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Abstract

Unsupervised k-Means clustering was implemented as a method for identifying anoma-
lies in seismic time series. Sliding window approach was used for generating specific
subsequences from the overall waveform. Dynamic Time Warping (DTW) was used as
the method for comparing sesimic subsequences. DTW barycenter averaging (DBA)
was used as the method for averaging multiple subsequences within a group of simil-
iar shapes. Clustering is able to discover anomalously shaped parts of a seismic time
series in a completely unsupervised fashion, without requiring anyone to input actual
times of the events, any predetermiend examples of events, or any other parameters
about the signal.
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Chapter 1

Introduction

Seismic waveforms are continuously recorded time series made by seismographs. Events

like earthquakes are recorded in corresponding parts of the time series as subsequences

of certain shapes (or rather a specific set of shapes). More importantly, these shapes

carry with them the information about not just the earthquakes themselves, but also

of everything encountered on the path between the source of the event and the seismic

receiver. Sudden appearance of geologically interesting objects on these should thus

result in anomalously shaped subsequences.

Discovery of these anomalous shapes can thus help with identifying all kinds of

curious objects at or near the source. Thus identification of anomalies within seismic

time series is of interest to us.

However, seismic waveforms are typically continuous recordings of months long

data points, while the anomalous events of interest can occur on a one second time

scale. This makes finding anomalies manually prohibitively difficult. Searching for an

anomaly from a month long dataset can take upwards of several weeks or months of

work. Additionally, there is no guarantee that the visual search for anomalies would

yield all of the anomalies. We thus want a way of finding anomalies automatically.

In a continuous time series anomalies can occur at any point. Typically, seis-

mic recordings show numerous events separated by lengthy stretches of noise. Since

seismic events do not necessarily come at discrete known intervals, the selection of

subsequences for anomaly identification presents yet another challenge: subsequences
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Figure 1-1: Seismic trace was broken into subsequences

must be generated from the time series on a continuous basis, with nearly each point

selected as a starting point for a subsequence.

Subsequences were extracted using the sliding window method, which we explain

in Section 2.1. The sliding window method breaks up the full time series into many

subsequences of a fixed length, as shown in Figure 1-1

Anomalies, however, do not necessarily look like specific shapes within the wave-

form. We frequently do not have a predetermined notion of what exactly the anomaly

is prior to studying it. Thus we cannot formulate an idea of a shape we would be

looking for in a time series. Instead, we must formulate the notion of anomaly as

signal or signals that look different from other signals commonly observed in the

time series. Thus, we are challenged with the task of detecting events and anomalies

without using simple template matching. Furthermore, we should opt out from using

statistics about the signal as basis for anomaly identification.

Machine learning is an effective tool for creating programs capable of automati-

cally recognizing complex patterns in data and extracting knowledge contained within

those patterns. Machine learning relies on the use of datasets of input signals that

collectively effectively summarize the process we would like the machine to learn.

Machine learning is currently an expanding field of research, and is currently experi-

encing rapid adoption in the driverless cars industry, finance industry, and insurance

industry.

Machine learning is divided into two categories: supervised and unsupervised.

16
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Figure 1-2: Proposed process for identifying anomalous chunks within seismic time
series

Supervised machine learning methods require the use of known outcomes or labels

to each input signal. Unsupervised methods only need datasets of input signals to

function. Since we want to find one second-scale anomalies in continuous months long

datasets, without any idea about the nature or form of these anomalies, and since we

want to make the machine do it all on its own, we are left with unsupervised machine

learning.

In the background section, we set up the framework behind the K-Means clustering

algorithm - one of the main algorithms in unsupervised learning. Our plan for anomaly

identification within time series is illustrated in Figure 1-2, and we give a detailed

explanation of the process in Chapter 2.

We then talk about the need for using a special distance measure for subsequence

data, known as Dynamic Time Warping (DTW). We then explain the need for using

a specialized averging method for subsequences, called DTW Barrycenter Averaging
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(DBA). We tested the effectiveness of DTW and DBA methods on our subsequences,

and the result are presented in the methods section.

We then ran K-Means algorithm under fully-supervised, semi-supervised, and

completely-unsupervised settings on our synthetic and real datasets. Our results

are presented for each dataset in the results section. Finally, we make some recom-

mendations for future work and areas of improvement in the conclusions section.
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Chapter 2

Background

2.1 Finding Anomalous Parts out of a Seismic Wave-

form

Our data of interest was a continuous one month long seismic waveform. The time

series consisted of multiple recorded events and noise. Some of these events were

considered anomalous. Our task was to identify parts of this seismic waveform that

contains anomalous events without relying on the expertise of a geophysicist.

The waveform was recorded at a 100Hz sampling rate, meaning that each second

of the recording translated into 200 data points. Full one month of the waveform

translated into 520M data points. Sub sampling the data was not preferred since

many important features were present in the data at the highest frequencies. The

pure volume of data was a significant challenge to us. Run time of our possible

algorithms was one of our biggest considerations in our search for methods.

Example were generated using a sliding window approach - first subsequence was

made up of the time series elements starting from the first and ending on element N,

second subsequence starting from the second element and ending on element number

N + 2, with N being the length of subsequences. Each unique element or short

sequence of elements in the time series is thus contained within multiple subsequences

in every possible position, but with the original order intact.
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Next challenge was associated with anomaly detection. Our task was finding parts

of the seismic time series that looked anomalous - but the exact character, shape, or

form of these anomalies could not be defined ahead of time.

