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BEHAVIORAL MODELS OF TRADE IN FINANCIAL MARKETS
by
JOHN L. SIMPSON

Submitted to the Department of Economics on September 23, 1994 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in
Economics

ABSTRACT

This thesis consists of three essays on the nature of trade in financial
markets.  The common theme throughout each paper is the idea that
individuals are heterogeneous. Investor heterogeneity is a necessary
condition for trade in financial markets.

In the first study, we develop a theory of trade in financial markets based
on assumptions that market participants frequently revise their demand
prices and randomly encounter potential trading partners. The model
describes two distinct ways informational events affect trading volume.
One method is that investor disagreement leads to increased trading. But,
the observation of abnormal trading volume does not necessarily imply
disagreement, and volume can increase even if investors interpret
information identically, if they also have divergent prior expectations.

The theoretical framework developed here is mapped into an empirical test
of the conjectures we make concerning the effects of information flows,
return volatility, and market liquidity on trading intensitv. ~We compare
the implications of our model with the findings of various other theories
of intraday trading patterns, order placement, and block trading. We
confirm our hypothesis that information flows strongly affect intraday
trading intensity, however, security-specific information is dominated by
market-wide information flows. This finding is consistent with our theory
yet inconsistent with several leading theories of intraday trading
patterns.  These finding are most acute for the type of trader. Both
buyer-initiated and seller-initiated traders use market-wide signals rather
than security-specific signals to decide to trade. Furthermore, we find
that while market-market trades are influenced by security-specific
information, market-limit and block trades are not. In addition, we
control both for changes in the distribution of beliefs with return
volatility and changes in market liquidity and we find that these variables
are significant determinants of aggregate trading intensity and the sub-
sample trading intensity.



In a second paper, we study the impact of market centralization on its
performance, examining four alternative models of exchange: a consolidated
clearing house, fragmented clearing houses, a monopoly dealer market, and
an interdealer market. The effects of the market mechanism on the expected
quantity traded, the price variance faced by individual traders, the
quality of market signals, the expected gains from trade, and the exchange
implementation costs are studied.

The third essay presents a new theory of bubbles, or discrepancies between
the market clearing price and the fundamental value of an asset. In our
setting, Bayesian traders, criented towards long-term gains, receive
private information (‘news’) and make inferences from noisy price signals.
Price exhibits higher variance than the fundamental value (the latter
defined as the fully-aggregated expected value) especially when news is
informative but infrequent. The corresponding bubbles are self-limiting,
but exhibit momentum and overshooting.
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ESSAY 1:

INTRADAY BELIEFS, INFORMATION,
AND TRADING INTENSITY.



0. Introduction.

Economic theory posits that exchange occurs when market participants
assign different values to an asset. Theory can quickly become complicated
when we attempt 1o explain the number of asset exchanges in a market with
diversc traders. Many financial market models implicitly assume away
trading volume by assuming away heterogeneity. For example, Grossman
(1976) proves that in a speculative market populated with rational traders
with homogeneous priors who communicate their personal knowledge through
their willingness to trade, exchanges will not take place in equilibrium.!
Yet there is active trading in most financial markets, indicating that
individuals are heterogeneous and operate in a changing environment.

We develop a theory of trade based on heterogeneous investors who
periodically and idiosyncratically revise their demand prices. A better
understanding of trade is important for at least three reasons. First,
there is an inconsistency between the widespread use of the homogeneous
investor assumption and the observation of positive trading volume. Our
model presumes that investors have a demand to trade even in the absence of
new information because of unique speculative or liquidity desires.
Second, we explicitly model the effects of information flows and changes in

traders’ beliefs on intraday volume. We establish two distinct channels by

! This famous result is known as the No Trade Theorem. Numerous authors
have applied this idea in a variety of contexts; see Tirole (1982) and
Milgrom and Stokey for a discussion of the foundations of this result.
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which information affects trading volume: an increase in volume can
indicate that investors interpret the information differently or that they
interpret  the information identically but begin with diverse prior
expectations. Furthermore, we empirically measure the effects of
information flows, return volatility, and market liquidity on trading
intensity.

We examine the relationship between volume and information by treating
volume as the number of transactions, or trading intensity, between buyers
and sellers who are randomly paired in the trading period. This measure
best characterizes participants’ willingness to trade in a given period.
Trading opportunities arise because both potential buyers and potential
sellers revise their demand prior to the market period according to
idiosyncratic speculative or liquidity desires, which appear random to the
outside observer who does not have specific data on each trader. We
utilize our formal framework to describe the intraday relationship between
trading intensity and information flows, the dispersion of beliefs among
traders, and market liquidity. Finally, we derive an empirically tractable
test of our model and compare and contrast our results with the predictions
made by other models of intraday trade.

This approach, employing a random pairing assumption, clearly has some
drawbacks.  First, we do not examine the market’s role in aggregating
private information and, therefore, the model is less general then the
approach of Pfleiderer (1984). In addition, the random pairing assumption
is a crude representation or mechanism of market exchange, as evidenced by

the existence of markets that economize on the search and transaction costs

10



of buyers and sellers who purposely seek each other out. Another drawback
of the random pairing assumption is that the model does not yield a unique
market price or a one period equilibrium. We expect to address some of
these issues in later research.

However, the random pairing assumption has several compensating
advantages. First, the model yields a simple closed form and empirically
tractable solution for expected volume. Second, the model’s results
concerning trading volume are not drawn by the random pairing assumption,
and we are able to apply the model’s predications about trading volume to
multiple periods with costly market clearing. Third, the model avoids the
more restrictive assumptions of constant absolute risk aversion or
behavioral distinctions between groups of investors that researchers
commonly apply in models of trading volume. Fourth, the model is simple
and yields straightforward predications atout positive volume in non-event
periods and about the bid-ask spread, as well as predictions about the
effects of informational events.  Lastly, the model’s predictions are
largely consistent with our empirical evidence and provide a theoretical
framework for evaluating transactions volume data. Information increases
trading volume if it causes investors to revise their demand prices
heterogeneously or if investors partially, but not homogeneously,
anticipate the information.

We structure this study as follows. Section 1 presents the model of
the intraday trading process. = We introduce a basic framework for
understanding trading intensity and explicitly model the effects of

information flows, return volatility, and market liquidity. The section
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concludes with a comparison of our model and several other competing
theories of intraday trading patterns. The data and empirical
specification are outlined in Section 2. In Section 3, we describe the
appropriate statistical assumptions and methodology for this problem. We
present our empirical results in Section 4. We repoit findings from the
full sample and sample splits by type of trader and time-of-day. The
results from a broad range of specifications, samples, and securities are
largely consistent with the predictions of our theoretical model. The

conclusion (Section 5) discusses the implications of these findings.

1. A Model of Intraday Trading Intensity.

1.1. Description of the Market Process.

Consider a two-period exchange market for some asset with fixed supply
I. Given an initial stock equilibrium at the close of the previous trading
period t;, we examine volume at t,. Assume that the costs of transacting
in the market are zero?; however, market participants can hold, at most,
one unit of the asset and cannot take short positions.> Therefore, only
current asset owners can be sellers and current nonowners are the only
potential buyers. ~While not descriptively accurate of financial markets,
this assumption isolates the population of buyers and sellers and avoids
the problem of grouping investors according to ad hoc behavioral

characteristics.

2 Trading may not be costless in other markets.

3 This is not a restrictive assumption. Obviously, one could create a
short position with a nonowner who borrows the asset from an owner and
sells it at market.
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Market participants are heterogeneous in their personal valuation of
the asset. Demand price differentials indicate different expectations or
beliefs across investors. Thus, we assume independent, non-random
individual behavior; traders’ willingness to hold positions in the asset
are a function of their expectations. Individuals revise their demand
prices between market periods with the revision following what appears to
the econometrician to be a stochastic process with mean p and variance 2.
The econometrician can observe security-specific and market-wide
information as the price process aggregates the expected revision p of all
traders in the market. However, an individual’s revision contains a random
element (the vanance of which we measure as o2) simply because the
econometrician lacks trader-specific information.

During the market period t, each current asset owner 1andomly
encounters a single, unique nonowner; an exchange occurs if the nonowner’s
revised demand price exceeds that of the current owner. We blindly pair

each asset owner with a prospective buyer.*’ The random pairing model

4 This trading process is similar to that of Diamond (1982) and Akerlof
(1985). It implies that each paring of a prospective buyer and sellers
creates a temporary bilateral monopoly situation. This market structure
does not determine a single market clearing price, but rather, a set of
pairwise transaction prices. While the random pairing assumption implies
that the number of potential buyers is greater than the number of potential
sellers, the demand price of many nonowners can be zerc, so this is not a
restrictive assumption.

5 Alternatively, we could have assumed that traders arrive sequentiaily and
declare their type, buyer or seller, and their reservation price. A
specialist could maintain a market quote and queue mechanism. If the
buyer’s reservation price exceeded that of the current owner with the
lowest reservaticn price, a transaction would occur. Otherwise, the
individual would join a queue of other buyers waiting for sellers. This
framework would achieve the same outcome as random pairing but needlessly
complicates the problem of solving for trading volume.
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approximates real-world continuous markets except that these markets
provide information on current quotes and transaction prices, which makes
the pairing non-random. With random pairing, participants may not make
some mutually preferred exchanges because the appropriate trading partners
do not "find" each other. The market generally does not clear at t,, and
the analysis would change if extended to the next period.®  These
assumptions are useful in deriving a tractable solution that yields
predictions about trading intensity.

The market consists of I potential sellers (one for each unit of the
asset, and J potential buyers. The (finite) set of market participants is
S = {1, J}, and the random pairing assumption impiies that I = J. Since
traders have heterogeneous beliefs, in general, p, # p, for any k # h pair
such that k € S and h € S. We characterize stock equilibrium at time t, by
pizp, for all iel and jeJ. The isolation of buyers and sellers
implies that I n J = {}.

The revision of individual demand prices between periods indicates
that an individual’s demand price p,, will change between t, and t, by some
amount 3,,. For notational ease, p,, will refer to an individual's demand
price after trading in period t;; 8,, is the change between periods; p,, is
the corresponding demand price before trade in period 1. Hence, p;, can be
less that p,;, and exchanges in period 1 are possible.

Let T; be a binary variable that indicates an exchange between an

6 Akerlof (1985) defends the random pairing assumption as a reasonable
approximation, given the prevalence of non-contractual relations between
buyers and sellers, which indicates the absence of a Walrasian auctioneer
market. However, his argument is better suited to the labor and real asset
markets than to financial markets.
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(i, j) pair:

1 iffi elandjcJandp,; > p,
(1.1)

0 otherwise
As each market participant can conduct, at most, one trade per period. The

total volume of trades is T = 5.‘iTij

= ET;.

Each (i, j) pairing represents an independent opportunity for an
exchange. For a given (i, j) pair, the probability of an exchange
n, = Pr{T; = 1}, is the probabiiity that the demand price revisions of
individuals i and j are sufficient to overcome the original demand price
differential (p,p - pp)- In general, =; will differ for different (i, j)
pairs. Before the pairings of each asset holder with a potential buyer at
the beginning of the market period, it is a random variable with mean
n = E(m;), the "average" probability at t,.

Therefore, T is a binomially distributed random variable with
parameters I, the number of independent "trials" in the market exchange
process, and m, the average ex anre probability of an exchange prior to the
(i, j) pairings. The binomial density function is

b(T) = TV - THYIHAT(1 - w)d-D (1.2)
and
pr = E(T) = nl. (1.3)

pr is a strictly increasing function of n, so, for a given I, the size of n

determines the level of trading intensity.

1.2. Expected Trading Intensity.

In this section, we derive expressions for m and p;. As indicated
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above, we define the demand price revisions &, and &, by p; = pp + ;.
From equation (1.1), T, =1 if and only if (1 - &) = (po - po). The
individual’s demand revision, &, (k € S), can be written as
8, = iy + ogy, (1.4)
where €, is a mean-zero random variable.” To derive closed-form solutions,
€, is assumed to be unit normal with independence across investors:
E(e,e,) = 0 for all k = h. (1.5)
In equation (1.4), u, is the expected demand-price revision from t; to t,,
while ¢ is the standard deviation of the revision process. We can think of
the og, term as resulting from the modeler’s ignorance about the changing
constraints facing an individuval k; ¢ is a measure of the degree to which
individuals in this market idiosyncratically revise their demand prices in
response to changed expectations. By construction. these factors are
unknown for any person k. On the other hand, the u, term represents
expectations, given whatever is known about k. In the absence of known
influences (e.g., new public information), u, is the long-term expected
return from the asset.
Apply equation (1.4) to a pair of investors i € I (owner) and j € J

(nonowner), and define e as

8 =8 -8 = (,.1j - ) + O'(Cj - €), (1.6)
He = E(@) = u; - m;, (1.7)
o‘é = E(8 - pg)? = 202, (1.8)

7 We also could have derived Equation (1.4) from a discrete process with
At =t -ty = 1. In a model of "representative" participants with
appropriate definitions of p, and o, this would imply a log-normal return
distribution.
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The probability of an exchange between any given (i, j) pair is

wo= [ fo(dx = 1 - Folpo - o (1.9)

i0°Pj0
where fg(x) is the normal density function with mean pg and variance oé and
Fo(Po - Po) is the associated distribution function evaluated at
(P - Pyo)-
The probability n; is specific to the difference (p, - pjp), and so
it will generally vary across (i, j) pairs once the pairings are made. The
random pairing assumption indicated that the probabilities that a given

element of the set J will be paired with any single i are equal, and vice

versa. So the average ex ante probability n is

n = (IIU)EIEJHIJ' (1.10)
Substituting (1.9) and (1.10) into (1.3),
ur = (VDHEZ[L - Fepyo - po)l- (1.11)
Since we assume that the ¢, are normal, this is
ur = (13-
g [ (@0 sg)lexp-{1/2((x - ugioal}dx. (1.12)
Pi0Pj0

Equation (1.2) describes the market process as a binomial experiment
that generates a level of trading volume, given a number of “trials" in the
experiment, I, and the ex ante probability of "success" in each trial, m.
Equation (1.12), in turn, determines the expected number of "successes"
(trades).

This model provides an explanation of positive exchange volume in a
pure exchange market without exogenous shocks. Define "normal" trading
intensity as the state in which no unanticipated information enters the

market. u, is the asset’s expected return for all k. An outside observer,
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while recognizing that many demand prices will change, has no prior beliefs
regarding the direction of change for any single one. Yet, even when
W, = u;, a sufficient condition for my > O is ¢ > 0. In turn, m; > O for
any (i, j) pair insures ®m > 0. As long as at least one individual has
idiosyncratic demand price adjustments, the expected number of exchanges is

positive.

1.3. Information Flow and Trading Intensity.

Suppose that an information arrival has a mean effect p on all
traders’ demand prices. If each investor receives slightly different
information or interprets identical information differently, then expected

volume increases.

Proposition 1: If market participants revise their demand prices in
unpredictable ways that do not correlate with the subsets 1 and J or with
investors’ idiosyncratic demand price revisions, expected trading volume
increases.

Proposition 1 is proven in the Appendix. The intuition behind the
proposition is that the new information, interpreted differently by market
traders, adds to the normal "jumbling" of demand prices that comes from
investors’ liquidity and speculative trading. This increases the variance
of the demand-price revision process o2, and therefore increases O‘é. The

resulting reallocation of assets to higher valued owners increases the

expected intensity of trade.®

8 Several researchers have examined trading volume around an event to
determine whether the event has "information content." See Beaver {1968),
Morse (1980), or Bamber (1986). The presumption, usually stated
informally, is that an informational event causes more trades as investors
disagree about the meaning of the information and revise their portfolios
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However, this is not the only mechanism by which trading intensity
increases. This model has used the artifice of the assumptions
distinguishing buyers and sellers and the random pairing to distinguish
conceptually buyers from sellers, but such a distinction can be
descriptively accurate.  Events that have systematically different effects
on buyers’ and sellers’ demand prices have volume implications since

u; * p; implies pg = 0.

Proposition 2: If potential buyers and sellers revise their demand prices
in systematically different ways, expected trading volume increases if
B> ou, and decreases if p, > H;.

The proof of Proposition 2 is in the Appendix. Cases in which ug = 0 are
very likely. Consider a practically anticipated event about which
investors have different prior expectations. After t, but before trading
at t,, information is publicly revealed about the asset’s value £, where ¢
is a random variable with mean uz ~ All investors obtain the information
and interpret it identically.  Before t;, investors’ demand prices at t,
reflect private information at ty, described by z, = uz + #,, where 73, is a
zero-mean random variable unique to investor k and z, describes investor
k’s anticipation of the "true" value £. So p,, = g(E(¢lz)), where g > 0,
and investors with relatively high z, become owners of the asset at t,.
When the information is fully revealed at t,, each investor’s demand price
adjusts to reflect the information:

S = K t o = g(©) - g(E(Clz)) + Te, (1.13)

The effect of the public release is to pull all investors’ demand prices

accordingly. We formalize this intuition with Proposition 1.
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toward g(¢), which implies pg > 0. To illustrate, suppose the information
is "good," e.g., someone makes a tender offer that investors anticipated
with probability less than one. We can describe current owners as
investors with relatively high z, at t,, They will revise their demand
prices by a small amount compared with current nonowners, who were
relatively "pessimistic,” that is, who had demand prices at t,
characterized by low z,. As a result, y; < ; and pg > 0. Similarly, if
the news is "bad," all expected demand price revisions are negative.
Current owners’ demand price revisions are, as a group, greater in absolute
value, and the reversion of investor’s demand prices toward the mean
implies p; < u,--" Thus, we expect to observe that buyers and sellers have
an asymmetric reaction to new information.

Note that p; > p; implies a decrease in expected trading intensity.
This case can arise if the informational event causes further divergence in
the demand prices of owners and nonowners. This is a characteristic of
models based on behavioral differences between buyers and sellers. A more
plausible story 1is that the information confirms traders’ prior beliefs.
We cannot speculate on whether this is a common occurrence, but it is
sufficient for us to note that information can decrease volume.

So far we have developed two distinct ways in which trading intensity
can increase in response to an informational event; however, both

situations can occur simultaneously. Information revealing events that

9 There are other reasons why pg my be different from zero. For example,
information asymmetries can arise, say, if current asset owners have access
to different information from potential buyers. However, this is likely
only in closely held corporations where current owners also are corporate
insiders.

20



induce asymmetries between group means affect pug, and heterogeneity among
members of the same group—either buyers or sellers—affects og.
Propositions 1 and 2 indicate that simultaneous positive changes in both ug
and og complement each other; the effect is to increase expected volume.
However, an event that simultaneously decreases pg and increases og has an
ambiguous effect on volume. The total differential of m; is

dm; = (dmy/dpg)dug + (8my/dog)dog. (1.14)
Setting this equal to zero and substituting from equations (A.4) and (A.5)
in the Appendix yields

_Pio - Pjo - He fo(Pio - Pjo - Mo)
oo fe(Pio - Pj)

dug/dogl dr.co =
ij

(1.15)

For (po - D) > me, positive changes in pg and og are substitute methods
to increase m;.!0 Event studies that record positive volume reactions to
new information cannot distinguish between the causal effects pg > 0 and
cg > 0. In contrast, observations of decreases in volume would not only

imply that u; > p;, but also that the difference outweighs any effect of

increases in og.

1.4. Market Liquidity and Trading Intensity.
Market liquidity depends both on the market’s depth (the number of
traders waiting to transact) and on the bid-ask spread (the cost of

trarisacting). We examine both eiements of market liquidity.

10 For pg = 0, equation (1.15) indicates that an isoquant mapping of
(ug, 0g) combinations that yield a given wm; is characterized by
nonparallel straight lines, each with slope equal to the negative of the
"z-score” (standardized) value of (p, - p,) and converging to the point

(ug, 0) on the pg axis (at which m; = 0.5)
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Trivially, expected trading intenscity increases proportionally with
the number of outstanding units of the asset (and therefore, with the
number of asset holders),

dur/dl = n > 0. ' (1.16)
While the proportionality is an artifact of this model, we expect to
observe a positive relationship between volume and the market size.

Momentarily relax the no transaction cost assumption to introduce a

positive transaction cost c. Equation (1.9) becomes

w = [ fedx = 1 - Fo@q - Po + O, (1.17)
PioPjotec
where =§; is the probability of an exchange, given the transaction cost.
Differentiating,

We predict that expected trading intensity is a decreasing function of the
transaction costs c since (8; - §;) must now overcome beth the original

difference (p,p - pjp) and the transaction cost.

1.5. Trading Intensity in a Multiperiod Market.

We can extend this model to examine the intraday dynamics of trading
intensity. We must fix the length of each period, and assume that only one
trade can occur at a given instant. Individuals who are unable to find a
match in a given period will revise their beliefs and attempt to trade in
subsequent periods.  Moreover, we approximate this behavior by an
independent stochastic process because the population of owners and
nonowners is continually changing. The following result is based on the

weli-known Poisson approximation to the Bernoulli process:
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Proposition 3: Trade counts from independent draws of the market process
over fixed intervals will have a Poisson distribution with intensity
parameter A.

The Appendix centains the proof of Proposition 3. This result motivates

our empirical modeling strategy that we discuss in Section 3.

1.6. Relation to the Literature on Intraday Trade.

Theoretical treatment of trading volume has focused on the
relationships among information flows, price changes, and trading. One
important contribution of this study is that our model synthesizes some of
these results and empirically explores several interesting hypotheses that
are relevant to this literature.

Initially, trading volume was important in the mixture of
distributions models of Clark (1973), Epps and Epps (1976), Tauchen and
Pitts (1983), Harris (1986), and, most recently, Gallent, Rossi, and
Tauchen (1992), that provide statistical explanations of the leptokurtosis
in the empirical distributions of daily stock prices. These models predict
a positive relationship between volume and the magnitude of the
corresponding price change over daily intervals. Yet, these models are
often informally motivated, statistically based, or lack an economic
specification that is readily implementable.

The model by Pfleiderer (1984) considers price and volume in a noisy
rational expectations equilibrium. This model implies that no correlation
exists between the magnitude of price changes and trading by speculators

with private information but there is a positive relationship between price
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changes and trading by liquidity-motivated investors. Thus there exists a
negative association between the strength of the correlation between
absolute price changes and volume and the existence of private
information.!!  We can directly test this proposition with our empirical
exercise by controlling for both security-specific and market-wide
information in our specificaticn.  Private information should be most
valuable to those with security-specific information.  Hence, a testable
implication of Pfleiderer’s model is that security-specific information
should have a greater influence on trading intensity then does market-wide
information.

Pfleiderer also considers the informativeness of prices. The market
price does not fully reveal aggregate information in this model. Each
investor receives information about the value of a risky asset that
includes both a common and a unique component. When there is no common
information error (i.e., random deviations in the information from the true
price are unique to each investor), the model yields the surprising result
that expected volume is a decreasing function of the variance of the
idiosyncratic error. This implies that volume is a decreasing function of
disagreement between investors (i.e. the variance of the return process), a

result that we can explicitly test by including return volatility in the

Il Campbell, Grossman, and Wang (1992) find an empirical relationship
between stock market volume and the autocorrelation of daily stock index
returns.  With our intraday model of trading intensity, we are able to
examine whether this pattern is due to transitory shifts in liquidity
trading as they hypothesize.
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specification. 2.13

Similar models of intraday trading are advanced in Admati and
Pfleiderer (1988, 1989). These papers develop theories in which liquidity
traders and informed traders interact strategically and, hence, we observe
endogenously concentrated trading patterns. Admati and Pfleiderer boldly
make several specific empirical predictions that our model nests and tests.
First, they predict an inverse relationship between market depth and
trading intensity. If we interpret market depth more generally, then their
proposition also implies a positive association between the cost of trade
(i.e., the bid-ask sprcad) and volume.!* Since our model suggests that the
opposite relation should exist, we include several measures of market
liquidity in our empirical specification to test these conflicting
nypotheses. Second, Admati and Pfleiderer posit a positive relationship
between trading volume and the informativeness of prices. We examine this
proposition with various time-of-day sub-samples. Given that the market
open and close are the most active trading periods, we should observe the
strongest relationship between trading intensity and security-specific

information during these periods according to Admati and Pfleiderer’s

12 This occurs because, as private information becomes more certain,
investors take larger speculative positions based on their private
information.  When the common information error is positive, expected
volume is at first an increasing, then a decreasing function of the
precision of private information. Kazemi (1991) extends Pfleiderer’s model
to study how the distribution of beliefs affects equilibrium asset prices.

13 Also note that our model predicts the opposite relationship:  greater
investor disagreement raises trading intensity in our model.

14 Easley and O’Hara (1992a) explicitly make the this prediction. They use
a sequential arrival asymmetric information rational expectations intraday
trading model to predict theoretically a positive relationship between bid-
ask spreads and trading volume.
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theory.

Several researchers have attempted to model heterogeneous traders with
different opinions. Varian (1985, 1989), Morris (1990), and Harris and
Raviv (1991) all examine the effects of private information and the
market’s aggregation of information on volume. Varian uses a Bayesian
framework to distinguish between opinions (priors) and information
(likelihoods). He argues that trading volume depends only on differences
of opinion, even when investors receive different information, because the
market price adjusts to reveal all information in the economy and thus
negates the values of unique information to any single investor.!S Harris
and Raviv (1991) assume that traders share common prior beliefs and receive
common information but differ in the way in which they interpret this
information, and obtain the now familiar theoretical result on the
relationship between price changes and information. However, this research
direction yields relatively few insights or testable implications
concerning intraday trading intensity.

Little is known about the effect of order type or placement strategy
on trading intensity. Cohen et. al. (1978) assert that limit orders do not
reflect changes in the aggregate information set pertaining to a particular
security because informed traders are unlikely to use this order type since
it reveals their information to the market. However, using a simple
asymmetric information trading model, Easley and O’Hara (1991) theorize

that informed traders will use market orders rather then limit or stop

15 One drawback of this model is that it implies that prices decrease while
trading volume increases, a prediction inconsistent with most empirical
evidence. See Karpoff (1987) for a survey.
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orders to maximize the return on their information. Although our model
does not specifically address the type of trade, we can draw inferences
about what we should observe in our model by reinterpreting the trader type
to be those that wish to transact immediately against limit traders, and
those that shop their transaction among various floor brokers to trade
within the bid-ask spread. Investors with security-specific information
could often receive better execution if they shop their transaction among
floor brokers. Thus, based on our model, we expect to observe greater
trading intensity within the bid-ask spread when traders have more
security-specific information. Trades at the bid-ask spread should be less
sensitive to changes in security-specific information.

Many researches have observed that trade size has a significant impact
on security prices.!® Two competing theories explain this observation. One
explanation, first posited by Stoll (1979) is that block transactions have
a significant liquidity effect on the market by causing the specialist’s
inventory to deviate from his preferred position. Easley and O’Hara (1987,
1992b) develop an alternative explanation: that there exists a positive
correlation between trade size and private information about the security’s
true value and therefore, an adverse selection problem arises when an
investor wishes to make a block transaction. Thus, they argue that large
trades have an important informational effect on market prices. While our
model limits an individual to trade a single share of the security, we can

suspend that assumption and posit that a block trader must find enough

16 See Kraus and Stoll (1972) and Dann, Mayers, and Raab (1977) for
empirical verification of this assertion.
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people willing to transact as many times as he wishes in a given period.
Obviously, it follows from our model that block trades require sufficient
liquidity to carry out the transaction. The only informational impact of a
large trade would be negligibie because those people who where unable to
transact in the current period would not be certain whether their beliefs
had deviated from the population or the aggregate information set had
changed. Within our empirical framework, we can identify the intensity of

olock transactions and test these alternative explanations.

2. Daia and Specification.

2.1. The Sample.

This study uses stock transactions data from the New York Stock
Exchange (NYSE) during the year of 1988 ccllected by the Institute for the
Study of Securities Markets (ISSM) on eighteen randomly selected stocks.!?
The only conditions on stock selection that we imposed were that all stocks
in our sample must be members of the S&P 500 Index on the first day of
trading in 1988 and their primary market must be the NYSE.

Table 1 offers a numerical description of the eighteen securities with
sample statistics on market value, the maximum and minimum transaction
price, the average NYSEand non-NYSE volume, the average NYSEandnon-NYSE
number of transactions, and the average NYSE and non-NYSE number of quotes.
88.5 percent of total transactions volume of the stocks we study occurs on

the NYSE. The firms in our sample exhibit substantial heterogeneity with

17 We excluded the opening and closing trades from our analysis.
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respect to trade within the year and across stocks. For example, the
Upjohn Company (UPJ) averages 5246.6 lots per day with some 348.2 trades
while Fleetwood Enterprises Inc. (FLE) averages 496.9 lots per day in 35.2
trades.

We divided the transactions sample into equally spaced fifteen minute
intervals beginning with the daily market open. Theoretically, the length
of the interval is irrelevant since the compositions of event count
processes are additive. Implicitly, we assume that the trading intensity
process adjusts to changes in information and traders’ beliefs within a

fifteen minute period.!®

2.2. Empirical Representation.

Trading Intensity. Our model of intraday trading intensity described
the aggregate movements in the net demand for a particular security. We
measure trading intensity empirically as the number of transactions
(NTRADE) between buyers and sellers within a given fifieen minute period.

An important implication of our theory is that different traders react
to new information differently. = We study three separate transaction
classifications to test this proposition. First, we classified
transactions by type of trader. For a given fifteen minute period, we
counted the number of buyer-initiated trades (NBUY) and the number of
seller-initiated trades (NSELL) using the classification rules developed in

18 Empirical evidence on the speed of adjustment of stock prices to economic
news is sparse. Available evidence from Jain (1988) using hourly stock
data indicates that stock prices rapidly adjust to reflect new information
over the course of several hours.
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Lee and Ready (1991) that compare the trade price with the prevailing
quote. Second, we divided transactions by type of order. A limit-market
trade occurs when an individual desires immediate execution and hits an
existing limit order (on the bid or ask sidej at the prevailing quote. A
market-market trade occurs within the bid-ask spread.  Frequently, this
type of transaction occurs when a customer wants his broker to "work" or
advertise his trade on the exchange floor. We accumulated the number of
market-limit trades (NMLT) and the number of market-market trades (NMMT)
within each fifteen minute period. A final transaction type we studied are
block trades. Following Madhaven and Smidt (1991), we adopted a stock-
specific definition for a block trade. We define a block trade as a
transaction volume that exceeded the 95th percentile of the order size
distribution.!®  This definition has the advantage of varying by market
liquidity; so, what may be a "large” trade in one market may not be a
significant event in another market. We counted the number of block trades
(NBLOCK) within each fifteen minute interval.

We provide the sample statistics for our measures of trading intensity
in Table 2. For example, the stock Great Northern Nekoosa (GNN) averaged
3.09 trades per fifteen minute interval, 1.24 buyer-initiated trades, 1.11
seller-initiated trades, and 0.16 block trades.  Furthermore, limit-market
trades account for 1.82 trades per interval, while market-market trades
account for 1.27 trades per interval. As an illustrative case, we present

a frequency count distribution of NTRADE for GNN in Figure 1. The median

 We obtained similar results by analyzing transactions in the 99th
percentile of the order size distribution.
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of the distribution of NTRADE for GNN is two trades per period and this
frequency count deciines monotonically for values greater than one.

