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Abstract

Microbial communities are a critical component of natural ecosystems and indus-
trial bioprocesses. In natural ecosystems, these communities can present abrupt and
surprising responses to perturbations, which can have important consequences. For
example, climate change can influence drastically the composition of microbial com-
munities in the oceans, which in turn affects the entirety of the food chain, and
changes in diet can affect drastically the composition of the human gut microbiome,
making it stronger or more vulnerable to infection by pathogens. In industrial bio-
processes, engineers work with these communities to obtain desirable products such
as biofuels, pharmaceuticals, and alcoholic beverages, or to achieve relevant environ-
mental objectives such as wastewater treatment or carbon capture. Mathematical
models of microbial communities are critical for the study of natural ecosystems and
for the design and control of bioprocesses. Good mathematical models of microbial
communities allow scientists to predict how robust an ecosystem is, how perturbed
ecosystems can be remediated, how sensitive an ecosystem is with respect to spe-
cific perturbations, and in what ways and how fast it would react to environmental
changes. Good mathematical models allow engineers to design better bioprocesses
and control them to produce high-quality products that meet tight specifications.

Despite the importance of microbial communities, mathematical models describ-
ing their behavior remain simplistic and only applicable to very simple and con-
trolled bioprocesses. Therefore, the study of natural ecosystems and the design of
complex bioprocesses is very challenging. As a result, the design of bioprocesses
remains experiment-based, which is slow, expensive, and labor-intensive. With high-
throughput experiments large datasets are generated, but without reliable mathemat-
ical models critical links between the species in the community are often missed. The
design of novel bioprocesses rely on informed guesses by scientists that can only be
tested experimentally. The expenses incurred by these experiments can be difficult
to justify. Predictive mathematical models of microbial communities can provide in-
sights about the possible outcomes of novel bioprocesses and guide the experimental
design, resulting in cheaper and faster bioprocess development.
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Most mathematical models describing microbial communities do not take into ac-
count the internal structure of the microorganisms. In recent years, new knowledge
of the internal structures of these microorganisms has been generated using high-
throughput DNA sequencing. Flux balance analysis (FBA) is a modeling framework
that incorporates this new information into mathematical models of microbial com-
munities. With FBA, growth and exchange flux predictions are made by solving
linear programs (LPs) that are constructed based on the metabolic networks of the
microorganisms. FBA can be combined with the mathematical models of dynamical
biosystems, resulting in dynamic FBA (DFBA) models. DFBA models are difficult
to simulate, sensitivity information is challenging to obtain, and reliable strategies to
solve optimization problems with DFBA models embedded are lacking. Therefore,
the use of DFBA models in science and industry remains very limited.

This thesis makes DFBA simulation more accessible to scientists and engineers
with DFBAlab, a fast, reliable, and efficient Matlab-based DFBA simulator. This
simulator is used by more than a 100 academic users to simulate various processes
such as chronic wound biofilms, gas fermentation in bubble column bioreactors, and
beta-carotene production in microalgae. Also, novel combinations of microbial com-
munities in raceway ponds have been studied. The performance of algal-yeast co-
cultures and more complex communities for biolipids production has been evaluated,
gaining relevant insights that will soon be tested experimentally. These combinations
could enable the production of lipids-rich biomass in locations far away from power
plants and other concentrated CO 2 sources by utilizing lignocellulosic waste instead.

Following reliable DFBA simulation, the mathematical theory required for sen-
sitivity analysis of DFBA models, which happen to be nonsmooth, was developed.
Methods to compute generalized derivative information for special compositions of
functions, hierarchical LPs, and DFBA models were generated. Significant numerical
challenges appeared during the sensitivity computation of DFBA models, some of
which were resolved. Despite the challenges, sensitivity information for DFBA mod-
els was used to solve for the steady-state of a high-fidelity model of a bubble column
bioreactor using nonsmooth equation-solving algorithms.

Finally, local optimization strategies for different classes of problems with DFBA
models embedded were generated. The classes of problems considered include param-
eter estimation and optimal batch, continuous steady-state, and continuous cyclic
steady-state process design. These strategies were illustrated using toy metabolic
networks as well as genome-scale metabolic networks. These optimization problems
demonstrate the superior performance of optimizers when reliable sensitivity informa-
tion is used, as opposed to approximate information obtained from finite differences.

Future work includes the development of global optimization strategies, as well
as increasing the robustness of the computation of sensitivities of DFBA models.
Nevertheless, the application of DFBA models of microbial communities for the study
of natural ecosystems and bioprocess design and control is closer to reality.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

Due to their widespread application in industrial bioprocesses and their occurrence in

natural ecosystems, microbial communities are a relevant subject of study. They can

be found in very diverse industrial and natural settings such as wastewater treatment

[18], pharmaceuticals from recombinant DNA technology [67], the human gut micro-

biome [81], the ocean ecosystem [39], among many other examples. Mathematical

modeling of these systems is interesting: it allows for the control and optimal design

of industrial bioprocesses, and predicts the sensitivity of the microbial community

to changes in the environment in natural ecosystems. For example in [18], the au-

thors use a mathematical model of a raceway pond to study the influence of process

parameters, such as temperature and residence time, on algal yield. The mathemat-

ical model used can be seen in Figure 1-1. In [39] the authors use mathematical

models to predict which class of photoautotrophs dominate different sections of the

ocean. Mathematical models enable better understanding of very complex systems

and provide answers to interesting questions such as the following:

1. Which are the most important parameters in the system?

2. How does the system respond to changes?

3. How stable is a steady state?

4. How to make the biosystem work better?
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5. How to combine species in novel systems designed for human purposes?
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hight-rate algal-bacterial pond. Reproduced

Microbial communities are difficult to model because they are complex, dynamic,

and involve many symbiotic and competitive relationships that may not be obvious at

first glance. An example of how much microbial communities can change with time

is shown in the vaginal microbiome illustrated in Figure 1-2. Mathematical models of
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microbial communities require information on growth rates and exchange flux rates

of the different microorganisms involved. Despite the importance of bioprocesses,

mathematical models used in industry to describe the growth and exchange fluxes

rates of microorganisms remain rather simplistic. Most expressions describing growth

rates rely on unstructured models. These models are called unstructured because

they do not consider any structural information concerning the microorganisms, such

as their metabolic network or cell compartments. One example of an unstructured

model of growth is the widely-used Monod equation. Jacques Monod introduced the

Monod equation to model bacterial growth in the exponential phase under a limiting

substrate [94]:

S
A(S) = Pma , 

S1 xKm + S(

where S refers to the limiting substrate concentration, Amax is the maximum growth

rate, and Km is the half-velocity constant. The constants of these equations can be

obtained from correlating Equation (1.1) with experimental data. Other expressions

that attempt to describe the growth rate of microorganisms include the Contois,

Tessier, Moser, Blackman equations [122] or the Droop model [30, 88]. The variety

of unstructured models provides flexibility to model different growth conditions.

Growth of microorganisms in a batch culture usually present the following phases

[122] (see Figure 1-3):

1. Lag phase: this phase corresponds to a period of adaptation where cells syn-

thesize new enzymes or repress current enzymes to better use the resources in

the cultivation medium.

2. Exponential growth phase: once adapted, cells can multiply rapidly. In this

phase, no substrate is limiting and cells have a constant doubling time. This is

a period of balanced growth (cell mass composition is constant).

3. Deceleration phase: in this phase growth slows down due to the depletion of

an essential nutrient or the accumulation of toxic by-products. This is a period
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Figure 1-2: Dynamic changes of the vaginal microbiome for four subjects. Very dras-

tic changes can be observed in all subjects. Mathematical models can be a very

useful tool to determine when these changes may take place, predict the new micro-

biome composition, or help design drugs that would promote a specific microbiome

composition. Reproduced from [85].

of unbalanced growth where cells restructure their composition to increase the

prospects of cellular survival.

4. Stationary phase: this is a phase of net growth zero.

5. Death phase: this phase corresponds to all remaining cells dying due to lack of

essential nutrients or buildup of toxic chemicals in the medium.

Most growth models, such as unstructured models, assume balanced growth con-

ditions, which occur at steady-state continuous cultures or the exponential phase of

batch cultures. Unstructured models can be modified to model other phases. For

example, a time delay can be added to model the lag phase. Unstructured models

cannot describe transient conditions [1221. Attempts to model multiple growth modes

simultaneously have been made in [99, 38, 151], but these expressions grow rapidly in

complexity and require a priori knowledge from the modeler of the different metabolic
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Figure 1-3: Typical growth curve for a bacterial population in a batch culture. Re-
produced from [122].

states the microorganisms in the system can encounter. In particular, notice the com-

plexity of Equations (1) to (19) in [993. These equations were derived for the specific

system described in the paper and are applicable to a system that considers three

substrates and three enzymes. Any minor changes in the system, such as the interac-

tions of two microorganisms through the exchange of a critical nutrient, would result

in a different set of equations. Therefore, unstructured models cannot be used to

predict the performance of novel process setups. In particular, bioprocesses where

microorganisms present symbiotic or competitive relationships, grow under multiple

nutrient limitations, or attain cyclic steady-states, are challenging to model because

microorganisms switch between different growth modes over time. Even if all the

constants for all possible growth modes were determined, it is not clear when the

microorganisms switch from one growth mode described by one set of constants, to

the next one described by a different set of constants (see Figure 1-4).

Therefore, given an extracellular environment, a method that selects the growth

modes describing each microorganism in a culture from all possible modes is necessary.
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Such a modeling framework can be provided by structured models that consider the

metabolic networks of the different microorganisms. Flux balance analysis (FBA)

[137, 98] does exactly this.

Aerobic growth mode

glucose uptake

L

IrAl I&

P"

OXP

Gtyc

TCA
A

Fer M

Anaerobic growth mode

glucose uptake

ppPI

.~ ~ ~ ......... T ........-.....

Figure 1-4: Metabolic network of E. coli under aerobic (left) and anaerobic (right)
growth modes. The active pathways, those carrying some flux, are shown on bold
blue. Under unstructured models, both growth modes are modeled using different
constant values. If E. coli switches between the two growth modes, transition rules
need to be determined. Figure reproduced from [97].

FBA is a constraint-based modeling framework that uses the information in genome-

scale metabolic network reconstructions (GENREs) to predict growth and exchange

fluxes rates of microorganisms. Thermodynamics impose more constraints in the form

of irreversible reactions. Some other constraints can be imposed by the extracellular

environment. For instance, for a microorganism that consumes 02, how much 02

is available in the extracellular environment will provide an upper bound on how

much can be consumed. Given this set of constraints, the system is underdetermined.

However, points that maximize certain objectives can be identified [98]. Of particular

interest are the points that maximize growth rate as they tend to have good agree-

ment with experimental data. The resulting formulation can be described by a linear
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program (LP):

max cT v
V

s.t. Sv = 0, (1.2)

VLB <V < VUB

where c is the cost function (usually maximize growth), v is the flux vector, S is

the stoichiometry matrix that represents a GENRE, and vLB 7 UB are lower bounds

and upper bounds, respectively, on the fluxes given by thermodynamics or by the

extracellular environment. Figure 1-5 illustrates FBA graphically.

The use of LP (1.2) requires a metabolic network. Fortunately, with the advent of

high-throughput DNA sequencing, more metabolic networks are now becoming avail-

able. Figure 1-6 shows how the number of models and the level of detail considered in

these models has expanded considerably since 1999. A good source of published GEN-

REs can be found at the Systems Biology Research Group in University of California

San Diego [126].

A bioprocess mode described by an ordinary differential equation (ODE) system

or a differential-algebraic equation (DAE) system, such as the raceway pond model

described in Figure 1-1, can be combined with FBA models. This results in a dynamic

FBA (DFBA) model [137, 87]. In a DFBA model, growth and exchange fluxes rates

are given by the solution of the FBA model. This modeling framework is based on

the assumption that intracellular dynamics equilibrate much faster than extracellular

ones, and therefore, the cell is in quasi steady-state [125]. Therefore, the use of FBA

provides a good approximation.

With DFBA, complex bioprocesses where microorganisms experience different

growth modes, encounter multiple substrate limitations, or experience symbiotic

and/or competitive relationships, can be modeled more reliably compared to un-

structured models. Despite the power of this modeling framework, it is rarely used.

A DFBA model results in an ODE or DAE system with LPs embedded. These sys-

tems are challenging to simulate and optimize. Methods relying on collocation, such

29



Genome-scale
metabolic reconstruction

A*++ B+C
B + 2C -+ D

b Mathematically represent
metabolic reactions

and constraints

C Mass balance defines a
system of linear equations

d Define objective function
(z= c1* v, + c2* v2 ... )

e Calculate fluxes
that maximize Z

-Vg
V,
V,

Reactions 9

1 2 .. n e& o
A -1

D1 mm

MIrx
Stoichiomnetric matrix, S Fluxes, v

+ .=0
- V2 + =0
- .2v + ... =0

2 + .. =0

etc.

To predict growth, Z= vbiomass

V2
A

A

z
"""" Point of

optimal v

solution space
defined by
constraints

*--* V,

Figure 1-5: Graphical representation of FBA. Reproduced from [98].

as the one in [104], can be innacurate because DFBA systems can be stiff; therefore,

how to best discretize the time horizon is not obvious beforehand. Another approach

is reformulating the LP as its Karush-Kuhn-Tucker (KKT) conditions, resulting in a

DAE system [69]. However, the nonuniqueness of the LP causes this DAE system to

have index greater than 1. Finally, there is the approach of using a variable time-
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Figure 1-6: Number and level of detail of published GENREs from 1999 to 2012.
Reproduced from [93].

stepping method to integrate the DFBA system and solving the LP at each time

step. This method is not well-defined as the LP does not necessarily have a unique

solution. This is illustrated by the following Example.

Example 1.0.1. Consider the following ODE system:

y(t, p) = vI(y(t, p))v 2 (y(t, p)) - v2(y(t, p)), Vt E (to, tf]

y(to, p) = p, p E [0, 1],

v(z) E arg min -vi, s.t. vi z, vi + v2 < 1,v ;> 0.

Let p(to) = 0.5. Then, vi(y(to,p)) = 0.5 and v2(y(to, p)) E [0, 0.5]. This implies that

y(to, p) E [-0.25, 0]. This ODE system with an LP embedded is not well-defined as

the right-hand side of this ODE system is set-valued.

It is important to notice that DFBA models are multi-scale. Whereas FBA consid-

ers length and time scales associated with individual cells, the process model described

by the ODE, DAE, or PDE system considers length and time scales corresponding to

the reactor. The time scales associated with dynamic changes in the cellular level are

much faster than those occurring in the reactor. The pseudo steady-state assumption

is an approximation of the very fast cellular time scales that allows to model the

individual cells as LPs at all times, resulting in a nonsmooth dynamic system.

In addition, all of the methods previously described fail when the embedded LP

becomes infeasible. Infeasible LPs in the context of FBA mean that there are not
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enough substrates and nutrients to support growth in the medium, and therefore,

the microorganisms for which the LP becomes infeasible will start dying. However,

the LP becoming infeasible can cause the integrator to fail prematurely unless an

extension of the feasible set is used as described in Chapter 3 of this thesis.

1.1 Optimization of DFBA models

A broad class of optimization problems for DFBA models can be defined as:

min J(p) p(x(tf, p), p) + l(t, x(t, p), p) dt (1.3)
P to

s.t. g(p) r(x(tf, p), p) + J s(t, x(t, p), p) dt < 0,

p E F c D, C Rr,

where DP C R'P is an open set, and F is the set of feasible parameter values, which

are those that lead to feasible trajectories for the DFBA model over the entire time

horizon and satisfy physical bounds. Notice that equality constraints can be modeled

as a pair of inequality constraints. The functions r(x(tj, p), p) and s(t, x(t, p), p)

can enforce path constraints. In the case of DFBA systems, J and g are nonsmooth

functions. This means that the classical derivative does not exist for all points in

the domain of these functions. Therefore, generalized derivatives and nonsmooth

optimization techniques are needed.

The tools, algorithms, and mathematical developments developed in this thesis

will bring us closer to model-based optimal bioprocess discovery. Using mathemat-

ical models, the development of new bioprocesses can be speeded up because com-

putational experiments are faster and less-costly than bench-scale experiments. This

model-based approach is illustrated in Figure 1-7.
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Figure 1-7: Vision for the future of optimal design of bioprocesses. A model library
containing different process models and metabolic networks of different microorgan-

isms can be created. This library allows testing different combinations of process

models and microorganisms. These new setups can be simulated to predict the dif-

ferent outcomes. Mathematical optimization can be used to modify the parameters
to improve objectives such as cost reduction, biomass accumulation, or production of

specialty chemicals. The optimized designs can be tested on bench-scale. If there is

good agreement between the computational and bench-scale experiments, a new opti-

mized design has been found. Otherwise, knowledge is gathered from the bench-scale

experiments to refine the models and a new optimization loop takes place. In this

way, the model drives the experiments. Since mathematical optimization is faster

than bench-scale optimization, an optimal design can be found in a shorter time
frame.

1.2 Contributions and Thesis Structure

The main contributions of this thesis are the following:

1. The development of an efficient, reliable, and user-friendly simulator for DFBA

models in Matlab.

2. The development of DFBA models of raceway ponds for biomass cultivation.

3. The mathematical derivation of sensitivities for DFBA models.

4. The development of optimization strategies for DFBA models.

The thesis is organized in the following way. In Chapter 2 the mathematical
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background regarding nonsmooth analysis is introduced. Here, the concepts of lexi-

cographic differentiation [96] and LD-derivatives [72, 74] are introduced.

Chapter 3 talks about DFBAlab, a user-friendly, efficient, and reliable DFBA

simulator in Matlab [44]. This chapter talks about the mathematical theory behind

this simulator and illustrates its performance in different case studies.

Chapter 4 presents a DFBA model for a raceway pond used for algae cultiva-

tion [45]. This mathematical model results from the combination of the high-rate

algal-bacterial pond [18, 144] and DFBA theory. Different cultivation strategies are

explored including algae/yeast cocultures growing on cellulosic sugars.

Chapter 5 builds on the work of Chapter 4 to explore multispecies cultivation

in raceway ponds. In addition, it adds layers of complexity to the model in [45] by

making lipids accumulation in yeasts variable.

Chapter 6 develops the sensitivity theory for lexicographic LPs. In particular, it

generalizes the chain rule for situations where the outer function of a composition is

defined on a closed set. In addition, it generalizes this chain rule for LD-derivatives.

Finally, it obtains the LD-derivatives for lexicographic LPs.

Chapter 7 applies the theory in Chapter 6 and in [72, 73] to obtain the sensitivity

information for DFBA systems. The sensitivities of a DFBA model containing a

genome-scale metabolic network is used to illustrate the use of this theory.

Chapter 8 describes different optimization strategies for batch, fed-batch, and

continuous bioprocesses described by DFBA models. It uses the sensitivities described

in Chapter 7 and nonsmooth optimization solvers as well as IPOPT to perform local

optimization of DFBA models.

Finally, Chapter 9 describes the remaining challenges and the future work for the

simulation and optimization of DFBA models.
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Chapter 2

Background

2.1 Mathematical Preliminaries

Let all norms be the Euclidean norm. Boldface symbols represent vector and matrix-

valued quantities. Let V be a subset of a metric space, then int(V) and bnd(V) denote

the interior and the boundary of V, respectively. Let L(R'; R') be the space of linear

maps from R' to Rm; each element of L(R"; Rm ) can be identified with an m x n

matrix. For a matrix A c Rmxn , let R(A) c R m be the column space of A. The ith

column vector of a matrix M is denoted by mi. Denote by GL(n, R) the set of all

invertible n x n matrices. Let R = R U {-oc} U {+oo} be the extended real number

system. Let R+ be the nonnegative part of the real line and R- the nonpositive part

of the real line. Let 0 be a vector with all components equal to zero, 1 be a vector

with all components equal to 1 and ei be a vector with all components equal to zero

except to the ith component which is equal to one. Let Im be the identity matrix

with m rows. Consider two vectors x1 , x 2 E Rr; xi > x 2 if for all i E {1, - m

x1 > X2 and x1 > x 2 if for all i {, -... , m}, X 1> X2. Consider a set J with a finite

number of elements. card(J) refers to the cardinality of this set. The convex hull of a

set X will be denoted as conv(X). Let a function f be Ck if it is k times continuously

differentiable, and PCk if it is piecewise differentiable k times in the sense of [119].

Definition 2.1.1. [27] Let X E R' be open and let x E X. A function f : X -+ R
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is said to be Lipschitz near x if there exists a neighborhood N6(x) of x and K > 0

such that

if(y) - f(x) <_ Kily - xli,

for all y C N6(x). A function is said to be locally Lipschitz on X if it is Lipschitz

near x for any i C X [119].

Vector-valued functions are locally Lipschitz continuous if all their components

are locally Lipschitz continuous.

Definition 2.1.2. Let X C R"n be an open set and f :R n -+ R"'. The (one-sided)

directional derivative of f at x E X in the direction d E R is given by the following

limit if it exists:

f'(x; d) =lim f(x + Td) - f(x)
-r -+0+ 7

If at x, the limit exists in R n for all directions d E R"n, then, f is said to be directionally

differentiable at x.

For the remaining definitions, assume X C Rn is an open set and f : X -+

R" is locally Lipschitz continuous. Next the definition of the classical derivative is

introduced.

Definition 2.1.3. [27] f is (Giteaux) differentiable at x C X if there exists a unique

derivative Jf(x) E R"'X" for which

f (X + Td) - f (x)nJf(x)d = lim , Vd c R".
T- OT

This derivative corresponds to the Jacobian matrix of f at x. In this case (locally

Lipschitz continuous), the Giteaux and Fr6chet derivatives are equal.

The mathematical work in this thesis requires the theory of nonsmooth functions.

Nonsmooth functions are those for which the classical derivative does not exist ev-

erywhere. Therefore, we now introduce some generalizations of the derivative for
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nonsmooth functions. For locally Lipschitz continuous functions, Rademacher's The-

orem guarantees the differentiability of f at each point in X\Zf where Zf C X is

some set of measure zero [27].

Definition 2.1.4. [27] The Bouligand (B-)subdifferential is defined as

OBf(x) {H E R"n" : H = lim Jf(x(j)), x = lim x(j), x(j) E X\Zf, Vi E N}.
o +00i-oo

Definition 2.1.5. [27] The Clarke (generalized) Jacobian of f at x E X is

Of(x) = conv(OBf(x)).

When the function is continuously differentiable, the generalized Jacobian results

in a singleton corresponding to the classical derivative.

Example 2.1.1. Consider f(x) : x l x. The derivative of f at x = 0 is not defined

in the classical sense. However, the B-subdifferential and the generalized Jacobian

are defined: OBf(0) = {--1, 1} and Of(0) = [-1,11. Notice that for all x 7 0,

{f'(x)} = Of(X) = &f (X).

Nonsmooth optimization [89] and equation-solving algorithms [103, 33] have been

designed to take elements of the generalized Jacobian as inputs. However, using the

generalized Jacobian presents a difficulty: it does not satisfy a sharp chain rule. In

general, for h : R' --+ R1 and for x E X

[ho f](x) C conv({HF : H E Oh(f(x)),F E Of(x)}). [27]

Therefore, applying the chain rule does not allow finding an element of the generalized

derivative of a composition of functions. Other calculus rules such as the sum rule

fail by the same reason. This can be seen in the following example.

Example 2.1.2. Consider f(x) = g(x) + h(x) where g(x) : x i- min(0, x) and

h(x) : x - max(0, x). It is clear that f(x) = x and therefore {f'(x)} = Of (x) = {1}
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for all x E R. Now consider x = 0. Then, Og(0) = &h(0) = [0,1]. Notice that Of(0)

is a strict subset of ag(O) + Oh(0) = [0, 2].

Example 2.1.3. Consider g(x) : i- max(O, x), h(x) : x ' min(O, x) and f =

[h o g]. It is clear that f(x) = 0 for all x E R and therefore {f'(x)} = Of(x) = {0}.

Consider x = 0. Then g(0) = 0, &g(0) = [0, 1] and &h(0) = [0, 1]. Applying the chain

rule results in,

Oh(g(0))ag(0) = [0, 1], (2.1)

which is an overestimation of Of(0) = {0}.

In addition, elements of the generalized derivative cannot be estimated using finite

differences in the coordinate directions. This is shown by the following example.

Example 2.1.4. Consider f(x) = 0.51xi + X 2 1 + 0.51xi - X 21. This function is non-

smooth at all points x 1 = X2 and x1 = -X 2. Consider x = 0. Then, OBf(0) =

{1 0 , 1 0] , [0 1], [0 -' }. If we take the directional derivatives in the

coordinate directions, we get:

[f'(0; ei) f'(0; e2)] = [ ] conv(OBf (0).

In addition, the Clarke Jacobian may be a strict subset of the Cartesian product

of the componentwise Clarke gradients.

Example 2.1.5. Consider f : R2 - 2 : (X 1 , X 2 ) '-4 (X 1 + 1X 21, X1 - 1X 2 1). Let x = 0.

Then,

I 2A - IOf(0) = {A 0 ,1][,
I 1 -2A

and

Ofi(0) X f2(0) = { 2A - VA 1, A 2 E [0, 1] } Of (0).
I 2A2- 1
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These properties make it computationally difficult to obtain elements of the gener-

alized derivative. Therefore, solving nonsmooth equation and optimization problems

is considered difficult. In general, people in the field have tried different strategies to

relax the nonsmoothness resulting in complex models that are difficult to relate to

physical quantities and additional parameters that explode in number.

Fortunately Nesterov [96] and Khan and coworkers [72, 74] have introduced the

concept of lexicographic derivatives and lexicographic directional derivatives, respec-

tively. These generalizations of the derivative and the directional derivative present

very amenable properties. We next introduce them in the following definitions.

Definition 2.1.6. [96] Let X C R" be open and f : X -+ R' be Lipschitz near

x E X and directionally differentiable. f is lexicographically smooth (or I-smooth) at

x if for any q E N and any matrix M = [i ... mq] E R'xq the following functions

are well-defined:

&) :i -+ n Rt : d f'(x; d), (2.2)

f(J : R R7":d - [fR:dI]'(mj;d), Vj E {1,...,q}.

The function f is said to be lexicographically smooth (i-smooth) on X if it is I-smooth

at each point x E X.

The class of i-smooth functions includes all continuously and piecewise differen-

tiable functions, all convex functions and is closed under composition. The elements

of this homogenization sequence satisfy the following relations presented in Lemma 3

in [96]:

fXk (rd) rTf (d), Vd E RT, VT>0, (2.3)

f (d + Ty) f (k)(d) + Tf k(y), Vd R,

Vy c span{m1, , mk}, VT E R,
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for all k = 0,.. . , q and

f _(d) - fxkl (d) - -- - = ) (d),

for all d E span{mi,... , mk} and for all k = 1, ... , q - 1. Note that these relations

imply that f is linear on span{mi, ... , mk}. In addition, the following property is

also satisfied:

fXi (mk) = f ( = Mk) f ( Mk), Vk E {1, - , q}. (2.4)

Definition 2.1.7. [96]. Let f : X -+ Rm be lexicographically smooth at x E X. Let

Ck(f, M, x) be a Jacobian matrix of any linear function c : R' a R"' such that

c(d) fXk(d), d E span{mi, . . . , mk}.

The Jacobian matrix Ck(f, M, x) is called an i-k-derivative of f at x along the sequence

defined by the matrix M. If m = 1, the column vector (T(p, M, x) is called the I-k-

gradient.

Definition 2.1.8. [96]. The Jacobian matrix C(f, M, x) of the linear function f(k)
xM

with k > min{r : f E L(R"; R")} is called the lexicographic derivative (i-derivative)

of f at x along M R "nq. For M E GL(n, R) denote the i-derivative by JLf(X; M).

Since M is nonsingular i.e., span{mi,..., mq} = R', the i-derivative is given by

JLf(x; M) = Jf(n (0), the Jacobian of f at 0.

Nesterov shows that lexicographic derivatives exist whenever f is I-smooth at x

[96]. If f is (Fr6chet) differentiable at x, then f(k) (d) - Jf(x)d, for k = 0,..., q and

for any M E R".

Definition 2.1.9. [96]. Let the function f : X E R" -+ R' be I-smooth at x E X.

The set

0Lf(X) {JLf(x; M) E r"xn : M E GL(n, R)}
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is called the lexicographic subdifferential of f at x.

For a scalar function f, it has been shown in [96] that Lf(x) is a subset of Clarke's

generalized gradient (Of(x)), hence for any M E GL(n, R) we have that Jf (O) E

Of(x). For vector-valued functions, the lexicographic subdifferential is no less useful

than Clarke's generalized Jacobian for nonsmooth equation solving and optimization

purposes because the lexicographic subdifferential is a subset of the plenary hull of

the generalized Jacobian [72]. In addition, piecewise differentiable functions in the

sense of Scholtes [119] are I-smooth and their i-derivatives are elements of the B-

subdifferential [74].

The lexicographic directional derivative of f (or LD-derivative) [74] at x E X in

the directions M E R nq is

f'(x; M) = f() - f(X1(mq) = [f, X (mi)--- f ,M(mq)]

This definition is particularly useful since first, for M E GL(n, R) the LD-derivative

and the i-derivative are related by f'(x; M) = JLf(x; M)M, which is analogous to

the relationship between the classical directional derivative and the Jacobian for

smooth functions. However, M does not have to be of full row rank to compute

LD-derivatives, which can be extremely useful in the case of compositions.

Second, the chain rule for LD-derivatives has a simple and intuitive structure. Let

q E N and Y be an open subset of RP, let g : X -+ Y and f : Y -+ R' be I-smooth

at x E X and g(x), respectively. The LD-derivative of the I-smooth composition of

f o g at x C X is given by the chain rule:

[f o g]'(x; M) = f'(g(x); g'(x; M)). (2.5)

Consider u and v to be lexicographically smooth functions with appropriate do-
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mains and ranges. The sum and product rules follow from the chain rule [74]:

[u + v]'(x; M) = u'(x; M) + v'(x; M),

[uv]'(x; M) = v(x)u'(x; M) + u(x)v'(x; M).

We can now revisit the examples where the sum and the chain rule result in

overestimations.

Example 2.1.6. Consider f(x) = g(x) + h(x) where g(x) : x - min(O, x) and

h(x) : x F-+ max(O, x). It is clear that f(x) = x and therefore f'(x) = f(x) = 1

for all x E R. Now consider x = 0 and M > 0. Then f'(x; M) = f'(x)M = M,

g'(0; M) = 0 and h'(0; M) = M. Then f'(x; M) = g'(x; M) + h'(x; M). If M < 0,

g'(0; M) M and h'(O; M) = 0 and f'(x; M) = g'(x; M) + h'(x; M).

Example 2.1.7. Consider g(x) : x i max(0, x), h(x) : x '-+ min(0, x) and f =

[h o g]. It is clear that f(x) = 0 for all x E R and therefore f'(x) = &f(x) = 0

and for any M, f'(x; M) = f'(x)M = 0. Let x 0 and M > 0. Then g(0) = 0,

g'(0; M) = M and h'(g(0); g'(0; M)) = h'(0; M) 0. If M < 0, g'(O; M) = 0 and

h'(g(0); g'(0; M)) = h'(0; 0) = 0. In either case, f'(x; M) = h'(g(x); g'(x; M)), which

is the chain rule.

LD-derivatives are important in this thesis because bioprocesses can be modeled

using dynamic flux balance analysis (DFBA), as explained in Chapter 1. In the

remainder of this thesis, the concept of LD-derivatives will be used to develop an

optimization framework for DFBA systems.

2.2 Algal biofuels

In recent years, due to climate change there has been an increased focus on the

negative impacts of fossil fuels on the environment. As a result in March 2015, the

United States pledged to cut its carbon emissions by 26-28% by 2025 [53]. This

ambitious environmental objective was coupled with specific actions such as reducing
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oil imports, increasing energy efficiency, and speeding up the development of biofuels

[128]. Biofuels are a key component towards reducing emissions as liquid fuels are

heavily used in the transportation sector and they currently account for 14% of global

[64] and 27 % of United States [136] CO 2 emissions. As emissions are cut from fixed

sources such as power plants, the transportation share of CO 2 emissions is expected

to grow. In addition, although some of these emissions may be cut by using electric

vehicles, liquid fuels will still be necessary for long-distance transportation as is the

case of aviation. This is a consequence of liquid fuels having a much higher energy

density compared to other energy carriers such as batteries or compressed gases (see

Figure 2-1). The only way of reducing the impact of these emissions is by producing

sustainable liquid fuels.

Energy density comparison of several transportation fuels (indexed to gasoline = 1)
energy content per unit weight
3
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Figure 2-1: Energy density comparison of several transportation fuels (indexed to

gasoline = 1). Figure obtained from [134].

Biofuels are fuels generated from biomass. First-generation biofuels are obtained

from food crops, and had a production volume in the United States of approximately

50 billion litres in 2013, mainly corn ethanol. The production level of corn ethanol is

expected to reach a maximum of approximately 55 billion litres per year, according to

the United States Environmental Protection Agency and Energy Information Admin-

istration [123]. Despite providing improving domestic energy security, first-generation

biofuels compete for food resources and are only slightly better than fossil fuels regard-
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ing environmental impact. This has prompted research on second-generation biofuels

which are obtained from waste biomass and show better figures regarding greenhouse

gas emissions, carbon footprint, and environmental damage [841. Second-generation

biofuels represent a great opportunity because 349 million tons of sustainable waste

biomass are produced per year just in the United States [2], and most of this biomass

is wasted.

Waste biomass can be converted into biofuels with the help of microorganisms

through microbial conversion processes or microbial biomass production. Microbial

conversion relies on fermentation or anaerobic digestion to obtain fuels from the secre-

tions of microorganisms such as bioethanol or biogas. Meanwhile, biofuels relying on

microbial biomass production are obtained from the lipids accumulated by microor-

ganisms growing on waste biomass and/or sunlight to produce biodiesel. The remain-

ing biomass can be digested anaerobically or be regarded as waste [58]. Biodiesel is

attractive because it has a higher energy density than bioethanol. Three types of

microorganisms are used for microbial biomass production: bacteria, fungi (including

higher fungi), and microalgae. Preferred characteristics of the microorganisms are

high specific growth rate, high lipids to biomass yield, high cell density, ability to use

complex substrates, affinity to substrate, and low nutrient requirements [58].

Microalgae are attractive for biofuels production from sunlight energy because

some strains naturally accumulate up to 50% dry weight in lipids [141]. In addition,

algae do not compete for food resources as they can be grown on wastewater and/or

seawater [26], and they are up to one order of magnitude more efficient than higher-

order terrestrial plants in capturing sunlight [141, 25]. In addition, algal biofuels have

reduced CO2 emissions compared to fossil fuels, and can become carbon neutral if all

energy inputs to the supply chain are carbon neutral. Despite all these advantages,

algal biofuels remain to be commercialized due to their high prices. For example, in

2013 the Department of Defense paid $150 per gallon for 1,500 gallons of jet fuel when

petroleum-based jet fuel was only $2.88 per gallon [133]. Prices remain high because

a low cost production method that obtains acceptable algal biomass and lipids yields

remains to be found.
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Oleaginous yeasts are also attractive for biofuels production as they can convert

lignocellulosic sugars into lipids. Some examples of oleaginous yeast strains include

Cryptococcus albidus, Lipomyces starkeyi, Rhodotorula glutinis, Trichosporon pullu-

lans, and Yarrowia Lipolytica which accumulate up to 65, 63, 72, 65, and 36 % lipids,

respectively [105, 11]. Although some microalgae are able to grow mixotrophically,

yeasts are able to metabolize a wider range of carbon substrates compared to algae.

In fact, some yeast strains are able to metabolize both glucose and xylose, making

them good candidates for lignocellulosic waste conversion to biofuels [45].

Algae and yeasts can be cultivated in open pond systems or closed photobiore-

actors. Closed photobioreactors have been used successfully to produce high-value

specialty chemicals [36], but these systems incur high capital and operating costs for

the production of commodities such as biofuels [4]. On the other hand, open pond

lipid yields are insufficient because monocultures are vulnerable to invasion and pre-

dation by other algae species, bacterial or fungal infection. Oleaginous yeasts that

thrive under low pH and low temperature conditions have been successfully cultivated

in open ponds [115], but most oleaginous yeasts are not extremophiles. In this case,

culture resilience and stability are critical. Synthetic consortia can be designed to

fill ecological niches which would otherwise be filled by invading species. Design of

such synthetic consortia has been discussed in Kazamia et al. [70] at a qualitative

level, and a quantitative approach has been proposed in H6ffner and Barton [58]. In

addition, algae in open pond cultures are carbon limited due to the low atmospheric

CO 2 concentration and yeasts can become 02 limited [21]. The carbon limitation has

restricted the locations where algal ponds can be economically feasible, because the

use of C0 2 -rich flue gas is only possible in the vicinity of power plants [9]. An alterna-

tive approach to cultivating monocultures of yeast and algae is to grow them together

and benefit from their symbiotic interactions. Examples of this approach have been

tested at lab scale [21, 116, 108, 145, 102, 82, 148]. The introduction of yeast en-

ables lignocellulosic sugars, which cannot be metabolized by most microalgae, to be

digested and can increase algal biomass by transforming part of these carbon sources

into CO 2. At the same time, yeast can benefit from the 02 produced by microal-
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gae and increase lipids production. In addition, both species together fill available

ecological niches to protect against invasion [70]. This alternative strategy promotes

installing algal/fungal ponds near farms, where significant quantities of agricultural

waste are generated, but no flue gas is available, and transform these wastes into

lipids first, and then biodiesel.

The quantitative approach proposed in H6ffner and Barton [58] to design synthetic

consortia requires good bioprocess models. The modelling of microbial consortia in

open ponds is challenging because complex phenomena such as growth under multiple

substrate and nutrient limitations, symbiotic relationships, and day/night transitions

are present. These phenomena result in microorganisms switching between different

growth modes over the course of the day, which are complicated to model as explained

in Chapter 1. Traditional bioprocess modelling relies on unstructured models (e.g.

Monod, Tessier, Moser, Blackman equations), which are derived for microorganisms

in a single growth mode [122]. To model microbial growth in an open pond using

unstructured models, all growth modes of the different microorganisms need to be

identified, their constants obtained experimentally, and rules for transitions from one

growth mode to the next derived. This makes the, modeling of open ponds using

unstructured models intractable. These limitations are addressed by flux balance

analysis [137, 98] by considering genome-scale metabolic network reconstructions of

all microorganisms in the culture to predict growth and exchange fluxes rates.

The work in Chapters 4 and 5 is aimed at creating a reliable process model for a

raceway pond. This model can be optimized to reduce the costs of cultivating biomass

and obtain cheaper biofuels.
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Chapter 3

DFBAlab: A fast and reliable

MATLAB code for Dynamic Flux

Balance Analysis

This chapter reproduces the article [44]. It introduces DFBAlab, a fast and reliable

MATLAB code for DFBA simulations.

The acceleration in the process of genome sequencing in recent years has increased

the availability of genome-scale metabolic network reconstructions for a variety of

species (see for example [126]). These genome-based networks can be used within

the framework of flux balance analysis (FBA) to predict steady-state growth and

uptake rates accurately [98]. Dynamic flux balance analysis (DFBA) enables the

simulation of dynamic biological systems by assuming organisms reach steady state

rapidly in response to changes in the extracellular environment [125]. Then, the rates

predicted by FBA are used to update the extracellular environment. There exist three

approaches to simulate DFBA models: the static optimization approach (SOA) [87],

the dynamic optimization approach [87] (DOA), and the direct approach (DA). The

static optimization approach uses the Euler forward method, solving the embedded

LPs at each time step. Since most DFBA models are stiff, small time steps are

required for stability, making this approach computationally expensive. Meanwhile,

the DOA approach discretizes the time horizon and optimizes simultaneously over
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the entire time period of interest by solving a nonlinear programming problem (NLP)

(see [104] for an example of this approach). The dimension of this NLP increases

with time discretization, therefore it is limited to small-scale metabolic models [59].

Finally, a DA has been proposed recently by including the LP solver in the right-hand

side evaluator for the ordinary differential equations (ODEs) and taking advantage of

reliable implicit ODE integrators with adaptive step size for error control. At present,

the DOA is rarely used due to the intractability of the resulting NLP. DFBA can be

easily performed on MATLAB using the constraint-based reconstruction and analysis

(COBRA) toolbox [118, 98], which implements the SOA. Recently, the DA has been

implemented by Hanly and Henson [51], Mao and Verwoerd in the ORCA toolbox [90],

Zhuang et al. in the dynamic multispecies metabolic modeling (DyMMM) framework

[150, 149], and others. A comprehensive list of DFBA implementations can be found

in Table I of [59]. COBRA, DyMMM and ORCA codes are available on the Web. Of

these, only DyMMM allows community simulations. Since ORCA and DyMMM are

extremely similar, only COBRA and DyMMM were implemented in the case studies

presented.

These implementations present several shortcomings. The COBRA Toolbox uses

a fixed time step and does not take advantage of the high quality built-in integrators

provided by MATLAB. Simulation stability and accuracy are closely linked to a uni-

formly small step size which can greatly increase simulation time. It can fail if the

extracellular conditions are close to the FBA model becoming infeasible. In addition,

it uses a simple exchange flux bounding scheme that does not allow the implementa-

tion of Michaelis-Menten kinetics or other more complex dynamic behaviors such as

day/night shifts for photosynthetic organisms or system feed and discharge rates. It

does not allow community simulations.

The ORCA toolbox and the DyMMM framework use the MATLAB built-in inte-

grators. ORCA simulates monocultures only, whereas DyMMM can simulate cocul-

tures. The ORCA toolbox allows the implementation of Michaelis-Menten and Hill

kinetics only, whereas DyMMM provides the flexibility to implement more complex

dynamics such as day/night shifts for photosynthetic organisms or system feed and
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discharge rates. Both attempt to carry on with simulations when the FBA model is

infeasible by setting the growth rate and exchange fluxes equal to zero and displaying

a death phase message. This message may be displayed prematurely when the system

is still feasible and introduces discontinuous behavior.

None of these implementations (COBRA, ORCA, and DyMMM) accounts for the

solution of a linear program (LP) being a nonsingleton set. Therefore, exchange fluxes

are not necessarily unique and the dynamic system is not well-defined. Nonunique

optimal fluxes have been discussed elsewhere in [86] and [51]. If no effort is made

to obtain unique fluxes, different integrators could yield different results and small

changes on the initial conditions or the tolerances could lead to dramatic and unpre-

dictable simulation changes.

H6ffner et al. have designed a fast and reliable community simulator that has

the flexibility of implementing complex dynamics, does not fail due to LP infeasibili-

ties, identifies precisely when a system becomes infeasible, and performs lexicographic

optimization to render unique exchange fluxes [59, 56]. In particular, it avoids nu-

merical failure by reformulating the LP as an algebraic system and integrating an

index-1 differential-algebraic equation (DAE) system. Despite these advantages, this

simulator has not been widely used due to being coded in FORTRAN. In this chapter,

we implement the LP feasibility problem combined with lexicographic optimization

in our Dynamic Flux Balance Analysis laboratory (DFBAlab), a MATLAB code that

performs fast, reliable and flexible community simulations.

3.1 Implementation

DFBAlab provides a solution to three major difficulties in existing implementations:

nonunique exchange fluxes in the solution vector of an LP, the LP becoming infea-

sible when evaluating the ODE right-hand side close to the boundary of feasibility,

and the computational expense associated with solving the FBA LP. DFBAlab im-

plements lexicographic optimization to obtain unique exchange fluxes [56], uses the

LP feasibility problem to avoid obtaining infeasible LPs while running the simulation,
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and uses LP basis information to reformulate the ODE system with LPs embedded

into a sequence of differential-algebraic equation (DAE) systems in time. DFBAlab

runs using the commercial linear program solvers CPLEX [28] and Gurobi [50], and

is compatible with the COBRA toolbox model format.

3.1.1 Lexicographic optimization

Dynamic flux balance analysis is defined in the following way. Consider a vector xo

containing the initial concentrations of metabolites and biomass in a culture and as-

sume there are n, microbial species in the culture. Given some uptake and production

rates of metabolites for each species (exchange fluxes), feed and discharge rates from

the culture, mass transfer rates, and other dynamic processes, a rate of change func-

tion f can be obtained for each of the components of xo. The function f can then be

integrated to find the concentration profiles with respect to time, x(t). Consider that

knk n k

each species k has ni exchange fluxes and define the linear maps Bk : Rr -+ R"h

which obtain the exchange fluxes (e.g. biomass production rate, 02 consumption

rate, ethanol production rate, etc.) from the n,. metabolic fluxes. Formally, given the

nonempty open set D n c R , f : [to, tf] x D x RAx'. . . x R" n, - Rfz, vk : D. -+ R ,

vLB : D, -4R"r, vUB : D. li Rr for k=1,. . . , n, and x: [to, tf] -+ R:

x(t) = f(t, x(t), B1(vl(x(t))), ... , Bfl(vns(x(t)))), Vt E (to, tj], (3.1)

x(to) = xo,

where vk is an element of the solution set of the flux balance model of species k:

vk(x(t)) E arg max (ck)TV,
vER" S(

s.t. Sky = 0, (3.2)

VUB(x(t)) ;> V ;> V(x t),
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where Sk E Rflq"r is the stoichiometry matrix, ck E Rnr is a vector of zeroes and

ones with ones only in positions of growth fluxes, and v k, VUB are lower and upper

bounds as functions of the extracellular concentrations. This definition of DFBA has

a serious problem: the solution set of the LP (3.2) can be nonunique (e.g. different

flux distributions vk can attain the maximum growth rate) and it is not clear which

flux distribution should the LP solver choose to carry-on with the integration. This

behavior is illustrated in Example 1.0.1.

In the rest of this document, we will work with the standard form LP of (3.2).

Let Ak E R" M", ck E RV,, EE RI :

min (ck)Tv,
kvERnv

s.t. Akv = 3, (3.3)

V ;> 0.

It is well known that any linear program can be rewritten in standard form [12]. The

information of v k and v k is now in the right-hand side vector 3. Then, for each

species k, let bk : D., -+ RM.

Harwood and coworkers [56] use lexicographic optimization to render unique ex-

change fluxes. Lexicographic optimization works in the following way. First, it orders

a number of objectives in a priority list. The highest priority objective is optimized

first; then its optimum value is added as a constraint and the next objective in priority

is optimized, and so on. Lexicographic optimization can be implemented in DFBA

systems: the first objective is maximization of biomass; then all other exchange fluxes

that appear in the right-hand side of (3.1) are added to the priority list. Note that

the choice of the objective functions and their ordering are part of the model de-

scription and must be provided by the user. Although LPs don't necessarily have

a unique flux distribution that attains the optimal objective function value, they do

have a unique optimal objective function value. This optimal objective function value

changes continuously with changes in viB, V3. By making all the exchange fluxes

that appear in the right-hand side of (3.1) optimization objectives ordered by priority,
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unique exchange fluxes are obtained, these exchange fluxes change continuously with

respect to time and the integrator is able to carry-on integration reliably.

Let hk : D2 -- RIWh, then:

x(t) = f(t,x(t),h1 (x(t)),.. . ,hn(x(t))), Vt E (to, tf], (3.4)

x(to) = x0 .

The function hk = [h'... h k]T depends on the solution of a lexicographic LP (LLP):
nh

h (x(t)) = min (cI)Tv,
k 1

VERnV

s.t. Akv = bk(x(t)), (3.5)

v > 0,

and for 2 < i nk

h (x(t)) = min (c )Tv,

( k

A k

(ck)T

bk(x(t))

h (x(t))

h_ 1 (x(t))

(3.6)

v > 0,

where ci E Rn' for i = 1,..., ni. A more compact version of (7.2) and (7.3) can

be obtained by defining the lexicographic minimization operator lex min. Let the

columns of C R E RflXfl be the vectors ci for i =1,...,ni. Then,

hk(x(t)) = lex min (Ck)Tv,
vERnkV

s.t. Akv = b k(X(t)),

v > 0.
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Harwood et al. [56] present an efficient algorithm to compute a basis that contains

optimal bases for all LPs in the priority list. This algorithm is critical to reformulate

the ODE system with LPs embedded as a sequence of DAE systems in time.

3.1.2 LP Feasibility Problem

A major problem for DFBA simulators is that the LP in (3.2) may become infeasible

as time progresses. There are two situations where the LP may become infeasible:

1. The problem is truly infeasible and the solution cannot be continued: in this

case the integration should be terminated.

2. The problem is not infeasible but the LP becomes infeasible while the numerical

integrator performs various operations to take a time step in (3.1): in this case

the DFBA simulator in COBRA may fail to continue the simulation and ORCA

and DyMMM will erroneously display death phase messages introducing a dis-

continuity in the right-hand side of (3.1). In particular, the MATLAB's built-in

integrators will have a hard-time obtaining reliable right-hand side information

as the system changes abruptly from being defined by the solution to (3.2), to

being defined by an artificial solution that sets growth rates and exchange fluxes

equal to zero.

In this chapter we use the LP feasibility problem [12] combined with lexicographic

optimization to generate an extended dynamic system for which the LP always has a

solution. An LP feasibility problem finds a feasible point or identifies an LP as infea-

sible. It has two main characteristics: it is always feasible and its optimal objective

function value is zero if and only if the original LP is feasible. Several different ver-

sions of the LP feasibility problem can be constructed by adding some slack variables

to the constraints. For the LP formulation in (3.2), the following is an LP feasibility
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problem:

nkfq

mill s+i + s-i,
vERnr, k

s+,s- ERq

s.t. SkV + s+ - s_ = 0, (3.8)

VUB(X(t)) V > vLB(x(t)),

s+ > 0, s_ > 0.

Let Si be the ith row of S. When an LP is constructed in this form, a feasible

solution is obtained by finding a v such that vUB(x(t)) > v > VB(x(t)) and then

letting s+i = -Skv and s-i = 0 if Skv < 0, or si = -Skv and s+i = 0 otherwise.

DFBAlab transforms LP (3.2) to standard form and then obtains the LP feasibility

problem for an LP in standard form ([12]); however, the principles are the same. Any

LP in standard form (3.3) can be transformed such that 3 > 0 by multiplying some

equality constraints by -1. Then, the LP feasibility problem will have the following

general structure [12]:

nk

min k si,
VERnv, SERnm

s.t. Akv + s = , (3.9)

V>07 s>O.

When an LP is constructed in this form, a feasible solution is obtained by setting

s = 3 and v = 0.

DFBAlab uses the LP feasibility problem (3.9) instead of (3.2) to find the growth

rates and exchange fluxes for each species in the culture. It sets the feasibility cost

vector as the top priority objective in the lexicographic optimization scheme. Then,

the second-priority LP maximizes biomass and the subsequent lower-priority LPs

obtain unique exchange fluxes. The order of the exchange fluxes in the priority list is

user-defined. The priority list order is fixed throughout the simulation. This order has

54



to be defined carefully or unrealistic simulation results may be obtained (as illustrated

in Example 3.2.2). This approach has the following advantages:

1. The dynamic system in (3.1) is defined for all simulation time.

2. The integrator does not encounter infeasible LPs while taking a step and is

able to obtain reliable right-hand side information speeding up the integration

process.

3. The objective function value of (3.8) provides a distance from feasibility and can

be integrated providing a penalty function that can be useful for optimization

purposes. Only trajectories with penalty function value equal to zero (within

some tolerance ) are feasible.

3.1.3 Reformulation as a DAE system

DFBAlab uses the strategies described in [56, 59] to transform the FBA problem

into a sequence of DAE systems in time. This is done by observing that for LPs

in standard form, the reduced costs remain invariant for perturbations in the right-

hand side [12]. Therefore, once an optimal basis is obtained for an LLP, this basis

will remain optimal as long as it is feasible [12, 56]. Consider LLP (3.7) and an

optimal basis Bk. This basis will remain feasible as long as (Akk)lbk(x(t)) > 0.