2.2 Machine Learning

The final goal of a machine learning algorithm is to either classify or asses a certain

property about an object based on some input information about the object. Unlike

traditional programming, however, machine learning achieves that without needing

the programmer to include in his or her code a predefined model of the process.

Instead, machine learning learns this model of the process completely on its own.

For example, a traditional program for making decisions on the stock market would

require the creator to encode some equations fundamental to finance, which the pro-

gram would then use to make its decisions. In contrast, a machine learning algorithm

would not need such an equation to be encoded in order for it to be successful at

its task. Similarly, a driver less car running on machine learning does not need a

team of programmers to encode a set of instructions on what to do when a car sees

a pedestrian or red light. Machine learning achieves these things by training on the

data.

A machine learning algorithm trains itself by looking at a dataset of examples.

Each example is a set of inputs, and collectively the total set of all possible examples

should encapsulate the entire process. There is always an outcome, either a class or

a property, associated with each example.

If this class or property is available and is provided to the algorithm during train-

ing, then the algorithm is said to be a supervised machine learning algorithm. If

the class or property is not provided, then the algorith is said to be an unsupervised

machine learning algorithm. It is important to note that in an unsupervised setting,

the outcome still exists and its correct determination is still the goal.

A supervised machine learning algorithm learns to correctly predict the classes or

properties of objects by reducing its error in assigning outcomes to examples within

20



the training dataset. For every example in the training dataset, the algorithm looks

at the input of that object, and assigns a hypothetical outcome to the object. This

hypothetical outcome is compared to the real outcome, and the error is measured.

The algorithm then changes its own parameters, usually guided by a heuristic based

on the magnitude and the sign of the error. Since error minimization is its goal,

over time the algorithm begins to assign hypothetical outcomes that are less and

less different from the real outcomes. Thus by aiming to reduce the error, machine

learning learns whatever it needs to make the correct prediction - and it learns any

pattern present in the input that could help it reduce its error.

Using supervised machine learning for our task would require us to have a dataset

of examples drawn from the time series, and would require each example to be labeled

as noise, regular event, or an anomalous event. However, these anomalous events need

not necessarily look like each other - they also do not need to be anomalous in the

same way. We do not know what these anomalies should look like ahead of time. We

could create a dataset manually by labeling every part as anomalous or not, but that

would then limit us to discovering anomalies only of the same type as the ones in the

original dataset. This method does not work for identifying new types of anomalies

not encountered in the training dataset. Thus we would be limiting ourselves to

only certain well-known anomalies, which is an undesired result. We need a way of

recognizing all kinds of anomalies, not just ones frequently encountered previously.

2.3 Unsupervised Learning

Unsupervised learning draws patterns from data consisting solely of the input signal

without the class or output property. It achieves that usually by grouping input

examples that are similar together. Once all examples have been grouped based on

their inputs, we can start to assign outcomes to new input examples based on the

group they would most likely belong to. This process is also known as clustering.

Different variants of clustering algorithms include hierarchical clustering, partition

clustering, and k-means clustering.
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2.3.1 K-Means Clustering

The goal of k-Means clustering is to find an optimal assignment of subsequences to

K clusters, such that for any given subsequence, its distance measure to the centroid

of its current cluster is smaller than its distance measure to the centroid of any other

cluster.

Once k-Means has been used to put the sub-sequences into clusters, the algo-

rithm can classify a new seismic waveform subsequence as an anomaly/event/noise

by determining which cluster centroids (representatives) matches the new waveform

the closest based on our chosen similarity measure, dynamic time warping (DTW).

In order to extract the cluster from our data and then classify a new subsequence,

k-means must rely on a similarity measure. Here, we use the terms similarity mea-

sure and distance measure interchangeably to describe the overall shape difference

between sub-sequences. For the lack of ambiguity, similarity measure is the same as

distance measure, and is small for similar shapes and large for dissimilar shapes.

Note that a reliable similarity measure is the only thing that k-means needs to

cluster the data - subsequences need not be pre- labeled for us to extract a meaningful

pattern. This is highly advantageous since it lets us detect anomalous subsequences

in the data without the need for per-determining what an ideal anomaly should look

like, as discussed earlier.

K-Means works iteratively in two steps Initialization: Sample k random subse-

quences from the data to initialize k clusters. Step 1) K-Means iterates through

every subsequence and re-assigns them to best-match clusters based on a distance

measure between the subsequence and the centroid of the cluster. Step 2) After each

subsequence has been re-assigned, the algorithm re-computes the centroid of each

cluster.

The algorithm converges when subsequences no longer change their cluster mem-

bership. At this point all subsequences are placed in their best-match clusters.

Note that to determine the goodness-of-fit between a sub-sequence and a cluster, k-

Means needs to measure the DTW between our queried subsequence and the centroid
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of the cluster.

If Euclidean Distance (ED) is was our similarity metric of choice, then by default

finding the element-wise mean of all the sub-sequences in a cluster would give us

the centroid of that cluster that minimizes the ED to all other sub-sequences in that

cluster.

