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The search for the QCD critical point in heavy-ion collision experiments requires dynamical simulations
of the bulk evolution of QCD matter as well as of fluctuations. We consider two essential ingredients of
such a simulation: a generic extension of hydrodynamics by a parametrically slow mode or modes
(“Hydroþ”) and a description of fluctuations out of equilibrium. By combining the two ingredients, we are
able to describe the bulk evolution and the fluctuations within the same framework. Critical slowing-down
means that equilibration of fluctuations could be as slow as hydrodynamic evolution, and thus fluctuations
could significantly deviate from equilibrium near the critical point. We generalize hydrodynamics to
partial-equilibrium conditions where the state of the system is characterized by the off-equilibrium
magnitude of fluctuations in addition to the usual hydrodynamic variables—conserved densities. We find
that the key element of the new formalism—the extended entropy taking into account the off-equilibrium
fluctuations—is remarkably similar to the 2PI action in the quantum field theory. We show how the new
Hydroþ formalism reproduces two major effects of critical fluctuations on the bulk evolution: the strong
frequency dependence of the anomalously large bulk viscosity as well as the stiffening of the equation of
state with an increasing frequency or wave number. While the agreement with known results confirms its
validity, the fact that Hydroþ achieves this within a local and deterministic framework gives it significant
advantages for dynamical simulations.

DOI: 10.1103/PhysRevD.98.036006

I. INTRODUCTION AND OUTLINE

Hydrodynamics is a universal and versatile theory which
describes (as the name implies) the dynamics of fluids or,
more generally, systems whose evolution at long distance
and timescales essentially consists of the redistribution
of conserved quantities (energy, momentum, and charges)
towards achieving global thermodynamic equilibrium
throughout the system. Although many results of this
paper are general, its primary focus is the application of
relativistic hydrodynamics to the evolution of the fireball of
hot and dense QCD matter created in heavy-ion collisions.
In particular, this work is motivated by one of the major
goals of the heavy-ion collision experiments—the discov-
ery of the QCD critical point through the beam energy scan
of the QCD phase diagram [1,2]. The hydrodynamic
description has shown remarkable and nontrivial agreement
with many results of heavy-ion collision experiments (see,
e.g., [3] for a concise review and further references). So far,
however, such applications of hydrodynamics have been
limited to the regime where the equation of state does not
contain a critical point, e.g., at negligible baryon number
densities. In order to facilitate the search for the QCD
critical point, it is essential to extend the hydrodynamic

description of heavy-ion collisions into the regime of finite
baryon densities and, specifically, into the vicinity of the
critical point.
There is, however, a major problem with applying

hydrodynamics near a critical point. The applicability of
hydrodynamics rests on the possibility of a certain scale
separation. The timescales for achieving local equilibrium
are usually much shorter than the timescales needed to
reach global equilibrium throughout the system. This scale
separation exists because the conserved densities relax to
equilibrium by diffusion and the relaxation time is propor-
tional to the square of the size of the inhomogeneity
involved. The local equilibrium is achieved at timescales
necessary to smooth out inhomogeneities on the scale of the
correlation length ξ which is, typically, microscopically
small. The global equilibrium may require times which are
arbitrarily long for arbitrarily large systems. This separation
of scales disappears at the critical point as the correlation
length ξ diverges (see, e.g., Ref. [4] for more discussion).
At first sight, it might seem that hydrodynamics works as

long as the correlation length ξ, while becoming large,
remains much shorter than the scale of the inhomogeneities,
l. For heavy-ion collisions where the relevant size of the
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system is of the order of 10 fmwhile the correlation length is
most likely not to exceed2–3 fm [5,6], onewould then expect
a reasonable scale separation. However, such an argument
would miss an important point: The time for relaxation of
inhomogeneities of size ξ, essential for establishing local
thermodynamic equilibrium, grows faster than their size and
becomes very long near the critical point (critical slowing-
down). This time grows with ξ as ξz, where z ≈ 3 [7]. Since
z > 1, hydrodynamics breaks down even earlier, at much
longer time and distance scales than the naive argument
would suggest. For example, a sound wave with a period
shorter than the time of relaxation to local equilibrium cannot
be described hydrodynamically, which happens when the
wavelength l ∼ ξ3 (in units of temperature) or shorter,
which is much larger than just ξ. For heavy-ion collisions,
the timescales needed to reach local equilibrium could
become comparable to typical evolution times, invalidating
the hydrodynamic description near the critical point well
before ξ is as large as l.
One way this breakdown is manifested is in the growth of

gradient corrections to the constitutive equation for the
stress tensor, i.e., nonequilibrium corrections to pressure,
proportional to bulk viscosity ζ and expansion rate (gradient
of velocity) θ ¼ ∇ · v ∼ 1=l. The bulk viscosity diverges at
the critical point as ζ ∼ ξz−α=ν ∼ ξ3 (for simplicity, we round
exponents to integer values). This leads to the breakdown of
the gradient expansion, i.e., of the locality of the hydro-
dynamic description, when ζθ ∼ ξ3=l≳ 1, i.e., already for
l≲ ξ3, i.e., earlier, at much larger l than just ξ suggested by
the naive argument.
The goal of this paper is to develop an extended

hydrodynamic description which overcomes this short-
coming of ordinary hydrodynamics. One way to under-
stand the predicament here is to compare this situation
with the breakdown of an effective theory for low-energy
modes at scales comparable to the energy scales at which
the mode which is next to lowest can get excited. The
solution in this case is well known—include the latter
mode into the effective theory description. Therefore, it
is logical to consider extending hydrodynamics by adding
an additional mode or, rather, as we shall see, a set of
modes, describing relaxation processes responsible for
the critical slowing-down.
Of course, this makes sense only if the mode we add

is still parametrically slower than the remaining (infi-
nitely many) microscopic modes which are not included
explicitly.1 We shall consider the role of such parametric
separation, in general, and in the vicinity of the critical

point, in particular, where it is controlled by the diver-
gence of the correlation length.

A. Outline

Broadly speaking, our paper contains two major ingre-
dients. They are independent but, obviously, related. The
first is presented in Sec. II and the second in Secs. III
and IV. They are combined in Sec. V.
First, in Sec. II, we consider a generic extension of the

relativistic hydrodynamics by a mode which is slow, not
because it is a conserved density but because a parameter
controlling its relaxation rate can be independently tuned to
make the rate arbitrarily small. Such a model could describe
many different systemswhere, due tomicroscopic dynamics,
some relaxation processes are slow, for example, if an
additional charge exists which is only approximately con-
served, so that its relaxation is not diffusive but nevertheless
slow. In Appendix A, we discuss a specific example with a
partially conserved axial charge playing this role. Another
example could be a systemwhere some channels of chemical
equilibration (of relative particle abundances) are slow. Such
situations arise in cosmological and astrophysical contexts
due to slowness of electroweak processes.
We use this simple model which we shall call “Hydroþ”

to illustrate how the competition between the two relaxation
scales (hydrodynamic and nonhydrodynamic) produces two
regimes, one where ordinary hydrodynamics is sufficient
and another where Hydroþ is necessary. This allows us to
illustrate the basic mechanisms and, in particular, show how
the divergent bulk viscosity and corresponding breakdown
of the hydrodynamic gradient expansion is related to the
slow mode. This mechanism is known [8–10], and our
purpose here is to review and present it in a relativistically
covariant form, setting the stage for the generalization
necessary near the QCD critical point.
To introduce the second ingredient, we need to address

the question of what is the physical origin of the critically
slow processes near the critical point. It is known that the
critical slowing-down affects relaxation of fluctuations at
scales of the order of ξ, essential for establishing local
equilibrium. In order to find an appropriate description of
these processes, for our purposes, we develop a more
general approach to evolution of fluctuations in hydro-
dynamics in Secs. III and IV.
In Sec. III, we introduce the notion of the partial-

equilibrium entropy S2 which is a functional not only of
the average values of the conserved densities but also of
the magnitude of their fluctuations (and correlations), i.e.,
one- and two-point functions of these densities. We show
that this entropy has a remarkable (mostly mathematical)
similarity to the two-particle irreducible (2PI) action in the
quantum field theory.
Having derived the “2PI entropy” S2, we then use it in

Sec. IV to write evolution and relaxation equations for the
conserved densities (which are ordinary hydrodynamic

1Hydrodynamics is a truncation of the full theory, justified by
the slowness of hydrodynamic degrees of freedom (d.o.f.).
Because of conservation, the relaxation rates of these modes
are controlled by the scale of inhomogeneity l and are propor-
tional to l−2. The rate for the slow mode we add should be also
controlled by some parameter independently of l.
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equations) together with the relaxation equations for the
two-point correlators. The equations for two-point corre-
lators show a remarkable similarity to kinetic (Boltzmann)
equations, as has been observed a long time ago in a related
work by Andreev et al. [11–14] or, more recently, in the
context of heavy-ion collisions away from the critical point,
in Refs. [15,16]. Kinetic equations for correlations func-
tions have also appeared in the work of Kawasaki [17] and
others [18–20] in the calculations of kinetic coefficients
and higher-order correlation functions near critical points in
nonrelativistic systems. In this paper, we use a similar
“kinetic” approach together with the 2PI entropy formalism
we introduced to extend the applicability of hydrodynamics
for simulations near the QCD critical point.
To this end, we defer further development of the 2PI

entropy formalism to future work and focus on its appli-
cation to Hydroþ near the critical point in Sec. V. We
identify the slowest mode of fluctuations and propose the
equation which describes its evolution as an extension or
generalization of ordinary hydrodynamics. To demonstrate
how this extension works near the critical point and to
verify its validity, we compare the frequency-dependent
bulk response in Hydroþ to the existing result due to Onuki
[21,22] obtained using a different approach based on a
stochastic hydrodynamic model of critical fluctuations. We
find that the new formalism simplifies this analytical
calculation while also providing a different intuitive per-
spective. The main advantage of the new formalism is that it
is local and deterministicwhile still capturing the dynamics
of fluctuations. These properties make it much easier to use
for simulating dynamics of the heavy-ion collision fireball
expanding in the vicinity of the QCD critical point.

II. HYDRODYNAMICS WITH AN
ADDITIONAL SLOW MODE

A. The general framework

In this section, we will formulate a local description of
the evolution of hydrodynamical variables such as energy
density ε, a conserved charge (e.g., baryon number) density
n, and fluid velocity uμ coupled to one additional non-
hydrodynamic, but nevertheless slow, scalar mode which
will be denoted by ϕ (see also Ref. [23]).
If the mode ϕ is parametrically slower than other

microscopic modes, we can, in a window of timescales,
consider a partial-equilibrium state in which the entropy
reaches its maximum under an additional constraint that the
expectation value of that slow mode is ϕ. We can then
introduce partial-equilibrium entropy sðþÞðε; n;ϕÞ as the
logarithm of the number of states satisfying this constraint.
The generalized thermodynamic potentials are defined as
usual via derivatives of entropy

dsðþÞ ¼ βðþÞdε − αðþÞdn − πdϕ: ð1Þ
Here βðþÞðε; n;ϕÞ and αðþÞðε; n;ϕÞ are the generalized
inverse temperature and chemical potential to temperature

ratio, respectively, in the partial-equilibrium state. The
variable πðε; n;ϕÞ is the generalized thermodynamic poten-
tial (or “force”) corresponding to ϕ. In a complete equi-
librium at a given ε and n, the variable ϕ must relax to its
equilibrium value ϕ̄ðε; nÞwhich maximizes the generalized
entropy, i.e.,

sðε; nÞ ¼ max
ϕ

sðþÞðε; n;ϕÞ ¼ sðþÞðε; n; ϕ̄ðε; nÞÞ; ð2Þ

and thus

πðε; n; ϕ̄ðε; nÞÞ ¼ 0: ð3Þ

Hydroþ equations are usual energy-momentum conserva-
tion ∂μTμν ¼ 0, charge conservation ∂μJμ ¼ 0, and an
additional equation which describes the relaxation of ϕ
towards equilibrium that we will specify shortly.
The components of Tμν must be local functionals of the

variables uμ, ε, n, and ϕ. One can expand in powers of
derivatives, as usual:

