We
will model this by taking K different unknown signals 64, ..., 60k along with positive
mixing weights wy, ..., wx which sum to 1. Each sample takes the form y; = ¢;- 0, +&

where k; is chosen at random according to the mixing weights.

In Section 4.2 we will formally define a generalization of the orbit recovery problem that
allows for either (or both) of the above extensions. All of our methods will apply to this

general case.
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4.1.7 Outline of remainder of chapter

In Section 4.2, we define a generalization of Problem 4.1.1 which encompasses projection
and heterogeneity, and specify the basic algebraic objects which relate to our genecralized
problem. In Section 4.3, we establish our basic algebraic results and specify the algebraic
criteria that correspond to the different recovery criteria defined in Section 4.1.4. We also
give an efficient algorithm to decide the algebraic criterion corresponding to generic list
recovery. Finally, in Section 4.4, we apply our work to several examples of the orbit recovery
problem, including MRA and cryo-EM. We conclude in Section 4.5 with questions for future
work.

Sections 4.6 and 4.7 contain proofs of results from preceding sections. Appendix C.1

contains an account of the invariant theory of SO(3).

4.2 General problem statement

Our results will apply not only to the basic orbit recovery problem (Problem 4.1.1) but to a
generalization (Problem 4.2.3 below) that captures the projection and heterogeneity exten-

sions discussed in Section 4.1.6. We first define mixing weights for heterogeneous problems.

Definition 4.2.1 (mixing weights). Let w = (wy,...,wg) € Ax = {(z1,...,2K) @ 2 >
0 Vk, S5, 2z = 1}. Let k ~ [K] indicate that k is sampled from [K] = {1,..., K} such
that k = ¢ with probability w,. We will sometimes instead parametrize the mixing weights

by Wy = wy, — 1/K so that @ lies in the vector space A £ {(z1,...,2xK) : Zle zr, = 0}

In a heterogeneous problem with K different signals, we can only hope to recover the signals
up to permutation. To formalize this, our compound signal will lie in a larger vector space

V and we will seek to recover its orbit under a larger group G.

Definition 4.2.2 (setup for heterogeneity). Let G be a compact group acting linearly,
continuously, and orthogonally on V = RP. Let V = V®K @ Ay, so that § € V encodes

K different signals along with mixing weights: 8 = (6y,...,0k,w). We let an element
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(91,---,9K,m) of the Cartesian product set G¥ x Sk act on V as follows: first, each gi acts
on the corresponding 6y, and then 7 permutes the 8, and the coordinates of w. Note that
this action is linear and orthogonal (where A uses the usual inner product inherited from
RX). There is a natural group structure G on the set GX x Sk such that the action just
described is actually a group action by G: the semidirect product G = G¥ X, Sk, where
¢ denotes the action of Sx on GX by permutations of the factors. This is also called the
wreath product of G by Sk and written G Sk. The product topology on G¥ x Sk makes
G a topological group; it is compact with respect to this topology since allvthe factors are

compact, and the action described above is continuous.

Of course, by taking K = 1 we recover the basic setup (without heterogeneity) as a special

case. We are now ready to give the general problem statement.

Problem 4.2.3 (generalized orbit recovery). Let V = RP and W = RY. Let G be a compact
group acting linearly, continuously, and orthogonally on V. Let Il : V — W be a linear
map. Let = (A4,...,0x, @) € V 2 V®X @ Ak be an unknown collection of K signals with

mixing weights w € Ag. For i € [n] = {1,2,...,n} we observe

yi =1(g;- O,) + &

where g; ~ Haar(G), k; ~ [K], & ~ N(0, 021,4,), all independently. The goal is to estimate
the orbit of § under G 2 GX x Sk.

Note that this serves as a reduction from the heterogeneous setup to the basic setup in the
sense that we are still only concerned with recovering the orbit of a vector 6 under the action
of some compact group.

As discussed previously, we apply the method of moments. The moments are now defined

as follows.

Definition 4.2.4 (moment tensor). For the generalized orbit recovery problem (Prob-
lem 4.2.3), the order-d moment tensor is Ty(h) 2 Ey4[(I1(g - 6;))®% where g ~ Haar(G)
and k ~ [K]. Equivalently, T4(8) = 3" r_, wi E,[(TI(g - 6;))®4).
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The invariant ring is defined as in Definition 4.1.3 but now for the larger group G acting on

the larger V:

Definition 4.2.5 (invariant ring). Note that dim(V) = Kp+K—1andlet x = (z1, ..., Tdim(v))
be a basis for V*; here the last K — 1 variables correspond to A, e.g. they can correspond to
W1, ...,Wk-1. We then let R[x]° C R[x] be the polynomials in x that are invariant under

the action of G (as in Definition 4.1.3).

Recall that in the basic orbit recovery problem, T,(6) corresponds precisely to the ho-
mogeneous invariant polynomials of degree d; now T4(f) corresponds to a subspace of the
homogeneous invariant polynomials of degree d. Specifically, the method of moments gives

us access to the following polynomials (evaluated at 6):

Definition 4.2.6. Let U} be the subspace (over R) of the invariant ring R[x]® consisting
of all R-linear combinations of entries of Ty(x). Let UL, = UT @ --- @ U] C R[x]°. Here
we write Ty(x) for the collection of polynomials (one for each entry of Ty(6)) that map 6 to

T.(6).

We will be interested in whether the subspace UZ, contains enough information to
uniquely determine the orbit of 6 (or determine a finite list of possible orbits) in the fol-

lowing sense.

Definition 4.2.7. A subspace U C R[x]% resolves 8 € V if there exists a unique o € V/G
such that f(8) = f(o) for all f € U. Similarly, U lst-resolves 6 if there are only finitely
many orbits oy, ..., 05 such that f(8) = f(o;) for all f € U.

Here we have abused notation by writing f(0) to denote the (constant) value that f takes

on every 6 € o. The following question is of central importance.

Question 4.2.8. Fix 8 € V. How large must d be in order for U_;"jd to uniquely resolve 67

How large must d be in order for UZ; to list-resolve 67

The answer depends on G and V' but also on whether 8 is a generic or worst-case signal,

and whether we ask for unique recovery or list recovery. As discussed previously (see Sec-

tion 4.1.5), the sample complexity of the generalized orbit recovery problem is ©(c??) where
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d is the minimal d from Question 4.2.8. Our algebraic results in Section 4.3 will give general

methods to answer Question 4.2.8 for any G and V.

4.3 Algebraic results

In this section, we will consider the four recovery criteria defined in Section 4.1.4, and give
algebraic characterizations of each case. As discussed previously (Question 4.2.8) it suffices
to focus our attention on deciding when a subspace U resolves (or list-resolves) a parameter
0. We show below how to answer this question by purely algebraic means. Moreover,
for generic list recovery, we show how this question can be answered algorithmically in
polynomial time. For generic and worst-case unique recovery, we also give algorithms to
decide the corresponding algebraic condition; however, these algorithms are not efficient.
Throughout, we assume the setup defined in Section 4.2 for the generalized orbit recovery
problem. In particular, G is a compact group acting linearly and continuously on a finite-
dimensional real vector space V' (although we do not require in this section that the action
be orthogonal). We have the invariant ring R[x]¢ corresponding to the action of G on V/,
and a subspace U C R[x]® (e.g. Ugd) of invariants that we have access to. We are interested
in whether the values f(0) for f € U determine the orbit of § € V under G. The specific
structure of G and UZ, (as defined in Section 4.2) will be largely unimportant and can be

abstracted away.

