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Abstract

In this note, we propose and study the notion of modified Fejér
sequences. Within a Hilbert space setting, this property has been
used to prove ergodic convergence of proximal incremental subgra-
dient methods. Here we show that indeed it provides a unifying
framework to prove convergence rates for objective function values
of several optimization algorithms. In particular, our results apply to
forward-backward splitting algorithm, incremental subgradient proxi-
mal algorithm, and the Douglas-Rachford splitting method including
and generalizing known results.

∗This material is based upon work supported by the Center for Brains, Minds and
Machines (CBMM), funded by NSF STC award CCF-1231216. The work by D. X. Zhou
described in this paper is supported by a grant from the NSFC/RGC Joint Research
Scheme [RGC Project No. N CityU120/14 and NSFC Project No. 11461161006]. L.
R. acknowledges the financial support of the Italian Ministry of Education, University
and Research FIRB project RBFR12M3AC, and S. V. the support of INDAM-GNAMPA,
project 2017: “Algoritmi di ottimizzazione ad equazioni di evoluzione ereditarie”.

1



1 Introduction

We are interested in the study of convergence properties of optimization

algorithms to solve the problem

min
x∈H

f(x),

where H is a Hilbert space and f : H →]−∞,+∞] is a proper function. Let

(xt)t∈N be the sequence generated by a chosen algorithm. The sequence is

said to be Fejér monotone if, for every x∗ minimizer of f , ‖xt+1−x∗‖
2 ≤ ‖xt−

x∗‖
2. The notion of Fejér monotonicity captures essential properties of (xt)t∈N

generated by a wide range of optimization methods and provides a common

framework to analyze their convergence [11]. Quasi-Fejér monotonicity is a

relaxation of the above notion that allows for an additional error term [13, 22].

Generalizations of the above notion have been proposed, that allow to deal

with variable metric algorithms [18, 40], and stochastic perturbations [15, 16,

22, 37, 38, 39].

In this paper, we propose and study a novel, related notion, to analyze the

convergence of the objective function values f(xt), in addition to that of the

iterates. More precisely, we modify the notion of quasi-Fejér monotonicity,

by adding a term involving the objective function and say that a sequence

satisfying the new requirement is modified Fejér monotone (modified Fejér

for short). This property is the key step to derive ergodic convergence of the

iterates generated by the proximal incremental gradient algorithm in [7]. In

this paper, we show the wider usefulness of this new notion of monotonicity

by deriving convergence rates for several optimization algorithms in a unified

way. Based on this approach, we not only recover known results, such as

the sublinear convergence rate for the proximal forward-backward splitting

algorithm, but also derive new results. Interestingly, our results show that

for projected subgradient, incremental proximal subgradient, and Douglas-

Rachford algorithms, considering the last iterate leads to essentially the same

convergence rate as considering the best iterate selection rule [36, 41], or

ergodic means [8, 42], as typically done.
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2 Modified Fejér Sequences

Throughout this paper, we assume that H is a Hilbert space, and f : H →

]−∞,∞] is a proper function. We assume that the set of minimizers of f

X = {z ∈ H | f(z) = min
x∈H

f(x)}

is nonempty. We are interested in solving the following optimization problem

f∗ = min
x∈H

f(x). (1)

Given x ∈ H and a subset S ⊂ H, d(x, S) denotes the distance between x

and S, i.e., d(x, S) = infx′∈S ‖x − x′‖. R+ is the set of all non-negative real

numbers and N
∗ = N \ {0}.

The following definition introduces the key notion we propose in this paper.

Definition 1. A sequence (xt)t∈N ∈ HN is modified Fejér monotone with

respect to the objective function f and the sequence ((ηt, ξt))t∈N in R
2
+, if

(∀x ∈ domf) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ηt(f(xt+1) − f(x)) + ξt. (2)

Remark 1.

(i) Choosing x ∈ X in (2), we get

ηtf(xt+1) ≤ ξt + ηtf∗ + ‖xt − x‖2 < ∞.

This implies that xt ∈ domf for every t ∈ N.

(ii) All the subsequent results hold if condition (2) is replaced by the follow-

ing weaker condition

(∀x ∈ X ∪ {xt}t∈N) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ηt(f(xt+1) − f(x)) + ξt.

(3)

However, in the proposed applications, condition (2) is always satisfied

for every x ∈ domf .
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(iii) Inequality (2) has been proved to be satisfied and implicitly used to de-

rive convergence rate for many algorithms, considering the best iterate

selection rule, e.g., [36, 41], or ergodic means [8, 42, 7]. More precisely,

for not descending methods, common approaches keep track of the best

point found so far, i.e. they study the following quantity,

(∀T ∈ N
∗) bT = min

1≤t≤T
f(xt) − f∗,

or this one:

(∀T ∈ N
∗) f

(

T
∑

t=1

xt/T

)

− f∗.