Figures 2 and 3 illustrate the intraday pattern of trading intensity
for the stock Great Northern Nekoosa. We plot the time between
transactions and the cumulative number of trades for a single trading day
(1/3/88) for GNN. There is a pronounced effect that the rate of trade is
above average at the opening and closing of the trading day. For GNN,
Figure 3 presents each of our measures of trading intensity averaged into
half hour periods: the mean and standard deviation of NTRADE are plotted
against time in Panel A; NBUY and NSELL are graphed in Panel B, NMLT and
NMMT are illustrated in Panel C; and in Panel D we present the block trade
count. Notice that each of our trading intensity measures exhibits the U-
shape first noted by Wood, Mcinish, and Ord (1985). Trading activity
declines after the market open until roughly 1 PM, where it levels off and
begins to rise again until the market close.

The theoretical model suggests that three classes of variables should
be important in determining trading intensity: information flows, return
volatility, and liquidity. We lag by one fifteen minute interval each of
these variables in our specification to minimize possible simultaneity
bias.20

Information Flows. Information flows affect an individual’s estimate
of the value of the security. We focus on two sources of information:

security-specific returns and market-wide reiurns. As developed in Section

20 In preliminary tests, we were unable to identify separate effects from
longer lags or moving averages.
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1, positive and neg ‘ive information can affect different classes of
traders in different ways. According to our model, we expect to observe a
positive relationship between trading intensity and our measures of
information flows.

We define transaction security-specific returns within each interval
as the log ratio of the last trade price to the first trade price. We
further divided this series into positive returns (PTRET) and the absolute
value of negative returns (NTRET).2! We calculate market-wide returns using
intraday transaction prices of the nearest-term S&P 500 futures contract.??
This series was also used to create positive and negative return series,
(PMRET) and (NMRET), respectively.

Return  Volatility. Return volatility proxies for the extent of
disagreement among traders within each period. Again, we estimate both
security-specific and market-wide volatility to examine their differential
effects on trading intensity. Transaction  security-specific  return
volatility (TVOL) is the time-weighted standard deviation of returns within
a given period. We made a similar computation to determine the market-wide

return volatility (MVOL).2

2l We also computed security-specific return series using prices derived
from the midpoint of market quotes. This variable made little difference
to the resuits we report.

22 Tick Data Inc. collect and disseminate these data from the Chicago
Mercantile Exchange.

B Since we estimated this variable, it is subject to errors in variables
bias. To assure the robustness of our analysis, we also estimated the
model below with several different measures of volatility.  First, we
estimated the standard deviation of returns from the last twenty trades (in
transaction time). Second, we estimated an intraday GARCH (1,1) model of
fifteen minute returns and used the estimated standard deviation from this
procedure. Third, we used the high-low range within each period as a
measure of volatility. Our qualitative conclusions remain unchanged using

32



Liquidiry. Liquidity is measured with three security-specific
variables: the bid-ask spread, the depth, and the total volume transacted.
The bid-ask spread (SPREAD) is a cost of transacting immediately. We
measure the time-weighted mean bid-ask spread in percentage terms within a
period.2¢ High trading costs should discourage trading activity. We define
the depth (DEPTH) as the time-weighted mear of the number of lots on the
best quote. The more lots available within the market, the higher the
probability that a match will occur. Finally, we also measure liquidity as
the number of shares (VOLUME) that transacted within an interval. A liquid
market is characterized by high transactions volume. We divided both DEPTH
and VOLUME by 1000 for computational convenience.

We include intraday half-hour time dummies (where Tl = 9:30 AM to
9:59 AM, T12 = 3:00 PM to 3:29 PM, and T13 is excluded) to capture any
remaining idiosyncratic time-specific variation in trading intensity.

In summary, our basic trading intensity specification is:

INTENSITY, = 8, + B,PTRET,, + B,NTRET,,
+ B,PMRET,, + B,NMRET_, + 8TVOL,, + BMVOL,,
+ B,SPREAD,, + B,DEPTH,_, + ByVOLUME,,
+ 8,T1, + 3,T2, + 5,T3, + 5,T4, + &T5, + 8,T6, + 5,T7,
+ 5,T8, + 8,19, + §,,T10, + 5, T11, + §,,T12, + ¢, 2.1
which we estimate for six measures of INTENSITY: NTRADE,, NBUY,, NSELL,,
NMLT,, NMMT,, and NBLOCK,. We provide summary statistics for all security-

these measures.
24 For a given quote the percentage bid-ask spread is:

BA, = (ASK, - BIDj/((ASK, + BID)/2).
SPREAD is time-weighted average of the spread within an interval.
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specific variables in Table 3.2

3. Statistical Assumptions and Methodology.

3.1. Moecdeling Event Counts.

The Poisson probability distribution provides a natural stochastic
specification for trading intensity. This distribution captures the
discrete nature of trading and researchers have applied it extensively as a
model of event count processes.26 Let Y¢ (t = 1, ..., T) be the random
dependent event count so the values O, 1, 2, ..., n occur with positive
probability. We observe the realization of y only at the end of each
observation period t. To derive a specific probability distribution, one
nevertheless needs to make assumptions about the unobserved process within
each observation period generating the observed count at the end of the
period. Suppose we make the following assumptions about the process during

observation period t:

Assumption 1: More than one event cannot occur at the same instant.
Assumption 2: The probability of an evemt occurring at any instant is
constant within period t and independent of all previous events during that
observation period.

Assumption 3: Zero events have occurred at the start of the period.

Assumption 4: The length of each observarion period t is identical.

25 The mean market-wide positive return (PMRET) is 0.062, standard deviation
of 0.103; the mean of NMRET is 0.062, standard deviation equal to 0.116;
art!d the mean of market-wide return volatility is 0.198, standard deviation
of 0.038.

26 An early analysis of Poisson regression is Jorgenson (196]). More
recently, Hausman, Hall, and Griliches (1984) have analyzed models of event
count data with application to the patents-R&D relationship.
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From these first principles, one can derive a form of the Poisson

probability distribution for the random variable Y,:?7

-At Yo
f(yla,) = %",‘)— for A, > Oandy =0, 1,... 3.1)
0 otherwise

We specify an event count regression model by letting the expected
count, E(Y) = A, vary over observations according to a specific function
of a vector of explanatory variables. A general form of this equation is
A, = A(X,,B), where X, is a vector of k exogenous variables and 8 is &
k x 1 parameter vector. We can easily specialize this functional form to
E(Y) = A, = exp(X§).

To estimate B, the effect of the explanatory variables on the
dependent variable, we use the method of maximum likelihood. By assuming

the absence of autocorrelation, we may write the likelihooa function as

T A y
(a )t
£@ly) = [[fo02 = e—;lv‘)— (3.2)

with A, = exp(X8). The log-likelihood, reduced to sufficient statistics,

is then

T
lng@ly) = §{ -exp(Xp) + v(X#) } - (3.3)

t=1

The applicability of the four assumptions concerning stochastic
process generating our trade counts is an important issue. Assumption 1 is
a technical requirement without many real consequences. Assumption 3 is

more of a notational convenience, and Assumption 4 enables one o

27 Feller (1968, Chapier 17) derives this result.
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parameterize the distribution in the form of equation (3.1). However, for
modeling a market’s dynamics and trading intensity, Assumption 2 is very
important since it has two important implications that might not be
consistent with our application. First, we must assume that the
probability of a trade is constant for every period. This homogeneity
assumption appears implausible since either changes in the distribution of
market beliefs or variations in the flow of information are likely to vary
over time, resulting in a heterogeneous probability of event occurrence.
Second, we assume that the occurrence of a trade at one point in time is
independent of all previous trades.2? This part of the assumption may fail
in this application because each trade presumably furthers the price
discovery process towards equilibrium and may thus draw additional traders
into the market.

These assumptions about the unobserved process generating the observed
counts have consequences for the variance in the event count regression.
The variance of Y, under the Poisson distribution in equation (3.1) is
equal to its expected value:

V(Y) = E(Y) = A, (3.4)
However, this resuit relies on micro level independence and homogeneity
assumptions about the process generating the counts. If these assumptions
do wunot apply, then the Poisson distribution does not result, and the
variance is not equal to the mean. In this case, the log likelihocd in

equation (3.3) will yield consistent estimates, but they will be

28 This assumption must hold both within a given interval and across
periods.
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inefficient, and the standard errors inconsistent.
More generally, let
V(Y) = Ag? (3.5)

for A, > 0 and ¢, > 0; o, is called the dispersion parameter. When
individual events are independent with homogeneous rates of occurrence, the
case of Poisson dispersion results with o2 = 1 and V(Y) = A, Altemative
assumptions lead to other values for ¢2. For example, ¢2 > 1, we term the
data overdispersed and, if 0 < ¢2 < 1, we define the data as being
underdispersed. In general, ¢2 = o¢(X,,8,7), where y is now the ancillary
parameter. We estimated the variance of the arrival process using the
following functional form:

o2 = 1 + exp(7). (3.6)
We use a specialized specification in which o2 from equation (3.5) is a
scalar parameter; however, numerous other functional forms of V(Y) are
possible.?® Furthermore, "even relatively substantial errors in the assumed
functional form of [the variance] generally have only a small effect on the
conclusions.” (McCullagh and Nelder (1983, p. 132)).

Panel A of Figure 3 presents both the mean and standard deviation of
the number of trades per fifteen minute period (NTRADE) across the trading
day by half-hour for the stock Great Northern Nekoosa (GNN). Note that the
standard deviation of NTRADE is always strictly less (and the variance is
always greater) than the mean. While this is not statistical evidence of

dispersion, we are lead to use additional tests. Collings and Margolin

29 See Cameron and Trivedi (1986). We may easily alter this form by
substituting another form in for o2 before differentiation.
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(1985) note that one can easily test the Poisson model against the model
with extra-Poisson variation by testing Hy,: 7 = 0 versus H;: » > 0 from
equation (3.6).30 According to tests reported in Section 4, most of the
stocks in our sample exhibit overdispersion based on this hypothesis test.
We examine why trading intensity exhibits overdispersion in the following

section.

3.2. Models with Overdispersion.

Heterogeneity and contagion, two very different and substantively
interesting unobserved processes, can produce identical models for
overdispersion. We consider these explanations in turn.

If individual trades within observation t are heterogeneous (i.e.,
traders have diverse opinions), 2, will vary across individual trades
(within observation t), and overdispersion will result.3! Thus, since we
are modeling a fundamentally heterogeneous process, different rates of
trading intensity for individual market participants will induce
overdispersion.

To model heterogeneous processes, those resuiting in overdispersed
event counts, we drop the assumption that A, is constant within

observation t. Instead, we assume that A, is a random variable. In order

30 The literature on testing for overdispersion is extensive. We also tried
various tests contained in Cameron and Trivedi (1990) and Smith and Heitjan
(1993). Another form of these tests developed by Mullahy (1986) involves
the application of specification tests to this problem. None of these
methods altered our qualitative conclusion that the transaction counts in
our sample are overdispersed.

31 Measurement error in the explanatory variables or the omission of
relevant explanatory variables (uncorrelated with the ones included) also
can cause apparent overdispersion (Prentice (1986)).
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to build a stochastic model for heterogeneous processes, we must make some
assumption about the distribution of A, (e.g., the rate of trading) across
traders within each observation period. The usual assumption is that 2,
follows a gamma distribution.3? Under the gamma distribution
[fy(%1¢,0?)], the random variable A, takes on only nonnegative real
numbers and is assumed to have mean E(2) = ¢ and variance V(a) = ¢2.
The form of this distribution is quite flexible and not overly restrictive,
but one must recognize that this is a particular assumption about the
nature of unobserved heterogeneity.3?
Greenwood and Yule (1920) first derived the new distribution, called
the negative binomial, by adding this additional first principle (A,
following a gamma distribution) to the initial four assumptions. The
procedure is as follows: First, derive the joint distribution (f) of Y;
and A, (both now random variables) using the basic rule for conditional
probability [Pr(AB) = Pr(A|B)-Pr{B)]:
fi(yor 180D = £,(0 1) f (A1 ¢,,02). 3.7
Then, derive the negative binomial distribution (f) by collapsing this

;oint distribution over A
fllb(yl|¢|102) =I fj(y(,x|¢l,0‘2)dk. (3_8)

In the negative binomial distribution, the left-hand-side of equation
(3.8), the parameter ¢, represents the mean rate of event count occurrence,

as A, does in the Poisson distribution. Thus, to maintain comparability,

32 See Johnson and Kotz (1970, Chapter 17).
33 QOther assumptions are possible, but do not reduce to closed form, and
thus require more complicated estimation procedures.
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we reparameterize by substituting A, for eack occurrence of ¢, and write

out the entire distribution:

_ e - +y) o2 a|M e - 1y
T E V) { = } “ ¢

where A, > 0, ¢2 > 1, and I'(-) is the gamma function.

The result in equation (3.9) is a probability distribution with an
additional parameter. We are able to model the expected number of events
as before, E(Y) = A, = exp(X,8). However, the variance is now greater
than the mean since

V(YY) = Ae? = exp(X;8)s2 (3.10)
where ¢2 > 1 and equation (3.6) parameterizes o2. As o2 approaches one,
this distribution approximates the Poisson distribution. Larger values of
o2 produce a distribution with larger and larger amounts of overdispersion
in counts, resulting from more heterogeneity within each observation.

Contagion is a second process that generates overdispersion.
Contagion occurs when the expected number of events at one time is
dependent on the realized number of events at some previous time. For
example, we might hypothesize that large block trades are likely to
stimulate a series of future trades as the block trade ic broken down into
smaller pieces or traders return the price process to the prevailing
equilibrium. Since with event count data we only observe the number of
events at the end of the period, contagion, like heterogeneity, is
uncbserved, within the observation period.

Two distributions to model this sort of contagion are the continuous

Polya-Eggenberger distribution and Neyman’s contagious distributions. A
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result due to Thompson (1954) is that a limiting form of both distributions
is the same negative binomial that we derived above for a heterogeneous
event count process. For research problems where both heterogeneity and
contagion are plausible, the different underlying processes are not
distinguishable with aggregate event count data because they lead tc an
equivalent probability distribution for the counts.3* One can still use
this distribution to derive fully efficient and consistent estimates, but
this analysis is only suggestive of the underlying process.

A negative binomial maximum likelihood solution yields consistent and
fully efficient parameter estimates in the case of overdispersion due to

contagion or heterogeneity. The log-likelihood is as follows:

T
In £(@8,02ly) = [{ lnr‘[ 2"“1 + y.} . mr[ . 1]

g ags -

t=1"

+ yln(e? - 1) + ln(crz)[ Z-All + y,]} 3.11)
ol -

where A, = exp(X;8), fory, = 0, 1, 2, ... and 62 > 1.

Whereas in the Poisson regression model one maximizes the log-
likelihood with respect to B, we maximize this log-likelihood with respect
to both B8 and o2. We interpret the information from the maximum likelihood
estimate, E, as in the Poisson model and the estimate o2 provides

information about the overdispersion of the data.

34 See Neyman (1965), p. S.
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4. Empirical Results.

4.1. Methodological and Specification Robustness.

This section reports estimates of the model of the number of trades
per fifteen minute interval (NTRADE) presented in equation (2.1) for the
stock Great Northern Nekoosa (GNN). We choose to present results on only
one security in this section to illustrate that the estimaticn methodology
and model specification we selected dominate other possible choices.’* In
succeeding sections, we report results for all eighteen securities. We
expect to observe that the number of trades is positively associated with
information flows (PTRET, NTRET, PMRET, and NMRET) and return volatility
(TVOL and MVOL), negatively related to bid-ask spreads (SPREAD), and
positively related to market depth (DEPTH) and share volume (VOLUME).

In Table 4, we document the robustness of the estimation methodology.
Using the stock GNN, we present results using the following four estimation
methods: ordinary least squares (OLS), non-linear least squares (NLLS)3%,
Poisson maximum likelihood (Poisson), and negative binomial maximum
likelihoed (NegBin). Except for the security-specific information
variables (PTRET and NTRET), the coefficients are robust across the various
estimation methodologies. Coefficients g, thru B, have the correct sign,
appropriate magnitudes, and are statistically significant for each of the

methodologies. We observe that OLS achieves a higher likelihood than NLLS,

35 A full set of comparable results for all eighteen of the securities we
studied are available from the author.
36 In particular, we estimated the following model: Y, = exp(X;8) + «¢,.
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while on a log-likelihood basis, NegBin dominates Poisson.’? Also note that
the scalar dispersion parameter is statistically significant, indicating
the presence of overdispersion,38.3?

We examine the robustness of the model specification in Table S5 by
varying the set of independent variables using negative binomial maximum
likelihood estimation. The estimates in Column 5 report results for the
complete model and all variations are compared to this specification with a
likelihood ratio test reported on the lines marked »? and p-value.*® Only
the coefficients on market-wide return volatility are unstable across
specifications.

In column 0 of Table 5, we estimate the model with a constant and
twelve time dummies. The time-of-day pattern observed in Panel A of Figure
3 is evident in these results.

We exclude both security-specific and market-wide information in
Column 1. Note that the value of market-wide return volatility (1.393) is

2.4 times greater than the values in specifications 2 through 5. We

37 We used White’s (1982) information matrix test of the null hypothesis
that the Poisson specification is a correct characterization of the data
generating process, relative to the negative binomial specification. We
faile;(is to reject the null hypothesis of no misspecification for most
stocks.

38 As discussed in Section 3, in the presence of overdispersion, the point
estimates are consistent but the standard errors are inefficient and
inconsistent. Furthermore, we attempted to model the overdispersion with
factors we hypothesized would affect the variance rather than the mean.
These faciors included the lagged number of trades, the lagged number of
quotes, the lagged market-wide return volatility, and the lagged number of
trades that resulted in a price change in the S&P 500 futures market. None
of these factors were consistently significant in our sampie stocks.

3 We also tested for the presence of first-order serial correlation and
could reject this hypothesis at conventicnal significance levels.

4 See Amemiya (1985, Chapter 4) for a discussion of the appropriate
likelihood ratio test statistic constructed for this application.
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interpret this finding to mean that market-wide information flows and
return volatility both act to increase the dispersion of beliefs among
traders in this market.

In Column 2 we only exclude security-specific information from the
specification. We performed a likelihood ratio test of the hypothesis that
both coefficients are equal to zero (Hy: B, = 8, = 0). We fail to reject
this hypothesis when tested against the two-sided alterative that both
coefficients, jointly, are not equal to zero.4!  Compared to the full
specification, we may reject this hypothesis because positive security-
specific returns may induce trade whereas negative security-specific
returns may not. Our model predicts that positive and negative information
flows may affect different classes of traders differently.

We exclude security-specific and market-wide return volatility in
Column 3 and we exclude the three liquidity variables in Celumn 4. We can
comfortably reject the hypothesis that these sets of coefficients are
jointly equal to zero.

While we estimate a statistically significant scalar dispersion
parameter across all six specifications, notice that the degree of
dispersion declines from -0.150 (standard error, 0.045, o2 = 1.861) in
Column 0 to -0.422 (standard error, 0.051, 2 = 1.656) in Column 5, a 24
percent reduction in estimated overdispersion. As noted in Section (3.2),
the additional independent variables may proxy for either heterogeneity or

contagion in the arrival process.

41 This statement is true for significance levels greater than 0.28.
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4.2. Full Model and Sample Results.

We report full model estimates and hypothesis tests for all of the
eighteen stocks we analyze in Tables 6A and 6B. The coefficients in Table
6A are estimated using negative binomial maximum likelihood. The elements
of the coefficient vector have the interpretation that a one-unit change in
variable x; will lead to a B; x 100 percent change in the trading intensity
probability. In Table 6B, we evaluate alternative model specifications
using likelihood ratio statistics that compare the full model with partial
specifications excluding various sets of coefficients.

Our model of the determinants of the number of trades is strikingly
robust across the eighteen securities that we study. While we cannot
reject the hypothesis (H,) that both security-specific and market-wide
information flows are statistically distinguishable from zero, security-
specific information flows are only significant in nine stocks (this is
hypothesis test H;). We attribute most of the effect of security-specific
information to positive information flows (PTRET) stimulating trading
intensity.  Furthermore, note the relative magnitude of the security-
specific and market-wide information flow coefficients. In all eighteen
cases, market-wide information has a much stronger effect on trading
intensity than security-specific information. For example, a one standard
deviation increase of both PMRET and NMRET will raise the expected
probability of trading intensity in GNN by 20.0 percent. A comparable one
standard deviation increase in both positive and negative security-specific
return raises the expected probability of trading intensity by 3.0 percent.

This finding is inconsistent with the prediction made by Pfleiderer (1984)
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that the correlation between absolute price changes and volume is
negatively related to the existence of private information. We find that
changes in market-wide information flows strongly dominate variations in
security-specific information flows in determining trading intensity.42

The opposite story is evident when we analyze the effects of security-
specific and market-wide return volatility on trading intensity. We can
reject the hypothesis (H,) that Bs and B¢ (the coefficients on TVOL and
MVOL) are equal to zero in fifteen stocks. However, we find that By is
positive and significant in fifteen cases while B, is positive and
significant in only eight cases. Since return volatility proxies for the
dispersion of beliefs among traders in our model, we can interpret these
results to mean that disparate beliefs about the particular security are
more likely to generate trade then are dicparate beliefs about the entire
market for stocks. For example, a one standard deviation increase in
security-specific return volatility in GNN will increase the expected
probability of trading intensity by 5.3 percent, while a similar increase
in market-wide volatility will increase expected trading intensity by only
2.1 percent. These findings are further evidence against the Pfleiderer
(1984) model. His model predicts that volume should be a decreasing
function of disagreement among investors. We find only one case (stock
KMB) where either 85 or B¢ is negative and statistically significant.

The three variables that measure market liquidity (SPREAD, DEPTH, and

VOLUME) are jointly statistically significant in ali eighteen stocks and

42 Proposition 1 predicts that information flows will be important in
determining trading intensity but does not distinguish among different
potential sources of informatiou..
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usually have the theoretically expected effect on trading intensity. For
example, a 0.254 percent increase in SPREAD (one standard deviation) for
GNN decreases the expected probability of NTRADE by 11.4 percent. This
result confirms the theory advanced in Section (1.4). Furthermore, this
evidence is counter to the propositions of Admati and Pfleiderer (1988) and
Easley and O’Hara (1992) that there should be a positive relationship
between volume and bid-ask spreads. While SPREAD is statistically
significant in all eighteen stocks, DEPTH is significant in ten and VOLUME
is significant in fourteen.

Finally, note that we find statistically significant evidence of
overdispersion in fifteen stocks. Based on the estimated » coefficient,
the magnitude of overdispersion ranges from 3.102 (for MHP) to 1.442 (for
SBC).

4.3. Trading Intensity by Trader Type.

When someone places an order, they commonly tell their broker how much
they would like to transact at what price and how they would like the order
to be executed. Proposition 2 posits that information flows should affect
different classes of traders in an asymmetric fashion. To empirically
evaiuate this statement, we separate orders into several types:  buyer-
initiated and seller-initiated trades, market-limit or market-market
trades, and block trades. We will attempt to use these types of trades to
quantify the differential impact of information flows on trading intensity.

Tables 7 and 8 present model estimates and hypothesis tests for buyer-

initiated (NBUY) and seller-initiated (NSELL) trades. This sample split
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highlights how information flows have differential effects on individuals’
motives to transact.> We find that market-wide information is an important
determinant of traders’ decisions either to buy or sell.

In Table 7 we present the results for buyer-initiated trades. A one
standard deviation increase in positive market-wide returns raises the
expected probability of buyer-initiaied trading by 18.5 percent, while a
comparable increase in positive security-specific returns raises the
expected trading intensity by only 2.2 percent. Negative market-wide
returns work in the opposite direction. In 1ll eighteen stocks, an
increase in negative market-wide returns either decreases or has no effect
(statistically) on the number of buyer-initiated trades.

The results in Table 8 for seller-initiated trades tell the opposite
story. Negative market-wide information strongly affects the intensity of
these trades. B, is positive and statistically significant in seventeen
cases (the exception is NCB) arnd B, is either negative or zero in all
eighteen stocks. Again, we observe that market-wide information has a much
stronger effect on seller-initiated trading than does security-specific
information.

We find that boih security-specific return volatility (TVOL) and the
market liquidity variables are significant determinants of NBUY and NSELL,
though no particularly stiiking pattern emerges relative to the full sample

results.

43 Interestingly, we find little correlation between NBUY and NSELL for most
stocks. A seemingly unrelated negative binomial maximum likelihood
estimation did not yield either a significant cross-correlation between
these variables or qualitatively different coefficient estimates.
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In Tables 9 and 10, we present model estimates and hypothesis tesis
for market-limit and market-market trades. Comparing the tests in Panel B
of Tables 9 and 10, we find that, for market-limit trading intensity,
security-specific information is jointly significant in only seven stocks.
For market-market trading intensity, security-specific information is
significant in sixteen of the eighteen stocks we analyze. For example, a
one standard deviation increase in both positive and negative security-
specific returns in GNN raises expected market-market trades by roughly 6.0
percent, but, a comparable increase in security-specific returns raises the
expected probability market-limit trading intensity by only 0.5 percent.
For both types of trades, market-wide information is statistically
important in determining the trading intensity. However, the magnitude of
the effect differs across order types: for GNN, a given negative change in
market-wide returns raises the probability of market-limit trading
intensity by 1.008 (standard error 0.107) versus only 0.661 (standard error
0.136) for market-market trades. These findings are largely consistent
with our model and the theories developed in Cohen et. al. (1981) and
Easley and O’Hara (1991).

We report model estimates and hypothesis tests for the number of block
trades in Table 11. Our estimates demonstrate a strong link between the
number of block trades and the liquidity conditions prevailing in the
market before the trade. As observed in Panel B, we can reject hypothesis
H,, that the liquidity variables are jointly equal to zero, for all
eighteen stecks. We contrast this finding with hypotheses H, (security-

specific information is zero), which we fail to reject in eleven stocks,
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and H, (all return variables are equal zero), which we fail to reject in
four stocks. Furthermore, we decompose the effects of security-specific
information and market liquidity on the probability of observing the mean
number of block trades. A one standard deviation increase in the security-
specific return variables for GNN has a negligible effect on the expected
probability of observing a block trade. = A comparable one standard
deviation increase in the liquidity variables raises the expected
probability of block trading by over 53.0 percent. Our evidence strongly
supports the liquidity hypothesis:  block traders react to the liquidity

conditions of the market rather than security-specific information flows.

4.4. Trading Intensity by Time-of-Day.

A cursory examination of intraday trading patterns reveals that
trading intensity varies by time-of-day. The results from our basic
specification in Table 6A reveal that our time-varying independent
variables were unable to explain the intraday pattern of the half-hour
dummies, coefficients 3, to 3,,. Information events may arrive discretely
and cause people to revise their beliefs more radically during certain
times of the day, such as after the market open or shortly before the
market closes. Admati and Pfleiderer (1988) theorize that there should be
a positive relationship between intraday trading volume and the
informativeness of prices. We test this proposition within the context of
our model by dividing the trading day into three periods: the opening
(9:30 to 10:29 AM), the midday (10:30 AM to 2:59 PM), and the close (3:00
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to 4:00 PM).4# This methodology will enable us to evaluate what factors may
be important in determining trading intensity by time-of-day.

in Table 12, we present model estimates and hypothesis tests for the
first hour of trading for all eighteen stocks. Panel B reveals the
striking result that trading intensity during the opening hour is driven
neither by information flows nor return volatility. Security-specific
information is jointly significant in only three cases. Both security-
specific and market-wide information are jointly significant in only seven
stocks.  Finally, security-specific and market-wide return volatility are
jointly significant in only five markets. We do find strong evidence that
the opening is primarily determined by market liquidity.  The three
liquidity variables are jointly significant in sixteen cases; however,
market depth plays an inconsequential role (8 is only significant in ore
stock, UPJ). While asymmetric information models of the bid-ask spread
contend that a positive relationship should exist between trading intensity
and the bid-ask spread, we find that this relationship is negative and
statistically significant in sixteen stocks.  Our evidence suggests that
investors generally are not using signals present in the securities prices
during the opening period. In addition, note that » is greater than the
full sample estimate in fourteen stocks meaning that heterogeneity or
contagion among investors is higher during this period.

The midday pattern of trade that we present in Table 13 is largely

consistent with the full sample estimates reported in Tables 6A and 6B. We

4 We continue to analyze the number of trades in intervals of fifteen
minutes during these intraday periods.
4 For example, see Easley and O’Hara (1992a) and related references.
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find that market-wide information flows, security-specific  return
volatility, and market liquidity (including depth) are ail important
determinants of trading intensity during the midday period.

Table 14 provides model estimates and hypothesis tests from the final
hour of the trading day. During this period we note that security-specific
information flows are jointly significant in only four stocks and both
security-specific and market-wide return volatility are jointly significant
in only three -cases. Trading intensity during the closing hour is
determined by market-wide information in all eighteen stocks and market
liquidity in fifteen stocks.

Thus, we observe that our model performs best during the midday period
when information flows, return volatility, and market liquidity are all
important. Trading intensity on the market open does not appear to be a
resolution of the uncertainty that developed overnight, and trade during
this early period is dependent upon market liguidity. Trading intensity
just before the market closes depends both on market-wide information and

liquidity.

5. Interpretation and Conclusions.

We have developed a theory of trading volume based on assumptions that
market participants frequently revise their demand prices and randomly
encounter potential trading partners. The model describes two distinct
ways by which informational events affect trading volume: first, investor

disagreement leads to increased trading; second, trading volume can
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increase even if investors interpret information identically, as long as
they also have divergent prior expectations.

We map our theoretical framework into an empirical test of our
conjectures concerning the effects of information flows, return volatility,
and market liquidity on trading intensity. In addition, we compare the
implications of our model with the findings of various other theories of
intraday trading patterns, order placement, and block trading. We confirm
our hypothesis that information flows strongly affect intraday trading
intensity. However, the effect o: security-specific information is
dominated by the effect of market-wide information flows. This finding is
consistent with our theory and inconsistent with several leading theories
of intraday trading patterns, most notably those based on asymmetric
information.  Furthermore, we control for changes in the distribution of
beliefs (using return volatility) as well as changes in market liquidity,
and we find that these variables are significant determinants of trading
intensity.

Our findings are especially interesting when we separate the sample by
trader type and time-of-day. As predicted by our model, both buyer-
initiated and seller-ivitiated traders respond to market-wide signals
rather than sccurity-specific signals to decide when to trade and this
decision occurs in an asymmetric manner. In addition, we find that while
market-market trades are influenced by security-specific information,
market-limi¢ and block trades are not. Finally, when we divide the sample
by time-of-day, we observe that trading intensity during the opening hour

is largely liquidity driven, while trade during the closing hour is
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determined by market-wide information and market liquidity.