4.3.1 Invariant theory basics

We will often need the following basic operator that averages a polynomial over the group

G.
Definition 4.3.1 (Reynolds operator). The Reynolds operator R : R[x] — R[x]¢ is defined

by
R(fy= E lg-f]

g~Haar(G)
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Note that the Reynolds operator is a linear projection from R[x] to R[x]“ that preserves the
degree of homogeneous polynomials (i.e. a homogeneous polynomial of degree d gets mapped

either to a homogeneous polynomial of degree d or to zero).

Observation 4.3.2. Let R[x|§ denote the vector space consisting of homogeneous invariants
of degree d. We can obtain a basis for R[x]|§ by applying R to each monomial in R[x] of

degree d. (This yields a spanning set which can be pruned to a basis if desired.)
In our setting, we have the following basic fact from invariant theory.

Theorem 4.3.3 (e.g. [84] Theorem 4.1-3). The invariant ring R[x]® is finitely gener-
ated as an R-algebra. In other words, there exist generators fi,..., fm € R[x]¢ such that

R[fb' . ';fm] = R[X]G'

Furthermore, there is an algorithm to find a generating set; see Section 4.6.1. Another basic
fact from invariant theory implies that the entire invariant ring is sufficient to determine the

orbit of . (This is not always true for non-compact groups; see Example 2.3.1 in [55].)
Theorem 4.3.4 ([84] Theorem 6-2.2). The full invariant ring R[x|¢ resolves every § € V.

Proof. Let 0,09 € V/G be distinct (and therefore disjoint) orbits. Since G is compact and
acts continuously, 0, and o0, are compact subsets of V. Thus by Urysohn’s lemma there
exists a continuous function f : V — R such that f(7) =0 V7 € 0; and f(r) =1 V7 € 0.
The Stone—Weierstrass theorem states that a continuous function on a compact domain can
be uniformly approximated to arbitrary accuracy by a polynomial. This means there is a
polynomial f € R[x] with f(r) < 1/3 Vr € 0; and f(7) > 2/3 Vr € 05. It follows
that h = R(f) is an invariant polynomial that separates the two orbits: h(o;) < 1/3 and
h(os) > 2/3. O

Thus, in order to determine the orbit of # it is sufficient to determine the values of all
invariant polynomials. (This condition is clearly also necessary in the sense that if the orbit

is uniquely determined then so are the values of all invariants.)
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Remark 4.3.5. In what follows we will be discussing algorithms that take the problem
setup as input (including G and its action on V, along with II, K') and decide whether or
not Ugd (for some given d) is capable of a particular recovery task (e.g. list recovery of a
generic § € V). We will always assume that these algorithms have a procedure to compute
a basis for U (for any d) in exact symbolic arithmetic. This is non-trivial in some cases
because Ty(x) (and thus UY) involves integration over the group (and may involve irrational
values), but we will not worry about these details here. For the important case of SO(3), it

is possible to write down a basis for the invariants in closed form (see Appendix C.1).

Remark 4.3.6. We will draw from various references for algorithmic aspects of invariant
theory. The case of finite groups is treated by [143]. Although the invariant ring is sometimes
taken to be C[x]¢ instead of R[x|®, this is unimportant in our setting because the two are
essentially the same: since our group action is real, a basis for R[x]¢ (over R) is a basis for
C[x]€ (over C). The case of infinite groups is covered by [55]. Here the group is assumed to be
a reductive group over C (or another algebraically-closed field). This means in particular that
the group is a subset of complex-valued matrices that is defined by polynomial constraints.
Although compact groups such as SO(3) do not satisfy this, the key property of a reductive
group is the existence of a Reynolds operator satisfying certain properties; since this exists

for compact groups (Definition 4.3.1), some (but not all) results still hold in our setting.

4.3.2 Generic list recovery

We will see that the case of list recovery of a generic signal is governed by the notion of

algebraic independence.

Definition 4.3.7. Polynomials fi, ..., f, € R[x] are algebraically dependent if there exists a
nonzero polynomial P € Rlyy, ..., yn] such that P(fy,..., fm) =0 (i.e. P(fi(x),..., fm(X))
is equal to the zero polynomial). Otherwise, they are algebraically independent.

Definition 4.3.8. The transcendence degree of a subspace U C R[x], denoted trdeg(U) is
the maximum value of m for which there exist algebraically independent f;,..., f,, € U. A

set of trdeg(U) such polynomials is called a transcendence basis of U.

126



We now present our algebraic characterization of the generic list recovery problem.

Theorem 4.3.9 (generic list recovery). Let U C R[x]° be a finite-dimensional subspace. If
trdeg(U) = trdeg(R[x|C) then there exists a set S C V of full measure such that if 6 € S
then U list-resolves 8. Conversely, if trdeg(U) < trdeg(R[x]|¢) then there exists a set S CV
of full measure such that if @ € S then U does not list-resolve 6.

The proof is deferred to Sections 4.6.2 and 4.6.3. A set has full measure if its complement
has measure zero. The intuition behind Theorem 4.3.9 is that trdeg(R[x]¢) is the number
of degrees of freedom that need to be pinned down in order to learn the orbit of 6, and so
we need this many algebraically independent constraints (invariant polynomials). Note that
we have not yet given any bound on how large the finite list might be; we will address this
in Section 4.3.3.

In order for Theorem 4.3.9 to be useful, we need a way to compute the transcendence
degree of both R[x]¢ and U. In what follows, we will discuss methods for both of these:
in Section 4.3.2 we show how to compute trdeg(R[x]%) analytically, and in Section 4.3.2 we
give an efficient algorithm to compute trdeg(U) for a subspace U. By taking U = USTd this
yields an efficient algorithm to determine the smallest degree d at which U gTd list-resolves a

generic 6 (thereby answering Question 4.2.8 for the case of generic list recovery).

Computing the transcendence degree of R[x]¢.

Intuitively, the transcendence degree of R[x|¢ is the number of parameters required to de-

scribe an orbit of G. For finite groups, this is simply the dimension of V:
Proposition 4.3.10 ([143] Proposition 2.1.1). If G is a finite group, trdeg(R[x]%) = dim(V).

For infinite groups, the situation may be slightly different. For instance, if SO(3) acts on
V = R? in the standard way (rotations in 3 dimensions), then a generic orbit is a sphere, with
dimension two. This means there is only one parameter to learn, namely the 2-norm, and
we expect R[x]® to have transcendence degree 1 accordingly. On the other hand, if SO(3)

acts on a rich class of functions S? — R (as in the S? registration problem; see Section 4.4.4)
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then each orbit resembles a copy of SO(3) which has dimension 3. This is formalized in the

following.

Proposition 4.3.11 ([61] Corollary 6.2). If G is an algebraic group, then
trdeg(R[x]) = dim(V) — dim(G) + Hél‘r/l dim(G,),

where G, is the stabilizer at v of the action of G (that is, the subgroup of all g € G fizing v).

An alternate approach to the transcendence degree of R[x]¢ uses a central object in

invariant theory: the Hilbert series (see e.g. [55]).

Definition 4.3.12. Let R[x]§ be the subspace (over R) of R[x] consisting of homogeneous

invariants of degree d. The Hilbert series of R[x|® is the formal power series
H(t) £ dim(R[x]S) t*
d=0

For a given G acting on V, there is an explicit formula (Molien’s formula) for the Hilbert

series:

Proposition 4.3.13 ([84] Remark 3-1.8). Let p : G — GL(V') be the representation by which
G acts on V. Then for |t| < 1, H(t) converges and we have

H(it)= E det(I -tp(g)~"
g~Haar(G)

This formula is tractable to compute, even for complicated groups; see Section 4.4.4 for details
in the case of SO(3). Once we have the Hilbert series, it is easy to extract trdeg(R[x]%) as

follows.
Proposition 4.3.14. The order of the pole at t = 1 of H(t) is equal to trdeg(R[x]%).