Tμν ¼ εuμuν þ pðþÞg
μν
⊥ þ ΔTμν; ð4Þ

where

gμν⊥ ¼ gμν þ uμuν ð5Þ

is the transverse (spatial in the local rest frame) part2 of gμν

and the function pðþÞðε; n;ϕÞ is the generalized partial-
equilibrium pressure. Here ΔTμν denotes contributions to
the stress-energy tensor due to the gradients of uμ, ε, n,
and ϕ, which vanish in a static homogeneous system.
Throughout this paper, we will use the Landau frame
choice to define ε and 4-velocity uμ, i.e., uμΔTμν ¼ 0.
Similarly, the definition n ¼ uμJμ implies

Jμ ¼ nuμ þ ΔJμ ð6Þ

with u · ΔJ ¼ 0. Again, ΔJμ will vanish in a static and
homogeneous system and can be expanded in powers of
derivatives.
The five equations for hydrodynamic variables can now

be written explicitly:

Dϵ ¼ −wðþÞθ − ð∂μuνÞΔTμν
⊥ ; ð7aÞ

Dn ¼ −nθ − ∂ · ΔJ; ð7bÞ

wðþÞDuν ¼ −∂ν⊥p − δ⊥ν
λ∂μΔTμλ: ð7cÞ

The equation for ϕmust describe relaxation of this quantity
to the equilibrium value ϕ̄ðε; nÞ and can be written as

2We use the mostly positive convention for the metric; there-
fore, u · u ¼ −1.
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Dϕ ¼ −Fϕ − Aϕθ: ð7dÞ
Here Fϕðε; n;ϕÞ is the “returning force” which, at given ε
and n, drives ϕ back to its equilibrium value. In other
words, Fϕ ¼ 0 when π ¼ 0 [see Eq. (2)]. The coefficient
Aϕðε; n;ϕÞ describes the susceptibility of the quantity ϕ
to isotropic compression or expansion. In II A, we also
introduced the notations

wðþÞ ≡ εþ pðþÞ; D≡ u · ∂; and θ≡ ∂ · u: ð8Þ
For conventional hydrodynamics, the system of equa-

tions is closed once we supply the equation of state and
constitutive relations for ΔJμ and ΔTμν. Similarly, Hydroþ
will be closed if we, in addition, supply Fϕðε; n;ϕÞ and
Aϕðε; n;ϕÞ.
The second law of thermodynamics imposes constraints

on the form of the constitutive equations. For ordinary
hydrodynamics, it requires βp ¼ s − βεþ αn and positivity
of kinetic coefficients in ΔJμ and ΔTμν. Similarly, there are
constraints on pðþÞðε; n;ϕÞ, Fϕðε; n;ϕÞ, and Aϕðε; n;ϕÞ
from the generalized second law of thermodynamics which

requires ∂μsðþÞ
μ ≥ 0. The generalized (partial-equilibrium)

entropy current is given by

sμðþÞ ¼ sðþÞuμ þ Δsμ; ð9Þ
where Δsμ denotes the contribution to the entropy current
from gradients. The divergence of the entropy current then
becomes

∂ · sðþÞ ¼ ðsðþÞ − βðþÞwðþÞ þ αðþÞnþ πAϕÞθ
þ αðþÞð∂ · ΔJÞ þ πFϕ þ βðþÞð∂μuνÞΔTμν

⊥
þ ∂ · Δs; ð10Þ

wherewe usedEqs. (1) and (7c), while neglecting terms cubic
in gradients. In order to guarantee ∂ · sðþÞ ≥ 0, we need the
first term on the r.h.s. of (10) to vanish. This condition relates
pressure pðþÞ, “compressibility” Aϕ, and other generalized
thermodynamic functions such as sðþÞ, αðþÞ, and βðþÞ:

βðþÞpðþÞ ¼ sðþÞ − βðþÞεþ αðþÞnþ πAϕ: ð11Þ

Therefore,

βðþÞdpðþÞ ¼−wðþÞdβðþÞ þndαðþÞ−πdϕþdðπAϕÞ; ð12Þ

where we used (1). The last term, ∂ · Δs, in Eq. (10) must
cancel total derivatives arising from integration by parts in
the preceding three terms, leaving only positive definite
contributions to ∂ · sðþÞ. This condition determines the
form of Δsμ.
The dissipative terms ΔTμν, ΔJμ, and Fϕ are also

constrained by the second law of thermodynamics similarly
to ordinary hydrodynamics.

To the first order in gradients, we still find the usual form
for the gradient corrections to the stress-energy tensor:

ΔTμν ¼ −ηðþÞ

�
∂μ
⊥uν þ ∂ν⊥uμ −

2

3
gμν⊥ θ

�
− ζðþÞg

μν
⊥ θ: ð13Þ

The second law of thermodynamics requires that
ζðþÞ; ηðþÞ ≥ 0.
To first order in gradients, we now have an additional

term in ΔJμ:

ΔJμ ¼ −λαα∂μ
⊥α − λαπ∂μ

⊥π; ð14Þ

and

Fϕ ¼ γππ − ∂⊥ · ðλππ∂π þ λαπ∂αðþÞÞ; ð15Þ

with γπ ≥ 0 and a semipositive definite matrix λab
(a; b ¼ α, π). Equations (14) and (15) take into account
Onsager reciprocity. The first term in Fϕ is allowed,
because Dϕ can remain finite even if the system is
homogeneous, since ϕ is not a conserved quantity.
Equation (7d) for ϕ reads, upon substituting Eq. (15),

Dϕ ¼ −γππ − ∂⊥ · ðλππ∂π þ λαπ∂αðþÞÞ − Aϕθ: ð16Þ

At sufficiently long times, i.e., in the limit π ¼ 0,
Eq. (14) reproduces the conventional constitutive relation
for the dissipative part of Jμ with λαα giving the conven-
tional conductivity (times the temperature), σT, i.e.,
ΔJμ ¼ −σT∂μ

⊥α. In Appendix A, we use hydrodynamics
with the partially conserved axial charge as an example of a
theory with nonzero γϕ, λαα, λαπ , and λππ.
A note on the power counting in the gradient expansion

of constitutive equations is in order here. Unlike ordinary
hydrodynamics, where the small parameter controlling the
expansion such as Eq. (14) is the typical wave vector
magnitude k, Hydroþ has an additional independent small
parameter—the relaxation rate Γπ of the slow nonhydro-
dynamic mode. Given γπ ∼ Γπ [see Eq. (23)], the two terms
in Eq. (15) are the lowest-order terms in the expansions in
Γπ and k, respectively, allowed by isotropy and the second
law of thermodynamics.3

Furthermore, the need for retaining terms of the order
of k2 in Eq. (15) depends on the relative magnitude of k2

3In general, k2 terms which are not total derivatives could also
appear in Eq. (15), e.g., γ1πð∂⊥αðþÞÞ2, etc., (obeying second law
constraints, i.e., γ1 ≥ 0). In the most notable example, which we
present in Appendix A, where ϕ is an approximately conserved
density whose conservation is violated by a controllably small
parameter (e.g., quark mass, mq), such terms must vanish, i.e.,
γ1 → 0, in the limit Γπ → 0 (i.e.,mq → 0) due to the conservation
of ϕ in this limit. That means that such terms are parametrically
smaller (by a power of Γπ or mq) than the k2 terms in Eq. (15) in
such a case.
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and Γπ . For the purpose of the power counting, in this
paragraph, we measure parameters, such as k or Γπ, in
microscopic units, e.g., units set by the mean free path or
temperature. Note that the Hydroþ regime, where ordinary
hydrodynamics fails, begins already at k ∼ Γπ (more
precisely, Γπ=cs [23]). The terms of the order of k2 in
Eq. (15) need to be kept if we want to apply Hydroþ to
even higher k of the order of

ffiffiffiffiffi
Γπ

p
. On the other hand, in the

regime k ≪
ffiffiffiffiffi
Γπ

p
(including the Hydroþ regime k≳ Γπ),

the k2 terms in Eq. (15) are negligible.
It is instructive to compare and contrast the single-mode

Hydroþ and the model of chiral fluid dynamics (see, e.g.,
[24,25]) considered recently in the context of the QCD
critical point. The equation (linearized for simplicity) of the
nonhydrodynamic mode σ, ∂ · ∂σ þ ησ∂tσ þm2

σσ ¼ 0, is
different from the (correspondingly linearized) Eq. (16).
Most notably, the mode σ is propagating, not relaxational,
unless, or course, one considers ω ≪ ησ. In this case, the
relaxation rate Γπ ¼ m2

σ=ησ is vanishing when mσ → 0,
provided ησ does not vanish in this limit, which, however, it
does in the model. If one ignores the physics of the model
and considers ησ as a free phenomenological parameter,
then the model will become an example of a single-mode
Hydroþ, provided the Lorentz invariance is also restored
by replacing ∂tσ → Dσ. This should be expected, since
Hydroþ is a general effective theory which should match
any model in the appropriate limit, the specifics of the
model being reflected in the values of phenomenological
parameters such as γπ , Aϕ, etc. It should be also noted that,
due to the mixing of the scalar field with the baryon density,
the addition of such a field to hydrodynamics, generally,
will not produce an independently slow mode even when
mσ → 0 [26] unless an additional parameter is tuned.
Summarizing this section, we have considered a gener-

alization of hydrodynamics, or Hydroþ, which describes the
coupled evolution of hydrodynamic d.o.f. and an additional
parametrically slow scalar mode. As in ordinary hydro-
dynamics, the second law of thermodynamics imposes
constraints on the form and parameters of the theory.
The inputs of Hydroþ include the generalized entropy
sðþÞðε; n;ϕÞ, the “compressibility coefficient” Aϕ, and trans-
port coefficients such as ηðþÞ; ζðþÞ and γπ , λαα; λαπ; λππ which
appear in constitutive equations (13)–(15).
For very slow processes, i.e., processes slower than the

relaxation time of the slow mode (equivalently, at π ¼ 0),
Hydroþ reduces to conventional hydrodynamics. While
the relationship between ηðþÞ and λαα to the conventional
hydrodynamic coefficients η and λ (given by Kubo for-
mulas at ω → 0) is trivial, this is not the case for the bulk
viscosity ζ, because it receives a contribution from the
slow mode proportional to its large relaxation time, as
pointed out long ago by Leontovich and Mandelstam
[8–10]. In the next section, we discuss this effect in more
detail using Hydroþ with a single slow nonhydrodynamic

mode. The generalization of this effect to the case of the
critical point leads to the critical divergence of the bulk
viscosity which we discussed already in the introduction.