In addition, hk(x(t)) = (Ck )T (A k )-lbk(x(t)). The feasibility condition with the

algebraic equation enable the reformulation of the DFBA problem as a sequence of

DAE systems in time where the transition from one DAE system to the next is given

by the feasibility conditions of the basis. More details on the resulting algorithm

can be found in [56, 59]. For these ideas to work, Ak must be full row rank for all

k. DFBAlab uses QR factorization to obtain a full row rank system of equations

analogous to Akv = bk(X(t)).
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3.2 Results and Discussion

The following examples demonstrate the reliability and speed of DFBAlab compared

to existing implementations of the SOA and DA. SOA is represented by the COBRA

dFBA implementation and DA by the DyMMM implementation. In the first example,

a monoculture of E. coli is simulated with all three methods. In the second example,

a coculture of algae and yeast is simulated using DFBAlab and DyMMM. In the third

example, this same coculture is simulated considering the pH balance. Finally, the

last example shows how DFBAlab running time increases linearly with the number

of FBA models in the system. All running times are for a 3.20 GHz Intel® Xeon@

CPU in MATLAB 7.12 (R2011a), Windows 7 64-bit operating system using LP solver

CPLEX. All running times are for the integration process only (preprocessing times

are not reported). DFBA models are usually stiff; therefore, odei5s, MATLAB's

integrator for stiff systems, was used for all simulations.

Example 3.2.1. This is Example 6.2 in [56] which is based on [51]. Here we compare

the performance of COBRA, DyMMM and DFBAlab simulating an E. coli monocul-

ture. The metabolic network reconstruction used was iJR904 published in [107]. This

metabolic model contains 1075 reactions and 761 metabolites. Initial conditions were

0.03 g/L of inoculum, 15.5 g/L of glucose and 8 g/L of xylose. Oxygen concentra-

tion was kept constant at 0.24 mmol/L. Michaelis-Menten expressions with inhibition

terms were implemented to bound the uptake of glucose, xylose and oxygen using the

parameters presented in Table I and Equations (3), (4) and (5) in [51]. DFBAlab

obtained unique fluxes by minimizing ethanol production, and then glucose and xy-

lose consumption, after maximizing biomass, using lexicographic optimization. The

COBRA simulator performed poorly. Since COBRA does not have the flexibility to

implement Michaelis-Menten expressions, the simulation results were incorrect. In

addition, the fixed step size slowed down the integration process. Non-negativity

constraints for all states variables were enforced in both DyMMM and DFBAlab, by

using the 'Nonnegative' option. DyMMM and DFBAlab obtained the same concen-

tration profiles presented in Figure 3-1. DyMMM has a good performance recovering
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Figure 3-1: Concentration profiles (left) and DFBAlab penalty function (right) of
Example 3.2.1. The penalty function shows how the simulation becomes infeasible
after approximately 8.1 hours. Simulation times: DyMMM = 6.6 seconds, DFBAlab
- 1.4 seconds.

from a frequent failure point occurring when growth switches from glucose-based to

xylose-based. DFBAlab performs faster than DyMMM despite the four additional

LPs being solved to perform lexicographic optimization, obtaining at least the same

level of accuracy. Finally, the penalty function indicates that the system becomes

infeasible after approximately 8.1 hours (Figure 3-1).

Example 3.2.2. This is an example from [58] of a coculture of the microalgae

Chlamydomonas reinhardtii and Saccharomyces cerevisiae (yeast) in a continuous

stirred-tank reactor (CSTR) reactor. The genome-scale metabolic network recon-

structions used were iRC1080, comprising 2191 reactions and 1706 metabolites from

[19], and iND750, comprising 1266 reactions and 1061 metabolites from [31], for algae

and yeast, respectively. In this simulation, yeast consumes glucose to produce CO 2

while algae consumes mainly CO2 to produce 02 during the day, and acetate to pro-

duce CO 2 during the night. The dynamic mass balance equations of the extracellular
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environment for this system are:

F.,,tyi W(310
y(t)= p&(x(t))yz(t) - , (3.10)

A(t) Finso - F.ts(t) + MTs(x(t)) + Z(v(x(t)) - v(x(t)))y(t), (3.11)

for i =YA, for s =g,o,c,e,a,

where yi, g, o, c, e, and a correspond to the concentrations of biomass of species i,

glucose, oxygen, carbon dioxide, ethanol and acetate, respectively. The superscripts

Y, A refer to yeast and algae, x = [y YA g o c e a], P' is the growth rate of species

i, v'C and v, are the consumption and production rates of substrate s for species

i determined through lexicographic optimization, so is the concentration of s in the

feed, F, and F., are the inlet and outlet flows, V is the volume of the system, and

MT, is the mass transfer rate of s given by the following expression:

(ksL S) - s~ for s = o, C,

MTs(x(t)) = \KH- (3.12)
0 for s = g, e, a,

where KHs refers to Henry's constant of component s at 25 C, ksLO is the mass

transfer coefficient for component s (from [183), and s(g) is the concentration of s in

the atmosphere. The maximum concentration of oxygen and carbon dioxide in the

culture is bounded by Henry's constant:

s((t)) < KHs, Vt E [to, tf] for s = o, c. (3.13)

Initial concentrations and other parameters are presented in Table 3.1. The uptake

kinetics are bounded above by the Michaelis-Menten expression:

V ',UB St) ,m= V' s)3-14Ki + S(t)

for i = Y, A and s = a, o, c with V and K' obtained from [147], [6] and [144] for

acetate, carbon dioxide and oxygen. Production of oxygen by algae, ethanol by yeast,
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Table 3.1: Initial concentrations and parameters of Example 3.2.2. Simulation 1 used
the lexicographic objectives presented in Table 3.2, while for Simulation 2 objective
4 for algae was inverted.

Variable Simulation 1 Simulation 2 Parameters
yf 1.10 0.71 gDW/L Vo 140 L
Yo 1.86 1.80 gDW/L Fin 1 L/h
go 1.40 E 2  2.28 E 2  mmol/L F1 L/h
00 6.53 E 4  5.57 E mmol/L
co 1.06 1.03 mmol/L
eo 8.21 17.32 mmol/L
ao 2.39 E- 2  2.48 E 2  mmol/L

Table 3.2: Priority list order for the lexicographic linear programs in Example 3.2.2.
Yeast Algae

1 Minimize slacks of feasibility LP Minimize slacks of feasibility LP
2 Maximize biomass production Maximize biomass production
3 Minimize glucose consumption Maximize acetate consumption
4 Minimize 02 consumption Minimize consumption and maximize

production of 02
5 Maximize CO 2 production Maximize CO 2 consumption
6 Maximize ethanol production

and carbon dioxide by algae and yeast were not bounded.

In addition to the extracellular concentrations, algae growth is affected by light

availability because it is a photosynthetic organism. Day and night shifts were simu-

lated using the following surface light function:

= 2 8 max (sin2 (2) ,sin 2 (g)) - sin2 (4) mmol photons
1 - sin 2 (L07,) gDW x h

(3.15)

This light function simulates daylight from 5:00 to 19:00. The prefactor was obtained

from [43]. The Beer-Lambert law was used to average the light available to algae cells

considering that higher biomass densities block light and deeper sections of the pond

receive less sunlight:

1 - exp (-LK(x(t)))
Ia(t, x(t)) = Io(t) LK(x(t))

mmol photons

gDW x h

where Ke(x(t)) is a linear function of the concentration of biomass in the culture and
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L is the pond depth [144]. Concentration variations of biomass for different pond

depths were neglected.

This complex community simulation cannot be carried out using the DFBA sim-

ulator in COBRA. Non-negativity constraints were enforced for all state variables in

both, DyMMM and DFBAlab, by using the 'Nonnegative' option. After more than

10,000 seconds of running time using MATLAB implicit integrator odel5s, the sim-

ulation on DyMMM was stopped. Using explicit integrator ode45 instead, DyMMM

took more than 3900 seconds to simulate one hour of the cyclic steady-state of this

coculture and the results are inaccurate. This is expected because explicit integra-

tors can calculate new steps as long as they are able to evaluate the right-hand side

of the ODE. The results obtained by DyMMM using ode45 are inaccurate because

explicit integrators should not be used for stiff systems, and the right-hand side is

nonunique. In Figure 3-2, it can be seen that the acetate curve presents several points

of nonsmoothness which are expected in systems with nonunique fluxes. Numerical

integrators are unable to handle these systems as they encounter discontinuous ex-

change fluxes when decreasing step-size. Therefore, computation time is excessive

and the results are incorrect. This shortcoming is addressed by DFBAlab using six

lexicographic optimizations for yeast and five for algae. It took only 16.4 seconds

to simulate accurately 24 hours of this coculture using the lexicographic objectives

shown in Table 3.2, and 15.3 seconds to simulate this same system with the negative

of Objective 4 for algae. Simulation results can be seen in Figure 3-3.
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Figure 3-2: DyMMM simulation results of Example 3.2.2. DyMMM is unable to simulate Example 3.2.2. Computation time
for one hour of simulation was of more than 3900 seconds using MATLAB explicit integrator ode45. In addition, the acetate
curve has several points of nonsmoothness that can be explained by the presence of nonunique fluxes. Numerical integrators
are unable to integrate these kinds of systems.
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Lexicographic optimization is very important in this example; if the negative of

Objective 4 for algae is used, oxygen, acetate and yeast concentration profiles vary

significantly. In particular, notice the large difference in the 02 concentration profile

between the two simulations. Since the 02 flux is nonunique, selecting different fluxes

will lead to different trajectories. Without a rule on how to choose a flux from the

optimal solution set, DyMMM can choose different elements of this set while cutting

its time step, obtaining unreliable right-hand side information. Therefore, it is not

surprising that the DyMMM simulator was unable to simulate this system.

It must be noted that in reality, this difference is not observed in nature. When

Objective 4 for algae is inverted (maximizing 02 consumption and minimizing 02

production), the model is able to uptake unlimited H+ ions from the environment

and produce water until the 02 uptake bound is reached. This behavior will change

the pH of the system and the overconsumption of 02 would be unsustainable. In-

creased modeling efforts can bound the uptake of other substrates such as nitrogen,

phosphorus and iron and use pH dependent uptakes. In this context, a pH balance

will be necessary. This balance is implemented in Example 3.2.3. Finally, biologically

relevant lexicographic objectives must be selected because some objectives may lead

to unrealistic systems as the one just presented.

Example 3.2.3. This example illustrates the modeling flexibility DFBAlab provides.

The growth rate of autotrophic microalgae such as C. reinhardtii is dependent on CO 2

concentration. This concentration is affected by pH, as the following equilibrium

reactions are present in the extracellular environment:

NH 3 + H 20 NH+ + OH~

CO 2 + H20 H+ + HCO- 2H+ + C02 (3.17)

H20 H++ OH-

Using the equilibrium constants presented in Table 1 in [144 and the equilibrium

model in Equations (14a) and (14b) in [144], a pH balance was introduced to Example

3.2.2. The pH balance introduces algebraic equations that have to be satisfied at all
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times. This kind of system is called a Differential-Algebraic Equation system (DAE)

where some variables are algebraic variables (their time derivative is not calculated

explicitly) and others are differential variables. To our knowledge, no one has intro-

duced the pH equilibrium equations in a DFBA simulation before. To add the pH

balance to the system, total carbon and total nitrogen were added to the differential

variables, CO 2 concentration was transformed into an algebraic variable, and new

algebraic variables for NH', NH3 , HCO-, CO , and H+ concentrations were intro-

duced. Total nitrogen in the system was assumed to be constant at 0.1643 mmol/L,

which is the concentration present in the Charles River in Cambridge [201, the effect

of H+ exchange by algae on pH was considered negligible, and ionic valency of the

solution was assumed to be equal to zero.

If the Jacobian of the algebraic equations with respect to the algebraic variables is

nonsingular, the DAE is index-1 and can be solved with MATLAB odel5s. Table 3.3

shows the initial conditions and parameters used. No non-negativity constraints were

enforced; however, the uptake kinetics were specified so that negative concentrations

could not occur. Concentration profiles are presented in Figures 3-4 and 3-5. Simu-

lation results with a pH balance are close to those without a pH balance. However,

the information obtained from this simulation enables using pH dependent uptake

kinetics and ionic species uptake kinetics leading to more accurate simulations. It

took only 15.9 seconds to simulate accurately 24 hours of this coculture with a pH

balance.

Example 3.2.4. In this example a monoculture of Chlamydomonas reinhardtii was

simulated to illustrate how DFBAlab performs for simulations with a large number

of species models. The parameters implemented in Example 3.2.2 were used with

different initial conditions. No non-negativity constraints were enforced, but the up-

take kinetics were specified so that negative concentrations could not happen. Algae

biomass was split among several LPs and running times were compared. Table 3.4

shows the running times for 24 hours of simulation for different numbers of models

in the system.
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Table 3.3: Initial concentrations and parameters of Example 3.2.3.
Variable No pH balance pH balance Parameters

Yo 1.10 1.10 gDW/L V 140 L
YA 1.86 1.87 gDW/L F 1 L/h
go 1.40 E 2  1.40 E 2  mmol/L Fo 1 L/h
00 6.53 E 4  6.52 E 4  mmol/L
CO 1.06 1.06 mmol/L
eo 8.21 8.21 mmol/L
ao 2.39 E 2  2.37 E 2  mmol/L
NT - 1.64 E-' mmol/L
CT - 1.22 mmol/L

NH 3  - 2.45 E 5  mmol/L
NH+ - 1.64 E-1  mmol/L

HCO- - 1.64 E-1 E 2  mmol/L
CO2- - 2.58 E- 6  mmol/L

H+- 2.67 E- 6  mmol/L

-- pH Balance --- No pH Balance

1.8

- -- Glucose
~- -- Acetate

0.014
I I1.5

-j
Z

5 10
Time [h]

15 20

--- 2

-- O2

Figure 3-4: DFBAlab simulation results of Example 3.2.3. This example incorporates
the pH balance (solid line). Simulation results were close to the ones obtained without
a pH balance. Slight variations were observed for the CO2 concentration profile.
Computation time was 15.9 seconds.
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Figure 3-5: Equilibrium species and pH of Example 3.2.3. The pH balance enables
tracking of ionic concentration profiles. This information allows using pH dependent
uptake kinetics and uptake kinetics for ionic species.

Table 3.4: Running times of Example 3.2.4 with increasing number of models.
Number of models Time (s)

1 8.1
2 15.6
5 38.2
10 73.7
25 187
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3.2.1 Discussion

In these examples, the reliability and speed of DFBAlab has been shown compared

to current open MATLAB benchmarks in DFBA simulation. COBRA lacks flexibil-

ity when implementing Michaelis-Menten kinetics and the use of a fixed time step

decreases the accuracy of these simulations, or increases the integration time for very

small time steps. DyMMM provides a flexible framework that allows the implementa-

tion of community simulations. However, if any of the exchange fluxes are nonunique,

simulation results will be incorrect. DFBAlab uses lexicographic optimization to ob-

tain a well-defined system, but it requires specification of lower-priority objective

functions. Biologically relevant lower-priority objectives must be sought to restrict

the solution set of (3.2) to a more realistic set. For instance, it has been suggested by

a reviewer of [44] that maximization of ATP is a biologically relevant objective that

should follow maximization of biomass. In DFBAlab, this objective can be added

right after maximization of biomass. Then, the unique exchange fluxes obtained are

guaranteed to maximize biomass first, and then maximize ATP. If other biologically

relevant objectives are found, they can be added in the same way to the priority

list (after maximization of biomass, but before the exchange fluxes), such that the

exchange fluxes obtained are more realistic.

The DFBAlab framework is flexible enough to allow DAEs, which could result

from performing pH balances in the culture. Furthermore, in community simulations,

the running time of DFBAlab increases linearly with the number of LP models when

they all correspond to the same species, although it is expected not to follow a linear

relationship if a multispecies simulation is carried out because of the interactions

between microorganisms. The LP feasibility objective function in DFBAlab serves

two purposes: it helps to distinguish between feasible and infeasible trajectories and

it can serve as a penalty function in optimization algorithms.
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3.3 Conclusions

The objective of this work is to provide an easy to use implementation that minimizes

troubleshooting of numerical issues and facilitates focus on the analysis of simulation

results. DFBAlab, a reliable DFBA simulator in MATLAB, is presented. DFBAlab

uses lexicographic optimization to obtain unique exchange fluxes and a well-defined

dynamic system. DFBAlab uses the LP feasibility problem to generate an extended

dynamic system and a penalty function. It also uses LP basis information to refor-

mulate the DFBA problem as a sequence in time of DAE systems.

DFBAlab performs better than its counterpart DyMMM in complex community

simulations: it is faster and more accurate because the unique fluxes provided by

lexicographic optimization are necessary for efficient and reliable numerical integra-

tion. In addition, DFBAlab can integrate the DAEs resulting from implementing pH

balances. Biologically relevant lower-priority objectives must be sought to perform

lexicographic optimization. The penalty function provided by DFBAlab can be used

to optimize DFBA systems.

DFBAlab currently has approximately 150 academic users and it has generated

some industrial interest. Information on how to use DFBAlab and other relevant

documentation can be found in Appendix A.
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Chapter 4

Modeling of an algae cultivation

system for biofuels production

using dynamic flux balance analysis

This chapter is based in the work published in [45] and presented in [46]. This

chapter shows how an algal-fungal pond is able to attain higher biomass productivi-

ties than the respective monocultures. The substrates required for algae growth are

minimal. For algal photoautotrophic growth, CO 2 is the carbon source, energy is

provided by sunlight, and small amounts of nitrogen, phosphorus and sulfur sources

need to be provided. The quantity of the available substrates strongly determines

the growth rate and intracellular accumulation of desired metabolic products such as

lipids. For yeast, a carbon source, in this case glucose and xylose, and small amounts

of nitrogen, phosphorus and sulfur are required. This case study shows that yeast

provides additional CO2 to algae by metabolizing sugars and algae provides 02 to

yeast. Furthermore, together yeast and algae use available resources more efficiently,

which makes the invasion of other microorganisms less likely. This chapter uses the

modeling framework presented in H6ffner and Barton [58], which is based on dynamic

flux balance analysis (DFBA)[137, 98, 87, 100] and the high-rate algal-bacterial pond

model [18, 144].
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4.1 Methods

The design of novel algal open pond systems requires process models, which provide

quantitative predictions of interactions between process components across different

scales. Multi-scale models, integrating genome-scale information in metabolic net-

works with the ecological scale of the interactions between multiple species and the

process scale of bioreactors, have been proposed in H6ffner and Barton [581. These

complex models are based on multi-species dynamic flux balance analysis and can be

used for the discovery of novel and improved microbial bioprocesses.

4.1.1 Dynamic Flux Balance Analysis

Flux balance analysis (FBA) is a genome-scale, constraint-based modeling approach.

It is a widely successful framework for metabolic engineering and analysis of metabolic

networks [98, 100]. Consequently, metabolic network models of many organisms have

been developed [117]. Based on genomic analysis, a metabolism can be modeled as

a network of reactions, which must satisfy simple mass balance constraints. The

network reconstruction determines the stoichiometry of the metabolism under the

balanced growth assumption [100]. However, this network is often underdetermined;

the fluxes of the different substrates and metabolites can vary and yet still produce a

solution which satisfies mass balance constraints. Thus, it is assumed that the fluxes

will be such that some cellular objective is maximized. For example, an evolutionary

argument can be made that a microorganism will maximize its growth rate if sufficient

nutrients are provided [98].

DFBA combines genome-scale metabolic network analysis with a dynamic sim-

ulation of the extracellular environment[137, 87]. At this scale, process models of

bioreactors incorporating detailed metabolic network reconstructions can be consid-

ered. DFBA models have matched accurately experimental data for the cultivation

of E. coli [137, 51] and the competition between Rhodoferax and Geobacter [150].

In addition, DFBA has successfully modeled experimentally observed mutualistic re-

lationships between D. vulgaris and M. maripaludis and between engineered yeast
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strains unable to grow on minimal glucose medium separately, and has been used

to make fast predictions for combinations of microorganisms and media not yet val-

idated experimentally [77]. DFBA provides a platform for detailed design, control,

and optimization of biochemical process technologies, such as an open pond. With

DFBA, temporal and/or spatial variations in the behaviour of the community within

the bioreactor can be simulated. This formulation provides a more appropriate and

predictive description of complex ecological systems, in which emergent nonlinear dy-

namic behaviour is a common phenomenon. Furthermore, the mathematical formu-

lation allows for unstructured models of ecological species, such as large zooplankton,

for which a metabolic model is not available.

Simulation and optimization of large multi-species and multi-scale process models

requires efficient numerical tools. A DFBA model results in a dynamic system with

linear programs embedded [59, 56]. Numerical complications arise when simulating

these systems; these have recently been addressed and efficient simulators have be-

come available [59, 44]. Therefore, simulation of large-scale multi-species metabolic

reconstructions is now possible. The simulations in this chapter were performed using

DFBAlab [44].

4.1.2 High-Rate Algal Pond Model

The high-rate algal-bacterial pond model was first introduced and validated exper-

imentally by Buhr and Miller [18] and then extended by Yang [144]. This model

considers a coculture of bacteria and algae for high-rate wastewater treatment ponds.

Their growth expressions are given by Monod type kinetics dependent on the concen-

tration of carbon, oxygen, and nitrogen. In addition, they considered pond depth and

biomass concentration effects on light penetration, the effect of ionic species on pH,

and the effect of pH on dissolved CO 2. In order to use Monod kinetic expressions, a

limiting substrate must be readily identified, and accuracy is lost at transitions, which

are characterized by several substrates being limiting. In cocultures and non-steady

state environments, predicting limiting substrates and active metabolic pathways can

be a very challenging task, if possible. In this chapter we incorporate genome-scale
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metabolic models into the high-rate algal-bacterial pond model. When using dynamic

flux balance analysis, no a priori predictions are needed because the linear programs

modeling the behaviour of each species predict the metabolic state given the ex-

tracellular conditions and identify the limiting substrates. Monod kinetics are used

indirectly by bounding the consumption of substrates as in Hanly and Henson [51],

but the actual consumption rate is calculated by the linear programs after identifying

a limiting substrate.

4.1.3 Raceway Open Ponds

A raceway pond is an open pond with flow and can be modelled as a plug flow

reactor. In this chapter, the spatial distribution of quantities in the raceway pond

is approximated as a sequence of interconnected continuous stirred tank reactors

(CSTRs). Each CSTR model includes the mass balances for the main metabolites

and an estimate of the variation of the average light intensity during a 24 hour period.

For each CSTR, it is assumed that the broth is well mixed such that there are no

gradients in nutrients or biomass concentrations. Growth rates of algae and yeast, and

uptake and production rates of metabolites are obtained from genome-scale metabolic

network reconstructions.

First a pond with an algae monoculture with no CO 2 sparging is analyzed. Next,

the productivity of this culture is boosted with CO 2 sparging and a series of three

ponds is considered. Next, a pond containing a monoculture of oleaginous yeast is

considered and the advantages of an algae/yeast coculture are illustrated. Next, we

model an algal/yeast coculture with no flue gas sparging in a three pond system.

Finally, the case where the oleaginous yeast can also consume xylose is considered

in another three pond system. The coculture examples illustrate the benefits of the

symbiotic relationships between yeast and algae. The series of ponds is necessary to

induce lipids production through nitrogen starvation [115], as observed experimentally

by Rodolfi et al. [1111 and Breuer et al. [16]. Nitrogen starvation increases lipids

productivity but reduces biomass productivity [143, 16]. A two phase cultivation

system can achieve good biomass and lipids productivity [66]. Therefore, the series of
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ponds allows biomass growth in the first pond and lipids accumulation in the latter

ones. Ammonia is used as the single nitrogen source. Caustic soda is used to prevent

the pond from becoming too acidic.

In this case study, the model for each pond was obtained from Yang [144]. This

model considers a 350,000 L outdoor pond with a depth of 0.4 m. It is continuously

harvested at a rate of 50,000 L/day with a recycle rate of 350,000 L/h. A channel

width of 1.2 m is assumed such that the flow velocity is 0.2 m/s to avoid sedimentation

and thermal stratification, as suggested by Becker [10]. The Reynolds number of this

pond is of 250,000; turbulent flow is desired to keep cells in suspension and prevent

stratification [24]. We discretized the spatial variations of the pond by modeling it

as a sequence of nine CSTRs. For ponds connected in series, the effluent of one pond

feeds into the next and the effluent of the last pond feeds into a clarifier, in which

the water content is reduced and subsequently the remaining biomass is harvested

and processed. The clarifier and other downstream processes are not included in the

current model.

The average light intensity is estimated based on the Beer-Lambert law [18, 144]:

=1 jL
Ia M)= Io (t) exp(-Ke(X(t))z)dz, (4.1)

where Ke(X(t)) is the extinction coefficient, L is the depth of the pond, and 1o

is the surface light intensity during the photoperiod (7:00-19:00) approximated by a

sinusoidal function with maximal intensity at noon and average surface light intensity

of 18.81 MJ/m2 /day or 5.22 kWh/m 2 /day[144]. This solar intensity can be found in

southwestern USA (see Figure 4-1). To convert to mmol photons/gDW/h, the average

cell diameter used was 10 pm [52], and the average weight was estimated as 10 9 cells

in one gram dry weight [54]. Following the calculations in Boelee et al. [13], Im -

283 mmol/gDW/h. The dependency of Ke on biomass concentration is modeled via

a simple linear relationship,

Ke(X(t)) = Kei + Ke2X(t), (4.2)
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where X(t) is the total biomass concentration at time t and the values of the param-

eters Kei and Ke 2 are taken from Buhr and Miller [181. In addition, light available

for photosynthesis cannot exceed the average surface light intensity of 3610 mmol

photons/(m 2 x h). Therefore,

Io(t) = max 0, 2837r sin (r(t- 7) , (4.3)

Ia (t) - 10t) 1 - e-LK(X(t))

LKe(X(t))

max (0, 36107r (sin (1r(-7)

400XA(t) '

Im (t) =min (1a(t), I,1(t)),7

where Im(t) is the light available for algae at time t in mmol/gDW/h, XA(t) is algal

biomass concentration in g/L and 400 is a conversion factor from g/L to g/m 2 based

on the geometry of this pond. The open pond is in direct contact with the atmosphere,

therefore a simple model based on film theory is used to estimate the mass transfer

across the interface between air and water with parameters from Buhr and Miller

[18] and Yang [144], and pond mass transfer area to volume ratio of 2.5 m2 /m 3 .

The equilibrium concentrations for both 02 and CO 2 in water are calculated using

Henry's law. Finally, the dissolved gas concentrations are limited by their saturation

concentration at ambient conditions.

Sparging of flue gas is modeled according to Yang [144]. The model considers that

flue gas is fed at atmospheric pressure into orifices with a diameter of 5 cm. covering

the entire bottom of the pond with a concentration of 250 orifices/m 2 . Flue gas

flowrates of 10, 40, 100, 500, and 2000 m3 /h were modeled. The flue gas composition

of 13.6% CO2 , 5% 02, and the rest N 2 was obtained from Brown [17]. Variations

of the concentration of CO 2 in the gas bubbles with respect to pond depth were

considered.
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Figure 4-1: Photovoltaic Solar Resource of the United States. This maps shows the
average surface light intensity in different parts of the United States. Notice that
in this work a light intensity of 5.2 kWh/m 2 /day is assumed. This average light
intensity and higher light intensities can be found in southwestern United States.
Figure obtained from [95].

4.1.4 Metabolic Models

Chlamydomonas reinhardtii is used as a model organism for microalgae. The genome-

scale metabolic network iRC1080 is an up-to-date metabolic reconstruction of C. rein-

hardtii [19]. The reconstruction consists of 2190 fluxes and 1068 unique metabolites,

and encompasses ten compartments including a detailed reconstruction of the lipid

metabolism. The model includes photoautotrophic, heterotrophic and mixotrophic

growth options and a detailed model of the light spectrum. The model predictions

have been validated experimentally under different environmental conditions, such as
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nitrogen-limited or light-limited growth [19]. The model includes the pathways neces-

sary for the biosynthesis of unsaturated fatty acids, fatty acids, steroids, sphingolipids,

glycerophospholipids, and glycerolipids, and it considers the pathways related to fatty

acid elongation in the mitochondria. The model considers all individual metabolites

in these pathways including backbone molecules, stereochemical numbering of acyl-

chain positions, acyl-chain length, and cis-trans stereoisomerisms [19]. More model

details including a list of all metabolites and reactions can be found in the Supple-

mentary Information of Chang et al. [19] and more information in general on algal

lipids synthesis in Harwood and Guschina [55]. For this chapter, 125 metabolites

were classified as lipids and a dynamic lipid storage was implemented in the model.

In addition, minor modifications were done to the metabolic network reconstruction

to satisfy mass balances.

The model for the yeast organism is based on a well-established model of Sac-

charomyces cerevisiae. The genome-scale network reconstruction of the S. cerevisiae

metabolism iND750 has shown good agreement with experimental data [31]. It con-

siders 1061 unique metabolites in eight compartments and 1266 intracellular and

exchange fluxes. Furthermore, the model correctly predicts ethanol production under

anaerobic conditions. However, S. cerevisiae is not an oleaginous yeast. Examples

of oleaginous yeasts include Cryptococcus albidus, Lipomyces starkeyi, Rhodotorula

glutinis, Trichosporon pullulans, and Yarrowia Lipolytica with lipid accumulations

ranging from 36% to 72% [105, 11]. A description of the lipids profiles for different

fungal species can be found in Ratledge [105]. The iND750 model considers most

pathways found in fungal species. It also considers the production of different lipids

species such as glycerolipids, glycolipids, sphingolipids, phospholipids, and fatty acids.

This metabolic reconstruction can be used to model different species by adjusting the

biomass equation and adjusting the flux bounds on reactions feeding to different path-

ways. In this chapter, we modified the iND750 model such that it cannot produce

ethanol [11] and under low oxygen conditions it can produce acetate, formate, succi-

nate, and citrate, reflecting the behavior of Y. Lipolytica [101]. We also modified it

further such that it consumed xylose reflecting the behavior of Rhodotorula glutinis
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[146]. Therefore, the biomass equation was modified such that the yeast accumulates

40% lipids.

Both modified models are provided as supplementary materials in [45]. Figure 4-2

presents a simplified version of both models. Yeast consumes glucose, xylose, 02, and

nutrients to obtain biomass, CO2 and water. Under low 02 conditions, yeast produces

acetate (not ethanol because Y. lipolytica and R. glutinis do not produce ethanol).

The metabolic reactions of glucose and xylose generate ATP with stoichiometry de-

fined by the metabolic model. Xylose, glucose and nutrients are assimilated into

biomass; these growth reactions have ATP requirements with coefficients determined

by the metabolic model. Meanwhile, algae obtains ATP from light and converts CO 2

and water into glucose and 02 through photosynthesis with some ATP requirement.

This glucose can be transformed into starch for energy storage, consumed for ATP

production, or assimilated with nutrients as biomass. Under nitrogen limitations,

this glucose can be assimilated as lipids. Also, algae can grow heterotrophically on

acetate. In addition, the algae model considers a survival ATP requirement. The

red, purple, and green arrows show symbiotic opportunities. All ATP coefficients are

determined by the metabolic model. Both models, iRC1080 and iND750, contain in

full detail all the relevant metabolic pathways that achieve these main reactions. The

full list of metabolites and reactions of iRC1080 and iND750 can be found in the

Supplementary Information of Chang et al. [19] and the Supplemental Material of

Duarte et al.. [31], respectively.

4.1.5 Kinetic Parameters

The uptake kinetics for the exchange fluxes for both microorganisms are approximated

by Michaelis-Menten kinetics:

vs ( V S ( )1(4.4)
Km + S 1 + IIK '

where S is a substrate of interest, I is an inhibitor and /3 is a positive pH factor.

The values of these constants are taken from the literature and presented in Tables

77



- CO 2 H20 Light CH3COOH Nutrients 02

Glucose Xylose Nutrients 02 Light4XmATP

6CO2+ 76P20 +Xp/GkATP 4 Glucose + 602

Glucose+ 602 46CO,+ 6H 20 + YaIGIATP I Glucose + Nutrients +X -WmATP 4-Biomass

Xylose + Nutrients + YS%,x/nATP 4 Biomass Glucose + XLuWAPATP 4Lipids

Xylose + 502 4SCO2 + 5H 20+ Ym/xATP Glucose ,-4Starch

Glucose+ 602 46CO2+ 6H20 +Xm/pATP
Glucose+ Nutrients + YEIjsmATP 4Biomass I

CH3COOH + 202 42CO2 + 2H20 + Xm/wATP
Glucose 4 3CH23C0 ++Y/ATP I

* Biomass +XVATP 4Biomassabk

H.20 Biomass CH3CCO1 C02  -J~

2 9t - - 2 H20 CO 2  Biomass Lipids

Figure 4-2: Global reactions considered in the modified models iRC1080 and iND750.
The stoichiometric coefficients of ATP production and consumption are determined
by the metabolic models. The colored arrows illustrate symbiotic relationships: the
red dashed arrow shows yeast utilizing 02 produced by algae, the purple dotted and
dashed arrow shows algae consuming CO 2 produced by yeast, and the solid green
arrow shows that the acetate produced by yeast can be metabolized by algae.

4.1 and 4.2. The uptake of acetate in algae was modeled according to Zhang using

the expression for growth on ammonium chloride [147], but since this expression is

slightly different from (4.4), the values of its constants are not reported in Table 4.1.

Algae are known to survive in a pH range of 6-10 with an optimum pH of 8, whereas

yeasts survive in environments with pH ranging from 2 to 8 [140]. Algal carbon and

nitrogen uptakes and yeast glucose and xylose uptakes were made pH dependent with

expressions obtained from Tang et al. [127] and Zhang et al. [147]:

K 
= (4.5) K, + OH- + H '

where a, K1, KOH-, and KH+ are constants. Algal pH dependent growth data under

nitrogen and carbon limitations was obtained from Franco et al. [41] and Kong et al.

[79], whereas yeast parameters were adjusted such that it grew at pH levels between 2
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Table 4.1: Summary of uptake kinetic parameters for algae and yeast.
Yeast Vmax Km K, Ref.

(gDmxh) (mmol/L) (mlL
Glucose 22.4 4.44 EtOH: 217 Hanly et al. [51]
02 2.5 0.003 None Hanly et al. [51]

NH4 25.5 35.4 x10- None Jongbloed et al. [68]
Xylose 12.8 32.5 EtOH:217 Hanly et al. [51]

Glucose:2.78
Algae
CO2  1.25 0.03 None Tsuzuki et al. [1311
02 2.065 0.008 None Yang [144]
HC03 1.82 0.27 None Tsuzuki et al. [131]

NH4 0.65 3.84x10 4  None Hein et al. [57]
N03 0.251 1.lx 10- 3  None Galvin et al. [42]
Acetate N.A N.A None Zhang et al. [147]

Note: Ammonium uptake for yeast was approximated with that of fungus
Lactarius rufus. The weight fraction of chlorophyll (22.8 mg/gDW) in
algae was obtained from the biomass equation in the iRC1080 model.

The yeast uptake of xylose was scaled from E.coli values.

and 9 with maximum growth rate at pH equal to 6. Table 4.2 presents the constants

used for these simulations.

Table 4.2: Constants for pH dependent uptakes of algae.
Algae NH+, NO- C0 2 , HC0- Acetate

a 1.25 1.08 1
K1  1.19 1.07 1.18

KOH- [mol/L] 3.51 x 10-10 9.26x 10-11 2.82 x 10-8
KH+ [mol/L] 3.19 x 10- 7  5.9 x 10- 6  6.66 x 10- 8

Yeast Glucose/Xylose
a 1
K1  0.97
KOH- [mol/L] 2x 10-8
KH+ [mol/L] 1 x 10-4

Finally, an expression was derived for algal starch production and consumption.

In some simulations, starch is the only source of energy for algae at night. It is

assumed that starch production is dependent on light and carbon concentrations and
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that its consumption is dependent on intracellular starch concentration at night:

production 9.5 x 10- 4(_y) + Ystarcph when Io(t) > 300,
Vstarch (

9.5 x 104 (7) ( ) + YtarchP otherwise,

[HCOg] [GO2 ] 3 0
where mi = m 1 ., HC CO2 +H[GO/ )

Kmi[HC03] Km + [CO21

consumption {0 when Io(t) > 300,
Vstarch(47

s. x (1 - Ip) otherwise,S+0.006 \-300i

where vpr'ductiof" and vonumPtion are given in mmol/gDW/h, [HCO-] and [CO 2 ] are

concentrations in mmol/L, p is the growth rate in mmol/gDW/h, Ystarch is the starch

fraction of the biomass growth equation, S is the intracellular starch concentration

in mmol/gDW, and 13Co 2 is the pH factor for CO 2 uptake in algae. The constants

in Equations (4.6) and (4.7) were fine-tuned by running several simulations. Algae

growth rate depends on light intensity, dissolved 02, CO2 , HCO-, acetate, and NH'

concentrations. Yeast growth rate depends on dissolved 02, glucose, and NH' con-

centrations. Both growth rates are determined through FBA.

4.1.6 Solution Equilibrium I

The chemical equilibrium of the system is based on Buhr and Miller [18] with param-

eters obtained from Robinson and Stokes [109] at 20 'C. It is assumed that the ions

present in the system are CO2-, H+, OH-, HCOK, NH+, Na+, and the ions result-

ing from formic, acetic, succinic, and citric acids. Ammonia is assumed to dissolve

completely. Therefore, a system of equations is obtained from the solution equilibria

of ammonia, carbon dioxide, formic, acetic, succinic, and citric acids and water, the

mass balances of ammonia, carbon, acetate, formate, succinate, and citrate, and elec-

troneutrality. From this system of equations, the concentrations of all ionic species

are obtained.
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4.1.7 DFBAlab Hierarchy of Objectives

Since the flux distribution associated with maximal growth is not necessarily unique,

hierarchical optimization is used to determine unique exchange fluxes among the

optimal flux distributions. DFBAlab requires the user to provide a hierarchy of

objectives for efficient integration of the dynamic system [44]. Table 4.3 presents the

objectives used for algae and yeast.

Table 4.3: Hierarchy of objectives
Yeast
Maximize growth
Maximize CO2 production
Maximize glucose consumption
Maximize xylose consumption

5 Maximize 02 consumption

Maximize ammonium consumption
Minimize acetate production

Minimize
Minimize
Minimize

formate production
citrate production
succinate production

for simulation with DFBAlab.
Algae
Maximize autotrophic growth
Maximize lipids production
Maximize starch production
Maximize consumption and
minimize production of CO 2
Maximize ammonium
consumption
Maximize HCO3 consumption
Maximize consumption and
minimize production of 02
Minimize formate production
Minimize ethanol production
Minimize acetate production
Minimize hydrogen production

4.2 Results and Discussion

In this section, some quantities are reported per m2 of illuminated area. This is

a common normalization quantity that allows performance comparison with algal

production processes reported in the literature.

4.2.1 Algae monoculture without CO 2 sparging

First an algae monoculture with no CO 2 sparging is simulated. It is supplemented

with 146 mg/(m2 x day) of ammonia. This amount of nitrogen is enough for the pond

to be carbon-limited. Figure 4-3 presents a schematic of the simulation. The 350,000

L raceway pond is approximated by nine CSTRs of equal volume.
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50,000 L/day -- oe50,000 L/day

38.9 M3 CSTRs H 38.9 M3

350,000 L/h

Figure 4-3: Schematic of the raceway pond model.
The 350 m3 pond is approximated by nine CSTRs. There is a constant feed and

outlet of 50 m 3/day and a recirculation of 350 m3/h.

The results of this simulation show that all sections of the pond have very similar

concentration profiles. This is a consequence of having a recycle rate 168 times greater

than the dilution rate. In fact, a plug flow reactor with a very high recycle rate can be

approximated by a single CSTR. Therefore, we modeled the pond as a single CSTR

and compared the results with the approximation of 9 CSTRs. The predicted outflow

concentration profiles of both approximations are very similar. Therefore, all ponds

in the following case studies are modeled as single CSTRs.

Figure 4-4 shows the predicted concentration profiles in the pond at cyclic steady

state. It can be seen that the predicted biomass productivity is less than 1 g/(m 2 X

day). The cyclic nature of the steady state can be observed in the concentration

profiles of 02 and CO 2 as well as in the pH of the pond. During the day, algae produces

02 and consumes CO 2 which increases the pH due to the depletion of carbonic acid;

the opposite behavior takes place at night. Due to the low predicted productivity of

an algae monoculture without additional CO2 supply, this system is not explored any

further. The next case study is that of an algae monoculture with sparging of flue

gas.

4.2.2 Algae monoculture with CO 2 sparging

A schematic of the cultivation system can be observed in Figure 4-5. With flue gas

sparging (13.6% CO2, 5% 02, and the rest N 2 ), biomass productivity increases greatly

as more CO 2 is supplied into the system. Flue gas was fed into a three pond system
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Figure 4-4: Concentration profiles of an algae monoculture pond with no CO 2 sparg-
ing. Shaded areas represent dark periods. Notice that the results are the same for a
simulation discretizing the length dimension of the pond as 9 CSTRs and one mod-
eling the pond as a single CSTR. A) Predicted biomass and lipids productivity is
approximately 0.78 and 0.09 g/(m2 x day), respectively. B) The photosynthetic ac-
tivity of algae slightly increases 02 and reduces CO 2 concentrations during the day.
The opposite behavior occurs at night. C) A small amount of HC0- is metabolized
by the monoculture. D) Nitrogen sources are consumed faster during growth periods,
causing their concentrations to drop during the day. The pond is not nitrogen-limited.
E) pH increases during the day as the concentration of CO 2 drops and decreases at
night as CO2 is accumulated again. The pH stays between 7 and 9.

for 10 hours during the day at a sparging rate of 40 m3 /h. A total of 1.04 and 0.15

g/(M2 x day) of ammonia and sodium hydroxide, respectively, are fed into the system.

Figure 4-5 shows how these feeds are distributed among the three ponds. With this

feed distribution, the last pond is nitrogen-limited, and lipids production is induced.

Figure 4-6 shows that this cultivation scheme can attain biomass and lipids pro-
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NH 40H = 0.16 kg/d
NH40H = 5.48 kg/d NaOH = 0.2 kg/d NaOH = 0.2 kg/d
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and lipids

D = 50 m 3/day 50 M3 D M3 D 3] D

40 m 3/h, 1 atm 40 m3/h, 1 atm 40 m3/h, 1 atm
CO 2 = 13.6% CO 2 = 13.6% CO 2 = 13.6%

02 =5% 02=5% 02=5%
From 8:00 to 18:00 From 8:00 to 18:00 From 8:00 to 18:00

Figure 4-5: Schematic of the algal biomass cultivation system using three raceway
ponds. Each pond can be modeled as a CSTR with a volume of 350 m. There is
a constant feed and outlet of 50 m3/day for each pond. The last two ponds present
nitrogen limitations inducing lipids production. Sodium hydroxide is fed at a constant
rate all day long, whereas ammonia is fed from 8:00 to 18:00. Flue gas sparging occurs
only from 8:00 to 18:00.

ductivities of 34.4 and 16.2 g/(m 2 x day), respectively, which is in line with the 20-40

g/(M 2 x day) observed in several raceway ponds in the last decade as reported by Fig-

ure 20 in Williams and Laurens [143]. The level of accumulation of biomass is highly

dependent on the feed rate of flue gas, for low feed rates, and the concentration of

CO2 in this gas. The accumulation of biomass is most likely an upper bound on what

can be obtained realistically as the effects of invading species or of toxic components

in low concentrations in the flue gas have not been included.

Figure 4-7 shows how biomass and lipids concentrations increase at each pond.

Due to nitrogen starvation, the last pond accumulates a higher weight fraction of

lipids. In addition, biomass accumulation is slower as the lipid fraction increases, as

reported by Williams and Laurens [143]. The carbon atom balance is presented in

Table 4.4 and in Figure 4-8; most of the carbon in the flue gas is fixed into algal

biomass.

Increasing the flue gas flowrate increases biomass concentration until the culture

becomes light-limited. Considering a theoretical limit in sunlight capture by algae of

10%,[143] an average sunlight energy of 6.3 x 106 kJ/(m 2 x year) [3], and an average

algal biomass calorific value of 24.7 kJ/g [143], the maximum possible yield of algae
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Figure 4-6: Concentration profiles of an algae cultivation system using three raceway

ponds with flue gas sparging. Shaded areas represent dark periods. A) Predicted

biomass and lipids productivities are approximately 34.4 and 16.2 g/(m2 x day), re-

spectively. B) Due to algae's photosynthetic activity, 02 concentration increases

during the day and decreases during the night, whereas CO 2 concentration decreases

during the day and increases during the night. C) HC0- concentration is highly re-

lated to pH. D) The concentration of nitrogen drops as we move from Pond 1 to Pond

3. Pond 3 is effectively nitrogen-limited inducing lipids production. E) The pH of the

system ranges from 6 to 10. For Pond 1, pH is mostly influenced by the concentration

of NH+, whereas for Ponds 2 and 3, it is mostly influenced by the concentration of

CO2 -

would be approximately 70 g/(m2 x day). Table 4.4 shows the results when the feed

rate is increased from 40 to 100, 500, and 2000 m3 /h, respectively. The maximum

biomass productivity predicted by the model is about 52 g/(m2 x day). As the flue

gas feed rate is increased, more carbon is lost to the atmosphere. Therefore, for this to

be a viable carbon capture alternative, sparging rates should not be increased beyond
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Figure 4-7: Biomass and lipids concentrations in an algae cultivation system using
three raceway ponds with flue gas sparging. The numbers on top of the Lipids bars
represent the weight fraction of lipids in algal biomass. As a consequence of nitrogen
limitations in the last two ponds, the model predicts significant lipids accumulation
(up to ~ 47% weight).

Table 4.4: Carbon balance of an algal monoculture with flue gas sparging
Flue gas feed rate (m3 /h) 10 40 100 500 2000
Algal biomass 76.9% 56.5% 32.1% 6.9% 1.7%
Not transferred
from flue gas 16.3% 31.2% 54.0% 83.8% 93.9%
Net loss to atmosphere 6.3% 12.2% 13.8% 9.2% 4.4%
Dissolved inorganic carbon
lost in outlet flow 0.5% 0.2% 0.1% 0.1% ~0%
Formate production ~0% ~0% ~0% ~0%~0%
Biomass g/(m2 x day) 11.7 34.4 48.8 52.1 52.1
Lipids g/(m 2 x day) 5.5 16.2 22.9 25.0 24.9

the point where more than half of the carbon is lost to the atmosphere.

This kind of cultivation system can only be considered in locations able to supply

considerable amounts of flue gas, for example, near power plants. Otherwise, algae

growth is carbon-limited and very low productivities can be predicted as illustrated by

the example in Section 4.2.1. A different strategy to deal with this carbon limitation

86



60 -
I Other losses

so --------- - - -- Algal biomass
40 -Lost to atmosphere

30 -- Algal Productivity

E20 - -@-Lipids productivity

10 .-

0
10 40 100 500 2000

Sparging rate (m3/h)

Figure 4-8: Algal biomass/lipids productivity and carbon balance for different sparg-
ing rates.

is to feed cellulosic glucose and/or xylose into a pond cultivating an oleaginous yeast.

Next, we explore the productivity of an oleaginous yeast monoculture growing on

glucose and we illustrate the advantages of having a yeast/algae coculture.

4.2.3 Oleaginous yeast growing on glucose

Oleaginous yeasts, such as Yarrowia Lipolytica or Rhodotorula Glutinis, can be cul-

tivated as monocultures growing on glucose [115]. However, the maximum concen-

tration of biomass is limited by the mass transfer rate of 02 from the atmosphere.

For an open pond with the same characteristics as the previous examples, DFBAlab

predicts a maximum concentration of yeast of 1.82 g/L. However, significant amounts

of acetate are produced. The presence of acetate indicates a shortage of 02 in the

system. The maximum biomass concentration attained with no production of acetate

is 1.57 g/L. Given the higher efficiency on the utilization of glucose when the yeast is

cultivated with sufficient 02, the inputs the following simulations were tailored such

that no acetate was produced.

As discussed earlier and illustrated in Figure 4-2, the 02 limitation in yeast and

the CO 2 limitation in algae create a great opportunity. If both species are cultivated

together, the yeast can benefit from the 02 produced by the algae and the algae can

benefit from the CO 2 produced by the yeast. As a proof of concept, let us assume
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that both species are cultivated together with a constant source of sunlight of 3.6

moles of photons/(m 2 x h) corresponding to 6.8 x 106 kJ/(m 2 x year) [1441. A total

biomass loading of 2.54 g/L can be attained. A summary of these cases is presented

in Table 4.5. It is clear that the coculture presents advantages in resource utilization

and total biomass productivity with respect to the monocultures. Next, we explore

the behavior of an algal/yeast coculture feeding pure glucose and a mix of glucose

and xylose into a raceway pond.

Table 4.5: Inputs and outputs for yeast
constant light.

monocultures and yeast/algal cocultures with

Casel Case2 Case3
Inputs [g/(m2 x day)]
Glucose 200.6 300.9 195.4
NH3  11.4 17.1 17.4
NaOH 0 34.3 0
Outputs [g/(m 2 x day)]

Yeast 89.6 104.1 87.3
Algae 0 0 57.7
Total biomass 89.6 104.1 145
Acetate 0 73.3 0
Carbon Balance Outputs
Yeast 62.8% 48.6% 59.6%
Algae 0% 0% 35.6%
Acetate 0% 24.8% 0%
CO2 lost to atmosphere 36.7% 26.0% 4.6%
Lost in flow 0.5% 0.6% 0.2%

4.2.4 Algae/yeast coculture with cellulosic glucose feed

Figure 4-9 presents a schematic of the cultivation system. Cellulosic glucose is me-

tabolized by yeast and converted to CO 2 which is then fixed by algae. A total of 94.4,

3.1, and 0.03 g/(m2 x day) of glucose, ammonia, and sodium hydroxide, respectively,

are fed into the system. Figure 4-9 shows how these feeds are distributed among the

three ponds; the last pond is nitrogen-limited, and lipids production is induced.

Figure 4-10 shows that this cultivation scheme can attain yeast, algae, and lipids

productivities of 34.5, 26.2, and 22.6 g/(m 2 x day), respectively. Yeast and algae

accumulate lipids up to approximately 40% and 33% dry weight, respectively. In the
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Figure 4-9: Schematic of the algae/yeast cultivation system using cellulosic glucose
and three raceway ponds. Each pond can be modeled as a CSTR with a volume of
350 m3 . There is a constant feed and outlet of 50 m3 /day for each pond. Sodium
hydroxide is fed at a constant rate all 24 hours a day, whereas glucose and ammonia
are fed only during daytime (12 hours).

coculture case resources are better utilized, making invasion by foreign species more

difficult [70]. Figure 4-11 shows algae, yeast and lipids concentrations in each pond.

Due to nitrogen limitations in the last two ponds, lipids are accumulated. Table 4.6

presents the carbon balance for this case; approximately 84.7% of carbon in glucose

ends in biomass.

Table 4.6: Carbon balance of coculture with pure glucose feed
Carbon Inputs Carbon Outputs
Glucose 100% Yeast biomass 51.4%

Algal biomass 33.3%
Net loss to atmosphere 15.2%
Inorganic carbon lost in flow 0.08%
Glucose lost in flow 0.02%

4.2.5 Algae/yeast coculture with cellulosic glucose and xy-

lose feed and no acetate production

When cellulosic biomass is hydrolized, both glucose and xylose are obtained. Their

ratio is dependent on the source of the lignocellulosic waste. A 2 to 1 glucose to xylose

ratio by weight is typical [51]. A process that can utilize both, glucose and xylose, is

desirable because the sugar mix is cheaper than pure glucose. Some oleaginous yeasts,

for example, Rhodotorula glutinis, are able to metabolize xylose [146]. Therefore, we
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Figure 4-10: Concentration profiles of an algae/yeast cultivation system using three
raceway ponds with cellulosic glucose. Shaded areas represent dark periods. A)
Predicted yeast, algae, and lipids productivities are approximately 34.5, 26.2, and
22.6 g/(m 2 x day), respectively. B) Due to algae's photosynthetic activity, 02 con-
centration increases during the day and decreases during the night, whereas CO2
concentration decreases during the day and increases during the night. C) HC03
and COj3 concentrations remain low. D) The concentration of nitrogen drops as we
move from Pond 1 to Pond 3. Ponds 2 and 3 have nitrogen limitations inducing lipids
production. E) The pH of the system ranges between 5 and 7.

simulated the case where yeast can metabolize both glucose and xylose.