The main novelty of this paper is to show that considering the last

iterate, i.e. f(xT ) − f∗, leads to essentially the same convergence rate

as that for considering the best iterate selection rule, or ergodic means.

See Theorem 2.

(iv) A similar condition has been considered in [1] to study convergence

properties of several optimization methods, and in [40] to study a vari-

able metric forward-backward algorithm under relaxed differentiability

assumptions.

(v) Extensions of the proposed notion could be considered, e.g. resem-

bling variable metric and stochastic quasi-Fejér monotonicity proper-

ties, which have been recently proposed and investigated in [18, 15, 37,

39].

In the following remark we discuss the relation with classical Fejér se-

quences.

Remark 2 (Comparison with quasi-Fejér sequences).

If
∑

t∈N
ξt < +∞, Definition 1 implies that the sequence (xt)t∈N is quasi-Fejér

monotone with respect to X [13, 22]. Indeed, (2) implies

(∀x ∈ X ) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 + ξt.

Note that, in the study of convergence properties of quasi-Fejér sequences

corresponding to a minimization problem, the property is considered with

4



respect to the set of solutions X , while here we will consider modified Fejér

monotonicity for the entire space H.

We next present two main results to show how modified Fejér sequences

are useful to study the convergence of optimization algorithms. The first

result shows that if a sequence is modified Fejér monotone, one can bound

its corresponding excess function values in terms of ((ηt, ξt))t∈N explicitly.

Theorem 1. Let (xt)t∈N ⊂ HN be a modified Fejér sequence with respect to f

and ((ηt, ξt))t∈N in R
2
+. Let (ηt)t∈N be a non-increasing sequence. Let T ∈ N

∗.

Then

ηT (f(xT+1) − f∗) ≤
d(x1,X )2

T
+

T−1
∑

t=1

1

T − t+ 1
ξt. (4)

Proof. Let (ut)t∈N be a sequence in R. For every k ∈ {1, · · · , T − 1}, let

sk =
∑T

j=T−k uj. Then, since sk = sk−1 + uT−k,

1

k
sk−1 −

1

k + 1
sk

=
1

k(k + 1)
((k + 1)sk−1 − ksk)

=
1

k(k + 1)
(sk−1 − kuT−k).

Summing over k = 1, · · · , T − 1, and rearranging terms, we get

uT =
1

T
sT−1 +

T−1
∑

k=1

1

k(k + 1)
(sk−1 − kuT−k). (5)

Let x ∈ domf and choose (∀t ∈ N) ut = ηt(f(xt+1) − f(x)). Then, we derive

the following error decomposition [28]:

ηT (f(xT+1) − f(x)) =
1

T

T
∑

t=1

ηt(f(xt+1) − f(x))

+

T−1
∑

k=1

1

k(k + 1)

T
∑

t=T−k+1

ηt(f(xt+1) − f(xT−k+1))

+
T−1
∑

k=1

1

k + 1

[

(1

k

T
∑

t=T−k+1

ηt

)

− ηT−k

]

(f(xT−k+1) − f(x)) .
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Let x = x∗ ∈ X . Since (ηt)t∈N is non-increasing and f(xT−k+1) − f∗ ≥ 0, the

last term of the above inequality is less than or equal to 0. Thus, we derive

that

ηT (f(xT+1) − f∗) ≤
1

T

T
∑

t=1

ηt(f(xt+1) − f(x∗))

+
T−1
∑

k=1

1

k(k + 1)

T
∑

t=T−k+1

ηt(f(xt+1) − f(xT−k+1)). (6)

For every j ∈ {1, . . . , T}, and for every x ∈ domf , summing up (2) over

t = j, · · · , T , we get

T
∑

t=j

ηt(f(xt+1) − f(x)) ≤ ‖xj − x‖2 +
T
∑

t=j

ξt. (7)

The above inequality with x = x∗ and j = 1 implies

1

T

T
∑

t=1

ηt(f(xt+1) − f(x∗)) ≤
1

T
‖x1 − x∗‖

2 +
1

T

T
∑

t=1

ξt. (8)

Inequality (7) with x = xT−k+1 and j = T − k + 1 yields

T
∑

t=T−k+1

ηt(f(xt+1) − f(xT−k+1)) ≤
T
∑

t=T−k+1

ξt,

and thus

T−1
∑

k=1

1

k(k + 1)

T
∑

t=T−k+1

ηt(f(xt+1) − f(xT−k+1))

≤
T−1
∑

k=1

1

k(k + 1)

T
∑

t=T−k+1

ξt. (9)
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Exchanging the order in the sum, we obtain

T−1
∑

k=1

1

k(k + 1)

T
∑

t=T−k+1

ξt =
T
∑

t=2

T−1
∑

k=T−t+1

1

k(k + 1)
ξt

=

T
∑

t=2

(

1

T − t+ 1
−

1

T

)

ξt

=
T
∑

t=2

1

T − t+ 1
ξt −

1

T

T
∑

t=2

ξt. (10)

The result follows by plugging (8) and (10) into (6).