The proof comes from [55]; see Section 4.6.4 for more details.
For heterogeneous problems (K > 1), the transcendence degree can be computed easily

from the transcendence degree of the corresponding homogeneous (K = 1) problem.
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Proposition 4.3.15. Let G be a compact group acting linearly and continuously on V, and
let G = GK xSk act on' V = VKA g as in Definition 4.2.2. Let R[x|€ be the invariant ring
corresponding to the action of G on 'V, and let R[i]é be the invariant ring corresponding to

the action of G on V (i.e. the K =1 problem). Then trdeg(R[x]¢) = K trdeg(R[X]%)+K —1.

The proof can be found in Section 4.6.5. Note, however, that the result is intuitively reason-
able by counting parameters. We know trdeg(R[%]€) is the number of parameters required to
describe an orbit of G acting on V. Thus, in the heterogeneity problem we have trdeg(]R[i]é)
parameters for each of the K signals, plus an additional K — 1 parameters for the K mixing

weights (since they sum to 1).

Algorithm for transcendence basis of U.
In this section we prove the following.

Theorem 4.3.16. There is an efficient algorithm to perform the following task. Given a
basis {uy,...,us} for a finite-dimensional subspace U C R[x|, output a transcendence basis

for U.
Our first ingredient is the following simple classical test for algebraic independence (see,
e.g., [66, 24] for a proof).

Definition 4.3.17 (Jacobian). Given polynomials fi,..., fm € R[x] = Rlzy,...,z,), we
define the Jacobian matriz Je(fi,..., fm) € (R[x])™*? by (Jx(f1,- .., fm))ij = Ou; fi where

O; denotes formal partial derivative with respect to z;.

Proposition 4.3.18 (Jacobian criterion for algebraic independence). Polynomials f =
(fi,-.., fm) are algebraically independent if and only if the Jacobian matriz Jx(f) has full
row rank (over the field R(x)).

It suffices to test the rank of the Jacobian at a generic point x.

Corollary 4.3.19. Fiz f = (f1,..., fm). Let z ~ N(0, Ixp,). If f is algebraically dependent
then Jy(f)|x=. does not have full row rank. If f is algebraically independent then Jx(f)|x=:
has full row rank with probability 1.
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Proof. An m x p matrix has deficient row rank if and only if either m > p or every maximal
square submatrix has determinant zero. Every such determinant of Jx(f) is a polynomial
in x; if this polynomial is not identically zero then plugging in generic values for x will not

cause it to vanish. Oa

Remark 4.3.20. In practice we may choose to plug in random rational values for x so that
the rank computation can be done in exact symbolic arithmetic. The Jacobian test will
still succeed with overwhelming probability (provided we use a fine enough mesh of rational
numbers). Also note that if we find any value of x for which the Jacobian has full row rank,

this constitutes a proof of algebraic independence.

Remark 4.3.21. In some cases (e.g. if the polynomials involve irrational values) it may
be slow to compute the Jacobian rank in exact symbolic arithmetic. We can alternatively
compute the singular values numerically and count how many are reasonably far from zero.
This method works reliably in practice (i.e., it is extremely clear how to separate the zero and

nonzero singular values) but does not constitute a rigorous proof of algebraic independence.

Curiously, although the Jacobian criterion gives an efficient test for algebraic dependence,
it is much harder (#P-hard) to actually find the algebraic dependence (i.e., the polynomial
relation) when one exists [87].

The Jacobian criterion implies the well-known fact that the collection of algebraically
independent subsets of R[x] form a matroid; this is called an algebraic matroid (see e.g.

[137]). In particular, we have the following exchange property:

Proposition 4.3.22. Let I,J be finite subsets of R[x], each algebraically independent. If
|[I| < |J| then there exists f € J I such that I U{f} is algebraically independent.

We next note that in the task from Theorem 4.3.16, a transcendence basis can always be

taken from the basis {uy,...,us} itself.

Lemma 4.3.23. Let U be a finite-dimensional subspace of R[x] with basis B = {uy,. .., us}-

If U contains r algebraically independent elements, then so does B.

130



Proof. Let B' C B be a maximal set of algebraically independent elements of B. If |B| < r
then by the exchange property (Proposition 4.3.22) there exists v € U\ B’ such that B'U{v}
is algebraically independent. Write v = 7| a;u;. Since B’ is maximal, we have from the
Jacobian criterion (Proposition 4.3.18) that for all 1 < 7 < s, the row vector Ji(u;) lies
in the R(x)-span of B £ {Jx(b)}rep. But this means that Je(v) = Y i, a;Jx(w;) lies in
the R(x)-span of B. By the Jacobian criterion this contradicts the fact that B’ U {v} is

algebraically independent. O

Proof of Theorem 4.8.16.

Let {ui,...,us} be a basis (or spanning set) for U. From above we have that the tran-
scendence degree of U is the row rank of the Jacobian Jx(u1, ..., us) evaluated at a generic
 point x. A transcendence basis for U is the set of u; corresponding to a maximal linearly

independent set of rows

We can use the following simple greedy algorithm to construct a transcendence basis.
As input, receive a list of polynomials {us,...,us}. Initialize I = @. Fori =1,...,s, add
{u;} to I if T U {u;} is algebraically independent, and do nothing otherwise. (Note that this

condition can be efficiently tested by Corollary 4.3.19.) Output the resulting set I.

We now show correctness. Let I; be the set after item wu; has been considered (and
possibly added), and set Iy = 0. It suffices to show that for each i € {0,...,s}, I, is
a maximal independent subset of {ui,...,u;}. We proceed by induction. The claim is
vacuously true when ¢ = 0. Assume it holds for ¢ — 1. If I; is not a maximal independent
subset of {uy,...,u;}, then there exists an independent set J C {u,...,u;} with |J| > |I],
so by the exchange property (Proposition 4.3.22) there exists a u; with j < ¢ such that
u; ¢ I; and I; U {u;} is independent. In particular, the subset I;_y U {u;} of I, U {u;} is
independent. But the fact that u; was not added at the (j —1)th step implies that I;_; U {u;}

is not independent, a contradiction. So I; is indeed maximal.

We obtain that I = I, is a maximal independent subset of {ui,...,us}, and hence by

Lemma 4.3.23 a transcendence basis of U. O
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4.3.3 Generic unique recovery

For list recovery problems, the following gives an explicit upper bound on the size of the list.

Theorem 4.3.24. Let U be a subspace of the invariant ring R[x|®. Let Fg be the field of
fractions of Rx]®. If [Fg : R(U)] = D < oo then there exists a set S C V of full measure
such that for any 8 € S, U list-resolves 8 with a list of size < D.

The proof is deferred to Section 4.6.2. Here R(U) is the smallest subfield of Fg containing
both R and U, and [F¢ : R(U)] denotes the degree of a field extension; see Section 4.6.2
for more details. Since [Fi : R(U)] = 1 is equivalent to R(U) = Fg, we have the following

criterion for unique recovery.

Corollary 4.3.25 (generic unique recovery). If R(U) = Fg then there exists a set S C V
of full measure such that if 6 € S then U resolves 6.

The intuition here is that we want to be able to learn every invariant polynomial by adding,
multiplying, and dividing polynomials from U (and scalars from R). We need 6 to be generic

so that we never divide by zero in the process.

Theorem 4.3.26. For a finite-dimensional subspace U C R[x]®, there is an algorithm to
compute the degree of the field extension from Theorem 4.3.24. As input, the algorithm
requires a basis for U and the ability to compute the Reynolds operator (Definition 4.3.1).

We give the algorithm and the proof in Section 4.6.6. The algorithm uses Grobner bases and

is unfortunately inefficient to run in practice.