Our analysis raises several interesting questions. Perhaps we could
better explain intraday trading patterns if we modeled the interaction of
information revelation and price discovery. How do traders react when they
observe the actions of others? Does trade arise from the heterogenéity of
beliefs among trades or does trade generate trade through a feedback
process of contagion? We endeavor to explore these questions in future

research.
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APPENDIX

Proof of Proposition 1: Individual k’s (k e S) demand-price revision due
to the information is p, = p + ¢, where ¢, is the information effect
idiosyncratic to trader k (and is over and above the idiosyncratic demand-
price revision due to liquidity and speculative desires). To the outside
observer, ¢, is a random variable with zero mean and variance o}.
Independence from the idiosyncratic liquidity or speculative demand-price
revisions implies E(e,¢;) = O for all k and h.
Each individual k, whether a buyer or seller, has an expected demand
price revision E(5,,) = p. But the variance of this process is now
E(8y; - E(8,))? = o} + o2 (A.1)
For the parameter 6 = §;, - §;,
E(6) = 0, (A.2)
E(e - E@))? = 2(c} + o?) > 202, (A.3)
So the process that describes the probability of an exchange (equation 1.9)
is characterized by an increased variance. Differentiating equation (1.12)
with respect to og,
dur/oeg = (1/NZE(1/og)(Pyo - Pjo - He)e(Pio - Pio - He)- (A.4)
Since (P - P) > 0 and (y; - ) = 0, du/d0g > 0, and the effect of
heterogeneous reactions to new infermation is to increase expected

volume. =
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Proof of Proposition 2: Differentiating (1.12) with respect to ug,
dur/ong = 1ZZfe(py - Po)- ® (A.5)

Proof of Proposition 3: This result follows directly from the following
Proposition derived by Katz (1963):

Proposition Al (Poisson Approximation to the Bemoulli Process): For a
Bernoulli process X = {X,: n =1, 2, ...} with success probability p,
suppose the n-th trial occurs at time nh. For fixed h > 0, letr N(t; h) be
the number of successes in the interval [0, t]. Let N(t) be the limit of
N(t; k) as both h — 0 and p — 0 in such a way that p/h = x. Then for
every A > 0,

P{N(t) = k} = eMat)¥/k!, k =0, 1,...;
that is, N(t) has the Poisson distribution with parameter At.

Proof of Proposition Al: For fixed h, the number of trials in [0, t] is
[t/h] where [x] is the integer part of x. Since the number of successes in
n trials is N, and the number of success in [0, t] is N(t; h), then for
each realization o,

N(t, h)(@@) = Ny (). (A.6)

Thus N, is binomial with parameters n and p and, so,

PNG; h) = K} = [“{f‘]]p*(l CpE, Kk = 0, ..., [uh],

= [[]’(‘]}(A/r)k(l SamEE, k=0, .. [t (A7)
where r = 1/h and thereby, p = A/r. Since r — « as h — 0, then

P{NQ) = k} = lim[[lr(tn(hlr)"(l A k=0, .., (), (A.8)
oo k)
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For r large, [rt] is approximately rt and

sy oo = 142

(rt-
= 8% 1.1 - 1.t - (1), (A.9)
So,
glll[[ll;t]](k/r)k = Q) ' (A.10)
Also,
{n]
lim(l - M) = lim(l - /™ = lim § [[F‘]](-A/r)i
D o g J
j=0
- z(_Jé,Q = e, (A.11)
j=0

Applying equations (A.10) and (A.11) to equation (A.8) gives that N(t) is
Poisson with parameter At. Furthermore, the number of successes in any
interval depends only on the length of the interval, independent of the
beginning time of the interval. For any s, t > 0,

P{N(t+9) - N@) = k} = M) & (A.12)
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Count

FIGURE 1: FREQUENCY COUNT OF THE NUMBER OF TRADES, GNN.
This figure presents the frequency count of the number of trades per 15 mirtte period for the
stock Great Northem Nekoosa (GNN). All NYSE transactions between 3 January 1988
and 31 December 1988 were incuded. An observation is the number of trades in a given
15 minute period. The frequency count is computed over 6312 observations.
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Number of Trades (per 15 minute interval)
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TABLE 2: TRADING INTENSITY SUMMARY STATISTICS.

This table illustrates ithe means and standard deviations (in parenthesis) of the trading intensity measures
we estimate with our model for each stock per fifieen minute period. NTRADE is thc number of trades,
NBUY i< the number of buyer-initiated trades, NSELL is the number of seller-initiated trades. NMMT is
the number of market-market trades, NMLT is the number of market-limit trades, and NBLOCK is the

number of block trades. NOBS is the number of fifieen minute periods used for each sccunty.

STOCK |NTRADE| NBUY | NSELL | NMMT | NMLT ;NBLOCK| NOBS
BA 7.216 2,430 2.931 2.107 5.110 0.416 6324
(4.514) | (2.687) | (2.862) | (2.336) | (3.903) | (0.809)

BC 5.975 2479 2332 1.450 4.524 0.300 6323
(4.824) | (2.882) | (2.616) | (2.117) | (4.041) | (0.690)

BCC 2.054 0.826 0.699 097 1.077 0.105 6293
(2.032) | (1.353) | (1.193) | (1.357) | (1.520) | (0.359)

BMY 10.411 4.154 3.229 3.188 7.223 0.531 6323
(5.295) | (3.279) | (2.758) | (3.051) | (4.296) | (0.879)

FLE 1.309 0.551 0.476 0.513 0.797 0.068 5972
(1.468) | (1.097) | (0.936) | (0.878) | (1.228) [ (0.290)

GNN 3.087 1.244 1.108 1.268 1.819 0.161 6312
(2.569) | (1.683) | (1.604) | (1.531) | (2.087) { (0.450)

JCP 4.087 1.314 1.495 1.838 2.250 0.244 6319
G427 | (1.924) | (1.947) | (2.134) | (2.538) | (0.585)

JPM 4.699 1.397 1.563 2.178 2.521 0.286 6324
(3.109) | (1.806) | (1.863) | (2.076) | (2.416) | (0.651)

KMB 4.559 1.820 1.228 1.993 2.566 0.350 6316
(4.571) | (2475) | (1.715) | (2.673) | (2.850) | (0.795)

MA 4.423 1.331 1.216 2.077 2.346 0.301 6309
(3.288) | (1.930) | (1.619) | (2.229) | (2.533) | (0.664)

MHP 4878 1.947 1.718 2.343 2.535 0.420 6314
(5.387) | (2.848) | (2.374) | (2.948) | (3.266) | (0.943)

NCB 2217 0.863 0915 0.662 1.555 0.116 6201
(2.415) | (1.456) | (1.391) | (1.126) | (2.041) | (0.387)

RAD 1.828 0.788 0.683 0.591 1.237 0.092 6279
(1.951) | (1.292) | (1.196) | (1.084) | (1.569) | (0.34])

SBC 4.983 1.597 1.970 1.629 3.354 0.245 6323
(2.936) | (1.901) | (2.033) | (1.917) | (2.682) | (0.543)

UNP 4.825 1.758 2.154 2.094 2.731 0.243 6314
(3.474) | (2.144) | (2.187) | (2.066) | (2.543) | (0.583)

UPJ 13.203 6.252 4.176 3.299 9.904 0.662 6318
(8.288) | (5.608) | (3.735) | (3.807) | (7.256) { (1.102)

USw 4.271 1.245 1.985 1.483 2.788 0.215 6318
(2.851) | (1.796) | (2.031) | (1.817) | (2.426) | (0.525)

VO 2.529 1.064 0.931 0.743 1.787 0.161 6303
(2.619) | (1.624) } (1.572) | (L.144) | (2.147) | (0 464)
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TABLE 3: SECURITY-SPECIFIC SUMMARY STATISTICS.

This table illustrates the means and standard deviations (in parenthesis) of the security-specific variables
in our model for each stock per fifteen minute period. PTRET is the positive security-specific percentage
return, NTRET is the negative security-specific percentage return, TVOL is the return volatility, SPREAD
is the time-weighted mean percentage bid-ask spread, DEPTH is the time-weighted mean market depth in
lots divided by 1000.0, and VOLUME is the total number of lots transacted divided by 1000.0.

STOCK | PTRET | NTRET | TVOL |SPREAD| DEPTH |VOLUME
BA 0093 | 0087 | 0120 | 0.168 | 0079 | 0.163
©.174) | (0.164) | 0.075) | (0.155) | (0.099) | (0.239
BC 0.188 | 0190 | 0303 | 0268 | 0059 | 0095
(0.360) | (0.365) | (0.211) | (0.293) | (0.099) | (0.200)
BCC | 0085 | 008 | 0075 | 0396 | 0057 | 0036
(0.201) | (0.208) | (0.116) | (0.270) | (0.064) | (0.089)
BMY | 0116 | 0115 ! 0189 | 0.195 | 0074 | 0.166
(0.203) | (0.206) | (0.076) | (0.156) | (0.095) | (0.211)
FLE | 0123 | 0.118 | 0065 | 1050 | 0058 | 0018
0.303) | (0.307) | (0.160) | (0.447) | (0.053) | (0.057)
GNN | 0109 | 0117 | 0127 | 0345 [ 0.051 0.072
0.217) | (0.234) | (0.131) | (0.254) | (0.052) | (0.152)
ICP 0091 | 0091 | 0099 | 0215 | 0.061 0.113
0.201) | (0.206) | (0.099) | (0.191) | (0.074) | (0.242)
JPM | 0121 | 0124 | 0172 | 0336 | 0083 | 0.135
0.226) | 0.227) | (0.125) | (0.239) | (0.095) | (0.776)
KMB | 0110 | 0110 | 0105 | 0221 | 0027 | 0072
0.224) | (0.209) | (0.092) | (0.196) | (0.040) | (0.120)
MA | 0108 | 0110 | 0135 | 0348 | 0093 | 0.119
0.239) | 0.224) | 0.116) | ©0.240) | 0.13%) | (0.197)
MHF | 0122 | 0122 | 0107 | 0200 | 0.025 | 008l
0.262) | (0.249) | (0.100) | (0.203) | (©.035) | (0.131)
NCB | 0146 | 0140 | 0.139 | 0.759 | 0.080 0.062 |
(0.318) | (0.304) (0.206) (0.472) (0.092) (0.363)
RAD | 0.103 | 0107 | 0083 | 0500 [ 0044 [ 0.029
0.227) | (0.245) | (0.138) | (0.332) | (0.049) | (0.093)
SBC | 0093 | 0093 | 0.148 | 0310 | 0.151 0.110
©.182) | 0.183%) | 0.109) | ©.213) | .169) | (0.245)
UNP | 0111 | 0109 | 0134 | 0198 | 0032 | 0076
0.201) | 0.191) | 0.096) | (0.155) | (0.039) | (0.126)
UPJ 0.155 | 0153 | 0251 | 0183 | 0060 | 0.192
(0.280) (0.283) 0.101) 0.192) 0.101) (0.2695)
USW | 0077 | 0074 | 0107 | 0272 | 0098 | 0.091
0.154) | 0.149) | 0.095) | ©.165) | ©.109) | ©.752)
VO 0073 | 0073 | 0070 | 0167 | 0.034 0037
0.152) | (0.158) | (0.087) | (0.146) | (©0.039) | (0.067)
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TABLE 4: ROBUSTNESS OF THE ESTIMATION METHOD, GNN.
This table presents results of various estimation methods of our model for the stock Great Northern
Nekoosa (GNN). OLS is ordinary least squares. NLLS is non-linear lezst squares: Foisson is Poisson
maximum likelihood estimation; and Neg Bin is negative binomial maximum likelihood esumation. The
eslimating equation is:
NTRADE, = B, + B,PTRET, | + B,NTRET, | + §;PMRET, , + $,NMRET, | + TVOL,,
+ BcMVOL, | + B,SPREAD, , + BgDEPTH, | + BgVOLUME, , +8,T1, + 8,12 + 8;T3, + §,TH4,
+ 8, TS, + 8,T6, + 8,T7 + 8T8 + 8T9 + 5, T10, + 8, T11, +5,T12 + g

See Tables 2 and 3 for variable descriptions. vy is a scalar dispersion parameter. Hetroscedasticity robust
standard errors are reported in the parenthesis. ! is the log-likelihood. R2is the adjusicd cocfMcient of
variauon for each specificauon. * indicates that the coefficient 1s significant at the 5% level. ®* at the
10% level

Parameter OLS NLLS Poisson | Neg Bin
[50 1.395* 1.097* 1.030° 1.002°
(0.287) | (0.056) (0.058) | (0.058)

[}l 0.506° 0.078 0.691°* 0.102°
(0179 (0.050) (0.047) (0 04

B5 0439° -0.003 0.042 0.036
- (0.177) (0.066) (0.052) (0.051)
B3 4.276° 0.942° 1.030° 0983°
(0413) | (0.123) (0.093) (0.091)

p4 3.396° 0.786"* 0.899° 0.887°
(0.429) | (0.101) (0.089) (0.089)

ﬁs 1.010* 0441° 0.434* 0.402°
(0.278) | (0.098) (0.085) (0.081)

Bs 7.716° 0.352° 0.505* 0.542°
(1.215) | (0.188) (0.183) (0.182)

D7 -1.262* -0 494° -0.463° 0 450°
(0.130) (0.056) (0.050) (0 0460

[38 2.848° 0.851°* 0903° 0 889°
L_ 0645 | 0223 | 0221y | (0196
99 1.183¢ 0293 0.280°* 0.259*
(0292) (0054 (0053 (0 054)

9 0712 0195 0177 0 190°
(0 238 (0 063) (0057 (0 056)

61 -0 026 0038 <0025 0003
(0175) (0035) (0 (048) (0047

64 0133 0 01l O] 0020
) (0 176) (0053 (0 (19 (0 049)
oy 0347 -0 126° 0119 | -0090°*
(0170 (0055 (00SH (039

64 £ 332° -0 154° -0 146° -0 102°
) (0 163) | (00521 | (0§48 | (0047,
6(‘ -) SO8* -0 191° -0 1R9* 4) 163°
(0167 (0 050 (OOShH (0 050

67 -1022° -0 377 4{) 374° - 332°
(0 139) (0037 (0052) (0050

63 -Y3ae -0 300° -0 336° -0 305
(O 161 (0063 (0033 (0051

6‘) - Yu6e -1 220° -0 321 -0291*
(0162 0058 (0053 (0 051)

610 0 5318° -0 166° 4 16R® -0 136°
(0164, (0052 (0053 (0 (48)

6| | RUIRTHY R RO R L B TR -0 08)
(0170 [(EXIART (0 (HY) () (149,

61> -0 128 0011 0023 0 008
(1T (L) (0050 (0040

Y - - - (0422
(0051

] BERIN I RRLY AT 0343 0621

n2 0170 )
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TABLE 5: ROBUSTNESS OF THE MODEL SPECIFICATION, GNN.
This table presents results of various specifications of our model using negauve binomial maximum
likelihood estimation for the stock Great Northern Nekoosa (GNN). The estimating equation is:

NTRADE, = B, + B,PTRET, | + B,NTRET, , + B;PMRET, , + B,NMRET, | + B TVOL,

+ BgMVOL, | + B,SPREAD, , + ByDEPTH, | + BgVOLUME, | + & Tl + 8,T2, + 8;T3, + §,T4,
+8,TS, + 8,T6, + 8,T7, + 8T8 + 8T9, + 5;oT10, + &, T11, +5;T12 + g

See Tables 2 and 3 for variable descriptions. v is a scalar dispersion parameter. Hetroscedasticity robust
standard errors are reported in the parenthesis. £ is the log-likelihood. Each specification is compared to
the full model, denoted column S, with a likelihood ratio test reported on the lines marked x2 and p-value.
» indicates that the coefficient is significant at the 5% level, ** at the 10% level.

Paran.eter 0 1 2 3 4 S

Bo 1.232° | 1.017* | 1.004* | 1.137* | c88)° | 1002°
(0.040) | (0.048) | (0.060) | (0.045) | (0.056) | (0.058)

B . . - 0.147* | 0.126* | 0.102°
- - - (0.044) | (0.644) | (0.049)

B, - . . 0.109* | 0.063 0.036
- - 0.049) | (0.052) | (0.051)

B3 . . 1.013* | L117* | 1.008* | 0.983°
- - 0.090) | (0.087) | (0.091) | (0091

By . . 0908° | 0.935* [ 0921* | 0.837*
. - 0.094) | (0.090) | (0.091) | (0.089

Bs . 0.514° | 0.441° - 0.590° | 0.402°
- (0.078) | (0.077) 0.077) | (0.081)

Be - 1.393* | 0.585° R 0.544* | 0.543*
- 0.120) | (0.191) - (0.190) | (0.182)

By . 0.497° | -0.454* | -0.488° - 0.450°
- 0.047) | (0.046) | (0.046) - (0.046)

Bg . 0.771* | 08356* | 0.787° - 0.889*
- 0.198) | (0.1940) | (0.195) - (0 196)

Bg - 0311* | 0279 | 0311° 0.259°
- (0.046) | (0.050) | (0.049) . (0 054)

8y 0.250* | 0.152* | 0.190* | 0.208* | 0.226* | 0.190°
(0.061) | (0.058) | (0.057) | (00358) | (0.056) | (0056)

8, 0.099* | 0.018 0.003 0.036 0.028 0.005
(0050) | (0048) | (0048) | (0.048) [ (0048) | (0.047

51 0010 | 0078 | 0022 0 000 0009 | -0.020
’ (0.052) | (0050) | (0049) | (0.049) | (0049) | (0.049
8, 0.109* [ -0151* | -0091*¢ | 0074 | -0.080°° [ -0.050°°
05 | (09 | (0049 | (0.049 | 0049y | (0 0an

35 0112° | -0168° | -0105* | 0079°* | 0.090** | v 102°
i (0.049) | (00471 | (047 | (0048) | (003%) | (0047
8 0197° | 0224 | 0163* | 0146° | -0160° | -0.163*
(0052) | (0050y | (0050) | (0050) | (0050 | (L OSOY

84 0367° | 0398 [ -0335* [ 0319° | 0335 [ .0332°
(0052) | (005l | 0051y | vosh | (0051 | (0050

oy 0356* | 0353 [ 0308 [ -0290° | -0313* | -0.305°
(00s4) | 0052y | 0051y | 0052y | (0052 | (0o0SIH

&y 0328° | 0331* | 0293 | 0280° | -0291* | -0291°
(0053 [ 00sh) | 0051y | 0os1y | 0051) | vosiH

810 0163 | 016te | 0135 [ 01290 | o1 | 01360
0051 | 0048y | (woa8) | 0019) | 0048y | (00a8)
o1 ©0092°° [ 0097° | 0082 | 0071 | -0086®* | -0ORI*®
(0052) | (0049 | (049 | 0050y | (0.049) | (0049)

81 0.032 0001 0007 0018 0002 0 008
(005 | (0048 | (046) | (0047 | (0046) | 10 046)

Y 0150° { 0311 | w1k | wa0se | 0365° | -u422°
(0045 | (048 | 0051 | 0050y | vosey | oosn

! 0570 0601 0620 0614 0610 0621

4 36862 | 120559 | 2523 17673 | 68 801
Cpvalue | 00000 | 0000y | 0283 | o oam | o oon
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TABLE 6A: MODEL ESTIMATES-NUMBER OF TRADES, ALL STOCKS.
This table presents the cocfficients and standard errors from negative binomial maximura likelihood
estimation for the following equation:

NTRADE, = B, + B,PTRET, | + B,NTRET, + pPMRET, | + J,NMRET,; + B TVOL,,
+ BgMVOL,, + B,SPREAD, | + BgDEPTH, , + BoVOLUME, | + 8Tl +8,T2, +6,T3, + 5, T4,
+8,TS, + 8gT6, + 8,T7, + 8T8, + 8T, + §,4T10, + 8, Tl +8,,T12, + ¢
Stock ticker symbols are given in Table 1, sce Tables 2 and 3 for vanable descriptions. y 1s a scalar
dispersion parameter. Hetroscedasticity robust standard errors are reported in the parenthesis. £ is the log-
likelihood. * indicates that the coeficient is significant at the 5% level; ** at the 10% level

Parameter BA BC BCC BMY FLE GNN JCP JPM KMB
Bo To81% | 1.595° | 0686° | 2.325° | 0421° | 1002° | 1.287° [ 1368° | 1.924°
0043) | (0.067) | (0.086) | (0.039) | (0.086) | (0.058) | (0.061) | (0039) } (0122)

B) 0086° | 0110° | 0281° | 0068 | 0055 | 0102® | 0309° | ocCil | 0370°
0.042) | (0.030) | (0.060) | (0.031) | (0.048) | (0044) | (0.047) | (6.037) | (0O4R)

8, 0066 | 0093* | 0113° | 009" | 0056 | 0036 [ 0271 [ 003 | 027"

B 0.045) | (0.025) | (0.057) | (0.032) | (0.058) | (0051) | (0.060) | (0.038) | (0057)

B; 0622° | 0659° | 1256° | 0662° | 1025* | 0983 [ 0632° [ 0769 | 0530°
(0.066) | (0.084) | (0.109) | (0.055) | (0.133) | (0.091) | (0091) | (0.073) | (0091

By 0614° | 0576* | 1.009° | 0469* | 0.830* | 0887 [ 0.525° | 0.726* | 0478°

(0.057) | (0.099) (0.115) | (0.056) | (0.104) | (0.089) (0.092) [ (0.066) (0.099)

fs 0.039 0.266* 0.400° 0.244° 0.632° 0.402° 0.541° 0.274° -0.286°
(0.095) (0.038) (0.111) | (0.074) {0 084) (0.081) (0.103) (0.060) (011
Pe 0.267 1.047° 0.003 0.274°° 0.096 0.543° 0.643° 0.868* | -1060°*
(0.180) | (0.265) (0.338) (0.155) (0.296) (0.181) (0.239) 0114 (0623
B9 0816° | -0.527° | -0.273* | -0.234* | -0.280° | -0450* | -0.571° 0.277° -1.609°
(0.064) (0.047) (0.046) (0.045) (0.030) (0.046) (0.064) (0 040 (006
Bg 0.554* 0.300" 0.264 0.074 0.316 0889 0.080 0.582¢ 0037
(0.089) | (0.127) (0.213) {0.072) (0.258) (0.196) (0.154 (0.092) (0 299)
By 0.284° 0.302° 0.075 0.225° 0.123 0.259° 0.156* 9011 1,059
(0.027) | (0.042) (0.112) (0.030) (0.245) (G.059 (0.057) (000N (009N
8 0.126* 0.087°* 0.146° 0037 0.042 0.190° 0.208* 0.124° 0 137*
(0.038) | (0.051) (0.067) (0031 (0.075) (0 056) (0 052) (0.044) (0 058H
5 0.012 | -0.085°° 0.037 £.077° -0.084 0.005 -0.015 0.4 -0 (46
(0.032) | (0.040) (0.057) (0.027) (0.073) (0.047) (0.043) (0.036) (0 (16
83 -0.088* | -0039° 0.035 0.07¢* 0015 -0.020 -0.020 0.000 -0097°
(0031 (0.041) (0.058) (0.027) (0.074) (0 049) (0 043) (0 G36) (0 047)
64 -0.090° I -0096° -0.073 -0091°* | -0129** | -0089°®* [ -0082"* 0 oY -0 oo
(0.032) (0.042) (0.057) (0027) (0075) (0.049) (0 (H3) (0 030) (U 0o
o5 -0 146* -0.088¢° -0.087 0.170* | -0.123** | 0.102° 0117 -0 00 VNN
(0.033) (04D (0.057) (0 026) (0075) (047 (0 (H6) (0 037) (0047
o -0.206* | -0.209° -0.116* -0 237 0112 -0 163 -0 175° -0 189~ -0 200
(0.034) (0 041 (0057 (0027) (0073) (0 050) (0 (15) (0037 (0047
o9 0.330° -0.361° 0.222° -0 384° -0 198 -0332° 0226 -() 33R* -0 2958°
(0.035) | (0043 (0.059) (0 028) (0.076) (0.050) (0 (45) (0 039y (V0SS
og 0.344° | 0387° | -0219* 0346 [ 0135 | -0.305* -0 303* £).397° -0 303*
(003%) (0 42) (0059) (0 030) (0075) (0051 (0 (45) (0 042y (0081
oy 4345 -0.321° -0 243° -0.389° -0.208° -0.291° ) 331° -0 323 -0201°

(0.035) (0.041) (0.060) (0 028) (0077 (0.051) (0 048) (0 039) (0 050)

010 0.210* | 0 196° | -0.160° -0.252° -0.062 0.136% | 0233 - 151° -0 120°
(0.033) [ (0042) (0060) | (0027) | (0.076) (0 (K8) (0 (H6) (0 038) (0051

5” 0.171° 0.149° | 0.112°* | 0177° RN IS 0.081°** | -0.204* 0 110* -0 138°
(0 03y (0041 (0 059) {0 0206) (0 0BOY (0 (19) (007 (V037 (0049

6|2 0077° 048 0.058 -0 080° 0026 0 008 0013 -0038 RUR
(0033, (0 041) (0 058) (0027, (0079 (0 :46) (0044 (0037 (00415

Y 0051 0512° -0 562° 0 068*"® -1 371° £ 122° 0 100° -0 433 () 339*

(0019) (0017 (0 05R) (0 0IR) (0121 (0051 (0041 (0049, (01R0)

2 7 496 5375 0403 14424 0877 0621 2070 2793 1
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TABLE 6A (continued).

Parameter MA MHP NCB RAD SBC UNP UP) Usw VO
[!0 1.435* 1.725° 1.011° 0.509° 1.621° 143]° 2.438"° 1.513¢ 0.785°
0.047) | (0.053) | (0.076) | (0.088) | (0.040) | (0.048) | (0.036) | (0.052) | (0.065)
Bl 0.242* 0.257* -0.024 -0.071 0.089* 0.312* 0.072* 0.083° 0.082
0.035) | (0.051) | (0.048) | (0.060) | (0.042) | (0.051) | (0.036) | (0.057) | (0.091)
[32 0.003 0.213* -0.101° 0.058 -0.008 0.229* 0.031 0.015 0.247*
0.041) | (0.043) | (0.044) | (0.072) | (0.042) | (0.048) | (0.026) | (0.066) | (0.081)
B3 0.722°* 0.631* 0.849°* 1.031° 0.723° 0.719* 0512° 0.715* 1.008°*
(0.077) | (0.106) | (0.121) | (0.121) | (0.075) | (0.083) | (0.066) | (0.078) | (0.121) |
By 0.695° 0.631* 0.916* 0.921° 0.607° 0.590° 0.414° 0.725* 0.925*
0.073) | 0.079) | 0.083) | 0.116) | (0.062) | (0.073) | 0.052) | (0.077) | (0.116)
[35 0.442° 0.197 0.366* 0.526* 0.346* 0.152¢ 0.264°* 0.238* 0.490°
(0.079) | (0.139) | (0.057) | (0.093) | (0.065) | (0.089) | (0.074) | (0.091) | (0.146)
ﬁé 0.119 0.134 0.038 0.298 0.373° 0.455°* 0.390°* 0.113 0.236
(0.180) | (0.190) | (0.273) | (0.361) | (0.141) | (0.163) | (0.122) | (0197 | i0.228)
|37 0.306° -1.438° -0.506* -0.409* 0.234° 0.626° 0.542°* 0.392° - 758°*
(0.040) | (0.072) | (0.027) | (0.041) | (0.039) | (0.072) | (0.046) | (0.054) | (0.117
[38 0.001 0.46; 0.387° 1.068° -0.017 0.947* 0.904*° 0.173* 0.791*
(0.067) | (0.348) | (0.101) | (©.236) | (0.047) | (0.245) | (0.068) | (0.083) | (0432)
[39 0.308¢ 1.302°* 0.093* 0.671* -0.005 0.424* 0.440° -0.002 1.196*
(0.041) | (0.089) | (0014) | 0.115) | 0.021) | (0.097) | (0.040) | (0.004) | (0.182)
8 0.132° 0.162° 0.032 0.234° -0.049 0.155* 0.088* 0.065 0277*
(0.054) (0.055) (0.075) (0.071) (0.041) (0.049) (0.039) (0.045) (0.068)
62 0.093° 0.064 0.061 0.114° 0.075* 0.098* -0.008 -0.031 0.125°
(0.040) (0.048) (0.060) (0.061) (0.033) (0.038) (0.032) (0.038) (0.059)
8 -0.013 -0.050 0.032 0.080°° | 0.131°* 0.008 -0.065° -0.050 -0.020
(0.043) (0.046) (0.060) (0.062) (0.034) (0.040) (0.033) (0.037) (0.057)
84 0.001 -0.185° 0.013 -0.004 -0.122* 0.002 {).NBR* 0.098° -0 084
(0.042) (0.049) (0.060) (0.065) (0.033) (0.040) (0.033) (0 038) (0.059
55 -0.052 -0.140° 0.012 06 -0.106* -0.031 £.089° -0109* -0.089
(0.042) (0.050) (0.061) (0.052) (0.033) (0041) (0.032) (0 038) (0 056)
56 -0070°* | -0.245* | -0.103°* -0 066 0.164° 0.117° 0.219° 0.194° -0.155*
(0.041) (0.053) (0.060) (0.064) (0.034) (0.042) (0.033) (0.039) (0.058)
&9 -0.270* -0.363* -0.244¢ -0.186° -0.289°* -0.218* £{).382* £.282° -0.252*
(0 043) (0.053) (0.060) (0.064) (0.035) (0.042) (0.033) (0.041) (0 059)
83 -0.240° -0.365° -0.314° -0.257° 0415° -0.307* 0.343° -0.340°* -0.239°¢
(0.043) (0.051) (0.059) (0 063) (0.037) (0.043) (0.034) (0042) (0.060)
59 0.187° -0.347° -0.220° 0.186* -0404° -0.327° -0.322° -0.344° -0.205*
(0.043) (0.0581) (0.060) (0 062) (0.036) (0.041) (0.039) (0.041) (0.060)
6]0 -0.079** | 0.280° 0.149* 0042 -0.244° A.161° 0.215* -0.185* -0.132°
(0.042) (0.052) (0.061) (0.063) (0.035) (0042) (0 034) (0.039) (0059)
Sl 1 -0.078** | -0.164° 0.096 0.019 0.173° -0.059 0.159°* 0.110° -0 081
(0.042) (0.048) (0.061) (0063) (0.035) (OO (0034 (¢ 039) (0057
612 0.078* 0.068 0.058 0 082 0.030 0034 0.089* 0013 0 044
(0 039) (0 049) (0059 (0064, (0034 (0.040) (0032) (0.038) (0 058)
Y 0.102° 0743° -0.295" A 5513 -08l6° -0.047 1).639° ) 479+ 0041
(0 044 (0037 (0057 (0 060) (0 063) (0 042) (0 040) (0053) (0 015)
4 246v 4086 0177 -0 558 31N 3095 22 006 2097 0150
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TABLE 6B: MODEL HYPOTHESIS TESTS--

NUMBER OF TRADES, ALL STOCKS.

Based on the negative binomial regressions reported in Table 6A. this table presents likelihood ratio test
statistics and p-values on the robustness of the model over different specifications.  Our first test examines
the hypothesis that Hy: By = .. = B89 = 0. The second test staustic studics the hypothesis that secunty-
specific returns (both PTRET, , and NTRET, ;) have no effect on trading intensity (NTRADE,). i.c. Hy: |3
= By = 0. The proposition that neither securnity-specific nor market-wide returns (PMRET,, and
NMRET, ) affect trading intensity is explored in Hy: By = B = B3 = B3 = 0. Next, we tested whether
security-specific volatility (TVOL, |) and market-wide volatility (MVOL, ) affect trading intensity. Hy: fg
= P = 0. Finally, we examine the hypothesis of whether the market liquidity variables (SPREAD ;.
DEPTH, . and VOLUME, ) affect trading intensity, Hy: 7 = pg = Bg = 0. In each case. the two-sided
aliernative hypothesis is that the given coefficients are not equal to zero. All test statistics arc distnibuted
xz(k), where k is the number of restrictions. P-values are reported in parenthesis. Sec Tablc 1 for a
description of the stock ticker symbols.