Since we are using DTW, however, the element-wise mean of the sub-sequence is

no longer guaranteed to be the centroid that would minimize the DTW distance to

all other sub-sequences in the cluster. Indeed, if two sinusoidal time sequences were

out of phase exactly, their element-wise mean would be a straight line at zero - which

clearly does not represent either of the sequences.

K-Means clustering is a greedy algorithm - greedy algorithms may tend to a local

optima rather than global optima. Depending on our initial conditions we might not

be able to get to the right answer. The problem can be solved by adding a stochastic

framework. We could use either a genetic algorithm (GA) or simulated annealing

(SA). [Pakhira 20091 To implement GA or SA, each cluster would be parametrized

using two quantities: the cluster centroid and the cluster variance, based on the sum

of sqaure distances of each sub-sequence to the centroid. Then, we would assume

the sub-sequences in a cluster to be normally distributed around the cluster centroid.

Then, we would calculate the likelihood of any given sub-sequence belonging to any

given cluster using the normal z-score likelihood, with the z-score being its distance

from the centroid divided by the square root of the variance of the cluster. For each

sub-sequence, a likelihood would be calculated for every cluster, and all likelihoods

kept. The final cluster assignment of any given sub-sequence would then simply be

the cluster with the highest likelihood value.

K-Means also suffers from an empty clusters problem. During step 1, it is possible

that all subsequences within a cluster are re-assigned elsewhere, and no subsequence

is assigned to the cluster. As a result, the cluster is left empty - and thus cannot par-

ticipate in future iterations, since it has no centroid for subsequences to be compared

to. There are several proposed solutions to the empty clusters problem. [Manoha-

ran and Ganesh 2016] The proposed modified K-Means algorithm solves the issue of
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empty clusters by changing the cluster centroid computation procedure. In the clas-

sical K-Means, centroid is calculated as the average of all members of the cluster. In

the modified k-Means, centroid is calculated as the average of all current members of

the cluster plus the old centroid of the cluster computed over the last step. In other

words, cluster centroids from the previous iteration are considered to be a cluster

member at the current step. If the cluster is empty, centroid is by default set to the

same centroid as last time, since the average of a set consisting of a single element is

the element itself. Manoharan and Ganesh show their modified K-Means algorithm

converges to the same final answer as the classical k-Means algorithm.

2.4 Subsequence Time Series Clustering

Our goal is to identify the point of time in the time-series that is anomalous com-

pared to the rest of the waveform Thus we are classifying sub-sequences, not entire

time-series. We thus will a rolling window approach to extract the sub-sequences.

Challenges with this task are: (1) that trivial matches due to the overlap resulting

from the rolling window can occur. Rolling window approach guarantees that for

every distinct event in the time-series, we will generate mutliple sub-seuences that

contain that event, each in different spots. This can be problematic in cases where

a sub-sequence contains the transition between two distinct signals. For a such sub-

sequence it would be ambiguous which cluster it should belong to, and the distance

measure (2) that the resulting dataset is large, computationally expensive. Our typ-

ical seismic waveforms contain millions of points, and thus present a significant per-

formance challenge, when working with computationally expensive algorithms such

as the k-means. (3) that the scale we will use here is of importance. Rolling window

approach requries a set window length for subsequence extration. Thus anomalies at

vastly smaller or larger scales than the window may not be fully identified using this

approach. In this study, we limited ourselves to anomalies on a few seconds scale.

Definition 1: Time series is an ordered sequence of data-points Definition 2: A

subsequence Z of a time series is a continuous portion of a time series T. A subsequence
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Z of length m can be represented as a vector of m elements from T, arranged as [xi,

xi+,....xi+m-1] [Zolhavarieh 2014]

Biggest pitfall of the clustering algorithms is failure to obtain meaningful results:

when the centroids of the final clusters all look similar to each other and do not truly

represent clusters of truly different sub-sequences. The frequent result of trivial and

undifferentiated cluster centroids caused some researchers to claim that clustering

of time series subsequences is meaningless. [Keogh 2003] This problem arises when

clustering results in cluster centroids that a) all look similar, and b) do not look

anything like the subsequences contained in those clusters. Frequently these centroids

could end up being simple sinusoidal shapes. When that happens, all centroids are

identical and individual subsequences no longer change their cluster memberships.

Though the algorithm technically converges, the result is a trivial equilibrium between

identical generic centroids and subsequence that look nothing like the centroids, but

yet stay in the cluster because all of the other cluster centroids are the same.

This problem arises due to algorithm converging upon simplistic identical cen-

troids, which in turn results from the use of wrong methods for estimating centroids.

Subsequence time series clustering researchers concluded that the solution to this

problem is to use methods for determining the average member to resp sent a group

that does so in accordance with the distance measure used. [Keogh 2013]

2.4.1 Dynamic Time Warping

Originally introduced in the speech recognition community, Dynamic Time Warp-

ing is a measure of similarity between temporal sequences of data robust to phase

shifts and variations in speed associated with the sequences. DTW measures the

distance between two time sequences along the shortest path that optimally matches

the alignment between them. [Chiba and Sakoe 1978]

Traditionally used Euclidean Distance (ED) measures the distance between two

sequences as the sum of squared difference between every Nth element in Zi and the

corresponding Nth element in Z2. Unlike ED, DTW does not require the squared

distance to be calculated between every element in Z1 and the corresponding Nth
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Figure 2-1: Comparison of DTW (Right) vs Eucledian Distance (Left) as distance
measure between two subsequences [Ratanamahatana 2012]

element in Z2 - the difference is rather allowed to be calculated between each element

in Z1 and its optimal match in Z2. The difference between ED and DTW can be

visualized in Figure 2-1.