Remark 3. Féjer monotonicity of a sequence is often useful not only for

obtaining convergence rate estimates, but also for proving the convergence of

the iterates to a minimizer, see e.g. [2, Proposition 2]. Here we mainly focus

directly on convergence rates for the objective function values.

In the special case when, for every t ∈ N, ξt = 0, we derive the following

result.

Corollary 1. Let (xt)t∈N ∈ HN be a modified Fejér sequence with respect to

f and a sequence ((ηt, 0))t∈N in R
2
+. Suppose that (ηt)t∈N is non-increasing.

Then for any T ∈ N
∗,

f(xT+1) − f∗ ≤
1

ηTT
d(x1,X )2.

In the case that ξt is non-increasing, we can get the following result, which

simplifies the upper bound in (4) from Theorem 1.

Corollary 2. Let (xt)t∈N ∈ HN be a modified Fejér sequence with respect

to an objective function f and a sequence ((ηt, ξt))t∈N in R
2
+. Suppose that

(ξt)t∈N and (ηt)t∈N are non-increasing. Let T ∈ N
∗. Then

f(xT+1) − f∗ ≤

(

d(x1,X )2 + 2

T
∑

t=1

ξt

)

(TηT )−1 + ξ⌊T

2
+1⌋η

−1

T log(T/2) (11)
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Proof. Since ξt is non-increasing,

T−1
∑

t=1

ξt
T − t+ 1

≤ ξ⌊T

2
+1⌋

∑

T/2+1≤t≤T−1

1

T − t+ 1
+ 2T−1

∑

1≤t<T/2+1

ξt

≤ ξ⌊T

2
+1⌋ log(T/2) + 2T−1

T
∑

t=1

ξt.

The result follows directly from Theorem 1.

The next main result shows how to derive explicit rates for the objec-

tive function values corresponding to a modified Fejér sequence with respect

to a polynomially decaying sequence ((ηt, ξt))t∈N in R
2
+. Interestingly, the

following result (as well as the previous ones) does not require convexity of

f .

Theorem 2. Let (xt)t∈N ∈ HN be a modified Fejér sequence with respect to

an objective function f and a sequence ((ηt, ξt))t∈N in R
2
+. Let η ∈ ]0,+∞[,

let θ1 ∈ [0, 1[, and set ηt = ηt−θ1. Let (θ2, ξ) ∈ R
2
+ and suppose that ξt = ξt−θ2

for all t ∈ N. Let T ∈ N
∗. Then, setting c = 2θ2 + 2/(1 − θ2):

f(xT+1) − f∗ ≤



































d(x1,X )2

η
T θ1−1 +

ξ

η

(

2θ2 + 2

1−θ2

)

T θ1−θ2 logT if θ2 < 1

d(x1,X )2

η
T θ1−1 +

4ξ

η
T θ1−1 logT if θ2 = 1

(

d(x1,X )2

η
+

ξ

(θ2 − 1)η

)

T θ1−1 otherwise.

(12)

Proof. Let q ∈ ]0,+∞[. For n ≥ 2 we have (see [25, Theorem 3.3.3])

n
∑

t=2

t−q ≤

∫ n

1

u−qdu ≤







n1−q/(1 − q), when q < 1,
logn, when q = 1,
1/(q − 1), when q > 1.

(13)

We derive from Corollary 2 that

f(xT+1)−f∗ ≤

(

d(x1,X )2 + 2ξ

T
∑

t=1

t−θ2

)

η−1T θ1−1 +2θ2ξη−1T θ1−θ2 log(T/2).

(14)
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If θ2 < 1, equation (13) yields

f(xT+1) − f∗ ≤ η−1d(x1,X )2T θ1−1 + ξη−1

(

2

1 − θ2
+ 2θ2

)

T θ1−θ2 log T. (15)

The case θ2 = 1 is analogous. If θ2 > 1, from (13), it follows that

f(xT+1) − f∗ ≤
(

d(x1,X )2 + 2ξ(1 − θ2)
−1
)

η−1T θ1−1 + 2θ2ξη−1T θ1−θ2 log T.

(16)

Since 2θ2T−θ2 logT ≤ T−1/(θ2 − 1), the result follows.

Remark 4. If a sequence (yt)t∈N ∈ HN satisfies

(∀x ∈ domf)(∀t ∈ N) ‖yt+1 − x‖2 ≤ ‖yt − x‖2 − ηt(f(yt) − f(x)) + ξt,

under the same assumptions of Corollary 2, it is possible to derive an in-

equality analogous to (12).

3 Applications in Convex Optimization

In this section, we apply previous results to some convex optimization al-

gorithms, including forward-backward splitting, projected subgradient, in-

cremental proximal subgradient, and Douglas-Rachford splitting method.

Convergence rates for the objective function values are obtained by using

Theorem 2. The key observation is that the sequences generated by these

algorithms are modified Fejér monotone.