Hyvpothesis BA BC BCC BMY FLE CNN JCP JPM KM
Hy 396.515 | 385.071 | 236.617 | 329.428 | 189.312 | 316.862 | 331.748 | 212480 | 888.661
p-value (0.000) { (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0 000)
H, 4427 18.969 14.474 11.381 2.986 2.525 36018 1.897 58107
p-value (0.109) | (0.000) (0.001) | (0.003) (0.225) (0.283) (0.000} (0.387) (0 000)
Hj 82212 75.876 137.817 92.316 54.942 120.559 | 107.423 99.919 97.260
p-value (0.000) (0.000) (0.000) | (0.000) (0.000) (0.000) (0.000) (0.000) (0 000)
Hj 0.632 32247 8.181 12.646 31.652 17.674 16429 27.826 23309
p-value (0.729) | (0.000) (0.017) ! (0.002) (0.000) (0.000) (0 .000) (0.000) (0 000)
Hy 266.873 | 154.281 23913 110.653 | 48970 68 80! 73.300 36 679 Sed 019
p-value (0.000) (0.000) (0.000) | (0.000) (0.000) (0.000) (0.000) (0.000) (0 000

Hvpothesis MA MHP NCB RAD SBC UNP UpJ USW VO
Hg 323.652 | 843.550 | 335474 | 240486 | 190.955 | 280.342 | 539.557 | 138304 | 285.520
p-valuc (0.000) (0 000) (0.000) | (0000) (0.000) (0.000y (0 000 (0.000) (0 .000)
H, 34 069 34 727 3.10% 3140 ilel 37.253 10 741 1.264 4412
p-value (0 000) (0 000) (0.212) (0.208) (0.206) (0 000) (0 005) (0 532) (0 110)
H, 94.004 81 451 62 010 78 487 94213 112389 27799 78 343 109 672
p-valuc (0.000) (0 000) (0 000) (0 000 (G 000 (0 000) (0 000) (00001 (0 000)
H, 13.880 4420 18.603 16.325 10 749 0.031 5.686 0318 5673
__p-valuc (0.001 (0 110y (0 000) (0 000) (0 005) (0729) (0 058) (0 (42 (0059
Hy 97.790 573943 | 204 633 94 185 25.924 90.290 | 418.252 30 958 66 812
~ p-value (0. 000) (0 0001 (0 000 (0 000) (0 000) (0 000) (0 000) (0 000y (0 000)
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TABLE 7: MODEL ESTIMATES AND HYPOTHESIS TESTS—
NUMBER OF BUYER-INITIATED TRADES, ALL STOCKS.

This table presents in Panel A abbreviated coefficients and standard errors from negative binomial
maximum likelihood estimation for the following equation:
NBUY, = B, + B,PTRET,, + PoNTRET, + B,PMRET, , + B,NMRET,,, + BsTVOL,,
+ peMVOL,, + B,SPREAD,; + pgDEPTH,, + BgVOLUME, | +5,T1 + 8,T2, + 8,3, + 8,TH,
+8,TS, + 8¢T6, +8,T7 + 8T8, + 8gT9, + 8,oT10, + 8, TH +8,TI2 + &
Stock ticker symbols arc given in Table 1, see Tables 2 and 3 for variable descriptions. Estimaies of the
coeficients 8, to 8, are not presented. y is a scalar dispersion parameter. Hetroscedasticity robust standard
errors are reported in the parenthesis. 11is the log-likelihood. * indicates that the cocflicient is significant at
the 5% level: ** at the 10% level. Panel B piesents likelihood ratio test statistics and p-values from modcl
exclusion tests over different sets of parameters. We test the following five hypotheses: Hg: By = ... =Py =
0, Hy: By =P5=0Hy By =[52=[53=B4=0,H3: Bs =P =0.Hy f7=pg=PBg=0. In cach casc.
the two-sided alternative hypothesis is that the given coefficicnts arc not equal 1o zerc. All 1est statistics arc
distributed 7_2(k). where k is the number of restrictions. P-values are reported in parenthesis,

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM KMB
Bo 1.228"° 0.784° -0.315* 1.386° -0.344° 0.069 -0.025 0.168"* 1.192°
(0.102) | (0.09)) (0.102) | (0.080) | (0.142) (0.093) (0.108) | (0093) | (0204

By 0.205°* 0.147° 0.222° -0 024 0.267° 0.103 0.318° -0.054 0.333*
(0.072) | (0039) (0.092) | (0049) | (0.066) | (0.078) (0.080) | (0.072) (0.065)

LB} 0.066 0.103* 0.312° | 0.100%* | -0.372° | 0.141°° 0.342° 0.117 0.217°
(0.081) | (0.041) | (0.073) | (0.051) (0.123) | (0.074) | 10.072) (0.078) (0079

i) 1.197° 0.985¢ 2.103° 0.985* 1.555* 1.798° 1.225* 1.443° 1 104*
(0.118) | (0.132) (0.179) | (0.102) | (0210) | (0143 (0150) | (0.139) (0139

Bs -0.267° £.134 -0.083 ollo -0.593* -0.140 0.002 -0.053 -0.128
(0.123) | (0116) (0.182) | (0080) | (0.245) | (0143) (0.137) | (0172) | (D 158)

Bs 0.282 0.434° 0.610° 0.694° 0.788° 0.444° 1.280° 0.824° -0.399°
0.176) | (0057) | (0.170) | (0.130) | (0124) (0.129) (01749 [ (0.139 (0 174)

Bg 0.627 0.750°° | 0.615°* 01301 -0.445 0.570 0.936° 1077° -1 478
.(0478) | (0.391) (0.349) | (0367) | (0510) | (0.353) (0.454) | (0.340) (1025

B 1502° | ©0760° | -0.321° | 0691° | -0.213° | -0.357° 0.651° | -0475° | -1 512°
0134) | 0076 | (0082) | (0082) | (0.053) | (0.078) (0.125) (0084) | (0 10R)

Pg 0.562° 0.452° 0410 0.852° 0.166 0.108 0430 0611° -0 665
(0188) | (0178) (0.384) | (0117 | (0427) | (0.357) (0 343) (0 197) (0 480)

By 0.296* 0.279° -0 001 0.190° 0377 0101 0167 ouls®® 0917°
(0047) | (0050) (0 150) | (0055) (0439) (0.089) (0057) (0 009) (0 09N

Y 0386° 0.555° 0088 0.238° -0.347 0.047 0418° 0135 () 378*
(0039) | (0037) (0055 | (0 038y [ (0081Y | (0050) (0041 (0043) (0 (H2)

! 0 146 0264 0810 2093 0750 -0762 0612 -0 700 -() 231

Pancl B: Model Hypothesis Tests.

i hvpothesis BA BC BCC BMY Fl.l- GNN JCP JI'M KMI
H, 270 667 | 279477 | 164247 | 148590 [ 148 106 | 189 360 | 220 220 | 165689 | 478 121
p-valuce 0000y | 0000y | 0000y | (0000 | 0000y | (0000) | (0000) | (O 000) (0 000)
I 6956 10117 7552 2529 16 124 4418 8 847 0032 20211
p-value 0031 | (voo6y | 0023y | (0282, | (0000) | (0110) } (00I2) (0729) (6L 000)
115} 101 184 | 68 28K 100 688 S8 172 96 149 124346 | 60 03] 78 418 7 424
p-valuc 0000y | 0000, | (0oo0y | 0000y | (0000) | (0000) | (0OO0) | (0OOV) (4 000)
5 3794 28 454 3197 8220 16 722 3787 31 595 20723 Y474
p-value (0 150y | (0900y | (0207 | (0016 (0 000y | (0151 [ (0000, ] (0000) (41 009
g 1344 187 | 106 85y | 29577 6133 11347 13 886 34755 17 707 R SEK
p-valuce (0 0001 () 000) (0 000 (0 000 (00101 {0003 (0 000 (0001 (0 000)
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Panel A: Model Estimates.

TABLE 7 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ Ucw VO
Bo 0.058 0.649° 0.067 0.279* 0401°* 0.343° 1.682° 0.141 0.198°*
{0.094) | (0.085) | (0.102) | (0.130) | (0.101) | (0.088) | (0.059) | (0.098) | (0.109)
By 0.264° 0.259°* 0.090 0.091 0.272° 0457 0.148° 0.276* | 0.178°"
(0.060) | (0.067) | (0.062) | (0.087) | (0.083) | (0.069) | (0.043) | (0.106) | (0.109)
By 0.008 0.172* -0.102 0.205° 0.257° 0.478° 0.003 0.122 0.319*
0.075; | 0.061) | (0.068) | (0.096) | (0.080) | (0.078) | (0.036) | (0.112) | (0.109)
B3 1.256° 1.211* 1.549° 1.780° 1.296° 1.436* 0.677° 1.647° 1.711*
0.144) | (0.143) | (0.186) | (0.173) | (0.131) | (0.134) | (0.095) | (0.146) | (0.172)
Ba -0.090 -0.003 0.433° -0.344 | 0.262°* | -0.256"°" 0.025 -0.198 0122
0.155) | (0.132) | (0.170) | (0.219) | (0.145) | (0.139) | (0.083) | (0.149) | (0.152)
Bs 1.205° 0.038 0.656* 0.585* 1.134* 0.700* 0.299* 0.884° 0.791°
0.151) | (0.172) | (0.089) | (0.148) | (0.134) | (0.154) | (0.102) | (0.165) | (V.211)
Be 0.383 0.114 0.061 031! 0.851" 0.252 0.457° 0.182 0.600
©310) | (0.342) | (0.355) | (0.526) | (0.397) | (0.346) | (0.219) ! (0.377) | (0.459)
By -0.484° | -1.388* | -0.499° 0.471° | -0.824* | 0.392* | -1.130* -0.499* | 0.597°
0.083) | (0.109) | (0.048) | (0.064) | (0.099) | (0.125) | (0.082) | (0.115; | (0178)
Pg -0.054 0.496 0.602°* 0.660°* 0.284° -0.567 1.360° -0.008 0.499
(0.140) | (0.539) | (0.164) | (0.388) | (0.091) | (0.522) | (0.106) | (0.169) | (0.678)
Bg 0.257¢ 1.406° 0.080° 0.256 -0.132 0.426* 0.464° 0.027 1.209*
0.061) | (0.116) | (0.016) | (0.160) | (0.214) | (0.115) | (0.045) | (0022) | (0.228)
Y 0.471* 0.594° 0.068 -0.288* 0.095°* 0.263* 1.021° 0.268* 0030
(0.041) (0.042) (0.054) (0.063) (0.042) (0.040) (0.031) | (0.049) (0.053)
z 0615 0.014 -0.770 -0.825 -0.610 0452 6.231 -0.710 -0.767
Pancl B: Model Hvpothesis Tests.
Hvpothesis MA MHP NCB RAD SBC UNP UP) UsSw VO
Hy 206.304 | 521.536 | 215795 | 170.161 | 242.803 | 244983 | 376314 | 162.373 | 192872
pvalue | (0.000) | (0.000) [ (0.000) | (0.000) | (0.000) | (0.000) | (0.000) [ (0.000) | (0000
H, 8.833 17.048 2.480 2512 7.588 33464 24625 2.527 2.521
pvelue | (0.012) | (0.000) | (0.289) | (0.285) | (0.023) | (0.000) | (0.000) | (G.283) | .u78Y)
Hy 66.875 78.925 79.993 90418 93.580 138.277 70717 100 450 94 545
p-valuc (0.000) | (0.000) | (0.000) | (0000) | (0.000) | (0.000) | (0.000) [ (0.000) | (0 000)
Hy 38.485 0.631 22944 9419 38.570 10.102 15154 15.163 750
p-valuc (0 000) (0 729) (0.000) (0 009) (0 000) (0.006) (0.001) (0001) (0 023)
Hy 27129 | 299915 | 78133 | 40186 | 48687 | 29676 | 281.604 | 14.531 | 27733
~_p-value (0.000) (0 000) (0 000) (0 000) (0.000) (0.000) (0.000) (0.002) (0 000)
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TABLE 8: MODEL ESTIMATES AND HYPOTHESIS TESTS--
NUMBER OF SELLER-INITIATED TRADES, ALL STOCKS.
This table presents in Panel A abbreviated coefficients and standard errors from nezgative binomial
maximum likelihood estimation for the following equation:

NSELL, = B, + B,PTRET,, + B,NTRET, , + B,PMRET, , + B,NMRET, , + B, TVOL,,
+BgMVOL, | + B,SPREAD, | + },DEPTH, | + BoVOLUME, , + §,T1, + 8,T2, + 8,T3, + §,T4,
+8,TS, + 3sT6, + 8,T7, + 5,8, + 8T9, + 6,,T10, + 6, Tl1, +8,T12, + ¢
Stock ticker symbols are given in Table I; see Tables 2 and 3 for variable descriptions. Estimates of the
coefficients 8, to 8, are not presented. v is a scalar dispersion parameter. Hetroscedasticity robust
standard errors are reported in the parenthesis. £ is the log-likelihood. * indicates that the cocfTicient 1s
significant at the 5% level; ** at the 10% level. Panel B prescnts likelihood ratio test statistics and p-
values from model exclusion tests o-er different sets of parameters. We test the following five hypotheses:
Hp: By=..=Bg=0.Hy: By =Py =0Hy: By=P;=P3=Py=0Hy: Ps=ps=0 Hy pq=pg=
Bg = 0. In each case, the two-sided alternative hypotiesis is that the given cocfTicients arc not cqual 1o
zero. All test statistics are distiibuted xz(k), where k is the number of restrictions. P-values arc reported

in parenthesis.

Panel A: Maodel Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM MR
Bo 0.985° 0.729¢ 0.173 1.231° -0.607* 0013 0521° 0.315= 0305
(0.076) | (0.086) (0.153) | (0.092) | (0.213) (0.107) (0.140) (0094 (014

By -0.310° 0.058 0.379* 0.144° -0.340° -0.080 0142 -0.040 0.243*
(5075) | (0.039) (0.097) | (0.050) (0.096) (0.087) (0.073) (0.065) (0 068)

By 0.117°* 0.074° 0.161 0.066 0.177* -0.129 0.205°* 0.096 0.090
(0.071) (0.032) (0.109) | (0.056) | (0.066) (0.082) (0.091) (0.068) (0.095)
B3 -0.200** | -0.115 0.158 -0.154¢ | -1.088° 0.269 0018 -0.076 | -0.286°°
(0.115) (0.118) (0.192) (0.106) (0.276) (0.171) (0.149) (0.145) (0 157)

By 0.940° 1.011* 1.509° 0.898* 1.216° 1.435° 0.941° 1.130° L110®
(0.108) (0.102) (0.164) (0.106) (0.218) (0.129) (014 (0 118) (0.141)

Bs 0617 0.205* 0.361°° 0.461°* 0.849° 0771° 0.667° 0.674° 0 485°
(0.167) (0061) (0187) | (01449 | (0131 (0.131) (0.162) (0.106) (0 180

Pe 0.650° 0.720°. -0.048 0231 0.151 1.036° 012} 0 93s* 0033
(0.289)y | (0331 (0652) | (0.389) (0.936) (0.357) (0629 (0353 (0 661)

B -1.033* | -0.753° | -0.560* | -0.822* 0 170° | -0549° -10l16° -0.541° -11270
(0.113) | (0.070) (0.085) | (0094) (0.055) | (0084) (0 116) (0077 (0114

Bg 0.576° 1 148* | 0.5%2°* | 0615° 0.162 0486 0 458¢° 1001 0 (K4
(0171) | (0.139) (0.329) (0147 | (0495 (0 376) (0.253) (0 165) (0 500

Bg 0.238° 0.280° 0132 0 08g®* 0.62¢ 0025 0040 -0 030 0 8§
(0 045) (0.050) (0163) (0 (H6) (0427 (0 145) (0O (0 015) (0135

Y 0423° 0.264° -0.299° 0021 0 653° 0077 0199* 0010 -0 03K
(0.036) (0 (44 (0061) (043 | (0092) (0051 (0 (43) (0 () (0081

! 0613 0005 ) RI0 0831 739 ) 782 0622 -0 67 v 72

Pancl B: Modcl Hvpothesis Tests.

I {vpothesis BA BC BCC BMY I'LI GNN JCP JPN KM
Hg 239680 [ 259243 | 164247 | 196 645 150494 [ 215239 | 189570 [ 1954912 | 284 852
valuc (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 00
1 8221 1.897 7552 3162 17916 0631 6951 1.263 10 100
value (0.016) (0 387) (0023) (0 206) (0 000) (0 729) (0031) (00531 (0 0006)
H, 129 642 96.110 100 688 99 271 103316 | 117403 74564 102 44y BY GR7

p-value (0 000) (0 000 (() 000) (0 000) (0 000 (0000 (0 000) (0000 (0 00
Hy 7 584 B 852 EREY) S 691 17916 16 411 10 110 22 Ton 115K
»value (0022 (0012) (0207 (0S8 (0 000 (0 000 (0 006 (0 000) (0200
Hy 81477 101 16X 29577 52 48] 10152 23 980 53712 32282 oo 740
p-value () 00M (0 000 (0060 (0 000 (0017 (0000 (0 000)) (0 000 (0 000,




Panel A: Model Estimates.

TABLE 8 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bo 0.234° 0.785°* 0.185 -0.355* 0.860° 0.753° 1.286* 1.098° -0.072
0.094) | (0.111) | (0.141) | (0.163) | (0.002) | (0.084) | (0.064) | (0.144) | (0.126)
By 0.284° 0.264° 0.435* -0.286° 0.013 0.271* 0.035 0.063 0.101
0.077) | (0.050) | (0.151) | (0.095) | (0.077) | (0.070) | (0.040) | (0.087) | (0.159)
[}2 0.055 0.207° 0.058 0.117 0.115 0.193* 0.018 0.028 0.317°
0.076) | (0.056) | (0.075) | (0.097) | (0.077) | (0.064) | (0.040) | (0.101) | (0.129)
By 0.170 | -0.278°* | -0.095 | -0.383** | -0.328° 0.017 0.271* 0.377° -0.311
0.165) | (0.149) | (0.059) | (0.202) | (0.142) | (0.127) | (0.114) [ (0.131) | (0.207)
Ba 1.124* 0.985°* 0417° 1.240° 1.216° 1.025¢ 0.777* 0.990°* } 443
(0.144) | (0.130) | (0.190) | (0.167) | (0.103) | (0.104) | (0.085) | (0.118) | (0.163)
Bs 0.705* 0.196 1.500* 0.434° 0.871° 0.095 0.339* 0.101 0.481°
0.150) | (017 | (0.124) | (0.156) | (0.125) [ (0.127) | (0.101) | (0.138) | (0.232)
[56 0.384 0.028 0.219° 0.552 0.129 0.250 0.769° 0.299 G.218
(0.372) | (0.489) | (0.083) | (0.665) [ (0.272) | (0.327) | (0.268) | (0.68%) | (0.518)
84 0.998* | -1.357* -0.651 0.500* | -0.748* | -0471° 0.926° 0.731° -1.196°
0.086) | (0.121) | (0.693) | (0.067) | (0.082) | (0.098) | (0.079) | (0.087) | (0.196)
Pg 1.064° -0.581 -0.588° 0.545 0.148°* 0310 1.212° 0014 0.540
0.097) | (0.682) | (0.043) { (0.421) | (0.082) | (0.372) | (0.105) | (0.144) | (0.692)
[39 -0.145°* 1.149° 0.178 0.331 0.436* 0.314°* 0.381°* 0.001 0.749*
(0.084) | (0.095) | (0.178) | (0.220) [ (0.122) | (0.101) | (0.044) | (0007) | (0.268)
Y 0.010 0.360° 0.029 -0.334° 0.096° -0.108° 0.498° -0.097* 0.046
(0.045) (0.042) | (0.076) | (0.068) (0.039) (0.046) (0.035) (0.045) (0.056)
2 -0.778 -0.303 -0.837 -0.810 0422 -0.286 2.324 0432 -0.745
Panel B: Model Hvpothesis Tests.
Hypothesis MA MHP NCB RAD SBC UNP UP) Usw VO
Hyp 213.244 | 429.352 | 248040 | 155.091 | 202.336 | 175529 | 298.841 151.000 | 240.775
p-value (0.000) (0.000) (0.000) (0.000) {0.000) (0.000) (0 000) (0.000) (0 00
iy 11987 18.942 7441 2512 3162 11.997 1.895 0.632 9454
| L (0 002) (0 000) (0.024) (0.285; (0.206) (0 002) (0.388) (0729 (0 009)
H, 65614 92816 106 037 91.673 96.110 109 864 90.347 97.297 148 751
p-value (0.000) (0 000) (0.000) (0 000) (0 0O (0 000) (0.000) (0 000) (0 000)
Hj 14.511 1.894 6821 5.023 26.557 1.263 8213 2527 2,521
p-valuc (0 001) (0.388) (0 033) (0 081) (0 000) (0.532) (0016) (0.283) (0.283)
Iy 99.051 236.775 | 120.920 35162 65127 25.887 168.69) 48.649 3907
p-valuc (0 000) (0 000) (0 00M (0 600 (0 000) (0 000) (0 000) (0 000) (0 000)

76




NMLT, = B, + B,PTRET, | + B,NTRET, | + B;PMRET,, + B,NMRET, , + f,TVOL,

TABLE 9: MODEL ESTIMATES AND HYPOTHESIS TESTS—

NUMBER OF MARKET-LIMIT TRADES, ALL STOCKS.
This table presents in Pancl A abbreviated coefficients and standard errors from negauve binomual
maximum likelihood estimation for the following equation:

+ BgMVOL, | + B,SPREAD, | + BgDEPTH,, + BgVOLUME, | + 8, Tl +8,T2 + ;T3 +8,T4,
+8,TS, + 8sT6, + 8,T7, + 8T8, + 8gT9, + 8,,T10, + 6, Tl1, + 5;T12, + g
Stock ticker symbols are given in Table 1; see Tables 2 and 3 for vanable descriptions. Esumates of the
coefficients 8, 10 8, are not presented. vy is a scalar dispersion parameter. Hetroscedasticity robust
standard errors are reported in the parenthesis. ! is the log-likelihood. * indicates that the coefficient 15
significant at the 5% level; ** ai the 10% level. Panel B presents likelihood ratio test staustcs and p-
values from model exclusion tests over different sets of parameters. We test the following five hypotheses’
=Bg =0 Hy: By =Py =0.Hy By =Py=P3=P4=0Hy Ps=Pg =0 Hy P7=1Pg=
Bg = 0. In each case. the two-sided alternative hypothesis is that the given coefTicients are not cqual lo
zero. All test statistics are distributed 1 2(k). where k is the number of restrictions. P-values are reported
in parenthesis.

Hgp: By = ..

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM KMB

Bo 1.766° 1.341° 0.348° 2.003° 0437 0618" 0.862° 0.805* 1 406
(0.051) (0.062) (0.083) | (0.046) (0.112) (0.041) (0.087) (0.053) (0111

B 0013 0.081° 0.124 0.035 0.035 0.018 0.132* 0.144° 01ne
(0 052) (0.034) (0.086) (0.035) {0.059) (0 060) (0 063) (0.055) (0 054)

B 0049 1.414° 0.006 0.027 -0.037 0.003 0.185* 0.128° 0.060

B (0.054) (0.061) (0.078) (0.038) (0.059) (0.066) (0 074) (0055 (0063)

B3 0.624° 0.079* 1.223° 0.572¢ 0 775* 1 056° 0518° 0735 0 596°
(0.084) (0.033) (0.156) (0073) (0 159) (0.128) (0.124) (0112) (0 110)

By 0659 0055%° 0 864° 0.503° 0.656° 1 008* 0 544° 0703 0 50%°
(0 068) (0.029) (0.181) (0 066) (0.147) (0 107) (0 118) (0 087) (0 102)

Bs 0433° 0.587* 0 101 0 458° 0490° 0.228° 0470* 0445 | -0.264°°
(0.124, (0095 (0 160) (0 096) (0 099) (0111) (0.137) (0 102) (0139

Be 0114 0627 1 000° 0188 0201 0 790° 0710°* 1.125° 0517
(0.206) (0 083) (0.246) (0177 (0.399) (0214) (0 374 (0 147) (0 543)

f- -1 573 0.282° -1.302* 0730 | -0762° -1.218" -1 764° 0 742" 2287
(0 088 (0.045) (0077) (0 060 (0043) (0072 (0 103y (0063 (0092,

g 1.089* 0 728° 0567 0782 0383 2712° 1 579¢ 1 458° 0 709°*
(0.113, (0 240) (0251 {0 088) (0 320) (0 329) (0192) (0 135) (0361

Bg 0.282° 0 865° -0 591° U 148° -0 705 0057 u 105°® -0 013 0 8G2*
(0032 (0 058) (0229 (0 040) (0351 (0 104) (0 038; (0010, (0095

't 039" 0119* [ -0161° U152 -0 690° 0012 U 344 0 103* 017"
(0 03¢ (0 (8 (0052 (0036 (() 08S) (0 039) (0 03K) (0 039) (0 (10

2 31729 2913 -0 800 7430 0858 {451 £ 036 0073 0379

Pancl B: Modcl Hvpothesis Tests.

Hypothesis BA BC BCC BMY FLIL GNN JCP JPM KMI3
Hgy 356674 | 344604 | 253608 [ 215614 | 252018 | 338323 [ 307733 1 193 514 | 675812
p-valuc (0 000 (0 000) (0 000) (0 00 (0 000, (0 () (0 00 (0 (KK (0 000
Hy 0632 8 852 3146 0632 0597 0631 5083 2530 LR N
value (0729, (0012 (0207 (0729, (0742, (0729 (0 080 (0282 (0012,
Ha 57 548 49952 50973 48 053 23 8BS 77 000 32 85y 47 430 34 106
p-value (0 000, (0 000, (0 0G0 (0 000 (G000, | (0000, (0000 | (1000, (0 000,
s 1 263 28 452 3776 6323 10 750 Y 468 101106 24 604 6 YK
p-value (US31 1 (0000 T (013511 | 10(K42: (VO0S) | (LOOY)Y 1 (0006, | (00600) (0031,
I, 278250 ] 185264 ) 172428 ) 11507y | 173 STT | IO R3S | 201 576 93598 497 701
p-valuc (1 000 10 (K0 10 (G0 (0 000, (0O (KK (OGO | (0060, (0 O(dn) (0000
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Panel A: Model Estimates.

TABLE 9 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USw VO
Bo 0.956"° 1.086* -1.454* 0.398° 1.337° 0.982° 2.120° 1.474° 0.592°
0.084) | (0.057) | (0.171) | (0.095) | (0.062) | (0.056) | (0.044) | (0.080) | (0071)
By 0.166* 0.206° 0.867° | -0.116°* | -0.004 0.207° 0.074° -0.099 0.032
(0.058) (0.059) (0.085) (0.068) (0.059 (0.066) (0.036) (0.079) (0.109)
By 0.124° 0.077 -0.081 0.051 -0.054 0.185°* -0.040 -0.024 0.137
0.061) | (0.066) | (0.059) | (0.078) | (0.055) | (0.061) | (0.029) | (0.070) | (0089
B3 0.692° 0.747° 0.152* 0.853* 0.502°* 0.699° 0.437* 0.505* 1.131*
0.127) | (0.128) | (0.053) | (0.161) | (0.103) | (0.110) | (0.084; [ (0.107) | (0.138)
Bs 0.599* 0.618° 0.820° 0.773* 0.663° 0.677° 0.403* C.590* 1.121°*
0.120) | (0.100) | (0.138) | (0.132) | (0.085) | (0.093) | (0061) | (0.088) | (0.125)
Bs 0.994° 0473* 0.901° 0.566° 0.921° 0.025 0472° 0.317* 0.344*
0.119) | (0.146) | (0.111) | (0.113) | (0.094) | (0.114) | (0.086) | (0.122) | (0.171)
Be 0.354 0.455° 0.202° -0.054 0.286 0.697° 0.461* -0.621°° 0.191
(0.326) (0.178) (0.070) (0.386) (0.230) (0.169) (0.137) (0.362) (0.249)
By -0.502* -1.981°* 0.346 -0.897¢ 0.972° -1.288°* -1.062° -1.280* -1.409*
0.066) | (0.103) | (0.287) | (0.054) | (0.063) | (0.101) | (0.062) | (0.077) [ (O.144)
Bg 0.825° 1.900° 0.954* 2.448* 0.403° 2.363° 1.605° 0.611* 2.029°
(0.082) | (0.430) | (0.038) | (0.268) | (0.060) | (0.315) | (0.091) | (0.108) | (0497
Bg 0.082 1.324° 0.924° 0.190 -0.378° 0.275° 0.383° -0.053 1.036*
(0.059) | (0.098) | (0.110) | (0.135) | (0.112) | (0.105) | (0.042) | (0.053) | (0.204)
¥ 0451°* 0.544° 0.106 0.497° 0.089° 0.055 1.011° -0.053 0.046
(0.036) (0.040) (0.070) (0.061) (0.038) (0.040) (0.031) (0.042) (0,057
z 0.024 0.551 0.547 -0.817 0.953 0.286 13.982 0.285 -0 457
Pancl B: Model Hvpothesis Tests.
Hyvpothesis MA MHP NCB RAD SBC UNP UPJ USW VO
H, 254253 | 616.246 | 547.548 | 270625 | 271257 | 232355 | 440365 | 200912 | 279223
p-value (0.000) (0.000) (0 000) (0.000) (0.000) (0.000) (0 000) (0 000) (0.000)
H, 11.356 11.997 4 341 3140 0.632 9471 6318 1.264 1.891
p-value (0.003) (0.002) (0 114) (0.208) (0.729) (0 009 (0.042) (0.532) (0.389)
Hy 33438 46.724 50.228 35162 35.409 69.454 25272 25272 98.957
_p-value (0 000) (0 000) (0.000) (0 000) (0 000) (0.000) (0.000) (0 000) (0.000)
Hs 32176 6.945 310l 13.814 41,100 3788 8213 4423 3.782
p-value (0.000) (0.031) (0.212) (0 001) (0.000) (0.150) (0.016) (0.110) (0.151)
Hy 128073 | 470.393 | 450813 | 180.835 | 146.061 110.495 | 374.657 163.004 90.763
p-vaiue (0 000) (0.000) (0 000) (0 000) (0 000) (0.000) (0.000) (0 000) (0.000)
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TABLE 10: MODEL ESTIMATES AND HYPOTHESIS TESTS—
NUMBER OF MARKET-MARKET TRADES, ALL STOCKS.
This table presents in Panel A abbreviated coefficients and standard errvors from ncgative binomial
maximum likelihood estimation for the following equation:
NMMT, = B, + B,PTRET, , + B,NTRET,, + B;PMRET, , + B,NMRET, , + BsTVOL,,
+ BgMVOL, , + B;SPREAD, | + BgDEPTH,, + BgVOLUME,  +8,T1, + 8,T2 + 8,T3, +8,T4,
+ B,TS, + 8T6, + 8,7, + 8T8, + 8GT9, +8,oT10, + 8, T11, +5,3T12 + &y

Stock ticker symbols are given in Table 1; sec Tables 2 and 3 for variable descriptions. Estimates of the
coefficients 8, to 8, are not presented. y is a scalar dispersion parameter. Hetroscedasticity robust
standard errors are reported in the parenthesis. / is the log-likelihood. * indicates that the cocflicient 1s
significant at the 5% level; ** at the 10% level. Panel B presents likelihood ratio test statisucs and p-
values from model exclusion tests over different sets of parameters. We test the following five hypotheses:
Hy By=.. =Bg=0.Hy: py=Pp=0Hy By =Py=P3=py=0Hy Ps=P6=0 Hy P7=Pg=
Bg = 0. In each case. the two-sided alternative hypothesis is that the given coefficients are not cqual to
zero. All test statistics are distributed xz(k). where k is the rumber of restricuons. P-values are reported
in parenthesis.

