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Abstract

In this thesis, I construct and investigate the properties of a Floer theoretic invariant
called relative symplectic cohomology. The construction is based on Hamiltonian
Floer theory. It assigns a module over the Novikov ring to compact subsets of closed
symplectic manifolds. I show the existence of restriction maps, and prove that they
satisfy the Hamiltonian isotopy invariance property, discuss a Kunneth formula, and
do some example computations. Relative symplectic cohomology is then used to
establish a general criterion for displaceability of subsets. Finally, moving on to the
main contribution of my thesis, I identify a natural geometric situation in which
relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property.
This is tailored to work under certain integrability assumptions, the weakest of which
introduces a new geometric object called a barrier - roughly, a one parameter family
of rank 2 coisotropic submanifolds. The proof uses a deformation argument in which
the topological energy zero (i.e. constant) Floer solutions are the main actors.

Thesis Supervisor: Paul Seidel
Title: Professor
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Chapter 1

Introduction

A fundamental property of homological invariants in topology and algebraic geometry

is that they satisfy local-to-global properties. Probably the most basic example of this

is the Mayer-Vietoris exact sequence satisfied by the singular homology of topological

spaces. My thesis explores such properties in the context of Floer theoretic invariants

in symplectic geometry.

1.1 Motivation from mirror symmetry

The main motivation for beginning this study was mirror symmetry for symplectic

manifolds admitting a possibly singular Lagrangian torus fibration (LTF). This line

of thought began with the SYZ conjecture for Calabi-Yau manifolds [36], which led

Leung to give a construction of a mirror CY partner starting with a smooth special

LTF on the symplectic manifold [241. Kontsevich and Soibelman analyzed the case

of abelian varieties in detail, and introduced the idea of using non-archimedean ge-

ometry in constructions [18]. Using Fukaya's Family Floer cohomology [131, a more

general mirror construction was given by Abouzaid, for any symplectic manifold with

a smooth LTF [1].
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Both SYZ and Family Floer constructions are local in nature, meaning that the

mirror is constructed by gluing together local models associated to domains of action-

angle coordinate systems. A very important piece in the puzzle has been to under-

stand how to incorporate quantum corrections in the construction. In another paper

analyzing K3 surfaces, Kontsevich and Soibelman suggested that they should deform

the gluing maps at higher orders by means of a wall-crossing formula [19J. This relied

on a detailed local analysis of the so called focus-focus singularity. Even though it was

a fascinating construction, it was slightly disappointing from a symplectic geometer's

viewpoint, because the gluing procedure seemed tailored to a more algebro-geometric

set-up (and it was generalized in that set-up to great success by the Gross-Siebert

program [15]). The end result itself suggested that there might be a simpler, yet

possibly less explicit construction, leading to mirrors of K3-surfaces taking only their

symplectic geometry into account.

The primary precursor to the main results of this thesis is [33]. Seidel considers

non-trivial examples where Floer theoretic invariants of symplectic manifolds with

pair-of-pants decompositions [26] 1 are related to standard invariants of some mirror

space through homological mirror symmetry statements. By construction these mirror

spaces also admit a corresponding decomposition into standard pieces (similar to the

SYZ picture above). What Seidel observes is that the invariants of the mirror are

local in the sense that they can be constructed by gluing invariants of the pieces

from the decomposition. He then suggests that such locality might be true for Floer

theoretic invariants when the manifold admits a LTF and locality is understood as

"local in the base". This idea was used to great effect for Riemann surfaces by Lee

[221, using the results of [2].

In this thesis, we first make the question of locality rigorous by defining the local

Floer theoretic invariants, and interpreting locality as a Mayer-Vietoris sequence. We

'these are morally lifted from decompositions of the base of an LTF with singularities, see [26]
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then explain the mechanism underlying the observations coming from mirror sym-

metry. The context of our statements are considerably more general than integrable

systems, but a shadow of integrability still remains in the picture.

1.2 Relative symplectic homology as a local invari-

ant

In [331, Seidel constructs the local invariant of a standard neighborhood of a smooth

fiber of the LTF using a "wrapping" procedure near the boundary (standard in sym-

plectic cohomology from the beginning, see the references in the beginning of Subsec-

tion 1.2.3), and then adding certain formal sums to the resulting Floer chain complex.

Relative symplectic homology extends his construction to general compact subsets of

closed symplectic manifolds in the context of closed string theory. The theory could

be extended to open strings and also to certain open manifolds, but we do not explore

these in this thesis to stay focused on the new ideas we put forth.

Denote the Novikov ring, and field over the rational numbers by A>O, and A,

respectively. Let M be a closed symplectic manifold. Relative symplectic cohomology

SHM(K) is a Z2-graded A>O-module assigned to each compact K c M. For any

K' c K, there are canonical module maps, called restriction maps:

S Hm( K ) -+ S H m(K'). (1.2.0.1)

In the next subsection we give an outline of the construction, but the theory is

fully developed in Chapters 2 and 3.

13



1.2.1 Outline of the construction

Let h, h' E C (M x S', R). A monotone homotopy from h to h' is a smooth map

H : M x S1 x [0, 1], -÷ R with H 1,o= h and H I,=,= h' which satisfies H > 0.

If h' > h, then the space of monotone homotopies is contractible, and otherwise it

is empty. One needs to develop a framework to realize the full potential of such a

statement in Floer theory (Subsection 3.2.2), but for this section we simply call it

contractibility.

We take a sequence of one-periodic Hamiltonians H < H2 < ... on M with non-

degenerate one-periodic orbits, which are cofinal among functions that are strictly

negative on K (this idea is due to Floer-Hofer 1121, also see Subsection 3.3.1 for

further discussion). We also choose monotone homotopies {HS}E[i,i+],, for all i E N.

Using Hamiltonian Floer theory (see Section 3.2) we can associate to this data, which

is called the acceleration data, a linear diagram of free A>o-chain complexes:

CF(H) -+ CF(H2) - CF(H3) - .... (1.2.1.1)

Before moving further, we now describe our version of "adding formal sums". For

r > 0, by A>, we denote the ideal of A>0 consisting of the elements with valuation at

least r (see Section 2.1 for more details). Let A be a A>O-module. The completion

of A is defined as:

A := Um AOA>0 A>O/A>r. (1.2.1.2)
r>O

More concretely, one can think of A as equivalences classes of Cauchy sequences

in A. This viewpoint is better for computations, and is explained in detail in Section

2.4.

We then define relative symplectic cohomology as the homology of the completion

14



of the direct limit:

SCM (K) := lgjp CF(H,) DA> A o/A>,r (1.2.1.3)
r>O i

SHm(K) :=H(SCm (K)). (1.2.1.4)

Here we unfolded the completion part, and also did not put any paranthesis, to

highlight that each single truncation (i.e. - A>0, A>0 /A>r) commutes with the direct

limit, by virtue of being a tensor product. Using contractibility, we get that SHM(K)

is well defined. See Subsection 3.3.2 for the details.

Remark 1.2.1. In general, it is better to take a homotopy direct limit (i.e. the

telescope construction as in [3]) instead of the usual direct limit. This gives the same

invariant (Lemma 2.4.4), but is a lot more functorial from the view point of Floer

theory. The construction of restriction maps in Subsection 3.3.2 illustrates this point.

The homotopy colimit is also free as a A>O-module, and hence its completion in terms

of Cauchy sequences is easier to describe.

Remark 1.2.2. The Z/2-grading is given by the Lefschetz fixed point index, but we

will ignore it in the rest of this Chapter.

Remark 1.2.3. The reader might be wondering why we needed to complete our chain

complex, since H(Ij, CF(Hi, M)) can be shown to be well-defined as an invariant

of K already. There are two reasons for this. One is opportunistic, as the homol-

ogy of the completed complex captures more chain level information. Let us illus-

trate this point. An important invariant of a A>0 -module is obtained by killing its

torsion, i.e. tensoring it with its fraction field A (flat over A> 0). We claim that

H(l. CF(Hi, M)) 0 A does not depend on K at all.
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First of all, after tensoring with A, each of the continuation maps

CF(H, M) -+ CF(HI+1 , M) (1.2.1.5)

become quasi-isomorphisms. This is because one can construct a continuation map

over A in the other direction, which is a two sided homotopy inverse. By the PSS iso-

morphism as in Pardon [29], Section 10, we also have canonical quasi-isomorphisms

CF(Hz, M) 9A> 0 A -> C*(M, Z) 0 A. (1.2.1.6)

These maps are compatible with the continuation maps, and using that flat tensor

products commute with homology and direct limit, we obtain:

H(!P CF(HI, M)) A> 0 A = H*(MA), (1.2.1.7)

as A-vector spaces. On the other hand SHM(K) (A>, A can be shown to depend on

K in many examples (see Example 1.2.2 for the M = S2 case).

The second reason is heuristic: we want the invariant to be as local as possible. The

simplest way to put what completion achieves in this direction is as follows. Let T

be the Novikov parameter. Assume that there is a closed element y in CF(Hj) whose

image (under the maps in the linear diagram) lies in Tr3CF(Hj), for some rj -+ oo,

as j - oc. Then, the image of [-,] under the canonical map HF(Hj) -> SHM(K)

is zero. This does not imply a statement of the sort "the generators that lie far

away from K do not contribute to the final module ", but it is in that direction. The

vanishing of the invariant for the empty set (Subsection 3.3.3) and the proof of the

displaceability property (Section 4.2) well illustrates this point.
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1.2.2 An example: subsets of the two sphere

Let S be a two-sphere endowed with an area form. Let K C S be a subset obtained

by removing a finite number of open disks from S. Then,

SHs(K) (9A> A =0, if K is displaceable (1.2.2.1)
A e A, otherwise

It is elementary to see that displaceability is equivalent to area of one of the removed

disks being more than a half of the area of S. Note that the Computation (1.2.2.1)

actually follows from the general properties (global sections and displaceability as in

Section 1.3, and the Mayer-Vietoris sequence as in Section 1.4), but let us informally

present part of the computation when K is a closed disk to show the effect of com-

pletion more conceretely. Note that by a relative Moser argument any smooth closed

disk can be taken to any other one with the same area by a Hamiltonian isotopy of

S2. Therefore, we start with a special one to simplify the notation.

Let S have area 1, and m : S - [0, 1] be the moment map. We can think of S as

{xi, x2 ,x3  xf+x+(x- -1/2)2 1/4} C R3 and m as the projection to the x3-axis.

Let D = {m(x) < A}, so area(D) = A and area(S - ID) = 1 - A.

We construct a cofinal family by taking functions h, : [0, 1] -+ R satisfying

1. hn < hn1

2. hn< 0 on [0, A]

3. hn is linear with slope c, > 0 on [0, A + E] and [A + 2en, 1] for some c, > 0,

with cn -+ 0 and En - 0, as n -+ oc

4. h' is a concave function, and its maximum value is an irrational number

5. hn(0) -+ 0 and hn(1) -÷ 00, as n -- oo,

17



0 1

Figure 1-1: The shape of the graphs of the functions we constructed

composing them with m, and using the standard techniques for dealing with S1 -

degeneracies [5]. Note that h, o m has exactly two critical points (a minimum and a

maximum), and its non-constant one-periodic orbits are contained at the level sets of

hn with h' c Z.

It is a non-trivial computation that the resulting complex SCs(D) is quasi-isomorphic

to C D C, where C is the following chain complex:

" C = D Ago - (D A o - #j+1, where @ is the completed direct sum, as in

Section 2.4.

" dli = 0, d 3i1 = T~'yi + T-A^yj 1 .

Remark 1.2.4. Note that because the minimal Chern number is 2, we actually have

a Z4 -grading here (and the differential increases indices in our conventions). The

above splitting is then given by the splitting of the generators with grading 3, 0 in one

18



group, and the ones with 1, 2 in the other. See Remark 3.1.1 for more on our grading

conventions.

Without the T-A term in the differential, the complex C should be familiar to

the reader who has seen the computation of the symplectic cohomology of a 2-disk

[27], which would be K in our case. The Ti-A term comes from solutions of the Floer

equation that intersect the maximum (exploring the complement of K).

Note that H(C) OA>O A = H(C OA> 0 A) is generated by ['yo], since

-n+1 - )/ = d(TA(3 1 - T -2A3 2 + T21-2A) 3 - ... T n(-2A)on+ 1 )). (1.2.2.2)

Moreover, we have that yo has a primitive if and only if the sum E.O Tk(1-2A)k+1

converges to an element of C as n -- oc, which is equivalent to 1 - 2A > 0. This

gives the desired result.

1.2.3 Comparison with literature

Now we discuss the relationship between SHM(K) and similar invariants from the

literature. In their seminal paper, Floer and Hofer constructed an invariant that they

called symplectic homology for (bounded!) open subsets of (R2", wet) [12]. This was

generalized to aspherical manifolds with contact (or no) boundary in [6]. In a more

explicit construction, Viterbo defined an intrinsic invariant in the contact boundary

case that only depends on the completion of the domain [39]. More recently, Cieliebak-

Oancea generalized Viterbo's construction to Liouville cobordisms [7]. Among the

many results they proved is a Mayer-Vietoris sequence that we briefly compare with

ours in Remark 1.4.4.

Cieliebak et al. also commented that their constructions could be generalized to

non-aspherical manifolds by the use of Novikov parameters in Section 5 of [6]. It

appears that the first time in the literature this was picked up again was in Groman

19



[14]. Groman's definition of reduced symplectic cohomology is very similar to ours,

but it is not the same. His chain level invariant as a A chain complex is the same as

ours, and he uses action filtrations to replace our defining the invariant over A>O. He

also uses the language of topological vector spaces, rather than commutative algebra.

Yet, the real difference seems to be that he takes the closure of the image of the

differential on this complex before taking homology. Both variants seem to be useful,

and we leave the further comparison to the interested reader.

Another relevant paper is the one of Venkatesh, where she also utilizes the com-

pletion procedure to recover some quantitative information from a chain complex over

A (see her paper for a more complicated example in the spirit of our sphere example)

[38]. Her invariant is an intrinsic invariant defined for monotone symplectic man-

ifolds with contact boundary (monotonicity could be removed for purposes of just

defining the invariant). However, unlike Viterbo's symplectic homology, it does not

factor through the completion of the domain as it keeps track of topological energies

of Floer solutions. The relevant comparison question for us is the following:

Question. Let K c M be a compact domain with convex boundary. Let us

denote the intrinsic invariant of Venkatesh by SH(K). What is the relationship

between SH(K) and SHM(K) & A?

Note that a similar question was answered for Floer-Hofer and Viterbo versions of

symplectic cohomology in [27], proving that those invariants are the same. Our situa-

tion is considerably more complicated. There are two potential sources of difference,

the first one is the extra generators in SCM(K), and the second one is the pseudo-

holomorphic curves in M that are not contained in K. While we understand under

what conditions the latter issue does not occur, the former seems slightly mysterious

as of now.

Last but not least, a recent preprint of McLean [251 uses an invariant in the same

vein to prove that birational equivalences of projective CY varieties preserve quantum

20



cohomology (roughly speaking). During the course of his involved proof, he identifies

a situation (most important assumption is "index boundedness") in which extra gen-

erators (as in the previous paragraph) do not contribute. The actual statement that

he proves is too complicated to state here. We make another reference to Mclean's

work in Remark 4.3.1, in which we explain a little bit more of his setup.

1.3 Properties of relative symplectic cohmology

The following properties should convince the reader that relative symplectic coho-

mology is an important invariant that deserves to be studied independently of mirror

symmetry considerations. The proofs are given in the main body of the text (see the

Outline Section for where the proofs are located).

Theorem 1.3.1. Relative symplectic cohomology satisfies the following properties.

" (coordinate independence) Let $ : M -+ M be a symplectomorphism, then there

exists a canonical relabeling isomorphism SHM(K) -- SHM(-(K)).

" (global sections) SHM(M) = H(M, Z) 9 A>0 as A>0-modules, where A>0 is the

maximal ideal of A> 0 .

" (empty set) SHM(0) 0.

" (restriction maps) For any K' C K, there are canonical module maps:

SHM(K) -+ SHM(K'). (1.3.0.1)

Moreover, if K" c K' c K, the map SHM(K) -+ SHM(K") is equal to the

composition SHM(K) -+ SHm(K') -+ SHM(K").

" (Hamiltonian isotopy invariance of restriction maps) Let $t : M -+ M, t E

[0,1], be a Hamiltonian isotopy such that $t(K) c K' for all t. We have a
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commutative diagram

SHM(K') > SHM(q1(K)) (1.3.0.2)

SHM(K).