Throughout this section, we assume that f : H →] − ∞,∞] is a proper,

lower semicontinuous convex function. Recall that the subdifferential of f at

x ∈ H is

∂f(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 ≤ f(y)}. (17)

The elements of the subdifferential of f at x are called subgradients of f at

x. More generally, for ǫ ∈ ]0,+∞[, the ǫ-subdifferential of f at x is the set

∂ǫf(x) defined by

∂ǫf(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 − ǫ ≤ f(y)}. (18)

The proximity operator of f [30] is

proxf(x) = argmin
y∈H

{

f(y) +
1

2
‖y − x‖2

}

. (19)
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3.1 Forward-Backward Splitting

In this subsection, we consider a forward-backward splitting algorithm for

solving Problem (1), with objective function

f = ℓ+ r (20)

where r : H → ]−∞,∞] and ℓ : H → R are proper, lower semicontinuous,

and convex. Since ℓ is real-valued, we have dom ∂ℓ = H [3, Proposition

16.14].

Algorithm 1. Given x1 ∈ H, a sequence of stepsizes (αt)t∈N ⊂ ]0,+∞[, and

a sequence (ǫt)t∈N ⊂ [0,+∞[ set, for every t ∈ N,

xt+1 = proxαtr(xt − αtgt) (21)

with gt ∈ ∂ǫt
ℓ(xt).

The forward-backward splitting algorithm has been well studied [43, 10,

12, 9] and a review of this algorithm can be found in [14] under the assumption

that ℓ is differentiable with a Lipschitz continuous gradient. Convergence

is proved using arguments based on Fejér monotonicity of the generated

sequences [13]. Under the assumption that ℓ is a differentiable function with

Lipschitz continuous gradient, the algorithm exhibits a sublinear convergence

rate O(T−1) on the objective f [4]. If ℓ is not smooth, the algorithm has been

studied first in [34], and has a convergence rate O(T−1/2), considering the

best point selection rule [42]. A comprehensive study of proximal subgradient

methods can be found in [5]. The use of ǫ-subgradients in a scaled version

of algorithm (21) has been investigated in [6], in the special case where r

is the indicator function of a convex and closed set, without focusing on

convergence rates. Our objective here is to provide a convergence rate for

the algorithm considering the last iterate, which shares the same rate (up-

to logarithmic factors) and to allow the use of ǫ-subgradients, instead of

subgradients. Before stating our main results, we introduce the following

novel lemma for the forward-backward splitting for a (possibly) non-smooth

ℓ. It recovers previous result (e.g. [4]) when ℓ is smooth.
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Lemma 1. Let (xt)t∈N∗ be the sequence generated by Algorithm 1. Then for

all t ∈ N
∗, there holds

2αt[f(xt+1) − f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2

+ 2αt[〈xt+1 − xt, gt+1 − gt〉 + ǫt+1 + ǫt]. (22)

Proof. Let t ∈ N
∗. By Fermat’s rule (see e.g. [3, Theorem 16.2]),

0 ∈ xt+1 − xt + αtgt + αt∂r(xt+1).

Thus, there exists qt+1 ∈ ∂r(xt+1), such that xt+1 in (21) can be written as

xt+1 = xt − αtgt − αtqt+1. (23)

Let x ∈ domf . The convexity of r implies

r(xt+1) − r(x) ≤ 〈xt+1 − x, qt+1〉.

Multiplying both sides by 2αt, and combining with (23), we get

2αt[r(xt+1) − r(x)] ≤ 2αt〈xt+1 − x, qt+1〉

= 2〈xt+1 − x, xt − xt+1 − αtgt〉

= 2〈xt+1 − x, xt − xt+1〉 + 2αt〈x− xt+1, gt〉.

A direct computation yields

2〈xt+1 − x, xt − xt+1〉 = 2〈xt+1 − x, xt − x〉 − 2‖xt+1 − x‖2

= ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2. (24)

Therefore,

2αt[r(xt+1) − r(x)]

≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2 + 2αt〈x− xt+1, gt〉.

Moreover, by (18), we have

〈x− xt, gt〉 ≤ ℓ(x) − ℓ(xt) + ǫt,

11



and

〈xt − xt+1, gt+1〉 ≤ ℓ(xt) − ℓ(xt+1) + ǫt+1,

and thus

〈x− xt+1, gt〉 = 〈x− xt, gt〉 + 〈xt − xt+1, gt+1〉 + 〈xt − xt+1, gt − gt+1〉

≤ ℓ(x) − ℓ(xt) + ǫt + ℓ(xt) − ℓ(xt+1) + ǫt+1 + 〈xt − xt+1, gt − gt+1〉

= ℓ(x) − ℓ(xt+1) + 〈xt+1 − xt, gt+1 − gt〉 + ǫt+1 + ǫt.

Consequently, we get

2αt[r(xt+1) − r(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2

+2αt[ℓ(x) − ℓ(xt+1) + 〈xt+1 − xt, gt+1 − gt〉 + ǫt+1 + ǫt].