Figure 4-12 presents a schematic of the cultivation system. Cellulosic glucose and

xylose are metabolized by yeast and converted to CO 2 which is then fixed by algae.

A total of 62.9, 31.5, 2.8, and 0.03 g/(m2 x day) of glucose, xylose, ammonia, and

sodium hydroxide, respectively, are fed into the system. Figure 4-12 shows how these

feeds are distributed among the three ponds; the last pond is nitrogen-limited, and
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Figure 4-11: Yeast, algae and lipids concentrations in a cultivation system using
three raceway ponds with cellulosic glucose feed. The numbers on top of the Lipids
bars represent the weight fraction of lipids in total biomass. The last two ponds are
nitrogen-limited; therefore, the model predicts significant lipids accumulation (up to

~ 37.1% weight). Yeast grows slower in the last two ponds due to nitrogen limitations
and lower glucose feed rates.

lipids production is induced.

Pond 1 Pond 2Pnd
Glucose = 45.0 kg/d Glucose = 45.0 kg/d Pond 3

Glucose = 75.1 kg/d Xylose = 22.5 kg/d Xylose = 22.5 kg/d
Xylose = 37.5 kg/d NH40H = 3.5 kg/d NH40H = 3.1 kg/d
NH 40H = 8.6 kg/d NaOH = 0.04 kg/d NaOH = 0.04 kg/d

Biomass
and lipids

D = 50 m 3/day D D D
350 m3 350 m3 30m

Figure 4-12: Schematic of the algal biomass cultivation system using three raceway
ponds and cellulosic glucose and xylose feeds. Each pond can be modeled as a CSTR
with a volume of 350 m3 . There is a constant feed and outlet of 50 m3 /day for each
pond. Sodium hydroxide is fed at a constant rate all 24 hours a day, whereas glucose,
xylose and ammonia are fed only during daytime (12 hours).

Figure 4-13 shows that this cultivation scheme can attain yeast, algae, and lipids
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productivities of 30.2, 27.4 and 22.9 g/(m2 x day), respectively. Yeast and algae

accumulate lipids up to approximately 40% and 39% dry weight, respectively. Figure

4-14 shows algae, yeast and lipids concentrations in each pond. Due to nitrogen

limitations in the last two ponds, lipids are accumulated. Table 4.7 presents the

carbon balance for this case; approximately 80.6% of the carbon in glucose and xylose

ends in biomass.
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Figure 4-13: Concentration profiles of an algae/yeast cultivation system using three
raceway ponds with cellulosic glucose and xylose feeds. Shaded areas represent dark
periods. A) Predicted yeast, algae, and lipids productivities are approximately 30.2,
27.4 and 22.9 g/(m 2 x day), respectively. B) Due to algae's photosynthetic activity,
02 concentration increases during the day and decreases during the night, whereas

CO 2 concentration decreases during the day and increases during the night. C) HC03
and CO2- concentrations remain low. D) The concentration of nitrogen drops as we
move from Pond 1 to Pond 3. Ponds 2 and 3 have severe nitrogen limitations inducing
lipids production. E) The pH of the system ranges between 5 and 7.
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Figure 4-14: Yeast, algae and lipids concentrations in an algae/yeast cultivation sys-
tem using three raceway ponds with cellulosic glucose and xylose feeds. The numbers
on top of the Lipids bars represent the weight fraction of lipids in total biomass. The
last two ponds are nitrogen-limited; therefore, the model predicts significant lipids
accumulation (up to 39.8% weight). Yeast grows slower on the last two ponds due
to nitrogen limitations and lower glucose and xylose feed rates.

Table 4.7: Carbon balance of coculture with glucose/xylose feed.
Carbon Inputs Carbon Outputs
Glucose 66.7% Yeast biomass 45.0%
Xylose 33.3% Algal biomass 35.7%

Net loss to atmosphere 19.2%
Inorganic carbon lost in flow 0.1%
Xylose lost in flow 0.1%
Glucose lost in flow 0.01%

4.2.6 Algae/yeast coculture with cellulosic glucose and xy-

lose feeds with acetate production

In the previous alternative, the feeds of sugars were kept low to avoid acetate pro-

duction. However, if more sugars are fed into the system, a higher productivity of

yeast biomass can be attained and the acetate produced can be metabolized by algae.

Although some efficiency is lost in the carbon balance, a lower biodiesel price can be
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attained as the impact of capital costs is reduced. In this alternative, sugars were

fed all day long with extra sugars being fed during daytime. Figure 4-15 shows the

sugars, caustic soda, and ammonia feed distribution.

Glucose= 105.1kg/d Pond 1 Pond 2 Pond 3
Xylose= 52.5 kg/d Glucose= 63.1 kg/d Glucose = 54.9 kg/d
NH40H = 10.7 kg/d Xylose= 31.5 kg/d Xylose= 27.5 kg/d
NaOH =0.2 kg/d NH40H =3.9 kg/d \ NH 40H =2.2 kg/d

Biomass
and lipids

D =50 m 3/day E D D
35 3 350 m3 350 M3

Figure 4-15: Schematic of the algal biomass cultivation system using three raceway
ponds and cellulosic glucose and xylose feeds with acetate production. Each pond
can be modeled as a CSTR with a volume of 350 M3 . There is a constant feed and
outlet of 50 m3 /day for each pond. Sodium hydroxide is fed at a constant rate all
24 hours a day, whereas glucose, xylose and ammonia are fed at a higher rate during
daytime (12 hours).

Figure 4-16 shows the results of this cultivation method. It can be observed that

higher productivities are attained compared to the alternative suppressing acetate

production. In addition, the pH is still between 5 and 7, the concentrations of oxygen

and carbon dioxide show that photosynthesis is occurring, and the last two ponds

are nitrogen-limited. In this particular cultivation alternative it was noted that the

last pond was not as productive in lipids or biomass accumulation as the first two

ponds. Therefore, a system considering just the first two ponds was considered.

The carbon balance of these two alternatives is presented in Table 3. In particular,

productivities of algae biomass, yeast biomass and lipids go from 26.2, 39.5, and 30

g/(m2 day), respectively with a three pond system, to 27.2, 51.2, and 31.9 g/(m2

day), respectively with a two pond system.

The carbon balance in Table 4.8 shows that about 70-74% of the carbon in the

sugars is fixed as biomass, which is lower than the 80% observed in the previous culti-

vation alternative. This is a result of both algae and yeast growing heterotrophically

at night in addition to algae's heterotrophic growth on acetate. Therefore, more CO 2

is generated.

94



I-Pond 1 -Pond 2 -Pond 3

-- Algae -- Yeast --- Lipids 0.3-Glucose Xyiose
500

,a50.2
40 ----- 0--- --- --- --

30 - 0.1

20 --

-F .75 1 02 --. 02 Zr0.075 - -C -C

0o 0

7 Z'~0.075 -- N NH3

CL 0.05
5--- 6EA0.025-

40 8 12 18 24 00 6 12 18 24
Time [hi Time [hi

Figure 4-16: Concentration profiles of an algae/yeast cultivation system using three

raceway ponds with cellulosic glucose and xylose feeds with acetate production.
Shaded areas represent dark periods. A) Predicted yeast, algae, and lipids produc-
tivities are approximately 39.5, 26.2 and 30 g/(m2 x day) for a three pond system,
respectively. B) Due to algae's photosynthetic activity, 02 concentration increases
during the day and decreases during the night, whereas CO 2 concentration decreases

during the day and increases during the night. C) HCO- and C02- concentrations
remain low. D) The concentration of nitrogen drops as we move from Pond 1 to Pond
3. Ponds 2 and 3 have severe nitrogen limitations inducing lipids production. E) The

pH of the system ranges between 5 and 7.

Table 4.8: Carbon balance of a coculture with glucose/xylose feed and acetate pro-
duction.
Carbon Inputs Carbon Outputs 3 ponds 2 ponds
Glucose 66.7% Yeast biomass 43.5% 50.0%
Xylose 33.3% Algal biomass 26.8% 23.5%

Net loss to atmosphere 29.4% 26.2%
Total carbon lost in flow 0.3% 0.3%

Biomass cultivation systems based on lignocellulosic sugars, as the ones illustrated

in Sections 4.2.4, 4.2.5, and 4.2.6, can be implemented at locations that generate large

amounts of cellulosic waste, such as farms or forests. The area suitable for this scheme

is much larger than the one offered by the scheme requiring flue gas in Section 4.2.2.
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4.2.7 Economic Analysis

We now proceed to do a simple economic analysis based on Table 9 of Williams and

Laurens [143]. First we describe the assumptions for this economic analysis.

Raceway Pond Costs

The capital costs for a raceway pond were estimated from Chisti [24]. A plastic-lined

pond including earth works, carbon dioxide supply piping, inlets, outlets, baffles,

paddlewheel, and motor had a cost of $69,500/hectare in 1987. Using CPI indices,

this translates to roughly $146,000/hectare in 2015 dollars.

Each pond has a paddlewheel running for 24 hours. The power consumed by the

paddlewheel can be calculated using the following equation [24]:

P 1.59Apgu 3f M (4.8)
ed0;33

where P is the power in Watts, A = 850 m2 , p ~ 1000 kg/m3 is the density of the

culture broth, g = 9.81 m/s2 , u = 0.23 m/s is the flow velocity, fm = 0.015 s/m'/ 3

is the Manning channel roughness factor for concrete, e is the paddlewheel efficiency

estimated at about 0.17 [24], and dh = 0.96 m is the hydraulic diameter of the channel.

This gives an estimate of 216.4 W/pond = 5.19 kWh/pondxday.

Flue Gas Compression

Let us assume that flue gas is available for free. An estimated pressure drop of 1

bar/km is predicted [132]. Let us suppose that compression is done adiabatically,

with compression ratio equal to 4, and efficiency of 80% [132]. From McCabe et

al. [91], the following equation can be used to calculate the power requirements of

compression:

Power = 0-37i7, 7 qO [(ut 1 (4.9)
(-Y - 1),q (pn

with power in kW, qo the flowrate in m 3 /s at 0 'C and 1 atm, T = 298K the

inlet temperature and q the efficiency. To obtain 7, the composition of flue gas was
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assumed to be 81.4% N 2 , 13.6% CO2 and 5% 02 [17]. Their heat capacities at 20 'C

are 29.1, 36.9, and 29.3 J/molxK, respectively, resulting in an average -y = 1.386. A

flowrate of 1 m3 /h at 298 K is equivalent to 2.545 x 10-4 m3 /s at 273 K. Multistage

compression is used when the desired compression ratio is higher than 4.

We estimated the capital costs of a centrifugal compressor with maximum capacity

of 30,000 kW using the correlations in Table 7.2 of Towler and Sinnott [129]. We

calculated the compressor capital costs considering a cultivation area of 900 hectares.

We considered that the compressor was made of stainless steel due to the acids present

in the flue gas, and used the factors in Tables 7.4 and 7.5.

Raw Materials

The price of cellulosic glucose is $0.126/kg [5], and that of a mix of glucose and xylose

is $0.07/kg [113]. From Table 4 in Davis, the price of ammonia is $0.407/kg and of

diammonium phosphate (DAP) is $0.442/kg [29]. From ICIS Chemicals, the cost of

NaOH was $0.83/kg [62]. The cost of methanol and natural gas were obtained from

Williams and Laurens [143].

Other Considerations

The density of biodiesel is 0.88 kg/L, and it is assumed that 70% of biolipid produc-

tion is equal to the production of biodiesel [143] due to losses in the esterification

reaction and downstream processing inefficiencies. It is assumed that 0.3 cm/day

corresponding to 30 L/day/hectare of water are lost to evaporation, that all water in

the outlet stream can be recycled, and that the cost of water is $0.05/1000 gallon [29].

Capital and operating costs associated to engineering, harvest, extraction, anaerobic

digestion, and labor were obtained from Williams and Laurens considering a price of

electricity of 10.2 cents/kWh [135]. Only 12% of the site preparation costs reported

in Table 9 of Williams and Laurens were maintained in the analysis presented in this

chapter, as 88% of the site area is devoted to the ponds and the site preparation costs

for the pond are already considered in the pond capital cost estimate [143]. The cap-

ital costs are divided by 10 years of operation [143]. It is assumed that carbohydrates
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and proteins are processed in an anaerobic digester (AD), and their calorific values

(17.3 and 23.9 kJ/g, respectively) are transformed to electricity with an efficiency of

26.25% [143]. A ratio of 3:2 protein to carbohydrates is assumed [143].

In the economic analysis of Williams and Laurens, protein is sold as animal feed

at $0.9/kg. At this price, the income from protein exceeds the one obtained from

biodiesel. If microalgal ponds are used for large-scale production of biodiesel, the

market for animal feed will be flooded and the price of protein as animal feed will

fall. Therefore, in this analysis we assumed that all protein was digested anaerobically.

This allows to recover nitrogen and phosphorus such that 60% of the nutrient inputs

to the process are recycled [24].

An open pond system is prone to contamination and invasion by other species. In

fact, in some cases contamination can cause the desired algae strain concentration to

fall by approximately 90% in a matter of days [106]. Some strategies such as adding

toxic chemicals or increasing salt concentration to kill potential invaders, constant

feeding of the desired algal and yeast strains, and growing algae and yeast in coculture

reduce this risk. To consider contamination and invasion risks, the final biodiesel yield

was divided by two.

First, the economic analysis of the sparging alternative is presented. From Table

4.9 we notice that the monoculture is very competitive when it is very close to a

source of flue gas, but its price increases rapidly with distance. High sparging rates

are desirable because they attain higher concentrations of biomass, making the capital

costs less burdensome. However, as distance from a flue gas source increases, higher

sparging rates incur higher operating costs.

Next we present the results for a coculture growing on pure glucose, one growing

on a mix of glucose and xylose, and a yeast monoculture growing on a mix of glucose

and xylose (Table 4.10). The benefits of using a mix of sugars instead of pure glucose

is evident as the price decreases approximately ~ 30% with respect to pure glucose.

The yeast monoculture performs slightly better than the coculture, although the

difference is probably within the accuracy of our cost estimates. There are several

benefits of using a coculture with respect to a monoculture:
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Table 4.9: Economic analysis for biodiesel production using CO2 sparging.
Sparging rate (m3 /h)
Areal Production

Lipid Content

Lipid Production

Carbohydrate Prod.
Protein Prod.

Electricity AD
Capital Costs

Raceway Pond
Non-pond Site Prep.
Engineering

Harvest

Extraction

Anaerobic Digester
TOTAL CAPITAL COSTS
Power Requirements
Growth

Harvest

Dewatering

Electricity Required

Running Costs
Labor

Electricity

Transesterification

Power (Natural Gas)
Methanol

NaOH
Water

Ammonia

DAP
Anaerobic Digester

Capital Costs A 10%/yr
TOTAL COSTS
Biodiesel Prod. Ideal
Biodiesel Prod. Real
Biodiesel Cost (0 km)
Biodiesel Cost (1 km)
Biodiesel Cost (3 km)
Biodiesel Cost (15 km)
Biodiesel Cost (63 km)

Units

gDW/(m 2 x d)
tonne/(ha x yr)
%DW
tonne/(ha x yr)
tonne/(ha x yr)
tonne/(ha x yr)
MWh/(ha x yr)

$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha

10
11.7
42.7
47.4
20.2
9.0
13.5
34.8

146
5
22
3.6
4.6
5.1
186.2

21.6
38
1.5
26.3

4430
2640

93.2
927
462
145
69.6
586.2
1744
18.6
29.7
16.1
8.0
3.70
4.08
4.36
5.02
5.68

40
34.4
125.6
47.1
59.1
26.6
39.9
103

146
5
22
3.6
4.6
14.9
196.1

21.6
38
1.5
-41.8

4430
-4191

272
2710
462
145
207
1740
5160
19.6
30.5
47.0
23.5
1.30
1.66
1.98
2.66
3.34

100
48.8
178.1
46.9
83.6
37.8
56.7
146.5

146
5
22
3.6
4.6
21.2
202.4

21.6
38
1.5
-85.4

4430
-8557

385
3830
462
145
295
2480
7350
20.2
31.1
66.5
33.2
0.93
1.54
2.09
3.25
4.41

yr)

yr)

1. In a coculture, resources are better utilized making invasion more difficult. A

coculture is more resilient than a monoculture [70].
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2. If CO2 generation is a concern, the coculture releases less CO2 to the atmosphere

than a yeast monoculture as algae metabolizes CO 2. In the monoculture 37 %

of the carbon in the sugars is released as CO 2 compared to 19% in the coculture.

3. The coculture utilizes less raw materials. In mature commodity industries,

raw materials costs represent approximately 70% of the total cost; therefore,

reducing raw materials consumption is important.

Therefore, an algae/yeast coculture could be preferred over a yeast monoculture.

Finally, Table 4.11 compares the systems using sugar mix as a feed with and

with no acetate production. It can be observed that when acetate is produced, lower

biodiesel prices can be attained in the order of $1.31/litre for the three pond alterna-

tive and $1.26/litre for the two pond alternative. Again, half of the yield is assumed

to be lost due to invading species. It is important to notice that the downstream

costs have not been modified to account for a more diluted output from the two pond

alternative compared to the three pond one.

The anaerobic digester produces CO 2. If algae ponds are located immediately

next to the digester, minimal costs are incurred for compressing the flue gas. Then,

the price per liter of biodiesel for a sparging rate of 100 m 3/h is of $0.93/L. A mixed

setup can be conceived where most of the biodiesel is produced from a glucose/xylose

mix and a few ponds produce biodiesel using flue gas from the anaerobic digester.

4.3 Conclusions

DFBA can be used to model accurately complex and novel biological scenarios, for

example, a microbial consortia in an algal pond. Based on this modeling framework,

the potential of producing biodiesel in raceway ponds from algae and oleaginous yeast

was evaluated. Flue gas can be used to produce biodiesel at competitive prices only

if the ponds are located very close to the flue gas source. Meanwhile, algae/yeast

cocultures provide a method of producing biodiesel using cellulosic sugar. Our model

predicts a cost of production of biodiesel of $2.01/L if pure glucose is used and of
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Table 4.10: Economic analysis for biodiesel production with pure glucose and a glu-
cose/xylose mix.

Glucose or Mix
Yeast Production
Algae Production
Lipid Production
Carbohydrate Prod.
Protein Prod.
Electricity AD
Capital Costs
Raceway Pond
Non-pond Site Prep.
Engineering
Harvest
Extraction
Anaerobic Digester
TOTAL CAPITAL COSTS
Power Requirements
Growth
Harvest
Dewatering
Electricity Required
Running Costs
Labor
Electricity
Transesterification
Power (Natural Gas)
Methanol
NaOH
Water
Ammonia
DAP
Sugars
Anaerobic Digester
Capital Costs A 10%/yr
TOTAL COSTS
Biodiesel Prod. Ideal
Biodiesel Prod. Real
Biodiesel Cost

Units

gDW/(m 2 x d)
gDW/(m 2 x d)
tonne/(ha x yr)
tonne/(ha x yr)
tonne/(ha x yr)
MWh/(ha x yr)

Cocul.
Gluc.
34.5
26.2
82.5
55.6
83.4
216

146
5
22
3.6
4.6
31.2
212.4

21.6
38
1.5
-154.4

4430
-15400

380
3780
90.9
145
1300
2360
43400
4320
21.2
65.8
65.6
32.8
2.01

Cocul.
Mix
30.2
27.3
83.6
50.5
75.8
196

146
5
22
3.6
4.6
28.4
209.6

21.6
38
1.5
-134.6

4430
-13500

385
3830
90.9
145
1150
2190
24100
3930
21.0
47.6
66.5
33.2
1.44

593
5900
0
145
2780
1690
50400
5870
22.4
70.8
102.4
51.2
1.39

$/(ha >
$/(ha >
$/(ha >
$/(ha >
$/(ha >
$/(ha >
$/(ha >
$/(ha >
$1000 /
$1000 /
kL/(ha
kL/(ha
$/L

Yeast
Mix
86.9
0
128.7
75.5
113.2
292

146
5
22
3.6
4.6
42.4
223.6

21.6
38
1.5
-231.3

yr)
yr)

yr)

yr)

x yr)
x yr)

yr)

x yr)
x yr)
x yr)
x yr)

x yr)
yr)

x yr)
(ha x
(ha x
x yr)
x yr)

yr)

yr)

$1.44/L if a mix of glucose and xylose is used instead when no acetate is produced.

If we are willing to pay higher operating costs and have a higher carbon loss to the

atmosphere by allowing acetate to be produced, the price can be reduced even further
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Table 4.11: Economic analysis comparison between coculture systems for biodiesel
production using a glucose/xylose mix. NAP: no acetate production, AP2: acetate
production for a 2 pond system, AP3: acetate production for a 3 pond system.

NAP AP3 AP2 Units
Yeast Production 110.5 186.9 144.2 tonne/(ha x yr)
Algae Production 99.2 99.4 95.6 tonne/(ha x yr)
Lipid Production 83.6 116.6 109.5 tonne/(ha x yr)
Electricity AD 196 263 202 MWh/(ha x yr)
Capital Costs
Raceway Pond 181.1 181.1 181.1 $1000/ha
Anaerobic Digester 28.4 38.2 29.3 $1000/ha
Operating Costs
Electricity -13,500 -20,200 -14,100 $/(ha x yr)
Power (Natural Gas) 385 537 505 $/(ha x yr)
Labor 4,430 4,430 4,430 $/(ha x yr)
Raw Materials 31,500 46,900 41,200 $/(ha x yr)
Anaerobic Digester 3,930 5,280 4,050 $/(ha x yr)
Operating Costs
Capital Costs A 10%/yr 21.0 21.9 21.0 $1000 /(ha x yr)
TOTAL COSTS 47.6 58.8 57.1 $1000 /(ha x yr)
Biodiesel Prod. Real 33.2 46.3 43.6 kL/(ha x yr)
Biodiesel Cost 1.44 1.27 1.31 $/L

to $ 1.26/L of biodiesel when a mix

The results of this work suggest

tion should be considered seriously.

of glucose/xylose is fed into the system.

that algae/yeast cocultures for biodiesel produc-

This alternative employs cellulosic sugars which

are currently very cheap. In this analysis we considered that lipid-extracted biomass

was utilized to produce electricity. Another option would be to treat it and make it

digestible by the consortia, potentially reducing the operating costs of the consortia

alternative. In addition, the results in this work are not systematically optimized.

The optimization of this system requires the computation of generalized derivatives

for non-smooth objective functions. The work in Khan et al. [72], H6ffner et al. [60],

and [47] enables the numerical optimization of these systems as described in Chap-

ters 6,7, and 8 of this thesis. However, despite the lack of systematic optimization

in this example, the results of the algae/yeast coculture growing on cellulosic sugars

presented in this chapter are promising. We suggest experimental groups implement

the proposed microbial consortia strategy to increase culture resilience and expand

the range of substrates that can be converted into biofuels.
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Chapter 5

Multispecies Raceway Pond

Modeling

The work in this chapter is based on the work published in [45] and in the conference

proceedings [8] and builds upon the model presented in Chapter 4. Microbial con-

sortia provide numerous benefits such as culture resilience, better resource utilization

and symbiosis. In this chapter, more species are considered as part of a consortia

involving oleaginous microalgae, yeasts and bacteria, as a way of using both sun-

light and lignocellulosic waste to grow biomass. The resulting dynamic flux balance

analysis (DFBA) [137, 87 models were implemented in DFBAlab [44].

5.1 Materials and methods

The model described in this chapter builds upon the one presented in Chapter 4,

which is based on the high-rate algal-bacterial pond (HRAP) model [18, 144] and

DFBA.

5.1.1 Metabolic Network Reconstructions

This work considers four different microorganisms: bacterium E. coli, microalga C.

reinhardtii, and yeasts S. cerevisiae and R. glutinis. The following GENREs were
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used:

1. iJR904 [107]: This model for E. coli considers 2 compartments, 1075 reactions,

and 761 metabolites.

2. iND750 [31]: This model for S. cerevisiae is divided into eight compartments and

considers 1266 reactions and 1061 metabolites. This model correctly predicts

ethanol production under anaerobic conditions. However, S. cerevisiae is not

oleaginous. In this chapter we modified the iND750 model such that it cannot

produce ethanol, it can consume xylose, and it can accumulate triglycerides,

approximating the behavior of oleaginous yeast R. glutinis [1461.

3. iRC1080 [19]: This model for C. reinhardtii is divided into ten compartments

and considers 2191 reactions and 1706 metabolites out of which 125 were clas-

sified as lipids. For each one of these lipids, a storage reaction was added to the

model. The model predictions have been validated experimentally for nitrogen-

limited and light-limited growth.

For all lipids storages, a production energy requirement of two times the energy

required for normal biomass synthesis on a per weight basis was imposed.

Figure 5-1 illustrates the possibilities for symbiosis and competition amongst the

different microorganisms in the consortium.

5.1.2 The Raceway Pond Model

For more details refer to Section 4.1.3. This chapter considers series of two or three

raceway ponds open to the atmosphere of the same size and operating parameters as

in Chapter 4. In addition, the same average surface light intensity of 18.81 MJ/(m 2 x

day) is considered and is modeled according to Equations (4.1), (4.2) and (4.3).

In the same way as in Chapter 4, Michaelis-Menten expressions were used as upper

bounds on the exchange fluxes:

Vs Kn + S I + I11K, (51
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NH3,K+, Na+,
P04 3-, others

E. c

Xylose

- Acetate
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Glucose

Succinate,
Formate

S. cerg

02 C02

C. reinhardtii

Starch

Ethanol

visiae

N03

Lipids

Light

Figure 5-1: Schematic of the interactions amongst E. coli, C. reinhardtii, S. cerevisiae,
and R. glutinis. The black rectangles refer to microorganisms and their internal stor-

ages. Black arrows refer to biomass, lipids, and starch fluxes. Blue arrows refer to

metabolic products, whereas red arrows refer to uptakes from extracellular substrates

and nutrients. Green rectangles refer to substrates and products that are just spe-

cific to a subset of microorganisms. The rectangles referring to 02 and nutrients are

marked as red as all microorganisms consume these species, whereas CO 2 is marked

as blue as all microorganisms have it as a metabolic product. It is evident from

this schematic that there are significant interactions among the different microorgan-

isms in the consortium. A framework such as DFBA can explore and model these

relationships and how they change with extracellular conditions.

where S is the substrate concentration, I is the inhibitor concentration, / is a pH

factor and vmax, Km and K1 are constants. The pH factor is important because algae

prefer slightly basic pH whereas yeasts prefer acidic pH. The shape of the pH factors

are given by Equation (4.5) and are illustrated in Figure 5-2 for the different species.

Starch accumulation by algae follows Equations (4.6) and (4.7).

The values of the constants for Equation (5.1) are taken from the literature and

presented in Tables 5.1 and 5.2. The uptake of acetate in algae was modeled according

to Zhang using the expression for growth on ammonium chloride [147], but since this
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expression is slightly different from Eq. (4.4), the values of its constants are not

reported in Table 5.1. Table 5.2 presents the constants used in Equation (4.5) for

Table 5.1: Summary

Vmax

gDWxhi

of uptake
Km

[mM]

kinetic parameters
K1

[mM]

for all microorganisms
Reference
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E. co

Glucose 10.5 0.0027 EtOH: 435 Table I in [51]
Xylose 6 0.0165 EtOH: 435 Table I in [51]
02 15 0.024 None Table I in [51]
Acetate 3 0.0165 EtOH: 435 Assume 1/2 of xylose rate
Succinate 1 0.0165 EtOH: 435 Assume 1/6 of xylose rate
NH+ 10 0.1 None Table I from [76], only Km
C. reinhardtii

CO2  1.25 0.03 None Fig. 2 in [131]
02 2.065 0.008 None Table I in [144]
HCO3 1.82 0.27 None Fig. 2 in [131]
NHX 0.65 3.84x10- 4  None Fig. 1 and 2 in [57]
Acetate N.A N.A None Eq. (13) in [147]
S. cerevisiae
Glucose 22.4 4.44 EtOH: 217 Table I in [51]
02 2.5 0.003 None Table I in [51]
NH+ 25.5 35.4 x 10- 3  None Table I in [68]
R. glutinis
Glucose 3.53 0.47 EtOH: 217 Tables 1 and 2 in [65]

Xylose: 23.3
Xylose 4.28 0.77 EtOH: 217 Tables 1 and 2 in [65]

Glucose: 0.02
02 2.5 0.003 None Table 1 in [51]
NH+ 25.5 35.4 x 10- 3  None Table I in [68]

Notes: Ammonium uptake for yeasts was approximated with that of fungus
Lactarius rufus. The weight fraction of chlorophyll (22.8 mg/gDW) in
algae was obtained from the biomass equation in the iRC1080 model.

The Vma. for E. coli uptake of NH+ is an assumed value.

these simulations.

The open ponds are in direct contact with the atmosphere, therefore a simple

model based on film theory is used to estimate the mass transfer across the interface

between air and water with parameters from Buhr and Miller [18] and Yang [144]. The

equilibrium concentrations for both 02 and CO 2 in water are calculated using Henry's

law. The dissolved gas concentrations are limited by their saturation concentration

at ambient conditions.



Table 5.2: Constants for pH dependent uptakes for different microorganisms
Species Substrate a K1  KH KOH Note

[M] [M] [M] [M]
E. coli All substrates 1 1 10- 3  10- 4  (1)
C. reinhardtii CO2 /HCO3 1.08 1.07 5.9x10- 6  1.08 x10- 4  (2)
C. reinhardtii Acetate 1 1.1835 6.67 x10 6  3.54 x10- 7  (3)
Yeasts Glucose 1 1 (03  i0~(4)
R. glutinis Xylose 1 1 10-3.2 10- 7  (5)
Notes: (1) Fitted for pH range 3 - 11 from [32]. (2) Fitted from data in Fig. 3 in [79]. (3)
Parameters from Eq. (13) in [147]. (4) Fitted from data in Table 2 in [65]. (5) Fitted from
data in Table 2 in [65].

for different organisms and substrates

0.8

0.6 -

0.4 -*

00.2 -

0 - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14
pH

-S. cerevisiae -R. glutinis Glucose -R. glutinis Xylose
-E. Coli -C. reinhardtii C02 -C. reinhardtii Acetate

Figure 5-2: This plot shows the pH factor 3 for the different microorganisms in the
consortia. For C. reinhardtii and R. glutinis, $ has a different form for the different
substrates. Notice that yeasts prefer acidic pH whereas the curves for C. reinhardtii
are centered at around pH=8. E. coli has the widest range of pH suitable for growth.

The chemical equilibrium of the system is based on Buhr and Miller [18] with

parameters obtained from Robinson and Stokes [109] at 20 'C. It is assumed that

the ions present in the system are CO2-, H+, OH-, HCO-, NH+, Na+, H2PO-,

HPO2-, PO- and the ions resulting from formic, acetic, and succinic acids. Ammonia

and diammonium phosphate (DAP) are assumed to dissolve completely. Therefore,

a system of equations is obtained from the solution equilibria of ammonia, carbon

dioxide, formic, acetic, succinic, and phosphoric acids and water, the mass balances of

ammonia, carbon, acetate, formate, succinate, and phosphate, and electroneutrality.

From this system of equations, the concentrations of all ionic species are obtained.
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5.1.3 Dynamic Flux Balance Analysis

As in Chapter 4, the raceway pond model and the GENREs are combined in a DFBA

model which was implemented in DFBAlab [44]. The implementation of this process

model in DFBAlab requires a hierarchy of objectives for each microorganism. The

hierarchies of objectives used in this work are presented in Table 5.3. Notice that

DFBAlab automatically enforces the first objective which is to minimize the penalty.

Table 5.3: Hierarchy of object
E. coli
Maximize growth
Max/min ethanol production
Minimize glucose consumption
Minimize xylose consumption
Maximize CO2 production
Minimize 02 consumption
Minimize NH+ consumption

Minimize N03 consumption

Minimize PO3- consumption
Minimize consumption and maximize
production of acetate
Maximize formate production
Minimize K+ consumption
Minimize Na+ consumption
Minimize consumption and maximize
production of succinate
S. cerevisiae
Maximize growth
Maximize ethanol production
Maximize CO 2 production
Maximize glucose consumption
Maximize 02 consumption
Minimize NH+ consumption
Minimize acetate production

Minimize formate production
Maximize Po consumption
Maximize K+ consumption
Minimize Na+ consumption
Minimize succinate production

ives used in DFBAlab.
C. reinhardtii
Maximize autotrophic growth
Maximize lipids production
Maximize starch production
Maximize NH+ consumption
Maximize HC04 consumption

Maximize NC0 consumption
Maximize consumption and
minimize production of 02
Minimize formate production
Minimize ethanol production
Minimize acetate production

Minimize H2 production
Maximize HPO4 consumption
Minimize Na+ consumption
Minimize succinate production

R. glutinis
Maximize growth
Maximize lipids production
Maximize CO2 production

Maximize glucose consumption

Maximize xylose consumption

Maximize 02 consumption

Maximize NH+ consumption
Minimize acetate production

Minimize formate production

Minimize P03- consumption

Maximize K+ consumption

Maximize Na+ consumption

Minimize succinate production

Growth rates and exchange fluxes rates are obtained from FBA. When the FBA
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model becomes infeasible, the associated microorganism is unable to fulfill the require-

ments associated with maintenance. Therefore, it enters a death cycle. DFBAlab

provides a penalty function whose value is associated with how far from feasibility

the FBA model is; therefore, the higher the value of the penalty, the farther away

the model is from feasibility and the faster its death rate will be. As a first approxi-

mation, we use this penalty as a death rate for E. coli, given that its associated FBA

model becomes infeasible at some time intervals.

5.1.4 Economic Analysis

A simple economic analysis is performed based on Table 9 of Williams and Laurens

[143] and is described in Section 4.2.7. Here we assume that only 40% of the nutrient

inputs to the process are recovered as opposed to 60% in Chapter 4. Similar to

Chapter 4, the final productivity is divided by two to account for the invasion of

undesirable microorganisms.

5.1.5 Key differences from work in [45] and Chapter 4

1. Heterotrophic organisms are allowed to become oxygen limited. In this way,

C. reinhardtii and E. coli can use some of the fermentation products such as

acetate (acetate is not produced in the work in [45]);

2. The penalty function is used as a death rate;

3. The lipids accumulation in R. glutinis is now a variable determined by the FBA

problem and not a fixed fraction of biomass growth;

4. Phosphate balances have been added into the system;

5. More microorganisms have been included in the simulation. In particular, some

simulations contain four different species at the start of the simulation.

In Section 5.2 we explore slightly different communities and their respective produc-

tivities.
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5.2 Results

First a simulation considering all four species was carried out. From this simulation,

it was noticed that for most setups, only one heterotrophic species can occupy the

heterotroph niche, which is consistent with [70]. In particular, E. coli was the most

dominant heterotroph, followed by R. glutinis and S. cerevisiae, respectively. A

summary of the feeds of the three pond system in Figure 5-3 are presented in Table

5.4.

Glucose, Xylose, Glucose, Xylose, Glucose, Xylose,
NaOH, DAP, H 3PO4, NaOH, DAP, H3PO4, NaOH, DAP, H 3PO4 ,NH40H NH40H NH4H

Biomass
and lipids

D =50 m 3/day m 3  D 350 m 3  D 350 m3

Pond 1 Pond 2 Pond 3

Figure 5-3: Three pond system for microbial cultivation: the first pond is meant to
accumulate biomass whereas the last two ponds are meant for lipids accumulation.

5.2.1 Case 1: C. reinhardtii and E. coli coculture

In this case, it was assumed that E. coli maximizes ethanol production after biomass

maximization (see Table 5.3). E. coli concentration is limited by the high ethanol

concentration, which inhibits the uptake of sugars. From the carbon balance in Table

5.5 and Figure 5-10, it can be seen that most carbon in the process is converted

into ethanol. In this case, no other heterotroph can survive in this environment.

Under these conditions, a production cost of approximately $3.54/L of biodiesel is

predicted. Figure 5-4 shows the concentrations of products, substrates, and nutrients

in the three-pond system.
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Table 5.4: Feeds for the different pond distributions
Pond 1 Pond 2 Pond 3

Day Night Day Night Day Night
C. reinhardti/E. coli coculture

Glucose (kg/h) 4.07 2.81 4.07 2.81 4.07 2.81
Xylose (kg/h) 2.03 1.41 2.03 1.41 2.03 1.41
DAP (g/h) 289 289 0 0 0 0
NaOH (g/h) 5 5 13.3 13.3 13.3 13.3
NH 4 0H (g/h) 540.2 248.2 0 0 0 0
H3PO 4 (g/h) 0 0 61.3 61.3 61.3 61.3

C. reinhardti/E. coli/R.glutinis community
Glucose (kg/h) 4.07 2.81 4.07 2.81 4.07 2.81
Xylose (kg/h) 2.03 1.41 2.03 1.41 2.03 1.41
DAP (g/h) 289 289 0 0 0 0
NaOH (g/h) 5 5 9.2 9.2 9.2 9.2
NH4 0H (g/h) 540.2 248.2 0 0 0 0
H3PO 4 (g/h) 0 0 44.9 44.9 44.9 44.9

C. reinhardti/R.glutinis coculture
Glucose (kg/h) 4.07 2.81 4.07 2.81 4.07 2.81
Xylose (kg/h) 2.03 1.41 2.03 1.41 2.03 1.41
DAP (g/h) 179 179 0 0 0 0
NaOH (g/h) 24.2 24.2 5.0 5.0 0 0
NH 4 0H (g/h) 672 380 0 0 0 0
H3 PO4 (g/h) 0 0 30.1 30.1 20.4 20.4

C. reinhardti/S. cerevisiae coculture
Glucose (kg/h) 4.07 2.81 4.07 2.81 4.07 2.81
Xylose (kg/h) 2.03 1.41 2.03 1.41 2.03 1.41
DAP (g/h) 151 151 96.3 96.3 0 0
NaOH (g/h) 5.0 5.0 33.3 33.3 95.8 95.8
NH 4 0H (g/h) 504 212 314 131 0 0
H3PO 4 (g/h) 0 0 0 0 40.8 40.8

5.2.2 Case 2: C. reinhardtii, E. coli, and R. glutinis culti-

vation.

If instead of maximizing ethanol production, E. coli minimizes ethanol production

after biomass maximization (see Table 5.3), R. glutinis is able to survive in this

environment. From the carbon balance in Table 5.5, most carbon is lost to the atmo-

sphere, and from Figure 5-10 it can be seen that a higher lipids yield can be attained

with respect to Case 1. Under these conditions, a production cost of approximately

$3.00/L of biodiesel is predicted. Figure 5-5 shows the concentrations of products,
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Figure 5-4: Concentrations of substrates, nutrients, and products in the three-pond
system for Case 1. The dark areas of the plot represent nighttime. C. reinhardtii
attains a higher biomass concentration than E. coli. The concentration of E. coli
considers both live and dead cells. Due to the presence of E. coli, significant amounts
of ethanol are produced. This setup uses substrates and nutrients efficiently; it can be
seen that the last two ponds lack nitrogen, which is necessary for lipids production.
The concentrations of oxygen and carbon dioxide change due to the photosynthetic
activity of algae. Very little acetate, formate, and succinate are produced. The pH
of the system stays between 5.5 and 9.

substrates, and nutrients in the three-pond system.

Notice that in this case, the model predicts that R. glutinis is able to accumulate

up to 96 % lipids. This lipids fraction is unreal and underscores the need of a more

detailed model that is able to take into account an upper limit for lipids accumulation.

5.2.3 Case 3: C. reinhardtii and R. glutinis coculture

If the cultivation system is kept free from E. coli, the most stable heterotroph is

R. glutinis. This is the most desirable condition for biodiesel production. From

the carbon balance in Table 5.5, 71.6% of carbon is converted into biomass. From

Figure 5-10, a good lipids yield can be attained. Not surprisingly, from an economics

standpoint this case results in the lowest production cost of approximately $ 1.41/L
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Figure 5-5: Concentrations of substrates, nutrients, and products in the three-pond

system for Case 2. The dark areas of the plot represent nighttime. In this system E.
ccli, C. reinhardtii, and R. glutinis are all present. Significant amounts of ethanol are
produced, although less than in Case 1. This setup does not use xylose efficiently;
it can be seen that the last two ponds lack nitrogen, which is necessary for lipids
production. The concentrations of oxygen and carbon dioxide change due to the pho-
tosynthetic activity of algae. Very little acetate, formate, and succinate are produced.
The pH of the system stays between 5 and 9.

of biodiesel. This is the desired operating state for a cultivation system dedicated for

biodiesel production. Figure 5-6 shows the concentrations of products, substrates,

and nutrients in the three-pond system.

Case 1 and 2 are of interest because if the cultivation system were invaded by E.

ccli, we could expect the system to change towards Case 1 or 2. It can be seen that

the addition of E. ccli into the system can double the price of biodiesel. In particular,

if a small concentration of 1 mg/L of E. ccli appears in the first pond, Figure 5-7

shows the evolution of the pond concentrations if the inputs are not modified and

Figure 5-8 shows how concentrations change if DAP and phosphoric acid inputs are

modified to try to control the rise of pH. Modifying these inputs seem to have a very

small effect in the system. It can be expected that the system will eventually migrate

towards Cases 1 or 2. If a pH control system were used, the increase of E. ccli and
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Figure 5-6: Concentrations of substrates, nutrients, and products in the three-pond
system for Case 3. The dark areas of the plot represent nighttime. R. glutinis attains
a higher biomass concentration than C. reinhardtii. Since R. glutinis is unable to
produce ethanol, no ethanol is present in the system. This setup uses substrates and
nutrients efficiently; it can be seen that the last two ponds lack nitrogen, which is
necessary for lipids production. The concentrations of oxygen and carbon dioxide
change due to the photosynthetic activity of algae. Some acetate is produced in the
first pond, but it is consumed in the latter ponds. The pH of the system stays between
5 and 9.

ethanol concentrations could possibly be slowed down.

5.2.4 Case 4: C. reinhardtii and S. cerevisiae coculture

This case is not desired because of its low lipids productivity, nor expected because

S. cerevisiae is less resilient than E. coli and R. glutinis. This results in a production

cost of approximately $ 5.74/L of biodiesel. Figure 5-9 shows the concentrations of

products, substrates, and nutrients in the three-pond system.

A summary of the carbon balances is presented in Table 5.5. The carbon balances

show that Case 3 is the most efficient in carbon utilization. A summary of the lipids

fractions for all microorganisms in all ponds is presented in Table 5.6. It can be

observed how nitrogen starvation promotes lipids accumulation up to 96% in the case
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Figure 5-7: Evolution of concentrations after the appearance of 1 mg/L of E. coli in

the first pond. A simulated time of slightly more than six days was used; the sim-
ulation was stopped when the system became a high-index DAE. The concentration
of E. coli increases whereas the concentration of R. glutinis falls rapidly in the first

pond. As the composition of the community changes, the concentration of nitrogen
in the form of ammonia increases rapidly in the first pond causing an increase in pH.
E. coli metabolizes the acetate in the first pond. Due to the presence of E. coli, some

ethanol starts to appear in the system.

of R. glutinis and 49% in the case of C. reinhardtii. A summary of the costs for all

four cases is presented in Table 5.7.

Table 5.5: Carbon balances for the different cases
Case 1 Case 2 Case 3 Case 4

Biomass 27.1 % 31.5 % 71.6 % 36.8 %
E. coli 9.1 % 9.0% 0 0
C. reinhardtii 18.0 % 14.7 % 11.2 % 14.7 %
S. cerevisiae 0 0 0 22.1 %
R. glutinis 0 7.8 % 60.4 % 0
Ethanol 41.9 % 24.9 % 0 0
Lost to atmosphere 30.9 % 35.3 % 28.2 % 28.9 %
Unconsumed substrates 0.01 % 8.2% 0.06 % 33.4 %
Other losses 0.13 % 0.15 % 0.11 % 1.0 %
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Figure 5-8: Evolution of concentrations after appearance of 1 mg/L of E. coli in the
first pond with modified DAP and phosphoric acid inputs to control pH. Modifying
these inputs seem to do little to change the rapid increase of pH, the increase of E.
coli and ethanol in the system, and the rapid decrease of R. glutinis.

Table 5.6: Lipids fraction of
Vcases~

biomass for each microorganism at each pond for all

Pond 1 Pond 2 Pond 3
Case 1
E. coli 11.88 % 11.88 % 11.88%
C. reinhardtii 11.88 % 32.24 % 49.22 %
Total lipids fraction 11.88 % 23.45 % 35.78 %
Case 2
E. coli 11.88 % 11.88 % 11.88%
C. reinhardtii 11.88 % 27.00 % 43.22 %
R. glutinis NA % 91.73 % 95.96 %
Total lipids fraction 11.88 % 27.48 % 42.21 %
Case 3
C. reinhardtii 11.80 % 34.25 % 48.43 %
R. glutinis 1.96 % 39.67 % 56.56 %
Total lipids fraction 4.09% 38.61% 55.07 %
Case 4
C. reinhardtii 11.79 % 16.30 % 53.27 %
S. cerevisiae 1.96 % 1.96 % 1.96 %
Total lipids fraction 3.73% 5.34% 20.35 %
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Figure 5-9: Concentrations of substrates, nutrients, and products in the three-pond
system for Case 4. The dark areas of the plot represent nighttime. S. cerevisiae
attains a higher biomass concentration than C. reinhardtii. Surprisingly, no ethanol
is present in the system. This setup is unable to metabolize xylose, which accumulates
in the system. The concentrations of oxygen and carbon dioxide change due to the
photosynthetic activity of algae. Some acetate and succinate are accumulated in the
last pond. The pH of the system stays between 5 and 9.

5.3 Conclusions

More ambitious environmental policies require better production processes for alter-

native forms of energy. Alternative liquid fuels are critical for the transportation

sector as they have the high energy densities required for long distance travel. In this

context, the efficient production of biodiesel from waste biomass or atmospheric CO 2

is critical.

Microbial consortia provide a way to transform both, lignocellulosic waste and

atmospheric C0 2 , into biodiesel. In this chapter, C. reinhardtii and R. glutinis are

shown to work together to increase culture resilience, metabolize lignocellulosic sugars

and capture CO 2 generated through respiration. This chapter also explores other

heterotrophs such as E. coli and S. cerevisiae. In particular, it also shows that in

most situations, only one heterotroph can occupy the heterotroph niche.
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Figure 5-10: Concentration of biomass, ethanol, and lipids in each pond for each case.
The case number is indicated at the top left corner of each plot.

The simulation framework utilized in this chapter enables the exploration of dif-

ferent process alternatives and setups. The simulations in this chapter predict that

C. reinhardtii and R. glutinis cocultures can attain biodiesel prices of approximately

$1.41 / L, but this price could increase to up to $ 3.54 if E. coli invades the cultivation

system.

The results in this chapter are not optimized. With the availability of bioprocess

models that are able to capture complex phenomena in raceway ponds, rigorous op-

timization will become possible in the near future. Sensitivities of DFBA systems,

which are nondifferentiable, are challenging to compute. The work in Chapters 6, 7,

and 8 enable the optimization of DFBA models. With optimization, parameter esti-

mation and optimal design of raceway ponds for biofuels production will be possible.

118

Lipids



Table 5.7: Economic analysis for biodiesel production.
Case 1 Case 2 Case 3 Case 4

E. Coli Production
C. reinhardtii Production
S. cerevisiae Production
R. glutinis Production
Lipids Production
Ethanol Production
Electricity AD
Capital Costs
Raceway Pond
Non-pond Site Prep.
Engineering
Harvest
Extraction
Anaerobic Digester
TOTAL CAPITAL COSTS
Power Requirements
Growth
Harvest
Dewatering
Electricity Required
Running Costs
Labor
Electricity
Transesterification
Power (Natural Gas)
Methanol
NaOH
Water
Ammonia
DAP
Sugars
Anaerobic Digester
Capital Costs Ld 10%/yr
TOTAL COSTS
Ethanol Profit
Biodiesel Prod. Ideal
Biodiesel Prod. Adjusted
Biodiesel Cost

11.2
20.0
0
0
40.8
166.2
113.4

146
5
22
3.6
4.6
16.5
197.6

7.8
38
1.5
-66.1

11.1
17.6
0
5.91
53.2
98.1
113.0

146
5
22
3.6
4.6
16.4
197.5

7.8
38
1.5
-65.7

0
12.4
0
54.9
135.2
0
171

146
5
22
3.6
4.6
24.8
206.0

7.8
38
1.5
-123.7

0
15.6
27.9
0
32.3
0
196.1

146
5
22
3.6
4.6
28.5
209.6

7.8
38
1.5
-148.8

gDW/(m2 x d)
gDW/(m 2 x d)
gDW/(m 2 x d)
gDW/(m 2 x d)
tonne/(ha x yr)
tonne/(ha x yr)
MWh/(ha x yr)

$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha
$1000/ha

MWh/(ha
MWh/(ha
MWh/(ha
MWh/(ha

4430 4430 4430 4430 $/(ha
-4440 -4410 -8320 -10000 $/(ha

188
1870
877
145
1300
2560
36200
5690
19.8
73.1
16.6
32.4
16.2
3.48

245
2440
739
145
1560
2560
36200
5660
19.8
72.4
9.81
42.3
21.2
2.96

623
6200
808
145
2080
2560
36200
8570
20.6
74.6
0
107.6
53.8

149
1480
3740
145
2300
2190
36200
9830
21.0
72.8
0
25.7
12.9

x
x
x
x

yr)

yr)

yr)

yr)

x yr)
x yr)

$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$/(ha x yr)
$1000 /(ha x
$1000 /(ha x
$1000 /(ha x
kL/(ha x yr)
kL/(ha x yr)

yr)

yr)

yr)

1.39 5.67 $/L
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Chapter 6

Sensitivities of Lexicographic

Linear Programs

As explained in Chapter 3, a dynamic flux balance analysis (DFBA) model can be

expressed as an ordinary differential equation (ODE) or differential-algebraic equa-

tion (DAE) system with lexicographic linear programs (LLP) embedded [56, 59]. In

addition, LLPs are relevant in the context of goal-programming problems [63]. These

types of models can also be embedded in optimization problems, equation-solving

problems, or dynamic systems; therefore, the sensitivity analysis of LLPs is of inter-

est. The computation of sensitivities for LLPs is challenging, as they are nonsmooth

functions of their right-hand side. The work in this chapter shows how to compute

sensitivities for LLPs and it is based on [47].

A LLP is a hierarchical fixed-priority linear program (LP). Equations (6.1) and

(6.2) present a LLP parameterized by its right-hand side:

ho(z) = min cT v
vERnv 0

s.t. Av z, (6.1)

v > 0,
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and for 1 < i < nh

hi(z) min cTv,
veRn-

A z

T ho(z)
s.t. C = (6.2)

V ;> 0.

A more compact way of writing LPs (6.1) and (6.2) is:

h(z) = lex min CTv, (6.3)
vER-v

s.t. Av = z,

v > 0,

LLPs can be applied in biochemical processes, economics, among many other top-

ics. For example, DFBA can be used to model the dynamics of bioreactors. The

optimization of DFBA systems will enable the optimal design of industrial biopro-

cesses employing microbial communities [60]. Another example comes from bilevel

optimization, which is used to model Stackelberg games [138, 34], a popular model for

markets in economics. When the lower-level optimization problem is a LP, this LP

can be expressed as its equivalent KKT conditions to reformulate the bilevel problem

as a single-level problem with equilibrium constraints. This reformulation results in

bilinear terms which are difficult to handle by optimization algorithms due to violation

of constraint qualifications and nonconvexity. In addition, sensitivity results for non-

linear programs typically require constraint qualifications that would be violated by

equilibrium constraints. If all communication between the lower-level LP and upper-

level optimization problem can be expressed as a sequence of hierarchical objective

functions, a LLP is obtained. The optimal values function of a LLP is inherently

more regular than the solution set of a LP as a function of its right-hand side [56].
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Generalized derivative information would greatly increase the variety and efficiency

of numerical methods that can be applied to problems with LLPs embedded.