B. Bulk viscosity and sound in Hydro+

The presence of the slow mode has a profound effect on
the response of the system to expansion or compression.
In hydrodynamics, the fluid’s expansion or compression
leads to the corresponding change in the densities of the
conserved quantities. If the size of the system (or its part)
undergoing expansion or compression is large enough that
the contribution of diffusive processes is negligible, the
conserved quantities, energy and charge, remain the same
and the densities, ε and n, simply scale with the volume.
We can describe this process by the linearized Eqs. (7a) and
(7b), where θ ¼ ∇ · v is the expansion rate:

Dε ¼ −wθ þ � � � and Dn ¼ −nθ þ � � � ; ð17Þ

where the ellipsis denotes the terms of higher order in
gradients.
The pressure, on the other hand, is a function of the

variables ε and n only in equilibrium (at π ¼ 0). In ordinary
hydrodynamics, the pressure adjusts to its equilibrium
value pðε; nÞ on a microscopically short timescale, negli-
gible compared to the timescale of expansion. In Hydroþ,
in contrast, the pressure pðþÞ depends also on the variable ϕ
or π, whose relaxation rate to equilibrium, π ¼ 0, can be
arbitrarily slow. As a result, if we write the linearized
deviation of pressure from equilibrium due to infinitesimal
expansion or compression θ, we find an additional term
proportional to π:

pðþÞðε; n; πÞ ¼ pðε; nÞ þ pπðε; nÞπ þ � � � : ð18Þ

The deviation of π from equilibrium is due to expansion,
and the amount of this deviation is proportional to θ.
To express this explicitly, we can substitute ϕðε; n; πÞ into
Eq. (7d) to rewrite it as an equation for π:

ϕπDπ ¼ −γππ þ
�
w

�∂ϕ
∂ε

�
nπ

þ n

�∂ϕ
∂n

�
επ

− Aϕ

�
θ þ � � � ;

ð19Þ

where we used Eq. (17) and defined

ϕπ ≡
�∂ϕ
∂π

�
εn
: ð20Þ

Using Maxwell relations (see Appendix B), one can
express the quantity in the square brackets in terms of pπ:

βpπ ¼ −
�
w

�∂ϕ
∂ε

�
nπ

þ n

�∂ϕ
∂n

�
επ

− Aϕ

�
ð21Þ

HYDRODYNAMICS WITH PARAMETRIC SLOWING DOWN … PHYS. REV. D 98, 036006 (2018)

036006-5



and rewrite Eq. (19) as

Dπ ¼ −Γππ −
βpπ

ϕπ
θ þ � � � ; ð22Þ

where we defined the relaxation rate

Γπ ≡ γπ
ϕπ

: ð23Þ

This linearized equation can be solved for π as

π ¼ βpπ

ϕπ

1

iω − Γπ
θ; ð24Þ

where ω is the frequency of the oscillation of the variables
around equilibrium. Substituting into Eq. (18), we find that
the pressure deviates from its equilibrium value by an
amount proportional to the expansion rate θ:

pðþÞ ¼ p −
βp2

π

ϕπ

1

Γπ − iω
θ: ð25Þ

By definition, the coefficient of θ at ω ¼ 0 is the con-
tribution of the slow mode to the bulk viscosity:

Δζð0Þ ¼ βp2
π

ϕπΓπ
: ð26Þ

This contribution diverges when Γπ vanishes.
At nonzero ω, the coefficient of θ can be related to the

Green’s function GR of the operator Ti
i=3, which is natural,

since it describes the response to compression:

βp2
π

ϕπ

1

Γπ − iω
≡ iΔGRðωÞ

ω
: ð27Þ

The frequency-dependent bulk viscosity can be defined as
the real part of that coefficient, or −ImGR=ω, in accordance
with the Kubo formula:

ΔζðωÞ ¼ −ImΔGRðωÞ
ω

¼ Δζð0Þ Γ2
π

Γ2
π þ ω2

: ð28Þ

This quantity describes dissipation during expansion or
compression at frequency ω. Note that ΔζðωÞ drops off
when ω≳ Γπ . This means that, if we were to naively
extend the conventional hydrodynamics with frequency-
independent ζ to ω≳ Γπ , we would overestimate the
amount of dissipation [see Fig. 1(a)].
The imaginary part of the coefficient of θ in Eq. (25),

i.e., the real part of ΔGR in Eq. (27), is related to the
contribution of the slow mode to the sound speed. This can
be seen from Eq. (25) by expressing oscillation δp of
the pressure in terms of oscillations δε of the energy density
and also using Eq. (17) to express θ in terms of δε
(θ ¼ iωδε=w):

δpðþÞ ¼ ðc2s þ ΔGR=wÞδε: ð29Þ

The expression c2s þ ΔGR=w in Eq. (29) can be viewed as
the speed of sound (squared), or equation of state stiffness,
in two limits when it becomes almost real, with the
imaginary part related to the attenuation of the sound.
Let us define the frequency-dependent contribution to

the speed of sound (corresponding to the phase velocity):

Δc2sðωÞ ¼
ReΔGRðωÞ

w
¼ βpπ

ϕπw
ω2

Γ2 þ ω2
ð30Þ

[see also Fig. 1(b)]. The imaginary part (attenuation)
becomes negligible in the limit ω ≪ Γπ , when the sound
speed is given by c2s—the usual hydrodynamic sound
speed—and also in the limit ω ≫ Γπ when the sound speed
is given by a larger value:

c2s ðþÞ ¼ c2s þ Δc2sð∞Þ; where Δc2sð∞Þ ¼ βp2
π

wϕπ
: ð31Þ

FIG. 1. The frequency dependence of the contribution of the slow mode to the bulk viscosity, or to −ImGR=ω (left), as well as to the
speed of sound, or ReGR=ω (right). Dashed horizontal lines represent the (lack of) frequency dependence of these quantities in ordinary
hydrodynamics.
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Comparing Eqs. (26) and (31), we find

ζð0Þ ¼ w
Δc2sð∞Þ

Γπ
; ð32Þ

the Landau-Khalatnikov formula (cf. Ref. [10]).
Note that Δc2s > 0 is a consequence of thermodynamic

stability. The fact that c2ðþÞ > c2s , i.e., the Hydroþ equation

of state, is stiffer, is natural, since some (slow) d.o.f. are
effectively “frozen” at high frequencies. Thus, naively
extending ordinary hydrodynamics with an equilibrium
equation of state to higher frequencies would underestimate
the stiffness [see Fig. 1(b)].4

Substituting the pressure oscillation given by Eq. (29)
into the linearized hydrodynamic equations, we find the
dispersion relation for the sound as well as the non-
hydrodynamic slow mode given by the three solutions of

ω2 ¼ k2
�
c2s þ

ω

ωþ iΓπ
Δc2sð∞Þ

�
: ð33Þ

In Fig. 2, the real and imaginary parts of the sound
dispersion relation given by Eq. (33) are plotted for
illustration. Note that the behavior of the sound attenu-
ation rate changes from quadratic in the regime ω ≪ Γπ to
a constant for ω ≫ Γπ:

ω ≪ Γπ∶ Imω ¼ −
k2

2

Δc2sð∞Þ
Γπ

¼ −
k2

2

Δζð0Þ
w

; ð34Þ

ω ≫ Γπ∶ Imω ¼ −
Γπ

2

Δc2sð∞Þ
c2s ðþÞ

: ð35Þ

For even larger ω, one also has to take into account
the usual Oðk2Þ contribution unrelated to the slow mode
coming from ζðþÞ (as well as from ηðþÞ and λðþÞ).
To summarize this section, we have considered the

response of a system with a parametrically slow mode,
described by Hydroþ, to bulk expansion and compres-
sion. Most notably, for frequencies ω≳ Γπ the effective
stiffness δp=δε, or the sound speed, increases [see
Figs. 1(b) and 2(b)], while the frequency-dependent
bulk viscosity drops [see Fig. 1(a)]. Note that without
this drop the sound attenuation rate in Eq. (34) would
have overcome the sound frequency [compare dashed
lines in Figs. 2(a) and 2(b)]. Instead, the sound attenu-
ation rate (rather than growing as k2) saturates at a
constant [Fig. 2(a)]. Such frequency and wave-vector
dependence is beyond the reach of conventional
hydrodynamics.
We want to emphasize again that these results, for

ω≳ Γπ, are reliable if the slow mode ϕ is parametrically
slower than all the other nonhydrodynamic modes, i.e.,
if Γπ is much smaller than the microscopic (nonhydrody-
namic) relaxation rates. This is an essential condition
which distinguishes Hydroþ from other descriptions
which add d.o.f. not parametrically separated from other
microscopic modes, e.g., conventional Israel-Stewart
hydrodynamics [27] [see, e.g., Ref. [28] for a discussion
of the (in)applicability of the Israel-Stewart theory].
If, however, one treats the relaxation time τΠ of the trace
of the stress tensor as a parameter which can be made
arbitrarily large, then the Israel-Stewart theory becomes
an example of a single-mode Hydroþ (with pπ ¼ 1).
As expected, the bulk viscosity diverges as τΠ → ∞ in
such a theory [29].

FIG. 2. Sound dispersion relation, i.e., real (right) and imaginary (left) parts of the sound frequency as a function of k, in single-mode
Hydroþ determined by solving (33), compared to ordinary hydrodynamics (dashed lines for ω ≪ Γπ). The quantities are normalized to
make the plots scale independent. The dimensionless ratio Δc2s=c2s is set to 2 for concreteness.

4Also note that, while the hydrodynamic speed of sound c2s is
given by the usual derivative ð∂p=∂εÞ at dε=w ¼ dn=n and
π ¼ 0, the speed c2s ðþÞ is given by the derivative where instead
of π ¼ 0 the condition dϕ=Aϕ ¼ dε=w ¼ dn=n holds (see
Appendix B). This is different from the ϕ ¼ const condition
in Ref. [10], because, even if the relaxation term in Eq. (7d) can
be neglected in the Hydroþ regime (ω ≫ Γπ), the variable ϕ
oscillates with θ if its compressibility Aϕ is nonzero.
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III. ENTROPY OF FLUCTUATIONS
AND 2PI ACTION

A. Introduction

The purpose of this section is to introduce a particular
new set of d.o.f. into hydrodynamics. Unlike the usual
hydrodynamic d.o.f., which describe local averages of
conserved densities, these additional d.o.f. describe fluc-
tuations (and their correlations). This section explains the
conceptual framework which makes this possible, i.e.,
explains how one needs to think about these d.o.f. and
the type of states of the system that they describe. Our
limited goal here is to make this understanding quantitative
enough that we can determine the entropy associated with
these additional d.o.f., i.e., sðþÞ. However, the conceptual
framework we lay out is general and broad and could be
extended to other interesting problems (e.g., non-Gaussian
fluctuations).
We shall attempt to answer the question: What is the

physical meaning of a state characterized by given magni-
tudes of fluctuations and correlations which are not equal to
equilibrium values? What we need to know is how much
entropy the state with nonequilibrium fluctuations or
correlations is missing (because we “know” more about
it) compared to a complete-equilibrium state. The answer
to that question will be given by Eq. (57) at the end of
this section. The result and the formalism leading to it is
remarkably similar to the formalism of the two-particle
irreducible (2PI) effective action in the quantum field
theory [30–34]. The similarity is mathematical, while the
physical origin and meaning are different.5

The purpose of this section is to derive Eq. (57) in such a
way as to elucidate its conceptual meaning in the present
context. A reader who finds Eq. (57) and its physical
meaning evident following the intuitive explanation in the
paragraph below it may skip directly to Eq. (57) on first
reading. Another important result in this section is Eq. (56),
which describes “renormalization” of the equation of state
by fluctuations.
The discussion will be pedagogical and self-contained.

We shall begin with a standard textbook introduction (e.g.,
Ref. [36]) to statistical mechanics and the concept of local
thermodynamic equilibrium in order to emphasize the
points which will be essential for our purpose.
The most important point to keep in mind is that a state

in statistical physics describes an ensemble of microscopic
quantum states of the system. The concept reflects the
impracticality of describing the evolution of a macro-
scopic system by specifying and evolving its (highly
excited) microscopic state. Not only is such a description

unworkable, it is also unrealistic when we have no
practical way to prepare such a pure microscopic state
for a macroscopic system.
Instead, the statistical description deals with the ensem-

ble of “similar” microscopic states. The ensemble is
characterized by the set of probabilities of each state to
be in the ensemble (the density matrix) or, alternatively,
the set of correlation functions or expectation values of
operators in the ensemble. The space of all possible
statistical states is thus greater than the Hilbert space of
microscopic (pure) states.