The resulting sum of those differences is the shortest distance remaining between

Z1 and Z2 once the time-axis was allowed to be warped to minimize the total distance.

The basic steps of the DTW algorithm are: 1) Constructing an m-by-m matrix

of element-wise distances, where the ij entry of the matrix corresponds to a local

cost measure between Xi in Z1 and Xj in Z2. Euclidean distance is commonly used

as such local cost measure, though a variation that uses an absolute difference also

exists.[Keogh 2002] 2) A warping path W is a set of matrix elements that defines a

specific mapping between Z1 and Z2.[Keogh 20021 3) The sum of all elements in W

is the specific distance between two sequences measured along the warping path W

4) Pick the warping path W that gives shortest total sum of all elements it contains

Certain constraints must be placed on the DTW algorithm to ensure that the

shortest path is a non-trivial answer. [Chiba and Sakoe 1978]:

1) Diagonality Constraint. Path W must start from (1,1) and end with (m,m).

This means that DTW must account for the full lengths of the two sequences Z1 and

Z2. Clearly, a shortest path can easily be found by simply only summing distances

for a small part of Z1 or Z2. Such path results in a trivial result and does not

provide a useful measure of similarity between sequences. Diagonality constraint is

thus necessary to ensure that only the solutions accounting for the full lengths of Z1

and Z2 are identified. 2) Monotonicity constraint - indexes i and j of elements in Z1

and Z2 that lie on path W must monotonically increase. Once Jth element of Z2 is
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included in path W, path can no longer contain any element of Z2 <J. In the m-by-m

matrix, path W must propagate down and to the right, and never back up-wards and

to the left. 3) Continuity constraint - all elements in Z1 and Z2 must be included,

and the same pair of Xi and Xj cannot be used more than once.

These constraints can be illustrated in the Figure 2-2. Diagonality means the path

must start in one corner and end up in the opposite corner. Monotonicity constraint

means that the path must keep moving in the positive direction in both coordinates

- it cannot suddenly turn back for a loop. In other words, the index of the elements

being computed at every step must either increase or stay the same, but not decrease.

Finally, continuity implies that it is not allowed to skip anything. For example, the

path cannot suddenly go from the fifth element in the second sequence to the seventh

element in the second sequence. This also implies that every single element in both

sequences must be visited at least once.

While there are many options for path W for any two sequences, path W that

minimizes the some of element wise distances along the path is the one to be used as a

measure for similarity between two sequences. [Keogh 2002] This path gives the best

alignment between two sequences, and its total sum over all the local costs contained

in W gives the distance along that optimal path W. A local cost measure is defined

as the distance measure used to compare two elements from two subsequences. A

local cost measure can be symmetric, such as the square of the distance. Symmetric

measure means that the same value is obtained regardless of the order of the two

elements. As long as the local cost metric used is symmetric, DTW is also a symmetric

measure between two subsequences.

Such path W can be found through calculating the total cost for every possible

path through the M-b-M matrix subject to our constraints, and picking the one with

the smallest cost. However, such an algorithm would require an exponentially large

amount of time to compute and is thus unfeasible for large sequences.

An algorithm based on dynamic programming can be used to find the shortest path

W in O(m*m) time. Cumulative distance(i,j) is found as the sum of the Euclidean

distance(i,j) and the min euclidean distance of the adjacent neighbors (i+-1 and j+1 -1).
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Figure 2-2: DTW constructs a matrix of element wise difference, with each cell being
the difference between an element in Q with an element in C. Determination of optimal
time warping for best alignment then becomes a search of the shortest path through
the matrix, subject to the three constraints. [Ratanamahatana 2012]
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[Oates 19991

Rakhamon suggests it is the best one based on their review.[Rakhamon 20131

2.4.2 DBA Averaging of a a Group of Subsequences

For k-Means clustering, an average of all subsequences within a cluster must be re-

liably computed. However, since we wanted to create cluster based on shape that is

robust to phase shifts, a simple element-wise average would not work. Since we use

DTW as the measure of distance between subsequences, our averaging method should

arrive at a cluster average according to DTW distance.

Such method exists and is known as DTW barycenter averaging (DBA).[Petitjean

2011] DBA works by starting with an initial subsequence. DBA then calculates

the cumulative DTW distance from the original subsequence to all subsequences to

be averaged. DBA then aims to figure out the optimal warping of the allignment

path between elements in the two subsequences to apply in order to minimize the

cumulative DTW. Once such warping has been applied, the algorithm repeats itself

and does so until converging on a final subsequence.

2.4.3 Improvements to Speed

Dynamic Programming gives us O(M*M) running time - this could be good enough

for simply comparing similarity of two sequences. However, clustering algorithms

require us to compute our distance measure many times over for the entire dataset.

Given the size of our dataset, DTW would be unfeasible based on the time it would

take to run. Three main modifications exist to alleviate this problem: Sakoe-Chiba

Band, Lower Bounding, and Early Abandoning.