In this chapter, we develop the mathematical theory required to compute elements

of the B-subdifferential (limiting Jacobian) of LLPs as functions of their right-hand

sides. The main tools employed here are Nesterov's lexicographic derivatives [96]

and the notion of LD-derivatives [74]. The remainder of this chapter is structured as

follows. First, we formally introduce the LLP, present basic theory about piecewise

affine functions, and derive extensions of the chain rule for LD-derivatives. In Sec-

tion 6.4, the theory for computing LD-derivatives of the optimal values of a LLP is

developed. Section 6.5 presents examples illustrating the relevance of LLPs and the

use of LD-derivatives. Finally, conclusions and future work are briefly discussed.

6.1 Definition of LLPs

Consider a LLP parameterized by its right-hand side. For each i E {0, 1,. . ., n,}, let

i 

: R"+i -R, where for z (E R":
g0 (z) = inf cTv,

vER-v

s.t. Av = z, (6.4)

V ;> 0,

and for 1 <i < n and z E R2i+':

g"(z) = inf cTv,
VERnv

A

CT
s.t. 0  v = z, (6.5)

Tci- 1 -

V >0.
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Assumption 6.1.1. Let A be of full row rank. For all i E {0,- , nh}, let A and

c3 , j = 0,... , i, be such that g (z) > -oo for all z E R". In addition for all i > 0,

let [AT co ... C_1 I be full row rank.

Let F = {z E Rm  - .< go(z) < +oo}, A' = A and for i > 1 let A' =

[AT cO ... c_ I. Under Assumption 6.1.1, h in (6.1) and (6.2) is such that

h : F - R fh+1. In this chapter, only LLPs satisfying Assumption 6.1.1 will be

considered.

Proposition 6.1.1. Let Assumption 6.1.1 hold, let z E F and consider LPs (6.1)

and (6.2). Then -oo < h(z) < +oo.

Proof: -oc < h(z) by Assumption 6.1.1 and ho(z) < +oo because z E F. Therefore,

there exists v c R n such that Av = z and c Tv = ho(z) < +oo. Now let i E

1, - h --,}. Assume that for all j < i, h3(z) < +oo. This means there exists vo > 0

such that Avo = z and for all j < i, CTvo = hj(v). Therefore, hi(z) <; cTvO < +o0.

Since ho(z) < +oo, the proof follows by induction. El

Definition 6.1.1. Let Assumption 6.1.1 hold. Let q' : F -+ R'+' where q0 : z e z

and for i = 1,--- ,nh, q: z '-÷ [zT ho(z) ... hi_1(z)] . Let h : F - Rnh+1

which contains the objective function values in LPs (6.1) and (6.2) when z E F, and

is such that hi = gi o q .

Proposition 6.1.2. Consider LP (6.4) and suppose A and co are such that g(z) >

-oc for all z G R'. A is full row rank if and only if int(F) :4 0.

Proof: First we will show that if int(F) / 0, then A is full row rank. Assume A is

not full row rank and int(F) # 0. Then, there exists at least one row that is linearly

dependent on the other rows. Without loss of generality, let us assume that the last

row of A is linearly dependent. Let bo c int(F). Then, any small perturbation of

the last component of bo while keeping all other components of bo constant results

in LP (6.4) becoming infeasible. Then, bo int(F) and there is a contradiction.

For the next part of the proof assume A is full row rank. Let v = 1 and b = Av.

By hypothesis, this b E F. Let d E R m and E > 0. Without loss of generality, let

||d | = 1. Let us find a Av that satisfies, A(v + Av) = b + cd. Since Av = b, we
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need AAv = Ed. Since A is full row rank, the columns of A span Rrn. Consider all

possible collections of m columns that form a basis for the column space of A. Take

such a basis A and let -i, = eA-ld. Without loss of generality, let the columns of

A be the first m columns of A. Let Avj = Ai if j E {1,... ,m} and 0 otherwise.

It is clear that Av constructed in this form satisfies A(v + Av) = b + cd. Moreover,

IlAvIl = IIA|rII. Then,

I|AvII = IIAiIl| Ell|k -1JIldiJ= EllA- 1 11,

and for small enough E, IlAvil < 1 which implies all components IAvjI < 1 and

v + Av > 0. Then, b + Ed E F for small enough e. By hypothesis F = {Av : v > 0}

[12], so F is a nonempty convex set and b + 6d E F for all 0 < 6 < e. Since d was

arbitrary, b E int(F) and int(F) # 0. D

Assumption 6.1.1 implies F is nonempty by Proposition 6.1.2. The necessity of

A being a full row rank matrix is not limiting in any sense. Linearly dependent rows

imply some constraints are redundant. Deleting redundant constraints from A and

z in LP (6.4) and redundant cost vectors in LP (6.5) results in LPs with the same

optimal solution set and same objective function value.

For i = {0, - - - , nh}, let F {z E Rn+j _ < g (z) < +oo}. Under Assump-

tion 6.1.1, all sets F are closed [56] and convex [12]. In addition, since F is nonempty

by Proposition 6.1.2, then all sets F are nonempty by Proposition 6.1.1. Notice that

F = FO. The functions g' are convex on the sets F [12].

Proposition 6.1.3. Let Assumption 6.1.1 hold and let b E F. Then, for all i > 1,

all q'(b) E Fi.

Proof: By Assumption 6.1.1, g'(z) > -oo for any z E Rm+i, E {0, . ,rnh}. Then,

we only need to show that g"(q'(b)) < +oo, which is equivalent to showing LP (6.5)

is feasible, for = {1, - - - ,nh}. Let i E {1,E - ,fnh} and assume qi 1 (b) c Fi- 1. Since

qI- (b) E F 1 , there exists vo > 0 such that c ivo = hi_ 1 (b) and A'-lvo =q'-'(b).

Then At vo = q'(b) and g'(q'(b)) = hi(b) < cTvo < +oo. Therefore, q2(b) e Fi.

Since q0 (b) = b E FO, the proof follows by induction. El
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Proposition 6.1.3 implies that q' : F -÷ F for all i.

6.2 Piecewise linear and piecewise affine functions

Definition 6.2.1. [119]. A continuous function p :m --+ Rn is called piecewise

linear (affine) if there exists a finite set of linear (affine) functions pi : Rm -+ R'

such that the inclusion p(x) E {p 1 (x), ... Pk(x)} holds for every x E Rm . The linear

(affine) functions pi are called selection functions.

Since linear functions are also affine, piecewise linear functions are also piecewise

affine. Every piecewise affine function is Lipschitz continuous (Proposition 2.2.7 in

[119]). Piecewise affine functions are closed under composition [119]. In fact, given

two piecewise affine functions p : R" -+ R" and C : R' -* RP, with affine selection

functions {p1 , Pk } and {1, . . . , (}, the selection functions of C o p are in the set

that considers all possible compositions (i o p for i E {1,... , l} and j c {1, . . . , k}

[119]. Therefore, the composition of two piecewise linear functions is piecewise linear

as all selection functions are linear functions and linear functions are closed under

composition.

Lemma 6.2.1. [119]. Let p :Rm -+ R" be a piecewise affine function. Then for any

point xO E R m , there exists 6 > 0 such that for any x such that jjx - xoII < 6,

p(x) = p(xo) + p'(xo; x - xo).

The proof of this lemma is in Section 2.2.2 in [119].

Proposition 6.2.2. Consider a piecewise affine function 0 : R" -+ R" and a function

p : S C R m -+ R . Suppose that p(x) = 0(x) for all x E S. Given d E R m and

x E S suppose that there exists 6* such that for T E (0, 6*), x+Td E S. Then, p has

a directional derivative at x in the direction d and there exists 6d E (0, 6*] such that

for 0 < < 6d,

p(x + Ed) = p(x) + p'(x; ed).
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Proof: Notice that p(x + Ed) = 0(x + Ed) holds VE C [0, 6*). We know from Lemma

6.2.1 that there exists 6 > 0 such that:

0(x + Ed) = O(x) + 6'(x; Ed), VEdI < 6.

Let 6 d = min(6, 6d). Since p(x + Ed) = 9(x + Ed) for all E E (0, 6
d), p(x + Ed) =

p(x) + O'(x; Ed) for all E G (0, 6 d). Now let us show that p'(x; Ed) exists and is equal

to 0'(x; Ed). Consider any sequence {Tj} 0 , ri E (0, 6 d), T -+ 0. From the definition

of directional derivative:

i (x + TFd) - 6(x) = 0'(x; d).

Also, for all T,

0(x + Td) - 0(x) p(x + Tid) - p(x)

Ti Ti

Therefore, p'(x; d) exists and p'(x; d) = 0'(x; d). From Eqn. (2.3), p'(x; Ed)

0'(x; Ed) and p(x + Ed) = p(x) + p'(x; ed) for all c E (0, 6 d).

From now on we shall call functions piecewise linear or piecewise affine if they coin-

cide with a piecewise linear or piecewise affine function on their domain of definition,

even if their domain is not all R".

Corollary 6.2.1. Let p: S C R"' - Z be a piecewise affine function and let d E R'

and x E S. If there exists 6 > 0 such that for all T E (0, 6*), x + Td E S, then there

exists 6 d such that for all T E (0, 6 d), p(x) + Tp'(x; d) c Z.

Proof: From Proposition 6.2.2 there exists 6 d > 0 such that for 0 < T < 6
d, p(x +

Td) = p(x) + p'(x; Td) = p(x) + -Tp'(x; d) (Eqn. 2.3). Since p(x + Td) E Z, then

p(x) + Tp'(x; d) E Z for all T E (0, 6d).

Proposition 6.2.3. Let X C R' be open, p : X -+ R" be PC', x C X, and

M E Rmq. Then p is I-smooth at x and the sequence of functions (2.2) are all
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piecewise linear.

Proof: p is I-smooth at x because it is piecewise differentiable [74]. Let {p,- , k

be a set of selection functions for p at x with k E N. From Proposition 4.1.3 in [119] for

i E {1,--- ,n}, d E Rm , p'(x; d) E {Vpj(x)Td, - - - , Vp(x)Td}. From Theorem 3.1.2

in [119], p'(x; -) is globally Lipschitz continuous. It is clear then that all components

of the function p'(x; -) are piecewise linear, and therefore p(M is piecewise linear and

PC'. It follows that ford E {1,- , q}, p are piecewise linear.

6.3 Extensions of directional derivatives

First, let us introduce the concept of directional derivative used in this chapter.

Notice that unlike the standard definition presented in Definition 2.1.2, the set X is

not required to be open.

Definition 6.3.1. Let X C R' and p : X -+ R". Let x E X and d E Rm be such

that there exists 6 d > 0 such that for all E E (0, 6 d), x + ed E X. The (one-sided)

directional derivative of p at x E X in the direction d E R' is given by the following

limit if it exists:

p'(x;d) =im p(x+rd)-p(x)
r-++ T

If at x, the limit exists in R' for all directions d E R', then, p is said to be direc-

tionally differentiable at x.

If x C int(X), there exists 6 d > 0 such that for all E E (0, 6 d), x + Ed e X for any

d G R'. Therefore, if x E int(X), Definition 6.3.1 reduces to the standard definition

of directional derivative.

Assumption 6.3.1. Let X C Rm be open, Z c Rn, p : X -+ Z, : Z -+ RP and

o- : X - RP, where or a C o p. Assume p is I-smooth at x E X and ( is locally

Lipschitz continuous. Note that Z is not required to be open.
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Definition 6.3.2. Let Assumption 6.3.1 hold, let K E Rmxq, M = p'(x; K) and

consider the sets G ) {pfz(zi) : Z Emx, zq+ mE Rm n forfi{O,- , q}.

C is said to be p-weakly I-smooth at x if for any matrix K the following sequence is

well-defined:

X,MG: G ) -+ RP : d C'(p(x); d), (6.6)

) : G2) -+ RP : d - [Cfj-M]'(mj; d), Vj E {1, .. ., q}.

Remark 6.3.1. Let Assumption 6.3.1 hold, let K E Rmxq, M p'(x; K), and let C

be I-smooth at p(x). Then, ( is p-weakly I-smooth at x.

Proposition 6.3.1. Let Z E R n and C : Z -+ RP be Lipschitz near z E Z. Let the

set G. contain d G R' such that ('(z; d) exists. Then ('(z; -) is globally Lipschitz on

Gz.

Proof: The proof is basically the same as the one presented in Theorem 3.1.2 in [119]

only that the assumption of directional differentiability is dropped. Let di, d2 E Gz.

Then,

II('(z; d1) -C'(z;d 2 )11 r II((z + -rdi) - ((z + Td2)II
-r-O+ T

Jrdi - Td2||< lim L =L|Tdi - d211,
-r-+o+ T

where L is the Lipschitz constant for C near z. Therefore, ('(z; -) is globally Lipschitz

continuous. E

Corollary 6.3.1. Let Assumption 6.3.1 hold and let ( be p-weakly I-smooth at x.

Then the functions in the sequence (6.6) are globally Lipschitz continuous.

Proof: Let us assume that for j E {1, - - , (M is globally Lipschitz continuous

on Gj4 with constant L. By Proposition 6.3.1, C(), is globally Lipschitz contin-

uous. Since ((0) is globally Lipschitz continuous from Proposition 6.3.1, the proof

follows by induction. l

The following Theorem is a generalization of the chain rule for I-smooth functions.
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Theorem 6.3.2. Let Assumption 6.3.1 hold. Suppose that ( is p-weakly I-smooth

at x. Then o is I-smooth at x and for M C R'Xq, '(x; M) = ((x); p'(X; M)).

Proof: For p to be i-smooth, it is necessarily Lipschitz continuous near x. Since C is

locally Lipschitz continuous, the composition a = C o p is Lipschitz continuous near

x. First, we will show that a is directionally differentiable at x.

We need to show that the following limit exists in RP for all d E Rm :

. a(x + Td) - a(x) C(p(x + Td)) - C(p(x))
lim = lim

Given d E R"' by assumption, we know the following limit exists in RP:

'(p(x);- p (x; d)) = m C(p(x) + rp'(x; d)) - C(p(x))
-- +0+ T

We also know from the definition of the directional derivative that:

. p(x + Td) - p(x) - Tp'(x; d)W m =0.
-r-0+ T

We will show that

C(p(x) + Tp'(x; d)) - C(p(x))
T

lim= 1 m
((p(x + Td)) - C(p(x))

T

which is equivalent to showing that

lim

From the existence of the directional derivative C'(p(x); p'(x; d)) there exists c, > 0:

p(x) + Tp'(x; d) E Z, VT E (0, 'E).

130

lim
-r-0+

C(p(x) + rp'(x; d)) - C(p(x + rd))
r



Since C is locally Lipschitz continuous there exists C2 > 0 and K > 0:

I((p(x + Td)) - C(p(x) + Tp'(x; d))II < K IIp(x + Td) - (p(x) + Tp'(x; d))II,

VT E (0, EI) :p(X + Td) - (p(X) + Tp'(x; d)) < E2,

which is equivalent to

C(p(x + Td)) - C(p(x) + rp'(x; d))
Tr

< K p(x + rd) - (p(x) +
T

VT E (0, E1) : p(x + -rd) - (p(x) + Tp'(x; d))1 < E2-

Since, by the existence of the directional derivative p'(x; d),

lim p(x + Td) - (p(x) + rp'(x; d)) =0
-+ T

it follows that

lim C(p(x + rd)) - C(p(x) + Tp'(x; d)) 0.
7-0+T

Since d E R' was arbitrary, or is directionally differentiable at x and

X' (d) = () () (d)).

Now let us assume that for j E {1, - -, q}, for all M (E R'q and mq+E R",

( (m) = C- (pj(mj)).

For brevity, let y - p(x) and Y - p'(x; M). Also, let iii -mj+ 1 . We need to show
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that the following limit exists in RP for all M E R" Xq and mq+1 E R"m:

lim

him

-1) Mj + Tm-) - f~-)(j

C~jl)P~jl)Mj+,r - (U-l)(PO-)(m)

r-+O+ T

Given M E R" mq and mq+ E R", since C is p-weakly i-smooth at x, we know

the following limit exists in RP:

[ 1
y]'(p (mj), [pj ]'(m; iii)) =

lim
-r+

(U-1 (PU1) + T[pXM ]'(mj; iii))-1(j-)M)

T

and p 1(mj) + T[p 1]'(mj; iii) E G- 1 for r > 0 small enough. We also know

from the definition of i-smoothness that:

0-1p (m) + (jMi) - p -[p ' ))
lim = 0.

-,4~0+ T

We will show that

C (j p - (M ) + T[p ]'(m ;
lim

T- O+

iii)) - (m))
T

.U- p Tm)) -
lim

7-+s0+

which is equivalent to showing that

lim 1 (p(m) + [P M
hm +o

]'(mnj; iii)) - (pj) (mj + rim))
T

From Corollary 6.3.1, ( is globally Lipschitz continuous for all k E {0,- , q}.

Then, there exists 6 > 0 such that T E [0, 6) implies that p ) (Mj)+[p ]'(m; iii) E

132

= 0.



G-j 1 and K > 0 such that

PxM + ( +[PMf]'(mM) - P (3M + Tm)

( (p (m) + U-1) '(1;) U))-- ( (p (mj + Ti))

T

VT C [0, 6).

Since, by the existence of the directional derivative [p'Y(m3 ; -i),

.U-1) p +]'(Mj; ) - p(j1) (m +n^)
hrm PXM (in) =[PXM xM - 0,
-+ 0+

it follows that

. ( 10 (pjQ(mj) + T[pgMl]'(mj; M)) - C( (p( M + Tmi^))
him = ' ' ' ' 0.

-r-+o+ T

Since M E Rmxq and mq+1 E Rm were arbitrary, ou-1' is directionally differentiable

at mi and for all M E Rmxq and mq+1 E Rm

U) (ii) = CO( (i)

Since oa (mi) = ()(p (mi)) for any M c Rmxq, the rest of the LD-derivatives

follow by induction. E

Remark 6.3.2. Notice that Theorem 6.3.2 provides a chain rule when p(x) E bnd(Z)

which is not possible in the classical theory.

Theorem 6.3.3. Let Assumption 6.3.1 hold. Suppose that o is I-smooth at x. Let

p(x) E bnd(Z). Assume that for all d E R m , there exists 6 d > 0 such that for any

T E (0, 6 d), p(x)+Tp'(x; d) c Z. Let GFj) be the sets described in Definition 6.3.2. As-

sume that for any mq+1 E Rn, M E Rmxq and j E {0,- , q-1}, there exists Lmj 2 >

0 such that for all T E (0, Jmj+2), pi (mj+1) + T[p i'(m+1; mj+2 ) E Gj. Then,

C is p-weakly i-smooth at x and for M E R'mq, o-(x; M) = C'(p(x); p'(x; M)).
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Proof: First we show the limit for the directional derivative. Given d Z R"m we want

to show that the following limit exists in RP:

C(p(x) + Tp'(x; d)) - C(p(x))( (p(x); p'(x; d)) = lim
'-+0+T

We know that the following limit exists in RP:

lim o(x + d) - o l(x) = im (p(x + rd)) - C(p(x))
T-0+ T 7-+

If we show that

i (p(x) + Tp'(x; d)) - C(p(x)) C(p(x + rd)) - C(p(x))lim =lim
T 0+ T -+

which is equivalent to showing that

i (p(x) + Tp'(x; d)) - C(p(x + Td))lim = 0, (6.7)
r-+0+ T

the proof is complete. Notice that ((p(x)+Tp'(x; d)) is well defined by the assumption

of p(x)+Tp'(x; d) E Z for all T C (0, 63d). Since C is locally Lipschitz, the proof of The-

orem 6.3.2 establishes (6.7). Furthermore, o'(x; d) = ('(p(x); p'(x; d)) = al"G(d) =

(p(x),p'(x;M)(p(2) (d)). Since d c R m was arbitrary, the directional derivative of C at

p(x) exists in all directions px0G(d) and the first function of sequence (6.6) is well-

defined with its corresponding domain G")= {p=")z(zi) : Z c R"n Zq+1 E R"}. By

Proposition 6.3.1, ((0) is globally Lipschitz on G(.

Now let us assume that for j E {1,.- -, q} and for all M C Rn mq and mq+1 E R",

a(j l j =) ( U- 1) ( - 1) ( M

xM p(x),p'(x;M) pxM

and that the function Cx'(x;M) is well-defined in the sense of (6.6) with Gj -

{pXl (zj) : Z E Rx, zq+1 E R m} and globally Lipschitz on its domain. For brevity,

let y _ p(x) and Y - p'(x; M). Also, let ii = Mj+1-
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We want to show that the following limit exists in RP:

'y,Y kX,M kmf,LpM ]k Im))-
[ C U-]'(p U (mj [p1 ]'( ; -)) U 1(U 1

i %9 (p (my) + T[pX ]'(mj; )- Yl (pX,) (mj))
him

+ T

We know that the following limits exist in RP:

Ulim u(mj + Tin) - OU-(mj)_
lim F, ,

-r->O+ T

Clim 1~) (p~-) (Mj + T M)) - C j- 1 ( 1) j

-- + Ir

Analogous to the proof in Theorem 6.3.2, if we show that

CU1(pUN (m) + r[p U]')(mi; m)) - ( yu)(pgj (mj + -rii))
lim (PXM (i 3  ;))= 0, (6.8)
--+o+ T

the proof is complete. By assumption, the quantity C(j) (pj-) (m) +

T[p U1'(mj; M-)) is well-determined for r > 0 small enough, mq+1 E R" M E R"mq

Then, the proof of Theorem 6.3.2 establishes (6.8) and

o ,M( -) = ( y~i) (p Xj) ( )).-

Since M and mq+1 are arbitrary, (j has as its domain G ) {p z(zj+1) Z C

RmXq , Zq+1 E Rm} and by Proposition 6.3.1 ((j is globally Lipschitz on its domain.

Since the case for j = 0 was established, the proof follows by induction. L

Remark 6.3.3. The assumption that for any mq+1 c Rm, M E R"mxq and j E

{0,- , q - 1}, there exists 6mn > 0 such that for all T E (0, 6
m U), p (mj+1) +

T[p u]'(Mj+l; mj+2 ) E Gj) may seem difficult to verify at first glance. However, if

Assumption 6.3.1 holds and in addition p is a PC' function, then this assumption

follows from Proposition 6.2.3 and Corollary 6.2.1.

Theorems 6.3.2 and 6.3.3 are extensions of Theorem 3.1.1 in [119] and the chain
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rule (2.5) from [96] under weaker assumptions. In these propositions, ( is not required

to be directionally differentiable; its directional derivatives need to exist in RP only

in certain directions. The chain rule in [27] cannot be applied if p(x) E bnd(Z);

however, Theorems 6.3.2 and 6.3.3 can deal with this situation.

6.4 LD-derivatives of lexicographic linear programs

Before computing the LD-derivatives of LLPs, we discuss why results in the litera-

ture such as Proposition 4.12 in [14] are not applicable. This proposition refers to

optimization problems of the form

min f(x, u) subject to x E (D, (6.9)
xEX

where u E U is a parameter vector and 4b is nonempty and closed. This proposition

also requires the following definition.

Definition 6.4.1. Consider the optimization problem (6.9). The inf-compactness

condition holds at uO E U if there exists a E R and a compact set C c X such that

for every u near uO, the level set levf (-,u) := {x : f (x, u) < a} is nonempty

and contained in C.

Next we present Proposition 4.12 in [14]:

Proposition 6.4.1. Suppose that

1. the function f(x, u) is continuous on X x U,

2. the inf-compactness condition holds at uO,

3. for any x C <P the function fx(-) := f(x, -) is directionally differentiable at uo,

4. if d c U, t, 4 0 and {x,} is a sequence in C, then {x,} has a limit point x such

that

lim sup f;(X>,UO--td) - f(xuo) > f (uo; d). (6.10)
fn->oo tn
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Then the optimal value function v(u) is directionally differentiable at uO and

v'(uo; d) = inf f'(uo;d), (6.11)
xes(uo)

where S(u) arg min f(x, u). Moreover, if x, c S(uo + td) for some t, 4 0, then
xE(b

any limit point x of {x.} belongs to Si(uo, d), where Si(uo, d) arg min f'(uo, d).
xeS(uo)

To apply Proposition 6.4.1, we need to consider the duals of each LP in (6.1) and

(6.2):

hi(z) = max. [qi(z)]TA (6.12)
A\ERn+"

s.t. [A']TA < c,.

For i E {0, ... , ri}, let 9 C R'+' be the feasible set of the dual of LP (6.12). Since

Proposition 6.4.1 considers a minimization problem, f'(A, z) = -[qi(z)]TA. Notice

that for i E {0, ... , nh}, the feasible set of (6.12) is independent of z and nonempty

under Assumption 6.1.1. The next propositions show that the inf-compactness con-

dition cannot be satisfied by LLPs.

Proposition 6.4.2. Let Assumption 6.1.1 hold and consider LP (6.12). Then for all

i, the inf-compactness condition is not satisfied at zo if qg(zo) E bnd(F).

Proof: F is closed [56]. Let us assume q'(zo) E bnd(F). Since qz(zo) E Fi, the

solution set of LP (6.12) is nonempty, and it is closed and convex [12]. Therefore,

by Proposition 3.5 in [60] the solution set of LP (6.12) is unbounded. Since the

optimal level set is unbounded and this is the smallest nonempty level set, there

is no nonempty bounded level set at zo and the inf-compactness condition is not

satisfied. 0

Proposition 6.4.3. Let Assumption 6.1.1 hold. Then for all i > 0, q'(F) c bnd(F).

Proof: By Proposition 6.1.3, q(F) C F. In addition, we know that qm+i(z)

hi_ 1 (z). Let d = -em+i. Then for any c > 0, qg(z) + ed F because the (m +

i)th component of q2 (z) is hj_1 (z) which is optimal and therefore, any value less
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than hi_ 1 (z) results in an infeasible LP. Then q'(z) E bnd(F) and thus q'(F) C

bnd(F). l

Therefore by Propositions 6.4.2 and 6.4.3, Proposition 6.4.1 cannot be applied to

LLPs.

6.4.1 Computation of LD-derivatives of LLPs

In this section, we derive the LD-derivatives of a LLP as a function of its right-hand

side. To do this, we use Theorems 6.3.2 and 6.3.3 and apply them to piecewise linear

functions defined on closed sets. Then, we extend the results in [60] and apply them

to LLPs. Next, we obtain the LD-derivatives of LLPs as function of some elements of

their right-hand side. Finally, we use the Phase I LP to obtain an extended system

[44]. This extended system provides a way of dealing with LLPs becoming infeasible

in the context of optimization and equation solving problems.

Assumption 6.4.1. Let g', q' and h for 0 < i n be defined as in Section 2.1 and

let Assumption 6.1.1 hold. Assume that bo E int(F).

The interior of F is nonempty by Assumption 6.1.1 and Proposition 6.1.2.

Proposition 6.4.4. Let Assumption 6.4.1 hold. Then h and q' are -smooth at bo

for 0 < i < nh. In addition, h and qi are piecewise linear functions on F for all i.

Proof: From [74] we know that piecewise differentiable functions in the sense of

Scholtes (see Section 4.1 in [119]) are i-smooth on the interior of their domains.

Piecewise linear functions are piecewise differentiable functions. Therefore, the proof

shows that for 0 < i < nh, hi is piecewise linear. All functions g' are piecewise

linear and convex on their respective domains F [12]. q0 is a linear function on F,

therefore, ho is piecewise linear on F as it is the composition of a linear function with

a piecewise linear function. Now assume that for i > 1, hi_ 1 and qj_ 1 are piecewise

linear on F. q' is a piecewise linear function on F because both hi_ 1 and qj_1 are

piecewise linear on F. Then, hi is piecewise linear on F because it results from the

composition of piecewise linear functions. Since ho and q0 are piecewise linear on
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F, it follows by induction that hi and q' are piecewise linear on F for all i. Since

bo E int(F), both h and q' are I-smooth at bo for 0 < i < ni. El

Proposition 6.4.5. For i > 0 let F C R" and F C R"n+ be closed, g: F -+ R be

piecewise linear and qi : F -+ bnd(F) be piecewise affine. Let hi = gi o q'. Then for

bo E int(F), g' is q'-weakly I-smooth at bo and for M E Rm'xq,

h'(bo; M) = [gi]'(qi(bo); [q']'(bo; M)).

Proof: hi is piecewise affine as it results from the composition of a piecewise affine

function with a piecewise linear function. Then, hi and qi are both I-smooth at bo

because they are PC' functions. To apply Theorem 6.3.3, for any d E R" we need

to find 6d > 0 such that for any T E (0, 3 d), q'(bo) + r[qi]'(bo; d) c F. By Remark

6.3.3, the rest of the assumptions are satisfied because q" are PC' functions for all i.

From Proposition 6.2.2, since q' is piecewise affine there exists 6* such that for any

E [,o6*),

q'(bo + Ed) = q'(bo) + c[qi1'(bo; d).

Since for all e such that bo + Ed E F, q'(bo + Ed) E F, we can set 6 d = 6*. Then,

Theorem 6.3.3 is applicable and

h'(bo; M) = [gI]'(qi(bo); [q]'(bo; M)).

In addition, Theorem 6.3.3 establishes that g' is qi-weakly I-smooth at bo. L

Under Assumption 6.4.1, Theorem 3.3 in [601 gives the LD-derivatives of ho for
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M E Rmxq:

[ho](3M, (d) = max [[qO](/M(d)] T A (6.13)

s.t. A TA c0 ,

-qo(bo)TA < -ho(bo),

[[q] ()(m)] A < -[ho] ,M(ml),

- [[qo] (m)]A -[ho]2 0(m).

Proposition 6.4.6. Let Assumption 6.1.1 hold and let g : F -+ R: z ' go(z). Let

zo E F and d E R' be such that there exists 6 > 0 such that for all E [0, 6),

zo + Ed E F. Then,

g'(zo; d) = max d TA, (6.14)
AER-

s.t. ATA < co,

-TA < -g(zo).

Proof: Notice that zo is not required to be in the interior of F. g is a convex and

piecewise linear function on F [12] of the form g(z) = max zTA where A is the finite

set that contains all extreme points of the polyhedron ATA < co. A is nonempty

because A is full row rank.

Let : 'R -+ R : z '-+ max zTA. Let z E R"'. From Proposition 2.2.7 in [27] since
AEA

y is a convex function that is Lipschitz near z, Oj(z) coincides with the subdifferential

at z and for all d C R m, '(z; d) = jo(z; d). If J(z) = {A E A : j(z) = zTA} and

J(z) = {A E A : g(z) = zTA}, it is clear that J(z) = J(z), Vz E F. Since j is

the pointwise maximum of convex differentiable functions, aj(z) = co(j(z)) [15] and

for z E F, co(j(z)) = co(J(z)) = {A : ATA < co, zTA = g(z)} = {A : ATA <

c0, -zT A < -g(z)}.
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From Proposition 2.1.2 in [27] for z E F, j'(z; d) = jo(z; d) = max{dT A : A E

oj(z)} = max{dT A : ATA < co, -zTA < -g(z)}. For z E F and d E R' such that

there exists 3 > 0 such that for all c E [0, 3), z + cd E F, j'(z; d) g'(z; d). Then,

g'(zo; d) is given by LP (6.14). L

Proposition 6.4.7. Let Assumption 6.4.1 hold. Then for i E ...-- , nh} and j E

{o,--- , q} and M E Rmx, the LD-derivatives of h at bo are given by

[hi()M (d) = max [[qi](,3(d)] A, (6.15)

s.t. [A' ]TA < Ci,

-qi(bo) TA < -hi(bo),

-[[qi](j-3) Mjm)] TA <

- [q2]Q7(mj)]A -[hl]J (m),)

Proof: The case for i = 0 is established in Theorem 3.3 in [60]. From Proposition

6.4.4, h and qi are piecewise linear and I-smooth at bo for all i. For i > 0, by

Propositions 6.4.4 and 6.4.5, h'(bo; M) = [g']'(q'(bo); [q ]'(bo; M)). The case for all

i and j = 0 is established by strong duality of LPs [12] and Proposition 6.4.6; just

substitute F = Fi, A = A' and co = ci, and therefore for all i, [hi] OjM(d) is given

by LP (6.15).

Now assume that for all i and for j E {1,. -, q}, [hi] ( d) is given by LP (6.15).

Since for all i, g2 is q-weakly I-smooth at bo, the assumptions of Proposition 6.4.6

are satisfied and [hi]( M(d) is given by LP (6.15). Just substitute,

A = [A -q(bo) - [[qi]J(m1 )] - - - [[qi]Q (mj)]]

cT = CT -hi(bo) -[hi]),M(mi) - -[hi]Q'(m 3 ) ]

F = (Gi)(,
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where (G)( corresponds to the sets in Definition 6.3.2. Since the case for j 0 is

established, the proof follows by induction. l

Notice that as we calculate the LD-derivatives of LLPs with LP (6.15), we are

optimizing over the optimal solution set of (6.12).

Definition 6.4.2. Let Assumption 6.4.1 hold, let M E Rcmxq and let Si(bo, M) be

the solution set of LPs (6.1) and (6.2) and Sk(bo, M) be the solution set of LP (6.15)

for j = k - 1, k E {1, - - - , q+1}-

Remark 6.4.1. Let Assumption 6.4.1 hold. Since h is I-smooth at bo, for any

ME Rmx d E Rm,0 j ,-(d) < +oo. Then for i E {0, ,n}

the LD-derivatives of h are also given by the primal version of LP (6.15) and for

j c {0, - - - , q}

[hi]jM (d) =

mi [c -hi(bo) -[h]M(mi) - -[hi]( 0 '(mj) v, (6.16)

s.t. Ai -qz(bo) -[q] )M(mi) -. --- [qi] (mj) v=[qi]j (d),

V ;> 0.

Corollary 6.4.1. If Assumption 6.4.1 holds, the LD-derivative of h at bo in the

directions M E R mxq is given by

h'(bo; M) =

AO mi 0 m 2  -T -mq

S[[q1]O)M(mi)] A [[q1](1)(m 2 )] - A, [[ql] (mq)]

with Ai E Sq(bo, M) for 0 < i < nh.
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Proof: The definition of LD-derivative is

h' (bo; M) = [[hi] (mq ) [hi]q M(m 2 ) ... [hi] ,(m ,q)

= [[hi] M(ml) [hi]j2,M(m 2) - [hi] (q)(mq)]

The second equality follows from Equation (2.4). For any Ai E S (b0 , M), [hi]j ( (mqq)

[[q] (q-(m1 ) . Moreover, Ai E Sq(bo, M) C S_ 1(b0 , M)

[q] (q~2)(mq_1)]. Following this argument,

and therefore [hi] 2) (mq-1)

h' (bo; M) = [A [qi] M(ml)] A [[qz]b1oM(m 2)] A [[q b'(mq)]].

Example 6.4.1. Let h : Ri 2 R2 where:

h(b) = lex min CTv
vER2

s.t. v1 < bi,

v 1 + V2 b2 ,

v 1 , V 2 > 0,

with C =

0

0

-1
, which is equivalent to first maximizing v, and then maximizing

v 2 . For LP (6.17), F = {b : b > 0}. Consider bo = 1 1]

and h(bo) =

T
.Clearly, bo E int(F)

-1 0 . h is not differentiable at bo. Proposition 6.4.7 provides a

way to calculate LD-derivatives of h. Consider,

1 0 1 0 -1 0-1
M ], M 2 = , M 3 = , and M 4 =

0 1 0 -1 0 1 0

It can easily be verified that,
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Figure 6-1: Graphical explanation of LD-derivatives for Example 6.4.1. This figure
shows graphically how M1 , M2 , M3 and M4 result in different LD-derivatives at bo =

[1 1]T. A) Feasible set (gray) and optimal solution point (red dot) for LP (6.17).
If the first column of the matrix of directions is [1 O]T, B is obtained. In B, b1 is
increased and the optimal solution point does not change. Then, the second column
of the matrix of directions can be [0 1 ]T or [0 - 1]T resulting in C and D, respectively.
In C, the solution point changes such that ho decreases and in D it changes such that
ho increases. If the first column of the matrix of directions is [-1 O]T, E is obtained.
In E, the solution point changes such that ho increases and h1 decreases. Then, the
second column of the matrix of directions can be [0 1]T or [0 - 1 ]T resulting in F
and G, respectively. In F, the solution point changes such that h1 decreases, and in
G it changes such that h, increases.

h'(bo; M1 ) = [ ], h'(bo; M 2 ) = I

0 0 0 0

h'(bo;M 3) = [ 0 , and h'(bo;M 4 ) = [i
0

iJ

From these LD-derivatives, different elements of the lexicographic subdifferential are

obtained by solving the system JLh(b; M)M = h'(b; M). Then,

JLh(b; M1) = ,JLh(b;M2 ) = K
0 0  0 0

JLh(b; M3) = 0 and JLh(b; M4) =
0

-1iJ
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Notice that M1 and M2 result in the same i-derivative matrix as well as M3 and

M4 . These two matrices form the B-subdifferential of h at bo = [1 1]T. Propo-

sition 2.6.2 in [27] shows that for a non-scalar function h evaluated at bo, Clarke's

generalized Jacobian is a subset of the Cartesian product of the generalized gra-

dients of each component of h. In this example, the Cartesian product of the

generalized gradients of ho and h, at bo [1 1]T results in the convex hull of

0 -1 0 -1 -1 0 -1 0
.tHowever, the kinks in the functions

0 0 1 -1 0 0 1 -1

ho and h, are lined up such that the B-subdifferential of h at bo = [1 1 ]T contains

only two matrices. The LD-derivatives are guaranteed to find at most these two

matrices.

The results of this example can be easily verified by noticing that h can be ex-

pressed as

ho(b) = - min{bi, b2} = 1bi - b2l - b1 - b2
2

b1 - b2 - 1b1 - b2|h,(b) = - max{0, b2 - bi} = 22

Note that so far we considered the optimal values of the LLP to be a function of

all right-hand sides of the equality constraints. In practice, we might be interested

in the optimal value as a function of a small number of components of the right-

hand side. For simplicity, let us suppose that only the first k components of the

right-hand side are variable. Hence, for some k < m, k E N, B cE Rixk full column

rank, and bo E R' let b : -+ R"' : u -4 Bu + bo and consider the functions for

i E {, -... , nh}, 4i= q o b and hi _ gi o 4'. Their domains are given by

F{u E R k : _0< i(U) < +0},

which means all components of h(u) take values in R. Therefore b(F) C F and for

Z E {0,.. nh --, }, 4(P) CFi.
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ho

0 2 b2

Figure 6-2: Surface plots of h with respect to b. The red dots indicate the point
bo = [1 1]T. Notice that both components of h can be divided into two regions of
differentiability with two different gradients. In particular, Vho(b) = [-1 O]T or
Vho(b) = [0 - 1 ]T and Vhi(b) = [0 0 ]T or Vhi(b)[1 - 1 ]T. The four matrices
of directions M 1, M2 , M3 and M4 probe possible combinations of these gradients at
bo, resulting in two different i-derivative matrices. In fact, these two matrices form
the B-subdifferential of h at bo. In this case, the generalized Jacobian of h at bo is a
strict subset of the Cartesian product of the generalized gradients of each component
of h at bo.

Assumption 6.4.2. Let Assumption 6.1.1 hold. Suppose that int(F) is nonempty,

and that uo E int(F).

Computing LD-derivatives of h can be challenging when Bu+bo is in the boundary

of F. For example, consider LP (6.17) and let B = [0 1]T and bo = 0. For such

b, P = {u : U > 0}, and Vu E F, b(u) E bnd(F). Therefore for this situation,

the LD-derivatives of h can't be computed using the chain rule in Equation 2.5.

However, the extensions of LD-derivatives presented in Theorems 6.3.2 and 6.3.3 can

help us compute the LD-derivatives for this case. We shall now show how to compute

directional and LD-derivatives of h.

Proposition 6.4.8. Let Assumption 6.4.2 hold. Then for i E {0, - , nh}, h and El

are I-smooth at uO and piecewise affine on F.

Proof: From Proposition 6.4.4, h and qi are piecewise linear on F for all i. Since b

is piecewise affine on R', h and 4q are piecewise affine on F for all i. Therefore, they

are piecewise differentiable functions in the sense of Scholtes [119] and I-smooth [74]

at uO. El

The following Remark is analogous to Proposition 6.4.7. The case for b(uo) E
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int(F) follows directly from the chain rule. If b(uo) E bnd(F), then it follows from

Propositions 6.4.8, 6.4.5 and 6.4.6 and the proof is very similar to the one in Propo-

sition 6.4.7.

Remark 6.4.2. Let Assumption 6.4.2 hold at u = uo. Then for any d E Rk, q E N,

ME Rkxq and i E {o,.. ,nh}, andj E {EE - , q},

[hi] (d)z= max [[E() (d)]A, (6.18)

s.t. [A' ]TA < Ci,

-- [ i)A < -[h 1(oM(m)),

-[[4i](j;,)(Mj)]
T A < -[i] (m

6.4.2 Phase I LP as an extended system

LLPs present complications when they become infeasible. When this happens, DFBA

simulations, optimization algorithms or nonsmooth equation solving methods fail. To

deal with this problem, the Phase I LP of the Simplex algorithm can be used to extend

the domain of h because it provides an alternative LLP that is always feasible [441.

In particular, when the LLP presented in LPs (6.1) and (6.2) is feasible, the extended

system given by the Phase I LP and the original system coincide. Otherwise, the

extended system is still defined and provides a penalty function [44]. Setting the

penalty function equal to zero can be added as a constraint to the optimization

problem or as an equation in nonsmooth equation solving algorithms.
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Definition 6.4.3. Consider the LP (6.1). A Phase I LP of (6.1) is given by [12]:

m

(6.19)min s+ + si,
vERnv, s+, s_ ER,

s.t. Av +s+ - s- = z,

v > 0, s+ 0, s_ > 0.

It is a well-known fact that the Phase I LP of (6.1) is a LP that is feasible for any

z R' and its objective function value is equal to zero if and only if (6.1) is feasible

and positive otherwise.

Proposition 6.4.9. Let Assumption 6.1.1 hold. Now let hE h E

R ~ -- flRh+
2

:

m

hE%(z) = min s 1 + si,
VERnv, s+, s- ERm

s.t. Av + s+ - s- = z,

v > 0, s+ > 0, s_ > 0.

and for 0 < i < nh

hE (z) = min c v,
vERnv, s+, s-ERm

s.t. Av + s+ - s- = z,

>s+i + s-i = h E(z),
i= 1

FTCo

Tc2 1

hE(z)1

hf_ 1(z)J

v>0, s+ 0, s_ > 0.

Then hE is -smooth on R m . If h E1(z) = 0, then LPs (6.1) and (6.2) are feasible and

h'(z) = hi(z) for 0 < i < n.
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Proof: Under Assumption 6.1.1 F is nonempty. If hi(z) = Em-1 s+ + s-i = 0, then

z E F because there exists v > 0 such that Av = z. Then LP (6.1) is feasible and by

Proposition (6.1.3) LP (6.2) is also feasible for all i. If h E(z) = 0, then s+, s_ = 0,

and the variables s+, s_ and the constraint i s + sj= h(z) can be removed

from the LPs (6.20) for 0 < i < nh. Then h(z) = hi(z) for 0 < i < n. By

Proposition 6.1.2, F is nonempty. Therefore, for z E F, hE(Z) E IRnh+2 . This implies

that the dual LPs of (6.19) and (6.20) are always feasible.

Now let us show that (6.19) and (6.20) satisfy Assumption 6.4.1. Let n' = nh +

1, AP = A Im -1m]- Let (cP)T = oT 1 T iT and for i E {0-- ,'nh}, let

(cfi+ 1 )T =cT oT oT]. Then LPs (6.19) and (6.20) can be expressed in the format

of LPs (6.1) and (6.2) by letting nh = np, A = AP and for all i, ci = cp. Since the

dual LPs of (6.19) and (6.20) are always feasible, AP and cp, i = 0, - - - , np are such

that hE(Z) > -oo for all z E R'. Since A is full row rank, AP is full row rank.

Then LPs (6.19) and (6.20) satisfy Assumption 6.4.1. Then by Proposition 6.4.4, hE

is i-smooth for any z E R m . l

Let hE = hE&o. Since, hE(u) = hi(u) for 0 i < nh for u E F, the LD-

derivatives of hE and hi for 0 < i < nh coincide on int(F). Then, hE can be used to

calculate the LD-derivatives of h.

6.5 Implementation of LD-derivatives in nonsmooth

equation solving algorithms

Next we present three examples implementing the LD-derivatives of lexicographic

linear programs to solve two nonsmooth equation solving problems and a nonsmooth

optimization problem. All running times for the next two examples are for a 3.20

GHz Intel@; Xeon@; CPU in MATLAB 7.12 (R2011a), Windows 7 64-bit operating

system using 4 processors for computations in parallel. The LP solvers used were

CPLEX [28] and Gurobi [50].
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Example 6.5.1. This example is taken from [22, 23]. In these papers, fermentation

of synthesis gas to ethanol and acetate takes place in a bubble column bioreactor with

syngas fermenting bacterium Clostridium Ijungdahlii. This is a new technology that

is being considered for production of biofuels from natural gas. This bubble column

bioreactor can be modeled by the following partial differential equation (PDE) system:

1. Mass balance of biomass of C. Ijungdahlii:

DX UL OX _2X

(z, ) = 1p(z, t)X(z, t) - - (z, t) + DA 2 (z, t),
at EL az az2

ULX(O, t) - ELDA (0, t) = 0, ax (L, t) = 0, X(z, 0) = Xo,
Oz Oz

where X is the concentration of biomass, t is time, p is the growth rate, UL is

the liquid velocity, z is the spatial position, DA is the diffusivity, EL is the liquid

volume fraction in the reactor, and X0 is the initial biomass concentration.

2. Mole balances of liquid-phase CO, H2 , CO2 , ethanol, and acetate:

aGL

at (z,t)=
kUL aCL t) aGL

VG(Z, t)X(z, t) + kmG (G*(z, t) - GL (Z, t)) L G (z, t) + DA 2 Z ,
EL EL az az

aGL _GL

ULGL(0, t) - ELDa (0, t) = ULGgFHG, aGL(t) 0, GL(Z,0) = GLO,az UL~Haz(L) 0,G z0) G,

where G can be CO, H 2 , CO2 , ethanol, and acetate concentrations, vG refers to

the exchange flux rate for species G, km,G the liquid mass transfer coefficient for

species G, GL the liquid concentration of species G, G* the liquid concentration

in equilibrium with the gas concentration of species G, GgF the gas concentra-

tion in the feed of species G, GLO the initial concentration of species G in the

liquid, and HG is Henry's constant for species G.
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3. Mole balances of gas-phase CO, H 2 , and CO 2 :

OG kmG ug&G
' (z, t) = - 'l (G* (z, t) - GL (Z, t)) -Z I z t),at E9 E9 az

G9 (0,t) = GgF,G(z,0) = G,

where G9 is the concentration of species G in the gas, c9 is the gas volume

fraction, u9 is the gas velocity, and G 0 is the initial gas concentration of species

G.

4. Column pressure profile:

P(z) = PL + pLg(L - z),

where P is the pressure as a function of position in the column, PL is the

pressure at the top of the column, PL is the density of the liquid, L is the size

of the column, and g is gravitational acceleration.

To obtain the growth rate p and the exchange flux rates vG, this problem is trans-

formed into a DFBA problem. Following the strategy in [59], a hierarchy of objectives

is established in Table 6.1.

Table 6.1: Hierarchy of objectives for bubble column bioreactor
1 Minimize slacks in Phase I feasibility LP
2 Maximize growth
3 Maximize CO uptake
4 Maximize H2 uptake

5 Minimize CO 2 production

6 Minimize acetate production
7 Minimize ethanol production

The uptake kinetics for CO, H 2 and CO2 are described by the following equation:

Vmax,GG 1VG - Km,G + G 1 + EL+AL
KT

These uptake kinetics provide some upper bounds to the exchange flux rates in the
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FBA problem.

The goal is to compute the steady state of this system. One way is to run the

dynamic simulation for a long time. Alternatively, a nonsmooth system of equations

can be solved by setting all time derivatives to zero. To solve this system of equations,

sensitivity information is needed and this is where the LD-derivatives of LLPs come

into play. The resulting nonsmooth system of equations were solved for the following

parameter values:

Ug = 75 m/h, L = 25m, UL = 0.25 m/h, DA = 0.25 m 2 /h, T = 310.15K,

PL = 1 atm, PL = 1000 kg/rn 3, Pco = 0.6 * P0 , PH2 = 0.4 * P,

GgF = , HCO = 8.0 x 10-4 ,01 HH2= 6.6 x 10-4 M
R x T (L * atm) (L * atm)'

HC0 2 = 2.5 x 10-2 rnol , km,co 2 = km,co = 80/h, km,H2 = 2.5km,co,
(L * atm)'

S -U0.53kmE= kA 0,69 ug3600(0.15 + ug/3600), L=1 g

- rnrnmol -r-35mol rnrn mol
Vmax,CO - g x h Vmax,CO -Vmax,C0 2 = 3 5 g xh , VmaxH2  7 x h

Km,CO = Km,C 0 2 = 0.02mmol/L, Km,H2 = 0.02mmol/L, K1  10mmol/L,

where Po is the pressure at the bottom of the column, PG is the partial pressure

of species G, T is the temperature in Kelvin, and R is the universal gas constant.

Using finite volumes to discretize the spatial dimension of the bubble column, 100

nodes were considered. The states vector for each finite volume is provided in the

following order: [ biomass, COL, COg, H2g, H2L, CO2L, CO29, A, E ], where A stands

for acetate and E for ethanol. This results in a system comprising 901 equations

(the last equation corresponds to the penalty), 100 LLPs each one with 682 equality

constraints, 1715 variables, and 7 objective functions. Three different strategies were

used to obtain sensitivity information for this system of equations:

1. LD-derivatives (LD) in the directions I,

2. Directional derivatives (DD) in the coordinate directions; note that these are

not guaranteed to be B-subdifferential elements,
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3. Finite differences (FD).

Notice that whereas for the LD method, LP (6.18) is being solved for all i and all

j, in the DD method LP (6.18) is solved only for j = 0 (only directional derivatives

are computed). Therefore, the LPs being solved to find the LD-derivatives have

smaller feasible sets than the ones being solved to find the directional derivative in

each coordinate direcetion. At nonsmooth points, this can result in the DD method

not returning an element of the B-subdifferential (the LD method always returns

elements of the B-subdifferential).

The nonsmooth Newton method [103] was used to solve this system. The LLP

associated to Clostridium Ijungdahlii satisfies Assumption 6.4.1. Two different start-

ing points were considered and the method converged to two different solution points:

washout and the non-trivial solution. All finite volumes used the same starting point;

therefore, only the starting vector for a single finite volume is reported. Tables 6.4

and 6.5 present the number of iterations, the 2-norm of the residual vector and the

total time for each method.

Table 6.2: Number of iterations and 2-norm reported for each method with a start
point of [0.1, 1.6421, 80.6372, 0.9032, 53.7581, 0, 0, 0, 0] for each finite volume.

Iteration LD DD FD
1 71.9045 71.9045 71.9045
2 3.6064 x 10- 10  3.6819 x 10-1 0  0.0025
3 3.6032 x 10-5
4 6.3648 x 10- 9

Time(s) 242.6 374.72 319.9
Result Washout Washout Washout

Finding the steady state using the dynamic simulation takes 1462.0 seconds from

the first start point and 6629.8 seconds from the second start point. Both dynamic

simulations converge to the non-trivial steady state that supports growth and fer-

mentation of the syngas (as opposed to the washout steady state). It can be noticed

that finding the analytical derivatives results in less iterations than finite differences.

Also, given that the LPs solved by LD-derivatives have smaller feasible sets than the

ones solved by finding the directional derivatives in each coordinate direction, the
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Table 6.3: Number of iterations and 2-norm reported for each method with a start

point of [20, 0.5, 50, 0, 50, 0, 0, 10, 50] for each finite volume.
Iteration LD, 2-norm DD, 2-norm FD, 2-norm

1 1.448 x10 5  1.448 x105  1.448 x105

2 1.074 x 103  1.074 x 103  1.074 x 103

3 567.5 567.5 567.5
4 251.1 251.1 251.1
5 12.47 12.47 12.47
6 1.305 1.305 1.306
7 0.0114 0.0114 0.0115
8 8.416 x10- 7  8.416 x10- 7  1.098 x10-5

9 1.283 x10--7

Time(s) 2873.9 4115.7 783.0
Result Non-trivial solution Non-trivial solution Non-trivial solution

computation of the steady state using LD-derivatives is faster. A sure indication that

a nondifferentiable point has been encountered is provided when the LD and DD

iterations differ.