" (displaceability condition) Let K c M be displaceable by a Hamiltonian diffeo-

morphism, then SHM(K) O®, A = 0.

" (Kunneth formula) Let K c M and K' c M', we have an explicitly defined

module map SHM(K) ®A> SHM(K') -+ SHmXm,(K x K'). See Section 4.3 for

a more precise statement.

1.3.1 Displaceability

The displaceability property is the most serious among these properties. This prop-

erty was proven for Liouville domains by Kang 116] for Viterbo's symplectic cohomol-

ogy, and aspherical manifolds by Groman [14] for his reduced symplectic cohomology.

Their methods are pretty different: Groman's relies on spectral invariants, whereas

Kang's proof is based on a geometric argument that seems to have originated in

the study of leafwise intersections of coisotropics via Rabinowitz Floer homology [4].

Mclean also proves a very related result (see Remark 4.3.1), which is tailored to his

setup.

Our proof is based on Kang's, but requires a significant extra step, which involves

obtaining lower bounds for topological energies of certain continuation map equations

(Proposition 4.2.7). This bound is obtained by understanding the locations of the

images of continuation map solutions after a certain adiabatic limiting procedure.
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Figure 1-2: On the left there are two subsets that cannot satisfy Mayer-Vietoris, and
on the right are two that do. The thick circle on the left divides the sphere into equal
areas.

1.4 Mayer-Vietoris property

As we discussed earlier, the main task of this thesis is to analyze the question: does

SHM(.) satisfy the Mayer-Vietoris property, i.e. for K1 , K2 compact subsets of M, is

there an exact sequence

(1.4.0.1)SHM(K1 U K2) SHM(K1) e SHM(K2),

SHM(K1 n K2 )

where the degree preserving maps are the restriction maps (up to sign)?

Mayer-Vietoris property does not hold in general. In Figure 1-2, we see examples

of pairs of subsets inside the two sphere that does and cannot satisfy Mayer-Vietoris

property (see Example 1.2.2 for a discussion).

Remark 1.4.1. Using the displaceability and global sections properties, and the fact

that any symplectic manifold can be covered by displaceable subsets, we get a concep-
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tual counterexample to any possible notion of locality in the manifold.

One piece of good news is that we can measure the failure of the Mayer-Vietoris

property to hold. Slightly generalizing the situation, let K1 , . . . , Kn be compact

subsets of M. Using Floer theory, we can construct a chain complex SCM (K1 , ... K):

an explicit deformation of the chain complex elc[n] SCM (i, Ki), w.r.t the I-

filtration (i.e. the full differential is lower triangular, and the diagonal entries are the

differentials from before). Here I being the empty set means taking the union of Ki's.

More specifically, in this deformation the part of the differential that increases

I-filtration by 1 are given by restriction maps, the ones that increase by 2 are chain

homotopies between compositions of restriction maps in different directions and so on.

The data of SCM (K1 , ... Kn) should be visualized in the following way. The modules

underlying the summands of @Ic[n] SCM (nif 1 Kj) are placed on the vertices of an

n-dimensional cube (with an ordering of its coordinates), and the differential is the

direct sum of maps indexed by the faces (including the vertices) of the cube, going

between the initial and terminal vertices of that face. Such diagrams will be called

cubical diagrams, or n-cubes (see Subsection 2.2.1).

Remark 1.4.2. Cubical diagrams were used to great effect by Kronheimer-Mrowka

in their celebrated paper [20] to obtain the necessary spectral sequences. We warn the

reader that their signs work out slightly differently than ours.

The homology of SCM(Kl,... K,) only depends on K1 , K2, ... Kn (Section 3.4),

therefore the following definition makes sense.

Definition 1. K1 , K2, ... Kn satisfies descent, if SCM(K1,... Kn) is acyclic.

Satisfying descent implies the existence of a convergent spectral sequence:

(D sHm nK > ~ uH K. (1.4.0.2)
O+IC[n] \iEI /(i=1 /
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which produces a Mayer-Vietoris sequence for n = 2 as in Equation 1.4.0.1 above.

Let us now discuss some cases in which Mayer-Vietoris/descent properties are

satisfied.

1.4.1 Non-intersecting boundaries

We start with a relatively simple situation. We note that the following theorem is

not trivial, and the reader might find it useful to understand the ideas in involved in

its proof first. Hence, we gave its rigorous proof separately in Section 5.4.

Theorem 1.4.3. Let K1,... K C M be compact domains 2. Assume that the bound-

aries of Ki are pairwise disjoint. Then, descent is satisfied.

We give a rough sketch of the proof here. We can always choose the Hamiltonians

defining relative symplectic cohomology of a domain in such a way that the inter-

esting dynamics happen near the boundary (for details Subsection 5.3). For ease of

explanation, let n = 2. Because the boundaries are disjoint, a compatible choice of

such Hamiltonians results in non-constant orbits for K1 or K2 occurring exactly once

again for K1 n K2 or K, U K2. Hence each non-constant generator in SCM(Kl, K 2 )

occurs exactly twice (say -y, -y'), so that dy = y' + higher order terms. The story is

similar for constant orbits. Using the fact that truncating the positive energy terms in

the differential of chain complex over A>o cannot reduce the rank of homology groups

(the acyclicity lemma for A>O-modules, Lemma 2.1.3), we get the desired acyclicity.

Remark 1.4.4. For n = 2, this produces a Mayer- Vietoris sequence as we have com-

mented on before. A similar Mayer- Vietoris sequence for their version of symplectic

homology, when K1 and K2 are Liouville cobordisms inside a Liouville domain M

satisying a number of conditions (one of them being that their union and intersection

is also a Liouville cobordism) was established by Cieliebak-Oancea in Theorem 7.17 of

2 a codimension zero submanifold with boundary.
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[7]. In the case that it applies, their statement is different (and in our opinion more

useful) than ours. This is because among the four cobordisms in question two of them

do not have the boundary of M as their positive boundary. Their invariant for those

two do not depend on the cobordism that fills between their positive boundary and the

boundary of M, whereas ours a priori depends on all of M. Analyzing the precise

relationship between these two Mayer- Vietoris seqeunces involve questions that are

similar to the one raised in Subsection 1.2.3, and is subject of future research.

1.4.2 Barriers

When the boundaries intersect the situation is more complicated, and we need to

make serious geometric assumptions.

The following observation is crucial in our argument.

Lemma 1.4.5. Let X C M be a hypersurface. Take another hypersurface Z C H.

Then, the characteristic line field of X is tangent to Z if and only if Z is coisotropic

(rank 2).

Therefore, we make the definition:

Definition 2. Let Z2n- 2 be a closed manifold. We define a barrier to be an embed-

ding Z x [-e, e] -> M2n, for some 6 > 0, where Z x {a} --+ M is a coisotropic for all

a E [-E, e]. We call the image of Z x {0} the center of the barrier, and the vector

field obtained by pushing forward O, E F(Z x {0}, T(Z x (-e, 6)) Izx{oD} to M the

direction of the barrier.

The proof of the following theorem uses the same ideas as in the proof of Theorem

1.4.3, but it is quite a bit more technical.

Theorem 1.4.6. (Mayer-Vietoris sequence) Let K1, K2 C M be compact domains.

Assume that OK1 and OK2 intersect along a rank 2 coisotropic which is the center of
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BARRIER

Figure 1-3: We see a cartoon of K1 , K2 , and the location of the barrier on the left.
The picture on the right represents the union of the neighborhoods of the boundaries
of two tangentially intersecting domains that envelop Ki's with a thin margin.

a barrier whose direction points out of K1 U K2. Then, K1 and K2 satisy descent.

Therefore, we have an exact sequence:

(1.4.2.1)SHM(K1 U K2) - SHM(K1) ( SHM(K2 ),

[1]

SHM( K1 n K2)

where the degree preserving maps are the restriction maps (up to signs).

We made the assumption that K1 , K2 c M are domains purely for the sake of

keeping the statement simple. For the actual statement see Theorem 5.7.1. Note

that in dimension 2, the condition is equivalent to boundaries not intersecting, as a

point in a surface can never be coisotropic (see Figure 1-2). In dimension 4, it implies

that the intersection is a disjoint union of Lagrangian tori, but unfortunately being

outward pointing is an extra condition in this case, see Corollary 5.8.4.

A challenge in the proof of this theorem is that the intersection and union of
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two domains is not a domain in general. This potentially results in generators near

the corners that are hard to deal with. We bypass this issue by approximating the

domains by other domains where the intersections are tangential. Figure 1-3 gives a

cartoon of our strategy.

1.4.3 Involutive systems

Coming closer to our starting point of integrable systems, we make the following

definition.

Definition 3. An involutive map is a smooth map 7r: M -4 B to a smooth manifold

B, such that for any f, g E C (B), we have {f o r, go ir} = 0

Remark 1.4.7. The most studied examples of involutive maps are Lagrangian fibra-

tions (in other words integrable systems). These correspond to the case where the

image of r has half the dimension of M (which is the most it can be).

Theorem 1.4.8. Let X 1,... X,, be closed subsets of B. Then r-1 (X1),. ..- (Xn)

satisfy descent.

Remark 1.4.9. A fancy way of saying the same thing is that SCM gives a

homotopy sheaf over the Grothendieck topology of compact subsets on B

The following corollary was first proven by Entov-Polterovich under the assump-

tion that M is strongly semi-positive using a completely different set of tools [10J.

We provide its simple proof in full generality (assuming Theorem 1.4.8) here.

Corollary 1.4.10. Any involutive map admits at least one fiber that is not displace-

able by Hamiltonian isotopy.

Proof. Let U C, be any finite cover of the image of M inside B by compact subsets.

Theorem 1.4.8, and the global sections property shows that SHM(7r 1 (nl c.) 9 A K
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0, for some non-empty J c [n], by a spectral sequence argument. Hence, by the

displaceability property, Ci is not displaceable for some i. Now assuming that each

fiber is displaceable easily leads to a contradiction. D

Remark 1.4.11. Even though the tools are different, the logic of our proof is similar

to [10] as the experts will notice. We also refer the reader to [10] for a more detailed

exposition of the corollary above including many interesting examples.

1.5 Outline of the thesis

In Chapter 2, we collect some algebraic facts together. In Section 1, we give a proof

of the acyclicity lemma for A>o-modules using commutative algebra methods. In

Section 2, we switch gears and discuss the homotopical algebra of cubical diagrams.

In the sequel Section 3, we discuss colimits and homotopy colimits of linear diagrams

of chain complexes. In Section 4, we introduce the notion of completion for modules

over the Novikov ring, discuss its interaction with (homotopy) colimits, show that

completeness preserves acyclicity under certain assumptions, and give another proof

of the acyclicity lemma. Section 5 puts everything together.

In Chapter 3, in the first three Sections, we define relative symplectic cohomology,

construct restriction maps, and show these are well defined. SHM(M) and SHM ()

are computed in the third section. In the last section, we introduce relative symplectic

cohomology of multiple compact subsets.

In Chapter 4, we finish the proofs of the Hamiltonion isotopy invariance of re-

striction maps, displaceability, and Kunneth properties. In Section 2, we introduce

Hamiltonian twisted relative symplectic cohomology, which might be of independent

interest.

Chapter 5 is where we discuss the Mayer-Vietoris/descent properties. We focus on

the homology level statement for two subsets (i.e. the Mayer-Vietoris sequence) until
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the last section for better readability. Section 1 is one long lemma that puts together

the results we proved in the algebra section so that we can state the precise result

we will prove using Floer theory - and from there algebra gives us the Mayer-Vietoris

sequence. In Section 2, we further reduce the problem to showing the existence

of a sequence of (pairs of) Hamiltonians that can be used as acceleration data for

our subsets, which satisfy a dynamical property. In Section 3, we explain a controlled

way of choosing acceleration data, and immediately show the Mayer-Vietoris property

for two domains with non-intersecting boundary in Section 4. Sections 5-7 are the

main technical sections: they discuss barriers, and how they can be used to prove

our main theorem (Theorem 5.7.1). In Section 8, we give examples of barriers. In

Section 9, after generalizing the main theorem slightly (Theorem 5.9.1), we consider

the involutive case, and show the descent result for multiple subsets.

In Appendix A, we establish the easy translation from Pardon's simplicial dia-

grams to our cubical ones. Finally, in Appendix B, we reduce the descent statement

for n > 2 subsets to a bunch of others but each involving only 2 subsets.

The reader who is interested mainly in the Mayer-Vietoris property and has back-

ground in Hamiltonian Floer theory can take a look at the conventions in the begin-

ning of Chapter 4, and jump ahead to Chapter 5.
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Chapter 2

Algebra preparations

2.1 Commutative algebra over the Novikov ring

Let us start by writing down our conventions for the Novikov field:

A = { ajTai | a E Q, ac E R, and for any R E R,
iEN

there are only finitely many ai # 0 with ai < R}

(2.1.0.1)

(2.1.0.2)

There is a valuation map val : A -+ R U {+oo} given by val(EiEN aiTci) -

mini(ai I ai 4 0) for non zero elements, and val(0) = +oc. We define A>, :=

val-([r, oc]) and A>, := val- 1 ((r, oo]). A>o is called the Novikov ring. The valuation

we described makes A>O a complete valuation ring with real numbers as the value

group. The following lemma follows easily.

Lemma 2.1.1. 1. All submodules of A as a A>O-module are given by 0, A, A>r,

and A>r for r E (-oc, oc).

2. A>O is a local ring with maximal ideal A>O, fraction field A, and residue field

A;>O/Ayo = Q.
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Note that A>0 is not a PID since A>O is not a principal ideal. Let us list some

properties of modules over the Novikov ring.

Lemma 2.1.2. Let A be a A> 0-module.

1. A is flat if and only if it is torsion free.

2. A is projective if and only if it is free.

3. Assume that A is finitely generated. Then A is a direct sum of cyclic modules.

In particular, A is free if and only if it is torsion free.

Proof. 1. This is true for any valuation ring [34, Tag 05391

2. This is true for any local ring [34, Tag 058Z].

3. This is true for any almost maximal valuation ring 1171.

0

2.1.1 Acyclicity of chain complexes over A>O

In this section an abelian group C with an endomorphism d : C -+ C such that d2 = 0

is called a chain complex. If a chain complex C is a A>O-module, and d is a module

homomorphism, we say that C is over A>0 .

Here is the main result of this section:

Lemma 2.1.3. Let C be a chain complex over A>0 . Assume that the module under-

lying C is free and finite rank. Then,

" H(C) is a finitely generated A>0 -module.

" C is acyclic if and only if C ®A>0 A>0/A> 0 is acyclic.
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Proof. First, note that the image d(C) c C is a finitely generated torsion free module.

Hence, it is also free, so the exact sequence:

0 -- ker(d) -+ C -+ d(C) -+ 0 (2.1.1.1)

splits. Therefore ker(d) is projective, hence free. It also follows that it is finitely

generated. This proves the first bullet point.

For the second statement, note that since C is flat, we have a short exact sequence

of complexes:

0 -* C ®A>0 A>O -+ C -+ C ®&A> A>o/A>o -- 0, (2.1.1.2)

which induces a periodic long exact sequence (i.e. an exact triangle):

... -+H(C (9A, A>o) -+ H(C) -+ H(C ®A>O A>O/A>O) -+ .... (2.1.1.3)

Note that H(C (A>, A>o) = H(C) 0A, A>o, and the maps in the long exact

sequence are the canonical maps induced by tensoring A>O -+ A>O, since A>o is flat.

The only if direction is easy, i.e. if we assume H(C) = 0, then H(C &A>,

A>o/A>O) = 0 by the long exact sequence.

Now assume H(C &A>0 A>o/A>O) = 0. From the long exact sequence we get:

H(C) (9A, A>O -+ H(C) (2.1.1.4)

is an isomorphism, i.e. H(C) ®A> 0 A>o/A>o = 0. Now, invoking Nakayama's lemma

using Lemma 2.1.1 (2), we obtain H(C) = 0. D

Remark 2.1.4. Another (less commutative algebra heavy!) proof of the second part

of this lemma is given in Section 2.4, Corollary 2.4.3.
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2.2 Homotopical constructions

In this section we assume that all our chain complexes are Z/2-graded. However,

whenever there is a Z/N or Z-grading statements can be modified to take into account

those gradings without a problem.

2.2.1 Cubes

Consider the standard unit cube Cube: {(X,... Xn) I Xi E [0, 1]} C R'. Note

that the ordering of the coordinates will be part of the data. For 0 < k < n, a k-

dimensional face of Cuben is the subset of Cuben given by setting n - k coordinates to

either 0 or 1. Let us call a vertex of a k-face the initial vertex if it has the maximum

number of zeros and terminal if it has the maximum number of ones.