4.3.4 Worst-case unique recovery

We give a sufficient algebraic condition for worst-case unique recovery:

Theorem 4.3.27 (worst-case unique recovery). Let U C R[x|® be a finite-dimensional
subspace with basis {f1,..., fm}. If U generates R[x]® as an R-algebra (i.e. R[fi,..., fm] =
R[x]%) then U resolves every 0 € V.
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Proof. Every element of R[x]% can be written as a polynomial in the f; (with coefficients
in R). This means the values fi(f),..., fm(f) uniquely determine all the values f(6) for
f € R[x|® and so the result follows because R[x]® resolves every 8 € V (Theorem 4.3.4). O

Theorem 4.3.28. There is an algorithm to test whether or not U generates R[x]¢ as an
R-algebra. As input, the algorithm requires a basis for U and the ability to compute the
Reynolds operator (Definition 4.5.1).

We give the algorithm and the proof in Section 4.6.6. The algorithm uses Grobner bases and
is unfortunately inefficient to run in practice.

If G is a finite group, it is known that R[x]% has a generating set for which all elements
have degree at most |G| (this is Noether’s degree bound; see Theorem 2.1.4 in [143]). It
follows that R[x]Z|q resolves every f € V. Recall (from Section 4.1.4) that this is tight for
MRA: degree |G| is necessary for worst-case signals.

A precise characterization of when U resolves every § € V is (by definition) that U
should be a separating set or (equivalently) should generate a separating algebra (see [55]
Section 2.4). The notions of generating and separating sets do not always coincide, as
illustrated by Example 2.4.2 in [55]. Furthermore, generating sets may require strictly higher

maximum degree [62].

4.3.5 Worst-case list recovery
We give a sufficient algebraic condition for worst-case list recovery:

Theorem 4.3.29 (worst-case list recovery). Let U C R[x|® be a subspace with finite basis

{fi, .., fm}. If R[X|C is finitely generated as a R[fy,..., fm]-module, then U list-resolves

every@ e V.

In other words, this condition says that there exists a basis gy, . . ., gs € R[x] such that every
element of R[x]® can be written as a linear combination of gi, ..., g, with coefficients from
R[f1,. .., fm]. It is sufficient to take U to be a set of primary invariants from a Hironaka

decomposition (see Section 4.6.4).
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Proof. Since R[x|® finitely generated as an R-algebra (Theorem 4.3.3), if R[x]¢ is finitely
generated as a R[fi,..., fm]-module then it follows that (see [139] Section 5.3) every h €

R[x|€ satisfies a monic polynomial
hk-l-ck_]hk—l 4+ +cth+c=0

with ¢; € R[f1,.. ., fm]. Letting Ay, ..., hs be generators for R[x]¢ (as an R-algebra), we have
that the values f1(0),..., f(0) determine a finite set of possible values for hi(6), ..., hs(6),

each of which determines (at most) one orbit for 6. a

4.4 Examples

In this section we work out some specific examples, determining the degree at which generic
list recovery is possible using the methods of Section 4.3.2. (We focus on generic list recovery
because our algorithms for the other recovery criteria are unfortunately too slow even for
quite small examples.) We obtain several recovery theorems for problems such as MRA and
cryo-EM within finite ranges of parameters where we have verified the Jacobian criterion
using a computer, and beyond these parameter ranges, we state conjectural patterns.

The following themes emerge in the examples studied in this section. First, we see that
many problems are possible at degree 3, which is promising from a practical standpoint.
Second, we do not encounter any unexpected algebraic dependencies, and so we are able
to show that heuristic parameter-counting arguments are correct. In particular, we see
that if there are enough linearly independent invariants, there are also enough algebraically

independent invariants.

4.4.1 Learning a bag of numbers

Let G be the symmetric group S, acting on V = R? by permutation matrices. The invariant
ring consists of the symmetric polynomials, which are generated by the elementary symmetric

polynomials ey, . .., e, where e; has degree i. Worst-case unique recovery is possible at degree
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p since R[x]gp generates the full invariant ring. Furthermore, degree p is actually required,
even for generic list recovery. This is because any invariant of degree < p—1 can be expressed
as a polynomial in e;,...,e,—; and thus trdeg(R[x]gp_l) = p — 1. So this problem has a

steep sample complexity of order o2,

4.4.2 Learning a rigid body

Let G be the rotation group SO(p) acting on the matrix space RP*™ by left multiplication.
We imagine the columns of our matrix as vertices defining a rigid body; thus we observe
random rotations of this rigid body (with vertices labeled) plus noise. Let U € RP*™ be
such a matrix signal. With O(c*) samples, we can estimate the degree-2 Gram matrix U’ U;
taking a Cholesky factorization, we recover U up to left action by an element of the larger
group O(p). Thus we recover the rigid body up to a reflection ambiguity, demonstrating list
recovery (with a list of size 2). Surprisingly, assuming m > p, we do not uniquely resolve a
generic signal until degree p, where with O(0?") samples we can estimate a p X p minor of
U, which is a degree-p invariant that changes sign under reflection.

The impossibility of unique recovery until degree p is a consequence of the “first funda-
mental theorem” for the special orthogonal group SO(p), which asserts that the invariant
ring is generated by the entries of the Gram matrix U U together with the p x p minors of
U (see for instance [84]); thus the invariants of degree 3,...,p — 1 carry no information in

addition to the degree-2 invariants.

4.4.3 Multi-reference alignment (MRA)

Recall that this is the case of G = Z/p acting on V = RP? by cyclic shifts. It is already
known that for the basic MRA problem (without projection or heterogeneity), generic unique
recovery is possible at degree 3 for any p [13]. The methods of Section 4.3.2 confirm the
weaker result that generic list recovery is possible at degree 3 (at least for the values of p
that we tested). Note the stark contrast in difficulty from the case of the full symmetric

group G = S5, above.
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Remark 4.4.1. This result for MRA is actually a special case of a more general phenomenon.
Let G be any finite group and let V be the regular representation i.e. the space of functions
f : G — R with the action (g - f)(h) = f(g7'h). (Note that for G = Z/p this is precisely
the MRA problem.) It is known [85] that for this setup, the degree-3 invariants (the triple
correlation) are sufficient to resolve a generic signal, and thus generic unique recovery is

possible at degree 3.

We can also verify that for MRA with p > 3, generic list recovery is impossible at degree 2.
This follows from Theorem 4.3.9 because trdeg(R[x]¢) = p (since G is finite) but the number
of algebraically independent invariants of degree < 2 is at most |p/2] +1. We can see this as
follows. A basis for the invariants of degree < 2is {R(z1), R(z?), R(z172), R(z1Z3), - - -, R(71Z4) }
with s = |p/2] 4+ 1. Here R denotes the Reynolds operator, which averages over cyclic shifts
of the variables. For instance, R(z12;) = %(:cle + ZoZ3 + T3Zg + - - - + Zpz1). Note that the
basis above has size |p/2]| + 2 but there is an algebraic dependence within it because R(z1)?

can be written in terms of the other basis elements. The claim now follows.

Generic list recovery is possible at degree 1 for p =1 and at degree 2 for p = 2. (This is
true even for worst-case unique recovery; recall from Section 4.3.4 that degree |G| is always

sufficient for this.)

We now move on to variants of the MRA problem.

MRA with projection

We now consider MRA with a projection step. We imagine that the coordinates of the signal
are arranged in a circle so that G acts by rotating the signal around the circle. We then
observe a projection of the circle onto a line so that each observation is the sum of the two
entries lying “above” it on the circle. This is intended to resemble the tomographic projection

in cryo-EM. We formally define the setup as follows.