Rearranging terms and recalling that f = ℓ+r, the desired result thus follows.

Theorem 3. Let α ∈ ]0,+∞[, let θ ∈ [0, 1[, and let, for every t ∈ N
∗,

αt = αt−θ. Let ǫ ∈ ]0,+∞[, (ǫt)t∈N∗ ⊂ [0,+∞], and assume that ǫt ≤ ǫαt.

Let (xt)t∈N∗ be the sequence generated by Algorithm 1. Let T ∈ N, and assume

that there exists B ∈ ]0,+∞[ such that

(∀T ∈ {1, . . . , T}) ‖gt‖ ≤ B, (25)

Then, there exists c ∈ [0,+∞[ such that

f(xT+1) − f∗ ≤











d(x1,X )2

2α
T θ−1 + 2αc(B2 + ǫ)T−θ log T if θ ≤ 1/2

[

d(x1,X )2

2α
+ 2αc(B2 + ǫ)

]

T θ−1 otherwise.

Proof. Let t ∈ N
∗. By (22) and Cauchy-Schwartz inequality

‖xt+1 − x‖2 − ‖xt − x‖2

≤ − ‖xt − xt+1‖
2 + 2αt[〈xt+1 − xt, gt+1 − gt〉 + ǫt+1 + ǫt] − 2αt[f(xt+1) − f(x)]

≤ − ‖xt − xt+1‖
2 + 2αt[‖xt+1 − xt‖‖gt+1 − gt‖ + ǫt+1 + ǫt] − 2αt[f(xt+1) − f(x)]

≤α2

t ‖gt+1 − gt‖
2 + 2αt[ǫt+1 + ǫt] − 2αt[f(xt+1) − f(x)].

12



Using the assumptions ‖gt‖ ≤ B and ǫt ≤ ǫαt,

‖xt+1 − x‖2 − ‖xt − x‖2

≤4B2α2

t + 2ǫαt[αt + αt+1] − 2αt[f(xt+1) − f(x)]

≤4(B2 + ǫ)α2

t − 2αt[f(xt+1) − f(x)]. (26)

Thus, (xt)t∈N∗ is a modified Fejér sequence with respect to the objective func-

tion f and
(

(2αt, 4(B2 + ǫ)α2
t )
)

t∈N∗ . The statement follows from Theorem 2,

applied with θ1 = θ, θ2 = 2θ, η = 2α and ξ = 4(B2 + ǫ)α2.

The following remark collects some comments on the previous result.

Remark 5.

(i) Theorem 3 suggests the optimal choice for the stepsize decay rate θ =

1/2. In such a way, we get a convergence rate O(T−1/2 log T ) for

forward-backward algorithm applied to a sum of nonsmooth functions

with nonsummable diminishing stepsizes, considering the last iterate.

As usual in this setting, no convergence is obtained using a fixed step-

size.

(ii) In Theorem 3, the assumption on bounded approximate subgradients,

which implies Lipschitz continuity of ℓ, is satisfied for several practical

optimization problems. For example, when r is the indicator function

of a closed, bounded, and convex set D ⊂ R
N , it follows that (xt)t∈N is

bounded. If ℓ is bounded on bounded sets, this implies that ℓ is Lipschitz

continuous on bounded sets [44, Corollary 2.2.12] and thus that (gt)t∈N

is bounded as well [35, Proposition 1.11]. Similar results to those proved

here may be obtained by imposing a less restrictive growth condition on

∂f , using a similar approach to that in [28] to bound the sequence of

subgradients.

(iii) An inequality similar to (26) has been obtained in [5, Lemma 2.1]. The-

orem 3 improves [5, Corollary 2.4] in two aspects. First, the assumption

(25) is weaker than the assumption ‖gt +ut‖ ≤ B for some ut ∈ ∂r(xt),
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in [5]. Second, [5] shows convergence rate only for the best point, i.e,

the one with smallest function value:

(∀T ∈ N
∗) bT = argmin

1≤t≤T
f(xt). (27)

whereas our result holds for any iterate.

If the function ℓ in (20) is differentiable, with a Lipschitz differentiable

gradient, we recover the following well-known convergence result. We include

the proof for completeness.