Let us call two faces F' and F" adjacent if the terminal vertex of F' equals the

inital vertex of F". We denote this relationship by F' > F". We say that two adjacent

faces form a boundary of a face F if F is the smallest face that contains both F' and

F".

Let R be a commutative ring. We define an n-cube of chain complexes over

R in the following way. To 0-dimensional faces (i.e. vertices) of Cuben we associate

an R-module C', and for any k-dimensional face (including k = 0) F we give maps

fF : CVinF - CterF from its initial vertex to its terminal vertex, of degree dim(F) + 1.

These maps are required to satisfy the following relations. For each face F we

have:

(-1)*F',F fF'fF" = 0, (2.2.1.1)
F'>F"is a bdry of F

where *F',F = v + #,01 for v = vterF' - vinF' considered as a vector inside F.

Let us explain this notation a little bit. The coordinates of v is a sequence of O's

and 1's of length dim(F). If abc.. is a word of 0's and 1's, #,abc.. is the number of
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Coo 0  C100

Colo I1.

0 1 .......... .......... ..... . 0 '

Coil Cil

Figure 2-1: A 3-cube

ordered subsequences of the coordinates of v that is equal to abc... It's clear how this

definition would extend to an alphabet with more letters.

In Figure 2.2.1 we present a 3-cube to illustrate the definition. At the corners

there are chain complexes, at the edges chain maps, at the square faces homotopies

between the two different ways of going between the initial and terminal vertices of

that square, and lastly at the codimension 0 face we have one map H that satisfies:

-g 100 + g 010 - 9001 + gol - g 0 1 + go + dH - Hd = 0, (2.2.1.2)

where g100 is the composition C000 -+ C1 00  C11' (the second map is the homotopy)

etc.

2.2.2 Maps between n-cubes

A partially defined n-cube is one where we have some vertices with chain complexes,

and some faces with maps defined so that that whenever it makes sense the Equation

2.2.1.1 is satisfied. If this data is extended to a full n-cube, we call the extension a

filling.
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We define a map between two n-cubes to be a filling of an (n + 1)-cube where the

two opposite faces are the given n-cubes.

C -+ C' (2.2.2.1)

An example of a map of n-cubes is the id map, where the two n-cubes are connected

to each other with identity maps between the chain complexes and all the homotopies

are zero. Note that this works no matter where we add the extra coordinate in the

ordering.

A homotopy of two maps of n-cubes is a filling of an (n + 2)-cube where two

opposite faces are the given (n + 1)-cubes (i.e. maps) and the copies of each given

n-cube at those opposite faces are connected to each other with identity maps. Here

we require that the id-coordinate is the last of the n + 2 coordinates.

C - C' (2.2.2.2)

lid 
lid

C >C'

Let us call an (n + 2)-cube of such shape an (n + 2)-slit.

A triangle of maps of n-cubes is a triple of n-cubes and maps between them placed

in a partial (n +2) cube in the following manner, and of course a filling of that cube.

Again we require that the id-coordinate is the last of the n + 2 coordinates.

C > C" (2.2.2.3)

, id
C' -> C",

Let us call an n + 2-cube of such shape an n + 2-triangle.

We now give examples of these definitions in low dimensions. Let the following

be a diagram of chain complexes that are commutative up homotopy, with g and h
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two choices of such homotopies.

CO C1 (2.2.2.4)

fol gh

Co C/

Hence these are two ways of completing the diagram into a 2 - cube.

Equivalently, fo, fi and h or g give maps between the 1-cubes c and c'. A homotopy

of maps between these two maps is a map H : Co --+ C' which satisfies, dH - Hd =

g - h. Clearly this data is equivalent to a 3- cube obtained by taking the two 2- cubes

and placing one of them slightly out of the page and connecting the two by identity

chain maps and zero homotopies, and filling in the cube with H.

Note that this is not the most general kind of homotopy between two maps of

1-cubes, because the vertical chain maps in both maps of 1-cubes are the same. More

generally let fo, fi, h and fo, fl, h' be two different maps of 1-cubes. Then a homotopy

between the two would be given by FO, a homotopy between fo and fo, similarly F1,

and also an H that satisfies the equation that is associated to the maximal face of

the 3-cube:

c'F - F2c + h' - h + dH - Hd = 0, (2.2.2.5)

as a special case of Equation 2.2.1.2.

Let us now start with a homotopy commutative triangle, i.e.

COo >C1 ,(2.2.2.6)

1
C2
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and another map that fills the triangle h : Co -+ C2, which satisfies

fifo - g +dh+ hd = 0. (2.2.2.7)

We like to think of this as the following 2-cube:

C fo C1 (2.2.2.8)
hIf

C2 idC2

2.2.3 n-cubes with positive signs

There is a slightly different definition of n-cubes where the signs are not present. We

define an n-cube with positive signs to be one where the signs in the Equation

2.2.1.1 are all +1, in other words * = 0.

Faces of Cuben are in one-to-one correspondence with

{(i1, ... , in) I ik E {0, 1, -}}, (2.2.3.1)

where - represents the coordinates that vary in the face. Let us denote this assign-

ment by F -* p(F).

Lemma 2.2.1. Let (C,, fF) be an n-cube (f{} are the differentials). There exists

a canonical (but not unique) way of changing the signs of fF (_1)n(F)fF so that

(Cv, (-1)n(F)fF) is an n-cube with positive signs.

Proof. We define n(F) := #p(F)(0-) + #p(F)O-

Let F' > F" be a boundary of F. Let S C [n] be the entries of p(F) that are equal

to -. Then, there is a subset S' C S such that p(F') is obtained by changing the

entries of S corresponding to S' to 0, and p(F") is obtained by changing the entries

corresponding to S - S' to 1.
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We claim that #P(F)(O-)+n(F')+n(F")+*F',F is even. The parity of #p(F)(0O)+

#p(F')(0-) + #p(F")(0-) is equal to the one of the number of 01's in vteF' - vinF'

considered as a vector inside F. Moreover the one of the number of l's in 'teF' -v.F'

considered as a vector inside F plus #,(F')O + #p(F")0 has the same parity as dimF.

This proves the claim because the overall factor (- 1 )#g(F)(O-)+dimF can be canceled

from the equation.

2.2.4 Cones of n-cubes

Recall that the usual cone operation takes a chain map (i.e. a 1-cube) between two

chain complexes, and spits out a single chain complex (a 0 cube):

(C, d) - (C', d') - C[I] G C', d 0). (2.2.4.1)
(f d'

This can be generalized to all cubes. First, given an n - cube with positive signs

and one of the n directions, we can construct an (n - 1) - cube with positive signs by

the cone construction. The chain complexes at the vertices are given by the standard

cone construction, and the maps are defined in the only possible way without losing

any data.

More precisely, let (Cr, fF) be an n-cube with positive signs, and 1 _ i < n an

integer. If w is a sequence of length n - 1, we let (w, i, a) be the sequence of length

n with a added as the ith entry to w. Recall also that we can identify a face F by

pa(F) as defined in the previous subsection.

Now the cone of (Cr, fF) in direction i is defined by:

CW = C(W,i,o)[1] e CW,i,1), (2.2.4.2)
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and fF C Cin(F) -~ Cter(F) is given by the matrix,

M( 0(2.2.4.3)

f(p(F),i,-) f(p(F),i,1) )

It is readily seen that this defines an (n - 1)-cube with positive signs.

Now, we define cones on n-cubes by

n - cube -* n - cube with p. signs -+ (n - 1) - cube with p. signs -+ (n - 1) - cube

(2.2.4.4)

Note that the signs in the formulas will be different for different directions. We

will call the fact that the cone operation turns an n-cube into an (n - 1)-cube, the

functoriality of the cone operation.

Lemma 2.2.2. 1. Iterations of the cone construction in any ordering of the n

directions gives a chain complex, which is independent of the order.

2. Assume that id is the last coordinate in the (n + 1)-cube C i- C. Then the cone

operation in any other direction d gives coned (C+) coned(C). In particular,

cones in directions except the last one send n-slits to n-slits, and n-triangles to

n-triangles.

Proof. 1. If p(F) is as in the proof of Lemma 2.2.1, then the sign in front of fF in

the end will be #p(F)O + #p(F)O--

2. The identity maps do not change sign because if the dth entry is 0 then they

get negated twice, and if it is 1 not at all. The two opposite faces (connected

by id) get the same sign changes because their last coordinates being 0 or 1 do

not matter to the sign change.

F-1
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We explain this on 2-cubes. There are two cones of the 2-cube with h as the filling

in Diagram 2.2.2.4 (called C), one that takes the f's as the maps conef (C), and one

that sees c"s as maps conec(C) (which we called directions in Lemma 2.2.2). Assume

that c is the first coordinate. Let us write them down explicitly.

-d 0 (h c' d 0
conef (C) = C[1] (D Co,) d C1 [1] G C',f

(2.2.4.5)

I(2.2.4.6)

Taking the cone in the remaining

with differential:

d

-c

fi

h

2.2.5 Composing n-cubes

The composition of two chain maps is

to higher dimensional cubes.

Let us start with 2-cubes. Let the

direction results in Co ( (C1 [1] e Co[1]) @ C'

0

-d

0

C'

0 0

0 0

-d 0

f d

(2.2.4.7)

a chain map. We generalize this construction

two squares below be commutative up to the

41

fi 0

-d 0 h f2 -d 0
conec(C) = C0[1 e C1, >CO[1] (D C',

. c d (c d



given homotopies.

CO o 1. C1 ' >C2 (2.2.5.1)

fol 0 f1l g jf2

Do do>D1d D2

In this case, we say that the two 2-cubes are glued along fi a 1 - cube.

We can define the composite 2 - cube:

Co C2 (2.2.5.2)

Do >D2dido

where G = gico + goci.

In general, if we are given two n-cubes glued along an (n - 1)-cube, we can define

an n-cube in a similar fashion. This operation also depends on the ordering (i.e. the

place of the special direction in the ordering).

First note that any iterated cone of an n-cube (remembering its direct sum decom-

position) has the same information as the cone itself. Only some signs are different

but we know exactly how the signs change.

Let C -> C' -- C" be two n-cubes C -÷ C' and C' -+ C" glued along C'. By taking

the (n - 1) times iterated cone we get two chain maps glued along a chain complex

conen-1 (C) -+ conen-1 (C') -+ conen-'(C"). We of course know how to compose these

two maps, and all we need to do is to de-cone this as described in the previous

paragraph. We omit the explicit formulas. The following is immediate by definition.

Lemma 2.2.3. * The composition operation is associative. Namely if we have

three cubes glued along linearly, then the final composition is independent of the

order in which we performed the compositions.
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* Composition commutes with the cone operation done in a direction parallel to

the glued face.

2.2.6 Rays

We call an infinite sequence of n-cubes D1, D2, .... an n-ray if they are glued together

to form a half-infinite box, more precisely an (n - 1)-dimensional face of D1 is the

same as one of D2, the opposite face of D2 is the same as one of D3, etc. Below is a

1-ray:

CO -+ C1 -+ C 2 - ... (2.2.6.1)

And a 2-ray:

Co  1 C 1 > C 2  --... (2.2.6.2)

fol \go fit g I 1f2\

Do do > D1  di-> D 2  ....

For an n-ray, there are n - 1 finite, and 1 infinite directions. We always think of

the infinite direction as the first in order. We call the faces of the n-cubes forming an

n-ray that are perpendicular to the infinite direction the slices of the ray. Slices are

(n - 1)-cubes. An n-ray can be presented as

CO - C1 - C2 -+...,(2.2.6.3)

where C, are the slices, and the n-cubes forming the n-ray are seen as maps between

the slices.

We define a map between two n-rays to be an (n + 1)-ray filling the two n-rays,

in other words, n + 1-cubes filling the two infinite sequence of n-cubes which glue
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together. The 2-ray above is map between the upper and lower 1-rays.

A homotopy between two maps of n-rays is again given by a sequence of homo-

topies for the given maps of n-cubes that glue together. A triangle of maps is defined

in the same way.

2.2.7 Cones and telescopes of n-rays

By results of the previous section, along the n - 1 finite directions we can take cones

and end up with an (n - 1)- ray.

Let C = Co -4 C1 -+ C2 - ... be a 1-ray. The telescope tel(C) of such a diagram

is defined to be the R-module miEN Ci [1] ( Ci with the differential as depicted below:

d d d

CO C C2 (2.2.7.1)

id id id --'

CO [1] C1 [1] C2 [1]

-d -d -d

More generally, the telescope tel(C) of an n-ray C is an (n - 1)-cube. Let C be

the n-ray Co -> C1 -+ C2 -+ .... Now define the R-modules at the vertices of tel(C)

as the entrywise direct sum eiEN Ci[1] e C2. The maps in the (n - 1)-cube structure

are depicted in:

CO C1  C 2  (2.2.7.2)

id d id -

CO[1] C1 [1] C2 [1]

Note that the Ci's (and the shifted copies) have internal structure that make them

an (n - 1)-cube that is taken into account here, and the in front means that some
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those maps are negated (as described in the next sentence). The pieces formed by

diagonal arrows are the cones of Di = Ci_ 1 - Ci's in the infinite direction, and the

vertical arrows are the cones of Ci Id * Ci, where id is put as the first coordinate. In

particular, the fact that this is an (n - 1)-cube follows from the functoriality of cones.

Lemma 2.2.4. * We get a canonical 1-ray from any n-ray by an (n - 1) times

iterated cone. This commutes with the telescope.

Telescopes are functorial in the sense that (1) a map of n-rays canonically give

a map of the telescopes (which are (n - 1)-cubes), (2) a homotopy between two

maps give a homotopy, (3) a triangle of maps gives a triangle of maps.

2.3 1-rays and quasi-isomorphisms

In this section we give a low level discussion of the fact that the telescope of a 1-ray is

the homotopy colimit of the diagram in the appropriate category of chain complexes.

Let C = Co -+ C 1 -4 C2 -+ ... be a 1-ray.

Lemma 2.3.1. There is a canonical quasi-isomorphism

tel(C) -* lim(Ci -+ C2 - ... ) (2.3.0.1)

Proof. Define Fn(tel(C)) to be (@i[1,n-1 Ci[1] D C,) D Cn. Notice that tel(C) is the

usual direct limit of Fn(tel(C)). Moreover, there are canonical quasi-isomorphisms

Fn(C) -+ C induced by the given maps Ci -+ C., i E [1, n] and the zero maps

Ci[1] -+ Cn,, i E [1, n - 1], which makes the diagrams

F" (tel (C)) : Fn+1 (tel(C)) , (2.3.0.2)

i4 _ _

Cn - Cn+1
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commutative. The induced map tel(C) -- lime Ci is also a quasi-isomorphism, since

direct limits commute with homology. 1:1

Let i(0) < i(1) < i(2) < ... be a subset of N. Note that by composing maps

we get a unique map C, - Cm for all m > n. Then we canonically obtain a 1-ray

Ci = Ciz() --+ Ci(2) 9 .... Let us call this a subray. Let us call the canonical map of

1-rays C -- C' a compression map:

(2.3.0.3)C - > C2 > C3 2 ...

I I I

Lemma 2.3.2. The compression map induces a quasi-isomorphism: tel(C) - tel(C').

Proof. This follows from the commutativity of the diagram:

tel(C)

I

tel(Ci)

I

(2.3.0.4)

lim,(C1 - C2 -+ . . .) > lim,(Ci(l) Ci(2 ) 9 ... )

since bottom horizontal map is a quasi-isomorphism, using that the homology com-

mutes with direct limits and that i is a cofinal subsequence of natural numbers. D

This generalizes to higher dimensional rays too. Using Subsection 2.2.5 we can

define the notion of subrays, and compression morphisms in exactly the same way.

The lemma above holds with tel replaced by tel ocone"- by definition of composition.
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2.4 Completion of modules and chain complexes over

the Novikov ring

Completion is a functor Mod(A>o) -- Mod(A>o) defined by

(2.4.0.1)A A: A ®A>
0 A>o/A>r,

r>O

and by functoriality of inverse limits on the morphisms. There is a natural map of

medules A -+ A.

One can construct the completion in the following way. Let us say that a sequence

(a1 , a2 , .. .) of elements of A

* is a Cauchy sequence if for every r > 0 there exists a positive integer N such

that for every n, n' > N, a, - a,, c TrA,

" converges to a E A if for every r > 0 there exists a positive integer N such

that for every n > N, a - a, E TrA.

Then, we have that A is isomorphic to all Cauchy sequences in M (with its natural

A>o-module structure) modulo the ones that converge to 0.