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM KMB
Bo 0.551° 0.038 £.238" 1.060* -1.282¢ 0.008 0.376° 0.654° 1.235°
(0.063) (0.047) (0.119) (0.062) (0.131) (0.085) (0.068) (0.056) 0173
By 0.346* 0.599* -0.130 0.235* 0.197* 0.204° 0407° 0.226* 0587 |
(0.075) (0.035) (0.130) (0.062) (0.072) (0.067) (0.076) (0.053) (0.061)
B2 0.167°* 0.362° 0.419° 0.308° 0.018 0.063 0.489* 0.222¢ 0.521°
0.087) | (0.096) | (0.081) | (0.059) | (0.118) | (0.072) | (0076) | (0.056) (0.079) |
Bs 0.555* 0.295° 0.224* 0.704° 0.489° 0.831° 0.354° 0.669° 0312¢
(0.123) (0.043) (0.066) (0.105) (0.228) (0.146) (0 082) (0.120) (0137
By 0.414° 0.122¢ 1.231° 0.378* 0.535* G.661* 0 774" 0.665* 03172+
0109) | ©0045) | (0.156) | (0.089) | (0.199) | (0.136) | (0.129) | (0094) | (0.145)
Bs -0.402° 0.571° 1.100°* 0.046 0.679° 0.537° 0.587* -0.035 -0.531°
(0.186) (0.148) (0.134) (0.155) (0.129 (0.122) (0.120) (0 095) (0163
[36 0.740°* 0.574° 0.727° 0314 0.361 -0.026 0.538° 0.356°° -2.273°
(0.218) (0.135) (0.151) (0.200) (0421) (0.287) (0.156) (0.186) (0.900)
[\5} 0.818° 0.159* -1.864° 0.898° 0.384° 0.518° 0137 0.302* 0.853°
(0.095) (0.076) (0.583) (0.093) (0.046) (0.063) (0.297 (0 058) (009N
BB -1.008° 0.633 0.705°* -2.599° 0311 -2.529° 0.738° -1 108° -1331°
(0.204) (0 408) (0.058) (0.236) (0 423) (0.397) (0075 (0.201) (0 495y
[59 0.554° 0.528* -1.877° 0469° 1.002° 0443° -2 094° 0027* 1 31a°
(0 048) (0 068) 10.347) (0 050) (0.334) (0 079) (0.285) (0010) (0 127)
Y 0 442° 0434° 0 146°° 0 598° -1.129° -0.330° -0 046G -0.136° 0222*
(0.034) (0074 (0079 (003} (0113 (0052) (0 063) (044 (0 040)
! 0209 | 055 [ 0867 0979 OR10 | -0839 | 0431 0306 | 0128

Pancl B: Model Hypothesis Tests.

Hypothesis BAa BC BCC BMY LI GNN Jcp JPM KMH
g 158.100 | 225099 | 190.678 | 285800 | B88.380 131.290 | 213382 | 102449 | 471963
p-valuc (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0.000) (0 000)
Hy 10 751 23 39S 18 879 15 807 2 986 S 681 34755 13913 79 582
p-value (0 005) (0 000) (0 000) (0 000) (0.225) i0) 058) (0 000 (0 001) (0 000)
llz 29090 38 570 76.145 53 74§ 13 736 29 666 74 504 51 857 91 740
p—\'aluc (0 000) (0 000) (0 000) (0 000) (0 008 (0 000) (0 000) (0 000y (0 000
Hy 3794 6323 22 655 0632 1327 8 837 6951 2530 23364
p-value (0150 (0 042) (0 000) (0 729) (0003 (0012) (0031 (0282 (0 000)
Hy 92 963 128 989 77 44 166 295 a4 790 63 751 67613 30 353 227370
p-value (0 000 (0 000 (0 000 (0 000 (0 000y | (0000 (0 000) (0 000) (0 000
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Panel A: Model Estimates.

TABLE 10 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bo 0.599 1.170* 0.125* -0.891° 0.351° 0.605° 1.205* 0.120 -0.536°
0.635) | (0.098) | (0.055) | (0.137) | (0.057) | (0.081) | (0.062) | (0.078) | (0.112)
By 0.360° 0.292° 0.437° 0.122 0.351° 0.458° 0.093 0419° 0.303*
0.049) | (0.056) | (0.114) | (0.100) | (0.077) | (0.061) | (0.059) | (0.093) | (0.122)
By 0.179* 0.294* 0.058 0.144 0.157°° 0.323* 0.194° 0.152 0.465°*
0.061) | (0.047) | (0.061) | (0.108) | (0.086) | (0.067) | (0.053) | (0.114) | (0.123)
B3 0.427° 0.396° -0.040 1.348* 1.037¢ 0.547° 0.541°* 0.832° 0.614*
©.111) | 0.132) | (0067 | (0.189) | (0.124) | (0.121) | (0.127) | (0.148) | (0.181)
B4 0.530° 0.603° 0.705* 1.123° 0.575* 0.257* 0.460°* 0.765° 0.505*
0.123) | (0.097) | (6.198) | (0.173) | (0.123) | (0.118) | (0.106) [ (0.132) | (0.159)
Bs -0.129 0.030 0692° | 0.503* | -0.580° | 0251* | -0.298* | 0.315°* | 0.599°
(0.112) (0.210) (0.141) 0.157) (0.138) (0.131) (0.130) (0.171) (0.228)
Bg 0.032 -1.301* 0.605° 0.207 0.570°* 0.257 0.304°° 0.906° 0.025
(0.168) | (0.451) | (0.90) | (0.563) | (0.228) | (0.328) | (0.182) | (0.247) | (0.469)
B 0.380* -0.873* -0.341 0.424° 1.159° 0.206* 0.772* 1.269* 0.281°*
(0.056) | (0.092) | (0412) | (0.063) | (0.057) | (0.096) | (0.086) | (0.089) | (0.172)
Pg -2.173° | -2.969° 0.328* -1.101* [ -1.433* | -1.719° | -2.410° | -1.046* | -1.610°
0207 | (0.580) | (0.040) | (0490) | (V.133) | (0.414) | (0276) | (G.231) | (0.656)
Bg 0.538° 1.32:° -2.077° 1.141* 0.143° 0.603* 0.539* 0.022° 1.169°
0.083) | (0.093) | (0.319) | (0.165) | (0.057) | (0.115) | (0.056) | (0.010) | (0.256)
Y 0.142° 0.334° -0.137* -0.329° 0.233* 0.191°* 1.205° 0.247° 0.476°
(0.040) (0.0:4) (0.096) (0.069) (0.038) (0.045) (0.029) (0.037N (0.063)
2 -0.265 0.246 0832 -0.781 -0.567 0.359 1.522 -0.666 -0 864
Panel B: Model Hvpothesis Tests.
Hvpothesis MA MHP NCB RAD SBC UNP UPJ USW VO
Hy 294.630 | 581.519 | 66.351 130.603 | 222.570 | 140.802 | 232502 | 154.791 83.830
pvaiue | (0.000) | (0000) | (0.000) | (0.000) | (0.000) | (0.000) | (0000) | (0000) | (0000)
H,y 32.807 35.358 55.189 0.628 9484 34.096 82113 8 845 5.042
p-value (0.000) | (0.000) | (0000) (0 731) (0.009) (0.000) (0.016) (0.012) (0.080)
Hs 58 674 61.246 47.128 43.325 52 481 56.195 33485 49.280 20.800
p-valuc (0 000) (0 000) (0 000) (0 000) (0.000) (0.000) (0.000) (0 000) (0.0000
Hy 1.893 15T 40.927 4.395 10.749 1.894 1.895 3159 1412
p-value (0.388) (0023 (0.000) (0111) (0.005) (0.388) (0.388) (0.206) (0.110)
Hy 182.330 | 310633} 30.385 61 046 147326 43.567 162.373 88 452 27733
p-valuc (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000)
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TABLE 11: MODEL ESTIMATES AND HYPOTHESIS TESTS--
NUMBER OF BLOCK TRADES, ALL STOCKS.
This table presents in Panel A abbreviated coefficients and standard errors from negative binomial
maximum likelihood estimation for the following equation:
NBLOCK, = B, + B,PTRET,, + B,NTRET, + B;PMRET, | + B,NMRET, | + B,TVOL,
+ BgMVOL, | + B,SPREAD, | + BgDEPTH,, + BgVOLUME, | + 8Tl +8,T2 +8,T3, + 5, T4,
+ 8,T5, + 8sT6, + 8,7, + 8T8, + 8gT9, + 8,(T10, + 8, Tl +56,,T12, + ¢

Stock ticker symbols are given in Table 1; see Tables 2 and 3 for vanable descripuons. Estimates of the
cocfficients 8, to §,, are not presented. y is a scalar dispersion parameter. Hetroscedasticuy robust
standard errors are reported in the parenthesis. £ 1s the log-likelihood. * indicates that the coefficient 1s
significant at the 5% level; ** at the 10% level. Panel B presents likelihood ratio test statistics and p-
values from model exclusion tesis over different sets of parameters. We test the following five hypothcses:
Ho: Py=..=Bg=0.Hy: By =PBp=0Hy: By =py=p3=P4=0Hz: Ps=Pg=0 Hy p7=Pg=
Bg = 0. In each case, the two-sided alternative hypothesis is that the given coefficients are not equal to
zero. All test staustics are distributed xz(k), where k is the number of restrictions. P-values are reported
in parenthesis.

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN ICP JPM KMB3
Bo 0.898% | -1.351° | -2.332° | 0.967% | -2.046° | -2.339° | -1.716° | -1443° | -0.286
(0.112) | (0.139) | (0514) | (0.111) | (0.496) | (0171 | 0141 | 0116) | (0.180)
B 0.390° | 0201* [ 0663* | 0301° | -0085 | 0052 | -0.026 | 0177 | 0522°
(0.125) | (0.078) | (0.194) | (0.105) | (0.207) | (0.187) | (0.162) | (0.139) | (0 102)
B, 0158 | 0003 | 0363 | 0.187°* | 0107 | 0204 | 0128 0163 | 0022
(0.127) | (0.074) | (0302) | 0.111) | (0.165) | (0.155) | 0.139) | (0.137) | (0133
Bs 1213* [ 0s88* [ 0519 | 073a* | 0071 | 1.109* | 1.007* | 1103 | 0671°
(0221) | (0261) | (0401) | (0.189) | (0.554) | (0.345) | (0.273) | (0.246) | (0244
Bs 0598* | 0901° | 0165 | 0578* | 0081 | 1.157° | 0898° | 0921° | 0637°
(0176) | (0202, | (0.422) | (0.174) | (0.500) | (0.272) | (0.192) | (0.195) | (0.212)
Bs 0811* | 0074 0273 0.284 0495 | 1003* | 1.509° | -0.653° | -0.708°
(0334) | (0.127) | (0394) | (0.267) | (0.357) | (0.273) | (0.326) | (0242) | (0335)
Be 0187 | 0522 | 0021 | 0348 | 0016 | 0236 | 0262 | 0609° | -2988°
(0414) | (0549) | (2515 | (0323 | 2416) | 0656) | 0504y | 0287y | (0842
B, -1.724° [ -1.073° | 0067 | -0655° | -0.648% | 0479% | -1427° | ©0320° | -1980°
(0221) | (0.156) | (0.167) | (0.188) | (0.138) | (0165 | 0241y | ©139) | (0210
Bg 2596* | 2475° | 0951 1283° [ 0852 | 4310° [ 2784= | 2a72° | 5798°
(0213) | (0223) | (0822 [ (025%) | 1140y | 057 | 0433 | 02160 | (07200
By 0657° | 0656* | 0660° | 0615° | 0374 | 0759° | 0303* | 0022 1 068
0059 1 0oen) | 0313) | 007 | anan | a4 | wossy | woogy | 0152
Y -1095° | -0.789° [ -1.509* | -1104% | -1595% | -1.666° | -1089° | -1016° | -0900°
(0115 | (0093) | (0167 | (0096) | (0229) | (0178 | (0108) | (01060 | (0102)
] 069 [ 0599 [ 0330 [ 0806 [ 0238 | 0432 | 0519 | 4593 | 0617

Pancl B: Modcl Hvpothesis Tests.

Hyvpothesis BA BC BCC BMY FLI: GNN JCP JI'M RKMI3
Hy 159365 | 118872 [ 20138 100536 | 28 666 65 645 81515 RO Y47 | 260219
p-value (0000) (0 000) (0017) {0 000) (0001) (0 000) (0 000) (0 000) (0 000
H, 6.324 4426 3147 11381 179106 1.262 1.264 1265 20 843
p-value (0042) | (0109 | (0207) | (WOO3y [ (0000Y | (0532) | (0532) | (0s3aty | (0000,
H,y 27.193 13.278 13 845 22763 17319 10 730 11374 16 442 31 SKO
p-value (0000 | (0010) { (000R) [ (0 000) [ (0002 | (0030) | (0023) | (0 002y | (oo
Haq 3794 1.265 0629 126S 4180 5 681 24012 3794 11527
value (0150) | (0S31) | (0730) | (0531 | (0124) | (BOSR) | (0000 | (01500 | (0001,
Hy 122 052 92316 14474 6) 965 18513 46 078 61291 56 916 [RRIRPA]
_p-value (0000 | (0 000) (0002) | (0000 (0 000) (G 000 (0 000 (0 000) (O OO0
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Panel A: Model Estimates.

TABLE 11 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bo -1.223* | -0.358°* | -0470° -2.057* | -1.306° -1.275¢ 0.311° -1.662° | -2.391°
0.160) | (0.200) | (0.071) | (0.285) | (0.145) | (0.172) | (0.106) | (0.199) | (0.174)
B 0.302° 0277° -1.639* 0.183 0.149 0.607°* 0.239* 0.542¢ 0.111
(0.079) | (0.085) | (0.242) | (0.218) | (0.175) | (0.153) | (0.075) | (0.198) | (0.266)
By -0.026 0.152 0.107 0.155 -0.085 0.301°° 0.192* 0.420° 0.149
0.136) | 0.110) | (0.129) | (0.238) | (0.158) | (0.159) | 0.072) | (0.197) | (0.252)
[33 0.324 0.153 -0.203 0.592 0.880* -0.054 0.396° 0.609* 0.690*
(0.266) { (0.265) | (0.153) | (0.447) | (0.251) | (0.296) | (0.190) | (0.283) | (0.335)
Bg 0.438°* | 0.379°* 0.068 -1.101** { Q.772* 0.260 0.144 0.420°° 0.730*
(0.239) | (0.202) | (0.439) | (0.610) [ (0.238) | (0.238) | (0.164) | (0.255) | (0.257)
Bs -0.226%* | -0.562°* 0.059 0.810* -0.054 0.069 -0.706* 0.281 0.564
(0.253) | (0307) | (0.420) | (0.325) | (0.259) | (0.321) | (0.197) | (0.328) | (0.457)
'}6 0.323 -1.498 0.161 -1.784°° 0177 0.672 0.046 0.458 0.334
(0.640) | (0.985) | (0.209) | (1.044) | (0.503) | (0.684) | (0.388) | (0.820) | (0.561)
B 0.415° -2.478° 0.179 -1.085* -1.222¢* -1.448°* 0.684° -1.272° -2.351°
(0.132) | (0.225) | (0.8¢0) | (0.191) | (0.164) | (0.266) | (0.160) | (0.226) | (0.387)
Pg 1.207° 5.120° -0.798° 5.665¢ 1.227° 5.997° 1.248* 1 .688* 9.764°
(0.149) | (0.725) | (0.110) | (0.668) | (0.139) | (0.669) | (0.270) | (0.229) | (0.692)
Bg 0.843* 1.963° 0.589 1.285° 0.228* 1.036* 0.769* 0.050° 2,792
0.104) | (0.119) | (0.449) | (0.222) | (0.063) | (0.179) | (0.070) | (0.012) | (0.331)
Y -0.841* 0.486° -0.024 -1.891°* -1.772¢ -1.162* -0.649* -1.373¢ -1.358*
(0.084) (0.083) (0.206) | (0.254) (0.157) (0.114) (0.072) | (0.128) (0153
2 0608 | 0621 | 0342 | 029 | 0568 | -0.548 | -0815 | 0520 | -0419
Panel B: Model Hyvpothesis Tests.
Hypothesis MA MHP NCB RAD SBC UNP UPJ usw V(O
Hy 92.742 347.270 | 62.630 81.627 61.965 80.81Y 180.063 48.649 107.781
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
“l 4416 8.840 1.860 0.628 0.632 11.365 19 741 1.264 0.630
p-value (0.110) (0.012) (0.394) (0.731) (0 729) (0.003) (0.005) (0.532) (0.730)
HZ 9.463 11.365 1.860 1.884 13.911 11.997 13.900 5.054 5.673
p-value (0.051) (0.023) (0761) (¢ 757) (0 008) (0017) (0 008) (0.282) (0.225)
Hy 0.631 5.683 0.620 31767 1.265 3788 5.680 1.264 1891
p-valuc (0.729) (0.058) (0 733) (0.152) (0.531) (0.150) (0.058) (0 532 (0 389)
Hy 76.339 260137 52.709 72 836 51.849 71348 144.050 36 644 103 36Y
p-value (0.000) (0 000) (0 000) (0 000) (0 000 (0.000) (0 000) (0 000) (0 000)
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TABLE 12: MODEL ESTIMATES AND HYPOTHESIS TESTS-
NUMBER OF TRADES, FIRST HOUR, ALL STOCKS.
This table presents in Panel A coefficients and standard errors from negative binomial maximum
likelihood estimation for the following eguation:
NTRADE, = B, + B,PTRET,, + B.NTRET, + psPMRET,, + B,NMRET, | + B TVOL,
+ BMVOL, , + B,SPREAD, , + BiDEPTH, , + BVOLUME, , + ¢,

This model is estimated on observations between 9:30 AM and 10:30 AM. Stock ticker symbols are given
in Table 1: see Tables 2 and 3 for variable descriptions. y is a scalar dispersion parameter
Hetroscedasticity robust stzndard errors are reporied in the parenthesis. NOBS is the number of
observations. / is the log-likelihood. * indicates that the coefficient is significant at the 5% level: ** at
the 10% leve!. Panel B presents likelihood ratio test statistics and p-values from model exclusion tests
over different sets of parameters. We test the following five hypotheses: Hy: f)=.. = Bg=0.H): p;=
B =0,Hy: By =P;=P3=P4=0.H3: Ps= Bg=0.Hy P7=Pg=Pg=0. Ineach case. the two-sided
alternative hypothesis is that the given coefficients are not equal to zero. All .est statstics are distnibuted
xz(k), where k is the number of restrictions. P-values are reported in parenthesis.

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM KMB
Bo 3066° | 1.686° | 0868° | 2361° | 0337° | 1.242® | 1.438° | 1.537° | 1.906*
0.060) | (0.091) | (0.108) | (0.055) | (0.084) | (0.060) | (0.083) | (0.051) | (0.175)

B 0057 | 0168° | 0371° | 0060 | 0283 | 0098 | 0228* | 0023 [ o511°
(0082) | (0056) | 0.125) | (0.076) | (0099) | (0.085) | (0.088) | (0.082) | (0.094)

B, £020 | 0091 0.127 0079 0064 | 008 | 0.169* | 0012 | 0254°
0.112) | 0062) | 0.213) | (0074) | (0.105) | (0.101) | (0.084) | (0.082) | (0.102)

Bs 0.335°* | 0389°* | 0650° | 0455° | 0412 | 0.735* ; 0274 | 0406 [ 0.438°
0195) | (0.229) | (0.297) | (0.144) | (0.286) | (0.284) | (0.216) | (0.161) | (0210)

Ba 0454® | 0185 | 0530° | 0302* | 0361 | 0638 [ 0345* [ 0479° | 0077
0108) | (0.148) | (0.233) | (0.119) | (0.154) | (0.172) | (0.146) | (0.086) | (0.276)

Bs 0118 | 0245* | 040l 0.351 0056 | 0062 | 0645 | 0037 | -0491
0271 | 0.109) | (©252) [ 0.218) | (©173) | (0.204) | (0.251) | (0175) | (0.312)

Be 0.198 | 0.783°* | 0078 0.183 | 0996° | 0650° | 0519 | 0931* | -0420
©0251) | (0438) | 0497y | 02411 | (0262) | (0257 | (0.383) | (0.127) | (0.894)
B, 0956° | 0396 | -0324° | -0.348°° | -0.370° | 0.651* | -0716° | ©0.365° [ -1.808°
0.436) | (0.256) | (0155) | (0.205) | (0.069) | (0.150) | (0.343) | (0.148) | (0.231)

Bg 0.504 0210 | 0455 | ooI3 0464 0664 | 0132 | 0554 | 0105
0588) | (1140 | 0709 | 0590y | «0736) | 0743y | (1097 | (042D | 2387
By 0458° | 0405° | 0079 | 0323 | 0184 | 0367* | 0316 | 0222° | 0.90s°
0052y | (0108) | 0306y | 0057y | 0829 | (0.108) [ (0078) | (0092) | (v.1vN
Y 0322° | 0954° | 0347° | 0106 | -2223* | 0226 | 0244* | 0405 [ 0490°
0099) | (0098 | 0129y | 010m | 071y | 0122y [ o1 | 0143 | (0114)

NOBS 758 757 756 757 757 756 755 758 75K
] 12717 | 9.09 0069 | 20822 | -0860 1 882 1423 5050 6451

Pancl B: Model Hypothesis Tests.

Hyvpothesis BA BC BCC BMY FLE GNN ICP JI’'M ] KMH
Hy 70 646 45420 22 680 49 811 38229 55.944 54 587 55182 146.294
p-value (0 C00) (0 000) (0 007) (0 000) (0 000) (0 000) (0 .000) (0 000) (0 000)
I, 0.379 3.709 3704 1.363 3709 2873 2 869 0455 26530
p-value (0.827) (0.157) (0.157) (0 500) (0157) (0.234) (0.238) (0797) (0 000)
H, 5761 1.287 6955 4391 5.980 i1.038 S 738 8035 2367
p-value (0.218) (0 864) (0 138) (0 356) (0 201) (0 026) (0.220) (0 090) (0 000)
Hy 1 895 7721 1 285 3331 5072 5216 5 889 15842 083t
p-valuc (0 388 0021 (1520 (0 18Y) (0079) (0 074) (0053 (000G (1) 659
Hy 50 331 15367 4914 25 889 13702 16 103 19 026 11673 70 78S
p-valuc (0 000) (0 002) (0 178) (0 000) () 003) (0601 |- (0000) (0 009) (0 000
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Panel A: Model Estimates.

TABLE 12 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bg 1.525* 1.816° 1.075* 0.582°¢ 1.622° 1.604° 2.459° 1.608° 1.049°
(0,070, | (0.084) | (0.097) | (0.089) | (0.054) | (0.063) | (0.066) | (C.065) | (0074)
By 0.233° 0.367* 0.062 0.150 0.020 0.125 0.026 0.151 0.169
(0.095) | (0.065) | (0.160) | (0.150) | (0.099) | (0.098) | (0.057) | (0.111) | (0165
By 0.064 0.305° 0.102 0.274°° -0.065 0.246° 0018 -0.078 0.129
0.095) | (0.083) | (0.142) | (0.152) | (0.086) | (0.104) | (0.649) | (0.165) | (0.153)
B3 0.365°® | 0.374°° 0.956* 0.319 0.541° 0.533* 0.523* 0.526* 0377
(0.211) | (0.224) | (0.293) | (0.336) [ (0.207) | (0.195) | (0.159) [ (0.189) | (0.295)
B4 0.489° 0.328° 0.637°* 0.272 0.54i° 0.367" 0.345° 0.544° 0.550°
0.134) | 0.135) | 0.162) | (0.190) | (0.153) | (0.122) | (0.102) | (0.134) | (0.204)
Bs 0.229 -0.406 20019 0.173 0.331°" 0.192 0.280 0.307 0.42]
0.214) | 0274) | 0.171) | 0271 | (0.173) | (0.218) | (0.205) | (0.262) | (0.334)
Bg -0.103 0.136 0.151 0.803° 0.284 0.315 0.351* -0.032 0295
0.299) | (0.331) | (0.344) | (0.390) | (0.199) | (0.204) | (0.173) | (0.255) | (0312
By 0.034 -1.776* | 0498* | -0.281° ) -0.211*° | -0.524° | -0.559* | -0.572* | -0.760°
0.124) | (0.316) | (0.077) | (0.098) | (0.129) | (0.251) | (0.259) | (0.162) | (0379)
Bg -0.340 0.236 0.313 1.451 -0.048 0.730 0.901°* 0.010 0.367
(0.355) | (2.262) | (0440) | (0.901) | (0.261) | (1.158) | (0506) | (0.346) | (1.785)
Bg 0.609°* 1.388° 0472 1.257¢ 0.033 0.567° 0.609° 0.100 1 462°
(0.090) | (0.150) { (0.111) | (0.379) [ (0.115) | (0.175) | (0.065) | (0.116) | (0.340)
Y 0.184 1.077°* 0.082 -0.454* | -0.878* 0.055 0.9°7° -0.567° | (197°°
(0.118) (0.093) (0.135) (0 151) (0.209) (0.107) (0.098) (0.180) (0,121
NOBS 748 753 756 759 758 754 753 755 758
2 4.702 9451 0.499 0155 4.502 5487 32663 3361 1345
Pancl B: Model Hvpothesis Tests.
H\glhcsns MA MIP NCB RAD SBC UNP Up) USW VO
1, 46.301 | 155570 | 5027+ | 33851 | 21679 | 37549 | 103161 | 23329 | 3s201
p-valuz (0.000) (0.000) (0 000) (0 000) (0010) (0000) | (0000} (0 005) (0 000\
I, 2.768 21.235 0756 3 567 0076 5278 0.220 ) 585 0152
p-value (0.251) (0 000) () 685) (0 168) {0963} (0071 (0 891 (0 453) (0927
I, 8078 29216 793R 6 831 5458 4671 0979 0 266 1108
p-value (0.089) | (0000) [ (0094) | (VI45) | (0243 | (D070) | (0913) | (0 180) | (0 510)
Hy 0.224 1.882 0.302 3204 1 895 0528 1 500 0679 1 U5
p-value (0 894) (0 390) (0 86() (0 1%6) (0 388) (0 768) (0471) (0712) (1 34K)
Iy 23 786 99 773 32 508 13 283 1 743 10 179 90887 8 833 15 K42
p-value (0 000 (0 000) (0 090) (0 004) (0627 (0017 I (0 00G) (0032) (0 001)
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TABLE 13: MODEL ESTIMATES AND HYPOTHESIS TESTS--
NUMBER OF TRADES, MIDDAY, ALL STOCKS.

This table presents in Panel A cocfficients and standard errors fiom negative binomial maximum
likelihood estimation for the following equation:
NTRADE, = B, + B,PTRET, , + B,NTRET,, + B,PMRET, , + B,NMRET, , + B TVOL,,
+ PMVOL, , + B,SPREAD, , + BgDEPTH, | + BVOLUME, , + 2,
: This model is estimated on observations between 10:30 AM and 2:59 PM. Stock ucker symbols are given
; in Table 1. see Tables 2 and 3 for vanable descripuons. vy is a scalar dispersion parameler
Hetroscedasticity robust standard errors arc reported in the parenthesis  NOBS is the number of
) observations. ! is the log-likelihood. * indicates that the coefficient is significant at the 5% level: °* at
the i0% level. Panel B presents likelihood rauo test statistics and p-values from model exclusion tests
; over different sets of parameters. We test the following five hypotheses: Hy: By = . =Pg=0.H| B =
Pr=0.Hy: B} =Py =P3=P4=0.H3 Ps=Pg=0. Hy: (7 =Pg =Pg =0. In each casc. the two-sided
: alternative hypothesis is that the given coeflicients are not equal to zero. All test statisucs are distnbuted
+2(k). where k is the number of restrictions. F-values are reporied in parcnthesis

Panel A: Model Estimates.

i Parameter BA BC BCC BMY FLE GNN JCP JPM KMB
Bo 1.732°¢ 1.250° 0.448° 2.073° 0.252° 0.663° 0.985* 1.195¢ 2306
(0.057) (0.058) (0.089) (0053) | (0.095) (0.053) | (0.088) (0055 {0 143
! By 0.102°* 0.112° 0.306° 0047 0.009 0.129¢ 0.319° 012 0316°
1 (0.060) (0.037) (0.076) (0 0-10) (0.058) (0.059) (0.062) (0 48) (0.063)
B, 0.091 0.065° 0018 0.123* -0.090 0.085 0.295°¢ 0.035 0.289*
(0061) | (0.033) | (0067) | (0042) | (0067) | (0060) | (0093 | (0.049) | (0079
t B3 0.802* 0911° 1.747°¢ 0801° 1.330° 1.301° 0.908° 0921° 0 798*
i (0 088) (0.107) (0.136) (0.077) (0 162) (0.116) 0117 (0 102) (0122
By 0.722¢ 0.902° 1.558° 0.586° 1.360° 1194° 0 896* 0 870* 0738
(0 083) (0111 (0127) (0 069) (0.144) (0.107) (0. 104) (0 099 (0120
Bs 0.139 0.345° 0.462° 0290° 0.889° 0.511° 0 549* 0 163° RUREL b
(0.114) (0 046) (0.147) (0 085) (0 098) (0.096) (0.133) (0 072) (0 1420
; B¢ 0.409 1.311° 0034 0332 0048 1.155° 1036° 0931* -1 022"
i (0.299) (0.286) (0 446) (0.259) (0 462) (0.229) (0 456) (0252) (0 750
B 0.897° 0425° -0.255° 0370* | 0271° 0.459° -0 558° -0361° -1 626°
(0.072) (0 047) (0 055) (0 054) (0037 (V.UM 0072) (0 046) (0077)
! Bg 0.497° 0.212 -0.394 0018 0147 0.849° -0 098 0513 -0 450
‘ (0.102) (0.139) (0.259) (0 086) (0.254) (0.23 (0 1741 (010 (0 3413
Bo 0.362¢ 0.304* 0.348° 0211° o117 0.201°* 0 145° 00l [V A
! (0 035) (0043 (0 163) (0 041) (0.287) (0081 (0 057 (0 016) (0122
v 0.012 0401° 0 764% | 0072°° -1657° 0.529* 0003 -0 381* 020
f V0 046) (0 041) (0 076) (0 042) (0 165) (0.063) () 050) (10054 (0048
i NOBS 4554 4554 4551 4554 4432 4554 4554 4554 RRRE!
!z 6 066 4093 -0.599 12101 0911 0.230 1 364 2120 2303
Pancl B: Modcl Hypothesis Tests.
Hypothesis BA BC BCC BMY FLE GNN cry JIPM KM
Hy 293733 | 294188 | 197058 | 248193 | 163984 | 231 343 | 249094 | 144362 | 672170
p-valuc (0 000) () 000 (0 000 (0 000) (0 000) (0 000) (0 00(}) (0 000y (0 000
H, 3188 10019 6 820 10019 1773 1.822 26 86Y 1 360 28 238
p-value (0.203) (0 007) (0033 (0007 (0412) (0 402) (0 000) (0 505) (0 000)
i Hy 66 488 68 310 128 338 81972 60.275 93 812 79 240 66 944 71 953
: p-value {0 000) (0 000) (0 000) (0 000) (0 000) (0 000) (0 000y (0 000) (1 000
Hy 1 366 206 86Y 4 551 1 822 42 990 21 44 10 019 1457 13244
__p-valuc (0505) [ (0000) | (0103) | (0402) | (H000) | (0000 | 0007y | 0001y | (000w
Hy 194450 | 118 83 21 843 98 822 29251 RIR 64211 35977 -II'S]ZS—‘
p-valuc (0000, | (0000 | (0000) | 0006y | 0000y | 0000y | (0000, | tuoouy | (oo




Panel A: Model Estimates.