B. Equilibrium fluctuations

Equilibrium states form a special class of the statistical
states in which the probability of a microscopic state to
appear in the ensemble is a function only of conserved
quantities (quantum numbers) of this state, such as the
energy, charge, momentum, etc. An equilibrium state is a
very good approximation to a macroscopic system (i.e., a
system with many d.o.f.) averaged over time intervals
sufficiently long compared to microscopic timescales
(e.g., mean free time between collisions in a gas).
Below, we shall denote the set of the conserved quantities
by a vector Ψ.
As a warm-up, let us first consider the simplest equi-

librium statistical state—the microcanonical ensemble—
where the only microscopic quantum states in the ensemble
are those with Ψ within a small interval ΔΨ around a given
value Ψ̄. The size of the interval ΔΨ is assumed to be small
compared to the characteristic scale of the variation of the
density of states but much larger than the level spacing. For
a macroscopic system, with a very large density of states,
this is easily satisfied. The probability of each state in this
interval is the same. Then entropy, which we shall denote
S0ðΨ̄Þ, is given simply by the logarithm of the number of
the states in the ensemble.
Next, let us consider a canonical ensemble—an open

system in contact with a much larger (infinite) reservoir of
conserved quantities Ψ. All states of the system can now
appear, but the probability of each state is now weighed by
the exponential expðJΨÞ, where J is a set (a vector) of
thermodynamic variables conjugate to Ψ (e.g., μ=T for
charge or −1=T for energy): J ¼ −∂Sreservoir=∂Ψ, and we
use symbolic notation JΨ ¼ P

nJnΨn for the sum of the
products of each variable and its conjugate. This extra
weight reflects the dependence of the number of states of
the reservoir when it exchanges energy with our system.
The entropy of the canonical ensemble can be calculated

by using the standard formula

S ¼ −
X
i

pi logpi; ð36Þ

where the sum runs over all states and pi is the probability
of a state labeled i. Since this is an equilibrium state

5The 2PI action formalism has been used before to describe
nonequilibrium evolution of quantum systems [35]. Although
still different, this application of 2PI bears the closest similarity to
our approach. We hope that our discussion will provide an
intuitive insight into the meaning of this formalism as well.
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(by definition), the value of pi depends only on the value Ψ
for this state. The probability of each state is the same up to
a factor eJΨ. Since the density of states is large, we can
replace the sum over i with the integral over Ψ, taking into
account the density of states:

X
i

→
Z

ðdΨ=ΔΨÞeS0 : ð37Þ

The normalized probability for each microscopic state is
given by

pi ¼ expðJΨ −WðJÞÞ; ð38Þ
where

eWðJÞ ¼
Z

ðdΨ=ΔΨÞeS0ðΨÞþJΨ: ð39Þ

The entropy of the canonical ensemble in Eq. (36) is then
given by

S ¼ −
Z

ðdΨ=ΔΨÞeS0ðΨÞþJΨ−WðJÞðJΨ −WðJÞÞ

¼ WðJÞ − JhΨi: ð40Þ
Since hΨi ¼ dW=dJ, SðhΨiÞ is a Legendre transform
of WðJÞ.

C. Partial-equilibrium fluctuations

As the next step, let us consider so-called partial (or
incomplete) equilibrium states [36], i.e., the states where
equilibrium has been achieved locally, for regions of a size
of the order of, say, l, much larger than the microscopic
scale (such as the mean free path), but global (complete)
equilibrium has not yet been achieved. This is a common
situation when the system is observed over finite periods
of time, because the relaxation time grows with the size of
the system. The evolution of these states is described by
hydrodynamics. We can generalize the calculation of
entropy for these states by using additivity of entropy.
Each of the subsystems of size l can be treated as an open
system in equilibrium with its local environment and its
entropy calculated using the formulas for a canonical
ensemble above. The total entropy is then the sum of
the entropies of the parts. More formally, this means
considering microscopic state probabilities pi as func-
tionals of the (slowly varying on the scale l) fields Ψ
and replacing the integrals in Eq. (40) with the path
integrals. We thus find the entropy of a partial-equilibrium
state as a functional of slowly varying Ψ̄≡ hΨi:

S1½Ψ̄� ¼ −
Z

DΨeS0½Ψ�þJΨ−W½J�ðJΨ −W½J�Þ

¼ W½J� − JhΨi; ð41Þ

where DΨ is the functional integral measure and JΨ now
denotes the sum over the variables as before as well as
the integral over space (i.e., sum over the locally
equilibrated subsystems): JΨ ¼ P

n

R
x JnðxÞΨnðxÞ. The

entropy of a partial-equilibrium state is thus given by the
Legendre transform of the “one-particle irreducible”
(1PI) generating functional W½J� of the correlation
functions of Ψ.
Finally, we must realize that the partial-equilibrium state

we described above is still a special case and in many
important situations is inadequate for describing a real
system out of equilibrium even on the timescales sufficient
for local equilibration. Since only local equilibration had
enough time to occur, the profile of Ψ in the system on
scales longer than l is still different from the equilibrium
(constant in space) value. Also, each local value of Ψ̄ is
different in different members of the ensemble. In the states
we just described, these fluctuations within the ensemble
are, however, completely determined by Ψ̄ (or, alterna-
tively, J) and the density of states. This property of the
ensemble is, however, unrealistic in many important cases
when not only Ψ̄ but also its variations in space on scales
longer than l between different members of the ensemble
are not what they should be in equilibrium. The relaxation
time of such long-wavelength fluctuations is of the same
order as the relaxation time for long-wavelength inhomo-
geneities of Ψ̄ itself, and thus these fluctuations would
typically be out of equilibrium at these timescales.
In other words, we must consider states where not only

the one-point function Ψ̄ ¼ hΨi but also the two-point
functions hΨnðxÞΨmðyÞi), which we shall denote symboli-
cally as hΨΨi, and, in general, higher-order correlation
functions are still away from equilibrium values. In other
words, the state should be characterized by the probability
functional pi½Ψ�, which is not completely determined by
the average value Ψ̄ but can be an arbitrary functional,
which will evolve in time as it approaches the equilibrium
form.
To formalize this observation, we recall that the equi-

librium probability of the microscopic state we considered
is given by Eq. (38). To allow for a state with an arbitrary
value of a two-point function, we can consider the
probability in the form

pi ¼ exp

�
JΨþ 1

2
ΨKΨ −W2½J; K�

�
; ð42Þ

where we introduced an arbitrary quadratic form matrix or
operator K to parameterize the deviation of the probability
distribution from equilibrium. The normalization of the
probability is given by

eW2½J;K� ¼
Z

DΨeS0½Ψ�þJΨþ1
2
ΨKΨ; ð43Þ
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where ΨKΨ denotes
R
xy

P
nmΨnðxÞKnmðx; yÞΨmðyÞ. The

entropy of such a partial-equilibrium state is given by the
standard formula Eq. (36):

S2 ¼ −
X
i

pi logpi

¼
Z

DΨeS0½Ψ�þJΨþ1
2
ΨKΨ−W2½J;K�

×

�
JΨþ 1

2
ΨKΨ −W2½J; K�

�

¼ W2½J; K� − JhΨi − 1

2
hΨKΨi: ð44Þ

We find that the entropy is the Legendre transform of the
2PI generating functionalW2½J; K�. It should be possible to
generalize this to higher point correlators, and this should
be important to do in order to study higher moments of
fluctuations near the critical point. We defer this to
further work.
Here we focus on states described by one- and two-point

functions. It is convenient to introduce a correlator

G ¼ hΨΨi − Ψ̄ Ψ̄ ð45Þ

in terms of which

hΨKΨi ¼ trKGþ Ψ̄KΨ̄: ð46Þ

It is convenient to substitute Eq. (46) into Eq. (44):

S2 ¼ W2½J; K� − JhΨi − 1

2
Ψ̄KΨ̄ −

1

2
trKG ð47Þ

and express S2 as a functional of Ψ̄ and G using implicit
equations

Ψ̄ ¼ δW2

δJ
and Gþ Ψ̄ Ψ̄ ¼ 2

δW2

δK
: ð48Þ

It is useful to note that the derivatives of S2½Ψ̄; G� are
given by

δS2
δΨ̄

¼ −J and 2
δS2
δG

¼ −K: ð49Þ

Therefore, one can think ofK as a thermodynamic restoring
force bringing the system back to equilibrium.
To be more explicit, we shall evaluate W2 in Eq. (43) in

the saddle-point approximation (which should be appro-
priate in the regime l ≫ ξ due to the central limit theorem):

W2½J; K� ≈ S0½Ψ̄� þ JΨ̄þ 1

2
Ψ̄KΨ̄ −

1

2
log detðC − KÞ;

ð50Þ

where we introduced quadratic form matrix or operator

C ¼ −
δ2S0
δΨ̄δΨ̄

: ð51Þ

The value of Ψ̄ is determined by J and K via the saddle-
point equation

δS0
δΨ̄

þ J þ KΨ̄ ¼ 0: ð52Þ

Substituting Eq. (50) into Eq. (44) and using (46), we
find

S2½Ψ̄; G� ≈ S0½Ψ̄� −
1

2
trKG −

1

2
log detðC − KÞ: ð53Þ

To eliminate K in favor of G, we apply Eq. (48) to Eq. (47)
to find

G ¼ ðC − KÞ−1; ð54Þ

which we substitute into Eq. (54):

S2½Ψ̄; G� ≈ S0½Ψ̄� −
1

2
trðCG − 1Þ þ 1

2
log detG: ð55Þ

It is more convenient to express microscopic action S0 in
terms of the 1PI effective action S1 defined in Eq. (41). It is
easy to see that S1 ¼ S2jK¼0, i.e.,

S1 ≈ S0 þ
1

2
log detC ð56Þ

and thus

S2½Ψ̄; G� ≈ S1½Ψ̄� −
1

2
trðCG − 1Þ þ 1

2
log detCG: ð57Þ

One can see that S2 ≤ S1. The entropy is maximized
when G ¼ C−1, i.e., when the fluctuations (characterized
by the two-point function G) are in equilibrium (K ¼ 0).
To understand this result physically, it is useful to keep in

mind that entropy is a measure of the uncertainty of the
system. Since larger fluctuations mean larger uncertainty,
the entropy should increase with G. The last, logarithmic,
term in Eq. (57) describes this. One can think of

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
as

a measure of the “spread” of the thermodynamic state
probability distribution over the microscopic states, and the
logarithm of it is the entropy. However, the increase in the
magnitude of fluctuations around equilibrium comes at an
expense: Because of the convexity of the entropy, the
average entropy of a state decreases when the fluctuations
get larger, i.e., hSi ¼ S0 þ δ2S=ðδΨδΨÞhδΨδΨi < S0. This
effect is described by the second term in Eq. (57). The
balance of these two effects leads to the maximum at the
equilibrium value of the fluctuations given by G ¼ C−1.
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D. Scale separation and mode
distribution function

Let us consider a system in a partial-equilibrium state
where the equilibrium is “complete” only for subsystems of
a macroscopic size l (or smaller). If l ≫ ξ, in such a state
the contribution of fluctuations is suppressed according to
the central limit theorem, where ξ is the correlation length
of fluctuations. This separation of scales l ≫ ξ is also
reflected in the dependence of the fluctuation correlator
Ḡðx1; x2Þ ¼ C−1ðx1; x2Þ on x1 and x2. Indeed, in the fully
equilibrated state (l ¼ ∞), which is homogeneous, the
local value of Ψ is position independent, and the two-point
correlator, Ḡðx1; x2Þ ¼ C−1ðx1; x2Þ, depends only on the
difference x1 − x2. The typical scale for this dependence is
jx1 − x2j ∼ ξ. In the partial-equilibrium states, Ψ̄ðxÞ
depends on x very slowly, and similarly the dependence
of Ḡðx1; x2Þ on ðx1 þ x2Þ=2 is slow and is associated with
the scales longer than l, which is much longer than the
scale ξ of jx1 − x2j dependence.
This separation of scales is most conveniently exploited

by performing a Wigner transform of G, i.e., Fourier
transform with respect to x1 − x2:

GQðxÞ ¼
Z
Δx

G

�
xþ Δx

2
; x −

Δx
2

�
eiQΔx: ð58Þ

The states we consider are characterized by GQ which
varies slowly with x, compared to the scale set by
characteristic value of Q.
For such states, the 2PI action simplifies. The functional

trace in Eq. (57) becomes an integral over x and over Q of a
matrix function of GQðxÞ, i.e.,

S2½Ψ̄; G� ≈ S1½Ψ̄� þ
1

2

Z
x

Z
Q
Trð1 − CQGQ þ logCQGQÞ;