In case A is free, this description becomes simpler. Choose a basis {vi}, i E I.

Then, A is isomorphic to

{ E#ivij 2 E
iEI

A>O, and for every R > 0, there is only

finitely many i E I s.t. val(#3) < R}.

The following lemma is immediate from this description.

Lemma 2.4.1. Let A be a free A>o-module. Then
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A is torsion free (i.e. flat).

* The map A ®A,> A> 0/A>, - A ®A>0 Ao/A>r is an isomorphism for all r > 0.

The completion functor automatically extends to a functor Ch(A o) -+ Ch(A>0 ).

Lemma 2.4.2. Let C be a chain complex over A>0 .

" If C is torsion free, then C &A>o A O/A>r is acyclic if C is acyclic.

" If C is torsion-free and complete (meaning that every Cauchy sequence con-

verges), and r > 0, then C ®A,> A> 0/A>r is acyclic only if C is acyclic.

Proof. The first bullet point follows from the long exact sequence of the short exact

sequence:

0 -+ C + C -+ C &A>, A>0/A>r -- 0. (2.4.0.4)

For the second one, let a E C, and da = 0. We need to show that a is exact. Our

assumption implies that there exists an a, b E C such that a = db + Tra.

We have that; d(Tra) = Trda = 0, which implies that da = 0 by torsion-freeness.

Now we repeat the previous step for a, and keep going. Because of our completeness

assumption this defines a primitive of a. El

Corollary 2.4.3. 1. Assume that C is finitely generated free, then if C 9A> 0

A> 0/A> 0 is acyclic then so is C.

2. Assume that C is free, then C acyclic implies C acyclic.

3. Let f : C -+ C' be a chain map. Assume that the underlying modules of C and

C' are flat. Then f: C -+ C' is a quasi-isomorphism if f is one.

Proof. For (1), choose a basis for C and write d as a matrix. There exists a smallest

positive number r such that Tr has a non-zero coefficient in a matrix entry. Then our

assumption actually implies that C &A>o A> 0/A>r is acyclic.
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For (2), combine the previous two lemmas (noting that the completion of a module

is complete), and for (3) use the fact a chain map is a quasi-isomorphism if its cone

is acyclic. l

Even though taking homotopy colimits are better suited for general constructions,

sometimes usual direct limits are better for computations. To this end we show that

Lemma 2.3.1 still holds after completions.

Lemma 2.4.4. Let C = CO -> C1 -s C2 - ... be a 1-ray. There is a canonical

quasi-isomorphism

tel(C) -+ lim(C). (2.4.0.5)

Proof. We have canonical quasi-isomorphisms

fr : tel(C) OA, 0 A>O/Ar -+ lim(C) (A, 0 A>o/A>r, (2.4.0.6)

that are compatible with each other, using Lemma 2.3.1 and that tensor product

commutes with telescopes and direct limit. We claim that the inverse limit over r of

these maps give the desired map.

We show that the inverse limit of cone(fr) is acyclic, which is clearly enough.

Note that the maps in this inverse system are all surjective. Therefore we have a

Milnor short exact sequence (see Theorem 3.5.8 in [401), and the fact that cone(fr)'s

are acyclic implies the desired acyclicity. l

2.5 Acyclic cubes and an exact sequence

Starting from an n-ray we can obtain a (n - 1)-cube by applying telescope. We

can then apply completion functor to the result. Hence, we obtain an assignment

tel : (n - rays) -+ ((n - 1) - cubes). This trivially extends to morphisms, and
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respects homotopies. It is functorial in the sense that it also preserves triangles. We

can also apply the maximally iterated cone functor to obtain a chain complex. In

fact we could have applied it before the other two operations and the result would

not change: cone'-1 o tel = conen- 1 a tel = tel o conen- 1. Note that completion is

always applied after telescope.

Lemma 2.5.1. Assume that we have an (n + 2)-triangle of rays

1z f R"/ (2.5.0.1)

1, id

1z /~ 1zi//,

where I" is a subray of R, and there is (n + 2)-slit of rays

R f: R" (2.5.0.2)

i d 
i d

compr.

Then, the composition

tel o conen(R) -+ tel o cone("(R') -+ tel o cone"(1Z") (2.5.0.3)

is quasi-isomorphism. Assuming that all the underlying modules are free, this stays a

quasi-isomorphism after completion.

Let us call an n-cube acyclic if its maximally iterated cone is an acyclic chain

complex. Note that by Lemma 2.1.3, if the modules in this cube are finitely generated

free, then this acyclicity is equivalent to acyclicity after tensoring with the residue

field.

Lemma 2.5.2. Let C be a n-ray where the underlying modules are free. Assume that
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all the slices are acyclic (n - 1)-cubes, then tel(C) is acyclic, and hence tel(C) is also

acyclic.

Proof. The first follows because the maximally iterated cone commutes with the tele-

scope functor, and Lemma 2.3.1. The second part is Lemma 2.1.3. l

Lemma 2.5.3. An acyclic 2-cube

Coo C1 0. (2.5.0.4)

Co1 C1

gives rise to an exact sequence,

H(Coo)) >H(C1o) G H(Co1) .(2.5.0.5)

[1] {
H(C 1 )

where the degree preserving arrows are induced from the ones in the 2-cube.

Proof. The acyclicity implies that Coo -+ cone(CoeCo1 -÷ C1) is a quasi-isomorphism.

Then the long exact sequence of homology associated to the cone finishes the proof.
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Chapter 3

Definition and Basic properties

In this chapter, we assume familiarity with Hamiltonian Floer theory at the level of

Salamon [321, and Pardon [29], Section 10. We also freely use notations and results

of the previous chapter.

3.1 Conventions

In this short Section we put together our conventions setting up Hamiltonian Floer

theory.

L. W(XH, -) = dH

2. w(-, J-) = g, hence JXH = gradgH

3. Floer equation: LJg XH-

4. Topological energy of (arbitrary) u : S' x R -* M for a given Hamiltonian
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S1 x R x M - R:

W + J 0,(H(s, t, u(s, t))dsdt (3.1.0.1)

= W(_1 -)dsdt + [(OH,) + dst H,,t(-)]dsdt (3.1.0.2)
as 09t +H s

W( , - XH)dsdt + J(H,)dsdt (3.1.0.3)as t

5. Homomorphisms defined by moduli problems always send the generator of the

Floer complex at the negative punctures to the one at the positive puncture.

6. We consider all orbits, not just contractible ones.

7. We always work over A>O. The generators have no action but the solutions of

Floer equations are weighted by their topological energy.

8. We use Floer-Hofer's coherent orientations to fix the signs.

9. The generators have Z/2 grading given by the Lefschetz sign, and the Novikov

parameter has degree 0.

Remark 3.1.1. Assume that the minimal Chern number of M is k. Then, all our

cochain complexes can be given a Z/2kZ-grading (a Z-grading, if k = oc). All the

statements that we prove can be extended to take into account this grading with no

extra work.

Just to spell out our conventions: we define the degree of a non-degenerate one-

periodic orbit -y with a cap D to be pcz(y, D) + n, where pCz is the Conley-Zehnder

index of -/ using the trivialization given by D and n is half the dimension of M.

Note that in our conventions the differential of a Hamiltonian Floer cochain com-

plex increases the grading. This is because our Floer equation follows a positive gra-

dient flow convention. Finally, we note that, with these conventions, if -Y is a non-

degenerate constant orbit of an autonomous H with sufficiently small second deriva-
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tives at -/, then the degree of 'y (with the constant cap) is equal to the number of

negative eigenvalues of the Hession of H at -y.

3.2 Hamiltonian Floer theory

Let M be a closed symplectic manifold. Take a one periodic time-dependent Hamil-

tonian H : M x S' - R with non-degenerate one-periodic orbits P(H). Then, there

exists choices of a compatible almost complex structure J, extra Pardon data P (as

in Definition 7.5.3 in [29]), and coherent orientations (as in Appendix C of [29J) so

we can define a chain complex over A>o as follows:

e As a Z 2-graded module:

CF(H, J, P) 0 A>o y, (3.2.0.1)
-yEP(H)

i.e. CF(H, J, P) is freely generated over A>O by the elements of P(H). The

grading is given by the Lefschetz sign of the fixed point associated to each

periodic orbit.

o We define the differential by the formula:

dy = E #"rM(-, y', A, H j, P)TW(A)+fsl y'*Hdt-fs1 - *Hdt7 (3.2.0.2)
Y',AE7r2(7,Y')

and extend it A>o-linearly. Here 7r2 ( Y, -y') denotes homotopy classes of maps

(S1 x I, S1 x {0}, SI x {1}) -+ (M, ', y'). #virM(-, y', A, H, J, P) E Q are

virtual numbers defined as in Pardon. These are virtual counts of genus 0 nodal

curves with two ordered punctures in total, where both punctures are at the

same component, mapping into M. The component with punctures is a cylinder
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and the restriction of the map to it u : R x S' -÷ M satisfies the equation:

Ou Ou
J = - - XH, (3.2-0-3)

Os at

with the asymptotic conditions

u(t, s) -+ (t), s 0 (3.2.0.4)

Y' (t), s -+ 0.

The other components of the curve are J-holomorphic spheres. The homotopy

class of the map is given by A.

The exponent of T in the formula, w(A) + fsi 7*Hdt - fs, Y*Hdt, is the topo-

logical energy (as in Section 3.1) of u plus the integral of w along the sphere

components. It follows from the well-known computation presented in Section

3.1 that each of these terms, and hence w(A)+ fs, -'*Hdt - fs, y*Hdt, is always

non-negative whenever #virM(y, -', A, H, J, P) $ 0.

For a more careful description of the moduli spaces involved see Definition 10.2.2

for n = 0 in [29].

This makes d a degree one A>O-module map that squares to zero.

Continuing to follow Pardon, we outline what Hamiltonian Floer theory gives us

for higher dimensional families of Hamiltonians. It will be more convenient to use

cubes, so we give the theory in that framework, instead of the simplicies as Pardon

does.

Let Cube, = [0, 1]n C R". Let us consider the Morse function

f(x 1 , ... , x 2) = cos (7xi). (3.2.0.5)
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Critical points of f are precisely the vertices of the cube, and the gradient vector field

is tangent to all the strata of the cube.

By an n-cube of Hamiltonians, we mean a smooth map H : Cuben -- C (M x

S1, IR), which is constant on an open neighborhood of each of the vertices, and

also so that the Hamiltonians at the vertices are non-degenerate. We also choose

a Cuben-family of compatible almost complex structures J, Pardon data P, and co-

herent orientations. Now, for each face F of the cube we can consider virtual counts

#vM (', '', A, H, J, P, F) of Floer trajectories associated to that face, intuitively

counting buildings of bubbled solutions of Equation 3.2.0.3 with (s, t)-dependent H

and J prescribed by the gradient flow lines of f (see Figure 3-1 for a picture, and

Definition 10.2.2 in [29] for a precise definition). We again weight these counts by

their topological energy.

We want to make three remarks about these virtual counts:

o If the compactified moduli space of stable Floer trajectories (as in Definition

10.2.3 iv. of [291) is empty for some homotopy class, then the virtual count is

necessarily zero. In particular, if #virM(-y, y', A, H, J, P, F) 7 0, then, by the

computation shown in the bullet point numbered 4. of Section 3.1,

w(A) + 7'*H - 7*H ;> f U12dsdt + J(0,Hs)dsdt, (3.2.0.6)

such that there exists a broken flow line of f in Cuben with intermediate vertices

V... , vi (possibly equal to each other, Vin(F) or Vter(F)), and u : R x SL u... uR x

S- M is a building of solutions of continuation map equations (as dictated

by the broken flow line) from y to -/, yl to _2, ... , 'yj to -y', for some ^yi, a one-

periodic orbit of the Hamiltonian at vi. Note that we have inequality because

we are not considering the geometric energy of the bubbles on the right hand

side. We have already alluded to a special case of this inequality once in the
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Ho1 Hi A square family of Hamiltonians as de-
picted on the left gives rise to a 2-cube
of chain complexes as below. Note that

H xY the homotopy is defined by counting the
accidental solutions in the one parameter
family of continuation map equations.

CH(HOO) : CH(H10 ). (3.2.0.7)

Hoo Hio
CH( Ho1) CH( H1)

discussion of the differential, where the second term on the right is zero. We

call this the energy inequality.

" If a compactified moduli space of stable Floer trajectories consists of one point

and that point is regular, then the virtual number associated to it is non-zero.

This is a consequence of Lemma 5.2.6 of [29].

* If the virtual dimension of a moduli space is not equal to zero, then the virtual

counts necessarily give zero.

The upshot for us is that these (weighted) counts fit together to give an n-cube

as in the algebra section: the chain complexes at the vertices are the Hamiltonian

Floer cochain complexes; at the edges we have what is known as continuation maps;

and higher dimensional faces give a hierarchy of homotopies as in the definition of an

n-cube. Instead of showing this from scratch, we deduce it from Pardon's results for

simplex families in Appendix A.

Remark 3.2.1. Whenever we pass from a family of Hamiltonians to a diagram of

chain complexes we have to make choices of almost complex structures and Pardon

data. Our final statements do not depend on these choices. In proofs and construc-

tions all we need is their existence. We can handle these choices in two different ways
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z

V
- -- Y - constant

s-independent > y sphere

x

Figure 3-1: Picture of Floer trajectory (taken from Salamon [301)

(1) make a universal choice once and for all, or (2) make the choices inductively

whenever you need one as in Pardon [28]. We generally suppress this issue and omit

these choices from the labeling of the diagrams.

3.2.1 Monotone families

Definition 4. We call an n-cube family of Hamiltonians monotone if the Hamilto-

nians are non-decreasing along all of the flow lines of f (as defined in (3.2.0.5). By

the energy inequality (3.2.0.6), a monotone n-cube of Hamiltonians gives rise to an

n-cube defined over A> 0 .

We will also use two other shapes Triangles and Slit, which are subsets of Cuben.

These are used to define n-triangle and n-slit families of Hamiltonians.

We define Triangle2 :{ 1  > X2} C Cube2 and Slit2 to be the closed region that

lies between the flow lines of f that pass through the points (1/3, 2/3) and (2/3, 1/3).

Then we define Trianglen and Slitn by taking cartesian product with Cuben- 2 . The

gradient flow of f is tangent to Trianglen and Slitn as well. The notion of mono-

tonicity is defined in the same way as we did for the cube. Families of Hamiltonians

parametrized by these shapes give rise to special n-cubes as in Subsection 2.2.2:

0 Slitn gives two (n - 2)-cubes, two maps between them, and a homotopy between

the two maps, i.e. an n-slit.
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Figure 3-2: On the left is Triangle2 and on the right is Slit2 . To obtain Trianglen
and Slitn, we take their product with Cube,

e Trianglen gives three (n - 2)-cubes, three maps between them as dictated by

the connections in the triangle, and a filling of the remainder of the diagram,

i.e. an n-triangle.

3.2.2 Contractibility

Definition 5. We define a homotopy of Hamiltonians with stations to be a

map h : I x M x S' - R, and numbers so = 0 < s1 < ... < sk < sk+1 =I such

that the Hamiltonians H a, for a E {, s1, ... ,s k,, are non-degenerate. We say h

is monotone if it is increasing in the I-direction.

We choose non-decreasing functions 1i : R -+ [si, si+1] which are equal to si, and

si+1 near -oo, and +oo, respectively, for every i. After choosing almost complex

structures this lets us write down a moduli problem for U: _ < R x S' a M, where

the equation corresponding to the ith component is the continuation map equation

with Hamiltonian term given by Hl,(,). Therefore, a homotopy of Hamiltonians with

stations (plus extra auxilary choices) define a map CF(H lo) -+ CF(H 11) by com-
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posing CF(H lo) -+ CF(H I)... - CF(H Isk) -+ CF(H 11). If the homotopy is

monotone, the map is defined over A>O.

In the following, by a face of a simplex A" = {(x1 ,... , + xi > 0, x1 +. .. n+1

1} C Rn+ 1 we mean any of its subsets that can be obtained by setting a subset

(possibly empty) of the coordinates to 0. A function on a closed subset of An being

smooth means that it can be extended to a smooth function on a neighborhood of it

inside Rn+1.

Definition 6. We define an n-simplex family of homotopy of Hamiltonians

with stations between Ho and H1 as a smooth map H: An x I x M x S1 - R such

that {a} x {0} x M x S' -+ R is Ho for all a E An, and{a}x{1}xMxS 1 -IR is H,

for all a E An. Moreover, we are given a subset S C A x I (the stations) satisfying

the conditions:

" There exists numbers 0 < si ... sk < 1 and faces F1, ... Fk of An such that

S = U F x {si}.