Example 6.5.2. The behavior of the firms in this example are adapted from Example

16-3 in [63]. Consider a firm that produces two products. Both products require a

mix of three chemicals. The supply of Chemicals 1 and 2 cannot be exceeded, and

that of Chemical 3 is flexible but it is desired to keep it below 6 units because of

safety concerns. Chemical 1 is significantly more difficult to handle than Chemical

2. A profit of at least $600 is needed or the firm will be closed. The lexicographic

objectives of the firm are:

1. to minimize any use of Chemical 3 above 6 units (h'),

2. to maximize profit (hi),

3. to minimize the total use of Chemicals 1 and 2 (h'),

4. to minimize the use of Chemical 1 (h').

The profit and chemical requirements for each product are given in Table 6.4.

There is also a second firm that produces two other products with the first two

chemicals. This company requires a minimum profit of $1300 and its lexicographic

objectives are:
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Table 6.4: Data for Firm 1 in Example 6.5.2
Profit per unit Units Chemical 1 Units Chemical 2 Units Chemical 3

Product 1 80 4 4 1
Product 2 100 5 2 0
Supply b, b2 6*
* The supply of Chemical 3 is flexible but it is desired to keep its consumption below 6
units.

1. to minimize any Chemical usage exceeding 120 units (h2),

2. to maximize profit (hi),

3. to minimize the total use of Chemicals 1 and 2 (h2),

4. to minimize the use of Chemical 1 (h3).

The data for Firm 2 are presented in Table 6.5.

Table 6.5: Data for Firm 2 in Example 6.5.2
Profit per unit Units Chemical 1 Units Chemical 2

Product 1 75 6 2
Product 2 110 3 6
Supply b3 b4

Chemicals 1 and 2 are sold by a single supplier. This supplier produces 180 units

of Chemical 1 and 120 units of Chemical 2. This supplier can decide how much of

each chemical to sell to each supplier. The supplier has negotiated different price

schemes with the two firms which are summarized in Table 6.6. The supplier wants

both firms to stay in business to reduce the risk of having a single customer. All

remaining Chemicals not sold to Firms 1 or 2 are sold at very low price (50 cents for

Chemical 1 and 40 cents for Chemical 2). The goal is for the supplier to decide how

much to sell of each chemical to each firm such that it maximizes its own profit.

Let x1 and X 2 be the number of units produced of Products 1 and 2 by Firm 1

and let v, and v 2 be the number of units produced of Products 1 and 2 by Firm 2.

All other variables are slack variables. Both LPs describing the behavior of Firms 1

and 2 are converted to standard form and the Phase I extension is implemented. The
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Table 6.6: Prices of Chemicals
Firm 1 Chemical 1 Chemical 2
First 30 units 2.50/unit 2/unit
Units 30 to 60 2.25/unit 1.9/unit
Units exceeding 60 2/unit 1.8/unit
Firm 2 Chemical 1 Chemical 2
First 40 units 2.50/unit 2/unit
Units 40 to 80 2.10/unit 1.8/unit
Units exceeding 80 1.80/unit 1.6/unit

optimization problem to be solved can be defined as:

max al(b) + a2(b) + a3(b) + a4(b) + 0.5a5(b) + 0.4a6 (b),

s.t. b1 + b3 < 180,

b2 + b4 K 120,

hl_ 1(b) + h21(b) = 0,

2.5h'(b) if h1(b) < 30,

a,(b) = 75 + 2.25(hl(b) - 30) if 30 < h'(b) <60

142.5 + 2(h(b) - 60) otherwise,

2.5h2(b) if h(b) < 40,

a 2 (b) = 100 + 2.1(h2(b) - 40) if 40 < hI(b) < 80

184 + 1.8(h2(b) - 80) otherwise,

2(hl(b) - hl(b)) if h1(b) - h1(b) < 30,

a 3 (b) 60 + 1.9(hl(b) - h1(b) - 30) if 30 < h1(b)

117 + 1.8(hl(b) - h'(b) - 60) otherwise,

2(h2(b) - h2(b)) if h(b) - h2 (b) < 40,

a4 (b) 80 + 1.8(h2(b) - h(b) - 40) if 40 < h2(b)

152 + 1.6(h2(b) - h(b) - 80) otherwise,

a(b) = 180 - b1 - b3, a6(b) = 120 - b2 - b 4 ,

(6.21)

- h1(b) < 60,

- h2(b) < 80,
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where h1 (b) and h2 (b) are obtained from the solution of the LLPs that describe the

behavior of Firms 1 and 2. The behavior of Firm 1 can be modeled as:

h' (b) = lex min CTx

s.t. 4x 1 + 5x2 + x3 - x 4 = bi,

4x1 + 2x 2 + X5 - X6= b2,

80x1 + 100x 2 - X7 + X8 = 600,

x1 + x9 - = 6,

x >0,

where

CT=

0

0

-80

8

4

0

0

-100

7

5

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

and the behavior of Firm 2 can be modeled as:

h2 (b) = lex min CTv
vERO

s.t. 6v, + 3V2 + V3 - V4 = b3,

2v1 + 6v 2 + v5 - V6 = b4,

75v1 + 110v 2 - v 7 + V 8 = 1000,

8v 1 + 9v 2 + v9 - V10 = 120,

v > 0,
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where

0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1

CT= -75 -110 0 0 0 0 0 0 0 0

8 9 0 0 0 0 0 0 0 0

6 3 0 0 0 0 0 0 0 0

This optimization problem was solved using Solvopt [80] in MATLAB. The feasi-

bility and optimality tolerance of the LP solver was 1 x 10- 7 . The termination criteria

for Solvopt was a feasibility tolerance of 1 x 10-8, a relative error on the function value

of 1 x 10-6 and a relative error on the iterates of 1 x 10-4 based on the infinity-norm.

This problem was solved without providing any Jacobian information and providing

an element of the B-subdifferential of the objective function and constraints using

LD-derivatives. Running times are presented in Table 6.7. The use of LD-derivatives

reduced running time and increased reliability.

Table 6.7: Running times for the optimization problem (6.21).
bf = (128.6,51.4,51.4,68.6), Fval = 638.9

No Jacobian information Jacobian from LD-derivatives
bi Iterations t[s] Iterations t [s]

(0,0,0,0) 80 49.0 55 23.7
(-10,50,100,-1000) 66 39.7 59 25.5

(80,60,100,60) 78 53.7 51 21.5

Example 6.5.3. Consider a continuous stirred-tank reactor (CSTR) with a volume

of IL and a dilution rate of 0.1 L/h. This reactor has a controlled concentration of

oxygen of 7.7 mg/L, and glucose and xylose are fed at a concentration of 5 and 1

g/L, respectively. E. Coli is inoculated in the reactor. The goal is to solve for the

steady-state concentrations of biomass, glucose, xylose, and ethanol. The metabolic

network of E. Coli is available from [107]. This metabolic network consists of 1075

reactions and 761 metabolites. This problem can be solved by simulating the DFBA

problem until its steady state is approximately reached using DFBAlab [44]. For

instance, if we start the simulation at concentrations of 0.001, 0.1, 0.1 and 0 g/L
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of biomass, glucose, xylose, and ethanol, respectively, DFBAlab takes 1.4 seconds to

simulate 5000 hours and find the steady-state of 2.35, 3.4 x 104, 8.8 x 10-4, 0 g/L of

biomass, glucose, xylose, and ethanol, respectively. Instead, the steady-state can be

found by solving a nonsmooth system of equations. The system of equations results

from finding the concentrations of biomass, glucose, xylose, and ethanol that make

the right-hand side of the ODE describing the CSTR equal to zero.

The system of equations solved is:

f1 (x) = D(x[ - X)/V + p(x)Xb = 0,

fj(x) = D(xf - Xi)/V + vi(x)Xb = 0, for i = g, x, e andj =2, 3, 4,

p(x) = 0,

where b, g, x and e refer to biomass, glucose, xylose, and ethanol, respectively, x

is the concentration rate in the feed, xi is the concentration in the CSTR, p(x) is

the growth rate, v(x) = [v,(x) vx(x) ve(x)]T are the exchange fluxes, p(x) is the

penalty state obtained from the Phase I LP, and x = [Xb X 9 Xx Xe]T. P(x), v(x),

and p(x) are obtained from the solution of a LLP. The LP in standard form contains

753 equality constraints and 2100 variables. The lexicographic order of objectives is

the following:

1. minimize penalty,

2. maximize growth,

3. maximize ethanol production,

4. minimize glucose consumption,

5. minimize xylose consumption.

To solve this problem, we used five methods:

1. f solve in MATLAB without providing derivative information (FSND),
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2. f solve in MATLAB providing an element of the B-subdifferential using LD-

derivatives, (FSWD),

3. the classical Newton method approximating the Jacobian with finite differences

using E = 1 x 10- 6 (NFD),

4. the quasi-Newton method described in [78] providing an element of the B-

subdifferential using LD-derivatives (QSNM),

5. the oo-norm version of the LP-Newton method described in [33] providing an

element of the B-subdifferential using LD-derivatives (LPNM).

The LP feasibility and optimality tolerances for the FBA model were of 1 x 10- 9 . For

the FSND and FSWD methods, the parameter associated to function value tolerance

'TolFun' was set equal to 1 x 10 8 . The rest of the methods were assumed to have

converged if Ijf(x)I < 1 x 10- 8 . The LP-Newton method allows to constrain the

solution to a convex polyhedral set. The constraints imposed made all concentrations

nonnegative. In some instances, biomass was constrained to be greater or equal than

1 g/L (marked with an asterisk).

We solved the problem ignoring the last equation p(x) = 0 to obtain a square

system and we verified that this equation was satisfied after a solution was found.

For all solution points x* found by the different algorithms, p(x*) = 0. The running

times and steady-state results are presented in Table 6.8. For the first start vector,

all methods find the same steady-state solution. The use of LD-derivatives increases

the speed of f solve and the quasi-Newton method is the fastest closely followed by

the NFD method. The next two start vectors lead to different steady-state solutions.

When the start vector is (1,1,1,1), the washout solution (no biomass in the CSTR)

attracts all methods, but the constraints imposed on the LP-Newton method help

find the non-trivial steady-state solution.

To eliminate the possibility of washout, a feed of 0.1 g/L of E.Coli was imposed on

the system. DFBAlab takes 1.4 seconds to simulate 5000 hours and find the steady-

state of 2.43, 3.3 x 10- 4, 8.5 x 10-4, 0 g/L of biomass, glucose, xylose, and ethanol,
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respectively. The results of this modified simulation are presented in the lower part

of Table 6.8. Surprisingly, all first four methods are unable to find the non-trivial

steady-state solution and instead find a steady state that is not feasible (negative

biomass concentrations). Once again, the constraints on the LP-Newton method

help locate the non-trivial steady-state solution. The LP-Newton method fails in one

case in which it cycles. The cycling occurs because at the start point of (1,1,1,1),

the method enters the region of attraction of the washout solution. Therefore, the

LP-Newton method stays at the boundary of the convex polyhedral set and is unable

to satisfy the termination criteria. This cycling is avoided by adding the constraint

of biomass being > 1 g/L which allows the iterates to escape the region of attraction

of the washout solution.

Table 6.8: Located solutions and running times for a CSTR non-smooth equation
solving problem.
No Feed E. Coli.
Solutions: A:(2.35,3.4x10-4, 8.8xi0-4, 0), B:(0,5,1,0)
Start FSND FSWD NFD QSNM LPNM

(0,0,0,0) B, 2.5s B, 1.9s B, 0.5s, 1 B, 0.7s, 1 B, 5.0s, 12
(2,0,0,0) A, 3.5s A, 2.4s B, 1.5s, 3 B, 1.Os, 2 A, 2.6s, 7
(2,1,1,0) B, 2.6s B, 2.1s B, 1.7s, 3 B, 1.6s, 3 A, 4.2s, 11
(1,1,1,1) B, 2.6s B, 2.1s B, 1.7s, 3 B, 1.6s, 3 B, 5.8s, 13

A, 4.7s, 12*

Feed E. Coli = 0.1 g/L
Solutions: A:(2.43,3.3x i0-4, 8.5x 0-4, 0), B:(-0.015,5.28,1,0)
Start FSND FSWD NFD QSNM LPNM

(2,1,1,0) B, 2.6s B, 2.Os B, 1.7s, 3 B, 1.6s, 3 A, 4.1s, 11
(1,1,1,1) B, 2.6s B, 2.1s B, 1.7s, 3 B, 1.6s, 3 Fails

A, 4.3s, 12*
Note: The asterisk means that a constraint making biomass greater or equal than 1 g/L was
imposed on the LP Newton method. The last number on the last three columns indicates
the number of iterations.

Notice also that the NFD and QSNM methods take almost the same time in most

cases to find a solution. This is because both methods are very similar when the

LLP is smooth at all iterates; finite differences will approximate the Jacobian and

LD-derivatives will equal the Jacobian (within the LP solution tolerance). Let xk

and x2 be the k4 iterates of the NFD and QSNM methods, respectively. In fact, for
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all cases except when the start point is (2,0,0,0), both methods have the same number

of iterates and for any k and any starting point, IIX1 -- X)11 < 5 x 10- 7 . When the

method starts at (0,0,0,0), the QSNM converges to the exact solution whereas the

NFD approximates the solution numerically. When, the method starts at (2,0,0,0),

both methods present a different number of iterates (see Table 6.9). This suggests

that the numerical approximation of the Jacobian obtained from LD-derivatives is

more accurate than the one obtained through finite differences.

Table 6.9: Sequence of iterates for the NFD (1) and QSNM (2) when starting at
(2,0,0,0).

(k)
0 (2,0,0,0) (2,0,0,0) 0
1 (5.76x 10-11,3.57 x 10- 4,9.15x 0-4', 0) (0,3.57x 10- 4 ,9.15x 10-4,0) 1.43 x 10-7
2 (-1.57 x 10- 5,5.00,1.00,0) (0,5,1,0) 3.7 x10-5
3 (-6.60 x 10-15,5.00,1.00,0)

The LPNM and QSNM exhibit local Q-quadratic convergence in the vicinity of

a solution when elements of the B-subdifferential are used [78, 33]. Tables 6.10 and

6.11 show that Q-quadratic convergence is indeed occurring in both methods.

Table 6.10: Sequence of iterates for the QSNM with no E. Coli feed.

IIX(k) - X1i
k \ X(O) (0,0,0,0) (2,0,0,0) (2,1,1,0) (1 1 1 1)

0 5.099 5.477 4.4721 4.2426
1 0 5.0985 0.4612 0.5980
2 0 2.2169 x10- 6  4.6659 x 10-5
3 1.1102 x10- 16  1.8062 x 10- 14

In both examples, the use of LD-derivatives increased speed. In the nonsmooth

equation solving problem, LD-derivatives provide useful derivative information for the

LP-Newton method which allows us to find solutions restricted to a convex polyhedral

set with local Q-quadratic convergence rate. Also, the LP-Newton method is able to

handle rectangular systems. Table 6.12 shows the running times using FSND, FSWD,

and LPNM and Table 6.13 shows that the iterates of the LPNM exhibit Q-quadratic

convergence when the equation p(x) = 0 is incorporated in the system of equations

being solved.
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Table 6.11: Sequence of iterates for the LPNM with no E. Coli feed.

11X(k) - x1
k \x(O) (0,0,0,0) (2,0,0,0) (2,1,1,0) (1,1,1,1) (1 1 1 1)*

0 5.0990 0.3525 1.4567 4.2426 2.1970
1 4.2850 0.6859 1.2637 4.6887 2.3221
2 4.0503 0.5587 1.8350 5.0773 3.0927
3 3.2420 0.2293 1.8884 4.4970 2.6835
4 2.4823 6.82 x10- 2  1.5475 3.6350 2.1579
5 1.7527 4.02 x10- 3  0.9069 2.8292 1.7185
6 1.1026 2.63x 10- 5  0.6816 2.0789 0.9999
7 0.5691 7.60 x 10- 10  0.2656 1.3886 0.7236
8 0.2020 9.06 x 10-2 0.7960 0.2879
9 3.30 x 10-2 6.64 x 10- 3  0.3463 0.1059
10 1.02 x10- 3  7.46x10- 5  8.69x10- 2  8.70 x10-3

11 1.01 x10- 6  5.94x10- 9  6.74x10- 3  1.31x10-4
12 3.47 x10-12 4.37 x10- 5  1.80x10-8
13 1.84 x 10-9

Note: The asterisk means that the constraint of biomass greater or equal than 1 g/L was
imposed.

6.6 Conclusions

LLPs are useful to model bioprocesses using FBA and DFBA or business decisions

involving goal-programming. In both cases, nonsmooth optimization and equation-

solving problems embedding LLPs can be formulated. To solve these problems, gen-

eralized derivative information for LLPs is desirable. this chapter obtains elements of

the B-subdifferential of the values function of a LLP as a function of its right-hand

side by solving a number of related LPs. The two examples presented illustrate how

LD-derivatives can be used to increase the solution speed and reliability of nons-

mooth equation and optimization problems embedding LLPs. This work opens the

possibility of optimizing DFBA systems as shown in Chapters 7 and 8.
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Table 6.12: Located solutions and running times for a CSTR non-smooth equation

solving problem.
No Feed E. Coli.
Solutions: A:(2.35,3.4x 10-4 8.8x10- 4 , 0), B:(0,5,1,0)
Start FSND FSWD LPNM

(0,0,0,0) B, 4.8s B, 4.3s B, 5.6s, 13
(2,0,0,0) A, 3.Os A, 2.2s A, 2.7s, 7
(2,1,1,0) B, 3.7s B, 3.2s A, 4.2s, 11
(1,1,1,1) B, 3.7s B, 3.2s B, 5.6s, 13

A, 4.4s, 12*
Note: The asterisk means that a constraint making biomass greater or equal than 1 g/L was
imposed on the LP Newton method. The last number on the last three columns indicates
the number of iterations.

Table 6.13: Sequence of iterates for LPNM with no F. Coli feed.

IIX(k) - X1
k \X(O) (0,0,0,0) (2,0,0,0) (2,1,1,0) (1,1,1,1) (1 1 1 1)*

0 5.0990 0.3525 1.4567 4.2426 2.1970
1 5.0948 0.6859 1.2637 4.6887 2.3221
2 4.7745 0.5587 1.8350 5.0773 3.0927
3 4.2695 0.2293 1.8884 4.4970 2.6835
4 3.5006 6.82 x10- 2  1.5475 3.6350 2.1579
5 2.7201 4.02 x10- 3  0.9069 2.8292 1.7185
6 1.9713 2.63x 10- 5  0.6816 2.0789 0.9999
7 1.2933 4.17x 10- 0  0.2656 1.3886 0.7236
8 0.7188 9.06 x 10- 2  0.7960 0.2879
9 0.2948 6.64 x 10- 3  0.3463 0.1059
10 6.54 x 10- 2  7.46 x 10- 5  8.69 x 10- 2  8.70 x 10-3
11 3.89 x 10- 3  3.50 x 10- 9  6.74 x 10- 3  1.31 x 10-4
12 1.46 x10-5 4.37x10- 5  1.06x10-8
13 2.06 x 10- 1 0  1.84 x 10-9

Note: The asterisk means that the constraint biomass > 1 g/L was imposed.
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Chapter 7

Sensitivities of Dynamic Flux

Balance Analysis Models

7.1 Introduction

Consider a parameter-dependent system of ordinary differential equations (ODEs) of

the form

x(t, p) = f(t, x(t, p), h(x(t, p))), Vt c (to, tf], (7.1)

x(to, p) = p,

where h(z) E Rnh+1 is the vector of optimal values of the parametric lexicographic

linear program (LLP):

ho(z) = m Co v,
vERnv

s.t. Av = b(z), (7.2)

v > 0,
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and for 1 <i < nh

hi(z) = min crv,
vERnv

A b(z)

Ti ho (z)
s.t. ho = , (7.3)

T_ hi 1 (z)

V > 0.

For an open set D, c R"., b : De a Rm and f : (to, tf x D, x Rfh+1 -+ nRT are

abs-factorable functions [71]. A more compact way of writing LPs (7.2) and (7.3) is:

h(z) = lex min CTv, (7.4)
vERn-

s.t. Av = b(z),

V > 0,

where C = [co ... cnf ]. To provide modeling flexibility, we will assume that the

function b = b o b, where b is of the form : Rk -+ R' : z - Bz + bo. We

denote Equation (7.1) with h given by Equations (7.2) and (7.3) as a dynamic system

with a lexicographic linear program embedded. A broad class of dynamic optimization

problems for this type of system can be formulated as:

min J(p) <p(x(tf, p), p) + l(t, x(t, p), p) dt (7.5)
P to

s.t. g(p) r(x(tj, p), p) + f s(t, x(t, p), p) dt < 0,

pEPcli n.

This includes optimal control problems and optimization of bioreactor models using

dynamic flux balance analysis (DFBA) [87, 51, 59]. The solution of this class of

optimization problems presents two main difficulties. First, J and g in (7.5) are usu-
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ally not differentiable everywhere. Therefore, numerical methods require generalized

derivative information for J and g with respect to p. This difficulty is addressed in

the work of H6ffner, Khan and Barton [60, 72]. In their work, lexicographic differ-

entiation [96] provides a way of obtaining generalized derivative information for J

and g with respect to p for dynamic systems with a linear program embedded using

nonsmooth forward sensitivity analysis. Second, for a given p E P the solution of

(7.1) might not exist for all t e [to, t1 ] and therefore, J and g cannot be evaluated

at these points. The extension of the feasible set for the ODE (7.1) using an LLP

proposed by Gomez et al. [44] combined with a penalty method scheme [83] enables

solving (7.5), once reliable generalized derivative information can be obtained.

Generalized derivatives of LLPs have already been derived in [47]. LLPs are partic-

ularly useful in the context of dynamic flux balance analysis (DFBA). DFBA systems

are simulated as dynamic systems with LLPs embedded [59, 56]. DFBA takes into

account genome-scale information to perform dynamic simulations of microbial com-

munities [137, 87, 51, 59, 58, 45]. The complications of dynamic systems with LLPs

embedded has hindered its widespread utilization, but with the simulators in [59] and

[44], reliable and efficient simulation of DFBA systems is now possible. The opti-

mization of DFBA systems will enable the optimal design of industrial bioprocesses

employing microbial communities.

This chapter extends the work in [60] by obtaining generalized derivative informa-

tion for ODEs with LLPs embedded. The work in [60] considers LPs in standard form

parameterized by their right-hand side whereas this chapter considers LLPs instead.

The difference is important as LLPs allow the implementation of a penalty function

and ensure uniqueness of the right-hand side of ODE (7.1). Sensitivities for ODE sys-

tems with LLPs embedded do not follow trivially from the theory in [60], but require

the results in [47] and [72] to be derived. The work in [72] shows that sensitivity

information of ODE systems with LLPs embedded can be obtained as the unique

solutions of related ODE systems by using the concept of lexicographic directional

derivatives (LD-derivatives) [74]. However, these related ODE systems do not neces-

sarily satisfy Caratheodory's conditions [35]. The work in [71] presents an algorithm
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that uses an event-detection scheme to deal with this difficulty. To apply this work

to ODE systems with LLPs embedded, the embedded LLPs need to be expressed as

a composition of absolute value and C' functions, making this approach intractable.

Instead, we use basis information from linear program (LP) solvers to transform the

ODE system with LLPs embedded into a sequence of differential-algebraic equation

(DAE) systems in time, with an approach similar to the one presented in [56].

7.2 Sensitivities of ODE systems with LLPs em-

bedded

7.2.1 LD-derivatives of ODE systems with LLPs embedded

Let xt(p) = x(t, p). To solve (7.5), it is extremely helpful to compute the sensitivities

of xt which is a nonsmooth function. Here, we use LD-derivatives to represent the

sensitivity of xt. Let ft(z) = f(t, z, h(b(z))) and q E N. Since h is abs-factorable and

I-smooth [47], kt is abs-factorable and 1-smooth [74]. From Theorem 4.2 in [72] for

M E Rnxq, the LD-derivatives [xt]'(p; M) are the unique solution of the following

ODE system:

dS
dt ( = [ft]'(x(t, p); S(t)), S(to) = M. (7.6)

ODE (7.6) does not necessarily satisfy Caratheodory's conditions because [ft]'(x(t, p); -)

can be a discontinuous function (see Example 4.1 in [72]). However, the columns of

this matrix ODE can be decoupled into Caratheodory ODEs [72]. Based on this ob-

servation, an event detection scheme can be used to divide ODE (7.6) into a sequence

of Carath6odory ODEs [73, 71]. To apply the numerical method in [71], an explicit

abs-factorable representation of [ft]' is needed. To obtain [ft]', [h]' is needed which

is obtained from solving more LLPs [47]. Since expressing LLPs explicitly as abs-

factorable functions is intractable, we will develop an approach that does not require

[ft]' to be expressed explicitly as an abs-factorable function. In the next sections we
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develop the numerical method necessary to obtain [xt]'(p; M).

7.2.2 LD-derivatives of LLPs using the approach in Chapter

6

First of all, let us define formally the LLP and introduce the LLPs that need to be

solved to obtain the LD-derivatives of a LLP. Consider a LLP parameterized by its

right-hand side. For each i E {0, 1, ... , nt}, let gi Rm+i - 1f, where for z E Rm

go(z) = inf c0v
VERv0

s.t. Av z, (7.7)

V > 0,

and for 1 <i < nh and z E Rm+i:

g(z) = inf cJv,
VERnv

A
T

ci- 1

.>O
V > 0.

Assumption 7.2.1. Let A be of full row rank. For all i E {0,... , nh}, let A and

c, j =0, - - - , i, be such that g(z) > -oc for all z E Rm+i. In addition for all i > 0,

let [A T co ... c,_1  be full row rank.

Let F ={z E D, : oo < g(b(z)) < +oo}, ={z E Rk: oo < 0 (b(z)) <
T

+oo}, F =b(F) C Rm, Ao = A and for i > 1 let Ai = [AT co ... C,_1

It is clear that b(F) C F. Under Assumption 7.2.1, h in (7.2) and (7.3) is such

that h: F --+ Rh+1. In this chapter, only LLPs satisfying Assumption 7.2.1 will be

considered.
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Definition 7.2.1. Let Assumption 7.2.1 hold. Let q : F -+ R'z+ where q0

b(z) and for i = 1, ... , n, qi : z H-> [b(z)T ho(z) -.. hi_1(z)]. Let h

Rfh+l, which contains the objective function values in LPs (7.2) and (7.3) when z

and is such that hi = g o q .

z >

F-+

E F,

If A is full row rank, but Anh is not full row rank, the linearly dependent cost

vectors can be eliminated from the respective technology matrices A" and right-hand

sides qi with i G {1,.. .nh}.

Remark 6.4.2 combined with the chain rule for LD-derivatives indicate that for

M E Rnxxq, d E R x, j E {0,..., q}, and i E {o,... , nh}, the LD-derivatives of h at

u E int(F) when b(u) E int(F) can be computed by solving the following LP:

(7.9)[h]1 (d) = max [[qz](W (d)] TA,

s.t. [A ]TA <

-q'(u)TA <

- [[q] (mi)]T A <

[[q'] j_)(mj) A < -[h](),

Remark 6.4.1 takes the dual of Equation (7.9) which results in

-[h ] (mj) v,

-[qi]O ) (m) ]V

v > 0.

Remark 7.2.1. For M E R n ,Xq d E R>x, and j E {0, . . . , q} the LD-derivatives of

170

(7.10)

[q'] ( (d)

ci,

-hi (u),

-[hi I (i),

[hi](j (d) = mi + [CT -hi(u) -[h ](0 (mi) -.-.-

s.t. A' --q'(u) -[q'](0 (ml) -.-.-



h at u E int(F) when b(u) E int(F) are given by the following LLP:

[h]( (d) - lex min [C) ]Tv, (7.11)
VERnv+i+l

s.t. A~j v = [q] (),

V > 0,

where [C ]T [[C )]T -[h] )(m) and [C ]T CT -h(u) , and

A = Aj) -[qO]j) (mj) and A(O_ - A -q0(u)]

Notice that if the Phase I LP is used as the level zero of the LLP as suggested

in [47], F = D, F - Rk and then the requirement that u E int(F) and that

b(u) E int(F) can easily be satisfied.

This approach of computing the LD-derivatives of h, though theoretically sound,

has posed challenging numerical difficulties. Although this approach works most of

the times, it does fail a few instances. It is not rare for state-of-the-art LP solvers such

as CPLEX [28] or Gurobi [50] to fail, finding LLP (7.11) to be infeasible, unbounded,

or complaining about numerical problems, sometimes even contradicting each other.

In particular, the cost vectors and the resulting technology matrices in LLP (7.11)

contain objective function values from other LPs. This objective function values

are guaranteed to be within some tolerance 6 > 0. Small errors in elements that

become part of the technology matrix can cause the solution of LLP (7.11) to fail in

unpredictable ways. This behavior has motivated us to explore alternative ways to

compute the LD-derivatives of LLPs.

7.2.3 Alternative methods to compute LD-derivatives of LLPs

Theorem 2 in [56] provides a method to compute efficiently and reliably h(z) for any

given z E F. In particular, Algorithm 2 in [56] provides a way to obtain an optimal

basis B for the LLP. This basis can be used to compute h for different values of

z E F using Equation (12) in [56] as long as the basis remains feasible, which is

verified by the following condition: A-lb(z) > 0. Therefore, h(z) = CnA-lb(z).
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Given that an LLP parameterized by its right-hand side is an abs-factorable function,

h is abs-factorable, and therefore piecewise differentiable (PC1). The i-derivatives of

PC' functions are guaranteed to be in the B-subdifferential (limiting Jacobian) of

h [74]. By Proposition 4.1.3 in [119], the B-subdifferential of PC' functions contain

the Jacobian matrices of all essentially active functions. In the context of LLPs, it

may be difficult to determine whether a basis matrix results in an essentially active

function. Nevertheless, LD-derivatives may still be computed if the respective piece

and the directions matrix M satisfy certain properties. The following Propositions

and Theorem provide a way of calculating LD-derivatives of piecewise affine functions

in a more efficient way.

Proposition 7.2.1. Let D, E Rnz be open and convex,

selection functions f(i) : Dx - R" with i E {1,. .. , ni}

i E {1,... ,n}, let D' = {x : f(x) = f(i)(x)}.

j e {1, ... , ni} be such that f(z) = f(j)(z). Assume that

that for any E E (0, 6), f(z + emi) = f(j)(z + Emi). Then,

Jf(j) (z)mi.

Proof: From the definition of LD-derivatives,

f (0) lim f(z + Tm1 ) - f(z)
zM(mi) = Tm T

f: D, -+ R"n be PC' with

and let M E R 4nq. For

Consider z E D, and let

there exists J E (0, 1) such

f3M(Mi) =[f(j)] ,(mi)=

(7.12)

Consider the sequence {T} such that T1 = 6/2 and for n > 1, rn =T-1/2. This

sequence can be used to compute the limit in Equation (7.12). Then,

f (0) imf (z + Tnm 1 ) - f (z) _ 1 f(j)(z + Trmi) - f(j)(z)
,(m) = lim =

n-+oc rn n-+oo rn

= Jf(j)(z)mi.

Proposition 7.2.2. Let Dx E R"nx be open and convex,

selection functions f(i) : Dx -+ R" with i E {1,. .. , ni}

i E {1,...,ni}, let D' = {x E Dx : f(x) =f(i)(x)-

j E {1,-...,ni} be such that f(z) = f(j)(z). Let k E {1,..

f : Dx -+ R"n be PC' with

and let M E R Xq . For

Consider z E Dx and let

, q - 1} and assume there
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exists 6 E (0, 1) such that for any ce (0, 6), f ("- 1 )(mk + Emk+1) = [lw](k-1) (Mk +

Emk+1) = Jf(j)(z)[mk + EMk+1]. Then, f (mk+1) = [f(j)] (mk+1) = Jf(3 )(z)mk+1-

Proof: The proof is very similar to the proof of Proposition 7.2.1. 11

Let h : -4 Rnh+1, and for i E {0,. . . , nh}, i F - R't+i where 40(z) = b(z)

and 4k(z) [ 4 k-1(Z) hkl(Z) for k E {1, ... , nh}. Then for all i, hi = g' o 4. It is

clear that h is a piecewise affine function. Remember that b z '-4 Bz + bo.

Theorem 7.2.3. Consider h and let zo E int(F). Assume that the basis B is optimal

in the sense of Algorithm 2 in [56] for h at zo. Let M E Rkxq. Let the function

0 ifx=0,

fsign : R I R : x 1 if the first nonzero component of the vector is positive

-I otherwise.

Let K = A 1 [(zo) b'(zo; M)] = AB1 [Bzo + bo BM] and for i E {1,... , m} let

ki be the ith row of K. Suppose that for all i E {1,... , m}, fsign(ki) > 0. Then

h'(zo; M) = CT A-'BM, and basis B is said to be compatible with the directions M.

Proof: Since B is optimal in the sense of Algorithm 2 in [56], h(zo) = CT A-' 1 (zo)

and for any z E F such that AA1 (z) > 0, h(z) = CIA-b(z) =CIAf(Bz + b)

[56].

Notice that by assumption, k, > 0. Also notice that the set S = {z : A- 1 z > 0}

is a convex set. Now consider k2 . By Proposition 7.2.1 if there exists 6 > 0 such that

for any E E (0, 6), h(zo +eMI) = CT AA(zo+emi), then i M(mi) = CTA- 1 Bmi.

This will be true if for any E E (0, 6), A 1B'(zo + Emi) = AB [Bzo + bo + eBmi] =

k, + ek2 > 0. Notice that if k, + 6k2 > 0, then it will be true for any E E (0, 6)

because k, > 0 and S is a convex set.

Such 6 will exist if there exists E > 0 such that k, + ek2 > 0. This can only be

true if for each i E {1,. .. , m} such that k 2 ,i < 0, then ki,j > 0. If k2 > 0, then set

6 = 1. Otherwise, if k 2 ,i < 0 for some i, let = ' for all i such that k2 ,i < 0
k2,i

and set 6 = min -Ti. Let Kj = [ki...kj] and consider K2. Let k2,i be the ith row
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of K 2 . The existence of a 6 > 0 is equivalent to fsign(k 2,i) > 0, Vi. Therefore,

ZO(m) = CBABBm1 . Let 61 = 6.

Now consider hdJM (M2 ). From Proposition 7.2.2, (in 2 ) = CA Bi 2 if

there exists 62 > 0 such that for any 62 E (0,62), ,(O),M(Mi + E2 m 2) = CBAf B[m1 +

6 2 M 21. By Proposition 7.2.1 this will require the existence of 6* > 0 such that for

any i1 E (0, 6*), h(zo + Ei(Mi + 2 M 2 )) = CT A [B[zo + E1 (mi + E2M 2 )] + bo]. This

will be true if AB [B[zo + E1 (mi + E2M2 )] + bo] = ki + c 1 (k2 + E2 k3) > 0. Assume

62 > 0 exists such that k1 + 61 (k2 + 62 k3 ) > 0. Since k, > 0 and k, + 61 k2 > 0, by

convexity of S for all ' E (0, 62), ki + 61 (k 2 + Ek3 ) > 0 and given a fixed ' E (0, 62)

for all E* E (0, 61), ki + E*(k2 + Ek3 ) > 0- So 6i is our 6* and it suffices to find a

52 > 0 such that k, + 61(k2 + 62 k3 ) > 0. If k3 > 0, this is satisfied immediately;

just set 62 = 1. If for some i, k3 ,i < 0, then we need [ki + 61 k2 i > 0. For all i such
k1,i +6 1k2that k3 ,i < 0, let Ti. = - ' 'i and let 62 = min r. Then, 62 > 0 if and only if

k3 ,i z

fsign(k3 ,i) > 0, Vi. Then, h0M(i 2 ) = C7A- BM 2.

The proof is very similar for higher-order LD-derivatives. Consider hiQM(mj+1)

with j E {2, ... , q - 1}. From Proposition 7.2.2, iTj)M(mj+1) - CT A- 1Bmj+1 if

there exists 6 i 1 > 0 such that for any Ei+1 E (0, 6j+1), fi747 (min + Ej+ 1mj+J) =

CTA-1 B[mj + Ej+ 1mj+1]. Applying Proposition 7.2.2 recursively and Proposition

7.2.1, the existence of 6* ... , 6j > 0 is required such that for any Ei E {0, 6*} with

h(zo + E1 (m + E2 (m 2 + .E. . c+(mj+1)))) =

CBAB [B[zo + E 1(mi + E2 (m 2 + .E. . c+(mj+i)))] + bo],

which would require ki + c1 (k 2 + E2 (k3 + .. . Ej+ 1kj+2 )) > 0. Now, assume that

k i > 0, ki + 61 k2 > 0,..., and ki + 61 (k2 + 6 2 (k3 + ... 6(kj+1)) > 0. Let 6*=

6i, Vi E {1,. . . ,j}. If k3 + 2 > 0, you can set 6j+1 = 1 and all the requirements are

satisfied from the convexity of S. If for some i, kj+ 2 ,i < 0, find all such i and set ri =

k1 ,i + 6 1 (k2 ,i + ... 6jkj+1 ,i) and set 6j+1 = min Ti. Consider the matrix Kj+2 and
kj+2,i i

let kj+2,i be the ith row of Kj+2. Then, 6j+1 > 0 if and only if f sign(kj+2,i) >_ 0, Vt.
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Then, fiQM (mj+1) = CT A'Bmj+1. Since for all i E {1,... ,m}, fsign(ki) > 0

(where ki is the ith row of K), the proof follows by induction. 0

Theorem 7.2.3 provides a cheaper way to evaluate LD-derivatives of h at u E

int(F) when b(u) E int(F) and the available optimal LLP basis satisfies certain

conditions. The requirement for b(u) E int(F) is not problematic, if the Phase

I extension proposed in [44] and [47] is used because F = R'. However, if these

conditions are not met, the LD-derivatives of h must be computed using LLPs (7.11)

or a different alternative approach for when numerical difficulties arise. Therefore,

yet another way of finding the LD-derivatives of h has been designed.

Let u E int(F), M E Rnx"q and j E {0,.. ., q - 2}. Notice that

[[h]1 )(mj+2) ... [h] -f (mq) = [[h] ](mj+1; K3 ),

with Kj = [mj+ 2 ... mq]. Since [h]()(mj+1 ) is given by an LLP, Theorem 7.2.3

applies to calculate higher-order LD-derivatives. Algorithm 1 provides a more efficient

way of solving for the LD-derivatives of h.

The slightly modified Algorithm 2 can also be used to compute the LD-derivatives

of h and basis information. This method can be more amenable for event-detection.

Computing LD-derivatives of LLPs using optimal partition information

Consider an LP in standard form

min{c TxIAx = b; x > 0} (7.13)

and its dual

max{bT AIA TA < c}. (7.14)

Let X* and Y* be the solution sets of LPs (7.13) and (7.14), respectively. Clearly,

X* C R" and Y* c R' are faces of the polyhedra describing the feasible sets of LPs
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Algorithm 1 Method for finding the LD-derivatives of h and basis information.

1: Require u E int(F), b(u) E int(F), and M E Rnx.
2: procedure CALCULATE
3: Set Bo, B 1 ,.... , Bq +- 0, K [],M - b'(u; M), y = 0 E 0, 1}q.
4: Compute h and BO using Algorithm 2 in [56].
5: Compute K = A-1[b(u) jik].

6: For all i E {1, ... Im}, let 1i fsign(kj) where ki = ith row of K.
7: for j = 0 : q -- 1 do
8: A0 = CT A-'
9: if min(l) > 0 then

10: [h]j(m) +1) - A'ii-+ 1,IA+ 1 = Ai, Bj+1 = Bj.
11: if j < q - 1 then
12: K = [K A-' [mii+ 2]].
13: For all i such that 1 = 0, i = fsign(kj).
14: end if
15: else

'7j+1 = 1.
Compute [h] (mj+1 ) and Bj+1 using Algorithm

Aj+1 = [CU IT+ [Aj ]-1
if j < q - 1 then

Let K = [A ]j) I iiij+l

For all i, 4i fsign(ki).
end if

end if
end for

return h'(u; M),y, Ak, Bo,... , Bq for all
end procedure

2 in [561 to solve LLP

rn+ 2 ] and recompute ki for all i.

k c 0,..., q.

(7.13) and (7.14), respectively. The optimal partition B, N is defined as in [120, 1]:

B {jlxj > 0 forsomex EX* andj= 1,...,n},

N {jcj - [a.1TA > 0 for some A E Y* and j= 1, ... ,n}.
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Algorithm 2 Modified method for finding the LD-derivatives of h and basis infor-
mation.

1: Require u E int(F), b(u) E int(F), and M E Rx.
2: procedure CALCULATE

3: Set Bo, B,..., B - 0, K+- [M], + b'(u; M), = 0, j=0.
4: Compute h and Bo using Algorithm 2 in [56].
5: Compute the optimal dual vertices Aij for i E {0, ... , nh}.
6: A 0 = CT A-.

7: Compute K = A- [b(u) M].

8: For all i E {1, ... , m}, let 1i fsign(kj) where k = ith row of K.
9: while min(l) < 0 do

10: Compute [h] ( (mj+1) and Bj+1 using Algorithm 2 in [56] to solve LLP
(7.11).

11: Aj+1 = [C ] +[A) ]-1

12: Let K = [Aj ]-1 1 [m 1 ... ii] and recompute -k for all i.

13: For all i, - fsign (k ).
14: j = j + 1.
15: end while
16: 'y=j.
17: for k = j : q - 1 do
18: [h] (mk+1) = A(iki)+-
19: Bk+1 = Bj.
20: end for
21: return h'(u; M), y, A, Bo, ... , Bq for all k E {0, . . ,q} and Aij for i E

{,.. ., nh} and j E {1, ... 7}.
22: end procedure

From Proposition 2.2 in [1], if X* is nonempty, then DnN = 0 and BUN {1,... , n}.

Then,

X* = {xIAgx = b; xF ;> 0, xg =0,

Y* = {AATA = ; ATA < cg}. (7.15)

Computation of the sets B, N can be difficult. One way is to obtain a strictly

complementary solution, which can be found in the relative interior of X*. Then, the

optimal partition is given by this solution point (Theorem 2.1 in [49]). Another way

of obtaining the partition is by traversing the optimal basic solutions, but this can be

computationally expensive ([49]). Here, we use lexicographic optimization. Subsets of
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B and N can be computed with the existing optimal basic solution by finding strictly

positive variables and reduced costs, respectively. All remaining variables (those being

equal to zero and with reduced cost equal to zero) can be maximized one by one

while adding the constraint that the objective needs to be satisfied. If the objective

of this LP is greater than zero, then that variable corresponds to B; otherwise, it

corresponds to N. This process can be done more efficiently by maximizing several

variables simultaneously.

Consider LLP (7.4) with u E int(F) and b(u) G int(F), and let BS(u), N2 (u) be

the optimal partition sets and Yi* the dual solution set for each level of LLP (7.4)

with i c {,..., nh}. Notice that BS+'(u) C B(u) for i E {O,.. . , nh - 1}. Consider

d E R'-. Then, the directional derivative h'(u; d) is given by LLP (7.11) or LPs

(7.9). For u E int(F), b(u) E int(F), M E R" I, and i E {, ... , nh}, LPs (7.9)

result in the following LLP:

[hi(u) h'(u; M) =lex max [Qi(u, M)]TA, (7.16)
L J AERm+%

s.t. [AiITA < Ci,

where Qi(u, M) =qi(u) [q']'(u; M)]. Let i E {O, .. ., nh} and consider

h'(u; d) = max{[q]'(u; d)TAIA E Y;}. (7.17)

which result in the following equivalent LPs:

h' (u; d) = max [qi]'(u; d)T A,
AERm+i

s.t. [Ai]TA < c%,

-qi(U)T A < -hi(u),
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and

h'(u; d)= max [q']'(u; d)TA, (7.18)
AERm+%

s.t. Ai(u)]T A = [ci),

[A - IT_\ < [Ci]Riqu.

If all i E {E, ... , are considered simultaneously, the duals of LPs in (7.18)

do not result in a LLP (compared to LLP (7.11)), because the sets BS(u), N(u) are

different for each i. For fixed i the LPs in (7.9) result in LLP (7.16) with q levels.

Based on these observations, Algorithm 3 computes the LD-derivatives of an LLP in

the cases Algorithm 1 fails due to numerical difficulties.

Consider the dual of LP (7.18):

[h ] (d) = min cTv, (7.19)
vERnv

s.t. Azv = [q] (d)

Vi(U) > 0.

LP (7.19) can be converted into standard form. Let A' 0  A', A',' A' -A')],

C O z, e K[Ci and (0) = card(BS(u)). Then,

L-[cilhiq,

[hi] (d) = min [cf T v, (7.20)
vEERnv+'Yz

s.t. A''lv = [qi(0) (d),

v > 0.

Let BS' 0(u, M=) BS(u), N'i'O(u, M) N (u) and let B',"(u, M), N' (u, M) refer

to the optimal partition of LP (7.20). For j E {2,... , q}, let A' A-1 -A'-'M)]

j-1
and -and 7) = -7 + card(ki' (u, M)). Then [hi] ()(d) is given

-[ 1]f '

179



by LP

(7.21)[hi] 1 (d) = min [c+1 Tv,
vERl+

s.t. A','+ 1v = ]( )

v > 0.

Algorithm 3 Method for finding the LD-derivatives of h using the optimal partition.

1: Require u E int(F), b(u) E int(F), and M E R'E.
2: procedure CALCULATE
3: Set M +- b'(u; M), y = Onh+1-
4: Solve LLP (7.4) using Algorithm 2 in [56].
5: Compute the optimal bases Bj,O for each level i E {,... , nh}.
6: - [cB]i, [A 0 ]- for all i e {,. . . ,n

7: for i = 0 : nhdo
8: for j =0:q- I do
9: Let K - [A f~1[i'ij+1 . .. f^q].

10: For all k, 1k fsign(kk), where kk= kth row of K.
11: if min(l) > 0 then

12: For all k c {j, ... , q - 1}, [hi] (mk+) = CTB 1 , [Ai ]- 1 iiik+1-

13: For all k E {j' + 1, . . ., q}, Ai'k _ Aij

14: 'y=j.

15: Break for loop.
16: end if
17: Compute the optimal partition sets BS'j(u), Ni'i(u).
18: Solve LP (7.21) using dual simplex and warm-starting with basis Bi,.

19: Find [h ](j (mj+1 ) and find an optimal basis Bi,j+1-

20: d ' = cJ+1T [Aor.+1 1-1
i Bij+1 Bi,j+l

21: end for

M =M
S[hi]'(u; M)

end for
return h'(u; M), A' 3 , AZ/ for all i E {0, .. . , Th} and j E {0, ... , q}, -Y.
end procedure
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7.3 Efficient integration of ODE (7.6) to obtain

the LD-derivatives of ODE systems with LLPs

embedded

ODE systems with embedded LLPs parameterized by their right-hand sides can be

transformed into DAE systems [56]. At a first glance, it seems that the same reasoning

cannot be applied to the embedded LLPs in (7.6), as they are parameterized by their-

right hand side and some columns in their technology matrix (see LLP (7.11)). A

naive approach would be to apply an approach similar to the one in [56, 59], find a

basis and track both primal and dual feasibility. The following example illustrates the

difficulties of obtaining sensitivity information of ODE systems with LLPs embedded

and how tracking primal and dual feasibility of the bases associated to sensitivity

information can lead to numerical singularities. The embedded LP in the following

example is small enough to find its parametric solution, but for many applications,

solving the LP parametrically is an intractable approach.

Example 7.3.1. Consider the following ODE system with a LP embedded:

(t, p) = 0, (t, p) = e-h(y(t,p)) Vt E (0, 15), y(0, p) p,dt 'dt

h(z) =m 1 1 0 0]v (7.22)
vER41 ]

1 0 -1 0 z1
s.t. v= ,

0 1 0 -1 Z2

V ;> 0.

The dual of the embedded LP is

h(z) = max zTA (7.23)
AER 2

s.t. O <A < 1.
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Therefore,

z1 if z, 0, z 2 < 0,

h(z) = z + z 2 , if zi > 0, z2 > 0,

z 2 if z 2 > 0, z 1 < 0,

0 if z <0.

Let po = (1, -i1). Then

y(t, po) = (1, te-1 - 1), Vt E (0, e] ,

y (t, po) = (1, ln(t) - 1), Vt E (e, 15).

The directional derivative of h is given by:

h'(z; d) = min 1 1 0 0 -h(z) v (7.24)
VER5L

1 0 -1 0 --Z] di
s.t. V

0 1 0 -1 -Z2 d2

v > 0.

Let yt(p) y(t, p). Then, y'(p; d) is given by the solution of the following ODE:

ds [ 0 1[t J , s(to) = d. (7.25)dt _ e-h(y(t,p)) h'(y (t, p); s (t))

Let d = (0, 1). Then s1(t) 0 for all time and h'(y(t, po); s(t)) = 0 when y2 (t, PO) < 0

and h'(y(t, po); s(t)) = s2 (t) when y2 (t, Po) > 0. Therefore, the ODE system (7.25)

presents a discontinuity in its right-hand side introduced by the solution of LP (7.24).

This discontinuity is associated to a change in the optimal basis. Any numerical inte-

grator without event detection will take a very large number of steps near the discon-

tinuity. Therefore, a way to detect this discontinuity will make numerical integration

faster.
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The optimal basis of LP (7.24) at t = 0 is B = {1, 5} and the basis matrix is

B(t) = -yi(t, po) [ -1

0 -y 2 (t, PO) [0 1 - telj

For this simple example we know that given po and d, this basis will remain optimal

as long as y2 (t, PO) < 0. If the example were not this simple, we would need to verify

instead that the following three conditions were satisfied:

1. B(t) is of maximal rank,

2. Primal feasibility given by (B(t))-lz(t) 0,

3. Dual feasibility given by c(t) - A(t)T(B(t)T)-lcB(t) 0,

where A(t) and c(t) refer to the technology matrix and the cost vector of LP (7.24)

at time t.

However,

lim B(t)=,
toe0 0

therefore, as t -* e, neither primal nor dual feasibility can be verified reliably. In

addition, B(t) is maximal rank unless t = e, therefore, this basis matrix is optimal

despite approaching a point of singularity. Therefore, in this case tracking primal and

dual feasibility of the basis matrix associated to the directional derivative does not

work.

It is important to notice that the sensitivity system can present state-dependent

discontinuities, as reported in [72]. This issue is not resolved in [60]. The following

section describes how to integrate ODE (7.25) efficiently and without encountering

singular basis matrices.
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7.3.1 Reformulation of ODE (7.6) into a DAE system

Consider ODE (7.1). If z c int(F), then from strong duality of LPs [12 and for

i {O,. . .,nh}:

hi(z) = max qi(z)TA (7.26)
.XERm+i

s.t. [Ai]TA < ci.

Definition 7.3.1. Consider ODE (7.1). Let DEj be the set of extreme points and

DOi(t) contain the optimal extreme points of LP (7.26) evaluated at x(t, p). In case

nh = 0, refer to these sets as DE and DO(t), respectively.

Under Assumption 7.2.1 and since A' is full row rank, Theorem 2.6 in [12] implies

that the sets DEj are nonempty and finite. Since the feasible sets of these LPs remain

constant, the sets DEj remain constant too. Since LP mappings are abs-factorable

(Lemma A.3 in [73]), ODE (7.1) is an ODE system with an abs-factorable right-hand

side and can be integrated using an event-detection scheme. This event-detection

scheme relies on finding when an argument to any absolute value function in the

factored representation of the right-hand side of the ODE system crosses zero, and

the number of such events is finite (Theorem 3.12 in [73]). Given that LPs mappings

are abs-factorable, we can present the following definition.

Definition 7.3.2. Consider ODE (7.1). For appropriate 6 > 0, t* E (to, tf), and for

all i E {,... , nh}, let DOp(t*) be the constant value of DOi(t) on t c (t* - 6, t*) and

DOR(t*) be the constant value of DO (t) on t E (t*, t* + 6). In the case of nh = 0,

refer to this sets simply as DOL(t*) and DOR(t*), respectively.