ð59Þ

where CQ ¼ Ḡ−1
Q is the Wigner transform of C from

Eq. (51). We use intuitive short-hand notations for spatial
and wave-vector integrations. respectively:

Z
x
… ¼

Z
d3x… and

Z
Q
…≡

Z
d3ðQ=2πÞ…:

ð60Þ

It is notable that a similar scale separation occurs in the
kinetic theory where the particle distribution function is
also a Wigner transform of a two-point correlator.
Mathematical similarity notwithstanding, the physical ori-
gin of the separation is different in that case—the slowness
of the collision rate compared to typical particle momenta.
In our case, such a Wigner transform would be more

appropriately called a mode distribution function, since the
variable Q is a wave vector of the mode and not a particle
momentum. The integral over variables x and Q is the
phase-space integral. The evolution equation for the mode
distribution function is similar to a kinetic equation, and
one could use this term to describe it, with the under-
standing that it does not describe particle kinetics but rather
the mode kinetics.6

IV. KINETICS OF FLUCTUATIONS

A. Relaxation equations

The evolution of the system we are describing is
governed by the second law of thermodynamics; i.e., the
evolution proceeds towards the maximum of the entropy
under (energy-momentum, charge, etc.) conservation con-
straints. Hydrodynamic equations are essentially these
constraints (supplemented with constitutive equations).
We can use the same approach to describe the evolution
of the two-point (as well as one-point) functions towards
the maximum of the 2PI entropy S2. In order to do that, we
need to supplement the usual set of hydrodynamic equa-
tions for the conserved densities Ψ̄, with the equations
which describe the time evolution of the two-point func-
tions G. Following the same logic, we can write these
equations as relaxation equations. Since we focus on the
quadratic fluctuations, we would need the linearized form
of the hydrodynamic equations. Writing the hydrodynamic
equations (in matrix notations) in the Onsager form and
linearizing them, we find

DΨ ¼ −γJ ¼ −LδΨþOðδΨ2Þ; ð61Þ

where γ is the Onsager matrix and L is the linear evolution
matrix which are related via

γ ¼ LC−1: ð62Þ

The explicit form of these matrices is presented in
Sec. IV D.
We can now write the linearized evolution equation for

the two-point functions in matrix notations as

∂tG ¼ −LðG − ḠÞ − ðG − ḠÞL† þOðG − ḠÞ2; ð63Þ

where Ḡ ¼ C−1 is the equilibrium value of G. This
equation is easy to derive from Eq. (61) with a noise term.

6For the sound channel, the similarity is not just mathematical
but also physical: The corresponding matrix element of GQ can
be identified with the distribution function of phonon quasi-
particles, and the corresponding equation with the kinetic
(Boltzmann) equation for the phonon quasiparticles as in
Ref. [11].
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In order to determine the full nonlinear form of Eq. (63),
we need to use the expression for the entropy Eq. (57) and
the second law of thermodynamics. In order for the law to
hold, we need the relaxation equation to have the Onsager
form; i.e., the relaxation rate should be proportional to the
thermodynamic force

K¼−2
δS2
δG

¼−ðG−1− Ḡ−1Þ¼CðG− ḠÞCþOðG− ḠÞ2;
ð64Þ

where we used C ¼ Ḡ−1 (the factor of 2 is due to the
symmetry of G). It is easy to see that the equation which
obeys this condition and agrees with Eq. (63) has the form

∂tG ¼ −γKC−1 − C−1Kγ ¼ γðG−1Ḡ − 1Þ þ ðḠG−1 − 1Þγ:
ð65Þ

So far, the discussion of the kinetics was general and did
not assume the separation of scales,Q ≫ 1=l, discussed in
the previous subsection. Such scale separation simplifies
equations in terms of the Wigner transformed functions.
Symbolically, the form of equations in terms ofGQ remains
the same, but we can replace all matrices and operators
(G, C, L, γ) by their Wigner transforms evaluated at the
common wave vector Q.

B. Mode decomposition

One can solve the linear equation (61) by decomposing
the set of variables Ψ into the right eigenmodes of the
operator L. Then the solution is given by the sum of
projectors

L ¼
X
n

λnPn; where Pn ≡ ψnθ
†
n ð66Þ

and ψ and θ are the right and left eigenmodes of L,
respectively:

Lψm ¼ λmψm; θ†nL ¼ λnθ
†
n: ð67Þ

Although the right and left eigenvalues are the same (roots
of the characteristic polynomial), the right and left eigen-
vectors are, in general, different (i.e., P†

n ≠ Pn) and not
orthogonal among themselves. Instead, they form a set of
dual bases which are mutually orthogonal, i.e.,

θ†nψm ¼ δmn or PnPm ¼ δmnPn: ð68Þ

One can show this by multiplying the first and the second
of Eqs. (67) by θ†n on the left and by ψn on the right,
respectively.
Although L is not Hermitian, the Onsager matrix or

operator in Eq. (62) is, which means

LC−1 ¼ C−1L†: ð69Þ

Therefore, matrices C and C−1 (which are Hermitian) can
be written as

C ¼
X
n

cnθnθ
†
n;

C−1 ¼
X
n

c−1n ψnψ
†
n: ð70Þ

The result forC−1 can be derived by “sandwiching” Eq. (69)
between θ†m and θn and using Eqs. (67) and (68), while the
result for C by doing the same to equation CL ¼ L†C using
ψ†
m and ψn.

7

If the matrix L were Hermitian, this would reduce to a
familiar result that C can be diagonalized in the same
basis as L, since Eq. (69) would become a commutativity
condition.

C. Projection onto the slowest mode

Our discussion of fluctuations in this section is general.
In Sec. V, we shall consider a special case where a
parametric separation of scales appears between the
relaxation rates of different modes of fluctuations, such
as the case near a critical point. The slowest relaxing mode
in this case is the heat diffusion at a constant pressure (see
Sec. IV D), whose relaxation time l2=Dp is the longest
because the diffusion coefficient Dp vanishes at the critical
point. This is due to the divergence of heat capacity cp ∼ ξ2

and the relation Dp ¼ κ=cp, where κ ¼ λðβw=nÞ2 is the
heat conductivity. As a result Dp ∼ ξ−1, even despite the
divergence of λ ∼ ξ (we round all powers of ξ to integer
values for simplicity).
In such a situation, one may consider a partial-equilibrium

statewhere the “complete” (local) equilibrium of allmodes is
achieved on length scales l, except for the slowest mode,
whose equilibrium still needsmore time to be reached. In this
case, we can neglect the fluctuations of all equilibrated
modes, since their contribution is typically suppressed by
the central limit theorem by a factor of ðξ=lÞ3 ≪ 1.8 The
unequilibrated fluctuation mode can then be treated using
the formalism we introduce in the next section.
The slowest mode of Eq. (61), ψ1, corresponds to

the smallest (in terms of its real part) eigenvalue of

7The coefficients cn can be chosen arbitrarily by adjusting
the normalization of ψn and θn while still preserving Eqs. (68).
One could, for example, choose cn ≡ 1. However, there are
other considerations which make certain other choices prefer-
able.

8There are, of course, special measurements where such
fluctuations give leading contributions, e.g., in long-time tails
of correlators [11,37]. In this case, since l2 ∼ t, the suppression
factor ðξ=lÞ3 ∼ t−3=2 leads to the characteristic half-integer power
tail.
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L, λ1.
9 In other words, the slowest mode is the projection

P1Ψ ¼ ψ1ðθ†1ΨÞ. It is easy to see that the relaxation rates in
Eq. (63) are given by λn þ λm; i.e., the slowest relaxation
rate corresponds to n ¼ m ¼ 1, and the slowest mode is
given by the projection P1ðG − C−1ÞP†

1. If we neglect all
other (faster) modes, the matrix G will take the form

G ¼ C−1 þ P1ðG − C−1ÞP†
1

¼ C−1 þ ðϕ − c−11 Þψ1ψ
†
1

¼ ð1þ ðϕc1 − 1ÞP1ÞC−1; ð71Þ
where we introduced

ϕ≡ θ†1Gθ1 ð72Þ
and used Eq. (70).
SinceG is not just a discrete matrix but an operator whose

kernel Gðx; yÞ is a 5 × 5 matrix, the spectrum of modes is
not discrete but a continuous spectrum of hydrodynamic
modes. For the partial-equilibrium states we consider, where
the rate of variation with respect to xþ y is much slower
than with respect to x − y, i.e., 1=l ≪ Q, the problem
simplifies, as we have seen in Eq. (59), where the action can
be written as a local functional of the Wigner transform
GQðxÞ. We can then consider the lowest eigenmode of GQ

locally and define the corresponding projection

ϕQðxÞ≡ θ†1GQðxÞθ1; ð73Þ
which is related to GQ as ϕ is related to G in Eq. (71).
Substituting this expression for GQ into the 2PI entropy in
Eq. (59), we find

S2½Ψ̄; G� ≈ S1½Ψ̄� þ
1

2

Z
x

Z
Q
ð1 − ϕQ=ϕ̄Q þ logðϕQ=ϕ̄QÞÞ;

ð74Þ
where

ϕ̄QðxÞ≡ c−11 ¼ θ†1ḠQθ1: ð75Þ
HereϕQðxÞ is an additional d.o.f. whose local equilibrium ϕ̄Q

depends on x via the dependence on the local equilibrium
value of hydrodynamic variables (one-point functions) Ψ̄.
In order to write the kinetic equation of the slowest mode

ϕQ, we would need to eliminate faster modes using the
equations of motion such as Eq. (65). For linear equations,
this would simply amount to the projection we described
above. However, due to nonlinearities this procedure is
more complicated and should essentially capture the known
physics of the “mode coupling” [21,38,39]. Here we shall

use the result of the mode-coupling calculations in
Refs. [21,39] to write the resulting equation as

DϕQ ¼ −γπðQÞπQ; ð76Þ

where

πQ ≡ −
δS2
δϕQ

¼ 1

2
ðϕ̄−1

Q − ϕ−1
Q Þ: ð77Þ

The coefficient γπðQÞ can be related to the relaxation rate
ΓðQÞwhich is known from the mode-coupling calculations,
and we shall discuss it below [see Eq. (95)]. We have also
omitted the AϕðQÞ term, because we shall choose the
slowest mode to be s=n (see Sec. IV D), which has zero
compressibility, i.e., Dðs=nÞ ¼ 0 · θ þ � � �. We remind the
reader that the choice is arbitrary (see Appendix C), and a
more detailed calculation would be needed to determine
what the optimal choice of the slow mode should be and if
that choice has nonzero Aϕ. In addition, one should also
consider Hydroþ terms with λππ and λαπ , but we shall defer
this as well as a more nuanced choice of ϕQ and the
derivation of Eq. (76) to future work.

D. The slowest mode

For completeness, we present here an explicit form of
the matrix operators L, C, and γ and identify the slowest
mode (or, more precisely, the branch of modes).
Writing linearized hydrodynamics in coordinates δΨ ¼

ðwδvðkÞ; δεðkÞ; δnðkÞÞ we find

L ¼

0
BB@

V ikpε ikpn

1 0 0

n=w k2λαε k2λαn

1
CCA; ð78Þ

where subscripted thermodynamic variables pε, pn, αε, and
αn denote derivatives of the variable with respect to the
subscript variable (ε or n) while the other variable is held
fixed [e.g., pε ≡ ð∂p=∂εÞn] and V ¼ ηk2 þ ðζ þ 1

3
ηÞk ⊗ k

is a matrix of viscous relaxation.