* There exists a neighborhood U of S U A x {0} U A x {1} such that for every

x E M and t C S', H ux{xx{t} is locally constant.

We say such family is monotone if it is increasing in the I-direction.

Remark 3.2.2. Note that there is a cosmetic difference between a 0-simplex family of

homotopy of Hamiltonians and a homotopy of Hamiltonians (as in the first definition

of this subsection, which we gave as a warm-up) related to how we choose to turn the

data into a form that lets us write down the corresponding Floer equation (the next

paragraph versus the paragraph right after Definition 5). Definition 6 is the one we

use in practice.

Let us denote the coordinate in the I-direction by r. Given n > 0 integer and an

S as above, we fix a function gn,s : An x I -+ M such that:

61



H

H'

CF(H)

CF(H')

Figure 3-3: A family of Hamiltonians with stations as on the left gives rise to a
diagram as on the right. Note that in the right picture there is a face in the back, and
by a double edge we mean the identity map. Moreover, all faces carry homotopies,
in particular the maximal dimensional face. We omit writing down the equations.

* gn,s > 0,

" gn,s vanishes precisely along S,

* all the integral curves of the vector field g, are defined for all times (-oc, oc).

We also want these functions to be compatible in the sense that if F is a face of

An, 9n,S IF gn-1,snF- It is possible to make such choices (see the proof of Lemma

3.2.4).

Families of homotopies of Hamiltonians are then used to define homotopy coherent

diagrams of maps from CF(H lo) to CF(H 11), which are defined over A>O, if the

family is monotone. This follows from the gluing results of [29]. See Figure 3-3 for

an example.

Remark 3.2.3. Succintly, we defined an (oc, 1) category where the objects are non-

degenerate Hamiltonians, and the Hom sets are Kan complexes given by the simplex
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families as above. In the monotone version, Hom sets are the monotone simplex

families (which might be empty of course). The following lemma says that the non-

empty Hom sets are contractible in either case. Floer theory constructs an oc- functor

from these categories to the oc category of chain complexes (over A> 0 in the monotone

case).

A family of homotopy of Hamiltonians with stations on the boundary of A, is

a An_-family of homotopy of Hamiltonians with stations defined on each n - 1

dimensional face of An_1 so that the Hamiltonians glue together to a continuous

function DAz x I x M x S1 --+ R (we also have stations but no conditions on them).

Note that this implies that aAn x I x M x S1 -+ R is in fact smooth (this is not

hard, see Lemma 16.8 of [23] for example).

Lemma 3.2.4. Any family of homotopy of Hamiltonians with stations that is defined

on the boundary of a simplex can be extended to the interior of the simplex. Crucially,

if the initial family is monotone, the extension can be made monotone.

Proof. First we note that we do not add more stations, so the new S is simply the

union of old ones considered as a subset of An.

This is an application of Whitney Extension theorem [40], more accurately of the

construction that is involved in proving it. We refer to Subsections VI.2.2 and VI.2.3

in [351 for the construction (i.e. Equation (8) in [35]) and its properties. The only

property that the construction does not immediately satisfy is constancy near the

stations. This is easy to fix. Let us call the extension so far P. We first define a

function C in a neighborhood N of S via extending by constants. Then, we take a

positive partitions of unity fi + f2= 1, where fi is supported inside N, and is equal to

1 in a neighborhood of S. We then define our final extension to be F = fiF+f2C. D

The upshot of this discussion informally is that any partial homotopy coherent

diagram of maps CF(H) to CF(H') can be filled, even over A>0 . Instead of trying
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explain this more rigourously, we give an example.

Example. Assume that we have Hamiltonians defined on the boundary of the

Cube3, which are also increasing along the vector field that we use to define mono-

tonicity. This almost defines a 3-cube of chain complexes over A>o except that we

do not yet have the map associated to the top dimensional face. Note that what we

are given can be repackaged as a family of homotopies of Hamiltonians with stations

that is defined on the boundary of a hexagon. We can now triangulate our hexagon

and fill in the inside (we could directly fill the hexagon too, but we say it in this way

to be consistent with the general framework). Floer theory then gives us the desired

map to complete our initial diagram to a 3-cube.

3.3 Construction of the invariant

3.3.1 Cofinality

Let X be a closed smooth manifold, and A c X be a compact subset. We define

CTcx := {H E C (XIR) I H K< O}. Note that Ccx is a directed set, with the

relation H > H' if H(x) > H'(x) for all x E X.

Lemma 3.3.1. Let H1 < H2 < ... be elements of Cicx. They form a cofinal family

if and only if Hi(x) -> 0, for x E A, and Hi(x) -+ oc, for x E X - A, as i -> c'o.

Proof. The only if direction is trivial, we prove the if direction. Take any f E Clcx,

we need to show that there exists an i > 0 such that f ; Hi.

By compactness, there is a j > 0 such that f < Hj on A. But, then there has to

be a neighborhood U of A such that f < H on U.

Again, by compactness, there is a j' > 0 such that f < Hy on X - U. Choosing,

i = max(j, j') finishes the proof. l
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3.3.2 Definition and basic properties

Let M be a closed symplectic manifold, K c M be a compact subset. We call the

following data an acceleration data for K:

* H1 < H2 < ... a cofinal family in C'xsicuxs1

" Monotone 1-cube of Hamiltonians {Hs}sG[i,i+1], for all i.

Note that acceleration data gives one R>o family of Hamiltonians, which we will

denote by H,. From an acceleration data, we obtain a 1-ray of chain complexes over

A>o: C(H,) := CF(H) -* CF(H2) - ---

We define SCM(K, Hs) := tel(C(Hs)).

If H, and H' are two acceleration data such that Hn > H' for all n E N, we can

produce a map of 1-rays C(H') -÷ C(H,), by filling in the 2-cubes.

CF(H ) > CF(H2) : CF(H ) ... (3.3.2.1)

CF(H) CF(H2 ) : CF(H) ...

This map is unique up to homotopy of maps of 1-rays by filling in the 3-slits. Therefore

we get a canonical map:

H (SCM(K, H')) -4 H (SCM (K, Hs)). (3.3.2.2)

Moreover, if we have Hn > H' > H", the canonical triangle is commutative, this

time by filling in the 3-triangles.

Recall that for a 1-ray, we had the notion of a compression morphism, which

induced an isomorphism after applying H(tel(-)). A priori this isomorphism is not

induced by Floer theory, so we need to remedy that.

65



Let C(H,)n = CF(Hn(l)) -+ CF(Hn(2)) -+ ... be subdiagram. We can also think

of H (1) < Hn(2) < ... as part of another acceleration data H'.

Lemma 3.3.2. . There is a canonical isomorphism H(tel(C(H, )n)) -+ H(tel(C(H'))

e The diagram commutes:

(3.3.2.3)H(tel(C(H))) H(tel(C(H,)")).

H (te-(C( H')))

Proof. These follow

details.

Proposition 3.3.3.

H (SCM (K, H,)) are

Proof. We

Hi < H' j)

from the results of the Contractibility section.

The comparison maps (as defined before (3.3.2.2))

isomorphisms.

can find subsequences n(i) and m(i) of natural numbers

< Hm(i). We then get three 2-rays glued to each other.

CF(H ) CF(H2) CF(H) ...

CF(H,) CF(H2) CF(H ..

CF(H'j) CF(Hn'2) > CF(H ..)

CF(Hn(l)) CF(Hm(2)) > CF(Hm(3)) --

s

We omit the

H (SCM(K, H')) -

uch that Hj <

(3.3.2.4)

Now we apply tel to this diagram. Using the discussion about compression maps,

and contractibility we get that the composition of the first and last two maps become

quasi-isomorphisms by Lemma 2.5.1. This implies the result. D
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Proposition 3.3.4. 1. Let H, and H' be two different acceleration data, then

H(SCM(K, Hs)) = H(SCM(K, H')) canonically. Therefore we simply denote

the invariant by SHM(K).

2. Let q : M -> M be a symplectomorphism. There exists a canonical isomorphism

SHm(K) = SHM(#(K) by relabeling an acceleration data by 0.

3. For K C K', there exists canonical restriction maps SHM(K') -+ SHm(K).

This satisfies the presheaf property.

Proof. To construct the maps in the first part, we take acceleration data that domi-

nates both cofinal sequence in question, and use the roof that it gives. The maps in

3, are defined exactly as the maps 3.3.2.2 were defined. The canonicality of maps in

1 and 3 are applications of contractibility. 2 is easy as we can relabel all choices by

the symplectomorphism.

3.3.3 Computing SHM(M) and SHM(0)

When K = M, take a C2 -small non-degenerate H with no non-constant time-I orbits,

which is negative everywhere (see Lemma 5.3.1). We define H, = s- 1H, for s > 1, as

the acceleration data.

Let CM(H) be the Morse complex of H with Z-coefficients. On the other hand we

denote by CM(H, A>O) the complex freely generated over A>0 by the critical points,

but with the terms in the differential weighed by TH(P+)-H(p).

By Pardon [29] Theorem 10.7.1, we see that the associated diagram for this ac-

celeration data looks like

. . .CM(H, A>o) -4 CM(Hn+1, A>o) ... , (3.3.3.1)

H(p)

where a generator p in the nth level is sent to Tn(n+) p by the continuation map, using
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1 _ 1 - 1
n(n+1) -n n+1'

It is easy to see that the direct limit of this diagram of chain complexes is

CM(H) 9z A>O with maps

CM(Hn, A>o) -+ CM(H) 0z A>o, (3.3.3.2)

sending p to T ) p. Completion does nothing to CM(H) 9z A>O. Using that A>O is

flat, we get the result that was stated in the Introduction:

SHM(M) = H(M, Z)) 9z A>o. (3.3.3.3)

For K = 0, we start with any non-degenerate H, and define H, = H + s. The

linear diagram for this acceleration data looks like ... C -÷ C - ... for some chain

complex C, where all the maps are also the same. By the energy inequality, this map

sends C to TC. Now looking at the definition of completed direct limit, we see that

we are computing the inverse limit of 0-modules, which is also 0.

Remark 3.3.5. We conjecture that the converse is also true, i.e. if K is non-empty,

SHM(K) $ 0. Moreover, if K has an interior point, we expect that there is an c > 0

such that T"SHM(K) # 0.

3.4 Multiple subsets

Let K1, . . . , K be compact subsets of M. For every I C [n], choose a cofinal sequence

H for C =ni., Ki, such that H0 > H$' whenever C c C'. Here I being the empty

set means taking the union of Ki's. For each n, fill the (n + 1)- cube, where the

vertices are given by H and H +, to a monotone n-cube family of Hamiltonians.

Using Hamiltonian Floer theory, this gives us an (n + 1)-ray. The ordering of the

coordinates of the slices is given by the ordering of the subsets. Here is a diagram for
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how it looks like for n =2 (K1 and K2 are denoted by X and Y):

... CH(HuY) CH(Hxuy)

CH(H1(H,.

. . . . . . . .cY) ........... ......... .............. >CH H [ 1

e'

CH(Hxny) CH(H , .)

Applying tel oconen to this diagram, we construct a chain complex SCM (K1, ... K).

Note that SCM(Kl, ... Kn) depends on the ordering of the subsets.

As commented on before, SCM (K1, . . . Kn) is a deformation of the chain complex

( SCM K , (3.4.0.1)
Ic[&] \iEI

w.r.t the IIl-filtration (i.e. the full differential is lower triangular, and the diago-

nal entries are the differentials from before). In this deformation the part of the

differential that increases Ill-filtration by 1 are given by restriction maps, the ones

that increase by 2 are chain homotopies between compositions of restriction maps in

different directions and so on.

The methods of the previous section with higher dimensional families of cubes,

triangles, and slits etc. let us show that SHM(K1, ... , Kn) := H(SCM(K1, ... Kn))

is well defined (again using Lemma 2.5.1). We omit more details.
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Chapter 4

Properties of relative symplectic

cohomology: proofs

In this chapter we finish the proofs of the remaining properties from Subsection 1.3.

We repeat them for convenience

Theorem 4.0.1. Relative symplectic cohomology satisfies the following properties.

" (Hamiltonian isotopy invariance of restriction maps) Let K, K' be compact sub-

sets of M, and $t : M -4 M, t E [0,1], be a Hamiltonian isotopy such that

Ot(K') C K for all t. We then have a commutative diagram

SHm(K') > SH ($1 (K)) .(4.0.0.1)

I relabeling

SHM(K)

" (displaceability condition) Let K c M be displaceable by a Hamiltonian diffeo-

morphism, then SHM(K) (9A 0 A = 0.

" (Kunneth formula) Let K c M and K' c M' be compact subsets, we have an

explicitly defined module map SHAi(K) ®A, 0 SHM(K') -÷ SHMxM'(K x K').
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See proof for a more precise statement.

4.1 Hamiltonian isotopy invariance of restriction maps

This is a natural generalization of the property with the same name in Floer-Hofer

[12]. The Lemma below is the key part of the argument.

Lemma 4.1.1. Let H, H' : St x M -+ R be non-degenerate Hamiltonians and let

# r E [0,1], with #0 = id, be a Hamiltonian isotopy. Assume that H' < H o $, for

all r. Then the diagram

C F( H') > C F( H) . (4.1.0.1)

I relabeling

CF(H o 0 1))

commutes up to homotopy defined over A>0 .

Proof. Let us take monotone homotopies Hs,r between H' and H o#O for all r depend-

ing smoothly on r and s. Let us also choose a function RY -> I with f((-oo, 0]) = 0

and f([1, oo)) = 1.

Note that u : RY x St -+ M is a solution of the continuation map equation between

H' and H o #r with perturbation term XHf(Y), if and only if i : (y, t) 14 #,/f(y) (u(y, t))

is a solution of a slightly more generalized continuation map equation between H'

and H (this is explained in Section 7a of [3]).

An important point is that the topological energies of u and ii are the same by

Stokes theorem, and the fact that Or is Hamiltonian.

We then construct the chain homotopy by counting accidental continuation map

solutions between H' and H o #t. By the observation above, this count is actually

just a regular chain homotopy between two continuation maps in disguise, and it has

all the properties we want. D

72



Remark 4.1.2. If the isotopy was symplectic, we could get a commutative triangle

by modifying the relabeling map to take into account the fluxes of the generators along

the isotopy. This has the drawback of not being defined over A>o, but it is definitely an

important statement. On another note, we could also define a version with only the

contractible orbits and then the same statement would be true for symplectic isotopies

as well.

We will prove that the composed maps SHM(K') -+ SHM(#t (K)) - SHM(K) are

constant in t by showing that they are constant in a neighborhood of each to E [0, 1].

We can choose cofinal sequences Hj for K' and Hi for #to (K) such that there exists

a neighborhood [to - c, to + e] where the inequality Hj < Hi o/t-t is satisfied for every

t E [to - e, to + e] and i = 1, 2, . . .. Fix such t, and choose extra data to construct the

diagrams (with # there being #t_t) as in the Lemma above for each i. We have to

show that these diagrams are compatible with the continuation maps in the definition.

Turn all of those homotopy coherent triangles into slits by the reparametrization

trick in the proof. Choose monotone homotopies for H and H' and fill in the 3-

dimensional diagram with homotopies. Now applying the reparametrization trick

backwards finishes the proof.

4.2 Displaceability property

4.2.1 Changing the supports of Hamiltonians in the time in-

terval

Let H : M x [0, 1] -÷ R, and p : [0, 1] - R has integral 1. Define Hp = p -H. Clearly,

the time-1 flows are the same #' = #i. If we assume that p is compactly supported

inside (0, 1), we can extend H, to a circle S' := [0, 1]/ ~.

Let us start with a non-degenerate H : M x S1
- R, and choose a diffeo-
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morphism of # : S' -+ S'. We can then take p := 0' : S'i R, and consider

Hp := pH : M x SI -+ R as in the previous paragraph. The one-periodic orbits of H

and Hp are in one-to-one correspondence. We would like to compare CF(H, A>O) and

CF(Hp, A>o). Notice that, for any extra data necesssary to define the differential in

CF(H, A>o), one can cook up the extra data for CF(Hp, A>o) such that the moduli

spaces defining differentials are naturally identified by reparametrizing the Floer so-

lutions by the diffeomorphism # x id of S' x R. Such reparametrizations also do not

change the topological energy. Hence, the obvious map CF(H, A>O) -+ CF(H,, A>O)

given by identifying generators is in fact a quasi-isomorphism. Moreover, this map is

compatible with continuation maps (for fixed p and varying H).