Sakoe Chiba Band Constraint

Most common constraint used for DTW is the Sakoe-Chiba Band: warping path W

must be contained within R cells of the diagonal. Effectively this constraint limits

how far the algorithm is allowed to search to find the optimal alignment. By setting
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the value of R to less than the length of a subsequence of m, we are no longer able to

find the globally optimal path W if it lies beyond distance R of the diagonal. However,

this significantly reduces the computation time from O(m*m) to O(m*w).

Lower Bound Keogh

DTW is expensive to compute for every pair of two sub-sequences in a dataset. Fre-

quently, this distance is computed for clustering applications with the goal of identi-

fying the closest matching cluster. It is necessary to compute DTW distance between

z1 and z2 only in order to determine if the computed value is less than between z1

and any other subsequence( or cluster mean). Once it is determined that DTW be-

tween z1 and C1 is larger than DTW between z1 and some other previously computed

distance, the actual value of DTW(Z1,cl) is not important. Thus it is common to

use a lower-bound measure between z1 and cl thatdAAs guaranteed to be smaller

than DTW(zl,cl), if such measure is quicker to compute. Such measure is called

LB-Keogh, and runs in O(m). [Keogh 20021 If LB(Keogh) distance between z1 and

cl is larger than the previous best candidate for closest match for z1, the computation

of DTW(zl,C1) is unnecesary. If LB(Keogh) is smaller than the previous best DTW,

only then the DTW(zi,cl) must be computed to determine if ci is a better match

for z1. This allows the algorithm to eliminate computation of DTW for most of the

pairs.

Early abandoning

When LB-Keogh distance(zl,cl) is below the previous smallest DTW, we can use

another step to potentially rule out ci as a match for z1: lower bounding. While

DTW is being computed, if the sum of the distances already exceeds the best-so-far

match for zl-c2, then the computation can be abandoned.

While DTW between two sequences still remains expensive to compute, by using

LB-Keogh and early abandoning we can avoid computing the actual DTW(zl,c2) for

most of the cases. In fact, the algorithm ends up ruling out potential best matches

using just LB-Keogh and Early Abandoning 99.9 of the time, and computing DTW
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only about 0.01 of the time. [Rakthanmanon 2012]

2.4.4 Regularization techniques

Z-Normalization

In order to achieve meaningful clustering results on STS, the subsequences must be

z-normalized. [Keogh and Kasetty 20031

DTW is a measure of dissimilarity between Z1 and Z2 that depends on the mag-

nitude of the values in both sub-sequences. Subsequences containing larger valued

elements will naturally result in large value for DTW distance. Thus DTW is sensi-

tive to the amplitude of subsequences in question. This leads to negative results by

biasing the DTW towards subsequences consisting of smaller values.

This undesirable effect of amplitude should be removed via a normalization step.

Z-normalization results in reducing the effect of amplitude on DTW computation.

Z-normalized version of subsequence ZI is obtained by reducing its each element by

the mean of all elements in Zi and then dividing the resulting values by the standard

deviation of the set of the elements in Z1.

Tapering

In subsequence time series clustering, every example is a subsequence created by a

sliding window. Sliding window moves along the time series and generates a subse-

quence out of the time series for every single possible starting point. Thus for any

shape or event in a time series, it will be represented multiple times in the set of all

subsequences - the same event will be in the middle of a certain subsequence, at the

end of another, and at the start of yet another one. To function properly, cluster-

ing must be able to identify common reoccurring shapes or patterns within a time

series. The subsequence examples should represent mostly and be associated with

events that occur towards their middle, instead of at the edges. To accomplish this,

tapering window was introduced.
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Chapter 3

Clustering Methods

Since seismic waveform signals typically contain large amounts of data, calculating

DTW and DBA averages, and clustering was a slow process. In order to get quick

results, we used a synthetic dataset made up of the Ricker (Mexican Hat) signal and

noise, shown in Figure 3-1

We also created and recorded several seismic events in a lab environment at low

frequencies, shown in Figure 3-2. This signal does not contain any high frequencies,

and thus we were able to sample it at a low rate without the risk of losing important

features - this allowed us to run experiments quickly enough.

synthetic time series of multiple Ricker signals and noise

125 -

10 04
75

50./

25 0

-25
__________________________ -100 ---

0 0 200 300 400 500 110

Figure 3-1: Synthetic dataset of Ricker signals and random noise. Figure below is an

example of a view of a window centered on exactly one Ricker
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Figure 3-2: Seismic waveform recorded in a lab experiment environemnt

3.1 DTW as similarity measure between seismic trace

subsequences

3.1.1 Different parameterizations of DTW

Sampling rate

The first parameter we set in discovering seismic waveform anomalies is the sampling

rate. The original dataset has a sampling rate of 100 Hz - which means our complete

seismic waveform is a vector, in which 200 elements represent a one second chunk.

Our dataset is a month-long waveform, which translated to 2.6M seconds, or a 560M

element vector.

We then generated 10 second-long subsequences from the waveform; each sub-

sequence is thus a 1000 element vector. The subsequences were extracted using a

sliding window approach, with a skip of 10 - first sub-sequence is the time series

elements 1 through 1000, the second is elements 11 through 1011, and the final sub-

sequence is 259999990th through 260000000th elements. In total, we had 26M sub-

sequences to cluster.