C ¼

0
B@

β=w 0 0

0 βε βn

0 −αε −αn

1
CA; ð79Þ

which is symmetric by virtue of the Maxwell relation
βn ¼ −αε. Therefore, the Onsager matrix is given by

γ ¼ LC−1 ¼ 1

β

0
B@

wV ikw ikn

−ikw 0 0

−ikn 0 k2βλ

1
CA; ð80Þ9It is also useful to note that due to L ¼ γC that mode is also

the flattest direction of the quadratic form C. A simple explicit
example of this could be found in Ref. [26].
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where we performed some standard thermodynamic
Jacobian calculus to simplify the result.
To lowest order in k (ideal hydrodynamics), the smallest

eigenvalue of matrix L is 0, and the corresponding
(unnormalized) right and left eigenvectors are

ψ1 ∼ ð0; 1;−pε=pnÞ; θ1 ∼ ð0; 1;−w=nÞ: ð81Þ

Since −pε=pn ¼ ð∂n=∂εÞp, this simply means that in the
mode δΨ ∼ ψ1 the δε and δn fluctuations are such that
δp ¼ 0; i.e., the pressure does not fluctuate. The projection
on that mode from an arbitrary fluctuation, i.e., θ1δΨ∼
δε − ðw=nÞδn, is proportional to the fluctuation of s=n
since

δ

�
s
n

�
¼ β

n

�
δε −

w
n
δn

�
: ð82Þ

Thus, we can describe the slowest mode as the diffusion of
entropy per baryon at a fixed pressure.
Therefore, the variable ϕQ defined by projection on the

slowest mode in Eq. (73) can be identified with the Wigner
transform of the correlator of s=n:

ϕQðxÞ ∼
Z
Δx

�
δm

�
xþ Δx

2

�
δm

�
x −

Δx
2

��
eiQΔx; ð83Þ

where we defined

m≡ s
n
: ð84Þ

The normalization of ϕQ is arbitrary, as can be seen from
the expression for the 2PI action in Eq. (74), where it
cancels. Moreover, it is worth noting that any function of
ϕQ can be chosen to represent slow relaxation, due to the
reparameterization invariance of Hydroþ. However, one
needs to be aware that the value of compressibility Aϕ may
depend on that choice (see Appendix C).

V. HYDRO+ NEAR THE QCD CRITICAL POINT

A. Formulation

In Sec. IV, we identified the slow d.o.f. near the QCD
critical point ϕQ and derived partial-equilibrium entropy
density sðþÞðε; n;ϕÞ:

sðþÞðε; n;ϕQÞ

¼ sðε; nÞ þ 1

2

Z
Q

	
log

ϕQ

ϕ̄Qðε; nÞ
−

ϕQ

ϕ̄Qðε; nÞ
þ 1



; ð85Þ

where sðϵ; nÞ is the ordinary equilibrium entropy and
ϕ̄Qðε; nÞ is the local equilibrium value of the nonhydrody-
namics slow mode ϕQ determined by local values of ε and
n. Similarly to ε and n being the energy and charge density

in the local rest frame defined by 4-velocity uμ, Q is also a
wave vector in the same frame, thus ensuring Lorentz
invariance of sðþÞ. We are now ready to write the Hydroþ
equations which we propose to describe the evolution near
the critical point. The equations are usual conservation laws
∂μTμν ¼ 0, ∂μJμ ¼ 0 and a relaxation rate equation (76)
for ϕQ.
The constitutive relations for Tμν and Jμ now read

Tμν ¼ εuμuν þ pðþÞg
μν
⊥ − ηðþÞ

�
∂μ
⊥uν þ ∂ν⊥uμ −

2

3
gμν⊥ θ

�

− ζðþÞg
μν
⊥ θ; ð86Þ

Jμ ¼ nuμ þ λ∂μ
⊥αðþÞ: ð87Þ

Here pðþÞ is related to sðþÞ by

βðþÞpðþÞ ¼ sðþÞ − βðþÞϵþ αðþÞn: ð88Þ

In this subsection, we shall discuss the necessary
ingredients for Hydroþ. Our central ingredient is the
partial-equilibrium equation of state, which depends on
the equilibrium entropy sðϵ; nÞ and the equilibrium value of
ϕ̄Qðε; nÞ. Here, sðε; nÞ is the complete-equilibrium equa-
tion of state which includes the thermodynamic behavior
near the critical point. For QCD, the equation of state in the
relevant region, i.e., at a finite baryon density, is not reliably
known from the first-principles lattice simulation. An
approach which is being pursued is to use an efficient
parameterization of the equation of state which, on the one
hand, matches the reliable lattice data at a small density
(chemical potential) and, on the other hand, incorporates
correct universal critical behavior, in order to minimize the
number of free parameters to be determined by comparing
the simulation with experimental data [40].
In this work, we shall take ϕQ to be the Wigner transform

of the correlator hδmðxÞδmðyÞi. We shall assume the
separation of scales 1=l ≪ Q ∼ ξ−1, where l is the scale
of the spatial variation of local values of ε,n, anduμ aswell as
ϕQ. The local equilibrium value ϕ̄Q is given by the Wigner
transform of the equilibrium correlator hδmðxÞδmð0Þi at
given ε and n. In the scaling regime (ξ much larger than the
microscopic scale, such as 1=T), the dependence of this
quantity on Q and ξ must enter through a universal scaling
function, i.e.,

ϕ̄Q ¼
Z
Δx

eiQ·ΔxhδmðΔxÞδmð0Þi ¼ ϕ̄0f2ðQξ;ΘÞ; ð89Þ

where f2 is a universal function of two scaling variables with
Θ ¼ Θðε; nÞ denoting the variable which, similarly to ξ,
depends on the local values of ε and n but in contrast to ξ is
invariant under scaling (e.g., parameter θ in Rθ parameter-
ization of the universal scaling equation of state [41]).
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The value of ϕ̄0 is given by the magnitude of the
fluctuation of m ¼ R

x mðxÞ=V. This can be found from
the standard textbook analysis of the equilibrium fluctua-
tions and is given by

ϕ̄0 ¼ VhðδmÞ2i ¼ cp
n2

ð90Þ

(see Appendix D for derivation).
The universal function f2 is normalized as f2ð0;ΘÞ ¼ 1

and can be determined, in principle, using methods
described in, e.g., Ref. [42] or by a lattice computation.
Similarly to the equation of state sðε; nÞ, it is a static
thermodynamic quantity. The asymptotic behavior of
fðx;ΘÞ at large and small x is given by

f2 → 1þ a1x2 þ � � � ; x ≪ 1; ð91Þ

f2 → x−2þηðb1 þ b2x−ð1−αÞ=ν þ b3x−1=ν…Þ; x ≫ 1;

ð92Þ
where coefficients ai and bi are functions of Θ (see
Ref. [43]).
For practical purposes, a simplified expression indepen-

dent of Θ,

f2ðxÞ ≈ ð1þ x2Þ−1 ð93Þ
often referred to as the Ornstein-Zernike (OZ) form
[7,17], could provide a reasonable approximation in limited
applications. However, even though it gives correct small-x
asymptotics, the incorrect large-x asymptotics leads to
incorrect large-ω behavior of the frequency-dependent bulk
viscosity which we discuss in Sec. V B.
The coefficient γπðQÞ in Eq. (76) is given, similarly to

Eq. (23), by

γπðQÞ ¼ ϕπðQÞΓðQÞ ¼ 2ϕ̄2
QΓðQÞ; ð94Þ

wherewe definedϕπðQÞ ¼ ð∂ϕQ=∂πQÞεn and used Eq. (77).
The momentum-dependent relaxation rate of the critical

slow mode ΓðQÞ for model H has been computed by
Kawasaki [17] (see also Appendix 6B in Ref. [22] or
Appendix B of Ref. [44] for derivations):

ΓðQÞ ¼ 2ΓξKðQξÞ; ð95Þ
where

KðxÞ ¼ ð3=4Þ½1þ x2 þ ðx3 − x−1Þ arctanðxÞ� ð96Þ
is sometimes referred to as the Kawasaki function.10

This form describes the experimental data for various

fluids over a range of temperatures near the critical point
remarkably well (see, for example, Fig. 4 in Ref. [7]).11

The characteristic critical slowing-down rate is defined as
the diffusion rate at wave number ξ−1:

Γξ ¼ Dpξ
−2 ¼ T

6πηξ3
ðz ≈ 3Þ; ð97Þ

where Dp is the thermal (more precisely, entropy per
baryon at a constant pressure) diffusion constant due to
the convection of critical density fluctuations, the physical
mechanism of which is described in, e.g., Ref. [7].
Finally, let us discuss the input values for Hydroþ

kinetic coefficients ζðþÞ, ηðþÞ, and λ. Since the critical
behavior of bulk viscosity ζ (at zero frequency) is now due
to the dynamics of additional slow mode ϕQ, the input
value ζðþÞ will not sensitively depend on the correlation
length and should match with the smooth behavior of the
bulk viscosity away from the critical point. Since shear
viscosity η has a very weak divergence at the critical point,
it is reasonable to neglect this divergence and use ηðþÞ
interpolated from the smooth behavior away from the
critical point.
The implementation of conductivity λ is more subtle.

λ diverges as ξ (rounding the exponent to an integer)
due to the convection of enhanced density fluctuations
[7,17]. Somewhat similar to the divergence of ζ, the
divergence of λ is due to the slowness of relaxation of a
nonhydrodynamic mode involving transverse momentum
and charge density fluctuations. In principle, this effect
could be described by an extension of our approach
using 2PI formalism by introducing an additional mode.
We defer this to future work. As a provisional recipe,
consistent with other choices, one could use, near the
critical point,

λ ¼
�
nT
w

�
2

cpDp ¼
�
nT
w

�
2 Tcp
6πηξ

: ð98Þ

B. Frequency dependence of bulk response

In order to illustrate how the Hydroþ formalism
described in Sec. VA works, we shall study the bulk
response in this theory. It is useful to keep in mind that the
formalism in Sec. VA is essentially a multimode gener-
alization of the Hydroþ theory we discussed in Sec. II and
the results here are easily obtained by generalizing the
calculation in Sec. II B. The purpose of this section is to
demonstrate that this simpler formalism reproduces known
properties derived earlier using a different approach by

10The factor of 2 relative to Ref. [22] is due to the fact that
ΓðQÞ is the relaxation rate of a two-point function.

11The calculation of the Kawasaki function involves function
f2, and it is an example when the Ornstein-Zernike ansatz (93) is
adequate.
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Kawasaki and Onuki [17,21], which we briefly review in
the next section.
As in Sec. II B, we consider expansion or compression

fluctuations around the static and homogeneous back-
ground. A straightforward generalization of Eq. (27) leads
to the expression for the bulk response function:

iΔGRðωÞ
ω

¼ β

Z
Q

p2
πðQÞ

ϕπðQÞ
1

ΓðQÞ − iω
; ð99Þ

where we generalized the definition of pπ , ϕπ for one slow
mode Eqs. (18) and (20) to a branch of modes labeled byQ:

pπðQÞ≡
�
δpðþÞ
δπQ

�
ε;n

¼ −
w
β

�∂ϕ̄Q

∂ε
�

m
; ð100Þ

ϕπðQÞ ¼
�∂ϕQ

∂πQ
�

ε;n

¼ 2ϕ̄2
Q: ð101Þ

In Eq. (100), we have also used a natural generalization of
Eq. (B1). Consequently,

iΔGRðωÞ
ω

¼ w2

2β

Z
Q

�∂ log ϕ̄Q

∂ε
�

2

m

1

ΓðQÞ − iω
: ð102Þ

Substituting the expression for the equilibrium mode
distribution ϕ̄Q, we can determine the contribution of
critical fluctuations to frequency dependent to bulk vis-
cosity and the frequency-dependent equation of state
stiffness (sound group velocity), which are related to GR as

ΔζðωÞ ¼ −ImΔGR=ω; Δc2sðωÞ ¼ ReΔGR=w: ð103Þ

Using the OZ form in Eq. (93), one obtains the results in
agreement with Kawasaki [39], which do not have the
correct large-ω behavior. If one uses an ansatz satisfying

the asymptotic behavior in Eq. (91), the correct asymptotic
behavior is reproduced, as in Ref. [22].
To illustrate the frequency dependence of the bulk

viscosity and stiffness (sound speed), we have chosen
the ansatz for ϕ̄Q similar to the one used by Onuki in
Refs. [21,22]. Rather than choosing the function ϕ̄Q,
we chose an ansatz for its derivative ð∂ log ϕ̄Q=∂εÞ2m ∼
ð1þ x2Þ−ð1−αÞ=ν, where x ¼ Qξ, which satisfies the neces-
sary asymptotics following from Eq. (91). In particular,
ð∂ log ϕ̄Q=∂εÞm ∼Q−ð1−αÞ=ν at large Q, which translates
into the large-ω asymptotics GR ∼ ωα=ðzνÞ in accordance
with Ref. [22], where z is the dynamical critical scaling
exponent, Γξ ∼ ξ−z, as in Eq. (97).
In Fig. 3, we show the resulting frequency dependence

for Δζ and Δc2s . Note that, as in Sec. II B, the ordinary
hydrodynamics extrapolated beyond its region of validity
overpredicts the bulk viscosity and underpredicts the
stiffness.12

Although these results are similar to the single-mode
Hydroþ theory in Sec. II B, it is instructive to compare
and emphasize the differences. For this purpose, we
combine the plots from Figs. 1 and 3 on the same graph.
To make the comparison, we need to choose what scales in
two theories to match. The relevant scale in the single-
mode theory is the rate Γπ of the relaxation of the single
mode ϕ. In the “kinetic” Hydroþ theory, there is a
spectrum of modes, with a characteristic scale given by
Γξ. We show two choices of Γπ-to-Γξ matching corre-
sponding to Γπ=Γξ ¼ 0.5 and 2 in Fig. 4. One can view this
comparison as an answer to the question of how well

FIG. 3. The frequency dependence of the (critical contribution to) bulk viscosity, or Δζ ¼ −ImGR=ω (left), and the speed of sound
(stiffness of equation of state), or Δc2s ¼ ReGR=w, (right) near the critical point from Eq. (102). The quantities and the frequency are
normalized to make plots scale independent. Dashed horizontal lines illustrate the results from ordinary hydrodynamics extrapolated
beyond its range of validity.