We need a slight generalization of this result, where we require p to be just non-

negative, instead of positive. Here p cannot be integrated to a diffeomorphism, but we

can still obtain the equivalence by a limiting argument. We consider the parametrized

Floer moduli spaces for Htp+(-t). By the argument in the previous paragraph these

form a trivial fibration over [0,1). By the relevant Gromov compactness and gluing

results, this shows that the natural one to one correspondence between Floer solutions

for H and Hp extends to this case as well. All in all, we proved:

Lemma 4.2.1. Let p > 0, and H, H' : M x S1 -÷ R. Then the auxilary choices can

be made so that we have a commutative diagram:

CF(H, A;>O) >CF(H,, A;>O) (4.2.1.1)

1 4
CF(H', A;>o) :CF(H ', A;>O),

where the vertical arrows are continuation maps, and the horizontal ones are the

reparamterization quasi-isomorphisms.

Remark 4.2.2. This result also follows from Schwarz's version of Gromov trick from

[31].
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4.2.2 Twisting relative symplectic cohomology by Hamiltoni-

ans

Using this construction, from HL, HR : M x [0, 1] --+ R we can cook up a new Hamil-

tonian HL4HR : M x S1 -> R, such that the HL and HR parts are supported in

(1/2, 1) and (0, 1/2) respectively (we fix the p's in this construction once and for all).

The Hamiltonian flow of HLNHR is tangent to XHR first. After not moving for a

short period, it arrives at #H1 in less than 1/2-time, and stops for a while. At some

point after time 1/2, it starts moving again, this time being tangent to XH, and

reaches to #/1 o 0' before time-1. It then stops for a little until time 1, after which

repeats this flow.

Choose a cofinal family H, for K and let H : M x I -+ R be a Hamiltonian.

Let us choose the p's in the previous paragraph to be non-negative. We can define

SHM(K, H) via the family H4H, in the same way we defined SHM(K). Let us also

define SHM(K, H, A), for any real number A, using H H,- + A.

Basic properties of SHM(K, H) are summarized in the following proposition.

Proposition 4.2.3. 1. SHM(K, H) is independent of the choice of the accelera-

tion data.

2. SHM(K, 0) = SHm (K)

3. For any A > A', the natural map SHM(K, H, A') -+ SHM(K, H, A) is given

by multiplication by TA-A'.

4. SHM(K, H) &A>0 A = SHM(K) GA>o A

Proof. 1. Exactly the same proof with SHM(K).

2. This follows from Lemma 4.2.1

3. This follows from regularity.
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4. Let a be the maximum value of p. We get maps SHM(K, 0, a - min(H)) -*

SHM(K, H) -+ SHM(K, 0, a - max(H)) -+ SHm(K, H, a(max(H) - min(H)))

from the standard setup. By contractibility, the composition of the first two and

last two maps are simply multiplication by Ta(max(H)-min(H)), which becomes

an isomorphism after tensoring with the fraction field.

4.2.3 Finishing the proof: dying generators

Let q be a displacing Hamiltonian diffeomorphism for K, and let H be a generating

Hamiltonian. Our goal is to prove the following statement, which finishes the proof

by the previous proposition.

Proposition 4.2.4. SHM(K, H) = 0

In fact, # displaces a domain neighborhood D of K. Let N = OD x [-1, 1] C

D be a normal neighborhood so that 0D = OD x {1} and K lies strictly inside

D - DD x [-1, 1]. Let D' and D" be the domains with the boundary aD x {0}

andOD x {-1} respectively. Choose Ha's to be so that OD and 0D' are level sets of

H0 , and that H, = Ho + n on M - D" for all n.

Let H, : S' x M -+ R, s E [n, n + 1] be a monotone one parameter family of

Hamiltonians between H, and H,+1 satisfying H. = Ho + s outside of D'. Fix a

non-decreasing smooth function R -+ I with f((-oo, 0]) = 0 and f([1, oo)) = 1.

We consider the one parameter family of continuation map equations P,,,, c E

[1, oo), for u : S' x R - M,

&u &u
i = ' - XH*Hf - (4.2.3-1)

The following lemma is elementary but very useful.
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Lemma 4.2.5. Let V be any time dependent vector field on Mn equipped with a

Riemannian metric g. For any ' : [0, 1] -+ M, we have

/1 y'(t) - Vt(y(t))1 2 > r sup d((t),7 #((0)))2 (4.2.3.2)

whereT T (g).

The following lemma is the key part of the argument.

Lemma 4.2.6. There exists an a > 0 (independent of s/c) such that for any 1-

periodic loop -y : S1 -> M, if fS1 |j'(t) - XHpHf(S)+ (-y(t))1 2 < a, then yUO, 1/2]) C

M - D".

Proof. Because # displaces D, either -y(O) or #(-y(0)) needs to lie outside of D. For

sufficiently small a, the previous lemma and conservation of energy implies then that

y(0) or -y(1/2) needs to lie outside of D'. Again using the lemma and conservation

of energy, this implies that, choosing a possibly smaller a, y([O, 1/2]) c M - D", as

desired. L

Proposition 4.2.7. For sufficiently large c any solution of Pn,, converging to periodic

orbits has topological energy at least 0.1.

Proof. Consider the energy identity (item 4. from Section 3.1):

topE(u) = | - XHH (S t)) 12 dsdt + (sH p ( Hf y) n)dsdt,
fS1xR a fSI xR

(4.2.3.3)

where u is a solution of Pnc.

Now choosing a as in the previous lemma:

p c-C
topE(u) > Ca + (c - C) -dt = Ca + , (4.2.3.4)

Jl,1/2] c c
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where C is the measure of so E [0, c] with f51 ! - XH4H (u(so, t)) 2 > a. The

result follows.

We can set up our linear diagrams using these slowed down monotone homotopies:

CF(H4Ho) -+ CF(HQH1 ) -> CF(HQH2) - .... (4.2.3.5)

Using the energy inequality and Proposition 4.2.7, we get that the image of CF(HpH")

lies inside T' 1CF(H4H,+1 ) for every n. Now using the definition of SHM with the

usual colimit, we get the result.

Remark 4.2.8. Being slightly more careful in the proof, we can in fact prove that

T'OSHM(K) = 0, where r/ is the Hofer norm of q. This leads to an energy-capacity

inequality: Let us define the capacity of a module A over A>o to be inf {r | T'A = 0}.

Denote the capacity of SHM(K) by cM(K). We then have dM(K) > cM(K), where

dM(K) is the displacement energy of K. Of course this would be only useful if we had

a way of understanding cM(K). See Remark 3.3.5 as well.

4.3 Kunneth formula

Given two functions H : M x S' --+ R and F : N x S' -+ R, we obtain a function

F D H : M x N x S' -+ R. It is known that CF(H, M) 9 CF(F, N) can be canonically

identified with CF(HeF, M x N). The same statement is true for continuation maps.

Let K C M and P C N be compact subsets. Let C := Co -+ C1 -+ C2 - ...

and D := Do - Di - D 2 - ... be any choice of linear diagrams used to define

SHM(K) = H(tel(C)) and SHN(P) = H(tel(D)) respectively. Then we have that the

diagram C O D := Co Do -+ C ®& D1 -+ C2 0&D 2 -> ... computes SHMxN(K X P) =

H(tel(C 9 D)).

The homology level statement is weak but we go through it. We have the following
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chain of canonical maps:

SHM(K)®SHN(P) = H(tel(C)) ® H(tel(-D)) - H(tel(C)) 0 tel(D)) -+ (4.3.0.1)

-+ H(tel(C>)Rtel(D)) --+ H(tel(C 09 D)) = SHMxN(K x P) (4.3.0.2)

The last arrow requires explanation. We have a quasi-isomorphism tel(C 0 D) -+

hocolim(C X D) = tel(C) 9 tel(D), using some theory of homotopy colimits that we

do not go into [8]. This stays a quasi-isomorphism after completing it (Lemma 2.4.3),

and then we take the inverse of the induced map on homology. In particular the last

arrow is an isomorphism.

The first two arrows are generally not isomorphisms because tensor product does

not commute with homology (algebraic Kunneth formula) or completion (completed

tensor product).

Remark 4.3.1. We now briefly discuss a place where these ideas might be useful.

Let S be any simple loop in T2 with some area form. It is easy to compute that

SHT2(S) = @nez A;>Oxn. Moreover, if C := Co -& C1 -> C2 - ... is a linear diagram

for K C M, then SHMXT2(K x S) = H(neztel(C)). In particular, we have an

injective map SHM(K) -- SHMxT2(K x S).

We know that if K is displaceable SHM(K) is torsion, but the above discussion

shows that stable displaceability (i.e. S x K C T2 x M is displaceable) is enough. In

particular, by the Mayer-Vietoris property (the simple version with non-intersecting

boundaries) we obtain that the restriction map

SHM (M) 9 A -+ SHM(M - K) 9 A (4.3.0.3)

is an isomorphism.

This is important because for example any symplectic submanifold is stably dis-

placeable, by the h-principle described in [9]. McLean [25], from whom we learned
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this link, extends the displacibility result to more singular subsets, and also proves the

isomorphism independently. We stress that the proof of his main theorem regarding

quantum cohomology and birational equivalences involves a lot more work on top of

what we have mentioned here.

Remark 4.3.2. We note that Groman's reduced symplectic cohomology admits a much

cleaner Kunneth formula.
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Chapter 5

Mayer Vietoris property

5.1 An algebraic result

The following proposition is what we need from Chapter 2. The proof of it is a

combination of the results in that chapter, culminating in the last two lemmas in

Section 2.5. The precise definition of an n-ray is given in Subsection 2.2.6.

Proposition 5.1.1. Let C = C1 -+ C2 -+ ... be a Z/2-graded 3-ray over A>o. Let

E3 = D' -+ D ... , i,j E {0,1} be the 1-rays that are the infinite edges of

C. This means that we have a homotopy coherent diagram of chain complexes which

looks like (arrows depict all maps and homotopies):

... DO DO ...

01 

D+

n n+1
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Hence for every n, C, is equal to the 2-cube (where we also gave names to the

maps):

D00  " 2 D1
0  (5.1.0.1)

n nf01 01

D1 Dil,
gn

and coneo2 (Cn) is the chain complex D00 e (D'0 [1] e Do1 [1]) E D"1 with differential

dn:

d 00 0 0 0

_10 -do' 0 0-f n 0 0(5.1.0.2)

fn 1  0 -d1 0  0

hn gn' gL0 d 00

Assume that

1. Di is free and finitely generated for all n E N and i, j E {0, 1}.

2. coneo2 (Cn) OGA> A> 0 /A> 0 is acyclic for all n. Note that if we equip Di's with

bases, cone 2 (Cn) &A>0 A>o/A>o is simply the chain complex over Q with the

differential that is obtained by setting T = 0 in the matrix of dn.

Then there is an exact sequence,

H(tel(-DOO)) >H(tel(-D'o)) E H(tel(-Dol)) .(5.1.0.3)

[1]

H(tel(D11 ))

where the degree preserving arrows are induced from C
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5.2 Zero energy solutions

Let X, Y c M be two compact subsets. In the cases that we prove the existence of

a Mayer-Vietoris sequence, we use the following approach.

We can choose acceleration data H", for A = XnY, X, Y, XuY, so that Hg > H,

whenever A c B. We can then construct a 3-ray with C(H,") at the four infinite edges:

...CHH CH(Hx ) ,...

.,CH(H CHY)- -...

The 2-cube slices of this 3-ray look like:

CH(H Y) CH(H ) . (5.2.0.1)

4(H) ,n

We want to show that the acceleration data can in fact be chosen so that the

assumptions of Proposition 5.1.1 are satisfied. The first one is automatic. For the

second one the following simple observation is crucial.

Let ho ; h, be non-degenerate Hamiltonians with a monotone homotopy h, be-

tween them. Let -yo and -y1 be one-periodic orbits of ho and h, respectively. We make

more choices and define the continuation map con: CF(ho) -+ CF(hi). We consider

the matrix coefficient a :=< con(yo), -y1 >E A>O.

Lemma 5.2.1. 9 If val(a) = 0, then -yo = yl, and hoyo : S -+ R is independent

of s.
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f<g f=g f>g

Figure 5-1: A cartoon of the situation in Proposition 5.2.2. The crossed orbit is not
allowed. The other 3 orbits each belong to one of the 3 groups described in the proof.

e Assume that h, is C -wise constant along -yo. Then -yo is a non-degenerate

one-periodic orbit for h1, and if we take -y1 to be that, val(a) = 0.

Proof. The first statement immediately follows from the energy identity (Equation

(3.2.0.6) in Subsection 3.2). For the second statement, note that u(s, t) = Yo(t)

satisfies the Floer equation. This solution is regular. By the energy identity, it is

the only solution with zero topological energy. Moreover, it is easy to see that the

compactified moduli space of (possibly bubbled and broken) stable Floer trajectories

in the homotopy class of the constant solution also consists only of this solution. This

proves the statement by Lemma 5.2.6 of [291. E

Let f and g be two non-degenerate Hamiltonians. We define U = {f < g} C

M x SI and V = {f > g} c M x S1 . The graph of -y : S1 -- M is the image of the

map -y x id: S1 -+ M x S'.
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Proposition 5.2.2. Assume that U and V are disjoint. Then, max(f, g) and min(f, g)

are smooth functions.

Moreover, assume that no one-periodic orbit of Xf, Xg, Xmin(f,g) or Xmax(f,g) has

a graph that intersects both U and V (see Figure 5-1). Then, max(f, g) and min(f, g)

are non-degenerate, and,

CF(min(f, g)) CF(f) (5.2.0.2)

CF(g) - CF(max(f, g))

is acyclic, for any choice of monotone 2-cube family of Hamiltonians and extra data

necessary to define the maps.

Proof. Note that if h h' on an open set S, and h, is a monotone homotopy from h

to h', then h, = h on S with all derivatives.

The first statement is elementary. Non-degeneracy of max(f, g) and min(f, g)

follow from the fact that their one periodic orbits all occur also as orbits of Xf or Xg

with the same return map, by our assumption.

The one periodic orbits of the 4 Hamiltonians in question fall under 3 groups: the

ones whose graph

1. intersects U

2. intersects V

3. lies in M x S' - (U U V) = {f = g}

The group 3 is common to all of them. 1 of f is the 1 of min(f, g); 2 of f is the

2 of max(f, g); 1 of g is the 1 of max(f, g) and 2 of g is the 1 of min(f, g).

Now set T = 0 and use the previous lemma. The only thing left to note is that

the homotopy map is necessarily zero (after T = 0). This is because the family of
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topological energy zero solutions have virtual dimension 1 and hence the correspond-

ing virtual count is 0. One can also use the mod 2 grading to reach to the same

conclusion since homotopy map is supposed to have degree 1. E3

Remark 5.2.3. In the applications below U and V will be of the form U x S and

V x S1 . Note that in that case, the condition of not intersecting both U and V is

empty for constant orbits.

5.3 Boundary accelerators

In this section we explain how to choose an acceleration data so that the interest-

ing Hamiltonian dynamics concentrates near hypersurfaces that tightly envelop the

compact subset in question.

Definition 7. Let K be a subset, we say that a sequence of compact domains D' , D ,.

approximate K if

* Di = K

* D'+1 C int(D)

Note that every compact subset can be approximated by compact domains.

Definition 8. A boundary accelerator consists of three pieces of data:

1. A strictly increasing sequence of positive numbers Si which converge to infinity

as i -+ o0.

2. A sequence of triplets of compact domains {(fill(Nj-), N , fill(aN J))}iez,0

such that

" fill(aN--) U N- U fill(aN?) = M.

" The interiors of fill(&Nj-), N , fill(aNj) are pairwise disjoint
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N- NK cNK

M

K

fiII(aNK ) fihI(aNK )

Figure 5-2: One mixing region in a boundary accelerator, and the relevant notation.

" ONk = ONk- Li aN', Ofill(aN -) = aN-, fill(aNk ) = aNk+.

" fill(aNk-) approximate K.

" N< is contained in the interior of fill(aN('+j1 +

We call Nk the mixing regions, fill (ONk-) the inner fillers, and fill (aNk-)

the outer fillers.

3. Smooth functions fi : Nk -+ [0, Aj] such that

" fi has no critical points along aNk.

* fi- 1(0) = aNk- and f- 1(Ai) = aNk+.

We call these the excitation functions.

See Figure 5-2 for a cartoon depicting the situation. We will generally drop the

fillers from notation, but they are always there.
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Now we explain how we get a valid acceleration data starting from a boundary

accelerator. An extra property we want is to restrict the points that a non-constant

periodic orbit can pass through to the mixing regions. The following lemma is our

main tool in that respect.