Proposition 1. [4, Theorem 3.1] Let β ∈ [0,+∞[ and assume that ∇ℓ is

β-Lipschitz continuous. Consider Algorithm 1 with ǫt = 0 and (αt)t∈N non-

increasing, with αt ∈ ]0, 1/β[ for all t ∈ N
∗. Then, for every T ∈ N

∗,

f(xT+1) − f∗ ≤
d(x1,X )2

αTT
(28)

Proof. Since ∇ℓ is β-Lipschitz continuous, it follows from the descent lemma

[3, Theorem 18.15] and the definition of the forward-backward algorithm that

ℓ(xt+1) − ℓ(xt) ≤ 〈∇ℓ(xt), xt+1 − xt〉 +
β

2
‖xt+1 − xt‖

2. (29)

Since (xt − xt+1)/αt − ∇f(xt) ∈ ∂r(xt+1), it follows from convexity of ℓ and

r, that

(∀y ∈ H) ℓ(xt) − ℓ(y) ≤ 〈∇ℓ(xt), xt − y〉 (30)

(∀y ∈ H) r(xt+1) − r(y) ≤
〈xt+1 − xt

αt
+ ∇ℓ(xt), y − xt+1

〉

. (31)

Summing up (29),(30),(31) we derive

f(xt+1) − f(y) ≤
〈xt − xt+1

αt
, xt+1 − y

〉

+
β

2
‖xt − xt+1‖

2.

Therefore

2αt(f(xt+1) − f(y)) ≤ ‖xt − y‖2 − ‖xt+1 − y‖2 + (βαt − 1) ‖xt − xt+1‖
2,

which implies, since αt ≤ 1/β, that (xt)t∈N is modified Fejér monotone with

respect to f and the sequence
(

(2αt, 0)
)

. The statement follows from Corol-

lary 1.
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Remark 6. For the forward-backward algorithm, it has been proved in [17]

that f(xT+1) − f∗ = o(1/T ) also for αt ∈ ]0, 2/β[, even in the presence

of errors, and with relaxation. The concept of modified Fejér monotonicity

allows to derive nonasymptotic bounds on the sequence of iterates, but only

if αt ∈ ]0, 1/β[ for every t ∈ N
∗.

3.2 Projected Approximate Subgradient Method

LetD be a convex and closed subset of H, and let ιD be the indicator function

of D. In this subsection, we consider Problem (1) with objective function

given by

f = ℓ+ ιD (32)

where ℓ : H → R is lower semicontinuous and convex. It is clear that (32)

is a special case of (20) corresponding to a given choice of r. The forward-

backward algorithm in this case reduces to the following projected subgradi-

ent method (see e.g. [8, 26, 36, 41] and references therein), which allows to

use ǫ-subgradients, see [2, 11].

Algorithm 2. Given x1 ∈ H, a sequence of stepsizes (αt)t∈N ⊂ ]0,+∞[, and

a sequence (ǫt)t∈N ⊂ [0,+∞[ , set, for every t ∈ N,

xt+1 = PD(xt − αtgt) (33)

with gt ∈ ∂ǫt
ℓ(xt).

The algorithm has been studied using different rules for choosing the

stepsizes. Here, as a corollary of Theorem 3, we derive the convergence rate

for the objective function values, for a nonsummable diminishing stepsize.

Theorem 4. For some α1 > 0, ǫ ≥ 0 and θ ∈ [0, 1), let αt = ηt−θ and

ǫt ≤ ǫαt for all t ∈ N
∗. Let (xt)t∈N be a sequence generated by Algorithm 2.

Assume that for all t ∈ N
∗, ‖gt‖ ≤ B. Then, there exists c ∈ ]0,+∞[ such

that, for every T ∈ N
∗

f(xT+1) − f ∗ ≤















d(x1,X )2

2α1

T θ−1 + α1c(B
2 + 2ǫ)T−θ log T if θ ≤ 1/2

[

d(x1,X )2

2α1

+ α1c(B
2 + 2ǫ)

]

T θ−1 otherwise
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Choosing θ = 1/2, we get a convergence rate of order O(T−1/2 log T ) for

projected approximate subgradient method with nonsummable diminishing

stepsizes, which is optimal up to a log factor without any further assump-

tion on f [19, 33]. Since the subgradient method is not a descent method,

a common approach keeps track of the best point found so far, see (27).

The projected subgradient method with diminishing stepsizes of the form

(αt−θ)t∈N, with θ ∈ ]0, 1], satisfies f(xT+1) − f∗ = O(T−1/2). Our result

shows that considering the last iterate for projected approximate subgradi-

ent method essentially leads to the same convergence rate, up to a logarithmic

factor, as the one corresponding to the best iterate, even if the function value

may not decrease at each iteration. To the best of our knowledge, our result

is the first of this kind, without any assumption on strong convexity of f ,

or on a conditioning number with respect to subgradients (as in [23] using

stepsizes {γt/‖gt‖}t). Note that, using nonsummable diminishing stepsizes,

convergence rate O(T−1/2) was shown, but only for a subsequence of (xt)t∈N∗

[2]. Finally, let us mention that using properties of quasi-Fejér sequences,

convergence properties were proved in [11].

3.3 Incremental Subgradient Proximal Algorithm

In this subsection, we consider an incremental subgradient proximal algo-

rithm [7, 31] for solving (1), with objective function f given by, for some

m ∈ N
∗,

m
∑

i=1

(ℓi + ri),

where for each i, ℓi : H → R and ri : H → ]−∞,+∞] are convex, proper,

and lower semicontinuous. The algorithm is similar to the proximal subgra-

dient method, the main difference being that at each iteration, xt is updated

incrementally, through a sequence of m steps.