12The stiffening at higher frequencies is a counterpart of the
well-known effect of softening of the equation of state at ω → 0,
characterized by vanishing of the hydrodynamic sound speed c2s .
More quantitatively, since c2s ∼ ξ−α=ν, the dynamical scaling
translates this behavior into high-frequency scaling ωα=ðνzÞ.
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could a single-mode theory match the results of a full
kinetic Hydroþ approach.
One can see that it is hard to match both large and

small frequency behavior of the bulk viscosity, due to
completely different asymptotics of ΔζðωÞ in the two
theories.13 The same is true for the stiffness, i.e., Δc2s . It is
also notable that the choice of Γπ=Γξ, which makes Δc2s
agree better, could lead to worse agreement for Δζ.
These differences notwithstanding, it is also clear that
even a single-mode Hydroþ theory gives a better descrip-
tion than a naive extrapolation of the ordinary hydro-
dynamics beyond its range of validity. We can conclude
that a single-mode theory could be used as a rough
illustration of some features of the critical slowing-down,
but it cannot describe this phenomenon fully.

C. Comparison to a loop calculation

In the previous section, we have evaluated critical mode
contribution to the retarded Green’s function using the
Hydroþ formalism. To elucidate the correspondence
between this formalism and an earlier calculation by
Onuki [21,22], and to make the paper self-contained, we
shall provide here a sketch of the computation of the same
quantity using the approach of Refs. [21,22] (see also
Refs. [16,46]) in this subsection.
The starting point of Ref. [21] is the relation between

ΔGRðωÞ and nonlinear nonequilibrium pressure Δp:

iΔGRðωÞ
ω

¼ β

Z
∞

0

dteiωt
Z
x
hΔpðt; xÞΔpð0; 0Þi; ð104Þ

where we used the fluctuation-dissipation relation. The
nonlinear nonequilibrium pressure can be related to a
corresponding contribution to entropy density, Δs:

βΔp ¼ −wΔβ þ nΔα ¼ −w
�∂Δs

∂ε
�

m
; ð105Þ

where we used

Δβ ¼
�∂Δs

∂ε
�

n
; Δα ¼ −

�∂Δs
∂n

�
ε

; ð106Þ

and thermodynamic relation (B2). Near the critical point, it
is sufficient to keep only the contribution of the slowest
mode δm to Δs:

Z
x
Δs ¼ −

1

2

Z
Q
ϕ̄−1
Q jδmQðtÞj2; ð107Þ

where ϕ̄Q is the equal-time correlator of δm as in Eq. (89)
and δmQ is the Fourier transform of δmðxÞ. Substituting
Eqs. (105) and (107) into Eq. (104), we find (using the scale
separation 1=l ≪ Q)

iΔGRðωÞ
ω

¼ w2

2β

Z
∞

0

dteiωt
�
ϕ̄−1
Q

∂ε
�2

m
hδmQðtÞδm−Qð0Þi

× hδm−QðtÞδmQð0Þi: ð108Þ
This result is best illustrated by a simple one-loop diagram
shown in Fig. 5. The vertex factor ð∂ϕ̄−1

Q =∂εÞ is a third
derivative of the entropy Δs [see Eq. (107)], which is
intuitively natural considering the analogy between the
entropy of fluctuations and the action in the field theory.
Using the expression for the unequal-time correlator

hδmQðtÞδm−Qð0Þi ¼ ϕ̄Qe−ΓðQÞt=2 ð109Þ

FIG. 4. Comparison of the frequency dependence of the bulk viscosity, or Δζ (left), and the speed of sound (stiffness of equation of
state), or Δc2s (right), between the two theories: “kinetic” Hydroþ in Sec. VA and single-mode Hydroþ in Sec. II for two choices of the
matching scale ratio Γπ=Γξ. Dashed horizontal lines illustrate the results of ordinary hydrodynamics extrapolated beyond its range of
validity.

13The small-ω behaviorΔζ ∼ −ω−1=2 evident in Fig. 3(a) is the
half-integer long-time hydrodynamic tail [11,37,45]. It cannot be
matched by a single-mode theory where Δζ is analytic at zero
frequency.
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and performing the time integration in Eq. (108), we obtain
precisely Eq. (102). The factor of 1=2 in the exponent in
Eq. (109) is due to the fact that ΓðQÞ is the relaxation rate of
a two-point function [essentially, of ðδmÞ2], while Eq. (109)
represents the correlation function of the one-point function
δm [see also Eq. (95) and footnote 10].
The comparison between Hydroþ and the loop calcu-

lation in this section sheds additional light on the analogy
between Hydroþ and the kinetic (Boltzmann) description
in the thermal field theory. The response in the thermal field
theory, which can be calculated in the hard-thermal loop
(HTL) approach, is nonlocal, as manifested by the well-
known Landau damping. This response is due to almost
on-shell propagation of weakly coupled (quasi)particles.
However, one can replace the HTL approach by an
equivalent kinetic description of these particles using a
Boltzmann equation (or, in the case of gauge-field dynam-
ics, Vlasov equations, coupling particles to classical fields).
The advantage of the kinetic approach is that it is local and
thus more intuitive and conceptually satisfying. Locality is
also an indispensable property for numerical simulations of
real-time dynamics. Hydroþ is similar to the kinetic theory
in this respect. While a noninstantaneous bulk response
(e.g., frequency-dependent bulk viscosity) is hard to imple-
ment in a simulation directly, Hydroþ reproduces this
phenomenon using local (instantaneous) dynamics of addi-
tional modes very similar to the kinetic description.

VI. SUMMARY AND DISCUSSION

We considered an extended hydrodynamic theory, or
Hydroþ, which describes the evolution of partial-equilib-
rium states characterized by off-equilibrium values of
nonhydrodynamic but slow variables. In general, such an
extension can be justified if the additional nonhydrody-
namic variable is still much slower than the remaining
microscopic variables which are left (integrated) out. This
condition distinguishes our approach from other extended
hydrodynamic proposals, such as, e.g., the well-known
Israel-Stewart second-order hydrodynamics [27], where
additional variables (components of the stress tensor), in
general, relax to equilibrium as fast as the other (infinitely
many) microscopic modes. As a result, the applicability of

the Israel-Stewart theory (beyond the ordinary hydrody-
namic regime) is questionable [28]. Unlike Israel-Stuart
hydrodynamics, we wish to consider a systematic limit in
which the variables we keep are slow either because they
are conserved (i.e., hydrodynamic) or because there exists
another parameter, independent of the scale of inhomoge-
neity l, controlling the slowness of hydrodynamic variables.
In Sec. II, we describe a general formulation of Hydroþ

and discuss the chiral (anomalous) fluid as a simple
example in Appendix A. We show how a competition
between scales of hydrodynamic evolution and nonhydro-
dynamic slow mode relaxation gives rise to two distinct
regimes of frequencies. For ω ≪ Γπ, the slow mode is
completely equilibrated and simply tracks the hydrody-
namic variables. Ordinary hydrodynamics apply in this
regime, but the effect of the slow mode is manifested in a
large contribution to the bulk viscosity proportional to
1=Γπ—a phenomenon already known in the context of
nonrelativistic fluids [8–10]. For ω ≫ Γπ, the slow mode is
effectively “frozen,” which leads to a different, stiffer
equation of state and the drop of the bulk viscosity.
The phenomenon of critical slowing-down near a critical

point is very similar to the situation where Hydroþ is
applicable. The slowest nonhydrodynamic relaxation rate is
controlled by the value of the correlation length ξ, i.e.,
Γξ ∼ ξ−3, independently of the scale of inhomogeneity l
which controls the slowness of the conserved hydrody-
namic modes, Γhydro ∼ l−2 for relaxation or l−1 for
propagation. This sets the stage for the scale competition
characteristic of Hydroþ.
Ordinary hydrodynamics breaks down when Γhydro ≳ Γξ,

since the condition of the separation of hydrodynamic
and nonhydrodynamic relaxation rates is violated, leading
to nonlocality of the theory. Our goal in this paper is to
determine how to add the slow mode, or modes, to hydro-
dynamics in order to extend its validity to the regime where
the evolution rate of the hydrodynamic modes is comparable
to, or larger than, the relaxation rate Γξ.
The central element ofHydroþ is the extended equation of

state, given by entropy, sðþÞ, of the partial-equilibrium state
characterized by the values of the nonhydrodynamicmode as
well as the hydrodynamic variables. One of the major results
of this paper is the expression for the entropy as a function(al)
of the off-equilibrium values of fluctuations. In Sec. III, we
derive a general expression which we find to bear a natural
mathematical resemblance to the 2PI action in the quantum
field theory. In addition to one-point functions—the local
values of the hydrodynamic variables—the 2PI entropy
depends on the two-point functions—the off-equilibrium
values of the fluctuations. In Sec. IV, we use the extended
entropy to write Hydroþ equations generalizing the single-
mode theory discussed in Sec. II.
In Sec. V, we focus on the slowest mode near the critical

point—diffusion of entropy per (baryon) charge—and
write down a set of equations for the coupled evolution