Problem 4.4.2 (MRA with projection). Let p > 3 be odd. Let V = R? and G = Z/p acting

136



on V by cyclic shifts. Let ¢ = (p — 1)/2 and W = RY. Let Il : V — W be defined by
(v, ..., vp) = (V1 4+ Up, V2 + Up—1, - - -, Vp-1)/2 + V(pt3)/2)-

We call the associated generalized orbit recovery problem (Problem 4.2.3) MRA with pro-

jection. (We consider the homogeneous case K = 1.)

Note that since p is odd, there is one entry v(,4+1)/2 which is discarded by II. The reason
we consider the odd-p case rather than the seemingly more elegant even-p case is because
generic list recovery is actually impossible in the even-p case. This is because the signals 0

and 6+ (¢, —c, ¢, —c, ...) cannot be distinguished from the samples, even if there is no noise.

Restricting now to odd p, note that we cannot hope for generic unique recovery because
it is impossible to tell whether the signal is wrapped clockwise or counterclockwise around
the circle. In other words, reversing the signal via (6;,...,6,) — (6,,...,60;) does not
change the distribution of samples. We can still hope for generic list recovery, hopefully
with a list of size exactly 2. This degeneracy is analogous to the chirality issue in cryo-EM:
it is impossible to determine the chirality of the molecule (i.e. if the molecule is reflected
about some 2-dimensional plane through the origin, this does not change the distribution of

samples).

It appears that, as in the basic MRA problem, generic list recovery is possible at degree
3. We proved this for p up to 21 by checking the Jacobian criterion (see Section 4.3.2) on a

computer, and we conjecture that this trend continues.

Conjecture 4.4.3. For MRA with projection, for any odd p-> 3, generic list recovery is

possible at degree 3.

Note that generic list recovery is impossible at degree 2 because the addition of the projection

step to basic MRA can only make it harder for Ugd to list-resolve 6.
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Heterogeneous MRA

We now consider heterogeneous MRA, i.e. the generalized orbit recovery problem (Prob-
lem 4.2.3) with G = Z/p acting on V = RP by cyclic shifts, K > 2 heterogeneous compo-
nents, and no projection (i.e., IT is the identity).

We will see that generic list recovery is possible at degree 3 provided that p is large
enough compared to K. First note that the number of degrees of freedom to be recovered
is trdeg(R[x]®) = Kp + K — 1 (see Propositions 4.3.10 agd 4.3.15). Let us now count
the number of distinct entries of Ty(x) for d < 3. Note that Ty(x) is symmetric (under
permutations of indices) but we also have additional symmetries given by cyclic shifts, e.g.
(T3(x))ije = (T5(X))itcj+ck+e Where c is an integer and the sums i + ¢,j + ¢,k + ¢ are
computed modulo p. One can compute that T3(x) has 1 distinct entry, T>(x) has |p/2] +1
distinct entries, and T3(x) has p + [(p — 1)(p — 2)/6] distinct entries. The total number of

distinct entries is

UZp+2+|p/2]+[(p—1)(p—2)/6]

By Theorem 4.3.9, list recovery is impossible when ¢« < Kp+ K —1. By testing the Jacobian
condition, we observe that the converse also appears to hold. We tested this up to K = 15

and up to the corresponding critical p value.

Conjecture 4.4.4. For heterogeneous (K > 2) MRA, generic list recovery is possible at
degree 8 precisely if U > Kp+ K — 1. This condition on U can be stated more explicitly as

follows:
o K =2 requiresp > 1.
o K = 3 requires p > 12.
e K =4 requires p > 18.
e Fach K > 5 requires p > 6K — 5.

Recent work [35] also studies the heterogeneous MRA problem. Similarly to the present

work, they apply the method of moments and solve a polynomial system of equations in
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order to recover the signals. To solve the system they use an efficient heuristic method that
has no provable guarantees but appears to work well in practice. Their experiments suggest
that if the signals have i.i.d. Gaussian entries, this method succeeds only when (roughly)

K < /p instead of the condition (roughly) K < p/6 that we see above (and that [35] also
identified based on parameter-counting). In Chapter 5, we prove that indeed polynomial-time
recovery is possible when K < Q(\/f)) We expect that this is a statistical-to-computational
gap whereby it becomes computationally hard to efficiently solve the polynomial system once

K exceeds /p.

4.4.4 S? registration

Recall that this is the case where the signal € is a real-valued function defined on the unit
sphere S? in R3. The formal setup is as follows.

Let G = SO(3). For each £ =0,1,2,... there is an irreducible representation V; of SO(3)
of dimension 2¢ + 1. These representations are of réal type, i.e. they can be defined over the
real numbers so that V;, = R¥*+!. Let F be a finite subset of {0,1,2,...} and consider the
orbit recovery problem in which G acts on V = ®,c V5.

As intuition for the above setup, V, is a basis for the degree-£ spherical harmonic functions
5% — R defined on the surface of the unit sphere S? C R3. The spherical harmonics are a
complete set of orthogonal functions on the sphere and can be used (like a “Fourier series”)
to represent a function S? — R. Thus the signal § € V can be thought of as a function on
the sphere, with SO(3) acting on it by rotating the sphere. See Appendix C.1 for details on
spherical harmonics.

The primary case of interest is F = {1, ..., F'} for some F (th‘e number of “frequencies”).
We will see that generic list recovery is possible at degree 3 so long as F' > 10. We will see that
1t is convenient to not include 0 € F, but we now justify why this is without loss of generality.
Vb is the trivial representation, i.e. the 1-dimensional representation on which every group
element acts as the identity. In the interpretation of spherical harmonics, the Vp-component

is the mean value of the function over the sphere. We claim that the S? registration problem
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with 0 € F can be easily reduced to the problem with 7' = F ~ {0}. This is because the
Vo-component is itself a degree-1 invariant; given the value of this invaria’mt, one can subtract
it off and reduce to the case without a Vj-component (i.e. the case where the function on
the sphere is zero-mean). Thus we have that e.g. generic list recovery is possible (at a given
degree) for F if and only if it is possible for F'.

Using Proposition 4.3.11 we compute that trdeg(R[x]¢) = p — p/, where

p=dim(V)=> (20+1)

leF
and
0 lhnax =0
=<2 Lpax = 1 where £, = max¥4.
eF
3 emax 2 2

After all, V} is the trivial representation on the 1-dimensional vector space, with 3-dimensional
stabilizer SO(3), and V; is the standard 3-dimension representation of SO(3) on R3 by rota-
tions, which yields a one-dimensional SO(2) stabilizer at each nonzero point. When £, > 2,
the representation V' is known to have zero-dimensional stabilizer at some points (see e.g.
/68)).

In the following we restrict to the case 0 ¢ F for simplicity (but recall that this is
without loss of generality). There are therefore no degree-1 invariants, i.e. R[x]§ is empty.
By Theorem 4.3.9, if dim(R[x]$) + dim(R[x]§) < trdeg(R[x]%) then generic list recovery is
impossible at degree 3; this rules out generic list recovery for F = {1,2,..., F} when F < 9.
(We will see below how to compute dim(R[x]§).) Beyond this threshold, the situation is

more hopeful:

Theorem 4.4.5. If F = {1,2,...,F} and 10 < F < 16 then the degree-3 method of

moments achieves generic list recovery.

This theorem is based on computer verification of the Jacobian criterion for 10 < F < 16

using exact arithmetic in a finite extension of Q. This result lends credence to the following
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conjecture.

Conjecture 4.4.6. Consider the S? registration problem with 0 ¢ F. We conjecture the
following.

e Generic list recovery is possible at degree 3 if and only if dim(R[x]§) + dim(R[x]$) >
trdeg(R[x]C) (where trdeg(R[x|%) is computed above and dim(R[x]G) can be computed

from Proposition 4.4.7 below).

o In particular, of F = {1,2,...,F} then generic list recovery is possible at degree 3 if
and only if F > 10.