Assumption 7.3.1. Consider ODE (7.1) and let Assumption 7.2.1 hold. Assume

that x(t, p) E F for all t E [to, tif].

Assumption 7.3.1 implies that the sets DO (t) are nonempty for all t E [to, tj] and

for all i E {0, . .. ,nh}.
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Lemma 7.3.1. Consider ODE (7.1) with nh = 0 (LP instead of LLP) and let As-

sumption 7.3.1 hold. Let t3 , tk E [to, tj] and [tj, tk] n Zt = where Zt is the finite set

that contains points at which DOL(t) , DOR(t) (see Corollary A.5 in [73]). Then

DOL(t) U DOR(t) c DO(t).

Proof: Assume this is not true. Without loss of generality (the following applies

to DOR(t) too), there exists A* E DOL(), A* 0 DO(t). We know that DO(t) =

arg max q0 (x(t, po))TA. Since x is the solution to an ODE system, it is con-
AcDE

tinuous, and since q0 and ho are continuous functions, so are the compositions

q o x and ho o x. For appropriate E > 0 and for all t E (t- ct), ho(x(tpo)) =

qO(x(t,po))TA*, but since A* DO(i), ho(x(ipo)) $ q0(x(tpo))TA*. From con-

tinuity, ho(x(-, po)) = lim ho(x(i- , Po)) = lim qr(x(- , po))TA*. This means
'ro+ 

-r--++
lim qo(x( - -, po))TA* $ q0(x(- po))TA* which contradicts the continuity of the
-r-o+
vector product function. l

Remark 7.3.1. Consider ODE (7.1) with nh > 0 (embedded LLP) and let Assump-

tion 7.3.1 hold. Let ti, tk E [to, tj] and [ti, tk] n Zt = t, where Zt is the finite set that

contains points at which DOL(t) $ DO'(t) for any i E {,... , nh} (see Corollary A.5

in [73]). Since qi and hi are continuous for all i E {0, .n.. , nh}, Lemma 7.3.1 implies

DOL (F) U DO C DOi(t) for all i.

Corollary A.5 in [73] shows that for a time domain [to, t1 ], there exists a finite

ordered set Zt c [to, tf] such that for tj_1 , tj E Zt, tjj < tj, Zt 0 (ty_, tj) = 0, such

that for t* E [to, tf] ]It Zt, DOf (t*) = DO(t*) for all i {0,. .. ,n }. Essentially

given tj_,, tj E Zt, DOi(t) is constant almost everywhere on (tj_,, tj) for all i. Given

ODE (7.1), we are interested in detecting when a t E Zt has been crossed.

Theorem 7.3.2. Consider ODE (7.1) with nh = 0 (LP instead of LLP) and let

Assumption 7.3.1 hold. Let ti, tk E [to, tf] and [tj, tk] n Zt = t, where Zt is the

finite set that contains points at which DOL(t) $ DOR(t) (see Corollary A.5 in

[73]). If no argument to an absolute value function crosses zero in an abs-factorable

representation of f or b at t, DOL(t) n DOR( 0

Proof: According to Lemma A.3 in [73], LP-mappings are abs-factorable and can be
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factored out as a composition of absolute value functions. There are many different

ways of obtaining an abs-factorable representation of a particular LP. Specifically, let

DE be the set of dual extreme points of the embedded LP. This set is constant in the

case of LPs parameterized by their right-hand side. Let DE contain a elements and

for each element p c DE, the following factored representation can be constructed:

h(z) = max {max {pTq(z),kTqo(z)} ,Vk c DE} (7.27)

= max (p + k)T q0(z) + I(p - k)Tqo(z)I, Vk DE

= max {1, 02,. .. , 6 a1},

0i 3 (p + k(.y)Tq0(z) + (p - k(j) )T qo(z)1, for j E {1,. . . , a - 1},2 2

which can further be expanded into more absolute value functions. Without loss of

generality, let us consider the following expansion of the max operator to absolute

value functions:

h(z) = max .. .max(max(61, 02), 03),. . . , 61). (7.28)

Each max(a, b) operator can be expressed as 1(a + b) + Ia - bl. If p E DO, 0 1 =

02 ... ,_1 and they are all equal to h(z). In this case, all arguments to absolute

value functions in the expansion of (7.28) will be equal to zero.

Let us assume that for appropriate c > 0 and any t E (t - E,t) _ TL, DO(t) =

DOL () and contains Pi, P2 , .. . , p. with < a, and h(x(t, po)) = (p1)T(qO(x(t, po)))

0(t). Let zt - x(t, po) and t1 E TL. Without loss of generality, take the factored

representation corresponding to pi:

h(zt,) = max (p1 + k)Tqo(zt1 ) + |(p - k)Tqo(zt 1 )1, Vk c DE (7.29)

= max {3(ti), . .. ,(tj)} .

If this abs-factorable representation of the embedded LP is used, the following state-

ments are true:
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1. (p1 - k)Tq(zt,) = 0 for all k E DO(ti) = DOL(i),

2. (p1 - k)Tq(zt1 ) > 0 for all k E DE\DOL t,

3. All absolute value functions in the expansion (7.28) are equal to zero.

These statements remain true for any t1 E TL because DO is constant on this interval

by assumption. For appropriate c > 0 and t2 E (, t+ E) T, DO(t2 ) = DOR() #
DOL (t) by assumption. Assume without loss of generality that there exists an extreme

point p* which is present in both DOL(t) and DOR(t) and consider the abs-factorable

representation of h associated to p*. If this abs-factorable representation is used, all

absolute value functions in the expansion (7.28) remain equal to zero and all 0% remain

equal to h(zt). For DO to change, at least one of the following two statements must

be true:

1. k* DOL (t), k* DOR(t). Then, (p*-k*)Tq(ztl) = 0 but (p*-k*)T q(zt2 ) >

0.

2. k* ( DOL(t), k* E DOR(t). Then, (p*-k*)Tq(ztl) > 0 but (p*-k*)Tq(zt2 )

0.

According to Corollary 3.15 in [73], for any of these cases to occur, an argument to an

absolute value function has to cross zero at time tin the abs-factorable representations

of f, b, or h. By assumption, there is no argument to an absolute value function

crossing zero in an abs-factorable representation of f and b. In addition, given this

abs-factorable representation of h associated to p*, no argument to an absolute value

function would cross zero. Then, a contradiction is reached and DOL(t)nDOR(t) 0.

Since DO(t) is nonempty for all t c [tj, tk] by Assumption 7.3.1, the only way

DOL(t) 4 DOR(t) is if some k* V DOL(t) is in DOR() and all p* E DOL() are not

in DOR(t). In that case (p* - k*)Tq(zt,) > 0 and (p* - k*)Tq0(zt 2 ) < 0 for ti E TL

and t 2 E TR, which is consistent with Corollary 3.15 in [73].

Theorem 7.3.2 implies that when the right-hand side of LP (7.2) is parameterized

by an analytic function of a single variable, when DOL(t*) y DOR(t*) then DOL (t*)n
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DOR(t*) = 0. A similar result can be found in Corollary 3.2 in [1], when the right-

hand side of LP (7.2) is parameterized by an affine function of a single variable. In

this sense, Theorem 7.3.2 is more general.

Corollary 7.3.1. Consider ODE (7.1) with nh > 0 (embedded LLP) and let Assump-

tion 7.3.1 hold. These assumptions imply DO (t) are nonempty for all t e [to, tf] and

for all i E {0,... ,n}. Let ty, tk E [to, tf] and [t, tk] n Zt = t, where Zt is the finite

set that contains points at which DOL(t) # DOR(t) for any i E {0,. . , nfh} (see

Corollary A.5 in [73]). If no argument to an absolute value function crosses zero

in an abs-factorable representation of f or b at t, DOf(t) f DOf(t) = 0 for some

i E {0, ... , nh}.

Proof: For c> 0, let S =1{ : DOf(t) $ DOj(t)} C {o,..., nh}. If S is a singleton,

the proof follows from Theorem 7.3.2. Let us now assume that S is not a single-

ton. Assume we can find p* E DO(), p E DOR(t) for all j E S. Following the

same analysis as in Theorem 7.3.2, some arguments of absolute value functions would

go from either positive or negative values to zero, but no argument to an absolute

value function would cross zero. This situation contradicts Corollary 3.15 in [73].

Therefore, there exists at least one j such that D0j'(t) n DOj(t) 0. L

Corollary 7.3.2. Consider ODE (7.1) with nh = 0 (LP instead of LLP) and let

Assumption 7.3.1 hold. Let tj, tk E [to, t1 ] and [tj, tk] n Z = t, where Zt is the finite

set that contains points at which DOL(t) , DOR(t) (see Corollary A.5 in [73]). For

appropriate E > 0, let DO(t) = DOL(t) for all t E (t-E, L and DO(t) = DOR

for all t E (t, t+ +) TR. Let S(t) be the set containing all optimal bases at time

t. If no argument to an absolute value function crosses zero in an abs-factorable

representation of f or b at t, S(ti) n S(t2 ) = 0 for any ti E TL and t 2 E TR.

Proof: Each basis B corresponds to a primal extreme point v* and a dual extreme

point p*. In the case of an LP parameterized by its right-hand side, the dual extreme

point p* is constant whereas v* varies with variations in the right-hand side. If basis

B is optimal, these points are primal and dual feasible, respectively. Let us assume

there is basis B* E S(ti) and B* E S(t2 ). This would mean there is p* E DOL(t) and
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p* E DOR(j). This contradicts Corollary 7.3.2. El

Corollary 7.3.3. Consider ODE (7.1) with nh > 0 (embedded LLP) and let Assump-

tion 7.3.1 hold. Let tj, tk E [to, tf] and [tj, tkl n Zt = t, where Zt is the finite set that

contains points at which DOL(t) $ DOR(t) for any i C {0,. .. , nh } (see Corollary

A.5 in [73]. For appropriate E > 0 and for all i E {0, . .. , nr}, let DO (t) = DO (t)

for all t E (E- E,t) TL and DO (t) = DOf(t) for all t E (tt+ c) = TR. Let Si(t)

be the set containing all optimal bases at time t for the ith level of the embedded

LLP. If no argument to an absolute value function crosses zero in an abs-factorable

representation of f or b at t, Si(tj) n Sj(t2 ) = 0 for any ti E TL and t2 E TR for some

i E {0, ... ,nh}.

Proof: Let K {j DOf( $ DO'(t)} c {0,...,n}. If K is a singleton, the

proof follows from Corollary 7.3.2. If K is not a singleton, assume we can find bases

B. E Sj(ti) and Bj E Sj(t2) for all j E K. This would mean there is p E DOL(t)

and p E D0j (t) for all j C K. This contradicts Corollary 7.3.1. l

Theorem 7.3.3. Consider ODE (7.1) and let Assumption 7.3.1 hold. Let tj, tk E

[to, tf] and [tj, tk] n Zt = t, where Zt is the finite set that contains points at which

DOF(t) / DOR(t) for any i C {0,. .. ,rih} (see Corollary A.5 in [73]. For appropriate

c > 0 and for all i C {0,. . . ,fnh}, let DOj(t) = DO (i) for all t E (t - c,) TL

and DOj(t) = DOf(t) for all t E (tt+ 6) = TR. Let S(t) be the set of possible

optimal bases of the LLP returned by Algorithm 2 in [56] at time t (each element of

S(t) represents a single basis for all levels of the LLP). Assume no argument to an

absolute value function in an abs-factorable representation of f or b crosses zero at

t. Then, S(ti) n S(t2 ) 0 for any t 1 E TL and t2 E TR.

Proof: If nh = 0, the Theorem follows directly from Corollary 7.3.2. When nh > 0,

Algorithm 2 in [56] finds a single basis matrix B* E S(t) that describes the solution

of LPs (7.2) and (7.3) at time t. Let Si(t) be the set containing all optimal bases

at time t for the ith level of the embedded LLP. This single basis can be related to

optimal bases BZ E Si(t) for each level i of the LLP. A basis B* becomes infeasible

when VB' 0. Theorem 2 in [56] shows that for each i, the solution vector has the
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following structure:

VB = (7.30)
A- b(x(t, p))

with 0 E R'. Therefore, for all Z > 0, any basis B* becoming primal infeasible

corresponds to B* becoming primal infeasible.

Corollary 7.3.3 indicates that there exists at least one level i such that Si(ti) n

Si(t2) = 0 for t1 E TL, t2 E TR. Then, BZ becomes infeasible for some i after time t.

Then B* also becomes infeasible because of the structure of (7.30). l

Remark 7.3.2. Another way of proving Theorem 7.3.3 is by noticing that all bases

B* are describing the same solution point, and since optimality conditions are not

changing with time, this solution point will be optimal as long as it is feasible, where

the feasibilty conditions are equal for all bases B*.

Corollary 7.3.4. Consider ODE (7.1) and let Assumption 7.3.1 hold. Let Zt C

[to, tj] be the finite set that contains points at which DOL(t) # DOR(t) for any

i E {0, ... , rI} (see Corollary A.5 in [73]). Then all times in Zt correspond to at least

one of the following:

1. An argument of an absolute value function in an abs-factorable representation

of f or b crossing zero.

2. The optimal LLP basis in the sense of Algorithm 2 in [56] becoming infeasible.

Proof: When no arguments of absolute value functions in an abs-factorable represen-

tation of f or b cross zero, the proof follows directly from Theorem 7.3.3.

Assume that an LLP basis in the sense of Algorithm 2 in [56] remains optimal

on T -- (tj, tk) C [to, tf]. There could still exist t E T such that DO (t) f DO (t)

for some i E {0,. . . , n1 }. In particular, let us for some i assume that DO (t) #

DOR (t) but an LLP basis remains optimal. This would mean there exists an optimal

dual extreme point p* for some i that belongs to DO (t) and DO (t). Select an

appropriate e > 0 such that DOi(tl) = DO (t) and DOj(t2 ) = DO (t) for all
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t1 E (t- E, ) = TL and all t 2 E (, -+ c) = T, respectively. Taking the abs-factorable

representation of the embedded LPs, at least one of the following two situations is

taking place:

1. k* E DO i), k* ( DOj(t). Then, (p* - k*)T qi(zt,) = 0, (p* - k*)T q(zt2 ) > 0.

2. k* ( DO- (), k* F DOR( t). Then, (p* -k*)Tqi(zt,) > 0, (p* - k*)Tqi(zt2) = 0.

For some level i, we would have absolute value functions going from positive or neg-

ative values to zero value at exactly t. From Corollary 3.15 in [73] these changes will

require an argument to an absolute value function to cross zero at t. This can only

happen in an abs-factorable representations of f or b. l

Remark 7.3.3. Consider ODE (7.1) with n embedded LLPs, n > 1 and let BZ(t)

be an optimal basis of the ith LLP returned by Algorithm 2 in [56] at time t. Let

Assumption 7.3.1 hold for each one of the embedded LLPs. Then the times in Zt

correspond to BZ(t) becoming infeasible for some i E {1, . . , n} or an argument to an

absolute value crossing zero in the abs-factorable representation of f or b.

Corollary 7.3.5. Consider ODE 7.1 and let Assumption 7.2.1 hold. Let tj, tk E Zt

with t, < tk and (tj, tk) n Zt = 0. Let t* E (ti, tk) such that DOf(t*) = DO (t*) =

DOfr(t*) for all i = 0,... , nh. Let zt = x(t, p) and let z* = x(t*, p). Then for almost

every t E (tj, tk) and for all i 0,...n,

(A")TA < Ci, (7.31)

- (q'(zt)) TA < - hi (z),

and

(A')T A < ci, (7.32)

- (q'(z*) )T A < -hi(z*),

contain the same extreme points.

Proof: For all i, (7.31) is a representation of Y*(t) (the dual solution set of LPs (7.2)
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or (7.3) at time t). The extreme points of Yi*(t) correspond to DOi(t). Since DOi(t)

is constant almost everywhere in t C (tj, tk), the equivalence follows. E

Corollary 7.3.6. Consider ODE 7.1 and let Assumption 7.2.1 hold. Consider the

LLP (7.11) which gives the directional derivative of a LLP parameterized by some

components of its right-hand side. Let ti, tk E Zt with t, < tk and (t1, tk) n Zt = 0.

Let t* E (t, tk) such that DO(t*) = DOi(t*) = DO'(t*) for all i = 0, ... , n. Let

Zt = x(t, p) and assume zt E int(F) and b(zt) E int(F) for all t. Let z* = x(t*, p).

Then for almost all t E (t, tk) and for 0 < i < nh both

[hi]'(zt; d) = in [CT h~z)

s.t. [A -qi(zt)] V = [qi]'(zt; d), (7.33)

v > 0,

and

mi C. -hi(z*) V,

s.t. [A' -qi(z*) Iv = [q']'(zt; d), (7.34)

v > 0.

attain the same objective function value (note that zt appears in the right-hand side of

(7.34)), if (7.34) is feasible. Therefore for almost all t E (t, tk), the objective function

values of LLP (7.11) for j 0 can be computed by solving LLP (7.34), which is an

LLP parameterized by some components of its right-hand side.

Proof: From [47], i is directionally differentiable and I-smooth on int(F) and since

b is abs-factorable, h is I-smooth at z c int(F) if b(z) E int(F). Since zt E int(F)

and b(zt) E int(F) for all t, hi is directionally differentiable and I-smooth at zt for

all i and (7.33) always attains a finite solution. Since (7.33) always attain a finite

solution, (7.34) is always dual feasible. Therefore, (7.34) must either attain a finite

solution or be infeasible.
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From strong duality, the duals of LPs (7.33) and (7.34) attain the same objective

function values, respectively. The feasible sets of the duals of (7.33) and (7.34) are

described in Corollary 7.3.5, and this same Corollary argues that these sets share the

same extreme points almost everywhere. By Theorem 2.7 in [12], the solution sets of

the duals of (7.33) and (7.34) will include an extreme point. Therefore, the objective

function values of both LPs can be computed as max AT[qi]'(zt; d). Then, the same
AEDOi

objective function value is attained by LPs (7.33) and (7.34) almost everywhere in

(tl, tk). El

The fact that LP (7.34) can become infeasible is not a problem. Consider B to be

an optimal basis of LP (7.34) at time t*. If LP (7.34) becomes infeasible, then basis

B must become infeasible too, which can be detected reliably using the strategies in

[56]. Every time an optimal basis of (7.34) becomes infeasible, the LP (7.34) can be

reconstructed using (7.33) which will always be well-defined.

Remark 7.3.4. LP (7.34) is an LP parameterized by its right-hand side.

The sensitivity system for ODE (7.1) is given by the ODE system (7.6). Given

that LLP (7.11) with j = 0 can be reformulated as a finite time sequence of LLPs

parameterized by some components of their right-hand sides, the ODE system giving

the directional derivative of ODE (7.1) can be reformulated as a finite time sequence

of ODE systems with LLPs parameterized by some components of their right-hand

sides. Since LD-derivatives are obtained by taking the directional derivative of the

previous column, the same analysis applies for the rest of the LD-derivatives. This is

expressed in the following two Remarks.

Remark 7.3.5. Consider ODE (7.1) and let xt(p) = x(t,p). Let xt(p) c int(F)

and b(xt(p)) E int(F) for all t E [to, t1 ]. Then x't(p; d) is given by the solution of

a finite time sequence of ODE systems with embedded LLPs parameterized by their

right-hand sides and can be reformulated as a finite time sequence of DAE systems

using the strategies in [56]. The sets containing the extreme points of the dual feasible

sets of the embedded LLPs can change at each time t E Zt. Therefore, a new LLP

must be constructed and a new optimal basis computed at every t E Zt.
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Remark 7.3.6. Consider ODE (7.1) and let xt(p) -- x(t, p). Let xt(p) E int(F) and

b(xt(p)) E int(F) for all t E [to, tf]. Let M E R"n ' and consider [xt]j - (d) with k E

{1, ... , q} which is given by an ODE system with a LLP embedded parameterized by

its right-hand side and technology matrix. Then, there exists a finite set Zk C [to, tfI

such that for tj, tj E Ztk, (ti, tj) n Ztk= 0, the embedded LLP in the ODE sensitivity

system (7.6) that gives [xt](%1 (d) can be reformulated as a LLP parameterized only

by its right-hand side almost everywhere in (ti, tj).

The fact that LP (7.34) is equivalent to LP (7.33) almost everywhere is not a

problem either. The points where they are different are of measure zero. Therefore,

these points have no impact on the solution of an ODE system. However, any good

methods will rely on detecting when LP (7.34) is constructed at any of these points.

In the unfortunate situation LP (7.34) is constructed at one of these points, the

computation of sensitivities can be wrong. Example 7.3.2 shows what could happen

in a very similar situation. In Example 7.3.2, LP (7.34) is constructed at t E Zt

leading to the wrong sensitivities. Care must be taken if integration is started or

restarted at t* and for any i, DOi(t*) # DOf(t*) for all small enough E > 0.

The observation in Remark 7.3.1 can be useful in this case. If LP (7.34) is con-

structed at t E Zt (or any t such that DOj(t) $ DO[(t) when DO (t) = DOR(T)

for some i C {0,. ... , nrh}), the basis B* obtained using Algorithm 2 in [56] could be

describing A* E DOQ(), A* V DOf(it). In this case, a violation of the dual constraints

-(qi(zt))T A < -hi(zt) in (7.31) would happen at time t+ c for all small enough e > 0

and some level i c {0,... , nr }. This specific dual constraints are also given by the

last component of the reduced cost vectors for each level of LLP (7.33). When solving

the embedded LLP at time t*, the optimal dual vertices A*, which are time-invariant,

can be extracted for each level i E {0, .. . , nh}. Then, the time-derivatives of the

reduced costs can be inspected (if the time-derivatives are continuous in time) or

the last component of the reduced costs vector for each level i E {0,. ... , nh} can be

integrated for a very short period of time and verify that they remain positive. This

problem is illustrated in Example 7.3.2.
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Definition 7.3.3. Consider ODE (7.1) and let Assumption 7.3.1 hold for all embed-

ded LLPs. In addition, let x(t, p) E int(F) and b(x(t, p)) E int(F) for all t E [to, tj]

for all embedded LLPs. Let Zo include all points at which an LLP basis becomes

infeasible in any embedded LLP and any valley 0-crossing as in [71] for any absolute

value function in the abs-factorable representation of f or b. For k E {1, . . . , q}, let

Ztk contain all elements in Z-1, any times at which an LLP basis becomes infeasible

as in [56] in the kth column of the sensitivity ODE system in (7.6), and any valley k-

crossing as in [71] for any absolute value function in the abs-factorable representation

of f or b.

Therefore, the embedded LLPs in ODE (7.6) can all be transformed into LLPs

parameterized by their right-hand sides and these ODEs can be reformulated as a

finite time sequence of DAEs using the strategies in [56]. In particular for M E R X q

[xt I( will be solutions to ODE systems with embedded LLPs parameterized by their

technology matrix and right-hand side for each k E {,... , q-1}. These ODE systems

can be reformulated as a finite time sequence of ODE systems with embedded LLPs

parameterized by their right-hand sides. For each k c {0,.. ., q - 1}, Zk contains the

times at which the embedded LLPs parameterized by their right-hand sides needs to

be reconstructed when integrating the ODE system associated with [xt] .

Example 7.3.2. Consider Example 7.3.1, let po = (1, 0) and d = (0, -1). Then

y(t, po) = (1, ln(t + e) - 1). (7.35)

The directional derivative y'(p; d) is given by the solution to ODE (7.25). The

use of Corollary 7.3.6 can lead to very different results to the sensitivities. This is

because DO(0) $ DO(E) for all small enough c > 0. From (7.35) and LP (7.23) it

can be observed that DO(0) {(1, 1), (1, 0)} whereas for all small enough E > 0,

DO(c) ={(1, 1)}.
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The solution to

h'(y(0,po);y'(0,po;0,d))= max [0
AEDO(O)

- 1]A = 0,

with an optimal vertex A* = (1, 0). However, A* DO(E). If Corollary 7.3.6 is used

without checking whether DO(0) = DO(e) for all small enough E > 0, no events are

detected and the right plot of Figure 7-1 is obtained.

The description of DO(t) is the following:

1

0

-1

0

1

0

-10

-y 1 (t, P0) -y 2 (t, Po)

AK

1

1

0

0

-h(y(t, po))

where the last row is always satisfied as an equality (it is an implicit equality con-

straint). For small enough E > 0, A* E DO(E) if

0, Po))
- ((0Po))

T < -h' (Y(0 PO); dy(0, po)
dt )

is satisfied and A* V DO(c) if

P0) - (0, po)Idt
dy (0, P0)\

dtJ

A definitive conclusion cannot be drawn if they are equal and integration for a small

period of time will be required. Now,

-(,po) = [0 -h(y(0,po))] = [0 e-1],
dt
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and then

h' (y(0, po); [0 e-1]) = max [0 e-1 ]A = e 1 .
AEDO(0)

Since - (X(, po))TA* = 0 > h' (y(O, po); [0 e- 1 ]) = -e- 1 , A* DO(E). Therefore,

LP (7.34) should be constructed using DO(e) instead of DO(0) for small enough

f > 0. A way to deal with this specific problem is to verify dual feasibility using event

detection. To do this, verify that h(y(t*, po)) - y(t*, po)TA* < 0.

The left plot in Figure 7-1 shows the correct sensitivities obtained solving LPs

(7.22) and (7.33) at each time point. This problem was solved using Gurobi [50] with

optimality and feasibility tolerances of 10-8 for the LP. The absolute and relative

integration tolerances used were of 10-7. If instead po = (1, -10-6), all three methods

produce the same plot because now DO(0) = DO(e) for all small enough E > 0.

-t -- -Yt,2 --- 1 Yt,2

0

0 5 10 0 5 10 15
t t

Figure 7-1: Sensitivities plots for Example 7.3.2. Left: Correct sensitivities plot for

P0 = (1, 0), d = (0, -1). Right: Plot obtained if DO(0) is used as the feasible set of
the directional derivative LP. This example shows that although DO(t) is constant

for any t > 0, it is different at t = 0.

In the case of po = [1, 0] and T = [0, 15], solving for y and y' by solving LPs (7.22)

and (7.33) at each time step takes about 0.33 seconds, whereas using the algebraic

reformulation for both y and y' results in approximately 0.039 seconds, a gain of
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almost an order of magnitude.

Now, let us revisit the case when po = [1, -1] which encounters a point of sin-

gularity in the directional derivative LP. Using Corollary 7.3.6 we can find that the

optimal basis at t = 0 for LP (7.24) is

B(O) =B ,c(0) = ,(7.36)
0 1 -

and h'(y(0, po); s(0)) = 0. Since s(t) = (0, 1) for all t E (0, e), h'(y (t, po); s(t)) = 0

for all t c (0, e). Then, using LP (7.24) with z = y(t, po) or with z = y(O, po) for

t E (0, e) yields the same result. The advantage of using LP (7.24) with z = y(0, po) is

that the optimal basis (7.36) does not become ill-conditioned or singular. Nevertheless

at t = e, LP (7.24) evaluated at z = y(O, po) ceases to be valid. This is detected by

a change of basis at t = e for LP (7.22). In particular, B(t) = {{1, 4}} for t E (0, e),

B(t) = {{1,2}} for t E (e, 15), and B(e) = {{1,2},{1,4}} where B(t) is the set of

optimal bases at time t.

Algorithm 2 computes the LD-derivatives of LLPs parameterized by some compo-

nents of their right-hand side in a more efficient way. It relies on detecting whether a

given basis is compatible with the set of directions M. This "compatibility" may be

considered an extension of the theory in [48]. When a basis is compatible with a set

of directions M, then it can be used to calculate the LD-derivatives without solving

LLP (7.11).

The theory in [71] for efficient integration of the ODE sensitivity system relies

on being able to detect all times Z for all k as in Definition 7.3.3. In particular,

the times in Ztk correspond to times where arguments to absolute value functions

cross zero; at this times, some arguments of absolute value functions can enter sliding

modes [71]. Being able to detect sliding modes is important for efficient numerical

integration. If LLP (7.11) is not solved at time V because an optimal basis B of LLP

(7.4) is compatible with the directions b'(xt*(p); x' (p; M)), a basis change of LLP

(7.11) can still be detected, which in turn means a time in Ztk can be detected. This
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is shown in Theorem 7.3.4.

Theorem 7.3.4. Consider ODE (7.1) in T [to,tf] and let x(t,p) E int(F) and

b(x(t, p)) E int(F) for all t E T. Let xt(p) x(t, p) and consider x'(p; d), which

can be computed as the solution of a time sequence of ODE systems with LLPs

embedded parameterized by some elements of their right-hand sides. Let B(t) be an

optimal basis of LLP (7.4) and B(0)(t) an optimal basis of LLP (7.11) returned by

Algorithm 2 in [56] at time t. Then, each element of Zt can be detected as at least

one of the following:

1. An element of Zt,

2. A valley-i-crossing as in [71],

3. A basis change in B(0)(t) as in [56],

4. Basis B(t) becoming not compatible with direction b'(xt(p); x'(p; d)).

Proof: The first three situations follow from Definition 7.3.3. This Theorem is relevant

when an optimal basis B(t) is found to be compatible with the first direction, and

therefore B(0 ) (t) is not computed. In this case, elements of Zj corresponding to basis

B 0o)(t) becoming primal infeasible as in [56] can still be detected. For this, let us

assume that for t, E T, Zt n (to, t1) = 0, t c (to, t1 ), there are no valley-1-crossings

at time t, basis B(0 )(to) becomes primal infeasible as in [56] at t, but this basis is not

computed because B(to) is compatible with direction b'(xt(p); x'(p; d)).

Let d(t, p) = b'(xt(p); x'(p; d)). If basis B(to) is compatible with direction

d(t, p), the objective function values of LLP (7.11) at time t can be computed as

(CB(to))TA-' d(t, p). Since Anh is full row rank, the cost vectors are all linearly

independent with respect to their technology matrix A', and at each level i, there

is at least one strictly positive reduced cost (if all reduced costs are equal to zero,

the cost vector is linearly dependent). Choose the index of any such variable for

each level i and name it a,, ... , a, respectively, where they are all different among

themselves. Notice that reduced costs only change with a basis change. Then, set
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B'(to) = B(to) U a, U ... U a. By construction, bases B'(to) are optimal for each level

i, respectively.

From the structure of the primal solution vector in Theorem 2 in [56] (which is

described too in Theorem 7.3.3), for t E (to,t), for all i, and for all k < i,

(CBi(to))T A-' [qi]'(xt (p); x't (p; d)) = (CB([qk]'(xt 0 ( xi0 (p; d))

= (CB(to))T A-' d(to, p).

For all i E {O, . . . , na}, let Ai = ([Ai1 ()T ci,Bi(to). For all i, A' is optimal for

LP (7.26) because the basis B'(to) is optimal. Therefore for t E (to, ), A' is fea-

sible in LP (7.9) for j = 0, and it is optimal because [qi]'(xt(p);x'(p;d))TAi =

C )A- [q']'(xt (p); x'(p; d)) = (ci,B(to))T A-' 0 d(t, p), which corresponds to the

objective function value of LP (7.9) because B(to) is compatible with direction d(t, p).

Assume that for all t E (t, ti), B(to) is compatible with directions d(t, p), but basis

B(0 )(to) becomes primal infeasible in LLP (7.11). Since by assumption there are no

valley-1-crossings at t as in [71], DOo)L()DO '() = 0 for some i, by Corollary

7.3.1 (where here, DOifj(t) refers to the optimal extreme points of the duals of LLP

(7.11) at time t). Then at least for some i, Ai becomes suboptimal, which in turn

corresponds with (ci,B(to))T A-' d(t, p) not corresponding to h'(x(t, p); d(t, p) (the

ith objective function value of LLP (7.11)) at time t. Then, B(to) can't be compatible

with directions d(t, p) for t E (t, ti) and a contradiction is reached. Then, all basis

changes in B(0 )(t) must correspond with basis B(t) becoming not compatible with

directions d(t, p).

Remark 7.3.7. The same analysis as in Theorem 7.3.4 can be applied for all Zt

with k > 1.

When using Algorithm 3 to compute the LD-derivatives of h, the times in Zt

and Zt for all i indicate that the optimal partitions may have changed. The proof is

presented in the following Proposition.

Proposition 7.3.5. Consider ODE (7.1) on [to,t11. Let zt(p) = x(t,p) and let

zt(p) E int(F) and b(zt(p)) E int(F) for all t E [to, t1]. For i E {0, ... , nh}, let BZ(t)
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and N'(t) be the optimal partitions for each level of LLP (7.4) at time t. Then LP

(7.20) will attain the same objective function value using BS(t) and NZ(t) and BS(to)

and N2 (to) until one of the following happens:

1. The optimal basis of LLP (7.4) becomes infeasible,

2. An argument to an absolute value crosses zero in f or b,

3. For some i, all optimal bases of LP (7.20) becomes infeasible.

Proof: From [47], hi is directionally differentiable and I-smooth at zt for all t E [to, t1]

and for all i and LP (7.20) always attains a finite solution when using BS(t) and NZ(t).

Therefore, when using BS(to) and N'(to), LP (7.20) is always dual feasible, and then

it must either attain a finite solution or be primal infeasible.

The dual optimal solution set at time t, Yi*(t), can be described by Equation

(7.15) using the optimal partition. Notice that Yi*(t) is the feasible set of the dual

of LP (7.20) and this set is nonempty for all t. If a finite solution is attained, then

using BS(to) and N'(to) or BS(t) and N'(t) in LP (7.20) must result in the same

objective function value because a solution will lie at an extreme point, and Yi*(t)

and Y*(to) contain the same extreme points for all i until either the optimal basis of

LLP (7.4) becomes infeasible or an argument to an absolute value crosses zero in f

or b (Theorem 7.3.3 and Corollary 7.3.4).

LP (7.20) can become dual unbounded when using B"(to) and N'(to), which in turn

means it can become primal infeasible. This will result in an optimal basis becoming

infeasible, which in turn can be detected reliably using the strategies in [56]. When

this happens, a new optimal partition for each level i can be computed. El

With Proposition 7.3.5, the times at which the optimal partition needs to be

updated can be detected reliably. Proposition 7.3.5 refers to directional derivatives

only and can be extended to LD-derivatives.
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7.4 Integration procedure of ODE systems corre-

sponding to the LD-derivatives of ODE (7.1)

Consider ODE system (7.6) which corresponds to the LD-derivatives of ODE (7.1).

As mentioned before, this ODE system does not necessarily satisfy Caratheodory's

conditions because [ft]'(x(t, p); -) can be a discontinuous function [72]. However, an

event detection scheme can be used to integrate a time sequence of Carath6odory

ODEs.

Let M be the matrix of directions with q columns. Then, the matrix ODE system

(7.6) contains q columns too. Consider ODE (7.1) and the sensitivities ODE (7.6).

The superscripts refer to embedded LLPs. Consider that there are n embedded LLPs.

Then for i E {1,... , n} we have h' instead of h, FI, F" instead of F, F, A' and n'

instead of A and nh, and q',j instead of W' for j E {o,... , n'}. Algorithm 4 provides

a way of computing the sensitivities of ODE systems with n LLPs embedded.

If Algorithm 3 is used, an algorithm analogous to Algorithm 4 can be derived,

with the added complication associated with the optimal partition method.

7.5 Numerical Examples

The following examples have been carried out on MATLAB 8.4.0 R2014b on an Intel

2.60 GHz processor using Gurobi 6.0 as the LP solver.

7.5.1 E. coli cultivation system

This example is based on Figure 1 in [51], and its sensitivities have been analyzed in

Figure 2 in [60]. It consists of a batch reactor where E. coli is growing on glucose

and xylose. Oxygen concentration is controlled and assumed to be constant. The
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Algorithm 4 Method for finding the LD-derivatives of ODE systems with n LLPs
embedded.

1: Require x(t, p) E int(F') and b2(x(t, p)) E int(P) for all t E [0, tj] and for all n
LLPs.

2: Require M E R' Xq, t* = 0, x(0, p) = p, S(0) = M.
3: procedure CALCULATE
4: while t* < t1 do
5: for i= 1 : n do
6: For LLP i, compute 7i, the optimal bases B', B',..., B" for LLP i,

the matrices A'", and the vectors A', for j E {o,... , q}, k E {,. . .. , n'}, and
1 {1, ... , "Y'} using Algorithm 2.

7: Compute the technology matrices A', and A'+ Ap),s() for j E
0,..., q - 1.

8: Consider K'(t) [ [A 1]-1(b(x(t, p)) [A" B]sl(t) ... [A i,(t).
9: Let K'(t) _- [k',(t). .. k"(t)] and K'(t) _= [k^'+1 (t) ... .k',(t)].

10: end for
11: Integrate ODE (7.1) and sensitivities ODE (7.6) using the theory

in [71] with h2(x(t, p)) = A',Ob(x(t, p)) and for j E {,... , q - }
[h'] Ps)(sj+1)(t)) - A2J+1s,+1(t) for i E {1, . . . , n} until time tsuch that:

(a) K'() O 0 for some i {0, . ., , n}.

(b) fsign(K'()) 0 for some i E {E,... , n} where f sign applied to a matrix
is equal to applying f sign to each row.

(c) For all i such that -y > 0 with j E {O,. . . ,n},i E {1,. . .,

k c {2, ... ,gYi},[A 1]T qi(x('tp)) - h.(x(T, p)) < 0 and if > 1,

[AJ ]q (^),s ( ()) - [h2] ~ P)S(t (sj+1(i)) < 0.

(d) An argument to an absolute value function in the abs-factorable representa-
tion of f or b' crosses zero.

(e) t= t.

12: t* zt.
13: end while
14: return x(tj, p), S(tf).
15: end procedure

dynamic equations describing this system are:

y~,p) =P(x(t, p), p)y(t, p),

g~,p) =, -(X (t, p), P) y(t, P),

z~,p) = -v(x(t, p), p) y(t, p),
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&(t, p) = 'y(x(t, p), p),

where y, g, z, e, a represent the concentrations of biomass, glucose, xylose, ethanol,

and the penalty state, respectively, x(t, p) = [y, g, z, a], p = [yo, go, zo, eo, 00], and -X

represents the objective function value of the Phase I LP. The quantities f(x(t, p)p)' =

[7(x(t, p), p), p(x(t, p), p), ve(x(t, p), p), vg(x(t, p), p), v,(x(t, p), p)] are given as so-

lutions of the following lexicographic linear program

f(x(t, p), p) = lex min CTv,

s.t. Sv = 0,

vLB(x(tP),p) < V < VUB(x(tp),P),

where C contains the following objectives:

1. minimize Phase I LP slacks;

2. maximize growth;

3. maximize ethanol production;

4. minimize glucose consumption;

5. minimize xylose consumption.

The upper bounds for glucose, xylose, and oxygen consumption have the following

form:

VUB 1
9 g,max Kg + g I + elKi,'

UB Z 1 1
VZ Vzmax Kz+z1+gKigI+e/Kie'

vOUB Vomax 0 , (7.37)
0 I Ko+o
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with parameters obtained from Table I in [51]. The metabolic network reconstruction

used was iJR904 [107. The work in [60] does not deal with the nonuniqueness nor the

problems associated with the FBA LP becoming infeasible. In that case, the uptake

kinetics are determined by the Michaelis-Menten expressions, and sensitivities can

only be computed up to time 7 h. Figure 2 in [60] reports the solution to the DFBA

simulation as well as the sensitivities with respect to glucose initial concentration and

02 concentration. With the theory developed in this chapter, the use of the LLP

allows using a penalty function which in turn allows the computation of sensitivities

for any time length (10 hours in this example), and the uptake kinetics are computed

using the LLP. Here, we compute the sensitivities with respect to biomass, glucose,

xylose, oxygen, and ethanol initial concentrations (02 concentration is constant).

-- E. Coli-Glucose -- Xylose -- Ethanol -- Penalty X 10
20 500

10 
N-0---- ---- -

CD

110
0 0 -0.5 ---1 ..

1a -1-

13 0 - --

Cl) C 0
-20 -2

0 2 4 6 8 10 0 2 4 6 8 10
Time [h] Time [h]

Figure 7-2: DFBA simulation and sensitivities for a batch process growing E. coli on
glucose and xylose. The three plots on the left side coincide with the plots reported
in Figure 2 of [60], only that this chapter is able to compute sensitivities past time
7 h and the DFBA simulation past time 8.2 hours. The plots on the right-hand side
report the sensitivities for the initial concentration of biomass, xylose, and ethanol,
respectively.
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7.5.2 E. coli/yeast continuous cultivation system

The previous example was extended to consider yeast too. In addition, the oxygen

concentration was made variable. The new dynamic system is the following:

b(t, p) = AB(x(t, p), p)b(t, p) - Fob(t, p),

y(t, p) = py (x(t, p), p)y(t, p) - Foy(t, p),

1(t,p) = -Vg,B(X(t,p), p)b(t, p) - vg,y(x(t, p), p), y(t, p) + FO(go - g(x(t, p)),

(t, p) = -vz,B(X(t, p), p)b(t, p) - vz,y(x(t, p), p), y(t, p) + F(zo - z(x(t, p)),

a(t, p) = Ve,B(X(t, p), p)b(t, p) + Ve,y(X(t, p), p)y(t, p) - Foe(t, p),

6(t, p) = -Vo, B(X(t, p), p)b(t, p) - vo,y(x(t, p), p), y(t, p)

- Foz(x(t, p) + ko2 (o* - 0(t, p)),

&(t, p) =YB (X(t, p), p) + 'yy(x(t, p), p),

where x - [b, y, g, z, e, o, a]. The hierarchy of objectives for E. coli was modified by

adding a sixth objective of minimizing oxygen consumption. This same hierarchy

of objectives was used for yeast. The metabolic network used for yeast was iND750

[31]. Yeast uptake kinetics parameters were those reported in Table I in [51]. Using

Fo = 0.5/h, go = 10 g/L, zo = 5 g/L and k0 2 = 0.6/h the system was allowed to

attain steady-state:

xeS = [1.65,0,3.84,5.00,0.014,0.21,0].

After reaching steady-state, it takes 5 seconds to compute the sensitivities in

Figure 7-3.

7.6 Conclusions

This work represents an important step forward compared to the work reported in

[601 from an optimization standpoint. Whereas sensitivities obtained by [60] are not
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Figure 7-3: DFBA simulation and sensitivities for a continuous process involving E.
coli and yeast. The plots give the sensitivities for an increase in dilution rate (top
left), glucose feed concentration (top right), xylose feed concentration (middle left),
mass transfer coefficient for 02 (middle right), and yeast concentration (bottom left).
Given that the steady state has no yeast present, the last plot essentially gives the
sensitivity of the system to yeast invasion. It can be seen that yeast invasion is not
stable in this system, and the system returns to the initial steady state.

amenable for optimization as sometimes they need to be truncated before the end time

of the simuluation, the work here allows the computation of sensitivites regardless of

when the LLP becomes infeasible. This is critical to be able to solve optimization

problems. Different classes of optimization problems are illustrated in the following

chapter.
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Chapter 8

Local Optimization of Dynamic

Flux Balance Analysis Models

The optimization of dynamic flux balance analysis (DFBA) models enables the solu-

tion of the following kinds of problems:

1. Parameter estimation;

2. Optimal design of bioprocesses;

3. Optimal control of bioprocesses.

Given a closed set Z E R p, general optimization problems of DFBA models have

the following form:

min J(p) a (x(tf, p), p) + J l(t, x(t, p), p) dt, (8.1)
PEZ /f/
s.t. g(p) R(x(tf, p), p) + j s(t, x(t, p), p) dt < 0.

In general, J is a nonconvex and a nonsmooth function, and the constraints g

are nonsmooth and can describe a nonconvex feasible set. Therefore, this kind of op-

timization requires global optimization and nonsmooth strategies to find a global

optimum. In this chapter, we shall focus only on performing local optimization

of DFBA models while taking into account the nonsmooth nature of the problem.
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Global optimization requires convex and concave relaxations. Appendix C contains

the derivation of these relaxations for lexicographic linear programs.

In this chapter we use derivative-based optimization. Given that this is a non-

smooth optimization problem, generalized derivatives are needed. Here, we use the

techniques in Chapters 6 and 7 to compute the sensitivities of DFBA systems. Then,

we use nonsmooth optimization methods [80] to solve different classes of optimization

problems. We also illustrate the use of the robust smooth optimizer IPOPT [139] with

LD-derivatives. First, a toy metabolic model is used to show different kinds of op-

timization problems, and then an example using genome-scale metabolic networks is

presented. The results presented in this chapter should be considered as preliminary.

8.1 Toy Metabolic Network

Here, we introduce a toy metabolic network. This metabolic network consumes a

carbon source C, a nitrogen source N, and an oxygen source 0 to produce lipids

L, ethanol E, biomass X, ATP and some oxidation product COX. This metabolic

network is used for illustration purposes and is not meant to satisfy mass balances.

However, it is supposed to reproduce the behavior of living organisms. In particular,

E can only be produced in the absence of 0, L can only be accumulated in the absence

of N, there is a minimum ATP requirement, and the aerobic oxidation of C produces
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more energy than the fermentation of C. The set of reactions is the following:

VC : C C -0, (8.2)

VN : Ne ., N,

VO : 0 e -+ 0,

vox : C+O -ATP+COXe,

VFERM : 4C -+ ATP + Ethex + 2COXex,

VLIP : 4C+ 2ATP -* L,

Vx : 4C + 0.5N + 1.5ATP -+ X,

VATP,rm : ATP + ATPmaintenance,

The subscript ex refers to extracellular metabolites. All these reactions are unidirec-

tional (their lower bounds are equal to zero). Assume all reactions are in mmol/gDW

except for reaction vx in gDW/gDW and reaction VLIP in g/gDW.

The simulations in this section were carried on MATLAB 7.12 running on Win-

dows 10 Pro with a 64 bit operating system and a 3.20 GHz Intel(R) Xeon(R) pro-

cessor.

8.1.1 Parameter Estimation Problem

Let us assume that the uptake kinetics are given by the following expressions:

UB C 1
vCg(x) = max (0, Vmax,CKc , + (8.3)

vUB(X) =max 0 VmaxN ) ,
vN max ( VmaxKN + N

" UB(x) = max 0, 0mx ,0 ( 1 maxOKo + 0
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where x is a vector containing the extracellular concentration information. The fol-

lowing parameters are considered:

T

P [Vmax,C Kc Vmax,N KN Vmax,O KO KiE VATP,m. -

To illustrate how a parameter estimation problem would work, 'experimental data'

was generated using the following dynamic model for a batch reactor:

X(t, p, xo) = Ap(x(t, p, xo))X(t, p, x0),

C(t, p, xo) = -VC(x(t, p, xo))X(t, p, x0 ),

N(t, p, xo) = -VN(X(t, p, XO))X(t, p, Xo),

O(t, p, xO) = -vO(x(t, p, xo))X(t, p, xO), (8.4)

L (t, p, xo) VLIP(X(t, p, xo))X(t, p, xo),

E(t P, xO) = VFERM(X(t, p, Xo))X(t, p, xO),

COX(t, p, x0 ) = (vox(x(t, p, xo)) + 2vFERM(x(t, p, xo)))X(t, p, xO),

6(t, p, x0 ) = ve,

x(0, p, x0 ) = x0,

where x = X C N 0 L E COX a] , x0 contains the initial conditions, a

refers to the penalty state described in Chapter 3, and all reaction rates are obtained

using the metabolic network 8.2 and flux balance analysis (FBA). Notice that the

lipids are not considered to be part of the biomass in this formulation. Here, we use

lexicographic optimization and the Phase I of the simplex algorithm to obtain a well-

posed optimization problem. The stoichiometry matrix S in Table 8.1 is obtained.

Table 8.1: Stoichiometry Matrix for Toy Metabolic Network.
_C VN V0 Vox VFERM VLIP VX VATP,m

C 1 0 0 -1 -4 -4 -4 0
N 0 1 0 0 0 0 -0.5 0
0 0 0 1 -1 0 0 0 0
ATP 0 0 0 1 1 -2 -1.5 -1
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The matrix has only four rows because there are only four intracellular metabolites

in this network. The FBA problem corresponds to the following:

max Vx, (8.5)

s.t. Sv = 0,

0 < V < vUB(x).

We proceed to transform this LP into standard form and then formulate a Phase

I LP of (8.5). The upper bound inequality constraints are transformed into equality

constraints using slack variables (rows 5 to 7 in Table 8.2) and this problem is con-

verted into an LP that will be feasible for any right-hand side generated with (8.3)

by adding a slack variable s, to the ATP maintenance requirement). The technology

matrix A in Table 8.2 is obtained:

Table 8.2: Technology matrix for FBA problem in standard form.
VC VN VO VOX VFERM VLIP VX VATP,m S1 S2 S3 SC

C 1 0 0 -1 -4 -4 -4 0 0 0 0 0
N 0 1 0 0 0 0 -0.5 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0
ATP 0 0 0 1 1 -2 -1.5 -1 0 0 0 0
VUB 0 0 0 0 0 0 0 0 1 0 0 0

0NUB
v UB 0 0 0 0 0 0 0 0 0 0 1 0
VATP,m 0 0 0 0 0 0 0 0 0 0 0 1

The values v UB VUB VUB VATP,m are all nonnegative, because of the max operator

in 8.3. In this case, the slack variable s, suffices to obtain a feasible LP at all times.

Whenever there are not enough resources to satisfy the vATP,m requirement, s, takes

a positive value while the bounds on uptake kinetics are still satisfied. In this way,

when there are no remaining resources in the media, all metabolic fluxes will be equal

to zero, which corresponds to a state where the cells are dead and is consistent with

what would be observed experimentally. The hierarchical optimization problem has

the following objectives:

213



Table 8.3: Hierarchy of objectives for the toy metabolic network in 8.2.
1 Minimize s,
2 Maximize vx
3 Maximize VLIP

4 Maximize VFERM

5 Minimize vC
6 Minimize VN
7 Minimize vo
8 Minimize vCox

The FBA problem in standard form is:

lex min CTv (8.6)

s.t. Av = b(x),

v > 0,

where C corresponds to the objectives in Table 8.3 and

b [0 0 0 0 VgB vUB vUB VATP,m]

To generate the data, the following parameter values were considered: vmax,c

1.5, Kc = 0.05, Vmax,N = 0.25, KN = 0.5, vmax,o = 2, Ko = 1.2, KiE = 15, and

vATP,m = 0.18. These shall be considered the base parameter values. The data was

generated using MATLAB's stiff ODE integrator odel5s, with relative and absolute

integration tolerances of 1 x 10- 9 and LP solver Gurobi [50] with optimality and

feasibility tolerances of 1 x 10-9. The exact values generated were the following:

Table 8.4: Simulation data for Toy Metabolic Network.
Time [h] X C N 0 L E COX
0 0.01 15 0.3 1 0 0 0
10 0.0628 14.567 0.2736 0.8384 0.0151 0 0.1616
20 0.2958 12.215 0.1571 0.1339 0.0985 0.0953 1.057
30 0.5675 5.733 0.0212 7.68 x 10- 5  0.173 1.336 3.672
40 0.6052 0 0.002401 1.24 x10- 8  0.348 2.557 6.114

Notice that the first row corresponds to known values (what is loaded into the

batch reactor at time zero). Although the penalty a takes positive values, it is not
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reported as this value cannot be measured experimentally. Considering that a > 0

starting at t - 37.5, the data generated is considered to be valid for all 40 hours

given that the way the penalty is formulated, no extracellular concentrations become

negative.

In reality, experimental data contains noise. Here, we added noise obtaining ran-

dom numbers from a normal distribution centered at zero and with standard devia-

tions reported on the top row of Table 8.5. Then, these numbers were added to the

nonzero values. Very small numbers were considered to be equal to zeroes. Figures

8-1 and 8-2 show the simulated values compared to the noisy experimental data.

Table 8.5: Experimental data for Toy Metabolic Network.
Time [h] X C N 0 L E COX
STDEV 0.02 0.4 0.01 0.05 0.01 0.1 0.1
10 0.0654 14.502 0.2648 0.8288 0.0044 0 0.1355
20 0.3061 12.157 0.1523 0.1202 0.1145 0.0509 1.1011
30 0.5727 5.520 0.0141 0.0766 0.1853 1.3206 3.7116
40 0.5864 0 0 0 0.3454 2.5847 5.989

Assuming the parameter values are unkown, a minimization of squared errors

problem can be formulated as rmn 2 e where e = - - y, y corresponds to ex-

perimental values and y corresponds to predicted values. Here, all experimental

measurements are given the same weight. Some weighting factors can be added in

case some experimental values are considered to be more important than others.