TABLE 13 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bo 1.322° 1414° 0.880° 0.387° 1.375° 1.284° 2.220° 1.312¢ 0491°
0.070) | (0.094) | (0074) | (0.129) | (0.062) | (0.062) | (0.061) | (0082) | (0102)
By 0.292* | 0.146°° 0064 0098 0095°° | 0.282° 0071 0015 0098
0038) | (0.086) | (0.049) | (0.077) | (0055) | (0.072) | (005T) | (0074 | (0119
Bl 0.096°° | 0.129** | -0.150° 0.085 0018 0.232° 0051 0.037 01y
0051) | (0.073) | (0049) | (0.098) | (0.052) | (0.063) | (0037) | (0.073) | (0 !%0)
B3 0.803° 0.990* 0.938° 1.429° 0.865 0.823° 0.629° 0.859°* 1 506°
0.104) | (0.136) | (0149) [ (0162) | (0.103) | (0.120) | (009 | (0 113) | (0161}
By 0.822¢ 0.920° 1.116* 1.134° 0.762° 0.687° 0.532° 0911° 1 428°*
0105) | (0.120) | (0124) | (0.148) | (0.092) | (0.116) | (0.086) | (0.099) | (0 143)
Bs 0 462° 0.031 0.513° 0 554° 0.388° 0.243° 0.294° 0.296° 0 551°
(0 096) (0.200) (0 067) (0.114) (0079) (0.106) (0 085) (0 110) (0 184)
Be 0.049 0073 0007 01397 0404 0.540°*° 0410 0150 0 694
(0 346) (0 492) (0 341) (0 664) (0.300) (0.289) (0.307) (0412) (0 S00)
{F) -0 438° -1.483° -0.524° -0 444° -0.279°* -0 705¢ -0.648* 0.422° -0727°
(047 (0.08") (0031 (0 050) (0 045) (0 081) (0057 (0 064) (0134
Pg -0.061 0.237 0332° 0 828° -0 030 0732° 0.833* 0.040 01371
(0075) (0 387) (0116} (0.267) (0.053) (0 270) (0 078) (0 098) (0 503)
D9 03l11°* 1 382° 0.061° 0.41° 00!l 0417° 0514° -0.001 1272°
(0 050) (0.119) (0011) (0 132) (0017 (0.117N (0 048) (0 004) (0.230
¥ -0 159° 0612° -045¢° -0 800°* 0811° -0 069 0773 -0.509° | -0 09s*
(0.052) (0 047) (0071 (0 086) (0 071) (0051 (0 042) (0061 (0035
NOBS 4552 4554 4515 4554 4554 4552 4554 4554 758
2 1.861 2.883 -0.395 -0.692 2484 2 366 19018 1 542 -0 200
Pancl B: Modcl Hvpothesis Tests.
Hypothesis MA ML NCI3 RAD SBC UND up) USW V()
Hy 267.202 | 652588 | 261 419 | 190813 144 362 | 205295 | 423.522 107474 | 228 155
p-value (0 000) (0 000) (0 000 (0 000) (0 000) (0 000) (0 000) (0 000 (0 00
H, 30 043 6 831 4513 3188 2277 20029 4554 0911 [IRI{S
p-value {0 000) (0033, (0 105) (0203 (0 320) (0 000 (0 103) (0631 (0 303
11> 75 101 53359 48 762 66 013 7331y 6Y) 190 12352 64 670 103 811
p-valuc (0 000, (0 000) (0 QU0 (0 000) (0 000y (0 000) (0 000 (0 000) (0 000
Hy 10014 0911 24 831 12 2%0 10474 1 360 1 822 2732 5408
i _p-valuc (0 007) [(EREN (0 000) (0 002y (0 003 (0 505) (0102 (0 255, (0065
Hy 84212 340 372 153059 73773 25047 78 294 7470 22 18 49 63
p-value (00001 | (00001 | (0000) | (0000) | (000 | (DOO0Y | (0000 | (D000) | (0000)
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TABLL 14: MODEL ESTIMATES AND HYPOTHESIS TESTS—
NUMBER OF TRADES, FINAL HOUR, ALL STOCKS.

This table presents in Panel A cocfficients and standard crrors from ncgative binomual maximum
likelihood estimation for the following equation:
NTRADE, = B, + B,PTRET,, + B,;NTRET,, + B,PMRET,, + B,NMRET, , + BsTVOL,,
+ PpgMVOL, , + p,SPREAD, , + psDEPTH, , + BoVOLUME, , + g

This model is estimated on observations between 3:00 PM and 4:00 PM. Stock ticker svimbols arc grven
in Table 1. see Tables 2 and 3 for variable descripuions. y is a scalar dispersion parameter
Hetroscedasticity robust standard errors are reported in the parenthesis. NOBS s the number of
observauons £ is the log-likelihood. * indicates that the cocfTicient 1s significant at the 5% level. ** at
the 10% level. Panel B presents likelihcod rauo test statistics and p-values from modcl exclusion tests
over different sets of parameters. We test the following five hypotheses: Hg: By = = fog=0.Hy P =
py=0.Hy By =Pay=P3= Bpg=0.Hy Bs=Pg=0.Hy Py=Pg= Pg =0. In cach case, the two-sided
alternative hypothesis is that the given coeflicients arc not equal to zero. All test staustics arc distributed
zz(k). where k is the number of restricuons. P-values are reported 1n parenthesis

Panel A: Model Estimates.

Parameter BA BC BCC BMY FLE GNN JCP JPM KMHB
Bo 1.947 1.515° 0.799° 2.268° 0.575° 0921° 1.201° 1.342° 1 981°
(0.090) | (0.103) (0.135) | (0.085) [ (0.240) | (0 117) (0 103) (0 105) (0 161)

Bl -0 00S 0.187* 0.221° 0.087 0.074 0.046 0.212°° 0159° 0201*
(0 100) (0 070) (0.121) (0 074) (0118 (0 109) (0.120) (0081 (0112

153 0.028 0.1!1° 0.113 0043 0.033 0.174°° 0147 0171°" 0.280"
(0083) | (0038) (0 148) | (0.067) (0107) | (0.093) (C 1200 (0 089) (0100

(45 0.659° 0.704° 0983° 0 746° 0823° 0 883° 0 720° 0 685° 0137
(0.126) (0.152) (0173) (0.113) (0.246) (0159 (0 168) (0137) (0 178)
By 0601°* 0.579° 0823° 0 568° 0 595* 0722° 0669°* 0753° (291
(0 088) (0.098) (0 179) (0 096) (0 188) (0162 (0 164) (0119 (0153

Bs 0.102* 0.299° 0.524* 0347 0.256 () 450* 0.566* 0207 -0 347
(0222) (0 099) (0.226) (02i4) (0171) (0 195) (0223 (015 (0261

06 0434 1.334° 0108 0365 0125 1.121° 1 038° 0 g17°° -1 018
(0441 (0443) (0 675) (0415) (1139) (0 544 (0 501) () 48S) (0 8OO
[t5] -0 865° -0.639° -0 265° -0333° 0 304° -0409° ) 412° ) 242° -1 472°
(0163) (0.135) (0.107) (0118) (0 082) (0111 (0 145) (0 108) (1 162)

PBg 0sl1*® 0.139 -0 360 0022 1 086°° 0 608 0023 053" -0 0K 1
(0 239) (0.262) (0 581) (0 184 (0 639) (0 399) (0 385) (0 284 (0 9YR)

By 0.390° 0 505°* 0084 0230° 0499 0076 0224 0012 1 327
(0076) (0175) (0147, (0 063) (0 535) (0 186) (02010 (0 0061 10232

7 0310° 0 789° 0022 0444° 0164 -0 009 G 320° RV V2 R () S90*
(0 086) (0 085) (0 099) (0 085) (0 148) (0 100) (0092 (0 110y {0083

NOBS 1012 1012 986 1012 783 1002 1010 1012 1004
/ 9956 B 346 0164 19914 0625 ] 40 1478 103 4759

Pancl B: Modcl Hypothesis Tests.

Hypothesis BA BC BCC BMY FLE GNN iCl JPM KMI3
Hy, 78 430 99 783 48117 77519 23725 65 531 70 195 48 2702 124797
p-valuc (0000) | (0000) | (0000) | (D030) ] (0D00SY | (0000) [ (0O00) | (0000 | (6000,
H, 0607 5.566 2268 1417 0078 1 603 4 141 2732 6325
p-value (0738) | (0062) | (0322) | (0492) | (0962) | (0449) | (01204 [ (0255) | (0042,
H; 18418 25300 25 340 27931 8691 30 060 23634 35 521 11353
p-valuce (0001 (0 000) (0 000 (0 000) (0 069 (0 000) (0 000 (0000 (010,
H, 0911 8 400 2504 0202 0 86\ 4 008 5454 1113 6 32
p-value (V63 | (DO1S) | (0278) | (0904 1 (VG6SU) | (VI35) | (0065 | (0573 (00 42y
Iy 51207 37 545 ERSh 17 204 B 84K 6814 Y 696 3744 KU 5210
p-value (000 (0 000) (0279 (001 (0031 (OOTK) {0021 () 2490 (0 000
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Panel A: Model Estimates.

TABLE 14 (continued).

Parameter MA MHP NCB RAD SBC UNP UPJ USW VO
Bo 1476 1.752¢ 1.117° 0.759* 1.606* 1.470° 2412° 1.519° 0670°
(0.108) | (0.113) | (0.180) | (0.166) | (0.103) | (0.098) | (0.088) | (0.100) | (0142)
By 0.200° 0.220° 0.072 0.139 -0.007 0.447° 0.075 0.110 0047
(0.093) | (0.086) | (0.094) [ (0.121) | (0.083) | (0.100) | (0.068) | (0.123) | (0234)
By -0.149 0.198° £0.115 0.139 0.050 0.183°° 0.085 0.016 0.234°°
(0.105) | (0.c80) | (0.082) | (0.135) | (0.085) | (0.099) | (0.057) | (0.135) | (0138)
B3 0.738° 0.165 0.472° 0.978* 0.702° 0.678¢ 0.539° 0471* 0.822°
(0.146) | (0.188) | (0.237) { (0.207; | (0.135) | (0.138) { (0.115) { (0.124) | (0.216)
By 0.645° 0.478° 0.793* 1.154° 0.543° 0.700° 0.529° 0.548° 0753
0.134) | 0.137) | 0133) | (0.18%) | (0.104) | (0.105) | (0.092) | (6.140) | (0188)
Bs 0475°* -0.046 0.373 0.671° 0.392* 0.038 0.267 0.394° 0.151
(0.199) | (0.254) | (0.136) | (0.220) | (0.166) | (0.226) | (0.198) | (0.186) | (0339
By, 0.035 -0.002 0.038 0.347 0421 0.591 0463 0.167 1.664°
(0.538) (0.545) (0.895) (0 762) (0.501) | (0.455) (0.408) (0.460) (0.696)
pa -0.280° | -1.246° 0.469° 0.547° | 0.210° 0.733° 0.642° -0.388° -0 749°
(0.100) (0.216) (0.070) (0.101) | (0.112) (0.196) (0.116) (0.140) (0310
Bg 0.087 0.280 0.202 2.304° -0.099 0718 0.827° 0184 0.288
(0.151) (0.974) (0.279) (0.594) (0.131) (0.690) (0 152) (0.225) (1167)
By 0.352* 0.948° 0149 0.154 0.102 0.384° 0.352° 0.338 0903 |
(0.082) | (0.198) | (0.124) | (0.265) | (0.082) | (0.141) | 0.097) | (0.138) | (0366)
Y -0.092 0.949° 0.139 0.031 -0.346* 0232+ 1.003° 0.133 04832
(0.099) (0.079) (0.110) (0.106) (0.113) (0.085) (0.073) (0.105) (0.094)
NOBS 1009 1007 930 966 1011 1008 1011 1009 991
z 3.482 5.511 0.336 0.217 5.201 4.542 27.454 3610 0904
Pancl B: Model Hvpothesis Tests.
Hypothesis MA MHP NCIB RAD SBC UNP upP) USW VO
Hg 59.027 82.272 51.522 48 686 41282 71.568 85328 37 535 55211
p-valuc (0.000) (0 000) (0.000) (0 000) (0.000) (0 .000) (0 200) {0.000) (0 000)
H, $.751 2316 1.767 0773 0404 9173 1415 0706 1 3v0
p-value (0.056) (0.314) (0413) (067N (D817) (0010 (()493) (0 702) (0 499)
H, 25326 9.365 12,369 20479 17.591 35 980 15.367 14 025 20.654
p-value (0.000) (0.053) (0015) (0 000) (0001) (0 000) (0 00-1) (0 007) (0 000)
Hy 4.440 0.101 3 348 4540 2022 0907 1314 1917 1 986
valuc (0.109) (0951) (0 187) (0 103) (0.364) (0 635) (0 518) (0 383) (0 370
Hy 14 025 51.860 25761 18 451 6167 17 136 53 785 8576 R63Y
value (0 003) (0 000) (0 000) (0 010N (0 104) (0001 (0 000) (0 035) (0 034)
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PAPER 2:

COMPARATIVE FINANCIAL MARKET PERFORMANCE
UNDER DIFFERENT DEGREES OF CENTRALIZATION.
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0. Intreduction.

The generic notion of a marketplace is based on assembling traders in
a single trading arena. Yet markets can be centralized in varying degrees,
depending on the number of marketplaces and on the ability of traders in
one marketplace to transact with traders in other marketplaces. This paper
examines how the degree of a market's centralization affects its
operational characteristics, and provides a framework for evaluating the
consequences of market consolidation. We view a market mechanism as a
transformation process that accepts orders from individual traders as
"inputs," and generates transactions (usually specified by price and
quantity) as "outputs.”" We say that the market mechanism is consolidated
if all the order data are available when this transformation takes place;
e.g., when all orders are channeled to a central trading post. We say that
the market is fragmented when orders -re decomposed into a number of
disjoint subsets, and the transformation is applied to ecach subset
separately; e.g., when an asset is traded in a number of secluded
locations. In this context, market fragmentation is the result of
incomplete information (about all available crders), that could result in
the absence of potentially mutually beneficial trades and loss of the

associated gains from trade.! In contrast, a consolidated market takes all

I Note here that "fragmentation" does not necessarily imply “price
independence.”  Further, geographically-dispersed markets may well be
consolidated (e.g., if they use a consolidated "order book").
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the available order data into account in determining market outcomes.

An analysis of the centralization issue calls for balancing the costs
of incomplete order information against the costs of consolidation.
Consolidated market-mechanisms require all orders to be called to a central
location, thus leading to substantial communication requirements.
According to Garbade (1982, Ch. 20), "market fragmentation will exist
whenever transactors are unable to communicate with each other quickly and
cheaply. The greater costs of communication, and the longer lags in
communication, the more extensive will be the fragmentation of the market,
and the more likely it will be that transactions will take place away from
the best available prices." Thus, market design requires an analytic
framework for studying the effects of market centralization on market
performance and by the effects of market liquidity as a determinant of
asset returns. The interest in such a framework is enhanced by the trend
towards automation of the exchange process, which calls for an explicit
analysis of the costs and benefits of alternative exchange precedures.

This paper analyzes two alternative models of market organization used
in the market micro-structure literature, which represent two approaches to
order execution in securities exchanges.2 The first market mechanism is
the clearing house, which accumulates orders and intersects the resulting
demand and supply schedules periodically, yielding a single market-clearing
price that applies to all orders. The second mechanism is the dealer

market, in which dealers quote bid and ask prices and stand ready to buy

2 For example, see Whitcomb (1985).
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and sell at these prices.> We analyze the polar cases of a consolidated
market versus a fragmented market under both organizations, yielding four
alternative models. For the clearing house organization, we compare the
fully consolidated alternative to the fully fragmented one. Then we study
the operation of a monopoly-dealer (specialist) market and compare it to an
inter-dealer market, thus examining the effects of competition among
dealers on the performance of a dealer market.

The issues studied in this paper arise in a number of securities
markets in the United States and around the world.* The over-the-counter
(OTC) market operates as an inter-dealer market that is partially
fragmented; our resuits bear on the effects of inter-dealer competition on
the performance of this market. The debate over in-house execution of
orders by brokerage houses (internalization) highlights another aspect of
the centralization issue. Internalization is a special type of
fragmentation occurring when a broker-dealer executes orders in-house
before they reach the exchange floor. Both the New York and American Stock
Exchanges have imposed restrictions on off-board trading, citing the evils
of fragmentation in response to the SEC’s attempts to repeal these
restrictions. In the OTC market, brokers/dealers often internally execute
orders that could not be executed in the inter-dealer market.  Another
example is provided by securities that are multiply listed on the New York

and regional exchang:s. These markets are connected by a communications

3 Amihud and Mendelson (1980) also model market-making in a dealer markei
to determine the effect on market liquidity.

4 For further discussion of the public policy nature of these issues, see
Stoll (1993).
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system that allows dealers to examine the best available quotes and may
thus be viewed as an inter-dealer market.

The operation of fragmented markets has been examined previously by a
number of authors.> Garbade and Silber (1976, 1978, 1979) studied various
phenomena of price dispersion in geographically separated markets,
considering the role of transaction costs and information asymmetries as
determinants of price dispersion. Cohen, Maier, Schwartz, and Whitcomb
(1982) discussed the reasons for and possible implications of
internalization by brokerage firms when prices are discrete and, hence, the
time component of the price-time execution priority becomes important.
They demonstrated that under a fragmented market implementation in which
brokerage houses assume the dealership function, the performance of the
market as a whole will deteriorate. Chowdhry and Nanda (1991) focuses on
how an informed trader can exploit his private information when there are
multiple locations that simultaneously trade an asset.  They examine
strategies that market makers may use to deter informed trading across
markets. However, their paper does not consider competition between
dealers for order flow and it does not address the consequences of market
consolidation. Madhaven (1992) compares price formation under a quote-
driven mechanism and an order-driven mechanism using various measures of
market performance. While Madhaven models trading as a game between
strategic traders with rational expectations, our research abstracts from

these informational issues in order to consider the centralization issue.

5 A comprehensive survey of the literature on this subject is provided in
Stoll (1992).
6 Stoll (1982), in discussing their paper, questions their conclusions.
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Finally, Biais (1993) compares centralized and fragmented markets with an
emphasis on the nature of interdealer behavior and competition. His
primary measure of market performance in contrasting market structures is
the bid-ask spread.

There have also been a number of related empirical studies. Hamilton
(1979) studied empirically the impact of the NASDAQ system on bid-ask
spreads, demonstrating that the introduction of NASDAQ has reduced the
spread somewhat, and almost eliminated the edge of the NYSE for comparable
securities. Branch and Freed (1977) demonstrated that inter-dealer
competition tends to reduce the NYSE spread, and Benston and Hagerman
(1974) found that inter-dealer competition reduces the spreads of OTC
stocks. More recently, Neal (1992) compares empirical bid-ask spreads for
equity options traded on both monopoly dealer markets and interdealer
markets. He finds that specialist markets provide more liquidity relative
to interdealer markets, which is consistent with the results in this paper.

In Section 1, we present the basic models of the dealer market and the
clearing house. We study four models of distinct market mechanisms in
Section 2. Section 3 studies the implications of the organization of the
market on its performance. In Section 4, we study the robustness of our

assumptions for our results. Concluding remarks are offered in Section 5.

1. The Market Structure.

1.1. The Demand/Supply Structure.

Our model of traders’ demand and supply follows conventional
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assumptions made in the market microstructure literature.” Each trader is
either a potential seller, offering for sale one unit of the traded asset,
or a potential buyer, bidding on one unit of the asset. Traders’
reservation prices are independent and identically distributed (i.i.d.)
over a finite interval, that is assumed (without loss of generality) to be
the unit interval.® The market is cleared at fixed time intervals of
length T.

The market demand and supply are obtained by aggregation of the
individual schedules that depict stochastic processes in price space,
assumed to be independent Poisson processes. The positively-sloped supply
function rises in random price increments denoted by 3 (= the interval
between the (j - 1)st and the jth reservation price).  Similarly, the
demand function is downward sloping with random price steps . We assume
that =¥ and =P are exponential i.i.d. random variables with mean 1/a,

implying that the demand and supply schedules are independent Poisson

7 Numerous examples of this setup exist. See Garman (1976), Amihud and
Mendelson (1980), Ho and Stoll (1981), Mildenstein and Schleef (1983), or
Chen and Jain (1992). Garman (1976) argues: "The Poisson assumption is
justified in the same fashion that we normally rationalize the distribution
of call arrivals to a telephone switchboard, automobile arrivals at a car
wash, or customer arrivals at a bank. Loeve (1963, p. 317) gives the
necessary conditions for Poisson convergence, but these are rather abstract
in nature. For our purposes there are reasonably mild sufficient
conditions: (1) that there be a large number of market agents; (2) that
agents act independently in selecting the timing of their orders; (3) that
no small subset of agents dominate overall order generation; and (4) that
no agent can generate an infinite number of orders in a finite period of
time." (p. 259-260)

8 Since there is no information of a fundamental nature in this model, our
results pertaining to the price process should be interpreted as being a
relative price rather than an absolute price. In other words, the prices
produced in one model must be considered in relation to the prices produced
in another model rather than to some fundamental basis for pricing the
asset.

95



processes in price space. The Poisson rate A, that represents the expected
number of buy (sell) orders per unit price, is called the order intensiry.

The demand and supply processes can be summarized by N,(p), the number
of buy orders with reservation prices greater than or equal to (1 - p); and
Ng(p), the number of sell orders with prices less than or equal to p.

Formally, these are the renewal functions®

No@) = max(mi}? <9 s p}, (1.1)

and
Ny(p) = max{ml{‘jf‘=lt§ 2 p}. (1.2)
Both Np(p) and Ng(p) are Poisson processes whose first two moments are

given by

E[Ns(p)] = E[Np(p)] = 2p, (1.3)

and
E[Ns(PI* = E[Np(p)I* = A%p? + ap. (1.4)

We next introduce the market mechanisms operating in the above environment.

1.2. The Clearing House.

The clearing house is a model of a periodic call market. The clearing
procedure, applied every T units of time, is a sealed-bid double aucticn:
aggregation of the individual buy and sell orders generates the classical
demand and supply schedules of the market, that intersect at a market-
clearing price. The expected quantity exchanged in a clearing house with

order intensity A is given by

9 A sequence is called a remewal process provided that the arrival times
are i.i.d. non-negative random variables. For a discussion of the
properties of these models, see Parzen (1962, Ch. 5) or Ross (1970, Ch. 3).
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E[QIA] = A/2 - 1/4(1 - e?}). (1.5)
Increasing the order intensity increases the trading volume, as might be

expecied.!® The execution price variance in the clearing house is

, 1 ] - e2A
Var(P|x) = - e 1.6
I z,;[l —n—] (1.6)
The price variance is a decreasing and convex function of the order
intensity, A:  increasing A increases the "depth" of the market, thus

reducing the price fluctuations.  As the order in‘ensity X tends to

infinity, the execution price variance tends to zero.

1.3. The Monopoly-Dealer (Specialist) Market.

In this model, exchange is performed through a dealer who has a
monopely on all trading. At the beginning of the inter-clearing intervai
T, the dealer (specialist) announces a bid price B8 and ask price «; at
clearing time he buys the quantity offered to him at g and sells the
quantity desired at «o.

The cost and revenue structure faced by the dealer is as follows. If
he quotes bid price B and ask price «, the quantity supplied to him is
given by the random variable N¢(8), and the quantity demanded is Np(l - o).
If the dealer’s initial inventory position is @, his final inventory

position will be

10 For a given trading volume Q, the combined (supply and demand) process is
obtained by counting every second renewal in a Poisson process with inter-
arrival intervals 9, 3, *®, 3, %, 13, .... Hence, we have

A 2k A 2k+1
P(Q = k} = C'Aéﬂ)iﬂ + e'AC()WU!'

The expected trading volume is given by the expectation of the renewal
function of the combined process.
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I =6 + Ng@B) - Np(l - ). (1.7)
We assume that the dealer values his final inventory I 2t v per unit; in
addition, he incurs a cost h(I) whenever his final position I is nonzero.
This cost is an increasing function of the deviation from a zero position,
and is assumed to have the quadratic form h(I) = k-12. For convenience, we
assume 0 =< k = 1/2 and |8| = a/z.11
The dealer, acting as a monopoly, sets the bid and ask prices (8 and
«) so as to maximize his expected overall profit, given by
n(8, o) = E[a-Np(l - ) - B-Ng(®)] + v-I - E[h(D], (1.8)
where the final inventory position ] is given in equation (1.7). Using
equations (1.3) and (1.4) to evaluate the expectation, we obtain
B, «) = [ve - ke?] - a(1 + kr)p? + a(v - k - 26k)B
-Aa(l + k) - a2 + Al -v - k + 20k)(] - «)
+ 2ka2B(1 - a). (1.9)

The first order conditions for maximizing equation (1.9) give the solution

8* = 1/4(1 - 2K) - [431(‘1 t 121'(;;"’], (1.10)
o = 1- 1/4(1 - 2K) - [43‘(‘1 ++l21'®2"]. (1.11)

Note that both the bid price 8* and the ask price «* are decreasing
functions of the specialists’s inventory position. The bid-ask spread,
o« - g =1-1/2(1 - 2k), (1.12)

1! That is, inventory holding cost is nonnegative, the cost of holding one
unit of inventory is bounded by the price at the intersection of the
expected demand and supply schedules, and the dealer's inventory position
is bounded by the corresponding quantity. Amihud and Mendelson (1980) were
among the first researchers to use this approach.
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is an increasing function of the inventory holding cost parameter. The
expected net change in the dealer’s inventory as a result of trading with
the public, A(B* + «” - 1), is a decreasing function of his starting

inventory, reflecting the dealer’s desire to balance his position.

2. The Models.

We now turn to the issue of market centralization. Consider a market
that consists of N submarkets indexed by i = 1, 2, ..., N. Each submarket
i follows the demand/supply specification of Section 1.1: traders submit
orders at their local submarket, and each submarket demand and supply
process is a Poisson process in price space, characterized by order
intensity ;.  When these markets are consolidated, the order intensity
becomes A = Z':=lxi.‘2 We analyze the consequences of executing orders under
each of the following market mechanisms: fragmented clearing houses (FC),
a consolidated clearing house (CC), a monopoly dealer market (MD), and an
interdealer market (ID).

The mode of operation of the fragmented clearing houses (FC) is
simple: intersect the demand and supply schedules constructed in each

submarket separately, without allowing arbitrage between them.!3  The

consolidated clearing house (CC) has a single clearing house for the entire

12 This statement is true because the superposition of independent Poisson
processes with rates A, generates a Poisson process with rate A = XN A,

See Ross (1970, Ch. 2).

13 This market structure corresponds to Alfred Marshall's (1949) notion of
"secluded markets in which all direct competition from afar is shut out,"
and represents a polar form of fragmentation.
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market. The demand and supply schedules generated by all orders are
intersected every T units of time to determine the quantity traded and the
market clearing price. The analysis of Section 1.2 applies to each of the
fragmented clearing houses (with order intensity A,) as well as to the
consolidated clearing house (with order intensity A).

The monopoly dealer market (MD) is operated by a specialist that
announces his bid and ask prices, B and «, buys the quantity offered at B8
and sells the quantity offered at «. The dealer operates as in Section 1.3
and faces the consolidated order intensity A = ZL,A“

The interdealer marker (ID) consists of N competing dealers, one in
each submarket. [Each dealer i sets a bid price B, and an ask price «;.
The order flow is attracted to the highest bid B = max 8; and to the

I={=N

lowest ask price A = mi".sisN“i' That 1is, trading is carried out at the
inside bid and ask quotes. We assume that dealers face the revenue and
cost structures specified in Section 1.3., and differ in their initial
inventory positions 6;. If dealer i quotes the bid-ask prices (8;, o), he
will attract no buy orders if B, < B, and no sell orders if « > A.
Consequently, a dealer will increase his bid price B, above other dealers’
bids as long as buying is profitable to him, and will reduce his ask price
o, below the cempeting dealers’ offers as long as selling is profitable to
him. A dealer is called neutral if he is neither a buyer nor a seller,
i.e., when his quotes are inferior to the market quotes. A neutral
dealer’s expected profit (given initial inventory position ) is ve - keZ,

The differences between dealers are due to the variation in their

initial inventory positions 6;,. Intuitively, a dealer with a long position
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will offer a lower price than a dealer with a short position in order to
avoid the inventory holding costs.  Similarly, a dealer with a short
position will increase his bid to avoid the costs of a short closing
position.  Thus, each dealer will have a different reservation price,
deper.ding on his initial inventory position.

We define the reservation bid price (ask, respectively) of a dealer
with inventory position 0, B*(8) («°(8), respectively), as the bid (ask)
price that drives his expected profit to its neutral level (ve - ke2) when
he faces the entire market supply (demand, respectively). We define the
profit-maximizing bid (ask, respectively) as the bid (ask) price that
maximizes his buying (selling) profits, assuming he faces the entire market
supply (demand, respectively). The dealer with the highest reservation bid
(say B°(6;)) can outbid all other dealers. If B*(p;) is the second-highest
reservation bid, it is sufficient for dealer i to bid slightly above B°(s;)
to attract the entire market supply. Thus, the market bid B will be given
by the maximum of the highest profit-maximizing bid and the second-highest
reservation bid. Similarly, the market ask A will be given by the minimum
of the lowest profit-maximizing ask and the second-lowest reservation ask.

Denoting the ordered inventory position by 6, 64, ..., 8p,) the
dealer with the lowest position (6, will be the highest bidder, and his
bid will be the maximum of the reservation bid of the dealer with position
(6 and his own profit-maximizing bid. Similarly, the dealer with the
highest inventory position (8,) will quote the market ask price, equal to
the minimum of the reservation ask price of the dealer with inventory

position (8y.;) and his own profit-maximizing ask. Thus, unlike the case
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of the monopoly dealer market, a dealer will be either a buyer or a seller
in a given clearing, but not both.

Next, we derive «°(8), a*(8), B°(8), and b*(6) as functions of the
dealer’s inventory position. The profit function of a dealer with initial
inventory @ who captures the market supply is given by

ng(B) = -AB2 + v-E{I] - k-E[I?], 2.1
where I is his closing inventory position. If X denotes the quantity
bought by the dealer (a Poisson variate with mean Ag8), we have I = 8 + X.
Hence,

mg(8) = -282 + v-E[6 + X] - k-E[(6 + X)?]
= [ve - ke?] + AB[v - 2ke - k - B(1 + kA)]. (2.2)
Thus, mg(B) is a quadratic function of B. If the dealer is neutral, his
profit is simply [ve - ke2?]. The reservation bid at which a dealer is

indifferent between buying and not buying is given by

B©) = L1 5% @3

The profit-maximizing bid of a dealer with inventory position 6 is
b*(e) = B*(8)/2. 2.4)
Thus, the equilibrium market bid B* will be given by

B = max {v - 2keg, - k v - 2key, - k}. 2.5)

I'+kx 2T+ k)
Similarly, the profit function of a dealer who captures the market as
a seller
m,(«) = Aa(l - @) + v-E[I] - k-E[I?]
= [ve - ke?] + A(l - a)[l - v + 2ke - k - (1 - a)(1 + k)], (2.6)

implying that his reservation ask price is
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v - 2ke - k

o) = 1 - L5 2.7
The corresponding profit-maximizing ask is
a*e) = 1 - (1 - a*(8))/2. (2.8)
Thus, the market ask price is given by
A* = max {1 - fkima - k’ . vi(fkj-m)kk% } (2.9)

With these models in hand, we are now ready for a comparative study of

the performance of different market regimes.