The reason it is convenient to exclude the trivial representation is because it simplifies the
parameter-counting: if we use the trivial representation then we have a degree-1 invariant
f and so there is an algebraic relation between the degree-2 invariant f2 and the degree-3
invariant f3.

We now discuss how to compute dim(R[x]$). Using the methods in Section 4.6 of [55],
we can give a formula for the Hilbert serics of R[x]%; see Section 4.7.1. However, if one wants
to extract a specific coefficient dim(R[x|$) of the Hilbert series, we give an alternative (and

somewhat simpler) formula:

Proposition 4.4.7. Consider S? registration with frequencies F. Let xq4(¢) : R — R be
defined recursively by

OEDY

teF

¢
142 Z cos(m qb)] , and

m=1

d
Xil8) = > xai)xa-i(6).

Then we have
1 vis
dim(®xS) =+ [ (1= coso)a(@) do.
0

™
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We give the proof in Section 4.7.2. Additionally, in Appendix C.1.6 we give explicit formulas
for the invariants (up to degree 3), which yields a combinatorial analogue of Proposition 4.4.7

(up to degree 3).

4.4.5 Cryo-EM

We adapt the following simple model for the cryo-EM reconstruction problem. We will use
properties of the 3-dimensional Fourier transform, including the projection-slice theorem;
see e.g. [116] for a reference.

The signal is a 3-dimensional molecule, which we can think of as encoded by a density

function f: R3> — R. The 3-dimensional Fourier transform of f is f: R3 — C given by
R oo poo  poo ]
flkz, Ky k2) = / / / e mi@katykytaka) £ (g 0 2) da dy dz. (4.1)

It is sufficient to learn fbecause we can then recover f using the inverse Fourier transform.
SO(3) acts on the molecule by rotating it in 3-dimensional space (keeping the origin fixed).
When f is rotated in (z,y, z) coordinates, F is also rotated in (kg, ky, k;)-coordinates by the
same rotation. Each observation is a 2-dimensional image obtained by first rotating f by
a random element of SO(3) and then projecting f parallel to the z axis. Specifically, the
projection of f is fyr; : R2 = R given by

foroj(Z,y) = /;OO f(z,y, 2)dz.

By the projection-slice theorem, the 2-dimensional Fourier transform of fyo; is equal to the

slice fuice : R2 — C given by

ﬁlice(k:cy ky) = f(k:p, ky, 0)

Thus we think of f as our unknown signal with SO(3) acting by rotation, and with post-

projection which reveals only the slice of flying in the plane &k, = 0.
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This does not yet conform to our definition of a (generalized) orbit recovery problem
because the signal needs to lie in a finite-dimensional real vector space. Instead of thinking
of f as a function on R3, we fix a finite number S of nested spherical shells in R3, each of
different radius and all centered at the origin. We consider only the restriction of fto these
shells. We fix a finite number F' of frequencies and on each shell we expand f (restricted
to that shell) in the basis of spherical harmonics, truncated to 1 < ¢ < F. (As in S?
registration, we can discard the trivial representation ¢ = 0 without loss of generality, and

it is convenient to do so.) Being the Fourier transform of a real-valued function, fsatisﬁes
f(_k'm —ky, —k;) = f(kz; ky, kz) (4.2)

(see (4.1)) and so we can use a particular basis Hy, of spherical harmonics for which the
expansion coefficients are real; see Appendix C.1. We have now parametrized our signal by a
finite number of real values 0, with 1 < s < 5,1 </ < F,and —¢ < m < /. In particular,

the restriction of fto shell s has expansion

> > OumHem:

1<0<F —8<m<{

SO(3) acts on each shell by 3-dimensional rotation; see Section C.1 for the details of how
SO(3) acts on spherical harmonics. The projection II reveals only the values on the equator
z = 0 (or in spherical coordinates, § = 7/2) of each shell. Using again the property (4.2),
the output of IT on each shell has an expansion with real coefficients in a particular finite

basis h,,; see Section C.1.4.

Remark 4.4.8. There are various other choices one could make for the basis in which to
represent the (Fourier transform of the) molecule. Each of our basis functions is the product
of a spherical harmonic and a radial delta function (i.e. a delta function applied to the radius,
resulting in a spherical shell). Another common basis is the Fourier-Bessel basis (used in
e.g. [98]) where each basis function is the product of a spherical harmonic and a radial Bessel

function. More generally we can take the product of spherical harmonics with any set of
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radial basis function. It turns out that the choice of radial basis is unimportant because the

resulting problem will be isomorphic to our case (spherical shells) and so the same results

hold.

We now present our results on the above cryo-EM model. We focus on identifying the
regime of parameters for which generic list recovery is possible at degree 3. Again using
Proposition 4.3.11, we have for F > 2:

F
trdeg(R[x]®) = dim(V) -3 =5 (20+1) —3=S(F?*+2F) -3 (4.3)
=1
where again we have a zero-dimensional stabilizer.

In Appendix C.1 we give an explicit construction of the invariant polynomials in U §3.

By testing the Jacobian criterion in exact arithmetic on small examples, we arrive at the

following theorem:

Theorem 4.4.9. Consider the homogeneous (K = 1) cryo-EM problem with S shells and F

frequencies.
o If S =1 then for any F > 2, generic list recovery is impossible at degree 3.

e [f2< 5 <4 and2 < F <6, the degree-3 method of moments achieves generic list

recovery.

The first assertion results from a simple counting argument: there are fewer invariants at
degree < 3 than degrees of freedom. The second part is by confirming that the Jacobian of
the invariants has rank equal to trdeg(R[x|), through computer-assisted exact arithmetic
over an appropriate finite extension of Q.

In floating-point arithmetic, we have further verified that the Jacobian appears to have

appropriate rank for 2 < S <10 and 2 < F < 10, leading us to conjecture the following:

Conjecture 4.4.10. If S > 2 then the degree-3 method of moments achieves generic list

recovery (regardless of F).
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Intuitively, when there is a single shell (S = 1) there are simply not enough invariants
in U§3. However, when S > 2, the number of invariants increases dramatically due to

cross-terms that involve multiple shells.

Heterogeneous cryo-EM

We now consider heterogeneous cryo-EM (K > 2). By combining (4.3) with Proposi-
tion 4.3.15 we can compute trdeg(R[x]%). Based on testing the Jacobian criterion on small
examples, we conjecture that the degree-3 method of moments achieves generic list recovery
if and only if dim(UY) + dim(UY) > trdeg(R[x]¢). In other words, we expect no unexpected
algebraic dependencies among U£3. (Recall that there are no degree-1 invariants since we
are not using the trivial representation £ = 0).

In Section C.1.6 we give a conjectured formula for the exact value of dim(UJ) + dim(UY)
forall S > 1, F > 2. As a result we can determine for any given S > 1 and F > 2, the exact
condition on K for which we believe generic list recovery is possible. For S and F large, this

condition is approximately K < §2/4.

4.5 Open questions

We leave the following as directions for future work.

1. Our methods require testing the rank of the Jacobian on a computer for each problem
size. It would be desirable to have analytic results for e.g. (variants of) MRA in any

dimension p.

2. We have given an efficient test for whether generic list récovery is possible, but have
not given a similarly efficient test for generic unique recovery. In cases where unique
recovery is impossible, it would be nice to give a tight bound on the size of the list;
for instance, for MRA with projection, we conjecture that the list has size exactly 2
(due to “chirality”), but we lack a proof for this fact. Our algorithms for testing generic

unique recovery are based on Grobner bases, the calculation of which is known to be
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computationally hard in the worst case [79]. Unfortunately, the algorithms we have
proposed are also extremely slow in practice, though a faster implementation may be

possible.