To solve this optimization problem, function and gradient evaluations are needed.

The simulations required to compute the function and the gradient were carried on

using MATLAB's ODE integrator odel5s with absolute and relative tolerances of

1 x 10-6 and LP solver Gurobi with optimality and feasibility tolerances of 1 x 10- 7 .

Gradients were computed using the techniques exposed in Chapters 6 and 7. Under

these conditions, the base parameter values give a function value of 0.0829 because

of the noise introduced in the data.

This optimization problem was solved using nonsmooth optimizer Solvopt [80].

The problem was formulated as an unconstrained minimization problem. To ensure

all constants were nonnegative, the absolute values of the optimization variables were
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Figure 8-1: Simulated and experimental data for biomass and lipids for a batch
experiment using the toy metabolic network. Solid lines provide the simulation results
using the base parameter values whereas squared markers refer to noisy experimental
data.

used to run the simulations. The tolerances used in Solvopt were 1 x 10-4 for the

relative error of the argument in terms of the infinity norm and for the relative error

of the function value. A minimum value of 0.001 was chosen for all parameters and

was enforced using a max statement because some parameter values approached zero

causing numerical difficulties. Using a start point of po = [2, 2, 0.5, 5, 3, 1, 10, 0.1]T,

Solvopt takes 188 seconds to terminate. It performs 531 function evaluations and 157

gradient evaluations and finds point

P* = [1.5628, 0.001, 0.1946,0.3338, 29000, 1 7 0 0 0, 7. 9 4 5, 0. 1 7 1 61 T.

It exits with the following termination warning: "Result may not provide the optimum.

The function is flat at the optimum." Despite not having a normal termination, the

objective improves from 272.3 to 0.0228. In this specific example, using a finite

differencing scheme with 6 = 1E-6 takes 152 seconds and 129 iterations, 438 function
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Figure 8-2: Simulated and experimental data for substrates and products for a batch

experiment using the toy metabolic network. Solid lines provide the simulation results

using the base parameter values whereas squared markers refer to noisy experimental

data.

evaluations and 130 gradient evaluations to find point

p* = [1.5074, 0.3293,0.3217,0.7046, 5.607, 3.1952, 3100, 0 . 1 6 8 5 ]T,

with an objective of 0.0237. Solvopt has a normal termination. Table 8.6 presents a

comparison of the different parameter vectors. Figures 8-3 and 8-4 show the drastic

improvement that can be attained using optimization.

Using finite differences can be risky. In particular, if the gradient of the objec-

tive function is approximated using finite differences at po, the following results are

obtained:

1. 6 = lxi0-' : Vf [-50.62,6.38, -260.96,24.66,0.062, -0.15, -0.0012, -15.71].

2. 6 = Ix 10-6 : Vf [-50.59, 6.40, -261.15, 24.65, 0.082, -0.18, -0.0012, -15.69]:

3. 6 = Ix 10-7 : Vf [-50.40,4.23, -260.74, 22.50, 0.060, -0.21, -0.0012, -15.50].
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Table 8.6: Comparison of optimization results with initial and base points.
p* (LD) p*(FD) po Pbase

Vmax,C 1.563 1.5074 2 1.5
KC 0.001 0.3293 2 0.05
Vmax,N 0.1946 0.3217 0.5 0.25
KN 0.3338 0.7046 5 0.5
Vmax,O 29000 5.607 3 2
Ko 17000 3.1952 1 1.2
Ki,E 7.945 3100 10 15
VATPm 0.1716 0.1685 0.1 0.18

E7 0.0228 0.0237 272.3 0.0829
Time [s] 188 152 1_ 1

0.

0.

0.

O.
0

0.
0,

_0

-- X,---Xi--Lf---L aDatal

5 10 15 20 25 30 35 40 45
Time [h]

Figure 8-3: Simulated and experimental data for biomass and lipids for a batch
experiment using the toy metabolic network. Solid lines provide the simulation results
using the optimized parameter values obtained with LD-derivatives (subscript f), and
dashed lines were simulated using the optimization initial point (subscript i).

It has to be noted that not all parameters were estimated accurately. There are

several explanations for this. First, the noise may have shifted in a significant manner

the optimal point from the base parameter values to some other point in the parameter

space. Second, the measurements are in different scales. The largest measurements

are those used for C, therefore, the optimizer does quite well fitting the C curve to
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Figure 8-4: Simulated and experimental data for substrates and products for a batch
experiment using the toy metabolic network. Solid lines provide the simulation results
using the optimized parameter values obtained with LD-derivatives (subscript f), and
dashed lines were simulated using the optimization initial point (subscript i).

the experimental value. Weights can be added as prefactors to the errors to normalize

the different quantities. Finally, given that this problem is nonconvex, the optimizer

may have terminated near a local minimum. To help the minimizer find the real

parameter values, several batch experiments using different initial conditions can be

performed. Nevertheless, there is a very meaningful improvement in function value

that can be observed in Figures 8-3 and 8-4.

The strategy of using weights as prefactors was implemented. For each measured

variable, the reciprocal of the largest data point was used as a prefactor. For example,

a value of 1/0.5864 premultiplied all measurements and all predictions of X (see Table

8.5).

For this optimization problem, the same start point was used. After 171 seconds,

157 iterations, 516 function evaluations and 158 gradient evaluations, a solution point
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of

P* = [1.5293, 0.0933, 0.2325, 0.4376, 20000,13200, 7.2904, 0. 16 93]T

was found. Solvopt is able to finish with no warnings. The summary of results is

presented in Table 8.7.

Table 8.7: Comparison
weights are used.

of optimization resu

P*

Its with

Po I

initial and base points when

Pbase

Vmax,C 1.5293 2 1.5
Kc 0.0933 2 0.05
Vmax,N 0.2325 1 0.25
KN 0.4376 5 0.5
Vmax,O 20000 3 2
Ko 13200 1 1.2

Ki,E 7.2904 10 15
VATP,m 0.1693 0.1 0.18

_wie_ 2 0.0137 8.2711 0.0183

Again, the vmax,o and Ko parameters are not estimated accurately. This can be

explained by the fact that the data points may have been taken when either 0 is

not limiting or when it is not present in the system. For the following computational

experiments, the base parameter values will be assumed to be known.

8.1.2 Optimal design of a batch process

In this section, the optimal design problem of a batch reactor is formulated. This

reactor can be modeled using the dynamical system (8.4), only that now xo(p) =

[0.0,P1, 2, p3, 0, 0, 0, 0] and tf = p4 (the parameters vector is p = [CO, No, 00 , t).

The profit function is given by

P(p) = 50L(tf, p) + 10E(tf, p) - 2p, - 5P2 - 0.5p -P4,

where the last term includes a time dependency. The total time of the batch process

is also a parameter. Remember that by the way the phase I LP was formulated,
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when the FBA LP becomes infeasible, growth remains at zero and the mass balances

are still satisfied. Since total batch time is now a parameter that incurs cost, any

system where a(t1 , p) > 0 is suboptimal. The dynamical sensitivities of this system

can be computed using the theory presented in Chapters 6 and 7. A summary of

the results can be found in Table 8.8. The results in these subsection were computed

with relative and absolute integration tolerances of 1 x 10- 7 and LP feasibility and

optimality tolerances of 1 x 10- 7 .

Table 8.8: Summary of results for the optimal design of a batch process using P.
LD-derivatives FD (6 = 10-6)

PO [20,0.1,1,40] [20,0.1,1,40]
P* [82.03, 0.606, 11.58, 72.97] [79.91, 0.596, 11.42, 72.00]

P(Po)[(Lxbtch)] -65.03 -65.03
( *)(L x batch)P(P*)[$ 1 ] 41.00 40.96

Time [s] 41 69
# Iterations 44 70

Warnings Normal termination. Normal termination.

PO [1, 1, 1, 1] [1 1, 1, 1]
P [0, 0, 0, 0] [0,0,0.0003,0]

(PO)((xb1 c) -8.5 -8.5
* 8.0 x 10-10 1.8 x 10-6

Time [s] 2.8 7
# Iterations 41 79

Warnings Normal termination. Normal termination.
Trivial solution: no process is carried out. Same as LD-derivatives.

PO [40,2,1,80] [40,2,1,80]
P* [82.03, 0.606, 11.58, 72.97] [86.19,0.62,11.92, 74.86]

P(Po) [(Lx btch)] -92 -92
P(p*) [ (L x batch) 41.

Time [s] 39 40
# Iterations 41 41

Warnings Normal Termination. Normal termination.

It is pretty clear in this example that LD-derivatives perform better than finite

differences. In all cases, LD-derivatives take less time, find a better objective and in

two instances take less iterations. Figures 8-5 and 8-6 show concentration profiles for

the optimal parameters of the batch process.

Another interesting problem could be to maximize profit in a per hour basis intead
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Figure 8-5: Biomass and lipids concentrations for optimal batch parameters. It can
be seen that the optimizer reduces the time until penalty goes almost to zero.

of a per batch process. Therefore, the new objective function would be:

50L(t1 , p) + 10E(tf, p) - 2 pi - 5P2 - 0.5p2 - P4

p4

A summary of the results for maximizing P can be found in Table 8.9. Again,

LD-derivatives perform better than finite differences in all criteria: objective function

value, number of iterations, and total time of optimization.

Figures 8-7 and 8-8 show the concentration profiles for the optimal parameters

of the batch process when maximizing profit in a per hour basis. The optimal point

found by Solvopt for maximizing P has a suboptimal value of $36.29/(L x batch)

in P. Meanwhile the optimal point when maximizing P has a suboptimal value of

$0.562/(L x h) in P. The optimizer chooses a shorter batch time (56.43 h vs. 72.97

h) to maximize profit in a per hour basis compared to a per batch basis. In this

case, the optimizer still adjusts the inputs such that all resources are fully utilized

and it stops just as the penalty function starts increasing, which can be related to
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Figure 8-6: Substrate and product concentrations for optimal batch parameters. It

can be seen that all substrates go to zero which implies that resources are fully utilized.

the microorganism dying.

8.1.3 Optimal Design of a Continuous Process Operating at

Steady State

Consider again the toy metabolic network and assume that the base parameter values

are the true values for the uptake kinetics expressions in Eq. (8.3). Now, consider

that the process operates as a continuous stirred-tank reactor (CSTR) and that the

design variables include the feed/output flowrate F, and the feed concentrations Fc,

F0 , and FN. It is desired that the system operates at steady state. Assume that for

a given set of conditions, the profit of the system is given by:

P(x,,) = F (10Es, + 50L,, - 2FC - 5FN - .5F2), (8.7)

with units of $/h.

223

-0



Table 8.9: Summary of results for the optimal design of a batch process using P.
LD-derivatives FD (6 = 10-6)

Po [40,2,1,80] [40,2,1,80]
p* [68.09, 0.674, 10.95, 56.43] [70.12, 0.6867, 11.06, 57.25]
) $ -1.15 -1.15

P(p* ) 0.643 0.642

Time [s] 35 74

# Iterations 38 73
Warnings Normal termination. Normal termination.

PO [1,1,1,1] [1, 1, 1, 1]
p* [68.09, 0.674, 10.95, 56.43] [70.5, 0.689, 11.12, 57.39]

P(po) [ ] -8.5 -8.5
* 0.643 0.642

Time [s] 40 88
# Iterations 70 105

Warnings Normal termination. Normal termination.

Po [20,0.1,1,40] [20,0.1,1,40
p* [68.09, 0.674, 10.95, 56.43] [65.24, 0.655, 10.78, 55.37]

P(Po)[ (Lh)I -1.6256 -1.6256
* 0.643 0.642

Time [s] 39 151
# Iterations 42 154

Warnings Normal termination. Normal termination.

Now, the dynamic system has the following form:

X(t, p, xo) = (P(x(t, P, xo)) - F( X) X(t, p, xo),

F(p)
C(t, p, xo) = (Fc(p) - C(t, p, xo)) - vc (x(t, p, xo))X(t, p, xo),

N(t, p, xo) = F (FN(p) - N(t, p, x0 )) - VN(X(t, p, Xo))X(t, p, xo),

O(t, p, xo) =

L (t, p,x0 ) =

F(p) (Fo(p) - O(t, p, xo)) - vo(x(t, p, xo))X(t, P, xo)
V
F (RP)L(tpxO) + VLIP (X (t, P, X0)) X(t, P, Xo)
V

F(p)
E(t, p, xo) - () E(t, p, xo) + VFERM(X(t, p, xo))X(t, p, xo),

F(p)
COX(t, p, xo) - (COX(t, p, xo)) + (vOX(x(t, p, Xo))

+ 2VFERM(X(t, p, Xo)))X(t, p, xo),

&(t, p, xO) = v0 X(t, p, xO),

X(, P, xo)= O

(8.8)

[F(p), FC(p), FN(p), Fo(p)= p.
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Figure 8-7: Biomass and lipids concentrations for optimal batch parameters. It can
be seen that the optimizer reduces the time until penalty goes almost to zero.

Two main optimization strategies can be used. In the first strategy, the optimiza-

tion problem has only four optimization variables p = [F, FC, FN, F ]T where F is in

1/h and FC, FN, and FO are all in mol/L. In this case, the optimization problem has

the following form:

min - P(p) = -F(p) (10Es,(p) + 50Ls(p) - 2FC(p) - 5FN(p) - O.5Fo(p) 2 )
P

s.t. [F(p), Fc(p), FN(p), Fo(p)] = p.

To be able to solve this problem, the LD-derivative x'(p; M) needs to be computed.

The relationship between x and p is given by the implicit function resulting from

the steady state conditions x(x, p) = f(x, p) = 0; therefore, the implicit function

theorem for LD-derivatives is needed.

Theorem 8.1.1. (Theorem 2 in [75]). Let X c R" and Y c R" be open and

g : X x Y -+ R" be lexicographically smooth (i-smooth) at (x0 , yo) E X x Y.
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Figure 8-8: Substrate and product concentrations for optimal batch parameters. It
can be seen that all substrates go to zero which implies that resources are fully utilized.

Suppose that g(x 0 , y') = Om and, in addition, the auxiliary mapping f : X x Y -*

R" x R" : (x, y) i- (x, g(x, y)) is a Lipschitz homeomorphism at (x0 , y'). Then, there

exists a neighborhood N(x0 ) C X and a function r : N(x0 ) -+ Rm that is Lipschitz

continuous on N(x0 ) such that, for each x E N(x0 ), (x, r(x)) is the unique vector in

a neighborhood of (x0 , y0 ) satisfying g(x, r(x)) = 0 m. Moreover, r is I-smooth at x0 ,

and for any k E N and any M E Rnk, the LD-derivative r'(x0 ; M) is the unique

solution N E rmxk of the equation system

g'(x0 , y0 ; (M, N)) = Omxk. (8.9)

The LD-derivative x'(p; M) can be computed as an equation-solving problem

using the results in Lemma 3.5 of [124] or by running the dynamical sensitivities in

Chapter 7 until both, the variables and the sensitivities attain steady state. Framing

the problem as an equation solving problem has the disadvantage that the washout

solution is very attractive (see Example 6.5.3). Alternatively, the dynamic simulation
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can be used to find the non trivial solution, and then the equation solving procedure

can be used to find the LD-derivatives. The LD-derivatives for the implicit function

can also be found by letting the sensitivities run for a long enough period of time.

From Corollary 4.3 in [721, the sensitivity of an ODE system

y(t, c) = f(t, y(t, c)), y(0,c) = c, (8.10)

with f being I-smooth is the unique solution of the following ODE system:

A(t) = f'(y(t, c); A(t)), A(0) = K. (8.11)

The steady state condition implies that f(t, y(t, p)) = 0. In our dynamic case, let

y = [x; p] and K = [N; M], and let the last nP components of f be always equal to

zero. At steady state, the solution of (8.10) will be ys = [xes; p], and the solution

of 8.11 will be A,, = [N,,; MI and it will satisfy f'(x,,, p; N 5, M) = 0 which is

consistent with (8.9). The following Example illustrates this.

Example 8.1.1. Consider a CSTR with a reaction A -* B and a rate constant

k = 1/h such that rA = -kA, F = iL/h and V = 1L. Let the parameter be the feed

concentration of A, Ao = p = 1 mol/L. Then,

F F
A= -( A 0 - A) - kA, b = -- B + kA. (8.12)

V V

The steady state of this system corresponds to Ass = Bss = 1/2.

Using the implicit function theorem, we can obtain the sensitivities s'(p; 1) where

s = [A, B]. Just use the quantities:

Of I 0f k 0 2 0
-- [ = - - (8.13)

OP 0 0 'as k -F 1 -1

Of as Of -2 0 Os I [ s 1/2
-- P =--- i - = - - = [ (8.14)

09s ap ap' i op 0 OP 1/ 2
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Another way of computing these sensitivities is using the following dynamical

system:

A = p - 2A, B -B + A, A(0) = A9s(p) = 0.5, B(0) = B55(p) =0.5, (8.15)

-2 0 1 0

S = a S(t) = 1 -1 0 S (t), S (0) =0 , (8.16)
OX0

L0 0 0 L1J

which is equivalent to integrating the system:

S 1 = -2S1 + 1, S 2 = S 1 - S2, S1(0) = S2(0) = 0. (8.17)

This system has a solution of Si(t) = -0.5e- 2t + 0.5 and S2 (t) = -e- + 0.5e- 2t +0.5

and when t -* oc, Sl(oo) = S2(oo) = 0.5 which correspond to the sensitivities

computed using the implicit function theorem.

This first strategy for optimizing a continuous process is suitable for interior point

methods as all iterates generated are feasible in the optimization problem. Alterna-

tively, the optimization problem can be formulated in such a way that both parameters

and states are optimization variables and the steady state conditions are added as

constraints:

min - P(x) = -F (10E + 50L - 2FC - 5FN - 0.5F2),
XP

s.t. x(x,p) = f(x, p) = 0,

[F(p), Fc(p), FN(p), Fo(p)] =p, L =x5 , E = .

When the problem is formulated in this way, the implicit function theorem for LD-

derivatives is not required. However, optimization iterates are not guaranteed to be

feasible except at the solution where all constraints will be satisfied.

The results in these subsection were computed with relative and absolute inte-

gration tolerances of 1 x 10- and LP feasibility and optimality tolerances of 1 x
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10-8. First, the first strategy is used to optimize the system. To avoid numeri-

cal problems associated with F being too small, a minimum value of 0.001/h was

enforced using a max function. To calculate the sensitivities of the implicit func-

tion, the sensitivities ODE system was allowed to reach steady state. With a start

point of p = [0.01,10,1, 2], the optimizer takes 75 iterations, 322 function eval-

uations, and 76 gradient evaluations in 65 seconds to find the solution point of

Po = [0.0496, 22.2558, 0.4170,8.9434] with no termination warnings. In this way the

objective improves from 0.0884 to -1.6351 with profit for this continuous system going

from -$0.0884/(L x h) to $1.6351/(L x h).

Table 8.10: Comparison of the optimal result with start point for continuous steady
state optimization using first optimization strategy.

p* pO x* xo
F[1/h] 0.0496 0.001 X[g/L] 0.7238 0.1924
Fc[mol/L] 22.2558 10 C[mol/L] 1.2530 0.0316
FN[mol/L] 0.4170 1 N[mol/L] 0.0551 0.9038
Fo[mol/L] 8.9434 2 O[mol/L] 0.4895 0.0636

L[g/L] 2.3852 0
E[mol/L] 0.0283 1.8156

P(p)[$/(L x h)] 1.6351 -0.0884 COX[mol/L] 8.5105 5.5676

In this case, finite differences with a 6 = 1 x 10-6 take 81 seconds and 69 it-

erations to find suboptimal point p* = [0.0484, 23.02, 0.422,9.01] with an objec-

tive function value of $1.6344/(L x h). Next, the second strategy of optimiza-

tion is implemented and the results are presented in Table 8.11. In Table 8.11

x = [X, C, N, 0, L, E, COX, F, Fc, FN, FO] and f is the steady state constraint.

The second strategy of optimization presents more numerical problems. In the

second and third start points, the method diverges. This is no surprise given that

Solvopt takes constraints into account using an exact penalization method and then

solving an unconstrained optimization problem [80]. If the penalty factor is not well

chosen, the optimizer can encounter an unbounded problem and diverge. In the first

point, the method is able to find a local minima but warns that the function is very

steep. In the last one, the method is able to refine the optimal point found using the

first strategy (with some rounding) to find a solution as good as that optimal point.
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Table 8.11: Comparison of optimization results with initial point for continuous
steady state optimization using second optimization strategy

xi
x *

max(f (x))
max(f(x*))
P(xi)[ ]

Px)(L x h)]
Time [s]

Warnings

[1, 1,0.25, 1,1,1, 5,0.5, 30,6.5, 3]
[0.0007, 0.968, 0.583, 0.862, 1.21, 1.112, 5, 0.001, 29.97, 0.479, 3.1251

13.1607
0.0005

-3.5

0.0034

0.7
Function extremely steep at optimum.

xi [5, 15, 0.3, 1, 0, 0, 0, 1, 10, 1, 3]
X* NA

max(f(xi)) 12.4751
max(f(x*)) NA

P(xi)[(L ) -29.5

P(x*)[(Lxh)] NA
Time [s] 18

Warnings Function is unbounded.
xi 1
X* NA

max(f(xi)) 1.3393
max(f(x*)) NA
P(xi) [(x 1) -52.5

P(x*)[(L h)I NA

Time [s] 18
Warnings Function is unbounded.

xi [0.724, 1.253, 0.055, 0.49, 2.385, 0.028, 8.51, 0.05, 22.256, 0.417, 8.943]
x* [0.718, 1.239, 0.0552, 0.4949, 2.377, 0, 8.429, 0.0497, 22.047, 0.414, 8.924]

max(f(xi)) 3.4 x 10-4

max(f(x*)) 8.9 x10-9
P(xi)(( x 1) -1.6345

P(x*)[ (L x h)] -1.6351
Time [s] 1.5

Warnings Function is flat at optimum.

It is important to notice that when the steady state equations are added as con-

straints, the equation solving is performed by the optimization algorithm. If a good

equation solving algorithm is available, the formulation used in the first optimization

strategy may be more amenable. Given that the second strategy does not need to

solve the dynamical system, the second strategy seems to be much faster.
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8.1.4 Optimal Design of a Continuous Process Operating at

Cyclic Steady State

The last class of problems considered in this chapter are those that attain a cyclic

steady state. Some processes operate at cyclic steady state, for example, outdoors

cultivation of photosynthetic organisms such as microalgae (see Chapters 4 and 5).

Here, we shall modify the toy metabolic model by adding the following reactions,

VPh : COXex + 3ATP * C + ex,

VLight -- ATP,
light

where the upper bounds of these reactions are given by:

Cox
v UB(x) = max 0, 0.1 ,Ph I + CO X

VLUht (t) = 0.5 max 0 sin rt

Considering that the first optimization strategy in Section 8.1.3 was more reliable,

a very similar strategy is used in this example. The optimization variables are only

the parameters F, FC, FN, F0 . Not all parameters lead to feasible solutions: some

parameters lead to simulations where the physical variables X, C, N, 0, L, E, COX

attain cyclic steady state, but the penalty increases at each cycle. Therefore, cyclic

steady state conditions were only applied to the physical variables whereas the penalty

condition was added as a constraint. Another difference with the steady state case is

that the objective function value varies with time. Therefore, instead of looking at

the steady state value of the objective, the objective needs to be integrated through

the 24 hour cycle. The optimization problem being solved looks like this:
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24

min - j P(tp)dt

s.t. P(t, p) = F(p) (10Ec..(t, p) + 50L.. (t, p) - 2FC(p) - 5FN(p) - 0.5Fo(p)2),

[F(p), Fc(p), FN(p), Fo(p)] =p,

a(p) = 0,

where a(p) refers to the penalty function in (8.8) and the subscript css refers to cyclic

steady state values.

Given a dynamical system with a known period T of the form,

y(y(t, p), p) = f(t, y(t, p), p), Vt E [0, tf), y(0, p) = p,

the system attains cyclic steady state if for any t [142]:

y(T + t, p) - y(t, p) = 0.

Given that in this example the period of the cyclic steady state is known and cor-

responds with the day 24 hour cycle, no phase-locking conditions like Eq. (2.1)

in [142] are needed. The cyclic steady state conditions define an implicit func-

tion x(p) = h(p). Therefore, once again Theorem 8.1.1 is applicable. Let x =

[X C N o L E COX and xt(p, xo) = x(t, p, xo). The implicit function is

given by xT(p, xo) - xO = 0 and given a fixed M, Equation (8.9) is equivalent to:

T'(p, xo; M, N(T)) - N(0) = 0, (8.18)

which is equivalent to letting the sensitivities attain cyclic steady state. However, it

has been observed that oscillating systems take a longer time to attain cyclic steady

state than systems attaining steady state. Therefore, a hybrid approach was used:

the dynamical system and its sensitivities were run for a considerable period of time

(240 hours which is equal to 10 cycles), and then an equation solving approach us-
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ing Lemma 3.5 in [124] was used to refine the solution. The nonsmooth system of

equations was solved using the semismooth Newton method [103] and when the Jaco-

bian became singular, iterations were taken using the LP-Newton method [331. The

results in these subsection were computed with relative and absolute integration tol-

erances of 1 x 10- 7 and LP feasibility and optimality tolerances of 1 x 10-7. Table

8.12 presents a summary of results. Once again, LD-derivatives present a significant

advantage with respect to using finite differences in number of iterations and total

time of optimization.

Table 8.12: Summary of results for the optimal design of a cyclic steady state system.
LD-derivatives FD (6 = 1E - 6)

P0 [0.1, 10, 1, 1] [0.1, 10, 1, 1]
P* [0.0267, 157.4, 3.651, 11.06] [0.0267, 157.5, 3.653, 11.07]

a(24, po) 0 0
a(24, p*) 0 0

P(po)[(Lxday) 1 -35.15 -35.15
P$171.34 171.34Pp*)[(L day) 'AA0

Time [s] 2900 5600
# Iterations 50 88

Warnings Normal termination Normal termination

P0 [5,20,1,5]
P* [0.0254, 167.654, 3.867, 11.585]

a(24, po) 0
a(24, p*) 0

P(po)[(L x day)
$Ldy 186.83PPp) (L xday)]

Time [s] 3956
# Iterations 44

Warnings Normal termination

8.1.5 Optimization of a continuous steady state process using

genome-scale metabolic networks

In the following example, E. coli and yeast are grown together to produce ethanol from

glucose and a mix of glucose and xylose. In this example, genome-scale metabolic

networks are used: iJR904 [107] for E. coli (761 metabolites and 1075 reactions)

and iND750 [31] for yeast (1061 metabolites and 1266 reactions). The optimization
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variables are the dilution rate F, the feed composition and the 02 mass transfer

coefficient. The dynamic model is the following:

Xi(t, p, xo) =pi(x(t, p, xo)Xi(t, p, xo) - F(p)Xi(t, p, xo), (8.19)

Sj (t, p, xo) = - vi,(x(t, p, xo)Xi(t, p, xo) + F (Sj,o - (p)Sj (t, p, xo))

+ MT, (x(t, p, xo)),

So = f(p), x(0, p, xo) = xo, for i = E. coli, yeast, for j = G,X,0,E,

where x = [XB, Xy, G, X, 0, E, a] (bacterial biomass, fungal biomass, glucose, xylose,

oxygen, ethanol, and penalty, respectively), and MT = 0 for all j except 0 where

MTO(x(t, p, xo)) = p4(0.21KH,02 - 0(x(t, p, xo))), SE = 0, SG = P2 + P3, Sx = P2/ 2

and F = pl. P2 is the amount of glucose in a glucose/xylose mix concentration

containing two thirds glucose and one third xylose by weight, p3 is the concentration

of a pure glucose stream, p4 is the 02 mass transfer coefficient, and pi is the dilution

rate in units of h- 1 .

In this problem we assumed the following prices:

1. Ethanol: assumed price of $0.391/kg of diluted ethanol. Pure ethanol has a

price of $0.813/kg [62].

2. 66% glucose/33% Xylose mix: $0.07/kg [113].

3. Pure glucose: $0.126/kg [5].

The objective function is given by:

P(p) = p1 (0.391E,,(p) - 0.07 x 1. 5P2 - 0.1 2 6P3)

First, this problem was solved using the first strategy described in subsection

8.1.3 using solvers Solvopt [80] and Ipopt [139]. Ipopt is designed to solve twice

continuously differentiable systems, which cannot be satisfied by nonsmooth systems.

Here, we provide an element of the B-subdifferential as derivative information. How-
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ever, dual feasibilities which enforce optimality conditions have to be relaxed because

nonsmooth systems are unable to satisfy them.

The results can be found in Table 8.13. In this case, Solvopt seems to perform

better than Ipopt. This can be explained by the fact that whereas Solvopt was

designed for nonsmooth optimization, Ipopt was not. Therefore, Ipopt cannot verify

optimality conditions (enforced as dual feasibilities). Given the nonsmooth nature

of the problem, a tolerance of 0.1 for dual feasibility was used. Therefore, early

termination is very probable. However, the tolerance cannot be tightened much as

nonsmooth systems are unable to satisfy dual feasibility at a nonsmooth point.

Table 8.13: Summary of results for the optimal design of a steady state system
producing ethanol with E. coli and yeast.

Solvopt
Iter. PO P(po)[$/h] p* P(p*) [$h]

49 [0.05,10,0,0.001] 1.63 x 10- 5  [0.0926,30,0,0.0031] 7.52 x 10~"

65 [1,30,30,0.1] -6.93 x 10-3 [0.0926,30,0,0.0031] 7.52 x 10-5

_____ _____ __________Ipopt _ _ _ _ _ _

Iter. PO P(po)[$/h] p* P(p*) [$/h]
16 [0.05,10,0,0.001] 1.63 x 10~" [0.143,11.03,0.0005,0.003] 3.52 x 10 7

23 [1,30,30,0.1] -6.93 x 10-3 [0.1056,22.65,4.51,0.003] 4.47 x 10-5

8.2 Conclusions

This chapter integrates the theory in Chapters 6 and 7 to solve optimization prob-

lems. This chapter illustrates different classes of DFBA problems, such as parameter

estimation problems and optimal design of batch and continuous processes. Different

strategies to solve these problems efficiently have been presented. Throughout the

examples in this chapter, LD-derivatives present a better performance than finite dif-

ferences, justifying the work presented in Chapters 6 and 7. LD-derivatives work well

with nonsmooth optimization code Solvopt [80]. The last example illustrates the op-

timization of a DFBA problem including two genome-scale metabolic networks, which

illustrates the power of the modeling framework presented throughout this thesis.

DFBA optimization problems are nonconvex. In the future, global optimization

235



strategies that are able to solve these kinds of problems will be developed. In this

thesis we take two critical steps to enable global optimization:

1. This thesis presents a way of performing local optimization reliably. Local

optimization is needed as part of global optimization strategies.

2. Appendix C contains the derivation of convex and concave relaxations for lexi-

cographic LPs.

Nevertheless, a lot can be gained just by performing rigorous local optimization as

has been shown in the examples of this chapter.
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Chapter 9

Conclusions and Future Work

Due to the many applications of microbial communities in industrial bioprocesses

(e.g. the food, pharmaceuticals, and biofuels industries) as well as their appearance

in natural ecosystems (e.g. oceans or the gut microbiome), the modeling and opti-

mization of bioprocesses employing microbial communities is critical. The modeling,

optimization and control of these bioprocesses is a challenging task because microor-

ganisms are very complex systems by themselves and bioprocesses span several time

and length scales. In particular, microorganisms often operate at much faster time-

scales and shorter length-scales than the macrosystem in which the bioprocesses or

the ecological processes take place. Therefore, accurate and reliable mathematical

models are difficult to obtain, and good multi-scale models are often nonsmooth.

Most bioprocess models used today in chemical engineering settings remain rather

simplistic and based on unstructured models. These models rely heavily on exper-

imental data and have limited application due to the many metabolic states mi-

croorganisms attain in these processes. As such, unstructured models are inaccurate

predictors of growth for most realistic situations, such as those involving multiple

nutrient limitations, day/night transitions, and competitive and symbiotic relation-

ships. Meanwhile, high-throughput genome sequencing techniques have led to the

development of genome-scale metabolic network reconstructions (GENREs) for sev-

eral microorganisms. The information in these networks can be incorporated into

process models using flux balance analysis (FBA) [137, 98 and dynamic flux balance
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analysis (DFBA) [137, 87].

DFBA models address the limitations of unstructured models by considering all

possible metabolic states included in a GENRE. Given the extracellular environ-

ment, FBA determines for each microorganism the metabolic state or combination

of metabolic states that attain maximum growth. GENREs also consider all minor

nutrients in a network and can be used to model symbiotic and competitive relation-

ships between microorganisms [77]. As such, DFBA can be used to construct reliable

process models, find an optimal design, and control complex bioprocesses.

DFBA models result in dynamical systems with linear programs (LPs) embedded

[56, 59]. These systems are difficult to simulate due to LPs having nonunique solu-

tions and becoming infeasible under environmental conditions that do not support

growth. In addition, these systems are difficult to optimize due to their nonsmooth

nature which makes obtaining reliable sensitivity information challenging. The work

described in this thesis is a critical contribution in the field of bioprocess modeling

as it enables the simulation and optimization of DFBA bioprocess models. Next, the

main contributions of this thesis are described.

In Chapter 3, a Matlab-based DFBA simulator is introduced. This simulator

combines the ideas of lexicographic optimization described in [56, 59] with the Phase

I of the simplex method [12] to result in a more robust simulator with a penalty

function useful for optimization purposes. This simulator currently has more than a

100 academic users, and it has resulted in a book chapter [7] (Appendix A) and a

workshop. In additon, this simulator has triggered collaborations with Prof. Michael

Henson of UMass Amherst and Prof. Ahmed Al Hajaj of Masdar Institute in the

United Arab Emirates (UAE) that have resulted in the implementation of DFBA

models in different settings such as the modeling of chronic wound biofilms, syngas

fermentation in bubble column bioreactors [22, 23], and algae cultivation in the harsh

environment of the UAE. As a result of this doctoral project, complex DFBA models

are now used in more varied settings by researchers with a strong biological back-

ground but not as strong numerical background, allowing them to benefit from the

power of mathematical modeling as a tool for better process control and design.
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In Chapters 4 and 5, DFBAlab is used to explore new algal biomass cultivation

strategies. In particular, these chapters show that algae cultivation as a CO2 capture

strategy is inefficient, the growth of algae from flue gas is economical only at very

short distances from the flue gas source, and that microbial consortia design has great

potential for biomass cultivation. In particular, algae can be grown with a heterotroph

creating a symbiotic relationship that boosts biomass productivity and that provides

a biological route for transforming lignocellulosic waste into biolipids. With microbial

consortia, algae cultivation can become economical in many more places and not only

in the proximity of power plants. In addition, the carbon balances in these chapters

illustrate where carbon is being lost in the system and how the productivity of the

system can be improved. Despite the lack of experimental validation, the results

in these chapters provide a future direction in algae cultivation experiments. This

direction will be pursued by the group of Prof. Ahmed Al Hajaj in the UAE.

With better DFBA simulation tools, the optimization of DFBA models becomes

possible. Optimization problems with DFBA models embedded can be formulated in

the following manner:

min J(p) = 6 (xtf(p), p) + p (t, xt(p), p)dt (9.1)
p to

s.t. G(p) g(xt(p),p) h(t, xt(p), p)dt < 0,

p E S c Rn,

where xt(p) = x(t, p). This optimization problem can be nonconvex and nonsmooth.

To find a global minimum, global optimization strategies are needed. Local opti-

mization is a prerequisite for robust global optimization strategies to be formulated.

The work in this thesis has been focused on local optimization of DFBA systems.

Appendix C presents convex and concave relaxations for lexicographic LPs, which

are also needed for global optimization.

The embedded LPs introduce two challenges to this optimization problem: nons-

moothness and implicit constraints. The solution to DFBA models can be nonsmooth,
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and therefore, the objective function value and the constraints in optimization prob-

lem (9.1) can be nonsmooth. Nonsmooth optimization algorithms, such as bundle

methods [89] and modified versions of Shor's r-algorithm with space dilation [80]

exist among other nonsmooth optimization methods, but they require generalized

derivative information. Chapters 6 and 7 present the work required to obtain reliable

sensitivity information of DFBA models.

In this thesis we have used the notion of lexicographic differentiation [96] and

lexicographic directional derivatives (LD-derivatives) [72, 74] to compute generalized

derivative -information. LD-derivatives possess desirable properties, such as satisfying

a sharp chain rule, and being as useful as Clarke's generalized Jacobian for opti-

mization and equation solving purposes. The computation of LD-derivatives for the

objective function value of a LP as a function of its right-hand side has been pre-

sented in [60], but its extension to LLPs is not obvious. In particular, computing

LD-derivatives of the objective function values of a LLP as a function of its right-

hand side involves computing directional derivatives at the boundaries of closed sets,

a case that is not handled by classical theory. In Chapter 6 the mathematical deriva-

tion of LD-derivatives of LLP objective function values as a function of its right-hand

side is presented. These LD-derivatives have been used to compute the steady-state

of a bubble column bioreactor, optimize the behavior of a supplier selling products

to two companies, and solve for the steady-state of a continuous process involving

E. coli cultivation. In addition, this chapter presents conditions under which the

LD-derivatives of [f o g] at x can be computed even if g(x) is at the boundary of the

domain of f.

The computation of LD-derivatives for ODE systems with nonsmooth right-hand

sides, such as DFBA models, has been presented in [72]. The method relies on

integrating the LD-derivatives of the nonsmooth right-hand side of the ODE system.

The LD-derivatives of DFBA models can be obtained as solutions of related ODE

systems. The work in [73] enables the formulation of a numerical method to compute

the sensitivites of ODE systems with abs-factorable right-hand sides [71], but it is not

readily applicable to DFBA models. The work in Chapter 7 bridges the gap between
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the methods presented in [71] and the ones required for DFBA models. Also, Chapter

7 provides alternative methods to compute the LD-derivatives of LLPs, which can be

used when the ones presented in Chapter 6 present numerical difficulties.

Another difficulty introduced to (9.1) by the LP is the nature of the feasible set

S, which contains implicit constraints regarding the feasibility of the embedded LP.

Obtaining an explicit representation of S is very challenging, if possible. Instead, the

strategies in this thesis use the penalty function presented in Chapter 3 to incorporate

these implicit constraints into (9.1).

Chapter 8 presents different optimization problems with DFBA models embedded:

1. Parameter estimation problems;

2. Optimal batch system design;

3. Optimal steady-state system design;

4. Optimal cyclic steady-state system design.

Chapter 8 uses the work in Chapters 6 and 7 as well as the theory in [75] and

[124] to optimize DFBA models. Optimization strategies for the different classes of

problems are illustrated using a toy metabolic network. In addition, an optimization

problem using GENREs is presented. The nonsmooth optimizer Solvopt [80] and the

interior-point method Ipopt [139] are used to solve these optimization problems.

With this thesis, the vision described in Figure 9-1 comes closer to reality. In this

vision, DFBA becomes an accessible tool for future bioprocess engineers for better

bioprocess design. In this way, the power of mathematical modeling can be used by

bioprocess engineers to drive their experimental work and arrive at better bioprocesses

in a shorter time frame and with less resources required.

Future work remains after this thesis. In particular, numerical challenges persist in

the computation of sensitivities in DFBA systems. In addition, very few nonsmooth

optimization solvers have been tested. A comparison in performance of different bun-

dle solvers and nonsmooth optimizers remains to be done. In addition, the sensitivity
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Appendix A

Dynamic Flux Balance Analysis

using DFBAlab

This Appendix is a reproduction of [7].

Dynamic flux balance analysis (DFBA) [137, 87] is a bioprocess modeling frame-

work that relies on genome-scale metabolic network reconstructions (GENREs) of

microorganisms. It is the dynamic extension of flux balance analysis (FBA) [98],

which has become popular with the advent of high-throughput genome sequencing.

In fact, the number and level of detail of genome scale metabolic network reconstruc-

tions has rapidly increased since 1999 (see Fig.1 in [93]). Despite the ever-increasing

availability of new and better metabolic network reconstructions, DFBA modeling

remains challenging, and therefore its use has been limited.

Traditionally, bioprocess modeling relies on unstructured models to calculate the

growth rates of microorganisms. This approach has significant limitations that make

it impossible to simulate very complex bioprocesses. These limitations are countered

by FBA by considering genome-scale metabolic networks of the microorganisms in-

volved. FBA models the growth and metabolic fluxes rates of microorganisms as

solutions of the following linear program (LP):
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max vgrowth

s.t. Sv = 0,

VLB < V < VUB

where S is the stoichiometric matrix, v is the fluxes vector, vUB and vLB are the

bounds on the metabolic fluxes given by thermodynamics, the extracellular environ-

ment and/or genetic modifications, and Vg,,,th sums all growth associated fluxes.

Given mass balance and thermodynamic constraints on a metabolic network, FBA

finds a solution that satisfies these constraints and maximizes growth. If the LP be-

comes infeasible, it may indicate a lack of sufficient substrates and nutrients to provide

the minimum maintenance energy for the respective microorganism to survive.

DFBA combines process models described by an ordinary differential equation

(ODE) system, a differential-algebraic equation (DAE) system, or a partial differential-

algebraic equation (PDAE) [22, 23] system with FBA to model bioprocesses. These

models can be expressed as dynamic systems with LPs embedded [59, 56] which are

challenging to simulate. The embedded LP poses difficulties in the form of non-

unique solutions and premature LP infeasibilities. Fortunately, these complications

have been addressed by efficient DFBA simulators, DSL48LPR in FORTRAN [59] and

DFBAlab in MATLAB [44]. Both are free for academic research and can be found in

the following webpage: http://yoric.mit. edu/software. The rest of this chapter

will talk exclusively about how to use DFBAlab to perform DFBA simulations.

DFBAlab uses lexicographic optimization and the phase I of the simplex algorithm

to deal with nonunique solutions and LP infeasibilities, respectively. Lexicographic

optimization is a strategy that enables obtaining unique exchange fluxes. This strat-

egy requires defining an objective function for each exchange flux of interest. More

information can be found in [44] and [59].
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A.1 Materials

1. MATLAB: DFBAlab is compatible with MATLAB 7.12.0 and newer versions.

2. DFBAlab: DFBAlab is a MATLAB code that performs DFBA simulations

efficiently and reliably. It is free for academic research and can be down-

loaded at http://yoric.mit.edu/software. DFBAlab contains three fold-

ers named "Functions", "ExamplesDirect", and "Examples..DAE". The folder

named "Functions" must be added to the MATLAB path. The Examples fold-

ers contain the examples described in [44]. It is recommended to use "Exam-

plesDAE" since these examples run much faster than "ExamplesDirect".

3. Relevant GENREs: To perform DFBA simulations, GENREs of the relevant

microorganisms are needed. An extensive collection of GENREs can be found at

the following webpage: http: //systemsbiology.ucsd. edu/InSilicoOrganisms/

OtherOrganisms. There are some protocols and methods that generate these

reconstructions automatically. A list can be found at Table 1 of [40]. GENREs

are usually published in the Systems Biology Markup Language (SBML) [61].

4. LP Solvers Gurobi or CPLEX: As mentioned before, DFBA calculates the

growth rates and exchange fluxes rates of microorganisms by solving LPs.

Therefore, LP solvers are needed. DFBAlab is currently compatible with CPLEX

[28] and Gurobi [50]. Academic licenses are available for both LP solvers.

5. Cobra Toolbox: The Cobra Toolbox [118] is a package that runs in MATLAB

that uses constraint-based modeling to predict the behavior of microorganisms.

It can be obtained from https: //opencobra. github. io/. The Cobra toolbox

has a function that transforms a metabolic network in SBML format into a

".mat" format, which is the input used by DFBAlab. For this function to work,

the SBML package must be obtained from http://sbml.org/MainPage.

245



A.2 Methods

Here, we describe step by step how to model a DFBA problem using DFBAlab.

The examples in "ExamplesDirect" and "ExamplesDAE" require the same model-

ing effort. Only the implementation in "Examples-DAE" will be discussed because

the implementation in "Examples-Direct" is very similar. Examples in both folders

contain three key files: main.m, DRHS.m, and RHS.m. In addition, the examples

in "Examples-DAE" contain a file called evts.m. In addition, the Examples folders

contain a folder called "Example-Modellmport". This folder contains a very simple

script that converts an SBML file into a ".mat" file that can be used in MATLAB

simulations. Next, we show the relevant parts of these files and the inputs required

from the user. In addition, we use Example 3 in [44] to illustrate the use of DFBAlab.

In this example, Chlamydomonas reinhardtii and Saccharomyces cerevisiae grow to-

gether in a pond open to the atmosphere. For simplicity, this pond is modeled as a

single continuously stirred-tank reactor (CSTR). The model results in a DAE system

as pH balances are considered. In Section A.3, some common problems regarding the

use of DFBAlab are described.

A.2.1 Converting a GENRE in SBML format into ".mat"

format

When published, GENREs are usually in SBML format. The file "Modellmport.m" in

the "Example-Modellmport" folder in Examples calls the Cobra toolbox and converts

GENREs in SBML format into ".mat" format. This function is really easy to use.

Just modify line 4 of the code,

NAME1=readCBModel('NAME2' ,DB,'SBML'),

and replace NAME1 for the name you want to give your model, replace NAME2 with

the name of the SBML file, and replace DB with the numerical value you want infinity

to be replaced with. Usually, a value of DB = 1000 works fine. The output will be a

model with the name NAME1.mat. Every microorganism that needs to be modeled

in DFBAlab must be transformed into a ".mat " file.
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A.2.2 Inputs for the main.m file

The main.m file sets up the simulation. In this section, each part of the main.m

file will be described and the required inputs will be specified. It is important to

notice that the structure variable INFO contains important information that is then

passed to other MATLAB files and functions. This structure can be used to pass

other important parameter information to DRHS.m, RHS.m, and evts.m. The first

part of main.m clears the workspace and specifies the number of models that will be

used in the simulation.

clear all

INFO.nmodel = NM;

Here, NM stands for the number of models in the simulation. For example, consider a

dynamic model of a plug flow reactor (PFR) with two different species growing. The

PFR can be discretized in N spatial slices to transform it from a partial differential

equation (PDE) system to an ODE system. Then, NM = 2*N. The next part of the

main.m file loads the models. Here, the models must already be in ".mat" format

after going through the "Modellmport.m" code:

load NAMEMODEL.mat

model{i} = NAMEMODEL;

DB(i) = db;

INFO.DB = DB;

Each species must be loaded into the file using the load command and replacing

NAMEMODEL for the actual name of the model. Then, for i = 1, ., nmodel, the cell

model stores each relevant metabolic network model. The array DB stores the default

bound specified in Modellmport.m for each model. In this way, DFBAlab can change

this bound information back to infinity. This array is stored in the INFO structure.

The next part defines the exID cell, which carries the exchange fluxes information:

exID{i}=[ex1,ex2, ,exj];

INFO.exID = exID;

Again i = 1, ., nmodel, and ex1, ex2, exj correspond to the indices of the exchange
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fluxes that are needed in the DRHS.m file for model i. For example, let us assume

that model 1 corresponds to an E. coli model. To model this bioprocess, we may

care about the exchange fluxes of glucose, oxygen, and carbon dioxide. Then in

model{1}.rxns the indices associated with the exchange fluxes for glucose, oxygen,

and carbon dioxide must be found. These are the indices that must be inserted in

place of exi, ex2, exj. The order of these indices is relevant for the RHS.m file as

explained later.

Next, the cell C corresponding to the cost vectors is defined:

minim = 1;

maxim = -1;

% Maximize growth

Ci(j).sense = maxim;

Ci(j).rxns = [cin];

Ci(j).wts = [1];

DFBAlab relies on lexicographic optimization to perform efficient DFBA simu-

lations [44]. Each cost vector requires three entries: sense, reactions, and weights.

The information in C{i}(j) corresponds to model i and cost vector j. Usually, the

first cost vector for any model will correspond to maximization of biomass. Other

relevant biological objectives can be listed as subsequent cost vectors. All the fluxes

that appear in the right-hand side of the ODE system must be listed as cost vectors in

order to guarantee a unique solution of the simulation. If you want the corresponding

cost vector to be maximized, enter maxim in sense, otherwise enter minim. Then in

C{i}(j).rxns list the indices of the reactions corresponding to this cost vector. Finally

in C{i}(j).wts enter the coefficients corresponding to this cost vector. For example,

C{i}(j).sense = maxim;

C{i}(j).rxns = [1108,103];

C{i}(j).wts = [1,-1];

INFO.C = C;

is equivalent to defining cost vector j for model i as maximize v1108 - v10 3. The cost

vectors are stored in the INFO structure. Next the initial conditions, integration time
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and DFBAlab options are set. YO = [ICVECTOR];

% Time of simulation

tspan = [ti,tf];

% LP Objects construction parameters

INFO.LPsolver = 0; % CPLEX = 0, Gurobi = 1.

INFO.tol = toll; % Feasibility, optimality and convergence tolerance

for Cplex (tol>=lE-9).

% It is recommended it is at least 2 orders of magnitude

% tighter than the integrator tolerance.

% If problems with infeasibility messages, tighten this

% tolerance.

INFO.tolPhl = tol2; X Tolerance to determine if a solution to phaseI

equals zero.

% It is recommended to be the same as INFO.tol.

INFO.tolevt = tol3; % Tolerance for event detection. Has to be greater

% than INFO.tol. Recommended to be 2 times the integration tolerance.

YO is a column vector containing the initial conditions. tspan contains the in-

tegration time interval: ti corresponds to the initial time and tf corresponds to the

final time. Next, some DFBAlab parameters are established: INFO.LPsolver se-

lects between Gurobi (enter 1) and CPLEX (enter 0). Next, the LP tolerance is

set at INFO.tol. This tolerance has to be larger than 10 9 . Next, INFO.tolPhl

corresponds to the threshold value under which the penalty function will be consid-

ered equal to zero. Here, we recommend using INFO.tol for this value. Finally,

INFO.tolevt corresponds to the event detection tolerance that triggers when the

FBA LP must be solved again. Here, we recommend using two times the absolute

tolerance of the integration method. Next, the integration options are set:

M = [MASS];

options = odeset('AbsTol',tol4,'RelTol',tol5,'Mass',M,'Events',Oevts);

If we are integrating a DAE system, a mass matrix must be defined. Using odeset,

other MATLAB integration options can be set such as absolute and relative toler-
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ances, nonnegativity constraints, and event detection. DFBAlab always uses event

detection if you use the Examples in "ExamplesDAE". The following parts of the

"main.m" file do not require any further inputs.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

[model,INFO] = ModelSetupM(model,YO,INFO);

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

if INFO.LPsolver == 0

[INFO] = LexicographicOpt (model, INFO);

elseif INFO.LPsolver == 1

[INFO] = LexicographicOptG(model,INFO);

else

display('Solver not currently supported.');

end

tic

tint = 0;

TF =

YF = [1;

while tint<tspan(2)

% Look at MATLAB documentation if you want to change solver.

% odel5s is more or less accurate for stiff problems.

[T,Y] = odel5s(@DRHS,tspan,YO,options,INFO);

TF = [TF;T];

YF = [YF;Y];

tint = T(end);

tspan = [tint,tspan(2)];

YO = Y(end,:);

if tint == tspan(2)

break;

end
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% Update b vector

[INFO] = bupdate(tint,YO,INFO);

%Determine model with basis change

value = evts(tint,YQ,INFO);

ind = find(value<=O);

fprintf('Basis change at timed. ',tint);

k = 0;

ct = 0;

while isempty(ind)

k = k + 1;

ct = ct + size(model{k}.A,1);

ind2 = find(ind<=ct);

if isempty(ind2)

INFO.flagbasis = k;

fprintf('Model %i. \ n',k);

% Perform lexicographic optimization

if INFO.LPsolver == 0

[INFO] = LexicographicOpt(model,INFO);

elseif INFO.LPsolver == 1

[INFO] = LexicographicOptG(model,INFO);

else

display('Solver not currently supported.');

end

ind(ind2)=[];

end

end

end

display(toc);

The function ModelSetupM takes the model cell and the INFO structure to trans-
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form the LPs into the standard form, which is the key for efficient integration with

DFBAlab. The functions LexicographicOpt and LexicographicOptG solve the LPs

with CPLEX and Gurobi, respectively. Then comes the integration loop using the

numerical integrator odel5s, used for stiff systems which is the case for DFBA sys-

tems. The results of integration are stored in the vectors YF for the states and TF

for the times. After this, any plots can be generated using the information in YF and

TF.