3. Comparative Market Performance.

In this section, we study the performance of the market under four
alternative regimes. We distinguish between the various models using a
superscript over the variable being studied: the superscript FC identifies
the fragmented clearing houses with order intensities A;, A,, ..., Ay; CC
identifies the consolidated clearing house with order intensity A = Z:lzlAi;
MD identifies the monopolistic dealer market, and ID is the interdealer
market.!*  Our comparative studv examines four measures of market
performance: the expected quantity traded, the price variance faced by an
individual trader, the quality of price signals provided by the exchange
process, and the expected gains from trade. Finally, we examine the

implementation costs associated with each of the alternative regimes.

3.1. Expected Quantity Traded.

14 In models MD and ID, we take v = 1/2, i.e., the price at the intersection
of the expected demand and expected supply functions.
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The quantity traded in a market is a direct measure of its
performance: higher quantities ar. usually associated with greater "depth"
and higher liquidity. Since the expected quantity traded in the
consolidated clearing is

E[Q°C] = E[QIA] = A/2 - 1/4(1 - e?A), 3.1

and in the fragmented clearing houses

E[QF] = zllz[Qni] = A2 - 1/4[:'=l(1 - e, (3.2)
we aiways have

E[Q°C] > E[QFC], (3.3)
i.e., consolidation increases the expected quantity iraded in a clearing
house.

Next, we consider the expected quantities traded in the dealer-based
markets. These quantities are obtained by substituting the bid and ask
prices into the market demand and supply fuactions. When k = 0 (i.e.,
there are no inventory costs), the expected quantities bought and sold in
the monopoly dealer market are A/4, whereas they are twice as large (A/2)
for the interdealer market.  For moderate values of 6, the expected
quantities bought and sold in the monopoly dealer market are lower than
E[Q°C], but may be either higher or lower than E[QFC]. The expected

quantities exchanged in the interdealer market may be higher or lower than

the expected quantity traded in the consolidated clearing house.

3.2. Price Variance—Individual Trader.
Next we consider the effects of market fragmentation on the price

variance faced by a trader in a single market. Let P¥C and P$C denote the
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price in submarket i under the respective regimes. Then, for ail
Apy Ay ..y Ay > 0O and N > 1, fragmentation increases the price variance
faced by a trader,

Var(P$¢) < Var(Prc). 3.4)
Clearly, the price variance is an increasing function and concave function
of N. A comparison to the dealer market regimes is difficult due to the

fact thai point estimates are to be compared to interval estimates.

3.3. Quality of the Relative Prices.

The process of exchange is important not only for traders, but also
for market observers who do not directly participate in the trading
process. Various consumption, investment, and production decisions require
the knowledge of relative prices, and there are real costs associated with
errors in the estimation of these prices.  Thus, noisy price signals
produced by the exchange process inflict costs on the economy as a whole.

It is tempting to conclude from the results of the previous section
that (in the case of the clearing house) fragmentation reduces the quality
of price signals. There is no reason to presume, however, that decision
makers use in their assessments the outcomes of any single submarket.
Rather, they can obtain better estimates by processing the information on
the outcomes of trading in each fragmentad market. As ali markets clear
synchronously, an observer of the outcomes can compute the volume-weighted
average (or, more precisely, the intensity-weighted average) of the prices
obtained in each of the separate submarkets.

Consider the fragmented market regime, and let the weighted-average

105



price, APFC, be defined by
N
APFC = Z(Ai/A)-PfC. (3.5)
i=1

The following theorem (proofs are provided in Appendix A) states that the
variance of the price obtained by averaging across markets is smailer than

the price variance of the consolidated clearing house.

Theorem 1. For atl N > 1, and [, 2y, ..., Ay > G,
Var(APFC) < Var(Pcc), (3.6)

Theorem 1 demonstrates that fragmentation actually improves the
quality of price signals, reducing the weighted-average price variance. To
study this effect in detail, we consider the symmetric case where the
consolidated intensity A is obtained by aggregating N equivalent submarkets

with A; = A/N. In this case, we obtain

Var(APFe) = 2 '[1 ) l_me;q"ﬁ . (3.7)
It is now easy to verify that equation (3.7) is a decreasing function of N
—i.e., fragmentation reduces the weighted-average price variance. One way
to interpret this result is to view the effect of fragmentation as the net
outcome of two opposite effects:  first, the order intensity in each
submarket declines as the system is fragmented; as demonstrated above,
increasing “thinness" increases the price variance in each separate
fragment. On the other hand, since APFC is an average of the fragmented

market prices, there is an effect of price diversification across

submarkets, that tends to reduce the overall variance. Theorem 1 then
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states that the “diversification" effect dominates the “thinness" effect.
This follows from the fact that even though the price variance within each
submarket is an increasing function of N, this function is concave. Thus,
doubling the number of fragments N increases the price variance by less
than a factor of 2. On the other hand, the diversification effect i3
linear in 1/N: doubling N (while maintaining each submarket price variance
the same) reduces the weighted-average price variance by a factor of 2.
Since

Var(APFC) = 1/N-Var(Pfc), (3.8)
the net effect of increasing N is that the “diversification" factor 1/N
dominates, and the weighted-average price variance is a decreasing function

of N.

3.4. Gains from Trade.

A common summary-measure of market performance is the magnitude of
gains from trade accruing to market participants. These gains represent a
monetary value that traders should be willing to pay to have the exchange
in operation. In this subsection, we assess the effects of the market
mechanism on this surplus measure.!s

We first evaluate gains from trade under the clearing house
organization. These gains are represented by the area between the demand

schedule, the supply schedule, and the price axis. Suppose that the

!5 The analysis in this section considers only the gross surplus. We could
further model implementation costs by considering fixed-costs of trading,
variable costs of trading, order processing costs, and the costs of
clearing shares.
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execution price is P, and that a trader j has placed a sell or buy order
with limit price p,. Trader j’s gain from trade is P - p;| if his order
is executed, and zero otherwise. The aggregate measure of traders’ gains

is thus given by

G=)®-p*+ [P, (3.9

sclls buys
where x* = max{x, O} denotes the positive part of x.

The following theorem provides the expected gains from trade in a

clearing house.

Theorem 2. The expected gains from trade in a clearing house are given by

E[GIA] = g - 7 + 815(1 - ). 3.10)

Expression (3.11) for the expected market surplus can be written as
E[GIAl = JA - A-Var(P). (3.11)
The first expression is the “deterministic® traders’ surplus corresponding
to the expected-demand and expected-supply functions, and the second
represents the expected surplus loss due to uncertainty.!'® That is, an
increase in the price variance is directly translated into an expected
surplus loss per order: the fluctuations of P have an adverse effect on
the aggregate of traders gains in an expected-value sense.
Comparing the gains from trade in the consolidated and fragmented

clearing houses, we have from Theorem 2:

E[GE) = ga - 1 + gill - &), 3.12)

16 Note that the expected loss per order is 1/2- Var(P).
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and
N
E[GF] = Jr - N + [ g(l - &), (.13)
i=1

It is straightforward to verify that
E[GCC] > E[GFC], (3.14)
i.e., fragmentation reduces the expected gains from trade.

Next consider the gains from trade in the monopoly dealer market.
These gains consist of three parts: the dealer’s profits, the surplus of
public buyers (reflecting the difference between buyers’ reservation prices
and the ask price), and the surplus of public sellers (resulting from the
difference between sellers’ reservation prices and the bid price). The

gains from trade for the dealer market are given by the following theorem.

Theorem 3.

EIGMP] = ve - ko? + a(l - 2K + (20K

+ %7\(3‘)2 + (- @), (3.15)

where B* and o* are given by equations (1.10) and (1.11), respectively.

Finally, consider the interdealer market. Here, the market surplus is
the sum of (i) the expected profit of the dealer quoting the bid price,
ng(B*) (where ng(-) is given by equation (2.2), and B* —by equation (2.4);
(i1) the expected profit of the dealer quoting the ask price m,(A*) (given
by equations (2.5) and (2.7)); (iti) the expected surplus of public
sellers, given by

E[Gg] = 1/2x(B*)?%; (3.16)

and (iv) the expected surplus of public buyers,
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£[Gg]l = 1/2x(1 - A®)? 3.17)
(the latter two follow as in Theorem 3). Thus, it is straightforward to
compute the expected gains from trade. The overall surplus of the
interdealer market depends on the dealers’ inventory positions, but will
typically be between the surplus of the monopoly dealer market and that of

the consolidated clearing house.

3.5. Implementation Costs.

As already pointed out, the surplus measure studied in the previous
subsection is incomplete since it does not take into account the costs of
the exchange process, and, in particular, the processing and communication
costs. 7 The latter component, i.e., the cost associated with the
communication infrastructure of the exchange, is of special interest in the
centralization context.

We consider a market consisting of N identical submarkets with total
order intensity A, and classify the exchange implementation costs (E) into
four components: (i) fixed costs denoted by F per exchange; F depends on
the market mechanism;!® (ii) variable (volume dependent) data-communication
costs, assumed proportional to the expected number of orders communicated
from the submarkets (we denote the cost per order communicated by ¥, and
assume that 7 is independent of the market mechanism); (iii) order-

processing costs; we assume that the processing cost per order is a

17 The analysis of the market mechanisms involving dealers who actively take
a position already accounted for the associated costs.

18 F also includes fixed data-communication costs that are independent of
the order volume (and are necessary to support the market mechanism).
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constant f, depending on the market mechanism; and (iv) the cost of
clearing shares that were actually exchanged—we assume that the marginal
cost per share is a constant e, and that the clearing cost is independent
of the market mechanism.!?

Consider first the mechanisms based on the clearing house procedure.
Denote the corresponding fixed cost by FC (per clearing house) and the
order-handling cost by f© (pex order). In the consolidated clearing house,
each buy and sell order must be communicated to the central exchange, hence
the expected data-communication cost is 2yA. In the fragmented clearing
houses, orders are executed locally, hence,

ECC = FC + 2y-a + fC-a + e-E[QCC], (3.18)
and
EFC = N-FC¢ + fC-a + e-E[QF-]. (3.19)
As seen in equations (3.18) and (3.19), an important benefit of
fragmentation is the reduction in order-communication requirements. This
is achieved at the cost of a deterioration in market performance (as
demonstrated above) as well as incurring the fixed cost FC in each of the
submarkets rather than once.

Next consider the dealer-based market mechanisms. Denoting the tixed??
and order handling costs of the monopoly-dealer market regime by FMP and
fMD respectively, we have

EMD = FMD 4+ (y + 1/2¢)-A(B° + 1 - o) + AfMD, (3.20)

19 Alternative assumptions are also possible; they will not change the
essence of our results.

20 Recall tliat we included the cost of disseminating quotations, which is
independent of the order volume, in FP.
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where A(B* + 1 - «®) is the sum of the expecied quantities bought and sold.
Note that the order-communication volume has been reduced frou 27X in the
consolidated clearing house to ¥A(B* + 1 - «%) under the monopolistic
dealer market. This is because, unlike the consolidated clearing house,
which requires transmission of all orders, here, sell orders at prices that
are higher than the bid or buy orders at prices lower than the ask need not
be communicated, since they will not be executed. Thus, by quoting bid and
ask prices, the dealer provides useful information that enables a reduction
in the order-communication volume. This, however, is achieved at the cost
of disseminating quotations (included in FMP) as well as the surplus loss
due to the dealer’s monopoly.

Finally, consider the interdealer market. Let F™ denote the fixed
cost per dealer, and let fl* denote the order-handling cost. As in the
monopoly dealer market, only orders that will be executed need to be
communicated. The resulting order-communication volume, A(B* + 1 - A®), is
greater than that of the monopoly dealer market, but this is because the
irading volume increases. This order-communication volume is substantially
below the corresponding volume in the consolidated clearing house, despite
the fact that the trading volume is not substantially iower: the
availability of open quotations enables transactors to know in advance
whether their orders will be executed. As a result, there is no nesd to
communicate orders that would not be executed against the inside market
quotes. Thus, for the interdealer market,

E® = N-F® + (3 + 1/2e)A(B* + 1 - A*) + afi® (3.21)

Ranking the alternative regimes by increasing order-communication
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1y s el LR 2 R,

costs, we have FC (the lowest), then MD, then ID, and, finally, CC. While
the dissemination of quotations by the dealers in regimes MD and 1D are
costly, they enable a substantial reduction in the order-communication
costs: since traders become aware of the current state of the market, it
becomes unnecessary to submit orders that would not qualify for execution.
The price leadership provided by the dealer based quotations is an
important service that increases the efficiency of the exchange process.
As we have shown, interdealer competition substantially reduces the costs

charged by dealers for providing these services.

4. Model Robustness to Distributional Assumptions.

In order to make our model tractable, we employ assumptions and
operating characteristics which only approximately describe reality. This
section explores the robustness of our findings to several of the key
assumptions we need in order to solve the model.2!

Researchers discussing the behavior of securities markets commonly
identify two types of investors: liquidity traders that lack information
and merely want to convert securities into cash or vice-versa; and informed
traders who transact with special information. Our study focused only on
the former type. A trader motivated by liquidity will either buy or sell
the asset, depending on his current liquidity preferences. As first
described by Bagehot (1971), the statistical nature of this ensemble of

traders creates unsystematic and independent shocks to market clearing so

2l We provide further discussion of the implications of our distributional
assumptions in Appendix B.
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that “market price is virtually unaffected by these errors." (p. 14) By
studying this population of traders, characterized by random demand and
supply schedules, we are able to provide quantitative and qualitative
insights into the effect of the market mechanism on the performance of a
market.

The assumed independence between the demand process and the supply
process is consistent with the nature of liquidity-motivated transactions:
sell orders are generated by transactors who are willing to convert the
traded asset into cash, while buy orders originate from a different
population of traders who are willing to convert cash into the traded
asset. The Poisson assumption for the arrival of traders to the
marketplace and to demand transaction services is appropriate when there is
a large number of potential traders who act independently in the placement
of orders and are statistically interchangeable. This interpretation
enables a complete analysis of market performance. The key to the analysis
lies in the application of concepts from the study of stochastic processes
and renewal theory. Both the independence and Poisson assumptions have
been made in numerous studies of market microstructure?? and are entirely
appropriate in the study oi arrival processes such as the one we set out to
model in this paper.

An alternative approach would be to model the aggregation of
information in market prices using a richer population of traders. Kyle
(1985, 1989) developed models of trade in financial markets with both

informed and uninformed participants engaging in either imperfect or

22 See the references and discussion in Footnote 7.
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strategic competition. In this class of models, researchers typically must
specify the distribution of information among traders, their endowments,
utility functions, and risk aversion in order to discuss an analytically
tractable model of trade. Kyie analyzes a market in which many trades are
batched together and processed at a price tha. is calculated to give zero
expected profits to the market maker given the total order flow. In Kyle's
model, prices are not posted but instead are determined after traders
submit orders and the size of the total order imbalance is observed.??

With normally distributed information increments, Kyle (1985) finds
that the variance of the price process is a decreasing linear function of
the order intensity within a periodically cleared call market. Admati and
Pfleiderer (1988) use Kyle's framework to consider the relationship between
price variability and order intensity.  They argue that the variance of
price changes is constant across time periods and should be independent of
the amount of information in the market and the total order flow.2¢ They
explain that this result occurs because trading patterns arise endogenously
as a result of the strategic interaction of liquidity traders and informed
traders. Intuitively, informed traders act to keep price variability
constant so that liquidity traders cannot deduce their information.

The implications of the Kyle and Admati and Pfleiderer models contrast
with the results developed in Sections 1 and 3 which arise from the fact

that the variance of the price process is a decreasing and convex function

B Admati and Pfleiderer (1989) extend this model to include a more
realistic trading mechanism and find that intraday and day-of-the-week mean
asset return effects are possible.

24 Examine, in particular, Admati and Pfleiderer (1588), Propositicn 3,
p. 19, and for the diverse information case, p. 25.
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of order intensity. If we use Kyle-style model of trade in financial
markets to study markct performance, then the results in Theorem 1 as well
as our other results that rely on the decreasing and convex relationship
between price variability and order intensity property no longer obtain
without additional assumptions. However, we would argue that neither model
is a complete depiction of reality and our model has a simpler, more
plausible description of both the arrival of liquidity traders and the

manner in which the trading mechanism affects market performance.

5. Conclusions.

This paper studies trade-offs between market consolidation and
fragmentation, using a number of models of market organization and a number
of measures of market performance. The classical comparison is between a
consolidated clearing house and fragmented clearing houses. Our results
demonstrate that, for the clearing house market regime, fragmentation
reduces the expected quantity traded, increases the price variance faced by
individual traders, and reduces the expected gains from trade.
Furthermore, we demonstrate that fragmentation may improve the quality of
market price signals when they are aggregated to yield the cross-market
weighted average price variance. This variance is lower in the fragmented
regime than in the consolidated regime, since the price "diversification"
effect across submarkets dominates the "thinness" effect within submarkets.
Finally, we study the performance of dealer-based market regimes,

demonstrating how interdealer competition affects our measures of market
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performance.

We do not purport to suggest that certain market organization is
superior or “optimal." The diversity of exchange mechanisms that prevail
around the world as well as across assets reflects the dependence of the
appropriate market design on specific circumstances and on factors that are
probably not captured by the stylized facts of the market microstructure
literature. It is hoped, however, that these models can contribute to our
understanding of the basic trade-offs and to the definition and evaluation
of performance measures, in addition to the provision of an analytic
foundation that can serve as the basis for more detailed and intricate

analyses.
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APPENDIX A

Proof of Theorem 1. It is easy to verify that the function
gx) = x -1 + ex (A.])
is strictly convex, and g(0) = 0. Thus, for all x;, x, > 0,
g(x; + x9) > g(x;) + g(xy); (A.2)
substituting x; = 2, (i = 1, 2) and rearranging terms, we obtain
20, + Ay - 1 + 2Ai*AD 5
@ -1+ ey + (a1 + ey (A.3)

that is equivalent to

1 2(A,+A2) 1 - e-z)«,
Ax + ) 2(7\, 1) X, + Az |

+ [N 1- ZM] (A.4)
AL F A, aA_2 27\2 j '
However, in light of equation (1.6), this inequality implies the theorem

for N = 2; the result for N > 2 now follows easily by induction on N. =

Proof of Theorem 2. The analysis of traders’ surplus utilizes the

variables
= )Y@ +1);, m=123,. (A.5)
j=1
where C,, C,, C,,... are the renewal epochs of a renewal process generated

by the variables {r? + $}¥_,, that are Erlang variates possessing scale
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parameter A and shape parameter 2.25
The gains from trade are given by

Q n n ] Q Q
G=J[1-}g-I®-Ja-chy=Q- Jc, (A.6)

n=1 j=1 =1 n=1 n=1

and the expected gains are thus

Q
E[G] = E[Q] - E ZC,, ) (A.7)
n=1

Now, let M denote the number of renewals of the Poisson process with
interarrival intervals ?, t§, %, 3,..., in the interval [0, 1].
Conditioning on the value of M, we distinguish between two cases:

(i) M = 2m. Here,

Q m
E| } CiM =2m| = VE[C,IM = 2m). (A.8)
a=1

n=1
Now, given M = 2m, the nth renewal epoch of the Poisson process is
distributed as the nth order statistic from a sample of (2m) i.i.d.
variates.?6  That is, C, is distributed as the (2n)th order statistic of

such a sample, and

() M = 2m + 1. Here,

3 An Erlang-n distribution is commonly used to describe the successive
arrival times at a fixed boundary. See Parzen (1962), Ch. §S.
2% See Parzen (1962), Ch. 5, or Ross (1970), Ch. 2).
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Q
E| [ CJIM = 2m + 1| = jm. (A.10)

n=1

The theorem follows by combining parts (i) and (ii) and summing over n.

Proof of Theorem 3. First, the dealer’s profits are given by

"8, @) = [v0 - ke?] + gA(l - 202 + ATK (A.11)

obtained by substituting equations (1.10) and (1.11) in to equation (1.9)
and rearranging terms. The rest of the gains accrue to public transactors.

Letting Gg denote the surplus of public sellers, we have

N,B") n
Gs = z g* - zr]s ) (A.12)
n=1 =1
To evaluate E[Gg], assume first that Ng(8*) = m is given. Given

Ns(B*) = m, the renewal epochs Eﬂtf are distributed as m order statistics
from a uniform distribution over [0, 8°], hence,
E[G5INg(B") = m] = m-(8*/2). (A.13)
But since Ng(8*) follows a Poisson distribution with expected value Ag*
(recall section 2.1), we have
E[Gs] = 1/2a(8")2. (A.14)
A similar argument regarding the surplus of public buyers completes the

proof. =
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APPENDIX B

In this section we address the issue of how the distributicnal
assumptions in the model can be altered. In particular, we examine whether
the normal distribution can be substituted for the stochastic process
hypothesized. = We address this issue in two ways: first, we examine
whether a normal distribution can be used to describe a renewal process,
and second, we study the implications of replacing the Poisson price

process with a Brownian Motion price process.

B.1. The Renewal Process.

By definition, a remewal process is a sequence of nonnegative,
discrete, independent and identically distributed random variables. The
model in Section 1.1 employs a renewal process in the form of a Poisson
process to model the expected number of buy (sell) orders per unit price or
the order intensity. This counting process has the property that the times
between successive events are independent and identically distributed
exponential random variables.

There are four reasons why we canrot simply substitute a normal
distribution for the Puisson distribution in this model. First, the normal
distribution is continuous whereas the expected number of orders per unit
time must be discrete. For example, our model cannct handle the case in
which 3 buyers attempt to transact with 3.5 sellers. Second, the normal

distribution takes on values over the entire real line. We cannot model 3
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buyers attempting to transact with -3.5 sellers.  This example is ill-
defined as a renewal process. Third, the normal distribution lacks the
property that it be increasing in time. In order to solve the model, we
need the property that each successive interarrival time be greater than or
equal to the previous interarrival time. The normal distribution does not
yield this property. Finally, the normal distribution cannot serve as a
renewal process because it takes on values between negative infinity and
positive infinity. In other words, under a normally distributed renewal
process (if one existed), it would be theoretically possible that an
infinite number of renewals can occur in a finite amount of time. This
possibility is explicitly ruled out in renewal theory since the
distribution of the number of events can only be obtained if and only if
they occur in a finite length of time. A normally distributed model will
not rule this case out.

In conclusion, we cannot simply insert a normal distribution when we
model aggregate order flow since that distribution is neither discrete,
increasing in time, non-negative, or finite. Only a renewal stochastic
process of the type developed in Section I.1 can adequately model order
intensity. Of course, it is not strictly necessary to replace the
distributional assumption surrounding the renewal process. One could

simply assume a difrerent price price. We explore this possibility next.

B.2. Developing an Alternative Model of the Price Process.
In Section 1.1, we assume that the market demand and supply are

obtained by the aggregation of individual schedules that depict stochastic
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processes in price space, assumed to be independent Poisson processes. As
discussed in Duffie (1988, p. 136), "A real-valued <tochastic process N is
a Possion process on (Q, F, P) with parameter A > 0 provided: (a) for any
0=s <tso N -N, is a random variable with Poisson distribution
having expected value (and variance) A(t - s)." Furthermore, Duffie
develops this stochastic process as an acceptable model of price dynamics
under uncertainty and as an abstract model of the revelation of information
through time. Our model uses this basic class of stochastic process to
model the price process. One implication of this modeling decision is that
we observe in equation (1.6) that the execution price variance is a
decreasing and convex function of the order iniensity, A.

An alternative model of price dynamics under uncertainty is to use a
real-valued stochastic process B defined to be a Srandard Brownian Motion
on (2, F, P) provided: "(a) for any given 0 <s < t =w, B - B, is a
normally distributed random variable with expected value equal to zero and
variance equal to t - s." (Duffie, 1988, p. 137) In this case for a given
trading interval, the price variance is a constant function, independent of
the order intensity.

Within this framework, we contend that altering the call market
structure  yields little in terms of substantive comparative statics.
First, the nature of the model is unchanged by having a single consolidated
clearing house or a fragmented clearing house. This is true because the
variance of a sum of uncorrelated random variables is equal to the sum of
the variances of each random variable. Hence, having a single consolidated

clearing house or a fragmented clearing house would make no difference to
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any of our measures of market performance. Operationally, the market
performance under both types of market structure would be equivalent.

Furthermore, the model is unaltered by replacing one monopoly dealer
with multiple competitive dealers. = We observed that the expected net
change in a single dealer’s inventory as a result of trading with the
public is a decreasing function of his starting inventory (reflecting the
dealer’s desire to balance his position) and a decreasing function of the
order intensity of his market. If we replaced the Poisson assumption with
the normal model assumption, then the single dealer’s inventory change
would be a function of his starting inventory only, and be independent of
the order flow observed in the market yielding results analogous to those
observed in the consolidated and fragmented clearing house case explored
above. When there are multiple dealer>s, their demands aggregate to the
demand of a single dealer in the normal price process case. This result
demonstrates that our findings are not robust to a change in the
distributional assumption.

In conclusion, the degree of market centralization has no effect on
market performance under the normal model assumption because of the
inherent linearity in that model. The price variance acress & number of
clearing house markets aggregates to the same value as the price variance
in a single market. Finally, the addition of multiple dealers does not
change market performance in the Standard Brownian Motion process case
since dealers would continue to base their quotes on their inventory
positions, independent of the market’s order intensity.  However, as

discussed above, we contend that a Standard Brownian Motion process is not
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an appropriate distribution with which to study the problem we zddress.
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PAPER 3:

INFORMATION AGGREGATION, BUBBLES,
AND HERD TRADING.
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0. Introduction.

The possibility that asset prices might deviate from intrinsic values
based on market fundamentals, Lecause of ‘speculative bubbles’ or ‘fads,’
has long intrigued economists. Prices might drift away from intrinsic
values because social forces create fads or fashions in asset markets, as
in markets for cars, food, houses, and entertainment. Many of the oldest
studies of the business cycle focused on asset price instability, and
posited that some collective ‘mania’ occasionally caused investors to bid
up asset prices to unsustainable levels, eventually but inevitably ending
in a ‘panic’ as prices crashed. Keynes (1936) in his famous ‘beauty
contest’ metaphor pointed out that asset traders who attempt to profit from
short-run price fluctuations must rationally compare price with their
expectations of others’ expectations, rather than their own estimates of
fundamental values, so perhaps investor behavior is not entirely
irrational.!

Our principle goal in this paper is to provide a model of asset
trading that is consistent with semi-strong efficient markets and trader

rationality, but leaves room for at least moderate ‘bubbles’ in asset

1 Several modern writers have related this Keynesian theme to the
multiplicity of rational expectations equilibria in many models.  For
example, Azariadis (1981) suggests that bubbles should be though of as
instantaneous  transitions, triggered by extraneous events, between
different  ‘self-fulfilling prophecy’ (or ‘sunspot’) equilibria. The
perfect coordination of expectations (and actions) in this approach,
however, appears quite at odds with the turmoil and confusion generally
associated with historical bubbies.
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prices arising from imperfect aggregation of private information. To
provide a context for our ideas, we begin with a brief r:view of previous
approaches to bubbles, or discrepancies between an asset’s market price and
its fundamental value.

Perhaps the most popular approach to modeling bubbles in recent years
is based on the observation (originally due to Hahn (1966)) that no-
intertemporal-arbitrage conditions do not yield a unique price path in most
perfect foresight or Rational Expectations Equilibrium asset-market models.
Typically, one has a convergent saddle-path identified as the
‘fundamental,” as well as other price paths that diverge from ihe saddle
path at an exponential rate. One cannot always eliminate such divergent
paths by transversality conditions, particularly in stochastic versions of
the model. For instance, Blanchard and Watson (1983) gives examples of
such bubbles with random iifetimes that grow at a known exponential rate
(the discount rate plus a risk premium) until they burst. Researchers have
rarely explicitly discussed the information conditions in models of this
type, but it is hard to avoid the interpretation that once the bubble has
started, everyone knows that price is above fundamental value and therefore
the game has an expected negative sum for current and future transactions
in the asset market, as in a Ponzi scheme or chain letter. Tirole (1982)
points out that such bubbles are impossible in Rational Expectations
Equilibrium once the negative sum aspect is common knowledge, except for
special cases in which participants are able to pass the losses on forever
to later entrants. Nevertheless, this ‘exponential rational bubbles’

approach has generated numerous articles.
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An alternative rational expectations view of bubbies posits an
incompiete information game between ordinary speculators, better informed
speculators, and liquidity-motivated transactors. In this class of models,
one can demonstrate that in perfect Bayesian-Nash equilibrium the
fundamental value (based on the aggregate information) can differ with
positive probability from the transacted price. The better-inforined
speculators (a non-negligible fraction of the market) must be able to form
an effective cartel for such a bubble to arise. Such an ‘information-
monopoly bubble’ reminds one of some popular accounts of the Hunt brothers’
silver market activities in the late 1970s. For example, Summers and his
coauthors (e.g., DeLong er. al. (1990)) introduced an approach in which
irrational traders create excess volatility that rational traders cannot
eliminate by arbitrage. Indeed, rational speculation may actually
reinforce discrepancies between the fundamenta! value and price created by
irrational ‘noise’ or ‘positive feedback’ traders.

Our own model emphasizes heterogeneous beliefs, but we do not assume
behaviorally distinct types of traders. In the spirit of Hirshleifer’s
(1989) critique of Tirole, we study a dynamic market in which traders
receive heterogeneous private information (‘news’), trade, observe the
price, and receive more ‘news,’ trade again, etc., over many periods. Our
focus is the extent to which price aggregates the diverse news. Under
general specifications regarding expectation formations, we show that
aggregation is imperfect and that substantial discrepancies can arise
between price and fundamental value.

We take care to model the market institution through which traders’
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decisions yield transactions and observed prices, since this institution
largely determines the extent and timing of the public information conveyed
by prices. We employ a simplified version of the Clearinghouse institution
(sometime referred to in the literature as a call market or a sealed bid-
offer auction) because it is widely used in practice?, analytically
tractable, and bears some resemblance to the Walrasian institution that is
usually employed in theoretical discussions (but almost never used in
practice).3

In other respects, we keep our model as rudimentary as possible. To
distinguish our model clearly from its predecessors, we employ the
following simplifications: (1) traders pursue buy-and-hold strategies,
eliminating ‘beauty contests’ bubbles; (2) traders neglect the possibility
that they may affect prices, eliminating ‘information-monopoly’ bubbles;
and (3) traders are otherwise rational wealth-maximizers, eliminating the
most obvious ‘lemming bubbles.’