Lemma 5.3.1. Let H : X -- R be a smooth function, where X is a manifold with

boundary and H is constant along the boundary. For small enough e > 0, all time-1

orbits of XEH are constant.

Proof. This follows from the more general theorem of Yorke [41].

Moreover, we will need to perturb the excitation functions to have non-degenerate

orbits, but we will have to perturb in a very controlled fashion. We start with a

preparatory lemma.

Lemma 5.3.2. Let F : M x [0, 1] -+ R be a Hamiltonian, and y: [0, 1] - M a flow

line of XF,. Then, for any to E (0,1), neighborhood V of 'y(to) in M, 6 > 0, and

positive integer n; we have that for every v E T ,(l)M, there is a one parameter family

of functions f, : M x [0, 1] -+ R, s E [0, T), for some T > 0, such that

* fo = 0

" for some c > 0, f8 (x, t) - 0 for t < c and t > 1 - E for all s

" f, > 0 for all s

* supp(f) C V x [0,1]

* f ICn < 6

" The tangent vector to the curve s -+ , (y(0)) at s = 0 is in the direction of

V.
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Proof. We can easily reduce to the case -/([0, to]) c V. Moreover, because XF induces

a one parameter family of diffeomorphisms, we can in fact assume that the entirety

of -y is contained in V. Using the formula for the Hamiltonion function inducing

the composition of two Hamiltonian functions, we can moreover assume that ^y is a

constant orbit, and the flow of XF, is identity in a neighborhood of it.

Finally, using sufficiently C"-small positive cutoffs, we can assume that V = M

C' and F = 0 everywhere, but with a smaller 6 for the Ca-bound. Consider the linear

function -Jv -x + c, which is positive in a neighborhood of the origin. By changing

its support in the time domain as in Subsection 4.2.1 we can make it supported away

from 0 and 1 keeping it positive. Call the resulting Hamiltionian f and define f, = sf,

which does the job for sufficiently small s.

Lemma 5.3.3. Let H: M x S1 -4 R be a Hamiltonian, and n be a positive integer.

Let U C M be an open subset, then there exists a H' : M x S' -+ R such that

* supp(H - H') c U x SI

* H' is arbitrarily Ca-close to H in all compact subsets of U

* H > H' (or the other way)

* All one-periodic orbits of XH, which intersect U are non-degenerate.

Proof. Given the previous lemma, this is a standard transversality argument. Let f
be any strictly positive smooth function on U. Consider the space F of all functions

M x SI -+ R satisfying:

* supp(H - H') c U x S1

o JH' - Hc. < f along U

* H > H' (or the other way)
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All we need to show is that the map F x M -> M x M given by (h, x) '-* (x,<0'(x))

is transverse to the diagonal. This follows from the previous lemma. 0

Whenever we say we make perturbations, or apply perturbation lemma, we will

mean that we are using this lemma. If we want to stress that we are using the third

bullet point, we will say that we are making monotone perturbations.

Proposition 5.3.4. Let K be a compact subset of a closed symplectic manifold M,

then we can find functions hi : M -+ R such that

" There exists mixing regions N (with fillers) and a sequence of numbers A so

that (hi |N', Nk, Ai) is a boundary accelerator.

" The critical points of hi inside the fillers are non-degenerate as time-1 orbits of

Xhi

" All non-constant one-periodic orbits of Xh, are contained outside of a neighbor-

hood of the fillers of N<.

" There exists a sequence of positive numbers 6i - 0 such that 6, < hi Ifil(aN )<

0, with equality only the boundary, and for x E fill(ON--), hi_ 1(x) < hi(x).

" Aj < hi |fil(aNi )< Ai1, with equality only on the boundary.

Proof. Using compactness, we first find approximating domains for K. Then us-

ing tubular neighborhood theorem, we construct boundary accelerators. Lastly, we

extend the excitation functions to the fillers step by step.

1. We extend the excitation functions to the fillers so that the extension is negative

in the interior of the inner filler, and it is bigger than Aj in the interior of the

outer filler.
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2. By making compactly supported perturbations in the interior of the fillers we

can make the functions Morse on the fillers. Note that our perturbation theorem

does not apply to this situation as we used time dependent Hamiltonians there.

Nevertheless, this is standard, and we omit more details

3. Momentarily denote the function restricted to a small neighborhood of the inner

filler by f. Let v : [0, Aj] -+ [c. 1] be a non-decreasing function which is equal

to e in a neighborhood of 0, and to 1 in a neighborhood of AL. We then extend

o hi to a function w on M by constants. If we multiply the function we

had constructed in (2) by w, it still satisfies all the previous properties, but

now f -+ cf. By choosing c small enough we can make sure that there are

no non-constant orbits contained in a neighborhood of the inner filler. We do

the same for the outer filler, but this time we have to think of Aj as the zero

level, and hence the rescaling results in f '-4 Aj + c(f - Al). Finally notice

that choosing c small enough also achieves the extra non-degeneracy condition

on the Morse critical points inside the fillers, as well as the last two conditions

from the statement of the proposition.

0

Proposition 5.3.5. Let hi be as in Proposition 5.3.4. We also fix n > 0 an integer,

and T > 0 a real number.

We can find Hi : M x S' -+ R such that

" Hi = hi on the fillers.

" Hj(int(N<)) C (0, A).

" jHj - hi Cn < T.

" All one-periodic orbits of XH, are non-degenerate.
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In particular, Hi's form a non-degenerate cofinal sequence for K.

Proof. We apply the perturbation lemma with U being the interior of Nk's. E

See Figure 5-3 for a summary of this procedure that constructs a cofinal sequence

(and by linear interpolation acceleration data) from boundary accelerators.

Remark 5.3.6. The main gain from this careful construction was that we achieved

our goals while changing the excitation functions only in very controlled ways from

what they were originally. In the remaining sections, we will have to go through this

construction again, trying to do it for two subsets simultaneously, while satisfying

certain extra conditions related to Proposition 5.2.2. Roughly speaking, the excitation

functions will satisfy these extra conditions by the assumptions, and our goal will be

to not ruin this.

5.4 Non-intersecting boundaries

In this section we investigate the case when X and Y are two compact domains with

disjoint boundaries.

Definition 9. We say that boundary accelerators (fr, N, A?) and (ff , N,, AY)

are compatible if

* Nk and N are disjoint

Proposition 5.4.1. We can find h and hy as in Proposition 5.3.4 such that

e The corresponding boundary accelerators are compatible
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K

NK Z

1

3

5

0

2

4
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Figure 5-3: This is a summary of the construction of a cofinal sequence for K via
boundary accelerators. 1) Boundary accelerators, 2) Extending excitation functions
to smooth functions on the entire manifold, 3) Morsifying inside the fillers without
changing the function along the mixing regions, 4) Scaling the functions in a neigh-
borhood of the fillers, so that the non-constant one-periodic orbits are forced to lie
inside the mixing region, 5) Making the non-constant orbits non-degenerate (note
that in reality we start using time dependent Hamiltonians at this step), 6) Two
Hamiltonians constructed in this way for K to illustrate how the cofinal family looks.
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* hx = hy is satisfied in a compact domain.

* min(h?, h<) < min(hX , hy ) on fill(N +-) n fill(N(, ~'>).

Proof. We start with any pair of compatible boundary accelerators. We extend the

excitation functions to smooth functions as in Step (1) of the proof of Proposition

5.3.4 so that the extensions are the same along a compact domain D. We now want

to perturb these to achieve Morseness (Step (2)). First, we make some common

perturbation inside D. And then we take a smaller compact domain and seperately

apply monotone perturbations outside of it. We repeat this for outer fillers. All

the perturbations are compactly supported and are away from the mixing regions

of the boundary accelerators. Finally we make the functions very flat (Step (3))

compatibly.

As the final step, we independently apply the perturbation lemma to obtain H:

and Hg, again using that the mixing regions are disjoint.

Proposition 5.4.2. 1. min(H , Hf) form a non-degenerate cofinal family for

X U Y. Similarly with max for the intersection.

2. These functions can be filled into a 3-ray, which satisfies the conditions of Propo-

sition 5.1.1.

Proof. We have min(H , HY) < min(H 41 , H 1 ) by construction, and cofinality

follows from Subsection 3.3.1 (same holds for max). We arranged our functions so

that the region of equality is of the form D x S1 for some domain D (as in Remark

5.2.3). Notice that the mixing regions, which contain all the non-constant orbits, are

disjoint from D. It follows that the conditions of Proposition 5.2.2 are satisfied for

H;\ and Hr, and the rest follows by the discussion in Section 5.2. D

Therefore, we proved:
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Theorem 5.4.3. Let X and Y be two compact domains such that &X noY is empty.

Then, we have an exact sequence:

SHM(X U Y) > SHM(X) ( SHM(Y) (5.4.0.1)

[1]"

SHM(X nY),

where the degree preserving maps are the restriction maps (up to sign).

5.5 Barriers

We start with an informal discussion. Let us consider the simplest example with the

boundaries of two domains intersecting to explain what goes wrong for our strategy

in general. Take two small disks inside a surface intersecting in the minimal way in

an eye-shaped region. Now the Hamiltonians in the acceleration data coming from

boundary accelerators will have periodic orbits that make circles around the boundary

for all 4 subsets in question. It is clear that in this case no continuation map equation

can have topological energy 0 solutions.

Continuing the informal discussion, we now motivate the definition to come in a

slightly simplified setup. Let N = Y x [0, 1] be a symplectic manifold with boundary,

and f N -+ [0, 1] be any Hamiltonian such that f 1 (0) = Y x {0} and f 1 (1) =

Y x {1}. Let D C Y be a compact domain, and consider the subset S := D x [0, 1 C

N. The boundary of S has two portions: the horizontal one that overlaps with the

boundary of N, and the vertical one coming from the boundary of D. We want to

come up with a way to guarantee that if an orbit of Xf intersects S then it is contained

in it. It appears as though the only feasible way to guarantee this is to assume that

Xf has some directionality along the vertical boundary of S, more precisely, that

Xf cannot be (strictly) inward pointing and (strictly) outward pointing at different
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D

N

Figure 5-4: The arrows here point in the direction of the Hamiltonian vector field Xf

points along the vertical boundary of S. Let us assume that it is never strictly outward

pointing. See Figure 5-4 for a depiction of the situation. Using energy conversation

at the horizontal boundary, this shows that the flow of Xf moves S into itself. But,

since Hamiltonian flows preserve volume, the only way for this happen is that Xf

should be everywhere tangent to the vertical boundary as well.

Note that this is a very non-generic situation. Energy levels of f will generically

be transverse to the vertical boundary. Elementary symplectic geometry shows that

intersections of these level sets with the vertical boundary then have to be cosiotropics

of rank 2 (set X = level set, and Z = X n OS in the following lemma).

Lemma 5.5.1. Let X C M be a hypersurface. Take another hypersurface Z C H.

Then, the characteristic line field of X is tangent to Z if and only if Z is a coisotropic

(rank 2).

Proof. If the characteristic line field is tangent to Z, then the kernel of W Iz is at least

one dimensional. By the classification of skew-symmetric bilinear forms this means

that the kernel in question is actually at least two dimensional. By the non-degeneracy

of the symplectic form on M, we get that Z is a coisotropic.
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Conversely, if Z is a coisotropic, then its symplectic orthogonal distribution needs

to contain the characteristic line field of X. This is because a linear map from a

two dimensional vector space to a one dimensional one has at least one dimensional

kernel.

We repeat the definition of a barrier from the introduction in light of this discus-

sion.

Definition 10. Let Z 2n- 2 be a closed manifold. We define a barrier to be an em-

bedding Z x [-6, E] --+ M2 n, for some e > 0, where Z x {a} - M is a coisotropic

for all a G [-6, E]. We call the vector field obtained by pushing forward 0, E F(Z x

{0}, T(Z x (-E, e)) lzx{o}) to M the direction of the barrier.

Remark 5.5.2. The reader will notice that we lost some generality here. All we need

from the barrier is that the Hamiltonian flow of certain functions, of which the barrier

is not a level set, are tangent to it. The product decomposition into coisotropics is

not necessary but has a more geometric flavor, which we find appealing. We will

come back to the more general statement, which uses a more functional language, in

Section 5.9, and the proofs are all written so that no extra work is necessary for the

generalization.

Now, we go back to the formal discussion.

Definition 11. We say that a Hamiltonian f : M - R is compatible with a hyper-

surface Y (possibly with boundary) if the Hamiltonian vector field Xf is tangent to Y

and OY.

Let B be the image of a barrier Z x [-c, E] -+ M.

Lemma 5.5.3. Let h: M -+ R be a Hamiltonian. If h is constant along Z x {a} for

all a E f-E, c], then h is compatible with B.
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Proof. Let z E Z x {a}. We know that for any vector v at z tangent to Z x {a}, the

directional derivative of h along v is zero. This is equivalent to w(v, Xh(z)) = 0. By

coisotropicity, Xh(z) is tangent to Z x {a}, finishing the proof. E

In the following B could be any hypersurface with boundary, but we will apply it

when it is the image of a barrier, so we state it in that situation.

Lemma 5.5.4. Take an embedding B x [-6,6] - M extending B = im(Z x [-E, 6]) C

M. Let h : M x [0,1] -+ R be a function, and let Oh denote its Hamiltonian flow.

There exists a T > 0 such that, if for some B-compatible h, 1ht - hIC2 < r for all

t e [0, 1], then no trajectory of Oh starting at a point on B x {+6} can intersect B

within time 1.

Proof. This is a simple application of Arzela-Ascoli theorem. Assuming the contrary,

we find a contradiction to the fact the Hamiltonian flow of a B-compatible function

is tangent to the barrier and its boundary. El

5.6 Non-degeneracy

This section is a long remark on why we cannot restrict ourselves to barrier compatible

Hamiltonians, and can be skipped on first reading. We start with an elementary

lemma.

Lemma 5.6.1. h is compatible with a hypersurface X, if and only if it is constant

along the characteristic leaves of X

Proof. Let X = {f = 0} for some function f with df $ 0 along X. h is compatible

with X iff df(Xh) = 0 along X. Moreover, df (Xh) = {f, h} = -dh(Xf) = -Xf (h).

The claim follows. El

Using the embedding of the barrier, we can construct compatible Hamiltonians

with the stronger property that they are constant along the rank 2 coisotropics making
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up the barrier (as in Lemma 5.5.3). The definition of compatibility does not impose

this a priori, but the lemma above shows that we may be forced to it nevertheless as

there might be characteristic lines of B, which are dense inside Z x {a} for almost all

a's

The upshot for us is that we may not have a single compatible M x S' -> R with

non-degenerate periodic orbits. The problematic orbits are the ones that lie inside

the barrier. In fact if dim(M) > 8, one can show by a Jacobian computation that in

the scenerio described above with the dense characteristic lines we can never make

those orbits non-degenerate for barrier compatible Hamiltonians. Fortunately, we can

be a little more flexible as in Lemma 5.5.4.

5.7 The proof of the main theorem

Definition 12. We say that a sequence of approximating domains D' and D' have

barriers if there are barriers Z' x [-ei, ei] -+ M such that

0 Di rh 9D' = Zi x {0}

* The direction of the barrier points strictly outside of D' U D'

Theorem 5.7.1. Assume that X and Y admit a sequence of approximating domains

with barriers. Then, we have the following exact sequence:

SHM(X U Y) > SHM(X) G SHM(Y), (5.7.0.1)

SHM(X nY)

where the degree preserving maps are the restriction maps (up to sign).

Our strategy is exactly the same as in the proof of Theorem 5.4.3. We will

construct a cofinal sequence H and H satisfying the conditions of Proposition
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5.2.2, which will give us the theorem by Proposition 5.1.1. Of course now we have to

deal with the intersection of the mixing regions using the barrier.

5.7.1 Neighborhoods of intersections of the boundary

Let K1 and K2 be two domains such that OK1 rh OK2 = Z. Let F: D x Z - M to be

an embedding, where D is an open disk, and the map is identity at the zero section.

We can assume that D x {z} is transverse to both aK1 and OK2 for all z E Z, by

restricting the domain of F.

Making compactly supported modifications to a domain K inside F means

that we find another domain K' such that outside of a compact subset of im(P),

K = K'. We will be able to apply this operation as we wish in what is to come.

We can picture P-1(K n im(P)) as the union (over z C Z) of regions inside

D x {z}. Possibly restricting P to a smaller disk neighborhood we can assume that

all these regions look like one side of a curve, passing through the origin, properly

embedded inside the disk. By making compactly supported modifications and then

restricting to a smaller neighborhood we can make all those curves linear.