FIG. 5. The one-loop diagram representing the critical mode
contribution to the bulk response in Eq. (108). Since k ∼ 1=l and
Q ∼ 1=ξ, the separation of scales l ≫ ξmeans Q ≫ k—a typical
hierarchy of scales in an HTL calculation.
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of critically slow magnitude of fluctuations and the hydro-
dynamic modes. Since the additional slow variable is a
measure of fluctuations, i.e., a two-point function, the
corresponding variable has an index, Q, which is the
Fourier transform of the spatial separation of the points
in the two-point function. In that respect, the slow variable
ϕQ is similar to the phase-space particle distribution
function in the kinetic theory and can be called a mode
distribution function.
We show that the Hydroþ theory defined in Sec. VA

reproduces known phenomena associated with critical
slowing-down. In particular, we show that the bulk vis-
cosity receives the critically enhanced contribution
Δζ ∼ ξ3. As a result, ordinary hydrodynamics breaks down
when the bulk relaxation (sound attenuation) rate Γhydro is
of the order of Γξ ∼ ξ−3. Naively extending hydrodynamics
beyond that (to larger frequencies or wave numbers), one
overpredicts the actual amount of dissipation, because the
frequency-dependent bulk viscosity drops for larger
frequencies. This phenomenon is captured by Hydroþ as
illustrated by Fig. 3(a).
We also note that, as a consequence of the critical

slowing-down, the stiffness of the equation of state
increases for frequencies above Γξ. Again, the ordinary
hydrodynamics will underpredict the stiffness (measured
by the frequency-dependent sound velocity) as shown in
Fig. 3(b).
The purpose of our paper is to introduce the approach

and discuss its advantages as well as to point out limitations
which could be addressed in future work.
One of the advantages of the approach to fluctuations

encoded in Hydroþ over another popular approach being
discussed in the literature based on stochastic hydrody-
namics [47,48] is that Hydroþ eliminates the need for
solving stochastic equations. Even though the two
approaches lead to similar results, a deterministic descrip-
tion of fluctuations may prove advantageous in numerical
simulations. One of the reasons is that stochastic fluctua-
tions introduce a strong cutoff dependence of the equation
of state as well as kinetic coefficients as has been observed
and discussed, e.g., in Refs. [12,16]. This dependence
needs to be canceled, which creates a numerically ill-
conditioned problem. On the other hand, the 2PI equation
of state we introduce in Sec. III is already renormalized
[see Eq. (56)]; i.e., the UV divergences due to fluctuations
are included into it.
This paper would be incomplete without a discussion of

the domain of applicability of Hydroþ. As we already
pointed out, ordinary hydrodynamics breaks down for
frequencies (or rates) larger than the rate Γξ, which
becomes critically slow as Γξ ∼ ξ−3. Hydroþ extends the
range of applicability to higher frequencies. Unlike the
simple single-mode Hydroþ discussed in Sec. II, which
could be applicable all the way to the microscopic scale
(collision rates, or T), Hydroþ near the critical point has

another limitation—the rate of the relaxation of the next-to-
slowest mode. This rate is parametrically faster than Γξ

but still slower than the microscopic scale, e.g., T. The
corresponding mode is the relaxation of the transverse
velocity (shear) fluctuations on the characteristic scale ξ of
density fluctuations, with the rate ΓT

ξ ¼ ðη=wÞξ−2 ∼ ξ−2.14

Comparing ΓT
ξ to Γξ, we see that Hydroþ extends the range

of applicability by a factor of ΓT
ξ =Γξ ∼ Tξ ≫ 1.

The emergence of the scale ΓT
ξ is due to the important

role played by the transverse modes in the model H
dynamic universality class [7]. Indeed, the characteristic
rate Γξ in Eq. (97) (and the corresponding value of the
critical exponent z ≈ 3) depends on the divergence of
conductivity λ ∼ ξ. This critical behavior of λ is driven
by the enhanced fluctuations of the charge density and
relies on transverse velocity (shear) modes relaxing faster
than ω. Therefore, λ will reach its critical behavior λ ∼ ξ
only for processes much slower than ΓT

ξ , and the use of
Eq. (97) (and z ≈ 3) is meaningful only for ω ≪ ΓT

ξ . To
extend Hydroþ to timescales shorter than 1=ΓT

ξ , one would
need to add the fluctuations of shear modes as additional
nonhydrodynamic variables, which should be possible to
do along lines similar to Sec. IV.
The 2PI formalism we introduce in Sec. III is suited for

treating the off-equilibrium evolution of Gaussian fluctua-
tions. The sensitivity of non-Gaussian measures of fluc-
tuations makes them important signatures of the QCD
critical point [49,50]. In order to incorporate the evolution
of non-Gaussianity into Hydroþ formalism, one needs to
extend 2PI formalism to non-Gaussian fluctuations. This
would lead to a generalization of 2PI entropy to, e.g., 3PI
and 4PI, and a hierarchy of kinetic equations similar to the
hierarchy of cumulant equations in Ref. [51]. We defer
these and other developments of Hydroþ to future work.
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APPENDIX A: APPLICATION OF HYDRO+
TO CHIRAL (ANOMALOUS) FLUID

We consider a chiral fluid, the constituents of which
include (approximately) massless fermions. In this system,

14Here, for simplicity, we neglect ξ dependence of η, a
common approximation, since it is very weak [7].
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the axial current JμA ≡ ψ̄γμγ5ψ is conserved only approx-
imately. The conservation is violated by a small fermion
mass (and/or by a quantum anomaly, as in non-Abelian
gauge theories, where topological sphaleron fluctuations
induce fermion chirality flips). Therefore,

∂μJ
μ
A ¼ −γAαA: ðA1Þ

Here γA is an Onsager coefficient describing chirality-
violating processes and αA ¼ βμA, where μA is the axial
chemical potential. In the absence of a background mag-
netic field Bμ, the currents ΔJμV and ΔJμA are given by

ΔJμV ¼ λVV∂⊥
μ αV þ λVA∂⊥

μ αA;

ΔJμA ¼ λVA∂⊥
μ αV þ λAA∂⊥

μ αA: ðA2Þ

Parameters λVV , etc., are vector and axial conductivity
coefficients (conductivity times temperature). Substituting
(A2) into (A1), we then have

DnV ¼ −nVθ − ∂⊥ · ðλVV∂αV þ λVA∂αAÞ; ðA3Þ

DnA ¼ −nAθ − γAαA − ∂⊥ · ðλAA∂αA þ λVA∂αVÞ: ðA4Þ

We now identify axial charge density nA with ϕ.
Comparing (A4) with (7d) and (15), we have Aϕ ≡ nA
and γπ ≡ γA. In general, with nA finite, λAV is nonzero.
Moreover, λAA and λVV can be different from each other.
Such an expectation has been confirmed in an explicit
perturbative computation [52].
In this theory, the analog of pπ is zero due to parity, and

thus the bulk viscosity and sound propagation velocity are
not affected by the slow mode as it is in a more general case
described in Sec. II. However, a similar enhancement was
found in Ref. [53] for the conductivity along the magnetic
field, which receives an anomalous contribution from the
slow nonhydrodynamics mode:

Δλ ¼ χVT
Δv2cmw

Γπ
; ðA5Þ

where χV is the charge susceptibility. Similarly to Eq. (32),
Δv2cmw denotes the increase of the speed of the chiral
magnetic wave between hydrodynamic regime ω ≪ Γπ and
Hydroþ regime ω ≫ Γπ , and Γπ is the rate of the slow
mode (axial charge) relaxation.

APPENDIX B: A THERMODYNAMIC
RELATION FOR pπ

This Appendix supplies the derivation of Eq. (21), which
can be also written as

�∂pðþÞ
∂π

�
εn

¼ −
w
β

��∂ϕ̄
∂ε

�
m
−
Aϕ

w

�
at π ¼ 0 ðB1Þ

due to Eq. (82), which means

�∂n
∂ε

�
m
¼ n

w
: ðB2Þ

We begin from (12) evaluated at π ¼ 0:

βdpðþÞ ¼ −wdβðþÞ þ ndαðþÞ þ Aϕdπ: ðB3Þ

Considering a variation of π at ε and n fixed, we
can write

βpπ ¼ −wβπ þ nαπ þ Aϕ; ðB4Þ

where the index π denotes derivatives with respect to π at ε
and n fixed evaluated at π ¼ 0, e.g.,

pπ ≡
�∂pðþÞðε; n; πÞ

∂π
�����

π¼0

≡
�∂pðþÞ

∂π
�

ε;n

����
π¼0

: ðB5Þ

We can then use Maxwell relations applied to the
differential

dðsðþÞ þ πϕÞ ¼ βðþÞdε − αðþÞdnþ ϕdπ ðB6Þ

to relate the derivative with respect to π to the derivatives of
ϕ (at π ¼ 0, i.e., in equilibrium):

βπ ≡
�∂βðþÞ

∂π
�

εn
¼

�∂ϕ
∂ε

�
πn
;

απ ≡
�∂αðþÞ

∂π
�

εn
¼ −

�∂ϕ
∂n

�
πε

: ðB7Þ

Substituting Maxwell relations (B7) into Eq. (B4), we
obtain Eq. (21) or [with Eq. (B2)] Eq. (B1).

APPENDIX C: REPARAMETERIZATION
COVARIANCE IN HYDRO+

The choice of the slow mode is not unique, but, since the
physics cannot depend on that choice, the equations of
Hydroþmust possess reparameterization invariance, which
we describe here.
Let us consider another choice of the slow variable ϕ0,

which is a function of the original choice ϕ and, possibly,
of ε and n, i.e.,

ϕ0 ¼ fðϕ; ε; nÞ: ðC1Þ

The equation governing the evolution of ϕ0 must have a
similar form to Eq. (7d), i.e.,

Dϕ0 ¼ −F0
ϕ − A0

ϕθ; ðC2Þ
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where the relationship between the new parameters F0
ϕ

and A0
ϕ and the original ones can be found by substituting

Eq. (C1) into Eq. (C2) and matching to Eq. (7d):

F0
ϕ ¼ fϕFϕ; A0

ϕ ¼ fϕAϕ þ wfε þ nfn; ðC3Þ

where

fϕ ¼
�∂f
∂ϕ

�
εn
; fε ≡

�∂f
∂ε

�
nϕ
; fn ≡

�∂f
∂n

�
εϕ

:

ðC4Þ

One can easily check that

π0 ¼ fϕπ; ϕ0
π ¼ f2ϕϕπ; γ0π ¼ f2ϕγπ;

p0
π ¼ fϕpπ: ðC5Þ

These transformations leave the relationship Eq. (B1)
between pπ and ∂ϕ̄=∂ε invariant (note that the trans-
formation of Aϕ and the role it plays is reminiscent of a
gauge potential). Also, the combination p2

π=ϕπ in the
definition of Δc2s is invariant as it should be expected.

APPENDIX D: FLUCTUATIONS OF m AND p

The fluctuations of the thermodynamic quantities Ψ are
described by the probability distribution P ∼ eSðΨÞþJ̄Ψ (see
Sec. III and Ref. [36]). The change of P under a fluctuation
Ψ − Ψ̄≡ δΨ (of arbitrary, not necessarily small, magni-
tude) is given by

ΔðlogPÞ≡ log
PðΨÞ
PðΨ̄Þ ¼ SðΨ̄þ δΨÞ − SðΨÞ þ J̄δΨ

≡ ΔSþ J̄δΨ; ðD1Þ

where ΔS is the change of the entropy of the system and
J̄δΨ is the change of the entropy of the environment as
the amounts δΨ of conserved quantities are exchanged
between the system and the environment characterized by

thermodynamic potentials J̄. Since Ψ̄ is the equilibrium
value, the OðδΨÞ terms in Eq. (D1) cancel. For the case we
consider, Ψ ¼ ðε; nÞ and J ¼ ð−β; αÞ, Taylor expanding
the entropy to second order in δΨ we can write

ΔðlogPÞ=V ¼ 1

2
ðδβδε − δαδnÞ þOðδ3Þ; ðD2Þ

where the factor of volume V comes from the space
integration. Expressing the variables p and m ¼ s=n in
terms of β, α, ε, and n, one finds to linear order:

βδp ¼ nδα − wδβ þOðδ2Þ; ðD3Þ

n2δm ¼ βðnδε − wδnÞ þOðδ2Þ: ðD4Þ

Solving for δε and δα and substituting into Eq. (D1), one
finds (upon cancellation of δβδn terms):

ΔðlogPÞ=V ¼ βn
2

�
δ

�
1

n

�
δp − δ

�
1

β

�
δm

�
þOðδ3Þ:

ðD5Þ

Expressing δð1=nÞ and δð1=βÞ in terms δm and δp and
using the Maxwell relations stemming from

d

�
w
n

�
¼ 1

β
dmþ 1

n
dp; ðD6Þ

one arrives at

ΔðlogPÞ=V ¼ −
1

2

�
β

wc2s
ðδpÞ2 þ n2

cp
ðδmÞ2

�
þOðδ3Þ:

ðD7Þ

In the thermodynamic limit, i.e., for large V ∼ k−3 ≫ ξ3

(or l ≫ ξ), fluctuations are small, their probability dis-
tribution is approximately Gaussian, and we obtain Eq. (90)
for their variance.
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