Algorithm 3. Let t ∈ N
∗. Given xt ∈ H, an iteration of the incremental

proximal subgradient algorithm generates xt+1 according to the recursion,

xt+1 = ψm
t , (34)
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where ψm
t is obtained at the end of a cycle, namely as the last step of the

recursion

ψ0

t = xt, ψi
t = proxαtri

(ψi−1

t − αtg
i
t), ∀gi

t ∈ ∂ℓi(ψ
i−1

t ), i = 1, · · · , m

(35)

for a suitable sequence of stepsizes {αt}t∈N∗ ⊂ ]0,+∞[.

Several versions of incremental subgradient proximal algorithms have

been studied in [7], where convergence results for various stepsizes rules and

both for stochastic of cyclic selection of the components are given. Concern-

ing the function values, the results are stated in terms of the best iterate, i.e.,

(27). See also [32] for the study of the special case of incremental subgradient

methods under different stepsizes rules. The paper [24] provides convergence

results using approximate subgradients instead of gradients.

In this section, we derive a sublinear convergence rate for the incremen-

tal subgradient proximal algorithm in a straightforward way, relying on the

properties of modified Fejér sequences assuming a boundedness assumption

on the subdifferentials, already used in [32].

Theorem 5. Let α ∈ ]0,+∞[, let θ ∈ [0, 1[, and let, for every t ∈ N
∗, αt =

αt−θ. Let (xt)t∈N∗ be the sequence generated by Algorithm 3. Let B ∈ ]0,+∞[

be such that

(∀t ∈ N
∗)(∀g ∈ ∂ℓi(xt) ∪ ∂ri(xt)) ‖g‖ ≤ B.

Then, there exists c ∈ ]0,+∞[ such that, for every T ∈ N
∗,

f(xT ) − f∗ ≤











d(x1,X )2

2α
T θ−1 +

cα(4m+ 5)mB2

2
T−θ log T if θ ≤ 1/2

[

d(x1,X )2

2α
+
cα(4m+ 5)mB2

2

]

T θ−1 otherwise.

(36)

Proof. It was shown in [7, Proposition 3 (Equation 27)] that,

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2αt[f(xt) − f(x)] + α2

t (4m+ 5)mB2.

Thus, (xt)t∈N∗ is a modified Fejér sequence with respect to the objective

function f , and ((2αt, α
2
t (4m+ 5)mB2))t∈N∗ . The proof is concluded by
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applying Remark 4 with θ1 = θ, θ2 = 2θ, η = 2α and ξ = α2 (4m+ 5)mB2.

Remark 7.

(i) The choice θ = 1/2 in Theorem 5, yields a convergence rate of order

O(T−1/2 log T ) for the objective function values.

(ii) In [7, Proposition 5] a bound similar to (36) is derived for the best it-

erate (27) with a fixed stepsize. In contrast to this previous result, our

result holds for any last iterate, considering both the fixed and diminish-

ing stepsize setting. Note that, neither [7, Proposition 5] nor Theorem 5

imply convergence for the fixed stepsize.

As in Theorem 5, we can derive convergence rates for the projected in-

cremental subgradient method. Analogously to what we have done for the

forward-backward algorithm in Section 3.1, Theorem 5 can be extended to

analyze convergence of the approximate and incremental subgradient method

in [24].

3.4 Douglas-Rachford splitting method

In this subsection, we consider Douglas-Rachford splitting algorithm for solv-

ing (1). Given ℓ : H → ]−∞,+∞] and r : H → ]−∞,+∞] convex and lower

semicontinuous functions, we suppose that f = ℓ+ r in (1).

Algorithm 4. Let (αt)t∈N∗ ∈ ]0,+∞[N. Let t ∈ N
∗. Given xt ∈ H, an

iteration of Douglas-Rachford algorithm generates xt+1 according to






yt+1 = proxαtℓ(xt)
zt+1 = proxαtr(2yt+1 − xt),
xt+1 = xt + zt+1 − yt+1.

(37)

The algorithm has been introduced in [21] to solve matrix equations.

Then it has been extended for solving the minimization problem of the sum

of two convex functions [27], and then to monotone inclusions involving the

sum of two nonlinear operators [29]. A review of this algorithm can be found

in [14]. The convergence of the iterates is established using the theory of
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Fejér sequences [13]. Our objective here is to establish a new result, namely

a convergence rate for the objective function values.

Theorem 6. Let α ∈ ]0,+∞[, and let θ ∈ [0, 1[. For every t ∈ N
∗, let

αt = αt−θ. Let
(

(yt, xt, zt)
)

t∈N∗ be the sequences generated by Algorithm 4.