Assume that our F makes the curves in the disks linear for both K1 and K2. Note

that these lines in the disk are all oriented. We can also make the lines perpendicular

to each other for the standard metric on the disk. Note that oriented lines of K2 are

obtained by making a 90 degrees rotation to the ones of K1 along the quadrant which

does not belong to either of the subsets in question. On each connected component

of Z, this rotation is either always positive or always negative. Hence the data of

the portion of the sets inside F is equivalent to a map Z -+ S1 , and a sign assigned

to each connected component of Z. The sign does not play a role in the following

discussion.

By making compactly supported modifications and restricting domains, we can
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make this map Z -+ S' any other one that is homotopic to it.' Moreover, if we want

to, by reparametrizing F with a fibrewise rotation diffeomorphism of D x Z, we can

make it nullhomotopic. Let us call such an F an intersection framing.

5.7.2 Tangent ialization

The last ingredient in the proof is a procedure we call tangentialization. See Figure

5-5 for a simple cartoon - we will have to be a lot more careful. We want to construct

mixing regions for X and Y which can be rearranged to mixing regions for X n Y

and X U Y (note though that in the end what matters is the cofinal functions we

constructed and that they satisfy Proposition 5.2.2).

Definition 13. Let Z x [-6, E] -> M be a barrier. We call an embedding Z x [-c', 6'] x

[-6,6] -÷ M with 6 > 0 and 6' > c extending the barrier a thickening of the barrier.

Let us call the image of the barrier B, and the image of the thickened barrier P. A

subset A of M is called barrier-friendly if the preimage of A n P in Z x [-6', E'] x

[-6, 6] is of the form Z x S, where S is a subset of [-6', E'] x [-6,6] for some thickening.

Let D' and Dy be a sequence of approximating domains with barriers. The

upshot of the discussion in the previous section is that, for their defining barrier, we

can assume that D' and D' are barrier friendly and the subset of the square look

as in the left picture of Figure 5-6, because of the outward pointing condition.

Definition 14. We say that the boundary accelerators (f;r, N, ,Ax) and (ff , N , Ai)

are compatible with barriers if:

o N and N, are barrier-friendly (for the same thickening), with the subsets of

the square as described in the right picture of Figure 5-6. To elaborate, we take

'Homotopy classes of such maps are in one to one correspondance with H1 (Z, Z).
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BARRIER Nx Ny

Dx D~y

Figure 5-5: A cartoon of the tangentialization process. On the left we see a memmber
of the approximating domains with their barrier, and on the right the mixing regions
that are compatible with the barrier. Note that all the labels have an i superscript
which we dropped from the picture.

a curve in [-E', c'] x [-6, 6] that is the graph of a non-decreasing smooth function

of 6 that is equal to 0 exactly for [-6/10, 6/10]. We take one of the subsets as

the "-neighborhood (for the standard metric) of this curve, and the other subset

is obtained by reflecting along the E'-axis. Let us call the barrier friendly subset

obtained from the rectangle that is the product of [-6/10,610] on the 6-axis and

[-,I r,] c [-E', E'] the plaster. Finally, N and N, do not intersect elsewhere.

* f; = ff along the plaster, and ff $ ff anywhere else on Nk n Np.

* f( is compatible with the barrier Bi.

Proposition 5.7.2. We can find h and hy as in Proposition 5.3.4 such that

" The corresponding boundary accelerators are compatible with barriers.

* min(hx, hy) < min(hxj, hyl) on fill(N -) n f ill(N ').

" The region where h = hy contains a subset that looks like thee black region

from the Figure 5-7. Let us be more precise. We push fill(0Nj-) n fill(aN-)
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BARRIER BRI

Figure 5-6: Zooming in near the barrier for barrier friendly regions at a slice. The
left picture shows the barrier compatible approximating domains after making the
original ones barrier friendly by compactly supported perturbations. The right one
shows the barrier compatible mixing regions and the barrier.

inwards, and fill(QNt ) n fill(ON ) outwards a little (so that they still in-

tersect the barrier). We also take a (thinner) thickening of the barrier, which

in particular intersects N> and N only along the plaster. The union of these

three regions is what the black region represents. We refer to the new (thinner)

thickening as the bridge.

e The connected components of the complement of the black region fall into two

groups: the ones that contain fill(N) - fill(QN j) (X-dominated), and

the ones that contain fill(QN7 ) - fill(QN-) (Y-dominated). We require that

h? > h> on X dominated components, and hr > h" on the Y-dominated ones.

Proof. We first construct the boundary accelerators that are compatible with the

barriers. We do compactly supported modifications to barrier friendly neighborhoods

of &Di and &Dy inside the thickening, and get the mixing regions of the desired

shape. We construct the excitation functions so that inside the thickening they are

lifts of functions on the square.
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Figure 5-7: The black region is a subset of the region of equivalence for the two
functions we construct. One can also see the X and Y-dominated regions. Notice
how the conditions of Proposition 5.2.2 are going to hold by way of restricting the
non-constant orbits to lie on the mixing regions and using almost barrier compatible
functions.

We then extend the excitation functions to smooth functions on M as in the first

bullet point of the proof of the Proposition 5.3.4, so that the domination property,

with their regions of equivalence containing a given black region, is satisfied. Then,

we use compactly supported (monotone) Morsifications outside of the mixing regions

(the black region might get slightly smaller at this step) and a compatible flatting

procedure to achieve what we want as before. 0

Final step is to make the Hamiltonians non-degenerate. Let us call the intersection

of the original bridge with the plaster T, and let us also fix a slightly thinner one,

and call the intersection T'.

Proposition 5.7.3. Let h and hy be as above. We can find H" : M x S1 -+ R and

Hr : M x S1 -+ R such that

* They satisfy the conditions in Proposition 5.3.5 (with n = 3 and some r > 0).

9 H = Hr along T', and the X and Y domination property still holds, outside

of the new black region where T is replaced by T'.
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Proof. As before we only do perturbations that are compactly supported in the cor-

responding mixing regions. First make a perturbation inside T to both functions.

Then do monotone perturbations separately in the complement of T' ensuring that

the domination property continues to hold. D

Finally, choose the T so that the Lemma 5.5.4 applies with the thickening there

being T'. This finishes the proof of Theorem 5.7.1 by Proposition 5.2.2 as before,

because no periodic orbit can pass from the X-dominated region to the Y-dominated

one (and vice versa).

5.8 Instances of barriers

As we have mentioned before, the outward pointing condition can be relaxed to a

more cohomological condition. Namely:

Proposition 5.8.1. Assume that we have a sequence of approximating domains DX

and D,, and barriers Z' x [-ci, e,] -+ M such that

* &Di Ot-D' = Z' x {0}

" The vector field 0, has winding number 0 with respect to the homotopy class of

of trivializations of the normal bundle of Zi induced by D' and D'.

Then there exists a sequence of approximating domains with barriers for X and Y.

When dim(M) = 2 the barrier condition can be satisfied only when the boundaries

of the approximating domains do not intersect. For dim(M) = 4, the cohomological

condition becomes of importance.

Lemma 5.8.2. Consider the standard neighborhood of a Lagrangian torus T 2 x

R2 ,w =dq1 A dp1 + dq2 dp 2, where we think of T 2 = R2/ ~. If T 2 -+ T2 X R2

is a Lagrangian section, which is nowhere zero, then the map T 2 
- 2 - {} -+ S1

is nullhomotopic.
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Proof. Such Lagrangian sections correspond to closed 1-forms on T2 . Any nowhere

vanishing 1-form a on T 2 would define a map T2 -+ R' - {0} - S1 , and we can talk

about its homotopy class ha. Notice that ha only depends on the cooriented foliaton

given by a. More precisely, we fix an orientation of T2 and hence a coorientation

of the foliation induces an orientation. We also fix a trivialization of TT2 given by

the coordinates we used in the statement of the Lemma. Then to any embedded

loop S' -+ T' we can assign a number that is the winding of the oriented line field

given by the foliation w.r.t to the trivialization of the tangent bundle. This number

is the same for homotopic loops, and the assigment determines the homotopy class

h, in question. In particular, if we can show that, for da = 0, the number of two

non-homotopic embedded loops are 0, we will be done.

By a result of Tischler ([21] Theorem 29, which follows from the proof of [37]

Theorem 1), we can find a submersion 9 : X --+ S such that the foliation given by

the fibers is arbitrarily close to the foliation defined by a. Hence, we are reduced to

showing the statement for a = dO. Notice that we can find an embedded loop that is

transverse to all the fibres of 9. If we can show that the winding number of the fiber

loops and the transverse loop are both zero, we will be done.

First note that any homotopically non-trivial embedded loop on our torus can be

isotoped through embedded loops into a linear loop. This can be shown by unfolding

the given loop to R2. We draw the straight line between its endpoints, and by a

small isotopy make our curve transverse to the straight line. Then we cancel inter-

sections between the two curves by isotoping our (curvy) curve along ribbons, using

the Schoenflies theorem. We finish by Schoenflies theorem again. This shows that

the winding number of the tangent lines of any homotopically non-trivial embedded

loop is zero. This finishes the proof.

Remark 5.8.3. Note that if the section is not required to be Lagrangian, meaning

that a is not necessarily closed, we can realize all homotopy classes of maps T 2 _> S

106



by inserting Reeb components. Our proof above is basically showing that when 0Z is

closed there can be no Reeb components in the foliation.

Corollary 5.8.4. Let D and D' be two domains with transversely intersecting bound-

aries along a disjoint union of Lagrangian tori L. Then, L can be extended to an

outward pointing barrier if and only if the intersection (as in Subsection 5.7.1) and

Lagrangian (see [11] for the simple definition) framings of L agree.

5.9 Involutive systems

5.9.1 A slight generalization of the main theorem

Theorem 5.9.1. Let f; : M -- R and ff : M -- R be smooth functions such that

1. (f0)1((-o]) and (f.)-1((-o,0]) approximate X and Y respectively

2. Let f := (fr, ff) : M -+ R2. There exists a smooth curve C passing through

the origin once and intersecting only the first and third quadrants such that

Wff, ffl }If -'(C)= 0. (5.9.1.1)

Note that this condition is automatically satisfied if f -'(C) 0.

Then X and Y satisfy descent.

The proof of this version is absolutely the same. f-1 (C) plays the role of a barrier.

It is a little more general in that it admits a map f1 (C) --+ R with coisotropic fibres,

but the fibres are possibly singular. We draw the pictures that we were drawing in

the c6 plane before, for the manipulations near the barrier, in the target plane of the

map f near the origin (Figure 5-8). In this framework, we can see the entirety of

M and the subsets in our pictures, which is nice. We make the subsets tangential
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g

C

Figure 5-8:

by making the subsets inside R2 tangential near the origin, tangent direction being

transverse to C. We construct the excitation functions as functions of fi and ff.
Such functions are all compatible with f-(C), because of the following lemma (we

are using k = 2 only here).

Lemma 5.9.2. Let fi,. . . fk : M -+ R, and 91,92 : R' -+ R be smooth functions.

Assume that {ft,fj} = 0 at x E M, for all i,j. Then the functions Gi : M -+ R,

i = 1, 2, defined by x i-+ gi(fi(x),... fk(x)) also satisfy {G 1, G2} = 0 at x E M.

Proof. We have that {h, h'} = w(Xh, Xh,). Moreover, dGi is a C" linear combination

of df1 ,.... dfk, and hence XG, is the same linear combination of Xf1 , . . . Xf,. This

finishes the proof.

We are able to satisfy the regularity conditions that are required from the excita-

tion functions at the boundary of mixing regions by Sard's lemma. The construction

proceeds as before.

108



5.9.2 Descent for symplectic manifolds with involutive struc-

ture

Definition 15. An involutive map is a smooth map ,r : M -÷ B to a smooth

manifold B, such that for any f, g E C" (B), we have { f o -r, g o ,r } = 0

Theorem 5.9.3. Let X1,... X, be closed subsets of B. Then 7r-1(Xi), ... r- 1(Xn)

satisfy descent.

Proof. It in fact suffices to show this for n = 2 (see Appendix B for the easy inductive

argument). In that case, we have already proved a stronger version in Theorem 5.9.1,

as we can use functions on B to get the sequences of functions in Theorem 5.9.1. EL

Remark 5.9.4. For multiple subsets, there is a more optimal theorem we could have

proved. First of all, note that for n > 2, domains being pairwise equipped with barriers

(generalized or not) is not enough to conclude that the n subsets satisfy descent. Let

us stick to n = 3 for simplicity. Having a barrier between D1 and D2, and D1 and D3

does not imply a priori that there is a barrier between D1 and D 2 U D3 . Apart from

the non-matching problem at the triple intersection at the boundary, there can also

be no guaranteed way of gluing the barriers together. This is because of the outward

pointing condition near the triple intersection that is essential. In this case, it would

be enough to assume that the three functions in question all pairwise commute in a

neighborhood of the triple intersection of the boundaries of the domains. Currently,

such generalizations seem to be useless.
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Appendix A

Cubical diagrams

We show that n-cube families of Hamiltonians give n-cubes using Pardon's results on

simplex families. The main challenge here is to show that the signs work out correctly.

Let Cube = [0, 1]n, with an ordering of its coordinates. We can cover it by n!

simplices, one for each permutation (ii, ... , in) of (1, ... , n). We can think of such a

permutation as a path that starts at (0, ... , 0) and takes a unit step in the positive ik

direction at time k 1, ... n,, and ends up at (1,..., 1). The corresponding simplex

An -+ Cube is the linear map that sends. the ith vertex of the simplex to the ith

vertex we encounter on this path.

Now let H be a Cube family of Hamiltonians. Let F be a k-dimensional face of

the Cube. F itself is a cube with an induced ordering of its coordinates. By the above

procedure it can be covered by k! simplices. We get a map C,, - C,,, for each of

these simplices by restricting the family of Hamiltonians. We define

fF (- 1) signf(j,...,jk) (A.o.o.1)
k! simplices

where (j1, ... ,jk) is the permutation corresponding to the simplex, and sign is given

by its signature. We claim that these define a cubical diagram. We need to show that
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the Equation (2.2.1.1) from Subsection 2.2.1:

S (-1)*F,F fF1fF", = 0, (A.0.0.2)
F'>F"is a bdry of F

is satisfied for each face F. Recall that *F',F =#l + #,01 for v = lterF' - viiF'

considered as a vector inside F. Without loss of generality, we will show the one for

the top dimensional face.

By Pardon (Equation (7.6.5)), we get n! equations of the form below for the top

dimensional face of each of the simplices in the cover.

(-1)k+ 1 9(1,...,k)9(k,...n) + E(_1)kg(1,...J,...,n) =0 (A.o.0.3)
k k

We add all of these equations up after multiplying them with (- 1 ),ign, where sign

is again the signature of the permutation corresponding to the simplex. The second

group of terms cancel out because the signature of a permutation changes after one

transposition. Using the description of the signature of a permutation via the number

of inversions, we see that we get exactly the equation we wanted from the first group

of terms.
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Appendix B

Descent for multiple subsets

Let K1, . . . , K, be compact subsets of M. Let k be smallest set of subsets of M,

which is closed under intersection and union, and contains K1 , ... , K,.

Assume that for any X, Y E IC, SHM(X, Y) = 0. Then, we want to show that for

any X1 ,... , c IC, SHA(X,..., X) = 0. We do this by induction.

it holds for 1 - 1 > 2.

By the descent for two subsets we have that the natural map

SCM(X1 U ... U Xi)

I1

Assume that

(B.0.0.1)

cone(SCm(X1) e SCM(X2 U ... U X1 ) -÷ SCM ((X2 n X1 ) u ... u (Xi n X1 )))

is a quasi-isomorphism.

We also have homotopy commutative diagrams:

(B.O.O.2)

I~ i
O5IC{2,...,1} SCM ({ X ;' eOCf2,...,} SCM (iEI(Xi n x1) ,
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SCM(X2 U . . . U X1) - scm X2 n x1) u . .. u (xi n x1)))



and

SCM(Xl) > SCM((X2 n X 1 ) u ... u (Xi n X1 ))) (B.O.O.3)

(D 1c{2,...,1} SCM (AiE(Xi n X1 )

In these two diagrams, by the direct sum we mean the homotopy colimit of the cor-

responding homotopy coherent diagram. By the induction hypothesis all the vertical

arrows are quasi-isomorphisms.

By piecing together these diagrams, we see that the cone in (B.O.O.1) is quasi-

isomorphic to oIc{1,...,} SCM (iEI Xi) in a way that is compatible with the maps

that they receive from SCM(X1 U ... U X1 ). This finishes the proof.
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