A.2.3 Sample inputs for main.m

The following MATLAB code is commented in the relevant sections.

clear all

INFO.nmodel = 2; % Number of models: one for algae and one for yeast.

load iND750.mat % This is the yeast model

model{1} = iND750;

DB(1) = 1000;% This is the default bound for the yeast mode

1 (1000 = Infinity)

load iRC1080.mat % This is the algae model

model{2} = iRC1080;

DB(2) = 1000; % This is the default bound for the algae model

(1000 = Infinity)

INFO.DB = DB;

exID{1}=[428,458,407,420]; % These are the exchange fluxes with variable

bounds for the yeast model. The bounds are defined in RHS.m.

exID{2}=[26,28,24,25,1,2,3,4,5,6,7,8,9,10,11,12,13,62,63,64,65,27,81,47];

% These are the exchange fluxes with variable bounds for the algae model.

The bounds are defined in RHS.m.

INFO.exID = exID; % Next, we define the cost vectors for yeast and algae.

For both cases, first, we maximize growth, and then we maximize or

minimize each one of the exchange fluxes that appear in the ODE system.

minim = 1;
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maxim = -1;

% Yeast

% Maximize growth

C{1}(1).sense = maxim;

C{1}(1).rxns = [12661;

C{1}(1).wts = [1];

% Glucose

C{1}(2).sense = maxim;

C{1}(2).rxns = [428];

C{1}(2).wts = [1];

% 02

C{1}(3).sense = maxim;

C{1}(3).rxns = [458];

C{1}(3).wts = [1];

% C02 C{1}(4).sense = maxim;

C{1}(4).rxns = [407];

C{1}(4).wts = [11;

% Ethanol C{1}(5).sense = maxim;

C{1}(5).rxns = [420];

C{1}(5).wts = [1];

% Algae

% Maximize growth

C{2}(1).sense = maxim;

C{2}(1).rxns = [63];

C{2}(1).wts = [1];

% Acetate

C{2}(2).sense = minim;

C{2}(2).rxns = [28];

C{2}(2).wts = [1];

% 02
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C{2}(3).sense = maxim;

C{2}(3).rxns = [24,81];

C{2}(3).wts = [1,1];

% C02

C{2}(4).sense = minim;

C{2}(4).rxns = [25];

C{2}(4).wts = [1];

INFO.C = C;

% Initial conditions

% Y1 = Volume (L)

% Y2 = Biomass Yeast (gDW/L)

% Y3 = Biomass Algae (gDW/L)

% Y4 = Glucose (mmol/L)

% Y5 = 02 (mmol/L)

% Y6 = Total Carbon (mmol/L)

X Y7 = Ethanol (mmol/L)

% Y8 = Acetate (mmol/L)

% Y9 = Total Nitrogen (mmol/L)

% Y10 = Penalty

% Y11 = NH4+

% Y12 = NH3

% Y13 = C02

% Y14 = HCO3-

% Y15 = C03 -2

% Y16 = H +

YO = [140 1.1048 1.8774 0.0140, 0.00065156 1.2211 8.2068 0.0237

0.1643 0 0.1643 2.4476E-5 1.0568 0.1643 2.5842E-6 2.6701E-6]';

% Time of simulation

tspan = [0,24];
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% LP options and tolerances

INFO.LPsolver = 0; % CPLEX = 0, Gurobi = 1.

INFO.tol = 1E-9; % Feasibility, optimality and convergence tolerance

for LP solver (tol>=1E-9). It is recommended it is at least 1 order of

magnitude tighter than the integration tolerance.

INFO.tolPhl = INFO.tol; % Tolerance to determine if a solution to

phaseI equals zero. Usually, the best value here is to set it

equal to INFO.tol.

INFO.tolevt = 2E-6; % Tolerance for event detection. Has to be

greater than INFO.tol. Usually a value of two times the

integration tolerance works fine.

% This is a DAE system because of the pH balances. The first 10 states

are the differential states and the last 6 correspond to the

algebraic states.

M = [eye(10) zeros(10,6); zeros(6,16)];

options = odeset('AbsTol',1E-6,'RelTol',1E-6,'Mass',M,'Events',oevts);

% This part of the code constructs the LP problem structures that will

be solved during integration, and solves the LPs at the initial

conditions.

[model,INFO] = ModelSetupM(model,YO,INFO); if INFO.LPsolver == 0

[INFO] = LexicographicOpt(model,INFO);

elseif INFO.LPsolver == 1

[INFO] = LexicographicOptG(model,INFO);

else

display('Solver not currently supported.');

end % This is the integration loop. tint = 0;

% TF and YF will concatenate T and Y that are returned by the DAE

numerical integrator. TF =

YF = [1;

while tint<tspan(2)
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% Look at MATLAB documentation if you want to change solver.

% DFBA systems tend to be stiff systems and odel5s is more or less

accurate for stiff problems.

[T,Y] = ode15s(ODRHS,tspan,YO,options,INFO);

TF = [TF;T];

YF = [YF;Y];

tint = T(end);

tspan = [tint,tspan(2)];

YO = Y(end,:);

if tint == tspan(2)

break;

end

% Update the right-hand sides of the LPs given the current time and

states

[INFO] = bupdate(tint,YO,INFO);

%Determine which LPs had a basis change

value = evts(tint,YO,INFO);

ind = find(value<=O);

fprintf('Basis change at timed. ',tint);

k 0;

ct = 0;

while isempty(ind)

k = k + 1;

ct = ct + size(model{k}.A,1);

ind2 = find(ind<=ct);

if isempty(ind2)

INFO.flagbasis = k;

fprintf('Model %i. \ n',k);

% Perform lexicographic optimization
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if INFO.LPsolver == 0

[INFO] = LexicographicOpt(model,INFO);

elseif INFO.LPsolver == 1

[INFO] = LexicographicOptG(model,INFO);

else

display('Solver not currently supported.');

end

ind(ind2)=[];

end

end

end

% TF contains all the times and YF all the states at these times.

Any plotting options can be included here.

A.2.4 Inputs for the DRHS.m file

The DRHS function defined in DRHS.m takes time, states and the INFO structure

and returns the right-hand side vector of the ODE or DAE system:

function dy = DRHS(t, y, INFO)

This file is very flexible. A key command that takes place before the right-hand side

values are set is:

[flux,penalty] = solveModel(t,y,INFO);

Here, the flux variable is a matrix with rows corresponding to each model and

columns corresponding to each cost vector. Therefore, flux(i, j) corresponds to

the optimal value of cost vector j and model i with the order defined in main.m.

The penalty vector contains the objective function values of the Phase I LPs. If

penalty(i) > 0, model i corresponds to an infeasible LP. Otherwise, model i is fea-

sible. We recommend that a penalty state that integrates the sum of all penalty

functions is set. If this penalty state is greater than zero at the end of the simulation,

then, this DFBA simulation is infeasible.
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A.2.5 Sample inputs for the DRHS.m file

The following MATLAB code is commented in the relevant sections.

function dy = DRHS(t, y, INFO)

% Y1 = Volume (L)

% Y2 = Biomass Yeast (gDW/L)

% Y3 = Biomass Algae (gDW/L)

% Y4 = Glucose (mmol/L)

% Y5 = 02 (mmol/L)

% Y6 = Total Carbon (mmol/L)

% Y7 = Ethanol (mmol/L)

% Y8 = Acetate (mmol/L)

% Y9 = Total Nitrogen (mmol/L)

% Y10 = Penalty

% Y11 = NH4+

% Y12 = NH3

% Y13 = C02

% Y14 = HCO3-

% Y15 = C03 -2

% Y16 = H +

% Assign values from states

Vol =y(1);

X(1) = y(2);

X(2) =y(3);

for i=1:13

S(i) = y(3+i);

end 7 Feed rates Fin = 1;

Fout = 1;
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% Biomass Feed concentrations

Xfeed(1) = 0;

Xfeed(2) = 0;

% Mass transfer coefficients

Kh02 = 0.0013;

KhCO2 = 0.035;

% Mass transfer expressions

MT(1) = 0;

MT(2) = 0.6*(KhO2*0.21*1000 - S(2));

MT(3) = 0.58*(KhCO2*0.00035*1000 - S(10));

MT(4) = 0;

MT(5) = 0;

MT(6) = 0;

% Substrate feed concentrations

Sfeed(1) = 15.01;

Sfeed(2) = Kh02*0.21*1000;

Sfeed(3) = KhC02*0.00035*1000;

Sfeed(4) = 0;

Sfeed(5) = 40;

Sfeed(6) = 0; % The elements of the flux matrix have the sign given to

them by the

% coefficients in the Cost vector in main.

% Example, if:

% C{k}(i).rxns = [144, 832, 931];

% C{k}(i).wts = [3, 1, -1];

% Then the cost vector for this LP will be:
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% flux(k,i) = 3*v_144 + v_832 - v_931 %% Update bounds and solve

for fluxes

[flux,penalty] = solveModel(t,y,INFO);

% Yeast fluxes

for i=1:4

v(1,i) = flux(1,i+1);

end

v(1,5) = 0;

v(1,6) = 0;

% Algae fluxes

v(2,1) = 0;

v(2,2) = flux(2,3);

v(2,3) = flux(2,4);

v(2,4) = 0;

v(2,5) = flux(2,2);

%% Dynamics dy(1) = Fin-Fout; % Volume

dy(2) = flux(1,1)*y(2) + (Xfeed(1)*Fin - y(2)*Fout)/y(1);

% Biomass yeast

dy(3) = flux(2,1)*y(3) + (Xfeed(2)*Fin - y(3)*Fout)/y(1);

% Biomass algae

for i = 1:5

dy(i+3) = v(1,i)*X(1) + v(2,i)*X(2) + MT(i) +

(Sfeed(i)*Fin - S(i)*Fout)/y(1);

end

if (S(2)/1000 > Kh02 && dy(3+2)>0)

dy(3+2) = 0;
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end

if (S(3)/1000 > KhCO2 && dy(3+3)>O)

dy(3+3) = 0;

end

dy(9) = 0; % Leave total nitrogen constant

dy(10) = penalty(1) + penalty(2); %Penalty function

% Algebraic Equations

Ka = 10-9.4003;

Kic = 10-6.3819;

K2c = 10^10.3767;

Nt = S(6);

Ct = S(3);

x = y(11:1 6);

F = [-x(1) + Nt*x(6)/(x(6) + Ka)

-x(4) + x(1)/(1 + 2*K2c/x(6));

-x(3) + x(6)*x(4)/Klc;

-x(5) + x(4)*K2c/x(6);

-Nt + x(1) + x(2)

-Ct + x(3) + x(4) + x(5)];

dy(11:16) = F;

end

A.2.6 Inputs for the RHS.m file

The RHS function defined in RHS.m takes time, states, and the INFO structure and

returns two matrices containing the upper and lower bounds for the fluxes specified
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in the exID cell in main.m.

function [lb,ub] = RHS( t,y,INFO )

Here, lb corresponds to the lower bounds and ub to the upper bounds. Element

lb(i, j) contains the lower bound corresponding to flux j in exID{i}. The same

indexing applies for the ub matrix containing the upper bounds. The lower and

upper bound quantities are functions of time and states. These functions must be

continuous functions. In addition, if any lower bound or upper bound is defined as

infinity or minus infinity, the value of this bound must remain constant the entire

time of simulation.

A.2.7 Sample inputs for the RHS.m file

function [lb,ub] = RHS( t,y,INFO )

Y1 = Volume (L)

Y2 = Biomass Yeast (gDW/L)

Y3 = Biomass Algae (gDW/L)

Y4 = Glucose (mmol/L)

Y5 = 02 (mmol/L)

Y6 = Total Carbon (mmol/L)

Y7 = Ethanol (mmol/L)

Y8 = Acetate (mmol/L)

Y9 = Total Nitrogen (mmol/L)

Y10 = Penalty

Y11 = NH4+

Y12 = NH3

Y13 = C02

Y14 = HCO3-

Y15 = C03 -2

Y16 = H +
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% This subroutine updates the upper and lower bounds for the

fluxes in the

% exID arrays in main. The output should be two matrices, lb and ub.

The lb matrix

% contains the lower bounds for exID{i} in the ith row in the same

order as

% exID. The same is true for the upper bounds in the ub matrix.

7 Infinity can be used for unconstrained variables, however, it should

be

% fixed for all time.

%/%%%00%%000000%%%%/

7 Yeast bounds

7 Glucose

if (y(4)<O)

lb(1,1) = 0;

else

lb(1,1) = -(20*y(4)/(0.5/0.18 + y(4))

end

ub(1,1) = 0;

7 Oxygen

lb(1,2) = -8*y(5)/(0.003/0.016 + y(5)

ub(1,2) = 0;

7 C02

lb(1,3) = 0;

ub(1,3) = Inf;

7 Ethanol

lb(1,4) = 0;

ub(1,4) = Inf;

%%%%00000%0%0%0%%0%%%% 7 Algae bounds

. HC03

)*1/(1+y(7)/(10/0.046));

);
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lb(2,1) = 0;

ub(2,1) = 0;

% Acetate

lb(2,2) = -14.9*y(8)/(2.2956+y(8)+y(8)2/0.1557);

ub(2,2) = 0;

% Oxygen

lb(2,3) = -1.41750070911*y(5)/(0.009+y(5));

ub(2,3) = Inf;

% C02

lb(2,4) = -2.64279793224*y(13)/(0.0009+y(13));

ub(2,4) = Inf;

% Light

Kel = 0.32;

Ke2 = 0.03;

L = 0.4; % meters depth of pond

Ke = Kel + Ke2*(y(3)+y(2)/2);

Io = 28*(max(sin(2*pio*t/48)2,sin(2*pio*5/48)2)

-sin(2*pio*5/48) )/(1-sin(2*pio*5/48) );

lb(2,5) = 0;

ub(2,5) = Io*(1-exp(-L*Ke))/(Ke*L);

% Other possible light sources set equal to zero

for i=6:16

lb(2,i) = 0;

ub(2,i) = 0;

end

% H+

lb(2,17) = -10;

ub(2,17) = Inf;

% Autotrophic growth

lb(2,18) = 0;
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ub(2,18) = 0;

% Mixotrophic growth

lb(2,19) = 0;

ub(2,19) = Inf;

% Heterotrophic growth

lb(2,20) = 0;

ub(2,20) = 0;

% Non-growth associated ATP maintenance

lb(2,21) = 0.183;

ub(2,21) = 0.183;

% Starch

lb(2,22) = 0;

ub(2,22) = 0;

% Photoevolved oxygen

lb(2,23) = 0;

ub(2,23) = 8.28;

% Ethanol

lb(2,24) = 0;

ub(2,24) = 0;

end

A.2.8 Inputs for the evts.m file

This file is critical for DFBAlab to perform efficient DFBA simulations and will most

likely not require any changes. This file needs to be changed only if event detection

is needed in addition to the event detection associated with the LPs embedded. In

this case, any event detection conditions can be added at the end of the vectors

value, isterminal and direction. The definition of these vectors can be found in the

MATLAB documentation.

function [value,isterminal,direction] = evts(t,y,INFO)

eps = INFO.tolevt;
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lexID = INFO.lexID;

nmodel = INFO.nmodel;

bmodel = INFO.b;

lbct = INFO.lbct;

indlb = INFO.indlb;

indub = INFO.indub;

U = INFO.U;

L = INFO.L;

P = INFO.P;

Q = INFO.Q;

%% Update solutions

[lbx,ubx] = RHS( t,y,INFO );

ct = 0;

total = 0;

for i=1:nmodel

total = length(bmodel{i}) + total;

end

value = zeros(total,1);

isterminal = ones(total,1); % stop the integration

direction = -1*ones(total,1); % negative direction

for i=1:nmodel

b = bmodel{i};

lb = lbx(i,1:lexID(i));

ub = ubx(i,1:lexID(i));

lb(indlb{i}) =

ub(indub{i})=[];

b(1:length(lb)) = lb;

b(length(lb)+lbct(i)+1:length(lb)+lbct(i)+length(ub)) = ub;

x = (L{i}\ (P{i}*b));

x = U{i}\ x;
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x = Qfi}*x;

% Detect when a basic variable crosses zero.

value(1+ct:length(x)+ct) = x + eps;

ct = ct + length(x);

end

ADD NEW CONDITIONS HERE

end

If the code is not modified, the length of the vectors value, isterminal, and

direction is equal to the sum of all mi where mi corresponds to the number of rows

of model{i}.A. In addition, the main.m file needs to be modified at the integration

loop to distinguish events due to basis changes in the LPs from other types of events.

In Example 3 in [44], this file is not modified.

A.3 Notes

Note 1: In some instances, DFBAlab may fail due to infeasible or unbounded LPs.

Although theoretically this should not happen, it does happen some times numerically.

When encountering this problem, change INFO.tol a bit and/or change the LP solver

and try again.

Note 2: DFBAlab is designed such that only the fluxes defined as cost vectors can

be accessed at DRHS.m. This is to ensure uniqueness in the right-hand side of the

ODE/DAE system. Future versions of DFBAlab may contain the option of extracting

all other fluxes, although these other fluxes must be treated carefully as they can be

nonunique.
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Appendix B

Extensions of Proposition 4.12 in

Bonnans and Shapiro [14]

Proposition 4.12 in [14] refers to optimization problems of the form in (6.9) and

requires Definition 6.4.1.

Proposition B.O.1. (Proposition 4.12 in [14].) Suppose that

1. the function f(x, u) is continuous on X x U,

2. the inf-compactness condition holds at uo,

3. for any x E <b the function fx(-) := f(x, -) is directionally differentiable at uo,

4. if d E U, t, 4 0 and {x,} is a sequence in C, then {xn} has a limit point x such

that

lim sup f (xn, UO + tnd)- f (x , UO) > f (uo; d).
fl-4oo~ un

(B.1)

Then the optimal value function v(u) is directionally differentiable at uo and

v'(uo; d) = inf f,' (uo; d),
xES(uo)

(B.2)
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where S(u) := arg min f(x, u). Moreover, if x, E S(uo + tad) for some t, 4 0, then
xE4D

any limit point x of {x,} belongs to S1(uo, d), where Si(uo, d) arg min f'(uo, d).
xeS(uo)

Next, we extend Proposition 4.12 in [14] to calculate LD-derivatives of optimiza-

tion problems of the form in (6.9). To do this, we apply Proposition 4.12 recursively.

Not all PC' functions are suitable for LD-derivative computation using Proposition

4.12 in [14] as the following example shows.

Example B.O.1. Consider the objective function f(x, u) = Ix - ul. f is clearly a

PC' function on R x R. Then if d > 0,

-d i f x > u
f'(x, u; 0, d) = u

d if x<u

and if d < 0, f'(x, u; 0, d) -f'(x, u; 0, -d). For any d 5 0, f'(x, u; 0, d) will be

discontinuous at x = u. Therefore, f'(., u; 0, -) is not a continuous function on R x R

and Proposition 4.12 in [14] cannot be applied recursively.

Now consider f(x, u) = x + Jul. Then for d > 0,

-d if u < 0
f'(x, u; 0, d) =

Id if u ;> 0

and if d < 0, f'(x, u; 0, d) = -f'(x, u; 0, -d). Therefore, f'(., u; 0, -) is continuous

on R x R and Proposition 4.12 in [14] can be applied recursively to compute LD-

derivatives. Therefore for an objective function f : X x U - R, nonsmoothness can

be tolerated on U but not on X when computing LD-derivatives.

The following example illustrates how for a PC' function f : X c Rx - R with

selection functions f, . , fff, a point x E X and a direction d E Rx, there may

not exist 6 > 0 such that for all E E [0,6), there exists i E {1,--- , nri} such that

f (x + Ed) = fl(x + Ed).
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Example B.O.2. Consider the two following selection functions fI, f 2 : R -+ R:

o 

I 0 if u = 0, 0 if u = 0,

u3 sin(1/u) else. 1u3 cos(1/u) else.

and let f(u) = max{f1 (u), f 2 (u)}. Both fl, f 2 are C' functions. To see this, consider

that for any sequence {un} where Un -÷ 0

lim f I(Un) = lim U3 sin(1/Un),n-4o n-+oo

If (Un)| = - U3 sin(1/Un)l < IU31,

lim fuij = 0,
nl-I

lim fI(un) = lim U3sin(1/un) = 0,n-+oo n-4oo

and by a similar argument lim f 2 (un) = 0. Therefore, both fl, f 2 are continuous at
n-*,o

{0}. For this functions to be C1, we must verify that their derivative is continuous

at {0} too. First, we compute the derivative of f 1 and f 2 from the definition. Then,

fi(t) - 0 t3 Sin (1/)
[f1]'(0) = lim = lim = lim t2 sin(1/t) = 0,t-+f t - 0 t-+o t t-+o

and by a very similar argument [f 2]'(0) = 0. For u 7 0, [f1 ]'(u) = 3U 2 sin(1/u) -

u cos(1/u) and [f 2 ]'(u) = 3U 2 cos(1/u) + u sin(1/u) and

lim[f 1]'(u) = lim[f2]'(u) = 0,

which establishes continuity of both [f 1 ', [f 2 ]' at {0}. However, notice that for any

d 7 0, it is impossible to find a 6 > 0 such that for all E E [0, 6), f(Ed) = f (cd) with

i E {1, 2} because near zero, an infinite number of switches between f 1 and f 2 take

place.

Theorem B.O.2. Let M c Rux Suppose that

1. the function f(x, u) is PC' on X x U,
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2. the function f(-, u) is C2 on X for every u E U,

3. the inf-compactness condition holds at uO.

Then the optimal value function v is i-smooth at uO and for i = {0, - , q}

V'M (d) = min [fx](,M(d) (B.3)
xESi(uo,M)

where So(uo, M) = S(uo) and for i = {1, - - - , q}

Si (uO, M) = arg min [fx]Q m) B4
xESi-1(uo,M)

Proof: The strategy of this proof is to apply Proposition B.O.1 recursively. Since

the function fx(-) = f(x, -) is PC1 , it is i-smooth and directionally differentiable.

Therefore, the first three assumptions in Proposition B.O.1 are satisfied.

Next, we verify the last assumption in Proposition B.O.1. If f is continuously dif-

ferentiable at (k, uo), then, it is strictly differentiable and the generalized directional

derivative coincides with the directional derivative (Definition 2.3.4 and Proposition

2.3.6 in [27]). Consider the sequence {u'} with un -+ uo. Then,

f (k, uo; 0, d) = lim sup f(x, Un + tnd) - f(Xn, Un) (B.5)
fnx- 10-1 td n x,10

> lim sup
n-+oo n

> lim f(k,uo+ td) - f(k,uo)
n-oo tn

= f'(k, uo; 0, d) = fk(uo; d) = f0 (k, uo; 0, d).

Since f is PC1 , it has a finite number of C' selection functions nf that can be

labeled f1, - - - , f f. Since f(-, u) is a C2 function, the pieces visited by the sequence

in the limit in (B.1) are just a function of the sequence {tn} and not of the sequence

{xn}. If for any sequence {tn}, there exists N E N such that for all n > N there

exists i E {1,- , nlf} such that fi(X, UO + tnd) = f(, UO + tnd), then all elements
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in the sequence can be described by a C' function and the relationships in (B.5)

hold. If there exists more than one selection function fi with i E J(d) C {1, - - - , nf}

that must be considered (see Example B.O.2), then there exist subsequences {ti}

such that all elements in the subsequence can be described by the function fi with

i E J(d). Then again, the relationships in (B.5) hold and we obtain the limits

[f ];(uo; d). However, since f(x, -) is I-smooth for all x C X, then for all i E J(d),

[f']'(uo; d) = fR(uo; d). This implies that the last assumption in Proposition B.O.1

is satisfied and therefore,

of0,M (d) = inf [f(0)] (d). (B.6)
xESo(uo,M) 

(B6

From the inf-compactness condition we get So(uo, M) must be bounded and from

the continuity of f we get that So(uo, M) must be closed; it follows that So(uo, M)

can be described as a compact set or as the union of disjoint compact sets. Let

f 0,M(x, d) [fx] (0)M (d). f [0],M is a PC' function. To see this, notice that

f (uo; d) = Vufi(x, uo)[d],

for some i E {1... , rnf}. Since f(-, u) is a C2 function for all u E U, i is only

dependent on d. Therefore for all x E X, f[ 01,(x, -) is piecewise linear. In addition

for all i and all u E U, Vuf2 (-, u) are C' functions. Since f el]M can be described

as the composition of a piecewise linear function with C' functions, then fj] is

continuous. Therefore, the minimum in (B.6) is attained. To compute the rest of the

LD-derivatives, we must verify whether the optimization problem

vUOM (do) = min f[0] M (x, do) (B.7)
xESo(uo,M) UO

satisfies the Assumptions in Proposition B.O.1. Since So(uo, M) can be described as a

compact set or the union of disjoint compact sets, the inf-compactness condition holds.

Assumptions (i) and (iii) follow from the continuity of f [0] and the I-smoothness ofUo,

fx for all x E X. Since fu[j]M is continuous and the inf-compactness condition holds,
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Si(uo, M) can be described as a compact set or the union of disjoint compact sets. To

verify Assumption (iv), notice again that which selection functions are active depend

exclusively on the {t,} sequence and not on the {x,} sequence. Consider that the

index set K(d) c J(mi) contains the selection functions for which subsequences {t'}

can be constructed such that all the subsequence elements stay in selection function

i E K(d). To see that the limit in (B.1) converges, consider these subsequences {t'}

and let do = m1 , d E Ru,

f 11,M (xn, M + td) - f, (x, i)
lim m n t [m]

n->oo tz
n

Vufi(xn, uo)[mi + t'd] - Vuf'(xn, uo)[mil - _ fd=
lio tn = , Vf '(x,, uo) [d] =[f 101 M (mi1; d),

for each i E K(d). Since f(x, -) is i-smooth for all x c X, Vuf"(x, uo)[d]

[f[O 1M] (mi; d) for all i E K(d), and the limit in Assumption (iv) in Proposition

B.0.1 exists. Therefore,

oM(d) = inf [fx]1('M(d) = inf fIll (x, d). (B.8)
xESi(uo,M) xESi(uo,M)

To finish the proof, we need tho show that [fx](1M is a PC function, that [fx]UM (., d)

is a C' function for any d E R, and that S2 (uo, M) can be described as a compact

set or the union of compact sets. It is clear that for each x E X, [fx1()M(x,) is a

piecewise linear function with selection functions Vuf'(x, uo)[-] for i E 1, - - -, nj}.

For all i and all uo c U, Vuf'(-, uo) is a Cl function. Therefore, [f] ( is contin-

uous because it results from the composition of a piecewise linear function with C1

functions. Then, the minimum in (B.8) is attained, S2 (uo, M) can be described as a

compact set or the union of compact sets, and

oM (d) = min I'] (x, do). (B.9)U0, ~XESJ(UO,M) U0

Since (B.9) has the same structure as (B.7), Proposition B.O.1 applies to (B.9), and

the rest of the LD-derivatives can be computed. The proof follows by induction. L
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Appendix C

Convex and Concave Relaxations

of Linear Programs and

Lexicographic Linear Programs.

As presented in Chapter 8, global optimization algorithms are necessary to find a

global optimum or a solution with an objective function value within E of the global

minimum. In this context, convex and concave relaxations are required. In particular,

these relaxations are necessary to compute reliably lower bounds for the subproblems

generated in the branch and bound algorithm. The aim of this Appendix is to con-

struct convex and concave relaxations of factorable functions with a linear program

(LP) embedded.

C.1 Preliminaries

Standard McCormick relaxations can be generated for factorable functions (see [92]).

However, this procedure cannot be applied to generate convex and concave relax-

ations of lexicographic LPs (LLPs) because obtaining the factored representation of

an LP is computationally intractable. Therefore, generalized McCormick relaxations,

presented in [121], are needed.

Generalized McCormick relaxations enable the use of McCormick relaxations in
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more complex settings, by flexibilizing the initialization rules of the process generating

the convex and concave relaxations. The first step in generating standard McCormick

relaxations requires setting vo"(p) = voc(p) = pi for i = 1,..., n, Vp E P. Gener-

alized McCormick relaxations take v'IC" as arguments separate from the value of

p. Then, previously constructed relaxations can be used as inputs when composing

with later factors. Proposition 3 in [121] asserts the validity of generalized convex

and concave McCormick relaxations when a more general initialization of the vcvlcc

factors is used. In particular, this proposition ensures that if convex and concave re-

laxations are generated for LLPs, then Definition 15 in [121] allows the computation

of McCormick relaxations for compositions involving LLPs.

C.1.1 McCormick's composition theorem

McCormick's univariate composition theorem is presented in Definition 9 in [121],

which is taken from [92]. Consider a convex set C E R'. This theorem allows to

compute relaxations for ' o f where f : C - R is bounded on C, f(C) C [a, b] and

W : [a, b] - R when convex and concave relaxations of W on [a, b] are known. However,

LLPs parameterized by their right-hand side take a multivariate input. Therefore,

a multivariate version of McCormick's composition theorem is needed to compute

relaxations of LLPs.

First, we introduce the following Proposition.

Proposition C.1.1. Let C be a nonempty, bounded convex subset of Rn. Let gcV

C - R be a convex function and gc : C -÷ R a concave function. Then gc' is

bounded below and gcc is bounded above.

Proof: The following definitions and theorems need to be introduced.

Definition C.1.1. The convex function f : R' -+ R is said to be proper if f(x) < +oo

for at least one x E R" and f(x) > -oc for all x E R".

Definition C.1.2. The relative interior of a convex set C C R"n, denoted ri(C), is

the interior of C regarded as a subset of its affine hull.
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Definition C.1.3. A vector s E R' is a subgradient of a convex function f at x if

f(x') > f(x) + sT(x' - x), Vx' E R.

The set of all subgradients of f at x is called the subdifferential at x and denoted

Of(x).

Theorem C.1.2. (Theorem 6.2 in [110]). Let C be a nonempty convex subset of R".

Then, its relative interior ri(C) is nonempty.

Theorem C.1.3. (Theorem 23.4 in [110]). Let f be a proper convex function. For

x E ri (dom f), Of(x) is nonempty.

Proof of Proposition C.1.1: To be precise, define f : R" n R by f(x) = gcv(x) for

x E C, f(x) = +oo for x V C. Then f is a proper convex function and dom f = C.

By Theorem C.1.2, the relative interior of C is nonempty, and so by Thoerem C.1.3,

there exists x E ri(C) at which Of(x) is nonempty. Consequently, there exists s E R"n

such that

f(x') > f(x) + sT(x' - x), Vx' E Rn.

Since C is bounded, there exists k E R such that I|x' - x112 < k for all x' E C. Thus

isT(x' - x)I < kIls|I 2 . Since f(x) + sT(xI - x) > f(x) - IsT(X - x), we have

f(x') > f(x) - kIjsI 2

for all x' E C. Finally, we note that this means gcv(x') > gCV*, for all x' E C. The

same reasoning applies for gcc. Notice that -gCC is a convex function. Then, -gcc is

bounded below which implies gcc is bounded above.

The following Theorem is based on Theorem 2 in [130] under weaker assumptions.

Theorem C.1.4. Let C c R' and Z C R' be nonempty convex sets. Consider the

composite function g = W o f where f : C --+ Rm with f(C) C Z and W : Z -+ R.
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Suppose that convex functions ff" : C -+ R and concave functions fc : C -* R

satisfying

fi"(x X < fi X : fi" X), Vx E C, Vz = 1, . .,M

are known. Let p"' : Z -- R and Wcc : Z -+ R be convex and concave relaxations of

W on Z. Then the following functions are well-defined and are convex and concave

relaxations of g on C:

u: C -÷ R: x - inf {y"(z): f '(x) z < fcc(x)},
zEZ

o : C - R : x ' sup {Wcc(z) fcv(x) < z < fCC(x)}.
zEZ

(C.1)

(C.2)

Proof: For any x E C, the inequalities f'(x) < z < fcc(x) define a compact set D(x).

Z nD(x) is nonempty because f(x) E D(x), f(x) E Z, thus o(x) > -oc for all x E C.

Z is a convex set and D(x) is a compact set, then Z n D(x) is convex and bounded

for all x E C. Then from Proposition C.1.1, occ is bounded above on ZfnD(x), which

means that o(x) must be finite. Then o(x) is well-defined.

For any x E C, f(x) E Z. By definition, fcv(x) < f(x) < f c(x). Then

p(f(x)) W "(f(x)) sup {pC (Z) fcv(x) < z < fCC (X) o(x).
zEZ

Then o(x) is an upper bound on p(f(x)), Vx E C. Take xj, x 2 , y = Ax1+(1- A)X2
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and A E (0, 1). Then,

f"(y) < Af"(xi) + (1 - A)fcv(X 2 )

fcc(y) > Afcc(xi) + (1 - A)fcc(x 2 ),

o(y) sup {p"(z) f "(y) < z < fcc(y)
zEZ

> sup {yP(z) f'"(x1) + (1 - A)f"(x2 ) z < Afcc(xi) + (1 - A)fCC" )}
zeZ

(C.3)

Consider the bounded convex sets F = [fcv(xl), fcc(x,)]nZ and F2 = [fc (x2 ), fcc(x 2 )]n

Z, and the points o(x1 ), o(x2 ). Let {ilk} and {22,} be sequences satisfying

{1} E Zn F1, Vk E N,

{g2,k} c Z n F2, Vk E N,

urn p z ( =ik) o(xi), and

liM CVc(i2,k) = o(x 2 ).
k-+oo

Such sequences are guaranteed to exist because, for example, o(x1 ) is a limit point of

the set {cc(z) : z E Z, fcv(x1) z < fcc(x 2 )}. Let jik be an element of Z n F such

that y9c(jk) o(xi) + ~. For each k, let +2yk - Ak ' (1 - A 2
2k, which is feasible

in (C.3) because

Af v(x1) < A-Z' k < Afcc(x1),

(1 - A)f"v(x 2) < (1 - A)2,k (1 - A)fcc(x2 ).

In addition Zjyk E Z because it is a convex combination of two elements in Z which

is a convex set. Then, from (C.3)

o(y) > Vcc(j'k).
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From concavity of pc, we have

o(y) > (cc(jYk) >! A~pCC-ilk) + (1 - A)(pcc (i 2
,k)

Taking the limits,

o(y) > lim occ(z'yk) > A lr i ccm 'k) + (1 - A) lrn pcc(2,k)
k-+oo k-+oo k-+oo

= Ao(xi) + (1 - A)O(x2),

so o is a concave overestimator of so o f.

C.2 Convex and concave relaxations for LPs

Consider F as defined in Chapter 6 after Assumption 6.1.1 and h as defined in (6.1)

and (6.2). For simplicity, we shall define h = ho. This section discusses convex and

concave relaxations for h on F. Let B C F be a box (also known as m dimensional

interval or m-cell). Theorem 5.1 in [12 establishes the convexity of h. Therefore,

only a concave relaxation is needed.

In a one dimensional space, the concave envelope of a convex function on an

interval is the secant going through the function value at the upper and lower bounds

of the interval. However, finding a concave relaxation of a convex function in a

higher dimensional space is not a trivial task. Theorem 2.4.2 in [37] provides a

characterization of the convex envelope fc,, of a concave function f : R" -I R over a
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polytope X conv{x 1, ... ,x } C Rn:

n

f'n',(x) = min A f(x')
AER"n

i= 1

n

s.t. Aix' = x (C.4)

n

i=1

Ai 0, Vi= , n,

for all x E X. This procedure takes the minimum of all convex combinations of

the function value at the vertices of the polytope to construct the convex envelope.

Therefore, a concave envelope of a convex function over a polytope can be constructed

by taking the maximum of all convex combinations of the function value of the vertices

of the polytope:

n

fe",(x) = max Ai f(x')
AER"

s.t. Aix' = x (C.5)

n

i= 1,

A 2>0 Vi=1,...,n.

for all x E X. An example implementing this expression to calculate the concave en-

velope of a simple LP can be found in Section C.6.1. To be able to construct a concave

relaxation of an LP with respect to k variable right-hand sides, 2 k function evalua-

tions are needed (all combinations of upper and lower bounds of variable right-hand

sides b', b' need to be considered). Each function evaluation involves the solution of a

linear program. If this procedure is embedded within a branch and bound algorithm,

everytime branching occurs, 2 k1 LPs will need to be solved before being able to use

(C.5) to compute the concave envelope. In addition, the function evaluation of the
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concave and convex envelopes involves solving (C.5) and (6.1), respectively. This can

be a computationally expensive procedure.

Consider the dual problem of (6.1):

max b T/,
JAERm

s.t. ATi < c. (C.6)

To find an upper bound on h in (6.1) (UBD), the objective function of (C.6) needs

to be maximized with respect to b and 1L:

UBD = max bT ,
yA,bER-

s.t. AT c, (C.7)

bL < bi < bu, Vi=1,..k.

The inequalities b < bi < bu define the box B. This NLP can be solved using

BARON [114]. However, finding the value of h at the extreme points of B may be

cheaper to compute than solving the NLP in BARON and provides enough informa-

tion to compute an upper bound (for b E B C R', only k components are variable

and m - k are fixed, therefore, only 2 k function evaluations are needed instead of 2 "').

Proposition C.2.1. Let f : X -+ R be a continuous and convex function and X

a convex and bounded polytope. Then, one of the extreme points of X attains the

maximum of f over X.

Proof: Since X C R' is a compact set, Weierstrass Theorem ensures that a point

in X attains the maximum (Theorem 4.16 in [112]). All points in a polytope can

be expressed as a convex combination of it's extreme points. Assume that X has ne

extreme points. Then any x E X can be written as:

i=1

where x, are the extreme points of X. For any x E X, consider the following proce-
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dure:

1. First, order all A2 from minimum to maximum. Delete all Ai = 0 from the list.

If only one element is in the list, then, the process is finished and x = Xj where

Ai is the only member of the list. Assume there are p elements in the list.

2. Take the first two Aa, Ab. Make ai - a Then yi = O1Xa +(1- OZ1)xb. Take

A, + Ab.

3. While there are elements in the list, set ak = , yk = Ogxj + (1 - Ck)Yk-1,

and 3 := 3 + Aj.

4. Finally, x = yp-,.

Notice that for each iterate, Yk = akXi + (1 - ak)yk_1, the following inequality follows

from convexity of f:

f(Yk) akf(Xi) + (1 - ak)f (Yk-1) < max{f(xj), f (yk-1)}.

Also for yi = aXa + (1 - aC)xb

f(Y) Oeif(Xa) + (1 - ai)f(xb) < max{f(xa), f(xb)}.

Then, for any iterate Yk, k = 1,...,p - 1:

f(Yk) < max{f (xi), f (x2), . f , f(x,)}-

Since this is true for any point x C X, then, the function f attains a maximum at

one of the extreme points of X.
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A lower bound can be computed by solving the following LP:

LBD= min cT v,
vERnv bERnm

s.t. Av - b = 0, (C.8)

bLb5 bu Vi= 1,..., k,

V ;>0.

C.3 Convex and concave relaxations of composi-

tions of h.

Consider an open set Dp C RP and a closed convex set P C Dp and let b : Dp a R".

With convex and concave relaxations available for h on B, expressions (C.1) and

(C.2) can be used to obtain convex and concave relaxations of h h o b on P. When

using (C.8) and (C.7) as convex and concave relaxations of h on B, the evaluation of

(C.1) and (C.2) results trivial. However, when h and (C.5) are used as convex and

concave relaxations of h on B, the implementation of (C.1) and (C.2) requires the

solution of LPs.

Consider convex and concave relaxations b", bcc for b on P are available through

standard McCormick relaxations. Then for p E P, bcv(p) and bcc(p) define a box

B C B. Let h' and hcc be convex and concave relaxations of h on P. Then h" is

hc'(p) Tmin CTV,
vERnv, bERnm

s.t. Av - z = 0, (C.9)

v ;> 0,

bCV (p) < bi < z c(p), Vi = 1, ... ,M,
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and hC"

hCC(p)= max Aih(bl)
AER2k, zEiR

st. Aib = z, (C.10)
2 1

E~ = 1,
i=1

b, (p) < zj < bjc(p), Vj = 1,.. , m,

Ai > 0, Vi= ,...,2k,

Vp E P where all W are computed beforehand and correspond to the 2k different

combinations of the variable components of the right-hand side. The inequalities

b7'(p) bj < bje(p) define the box B. These inequalities contain m - k equalities

because there are only k variable components of b. There are 2 k combinations b of

lower and upper bounds for the variable components of b.

Finally, regardless of whether (C.8) and (C.7) or (C.9) and (C.10) are used to

compute hC" and hcc, Definition 15 of [121] can be used to generate convex and

concave relaxations of f o h o b on P for any factorable objective function f.

C.4 Procedure to Calculate Convex and Concave

Relaxations of f o h o b on P

1. Generate convex and concave relaxations of b on P using standard McCormick

Relaxations.

2. Use the interval bounds for b on P to compute the 2k different h(bi).

3. Compute (C.8) and (C.7) to obtain lower and upper bounds for h o b on P.

4. Use either (C.8) and (C.7) or (C.9) and (C.10) to compute convex and concave

relaxations of h on P.
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5. Initialize a McCormick object with lower and upper bounds calculated on step

3 and convex and concave relaxations calculated on step 4.

6. Use Definition 15 on [121] to compute convex and concave relaxations of f ohob

on P.

An example implementing this procedure can be found in Section C.6.2.

C.5 Extension to Lexicographic LPs

In DFBA models, the solution set of (6.1) is often nonunique and a lexicographic LP

must be solved. Following, convex and concave relaxations of a lexicographic LP will

be presented. Consider the case where nh > 1.

Assume that upper and lower bounds, and convex and concave relaxations of hj

for j E {1,. . . , i - 1} are available. Consider the function hB:

hLB(z, m1, ni, . . . , ni1 =

min cTv,vER"v I

s.t.

T
C1

_T

T

ci-
-

: 1

-CTLCi-1 -

V

V K

Li_
- ni_ 1

(C.11)

v > 0.

Notice that if m hj (z) and nj = hj (z), then hLB(z, mi, ni, i 2 , n 2 ,. .. , m_ 1 , n. 1 ) =

hi(z). If n, < hi(z) < mi, then hLB(Z, mi, ni,M2 , n 2 ,. .. ,mii, ni-i) hi(z). Convex

relaxations of hLB are also convex relaxations of hi. An upper bound can be obtained
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following the same reasoning:

hjB (z, mi, ni, . ,mi1, ni1) -

max c v,
VERnv 

s.t. Av = z,

T MC1

-CT -ni

V <; : (C.12)

Ci_1 Mi_1

- T_ -ni_1

V > 0.

Then, any concave relaxations of h B will be concave relaxations of hi(z). Following

is a proof that hLB or hVB cannot be unbounded. Assume that z E F. Then, if

m. = hj (z) and nr = hj (z) for j E {1, .. n., }, (C.11) has a solution. Then, from

strong duality the dual program of (C.11) shown in (C.14) has a solution equal to

(C.11). Following is (C.11) in standard form:

hB(z, mi, ni,..., mi_1, ni_1) min TV,
VERnv+

2
i

A Z z
s.t. v = , (C.13)

C I2i m

V > 0,

where Z E R' x2i is a matrix made of zeros, C E R2 zxnv contains the cost vectors in

(C.11), i =cT oT with 0 E R 2i and m E R2i contains the m3 and nj entries in

(C.11). Then, the dual program of (C.11) is:
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max \T (C.14)
AXERnm+ 2 i M

A T C

ZT 1is

Notice that if (C.14) has a solution, for changes in z or m, (C.14) remains feasible.

The dual program of (C.12) is the same as (C.14) but with -24 instead of 24. Since A

is free, if (C.14) has a feasible point, then the negative of this point is feasible in the

dual of (C.12). Then, (C.11) and (C.12) cannot be unbounded. In addition, (C.11)

and (C.12) will be feasible if hi(z) E [ni, mi1 for all i = 1, ... , n. Let ni, mi take the

values of the lower bounds and upper bounds respectively of hi for all i = 1, .. . , nh.

Notice that (C.11) is a convex function and (C.12) is a concave function with respect

to changes on the right-hand side, then they are convex and concave relaxations of

(7.3).

Lower and upper bounds can be computed using a similar version of (C.8) on

(C.11) and (C.12) by adding variable right-hand sides in z as variables in the LP with

inequalities constraining their values. Convex and concave relaxations of h h o b

on P can be obtained using composition Theorem C.1.4. For i 2,... , nh:

h'(p)= min Ci ,
VERnv, bERm

s.t. Av - b(p) = 0,

CT UBD1

T -LBD 1

V , (C.15)

cT1  UBDj_ 1

-cT 1  -LBDj_ 1

v ;>0, b"(p) < bi < b' (p), Vi = 1,.. m,
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where LBDj, UBDj are the lower and upper bounds of hi on P. As before, most

elements of b will be fixed, therefore, the last set of inequalities in (C.15) are equalities

for most components of b. Similarly,

h"(p)= max cT V
vERfv, bERn %

s.t. Av - b(p) = 0,

TC1

T-C1

Tci- 1

T-ci- 1

V <K

UBD1

-LBD 1

UBDj_ 1

-LBD_ 1

(C.16)

v > 0, bc"(p) < bi < bcc(p), Vi = 1,... , nm.

For i = 1, (C.9) and (C.10) are used to obtain convex and concave relaxations of

hiob on P.

C.6 Examples

C.6.1 Concave envelope of an LP with respect to its right-

hand side

Consider b1 E [7, 11], b2 E [1000, 1400] and the following LP:

h(bi, b 2 ) = min - 500x1 - 300x2 ,
xER

2

s.t. x1 + X 2 < bi, (C.17)

X1 + X2 > 7,

200x1 + 100x 2 < b2

x1 + 2x 2  12

x1, x2 0.
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Since h is a convex function with respect to b, no convex relaxation needs to be

calculated. Figure C-1, shows the concave envelope of (C.17) on [7, 11] x [1000, 1400].

Image D in Figure C-1 shows how smaller intervals yield better concave relaxations.

In particular, the concave envelope on [9, 11] x [1000, 1400] coincides with the original

function.

A

-3400"

41300

C

-200.1.

-2800

-3200 .- .....>

-3400-10

B

-3400-1

1100 - 7

-3400-

10 120 130'
1400 11 10 9

Figure C-1: Convex and concave envelopes for function (C.17). A) Original function
on [7, 11] x [1000, 1400]. B) Concave envelope of (C.17) on [7, 11] x [1000, 1400] using
(C.5). C) Original function on [7, 11] x [1000, 1400] and concave envelope on [7, 11] x
[1000, 1400]. D) Original function on [7, 11] x [1000, 1400] and concave envelopes on
[7,9] x [1000, 1400], and [9, 11] x [1000, 1400].
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C.6.2 Convex and concave relaxations of factorable functions

with an LP embedded

Consider pi c [0, 2], P2 E [0, 2], and the following LP:

h(p,p 2 ) = min 2v1 - V2,
vER 3

s.t. vI + v2 < Pi, (C.18)

V1 - V 3 < P2,

V2 + V3  PI + P2

V1,V2,V 3 > 0.

Finally, consider the factorable function:

g = 0.5h 3 + 0.005h 2 - 10h. (C.19)

Convex and concave relaxations of h on [0, 2] x [0, 2] can be seen in Figure (C-2).

Convex and concave relaxations of g on [0, 2] x [0, 2] can be seen in Figure C-3.

When upper and lower bounds are used as convex and concave relaxations, weaker

relaxations are obtained as seen in Figure C-4. Finally, the relaxations approximate

better the function in smaller intervals as seen in Figure C-5.
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Figure C-2: Convex and- concave relaxations of (C.18) on [0, 2] x [0, 21 calculated using (C.9) and (C.10). A) Original function.
B) Convex relaxation. C) Concave relaxation. D) Original function with convex and concave relaxations.
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Figure C-3: Convex and concave relaxations of (C.19) on [0, 2] x [0, 2] calculated using (C.9) and (C.10). A) Original function.
B) Convex relaxation. C) Concave relaxation. D) Original function with convex relaxation. E) Original function with concave
relaxation. F) Original function with convex and concave relaxations.
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Figure C-4: Upper and lower bounds of (C.19) on [0, 2] x [0, 2] calculated using (C.8)
and (C.7).

C.6.3 Convex and Concave Relaxations of factorable func-

tions with a Lexicographic LP embedded

Consider an E. coli culture with glucose (p1) and xylose (P2) concentrations as vari-

ables. Assume that the glucose and xylose uptakes can be bounded by the following

Michaelis-Menten expressions:

VUB = 10.5 Pi
glucose 0.0027 + p, I
V UB 6 P2 -

xylose 6 .o165p2) (+ '

The parameters were obtained from [51] and slightly modified to illustrate the per-

formance of the relaxations. The E. coli model used was iJR904 from [107] and

considers 761 metabolites and 1075 reactions. The lexicographic linear program had

the following objectives: maximize biomass (hl), maximize glucose consumption (h2),

and maximize xylose consumption (h3 ), respectively. Then, the following objective
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Figure C-5: Convex and concave relaxations of (C.19) calculated using (C.9) and
(C.10) on smaller sections. Top: Original function with convex and concave relax-
ations on [0, 1] x [0, 2] and on [1, 21 x [0, 2]. Bottom: Original function with convex
and concave relaxations on [0,7 1] x [0,7 2],7 [1, 2] x [0, 2], and on [0, 2] x [0, 2].

function dependent on the objective function values of the lexicographic LP was for-

mulated:

f(h) = 100h, + 10h 2+ 10(-h3 )3.
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Concentrations (mmol/L) of glucose were in [0,0.00025] and of xylose in [10,60]. Fig-

ures C-6, C-7, and C-8 show the convex and concave relaxations obtained for h o b on

[0, 0.00025] x [10, 60] and for f ohob on [0, 0.00025] x [10, 60]. It can be seen that tight

convex relaxations and weak concave relaxations for h o b on [0, 0.00025] x [10, 60]

are obtained. The weak concave relaxations result in weak convex and concave relax-

ations for f o h o b on [0, 0.00025] x [10, 60].
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Figure C-6: Plots of h o b and f o h o b for pi E [0,0.00025] and P2 E [10, 60]. A) Biomass production rate (1/h). B) Glucose
consumption rate (mmol/(h*gDW)). C) Xylose consumption rate (mmol/(h*gDW)). D) Plot of f ohob on [0, 0.00025] x [10, 60].
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Figure C-7: Plots of h o b and f o h o b with convex relaxations for pi E [0,0.00025] and P2 E [10,60]. A) Biomass production
rate (1/h). B) Glucose consumption rate (mmol/(h*gDW)). C) Xylose consumption rate (mmol/(h*gDW)). D) Plot of f ohob
on [0, 0.00025] x [10, 60] .
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C.7 Conclusions

A method to calculate convex and concave relaxations of factorable functions with an

LP embedded has been presented. This method uses generalized McCormick relax-

ations, the multivariate McCormick composition Theorem, and the concave envelope

of an LP with respect to its right-hand side to compute these relaxations. Evaluating

these relaxations requires the solution of several LPs. Upper and lower bounds are

cheaper to compute, but convex and concave relaxations equal to these bounds are

much weaker. This method can be implemented in problems with LPs embedded

where the number of variable right-hand sides k is relatively small. In a branch and

bound algorithm, initially 2k LPs need to be solved to construct the concave relax-

ation hCC in (C.10). Then, everytime the domain is branched, 2 k-1 new LPs need to

be solved to construct hCC for each node. Convergence properties of the relaxations

to the original function on domains that tend to zero remain to be proven.

Convex and concave relaxations for factorable functions with lexicographic linear

programs embedded were obtained. The cost of computing these relaxations increases

linearly with the number of levels of optimization (nh). Tight convex relaxations and

weak concave relaxations were obtained for h o b on P. Better concave relaxations

are needed to obtain tighter convex and concave relaxations of f o h o b on P.
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