3. Our procedure for recovering # from the samples involves solving a polynomial system
of equations. While solving polynomial systems is NP-hard in general, the fact that the
polynomials used in the orbit recovery problem have special structure leaves open the
possibility of finding an efficient (polynomial time) method with rigorous guarantees.
This is especially promising under additional assumptions such as random 6. Possible
methods include tensor decomposition [118] and non-convex optimization [35]. We

discuss this further in Chapter 5.

4. We have addressed the statistical limits of orbit recovery problems. However, the pre-
vious chapters of this thesis have indicated the presence of statistical-to-computational
gaps in related synchronization problems, and we expect such gaps to appear in or-
bit recovery problems too. As discussed in Section 4.4.3, the results of [35] suggest a

possible gap of this kind for heterogeneous MRA. We discuss this further in Chapter 5.

4.6 Proofs for Section 4.3: algebraic results

4.6.1 Algorithm for generators of R[x|¢

We know that R[x]€ is finitely generated as an R-algebra (Theorem 4.3.3). There are various
algorithms to compute a finite set of generators for R[x]% [143, 55]. However, some require
the group to be finite or to be reductive over an algebraically-closed field. One algorithm
that certainly works in our context (compact groups) is Algorithm 2.2.5 in [143]. As input
it requires the Hilbert series of R[x]¢ (which can be computed by Proposition 4.3.13) and a
procedure to compute a basis for R[x]§ (which can be done with the Reynolds operator by
Observation 4.3.2). The idea is as follows. We keep a set of proposed generators fi,..., fm-
At each step we compare the Hilbert series of R[x]¢ with the Hilbert series of R[fy, ..., fi]
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(which can be computed using Grobner bases). If these series differ at the t¢ term, this
means we are missing an invariant at degree d. To remedy this, we create a new homoge-
neous invariant of degree d using the Reynolds operator, and add it to our set of proposed

generators. We repeat until the Hilbert series match.

4.6.2 Bounding the list size for generic signals

In this section we prove Theorem 4.3.24 and the first part of Theorem 4.3.9 (see Section 4.6.3

for the second part). Recall the following basic definitions and facts from field theory.

Definition 4.6.1. If F; is a subfield of F}, we write Fy/F» and call this a field extension.
The degree of the extension, denoted [F; : F5], is the dimension of F; as a vector space over

j28

Proposition 4.6.2. Let R C Fy, C Fy with Fy finitely generated (as a field) over R. Let r be
the transcendence degree of Fy (over R). The field extension Fy/F> has finite degree if and

only if Fy contains r algebraically independent elements.

Proof. This is a basic fact of field theory. If F contains r algebraically independent elements
then the extension F)/F5 is algebraic and finitely generated, and therefore has finite degree.

Otherwise, the extension is transcendental and has infinite degree. a

In light of the above (and using the fact that R[x]€ is finitely generated), Theorem 4.3.24
implies the first part of Theorem 4.3.9 and so it remains to prove Theorem 4.3.24 (i.e. list

size is bounded by D £ [Fg : R(U))).

Proof of Theorem 4.3.24.
Write £y £ R(U). In characteristic zero, every algebraic extension is separable, so by the
primitive element theorem, Fg = Fy(a) for some o € Fg. Since « generates a degree-D

extension, « is the root of a degree-D polynomial

aP +bp1aP P+ bhia+ by (4.4)
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with coeflicients b; € Fy. Furthermore, every element of Fz can be expressed as

co+aa+---+ cD_lozD"1
with ¢; € Fy. In particular, let gi,...,gx be generators for R[x]¢ (as an R-algebra) and
write

gi=c +Pa+. +c9 P (4.5)

Let S C V be the subset for which o and all the (finitely-many) coefficients b,—,c§~i) have
nonzero denominators; S is a non-empty Zariski-open set and thus has full measure. Now
fix § € S. Given the values f(f) for all f € U, each b; takes a well-defined value in R and
so from (4.4) there are at most D possible values that a(f) can take. From (4.5), each value

of a(f) uniquely determines all the values ¢;(6) and thus uniquely determines all the values

f(0) for f € R[x]%. Since R[x|¢ resolves § (Theorem 4.3.4), this completes the proof. =~ O

4.6.3 Generic list recovery converse

In this section we prove the second part of Theorem 4.3.9 (the converse).

Let p = dim(V), trdeg(U) = q, and trdeg(R[x]°) = r so that ¢ < » < p. Let f =
{f1,--, fm} be a basis for U, and let g = {g1,...,9.} be a transcendence basis for R[x].
Let S C V be the set of points 6 for which the Jacobian Jy(f)|x—¢ has row rank ¢ and the
Jacobian Jx(g)|x—¢ has row rank r; by the Jacobian criterion (see Corollary 4.3.19), S is a

non-empty Zariski-open set and thus has full measure.

Fix 8§ € S. For a sufficiently small open neighborhood X C S containing 6§ we have
the following. The Jacobian criterion on f implies that {r € X : f(r) = f(6)} has
dimension p — ¢q. The Jacobian criterion on g implies that every z € g(X) has a preimage
g l(z) £ {r € X : g(r) = 2} of dimension p — r. Since p — ¢ > p — r it follows that there
are infinitely many 6,,6s,... € X such that £f(6;) = f(8) but the values g(61),g(62), ... are
all distinct (and thus the 6; belong to distinct orbits). Therefore U does not list-resolve 6.
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4.6.4 Hilbert series and Hironaka decomposition

In this section we prove Proposition 4.3.14 on extracting the transcendence degree from
the Hilbert series (as the pole order at t = 1). While this is a general property of finitely
generated algebras over a field, there is an easy proof for invariant rings stemming from
a key structural property of such rings called the Cohen-Macaulay property or Hironaka

decomposition.

Theorem 4.6.3 ([55] Section 2.6). The invariant ring R[x]® has the following structure.
There exist homogeneous primary invariants fi, ..., f, € R[x]® and homogeneous secondary

invariants gy, ..., gs € R[] such that
e {f1,..., fr} are algebraically independent, and

e any element of R[x|% can be written uniquely as a linear combination of g, .. ., gs with

coefficients from R[fy, ..., fr]-

The proof can be found in Section 2.6 of [55]; note that the only property of the group that

is used is the existence of a Reynolds operator (and so the proof is valid for compact groups).

Proof of Proposition 4.3.14.

The Hironaka decomposition above implies that the Hilbert series takes the form

Z;zl dee(g;)
T, (1 — 25C7)

(this is equation (2.7.3) in [65]). It is now clear that the order of the pole at t = 1 is
precisely r. But we can see as follows that fi, ..., f, is a transcendence basis for R[x]® and
so r = trdeg(R[x]%). As in the proof of Theorem 4.3.29, since R[x|“ is a finitely generated
R[f1,. .., f-]-module, every h € R[x] satisfies a polynomial with coefficients in R[f1, ..., f.],

which is an algebraic dependence among { f1,..., f-, h}. O
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4.6.5 Transcendence degree for heterogeneity

In this section we prove Proposition 4.3.15. To recall the setup, we have G acting on 1%
with associated variables . We also have G = GX x Sk acting on V = V®K @ Ak with
associated variables x. Let us also introduce an intermediate group: G’ = G¥, acting on V
(with associated variables x).

Partition the variables x as follows. For k = 1,..., K, let x(®¥ = (a:(lk), e ,m,(pk)) be the

variables corresponding to signal k. Let z = (21,...,2Kx-1) be the variables corresponding

to the mixing weights @i,...,Wx_1. Whenever we refer to zx, this is just shorthand for
K-1

- Zk:l Zk-

We first prove a simpler version of the result without the action of Sk.
Lemma 4.6.4. Let 7 = trdeg(R[X|) and letr = K7 + K — 1. Then
trdeg(R[x]%) = 7.