DTW under Sakoe-Chiba Band constraint operates in O(M*R) time, meaning that

it takes 1000*300 = 300000 operations to measure the distance between two subse-

quences, with a Sakoe-Chiba Band of 300. In on iteration of the k-Means clustering

algorithm, distance is measured k times for each sub-sequence, since we measure ev-

ery subsequence and cluster centroid permutation. With k=50 clusters and 260M
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sub-sequences, one iteration requires 13B measurements of distances. However, since

lower bounding and early abandoning are both utilized, true DTW distance is calcu-

lated for only about 0.01% of the cases. Lower bound Keogh runs in O(M) and thus

takes 1000 operations to capture the measure between two sub-sequences.

Sakoe Chiba Band constraint

The Sakoe-Chiba Band constraint is the biggest speed-up to the calculation of DTW

distance we have found. By limiting the optimal alignment search radius to 80% of

the sub-sequence length (we earlier mentioned this as the search radius constraint,

R), Sakoe-Chiba Band constraint is able to reduce one DTW measurement between

two sub-sequences threefold. Sakoe-Chiba Band constraint has a trade-off: it is pos-

sible that the absolute optimal alignment between two given sub-sequences requires

warping the time axis to over our 80% length ranges. In such case, result obtained

through the use of the constraint does not represent the shortest path and is thus not

a true measure of distance between the subseuqences.

However, our sub-sequences are generated through sliding windows, and thus, if

such optimal alignment exists but is beyond a large range, then it is likely that the

pattern found in one sub-sequence exists at the edges of the second sub-sequence.

That pattern should then perhaps not be considered a prominent part of the second

sub-section, and thus the result given by DTW Sakoe-Chiba was deemed to be a valid

measure. DTW measured for the Ricker example over a full phase shift is illustrated

in Figure 3-3

Z-normalizing

Subsequences do not preserve the overall amplitudes of the signal - thus some infor-

mation is lost, and we are no longer able to find anomalies based on pure amplitude

magnitude. However, each subsequence is z-Normalized relatively to itself alone, and

thus shape is still preserved completely. We were interested in finding anomalies

based on shape, and thus deemed z-Normalization to be an appropriate procedure to

incorporate into our routine.
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of a Ricker sequence with a Ricker sequence tapered with

Tapering

A tapering window of a half period sine was applied to each subsequence prior to

z-Normalization. Figure 3-4 shows that tapering causes the subsequence to be of

smaller amplitudes near the edges.

Barrycenter averaging

DBA avergaing was chosen as the method for calculating a cluster representative.

Cluster representative calculation method should accurately summarize the most pre-

dominant shape of all members of the cluster. Barrycenter averaging performs well

in identifying a subsequence to act as a representative of all of the subsequences in

this group, as shown in Figure 3-5
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Figure 3-5: DTW barrycenter average centroid (brown) for a series of phase-shifted
Ricker signals (purple, red, green, yellow, blue)

However, barrycenter is not robust to cases where the common shapes are offset

significatnly. When a group of sub-sequences shares a similar shape, such shape should

be present closer to the middle for each sub-sequences - for other cases barrycenter

gives bad results.

One method to mitigate this problem is the use of sine-waves as tapering for

sub-sequences - this tapering weighs the middle-of-the-sub-sequence pattern heavier.

Due to the rolling window approach, inevitably AAIJintermediateaAi sub-sections are

generated - those that mostly contain the ending of an important pattern that came

right before in its first half and the starting of a next important pattern coming after

in the second half.
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Chapter 4

Clustering Results

Here we present results achieved in the seismic anomaly detection problem using k-

Means clustering and DTW as distance measure. We assessed the effectivenesses of

DTW as a similarity measure between seismic subsequences under various parametriza-

tion and DBA as a method for obtaining representatives from cluster of seismic sub-

sequences.

The final result of k means clustering is: 1. arrangement of sub-sequences into

k clusters, and 2. centroids for the clusters The final arrangement of sub-sequences

is the one that minimizes the distance for each sub-sequence to the centroid of the

cluster the sub-sequence belongs to.

The centroid of the cluster acts as the representative for that cluster - this centroid

represents the common patterns shared by all of cluster members. The centroids of

clusters of most anomalous parts of the seismic waveform will be used to describe the

discovered anomalous patterns.

4.1 1 Nearest Neighbor Classification using DTW

1-NN DTW classification was performed. The sub-sequences were all classified based

on their closest neighbor out of our library of four types. Nearest neighbor classifica-

tion using DTW is essentially template matching. True class or label of a subsequence

is determined by looking at the class or label of a template subsequence. This can
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Figure 4-1: Subsequence classification result using nearest neighbor approach with
DTW as distance measure. Left: all subsequences in the noise cluster (grey), and the
centroid (blue). Right: all subsequences in the Ricker cluster (grey), and the centroid
(blue).

also be thought of doing a single iteration of the K-Means algorithm, but with clus-

ter centroids predetermined ahead of time, and kept unchanged always. Results are

shown in Figure 4-1

This approach is not useful for anomaly detection - detecting an anomaly through

this method would require the use of predetermined anomaly templates, which con-

tradicts the nature of it being an anomaly. However, this method is useful as an

intermediate check point on the data - it allows us quickly to assess the feasibility of

using DTW and DBA for clustering subsequences within our specific application.