Assume that there exists B ∈ ]0,+∞[ such that, for every t ∈ N
∗:

(∀v ∈ ∂ℓ(yt))(∃ut ∈ ∂ℓ(xt))(∃st ∈ ∂r(xt))

‖v‖ ≤ B, ‖ut‖ ≤ B and ‖st‖ ≤ B. (38)

Then, there exists c ∈ ]0,+∞[, such that, for every T ∈ N
∗,

f(xT+1) − f∗ ≤











d(x1,X )2

2α
T θ−1 +

5cαB2

2
T−θ logT if θ ≤ 1/2

[

d(x1,X )2

2α
+

5cαB2

2

]

T θ−1 otherwise.

Proof. Let t ∈ N
∗, set vt+1 = (xt−yt+1)/αt and wt+1 = (2yt+1−xt −zt+1)/αt.

By Fermat’s rule,

vt+1 ∈ ∂ℓ(yt+1) and wt+1 ∈ ∂r(zt+1). (39)

We can rewrite (37) as







yt+1 = xt − αtvt+1,
zt+1 = (2yt+1 − xt) − αtwt+1,
xt+1 = xt + zt+1 − yt+1,

(40)

By (40), we have for any x ∈ domf,

ℓ(yt+1) − ℓ(x) ≤ 〈yt+1 − x, vt+1〉.

Multiplying both sides by 2αt,

2αt[ℓ(yt+1) − ℓ(x)] ≤ 2αt〈yt+1 − x, vt+1〉 = 2〈yt+1 − x, xt − yt+1〉.

Similarly, we have

2αt[r(zt+1) − r(x)] ≤ 2αt〈zt+1 − x, wt+1〉 = 2〈zt+1 − x, 2yt+1 − xt − zt+1〉.
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Combining the above two estimates, we get

2αt[ℓ(yt+1) + r(zt+1) − ℓ(x) − r(x)]

≤ 2〈yt+1 − x, xt − yt+1〉 + 2〈zt+1 − x, 2yt+1 − xt − zt+1〉.

The third equality in (40) implies that that zt+1 = xt+1 −xt + yt+1, and thus

2αt[ℓ(yt+1) + r(zt+1) − ℓ(x) − r(x)]

≤ 2〈yt+1 − x, xt − yt+1〉 + 2〈xt+1 − xt + yt+1 − x, 2yt+1 − xt+1 − yt+1〉

= 2〈xt − xt+1, xt+1 − x〉.

= ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2.

Adding 2αt[ℓ(xt+1) + r(xt+1) − ℓ(yt+1) − r(zt+1)] to both sides, and recalling

that f = ℓ+ r,

2αt[f(xt+1) − f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖
2

+ 2αt[l(xt+1) + r(xt+1) − l(yt+1) − r(zt+1)]. (41)

Let ut+1 ∈ ∂ℓ(xt+1) and st+1 ∈ ∂r(xt+1) such that ‖ut+1‖ ≤ B and ‖st+1‖ ≤

B. Convexity of ℓ and r, and (40) yield,

ℓ(xt+1) − ℓ(yt+1) ≤ 〈xt+1 − yt+1, ut+1〉

= 〈xt+1 − xt, ut+1〉 + 〈xt − yt+1, ut+1〉

= 〈xt+1 − xt, ut+1〉 + αt〈vt+1, ut+1〉

≤ ‖xt+1 − xt‖‖u‖ + αt‖vt+1‖‖ut+1‖

≤ ‖xt+1 − xt‖B + αtB
2

≤ ‖xt+1 − xt‖
2/(2αt) +B2αt/2 + αtB

2,

and

r(xt+1) − r(zt+1) ≤ 〈xt+1 − zt+1, st+1〉

= αt〈vt+1, st+1〉 ≤ αt‖vt+1‖‖st+1‖ ≤ αtB
2.

Introducing the last two estimates into (41), and by a direct calculation,

2αt[f(xt+1) − f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 + 5B2α2

t .
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Thus, (xt)t∈N∗ is a modified quasi-Fejér sequence with respect to the objective

function f and
(

(2αt, 5α
2
tB

2)
)

t∈N∗ . The statement follows from Theorem 2

with θ1 = θ and θ2 = 2θ.

Remark 8.

(i) Condition (38) is verified if ℓ and r are Lipschitz continuous on H. In

this case the subdifferential is nonempty at every point and uniformly

bounded, see [35, Proposition 1.11].

(ii) Choosing θ = 1/2, we get a convergence rate O(T−1/2 log T ) for the

algorithm with nonsummable diminishing stepsizes. Convergence does

not follow using a fixed stepsize.

(iii) In the case where ℓ is the indicator function of a linear subspace of H

(thus taking also the value +∞) and r is Lipschitz continuous, noner-

godic convergence rates for the objective function values corresponding

to the Douglas-Rachford iteration can be derived by [20, Corollary 3.5].

4 Concluding remarks

We studied a modified notion of Fejér monotonicity, providing various con-

vergence results for different optimization algorithms. Possible generalization

and extension of the proposed notion can be considered, for instance includ-

ing the stochastic and the variable metric settings.
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