Proof. To show ‘> we need to exhibit r algebraically independent elements of R[x]¢". Letting

f1,..., f= be a transcendence basis for R[i]é, it suffices to take
I2 {f,(x") haicricncx U {21, -, 2621}

To show ‘<’ we first recall that we can obtain a spanning set for the subspace R[x]§ by
applying the Reynolds operator R (for G’) to each degree-d monomial (in the variables x).

Such a monomial takes the form

X

m(x) = M(z) [ [ m(x®)

k=1
where M, my are monomials. Applying the Reynolds operator yields

K K
Rme9)= & M@ ][muae-x) = M@ ][ & melow-x¥)
k

915--,9k~G k=1 —1 9k~
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Note that R(m(x)) is the product of pure invariants, i.e. invariants that only involve vari-
ables from a single one of the blocks x(V),...,x9) z. It is clear that / (from above) is a
maximal set of algebraically independent pure invariants. It is now easy to show using the
Jacobian criterion (Proposition 4.3.18) that if any R(m(x)) is added to I, it will no longer
be algebraically independent. The result now follows using basic properties of algebraic

independence (Proposition 4.3.22 and Lemma 4.3.23). O

Proof of Proposition 4.3.15.

Since R[x]¢ C R[x]¢, it is clear (in light of the above) that trdeg(R[x]%) < r. Thus we need
only to show trdeg(R[x]%) > r by demonstrating r algebraically independent invariants. Let
e, --.,ex be the elementary symmetric functions in K variables. With f; as above, we take
the invariants

{6k(fi(X(l)), e ,fi(X(K)))}1<i<F.1<k<K U {62(21, Ceey ZK), . ,EK(Zl, ceey ZK)}.

Note that e;(zy, . . ., zx) is not included because it is equal to 0. The fact that ez (fi(x(V), ..., fi(xK)))
are algebraically independent can be seen because {es,...,ex} is algebraically independent
and {f;(x®)}} is algebraically independent. We can sce that {ex(z1,.. ., 2x) }r>2 are alge-

braically independent as follows. An algebraic dependence would be a polynomial P such

that P(ea(22,...,2K),.-.,ex(21,-..,2K)) (now treating zx as a separate variable) has a root
g = — Zf:—ll 2, and thus has e,(zy, ..., 2x) as factor. But this contradicts the fact that

any symmetric polynomial has a unique representation in terms of the elementary symmetric

polynomials. O

4.6.6 Grobner bases

In this section we show how to use Grobner bases to test various algebraic conditions. In
particular, we prove Theorems 4.3.26 and 4.3.28. The ideas from this section are mostly

standard in the theory of Grobner bases; see e.g. [50] for a reference.

Definition 4.6.5. A monomial order on R[x] is a well-ordering on the set M of all (monic)
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monomials, satisfying M < N & MP < NP for all M,N,P € M. We will say that
a monomial order favors a variable z; if the monomial z; is larger (with respect to the
monomial order) than any monomial not involving x;. We write LM(f) to denote the leading
monomial of a polynomial f, i.e. the monomial occurring in f that is largest (with respect

to the monomial order); LM(f) does not include the coefficient.

Definition 4.6.6. A Grobner basis of an ideal I C R[x] is a finite subset B C I such that
for every f € I there exists b € B such that LM(f) is a multiple of LM(b). We call B a
reduced Grobner basis if all its elements are monic and it has the additional property that

for every pair of distinct b,b’ € B, no monomial occurring in b is a multiple of LM(?’).

The following basic facts about Grobner bases are proved in [50]. A Grébner basis is indeed
a basis, in that it generates the ideal. Every ideal I C R[x] has a Grobner basis, and has
a unique reduced Grobner basis. Buchberger’s algorithm computes the reduced Grébner
basis of an ideal I = (fy,..., fm), given a list of generators f;. (It is not a polynomial-time
algorithm, however.)

Suppose we are interested in the relations between polynomials fi, ..., f, € R[x]. Intro-
duce additional variables t = (t;, .. .,t,) and consider the ideal I £ (f)(x) —t1,..., fm(X) —

tm) C R[x,t]. Given fi,..., fm there is an algorithm to compute a Grobner basis for the

elimination ideal

J £ (fi(x) —t1,..., fm(¥) — tm) NR[E].

In fact, the algorithm is simply to compute a Grobner basis for I using a particular monomial
order and then keep only the elements that depend only on t (see Chapter 3 of [50]). The

elimination ideal consists precisely of the polynomial relations among fy, ..., fm:

Lemma 4.6.7. For any polynomial P € R[t] we have: P € J if and only if P(f1(x), ..., fm(x)) =
0.

Proof. The direction ‘=’ is clear because if we let t; = f;(x) for all ¢ then the generators of

I vanish and so every element of I vanishes. To show the converse, it suffices to show that
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for any polynomial P € R[t], P(fi1(x),..., fm(x)) — P(t1,...,tm) € I. This can be shown

inductively using the following key idea:
1 1
T1Ty — L1ty = 5(1‘1 - tl)(.’L‘g + tz) + 5(1‘2 - tz)(xl + tl)

and so 1z — tita € (z1 — t1, T2 — ta). (]

Generation as an R-algebra. Suppose we want to know whether f,, € R[fi,..., fm-1]-

This is equivalent to asking whether there exists P € J of the form

P(t) = tm et Q(tl, . ,tm—l) (46)

for some Q € R[ty,...,t,_1]. Suppose that J contains an element P of the form (4.6).
Compute a Grobner basis B for J with respect to a monomial order that favors t¢,,. The
leading monomial of P is t,, so by the definition of a Grobner basis there must be an element
b € B whose leading monomial divides ¢,,. Since 1 ¢ J (by Lemma 4.6.7), the leading
monomial of b is exactly ¢,, and so b takes the form (4.6). Therefore, f,, € R[f1,..., fm-1]

if and only if B contains an element of the form (4.6).

We can now prove Theorem 4.3.28: to test whether R[fy,..., f,»] = R[x]®, compute

generators gy, . . ., gs for R[x]¢ (see Section 4.6.1) and use the above to test whether each g;

is in R[f1, ..., ful-

Generation as a field. Suppose we want to know whether f,, € R(fi,..., fm-1). This
is equivalent to asking whether f,, can be expressed as a rational function of fi,..., f—1
(with coefficients in R), which is equivalent (by multiplying through by the denominator) to
asking whether there exists P € J of the form

P(t) =tnQi(tr, .-, tm1) — Qalty, .-, tm—1) with Q) & J. (4.7)
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Suppose that J contains an element P of the form (4.7). Compute a reduced Grébner basis
B for J with respect to a monomial order that favors t,,. It is a basic property of Grobner

bases that P can be written as

P(t) = sz‘(t)bz‘(t)

where p; € R[t] and b; € B with LM(p;) < LM(P) and LM(b;) < LM(P). If no b; involves
the variable t,, then ¢, € J, a contradiction. Therefore some b; must have degree 1 in z,,.
Since B is a reduced Grobner basis it cannot contain any element of the form (4.7) with
@1 € J. This completes the proof that f,, € R(fi,..., frm—1) if and only if B contains an
element of the form (4.7).

Degree of field extension. Consider the setup from Theorem 4.3.24: given a finite set
U={f1, -, fm} C R[x]% we want to compute [Fg : Fi;] where Fy = R(U) and Fg is the
field of fractions of R[x]®. We can assume [Fg : Fy] is finite (since we can efficiently test
whether this is the case using Proposition 4.6.2 and the methods of Section 4.3.2). Let d
be such that R[x