We provided the algorithm with four templates - Ricker, Noise, Ricker-to-Noise,

Noise-to-Ricker. The first template is defined as the Ricker signal created through the

scipy library in python. The second template is simply an array where each element is

a uniform random variable within a range we pick ahead of time. Ricker-to-Noise and

Noise-to-Ricker templates are defined as the.subsequencs that capture the transition

between the Ricker and Noise signals. If the nearest neighbor approach can correctly

classify all of the present subsequences in the entire time series to their category, then

DTW and DBA should be valid methods for us to use to capture shape similarity and

identify prominent reoccurring shapes. This intermediate result confirms that DTW

is a robust metric for comparing sub-sequences. Despite being out of phase most of

the time, each subsequence was correctly measured to be closer in DTW space to its

archetype.
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Figure 4-2: K-Means clustering result with clusters seeded by a user with DTW as
distance measure. Figure left is a cluster of all subsequence determined to be Ricker.
Figure right is a cluster of all subsequences determined to be the transition point
between noise and Ricker

4.2 K-Means Clustering with Intelligent Seeding of

Cluster Centroids

Next step towards a fully unsupervised k-Means was clustering, starting with a seed

for each cluster centroid made up of one of the four archetype subsequences extracted

ahead of time.

Unsupervised k-Means clustering with smart initial guesses for cluster centroids

yielded reasonable clusters. It made a mistake in assigning a few noise subsequences

to the Ricker cluster, but otherwise, most of the subsequences were correctly clustered

together into the four main clusters. Each cluster centroid was found to be repre-

sentative of the elements of the cluster, and the four obtained centroids correctly

represented four main types of events in the dataset. Results are shown in Figure

4-2 and Figure 4-3.

Our dataset is a combination of Ricker and Noise signals, subdivided into subse-

quences starting at every 5th element. Thus the two dominant shapes in the data

should be the Ricker and noise, as it is in 4-2.

K-Means was able to find a cluster of the Ricker and all of its offset variations,

as shown in 4-3. It was able to correctly categorize every single Ricker variant into

that second cluster. Note that only four clusters of subsequences with their centroids

were plotted - this is because upon convergence, k-Means had arrived at six empty
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Figure 4-3: K-Means clustering result using nearest neighbor approach with DTW
as distance measure. Left figure is a cluster of all subsequence determined to be a
variation of Ricker signal and their centroid(blue). Right figure is a cluster of all
subsequences determined to be the transition point between Ricker and noise and
their centroid(blue).

clusters. Three clusters contain mostly either noise, or segments that are mostly noise

and just partially Ricker. One cluster centroid is Ricker.

Surprisingly, clustering quality did not decrease drastically. A centered Ricker is

a centroid for one of the clusters, and all of that cluster members are offset Ricker

subsequences. Given that cluster centroids were initialized completely at random,

this means that k-Means was able to extract the Ricker, Ricker-Noise, Noise-Ricker

transitions as important patterns present in the time series. This means that we are

able to extract important patterns out of a time series in a completely unsupervised

fashion, and that these cluster centroids are meaningful summarizations of important

shapes present in the data.

4.3 Completeley Unsupervised K-Means Clustering

While improving clustering results drastically, seeding presents a problem for detect-

ing anomalies. Seeding requires an extraction of predetermined arc-type subsequences

to serve as the initial guesses for the cluster centroids. However, with anomaly detec-

tion we have no real predetermined anomaly archetypes to extract. This is a problem

because k-Means is a greedy algorithm, and can frequently become stuck on local

optima for clusters.
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Synthetic Ricker subsequence with high amplitude noiseSynthetic Ricker time series with high amplitude noise
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Figure 4-4: Full synthetic time series after
and noise amplitude increased.
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Figure 4-5: K-Means clustering results on synthetic ricker-noise dataset with abso-
lutely no initialization done by the user. Figure to the right is the centroid (blue)
and all subsequences (grey) within the noise cluster. Figure to the left is the centroid
and all subsequences within the Ricker cluster.

We also added noise to the synthetic Ricker and noise time series to make the

challenge more realsitic to real world applications. Full time series after adding the

noise to the Ricker signal itself is shownn in Figure 4-4.

Thus we ran k-Means clustering algorithm with completely randomized initial

cluster centroids. Cluster number was also set to 10 in order to leave more room for

rare and anomalous subsequences to create a cluster of their own. K-Means converged

after about 40 iterations. Results are shown in Figure 4-5.

Cluster centroids are initialized completely at random, so the method is com-

pletely unsupervised and does not require a predetermined understanding of what

the common shapes of subsequences should look like. Cluster number two discovered

was the Ricker itself - so the algorithm is able to extract all subsequences that are
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Figure 4-6: K-Means clustering results on synthetic ricker-noise dataset with abso-
lutely no initialization done by the user: all subsequences determined to be different
shifted versions of the Ricker (black), their centroid (blue), and misclassified noise
subsequence (grey).

parts of the Ricker and determine that their common shape is the Ricker, without

needing the Ricker needing to be a common shape or theme, as shown in Figure 4-5.

The unsupervised algorithm is thus able to extract Ricker as a meaningful pattern,

and random noise at the edge of the Ricker as another meaningful pattern. On

our synthesized seismic dataset, unsupervised K-Means clustering with randomized

seeding is able to group the subsequences into the two clusters in Figure 4-7.

The centroid of cluster 1 appears to be anomalous relatively to the cluster 2

centroid. Subsequences contained within cluster 2 are indeed generated using a pulse,

while cluster 1 subsequences were generated using a sinusoidal drive. Thus K-Means

clustering algorithm is able to correctly assigns the two types of signals present to

their respective clusters

Next, we attempted to run k-Means clustering using the Groeningen dataset.

Groeningen dataset is information heavy and contains important features at high

frequencies. Thus we first manually isolated six subsequences out of the data: three

representing events, and three representing noise. We then measured pairwise DTW

distances for all pairs within the six subsequences. Results are presented in Figure

4-8.

DTW measured between an event and an event is usually around 9-10; DTW
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Figure 4-7: K-Means clustering results on seismic waveforms, with K=2 clusters, for
an artifically created seismic waveform dataset. Left figure is cluster 1: all events of

this type (grey) and their centroid (blue). Right figure is all events in this type (grey)

and their centroid (blue).
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Figure 4-8: Comparison of pairwise DTW distances for selected subsequences of noises
and events extracted from the Groeningen dataset
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Figure 4-9: Result of K-Means clustering with fully random initialization after 20
iterations. Above are the centroid (blue) of and windows within the noise cluster.
Below are the centroid of (blue) and windows within the events cluster.

measured between event-nosie is around 11-12, and DTW measured between two

different noise windows was around 9.5. Thus DTW is able to sucesfuly see the

difference between an event and noise. This gives us some hope for the ability of

DTW to differentiate anomalous events.

Next, we ran a k-Means clustering algorithm on the six pre-extracted events and

got results presented in Figure 4-9.

Here, K-Means was able to successfully classify each event and each noise as its

correct category. This is an interesting result: the task of identifying events from

noise is an active area of research. Typically, in machine learning this task is solved

by using supervised learning, with the help of a pre-labeled dataset of noise and

events. In this case, K-Means is able to correctly identify events from noise on a fully

unsupervised basis.
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Figure 4-10: Result of K-Means clustering with full dataset with high resolution
sampling. To the left is the cluster and cluster centroid (blue) for the first cluster. To
the right is the cluster and cluster centroid (blue) for the second cluster.Above are
the centroid (blue) of and windows within the noise cluster. Below are the centroid
of (blue) and windows within the events cluster.

Finally, we ran unsupervised K-Means clustering on the full one month long

Groeningen dataset (single component). Ten second long subsequences were extracted

from the full one month time series. Our sampling rate was 100Hz and each suse-

quence was thus 1000 points long. This would normally take an intractable amount of

time, so we chose to censor: standard deviation was measured for each subsequence,

and a threshold of about 500 was determined as a good separation for noise. Few

events were present with standard deviation under that value, thus we deemed it a

reasonable censor. We were left with 191 subsequences of length 1000. Each iteration

took about 300 seconds, and we ran it for 10 iterations. Two final clusters are plotted

in Figure 4-10.
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Chapter 5

Conclusion

The final result of k means clustering is: 1. arrangement of sub-sequences into k

clusters, and 2. centroids for the clusters The final arrangement of sub-sequences

is the one that minimizes the distance for each sub-sequence to the centroid of the

cluster the sub-sequence belongs to.

The centroid of the cluster acts as the representative for that cluster - this centroid

represents the common patterns shared by all of cluster members. The centroids of

clusters of most anomalous parts of the seismic waveform will be used to describe the

discovered anomalous patterns.

1. Clustering is able to find anomaly in synthetic dataset; 2. DTW on real data

shows DTW is able to distinguish anomalies form events and thus clustering should

theoretically yield meaning ful results

The biggest drawback of the K-Means clustering and clustering algorithms in

general is computational time. Seismic records are typically months long datasets,

with events occuring at higher frequencies and over 1-5 second scales. Datasets are

thus large. We have addressed all computational speedups possible to the process

known so far.

Our first suggestion for future speed ups is to use parallel computing.

Ideally we need to come up with a dataset of various anomalies to judge perfor-

mance, which allows us to objectively score different configurations and find the best

set of parameters by maximizing accuracy. But for that we need a labeled dataset to
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act as a quality check.

Next addition to the algorithm should be increasing it to 3D and multiple stations.

3D component data can be easily implemented - basically each subsequence would

be represented as 3 vectors, corresponding to the three components. DTW would be

calculated in the same way as before, except for that locally a simple element wise

difference measure should be replaced by a euclidean difference.

In order to introduce multiple stations, however, we must change the DTW algo-

rithm itself - namely we must allow for time axis warping between different station

recordings such that the algorithm finds the optimal alignment itself. Lag and am-

plitude difference between the same event recorded in two different stations contains

with it the information of the origin of th event. We suspect that the DTW path

alignment can be used to extract this information. In other words, clustering multiple

component multiple-station signals using DTW, algorithms should be able to cluster

not just based on the nature of the event but also the origins of the event. So hypo-

thetically, if we had two regular and two anomalous events, originating close to and

far away from the stations, then it would be interesting to see if DTW based K-Means

with K=4 is able to extract four clusters: normal event nearby, normal event distant,

anomalous event nearby, and anomalous event distant.
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