A final modeling choice deserves brief discussion. It is convenient
to avoid specifying risk preferences because they do not play a central
role in our view of information aggregation. However, a risk-neutral agent

will want to take an arbitrarily large position if he perceives even a

2 See Schwartz (1988) for a discussion of worldwide trading systems.

3 In our view, the Walrasian auctioneer institution is inappropriate for
serious modeling of information aggregation despite its widespread use for
this purpose. For example, in his classic rational expectations
equilibrium model Grossman (1976) assumes that traders are able to observe
equilibrium prices before submitting their demand schedules to a Walrasian
aucticneer, a logistical impossibility. (Also see the critical comments of
Allan Kraus following the Grossman article.) Here, we work with an
explicit, feasible market institution and seek updating rules that can be
applied even outside of equilibrium.
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small price discrepancy, so difficulties arise when agents’ perceptions
differ. We avoid the problem by imposing arhitrary limits on position
sizes—a choice that we feel (given bankruptcy costs, impediments to short-
selling, etc.) does not stray too far from current practice.

In the next section we introduce the market structure and present a
parametric example to build intuition and sharpen the issues. We begin the
following section with a rather general formal specification of private
information and Bayesian updating processes, and then state several
analytical results.

We derive a formula for the optimal trader action and investigate its
dependence on past prices in the first two Propositions.  Next, we
characterize the market clearing price and obtain relations between this
price, the fundamental, and the unobservable ‘true value’ of the asset.
The rest of our results concern the dynamic behavior of bubbles: we find
that they can be ‘self-feeding’ and lead to ‘herd trading’ in that once
started, small positive (or negative) bubbles tend to grow (Proposition 6)
but that they eventually are self-correcting in that massive positive (or
negative) bubbles tend to shrink (Proposition 5). We also discuss the
comparative statics of the information arrival process, and argue that,
other things equal, bubbles tend to be larger when information is
‘lumpier,” or less frequent but more precise. For example, since news is
likely to be lumpier in this sense for a smaller company than for a large
diversified company, this result suggests that a small company mutual fund
has unusual profit opportunities to buy at the bottom of a negative bubble

and to sell at the top of a positive bubble (and also greater risks of
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doing the opposite). Of course, it is central to our analysis that no
trader really knows whether there is a bubble, but each trader must make
his own estimate.

The final section summarizes our results and discusses the empirical
implications and the relevant empirical literature. The Appendix contains

the proofs and some calculations.

1. The Asset Market: An Example.

At some given time T in the future, each of M indivisible shares in
some venture wiil pay off $X.4¢ We assume here that it is common knowledge
that X is an exponentially distributed random variable with mean 1/A. The
true value A of A is unknown.

N risk neutral traders may exchange their shares for cash in a simple
Clearinghouse market (the rules are specified below) at times
t =12, ..., T-1. We assume that traders pursue buy-and-hold strategies
oriented to period T wealth, and that they neglect the possibility that
they can influence prices.® We also assume a constant discount rate r and
exogenous limits on traders’ position sizes; for simplicity we set r = 0

and set the lower position limit at O (no short sales) and the upper limit

4 Approximate counterparts of such ‘ventures’ in contemporary financial
markets include European call options, takeovers in which the firm is to be
liquidated at a specified date, and the conversion of a closed end mutual
fund to an open end fund at a specified date. Theorists’ ‘state-contingent
claims’ also fall into this class. See Glosten and Milgrom (1984) for a
tradition-based justification of assets similar to our ‘venture.’

5 Satterthwaite and Williams (1989) theoretically demonstrate that the
ability to influence price in a Clearinghouse market is negligible even
with only a few traders.
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at 1. For present purposes, we make the convenient assumption there are
N = 2M - 1 traders with M shareholders and M - 1 non-shareholders.

Qur simplified Clearinghouse works as follows. At the end of each
period t, each trader privately submits a single ‘limit order’ v, z 0,
sometimes referred to as a ‘bid.” For a shareholding trader i, this order
is an offer to sell his share at any price exceeding v,.® Thus one
obtains the supply curve S(p) by arranging shareholders’ orders in
ascending order and the demand curve D(p) by arranging non-shareholders’
orders in descending order.  The clearing price p,,, is set at the
(highest) intersection of D, and S,, by the rule:

Pi+1 = max{p: S(p) s D(p)}, (1.1)
and is announced (if any transactions occurred) at the beginning of period
t + 1. The corresponding orders are executed at the same time, so (apart
from ties) the M highest bidders are the shareholders at time t + 1 and the
clearing price is always the Mth highest (here the median) bid.

The focus of our analysis is the information flow. We assume that in
each period each participant costlessly receives, with known prebability
n > 0, some private information (‘news’), denoted z,. In our parametric
example, news is an independent realization from a Gamma distribution with
mean a/b and variance 5/52, where a > 1 is a known positive constant and
b = aa. This distribution is convenient because its population mean is

a/(Aa) = 1/a = EXIA) = X, (1.2)

6 The requirement that all traders submit limit orders is not restrictive.
A seller can in effect submit a market order by specifying v = 0, and can
effectively withdraw from the market by specifying v at an absurdly high
level; and analogously for buyers.

136



the ‘true’ expected payoff, and its variance is proporticnal to the known
parameter a.

We directly compute the impact of such news using the basic properties
of the Gamma distribution.? Suppose that the (conjugate) Gamma
distribution g(Ala, b) witha > 1and b > O fully summarizes traders’ prior
beliefs regarding payoffs. Then a news message z = z, induces posterior
beliefs which are also Gamma with parameters a + aand b + Ez, i.e., the
posterior distribution is g(xla + 5, b + Ez). It follows that the prior
expected payoff is

X0 = b/ - 1), (1.3)
and the posterior expected payoff is
x =( + az)/a + a - 1). (1.4)

We also must consider the impact of publicly observed transactions
prices p.  Since neither these prices nor their first differences Ap,
generally have a Gamma distribution, there is no tractable formula for the
precise impact of such public information. However, it is reasonable to
suppose that the main impact of an observed price change is a proportional
change in the expected payoff, and that the effect on the precision
parameter (a) is negligible. To extend the present example, we therefore
assume that beliefs summarized in the Gamma distribution g(ria, b) are
modified to g{Ala, b + cap) after participants observe the price change Ap,
for some ¢ = 0. We can justify this formula as a first-order approximation

in Ap, with the parameter c depending (inversely) on the amount of

7 For example, see DeGroot (1970).
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exogenous ‘noise’ (or perhaps liquidity) trading in the market.® The
cumulative impact of public information {po, Py, ... p} on beliefs in
this formulation is therefore a shift in the b parameter of
L_cop, = (@, - Po)- (1.5)
Next, we analyze trader behavior and market outcomes. Suppose a
trader (index i is suppressed in the next two paragraphs) enters period t
with beliefs g(rla,, b,,), observes the p, (generated from period
(t - 1) orders) and receives news z. Thus, his new beliefs are
g(ala, b), where a, = a_ + a and b, = b, + Ez, + c(p, - P.1)- At
first one might suppose that our buy-and-hold assumption leads to an
optimal order price of
v, = X, = EXla, b) = b/(a - 1), (1.6)
but further reflection discloses a variant of the ‘winner’s curse’

problem®: generally, a price change will be required for the order to be

8 Although c can aiso depend on the time period and/or the current
parameter values a and b, e.g., in Rational Expectations Equilibrium, we
will treat it as a constant for simplicity in this section.  Assumption
(A3) in Section 2 below is much less restrictive.

We could explicitly model ‘noise traders’ whose activity is driven by
exogenous liquidity shocks. For instance, a trader may sell because he has
an unanticipated need for cash. Therefore, his sale does not necessarily
imply that he received new unfavorable information, and there is a
‘surplus’ available for other traders. Absent such noise, only an
individual who believed he had superior information would attempt to
transact, and therefore, transaction would not occur in equilibrium, as
Tirole (1982) has pointed out. We were not able to obtain any further

insights by explicitly considering liquidity shocks and so we omit them in
the present model to keep our notation and statement of results less
cumbersome. However, liquidity shocks remain implicit in the present model
as an explanation of traders’ willingness to trade and as the underlying
determinant of the parameter ¢, or more generally, of the price response
sensitivity n specified in assumption (A3) below.

9 Milgrom and Weber (1982), among others, discusses the ‘winner’s curse’ in

the context of first-price, sealed-bid, common-value auctions. Welch
(1992) develops a model of learning and herd behavior in the coniext of the
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executed. If a trader does not condition his order on this prospective
price change, then he often will pay more (or receive less) for the asset
ihan he is willing ex pos:.
Therefore, a prospective buyer (a non-sharecholding trader) optimally
chooses his bid v, by solving
max EX - piyil[Pis1 = v, & by, pIPrip = V], (1.7
that maximizes the expected gain (X - p,,,) conditioned on the event
[Py, = v] that the bid will be executed and conditioned on current

information (a,, b, p). The first vrder-condition for this problem is

v = E(Xla, b, Bpy; = v - p) = (b + c(v - p)/@a - 1), (1.8)
and it follows (restoring subscripts) that the optimal bid is
vy = (by - cp)/(a, - ¢ - ). (1.9

A similar calculation for a prospective seller (a shareholding trader)
yields the same formula. Note that

vy 2 X, = b/@, - 1) as x, 2 p forc >0, (1.1}
as a result of Lerama 1 of the Appendix. In particular, bids and

expectations have the same ordering over traders i=1, ..., N

By the Clearinghouse rules, the price p,, will be the median bid
voqy, and traders with higher bids will be shareholders at t + 1 (having
purchased or retained their shares) while those with lower bids will be
non-sharehiolders (having sold or failed to purchase shares). The
expectations ’—‘?m at the beginning of period t + 1 (with p,,, having been

announced) will have the same ordering with sharehoiders more optimistic

market for IPOs that relies a winner’s curse argument. Copeland and Galai
{1984) and Glosten and Milgrom (1985) analyze a similar phenomenon in the
context of specialist markets.
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(higher ;0) than non-sharcholders, but as news arrives during the period,
the ordering of expectations may be altered and transactions (announced at
the beginning of period t + 2) can result.

We can usefully compare the Clearinghouse-generated price p,,, to the
fundamental value, f,,, the expected payoff conditioned on all information
received by market participants up to time t. If traders receive news

messages {z,, ..., z,} in periods {1, ..., t}, then

for = “’"’ZJP (1.11)
the sample mean of news.

Simulation Experiment. We ran a series of Monte Carlo simulations of
this parametric example to compare price to fundamental. A typical
simulation appears in Figure 1, Panel A; the ‘true value’ of the expected
payoff X = I/ is normalized to 1.00, and traders’ time O priors for a all
have a,, = 2 and by, = 1 so they are unbiased. There are M = 5 shares and
N = 9 traders, each with price-sensitivity ¢ = 0.5. News arrives with
probability n = 0.5 and has precision parametera = 1. As one can see, the
fundamental initially jumps to over 1.60 at t = 3, but appears to converge
to the ‘true value’ 1.00 by the end of the simulation at t = 20. The price
appears to take longer to settle down and appears to be weakly correlated
with the fundamental.

Perhaps the first question one might wish to ask is whether (or to
what extent) the market price p, is more volatile than the fundamental
value f. An answer is difficult to gieam from a time graph since in our
simple example both converge to the ‘true value’ X. Table 1 addresses the

question by computing the ratio EV, of the (cross sectional) variance of p,
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to the variance of f, in each time period over 1000 Monte Carlo
simulations. In the first column, parameters are the same as in Figure 1
except that the market is about twice as large (N = 19 traders, M = 10
shares) and so is the price sensitivity at ¢ = 1.0. In the other columns,
the probability n of receiving news is reduced as indicated, with
compensating increases in news precision. The EV, statistics seem to rise!°
as news becomes ‘lumpier’ (i.e., less frequent but more precise), and that
(except in the first few periods) the price seems considerably (typicallv
2-3 times) more volatile than the fundamental.

A very interesting set of questions arise concerning the co-movements
of price and fundamental. Defining the bubble as the difference between
the two, b, = p, - f,, one might ask whether prices mereiy follow a random
walk or, more interestingly, whether bubbles tend to feed on themselves!!
and/or tend to burst.'2 For reasons to be explained in the next section, we
investigate these possibilities by replacing ¢ in the bid formula (but not
in the updating formula) by dc where the ‘hypothetical discount factor’ d
is between 0 and 1.

The simulation displayed in Panel B of Figure 1 employs the same
parameters as that in Figure 1 except that d = 0.5 rather than 1.0. One
can imagine that the positive bubble (p, - f) at t = 3 feeds on itself

10 The main exception is for t = 17-20 when n = 0.2. The corresponding
price variances happened to be low in this sample of 1000 runs, depressing
EV.. An explanation of the consistently low EV, for small t is that for a
small sample of news messages with a long-tailed distribution {(Gamma), the
median is less sensitive to outliers than the mean.

11 For example, one empirical implication would be that returns exhibit a
higher positive autocorrelation during these periods.

12° In this case, larger (b, implies a higher probability that
Ibiil < ibyl.
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before collapsing at t = 8, overshooting slightly, reversing itself and
then feeding on itself again during periods 10-19.13

These simulations are meant only to be suggestive. In the next
section, we present a more formal analysis of excess volatility,
overshooting, etc., in the context of a much more general information

environment.

2. The Formal Model.

Notation and Assumptions. Our main interests are in the processes of
belief adjustment and information aggregation. To model these processes in
a general but tractable manner, we minimize the complexity of other parts
of the model. Thus, we suppose that M indivisible shares are trades in a
simple Clearinghouse market by N > M risk-neutral traders. Each share (a
maximum of one per customer) pays a liquidating dividend of X at a known
time T. Subject to the single share constraint, traders buy and sell at
times t = 1, 2, ..., T to maximize current expectation of final weaith,
E(X - p) for a buyer and E(p, - X) for a seller. !4

The payoff X is uncertain and its distribution is not known, but

traders receive information that improves their estimates of the

13 Of course, note that the underlying trend for b, — 0, since both p, and
f, converge to the ‘true value.’

14 This assumption rules out more complex intertemporal strategies such as
buying now at a price above expected value in hopes of selling later (to a
‘greater fool’) ai an even higher price. We are happy to rule out such
strategies, which underlie the main ‘rational bubbles’ models as well as
many irrational bubbles stories, in the interest of simplicity and (more
importantly) to emphasize that imperfect information aggregation by itself
can lead to bubbles.
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distribution. ~ We begin to formalize the belief adjustment process by
assuming there is an indexed family of possible distributions F(X;6) for X,
and we express beliefs in terms of the index 6. In the previous section,
for example, we assumed that F was the family of exponential distributions
with index 8 = 2. Two other possibilities are that F is binomial!® and the
index 6 is the probability p that X = 1, or that In(X) is Normal with index
vector 8 = (u, o). For our general model, it is harmless to assume that o
is a point in a subset of 8 of R", but we may easily accommodate even more
general specifications.

We take the very general view that a trader’s belief is represented by
a point y that identifies a particular conjugate distribution H(ely) over
the set of possible payoff distributions F(X;6). The point » lies in some
vector space, possibly infinite dimensional. To allow for the possibility
of complete ignorance, we postulate a belief ° such that H(e14% is
diffuse.’®  The previous section used the example » = (a, by in the
conjugate Gamma distribution for the exponential parameter. In this case,
complete ignorance is represented by 20 = t1’_i)r‘;)\(2, b), which says that the
exponential parameter A has the (improper) uniform distribution on [0, w).

We summarize this discussion in the following general assumption.

(AQ) There is some family of distributions H(®|¥), ¥ in some convex oper
subset T of a topological vector space, such that at any time t any trader
i’'s beliefs regarding the venture's payoff can be summarized by H(e|y,)
Jor some 1y, € T. There is some element ¥° € T such that H(@iy% is

diffuse.

Traders’ beliefs change over time largely in response to private news.

1580 X = 0 or 1, as in an Arrow security.
16 See DeGroot (1970), p. 190.
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We assume for simplicity that each trader i receives a non-trivial private
news message z, in period t with probability = > 0, and no message
(sometimes conventionally denoted z, = 0) with probability 1 - n. We have
in mind the view that news could include such diverse events as ‘a
brokerage issues a research report’ or ‘a company announces its current
earnings and dividend.” We let S denote the set of possible news messages.
For many purposes, we require no further structure on S, but sometimes we
assume that z, is independently drawn frem a specific distribution
G(zle, a) on S, where 6 is the true but unknown value of 6 in the payoff
distribution and a is the precision of G.!7

We permit traders’ beliefs to differ because of different prior
beliefs, or, more importantly, because of different private information.
In the interest of parsimony we assume that beliefs do not diverge because
of idiosyncratic information processing.  That is, we assume that all
traders use the same updating function ¢ when responding to private news z

and to (publicly observed) price changes Ap. Formally,

(A1) Each trader updates his beliefs by means of the same continuous
updating function ¢: T x S x R > T, $0 7,41 = V(¥ Zis OPrs1)-

In the previous section, we used an updating function that we now
express as

W(@, b),z,y) =@+ a,b+az+ cy), 2.1)

where y equals Ap,,,. We may derive simple formulae of this type for

special conjugate families of distributions G and H, but in general ¢ has

17 We define the precision as 1/variance.
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no closed form and T is infinite dimensional.!®* In Rational Expectations
Equilibrium (REE) models y is shown to exist by fixed point argument. In
our model, we do not exclude the possibility that traders use REE updating
procedures, but we prefer not to impose the very strong assumptions
underlying REE: that traders fully understand the market environment, have
unlimited computational powers, know (as common knowledge) that the same is
true for other traders, etc. @ We feel more comfortable assuming that
traders’ expectations are unbiased and consistent, but not necessarily
minimum variance.

To formalize this view, we need some further notation. Let y* denote
the extension of y to updating over several periods, defined inductively by

V@5 25 y) = ¥@, z, y) 2.2)

and

W*(V; ZyyeeosZptys YIv'--9Yn+l)
= '/‘(V'*('I; ZyyeeosZys yl""’Y[\)"Zm+l’ Yn+l)' (23)

Slightly abusing notation, we abbreviate v*(s; z,, ..., z,,;; 0) as
W2y, ey Zoyy) and abbreviate 5@ 0, ¥y ey Yarr) as
¥ (Y;, -» Yas1) When 7 is understood.

Let @ denote the unknown index value for the true payoff distribution,
so with perfect (but unobtainable) information the payoff expectation would
be

X = E(X;E) = IxF(dx;a). 2.49)
We denote trader i’s current payoff expectation by

X, = E(G7,) = HxF(dx;e)H(delwil). 2.5)

18 See DeGroot (1970), Chapter 9.
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The expectation function ¢ used by traders is induced by the belief
updating function y, so
¢@, z, y) = EXNG, z, ¥)), (2.6)

and we denote its multiperiod extension by ¢*. In particular, the sample
expectation for the observation z is denoted by %@ = ¢"(°, z, 0);
recall that ¥0 indicates a diffuse prior.

Our main rationality assumption is formalized as follows:
(A2) News messages are interpreted so as to pr_ovide con{istem and unbiased
information regarding the true expected payoff X = ¥(X;e). Thar is:

(A) X = E¢*(z) (so news interpretation is unbiased),

(B) For each y € T, the posterior expectation ¢(v, z, 0.) is strictly

increasing in the sample expectation ¢'(2), and lies berween ¢ (z) and the
prior expectation ¢(y, 0, 0) (5o news is informative); and

(C) For any fixed v € T, the expectation ¢(z,, ..., z,) — X with
probability 1 as n —» o (50 news is consistens).

Now consider how public information (4p) affects expectations. In the
example of Section 2, we assume that the expectation function is

#((ag, bo), z, y) = (b + cy)l(a - 1), 2.7)

where a = a; + aand b = b, + az. In this case, the sensitivity of

expectations to public information is

aplay =q = cl(a- 1) > 0. (2.8)

Note that n < laslongasc < a-1=a + n;, that is, as iong as the

number n of messages received is sufficiently large, given the initial

(t = 0) precision a, and the news precision a. For the general model, we

allow complicated, possibly non-linear and time dependent, responses of

expectations to price changes. We assume only that the responses are non-
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negative and not overly sensitive. Information aggregation can be short-
circuited if traders allow their own private information to be outweighed
by public information.!* To rule out ‘cascade’ or ‘lemming’ behavior, we

assume n < 1.20 Qur formal assumption, then, is

(A3) The expectations function ¢ is coniinuously differentiable and, for
some & > 0, satisfies 0 sns1 -8 forall y,z,andy.

Assumptions (A0)-(A3) involve some mild technical conditions.?! For
some purposes we use other mild technical conditions regarding boundedness

and onto-ness. Specifically,

(A4) (A) There is some B > 0 such that EXly) < B for all x e T. (So
payoff expectations are uniformly bounded), and

(B) For each v € T there is some z e S such that E(X1y) = ¢"(z). (So

all parameter values y give expectations that conceivably could be news-
justified).

Main Results. Now that all elements of the model are in place, we
define the findamental as the sample expectation based on all news
previously received by all traders, or as f,; = ¢ (Z)),-.,Zire 1 Zny)-
The bubble at time t is the difference between the current price and
fundamental, b, = p, - f,. We begin our analysis with a derivation of the
optimal bid, taking into account the ‘winner’s curse’ problem discussed is

the previous section.

19 See Bikchandani, Hirshleifer, and Welsh (1992).

20 When n = 1, we can have unstable situations in which a price rise of 1
cent causes expectations to rise by, say, 2 cents, causing a 2 cent price
rise, in turn causing expectations to rise by 4 cents, etc.,... .

2l The differentiability assumptions probably are the strongest, and we
could replace them with less restrictive but more cumbersome Lipshitz
continuity conditions.
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ngmg 1. Under assumpnons (AO)-(A3), the equation
¢(vy, 0, y - ) has a unique solution y* for each p, > 0 and 7, € T.

If p, is the most recently announced price and 7%, describes trader i’s
curren:  Dbeliefs regarding the asset payoff, then his optimal bid is

=y~

The proof of this and other propositions appears in the Appendix. We
summarize the main idea as follows: to avoid the winner’s curse, the
optimal bid differs from the current expectation ;“ to the extent that the
current expectation differs from the current price.

Before iurning to price determination, we examine in more detail how
the optimal bid depends on the updating process y. In the context of
i.i.d. private news z, it is natural to assume that y*(z,,...,z,) is a
symmetric function. Hence, the order in which these messages arrive is
irrelevant. A corresponding (but more problematic) symmeiric property for
the public information embodied in price changes is price path invariance
(PPI). We say y is (or has) PPl if y*(s; z,,...,2; Yo,...,yo depends on
the price changes (y,,...,y) only through the sum ==Oy.. That is, the
order in which price changes occur is irrelevant, and only their net effect
matters.  Thus, the current price p, (with the time 0 price p,) is a
sufficient statistic for the sequence of price changes under PPI since
P - Bo = ZApq, as is the case in many REE models.

An important alternative to PPI is that traders respond less strongly
to prospective than to actual price changes.2? To formalize this idea, let

¢ be the expectation function obtained from ¢ by replacing its iast

22 There is considerable evidence for such behavior in related economic
contexts e.g. Arrow (1981), Cox, Smith, and Walker (1983), and Grether
(1978); specifically we are suggesting that traders may not fully adjust
for the winner’s curse, as documented by Kagel and Levin (1986).
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argument Ap,,, by a hypothetical price change that traders have not (yet)
observed. If 0 = y < 5 and PPI holds for observed price changes, then we

say that traders discount hypothetical price changes, or DHP holds.2

Proposition 2. Assume that assumptions (A0)-(A3) hold. Under PPI, a
trader’s optimal bid v, depends only on private news {z,,...,z.} and is
independent of observed prices {p,,...,p}. Under DHP, the optimal bid v,
Is an increasing function of the most recent price change Ap, certeris
paribus.

In the DHP case, we note that n > 0 so that (absent contrary news)
AX, 2 0 and av, 2 0asap, 2 0; that is, expectations and bids respond to
price changes in the same direction. This property seems na‘ural to us,
but we discovered that it does not hold under PPI. Indeed, Proposition 2
shows that under PPI optimal bids will not respond at all to price changes,
even when expectations respond quite strongly. The main idea is that
y* - Po is a sufficient statistic under PPI for all price changes in the
equation that defines v,, but y* s independent of observed prices. In
retrospect, this suggests that under PPI, traders care only about the
prospective transaction price, which does not really depend on previous
price changes.

We characterize the prices that emerge from our Clearinghouse market,
in  terms of traders’ prior and posterior expectations,  as
;?l+l = ¢ 0, 8p,,) and ’_‘i|+| = (i, Zy, ADy) = ¢(¥usy, O, O).

We let H denote the set of shareholders, H denote the set of non-

2 Unlike the ‘positive feedback traders’ of DeLong er. al. (1990), our DHP
traders do not blindly extrapolate price trends. They merely weight the
evidence regarding the expected final payoff contained in Ap against other
evidence from history and their own private riews. Indeed, our DHP traders
may well understate the inferences that can be drawn from Ap.
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shareholders, and #S denote the number of elements in the set S.

Proposition 3. Under the rules of the simple Clearinghouse market, we have
Pis1 = Vay SJor t =0,1, ..., T-2. Given optimal bidding under
assumptions (A0)-(A3), shareholders’ posterior expectations are no lower

than  those  of  non-shareholders,  H,,, < {i: ;?m z p.“}_ and

H,, < {i ;?m S p+1}.  Under strict PPI for ¢, we have p,,, = x((’M),H,

while p,,, is between p, and ;(()M),H under DHP.

Proposition 3 allows us to investigate price behavior. Recall
X = E:(Xlg) is the ‘true value’ of the asset. Our next result tells us that
the fundamenta! f and price p, are both consistent estimators of the
asset’s true value i, and are essentially unbiased (any bias is inherited
from biased initial priors). Therefore, bubbles are zero on average and
have variance that becomes arbitrarily small when sufficient information
accumulates.

Proposition 4. Under assumptions (AQ)-(A4), both p, and f, converge to X
with probability 1 as t — ». If the prior distributions for e are

unbiased (if E(Xlvg) = X for i = 1, ..., N), then the unconditional
expectations of p, and f, are both X forallt = 0, 1, 2, ... .

In view of this proposition, bubbles are significant only when Var(p)
far exceeds Var(f), or p, is much less efficient than f. It turns out
that this relative efficiency depends on the nature of the private news
arrival process, which we characterize largely by the precision
a = 1/Var(z) of a news message and the probability = of its arrival during
a trading day. The intensity of the news process, 1 = z_m, is the average
rate at which a trader becomes (privately) informed. One might be tempted

to consider the comparative statics of news intensity, but a moment’s
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reflection reveals that greater intensity is equivalent merely to more
frequent market clearings—one just redefines the time scale to obtain unit
intensity. Therefore, the interesting comparative statics concern
lumpiness, the extent to which news arrival is rare and decisive versus
frequent but ambiguous. We say that a news precess (n, a) is lwmpier than
another (m, a) with the same intensity if * < m (so 2 > a). The limiting
cases are = = 1, in which case traders are always equally well informed,
and = — 0, in which case a few traders could be far better informed than
the general population.

We obtain the following approximation (see the Appendix) for the

excess variance ratio:

JVa@) L (1-d -

EV, ,
Varﬂ,) 1 - (1 _ n)N'H

(2.9)

where k depends on 7, e.g. k ~ 1.57 for n = 0. Since the RHS is decreasing
in n, we conclude that lumpier news tends to decrease the efficiency of p,
relative to f, as an estimator of X, so bubbles become increasingly
important. Indeed, by L’Hospital’s rule, the RHS — «» as n — 0, so
bubbles tend to dominate price movements in the case of extremely lumpy
news (extreme asymmetries in traders’ private information). The intuition
is that p, is essentially a median of waders’ expectations of X while f,
is an appropriately weighted mean, which is much more efficient when the
(information-received) weights are very unequal.

We wish to analyze whether bubbles are self-generating and/or have
some built-in tendency to burst. We now proceed to consider these matters

more formally.
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Proposition §. Assume PPI holds. Then E(Apmlpt, 5) is a decreasing
Junction of p, whose sign agrees with that of X - p,.

The essential idea here is that, when p, is above the asset’s true
value i, unbiased private news is more likely to lower expectations and
bids of shareholders and less likely to raise expectations and bids of non-
shareholders, thus increasing the probability of negative price changes.
Similarly, pcsitive (and larger) price changes are more likely to the
extent that p, is below X. Hence, we have mean reversion tendencies.

The same tendencies are also at work under DHP, and actually another
mechanism reinforces them. In view of the relative efficiency of f, (and
Lemma 5.1 in the Appendix) one has a positive correlation of bubbles with
@ - i). When b, > 0, non-shareholders tend to be ‘better informed’ and
less responsive to news than shareholders. Since price decreases arise
from lower bids by shareholders and the absence of higher bids by non-
shareholders, this differential in news-responsiveness (which requires
n < 1) will tend to lead to price decreases. Similarly, price increases
are more likely when b, < 0. In the interest of brevity, we do not attempt
to formalize this point.

Perhaps the most interesting problem is to determine when bubbles are
self-feeding, or lead to herd trading, which we define as the property that

E(ab,,,18p) is an increasing function of ap,.

Proposition 6. Suppose that news arrival is not certain (n < 1) and DEP
holds. Then bubbles are self-feeding when the asset’s fundamental value f,
is sufficiently near its true value X.

Next, we elaborate on the mechanism driving this result. Figure 2

152



shows the most likely events (called Events +1) that produce a transaction:
a near-median trader responds more or less strongly to public information
than does the median trader, and hence transacts with him. Given our
assumption of a common updating function %, it must be the case that our
less responsive trader was better informed.2* Hence, one could say that
self-feeding bubbles arise in our model as less informed expectations (or
bids) overtake better informed expectations (bids). In this case, trade
becomes self-generating with traders contagicusly following the actions of
other participants.

Clearly this mechanism operates more strongly when n is small, so both
self-feeding bubbles as well as excess variance are more important when
news is lumpy. On the other hand, PPI makes Av,,, independent of Ap, by

Proposition 2, so evidently bubbles are not contagious in the PPI case.

3. Discussion.

Our main argument may be summarized as follows. Even if the asset
price is not a sufficient statistic for aggregate information, traders
nonetheless will generally find it informative, and find it in their
interest to respond to it. Under these circumsiances, prices will not a
priori be biascd away from the fundamental value (which is based on the
aggregate of all current information), but will generally exhibit higher
variance than the strong efficient markets hypothesis would suggest. In

addition, bubbles, or discrepancies between prices and fundamentals, can be

% For example, an informed trader may have a larger number of news
messages.
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self-feeding, in the sense that an increase (or decrease) tends to provoke
a further increase (or decrease). Bubbles of the sort that we examine are
eventually self-limiting in that the probability of reversal increases with
the bubble’s magnitude. The last two features imply overshooting: when a
positive (or negative) bubble disappears, its momentum tends to produce a
negative (or positive) bubble. These market inefficiencies are not
arbitragable by market participants, who have access only to observed
prices and their own private information, not aggregate information.

We developed this argument in terms of a theoretical asset market
model, with a parametric illustration and simulations, featuring news
(dispersed private information arrival) and Bayesian traders oriented to
long-term asset value. The model suggests that prices will be excessively
volatile (relative to fundamental values) under the following conditions:
(1) news is of high quality relative to prior information, so it induces
large revisicns in asset value estimates; (2) news arrives infrequentiy, so
individual asset value estimates remain uncertain over much of the life of
the asset, and (3) there is not so much background noise (e.g. liquidity
shocks) that participants regard price changes as uninformative. In our
model, self-feeding (and overshooting) arise if (4) traders underweight
prospective price changes relative to actual price changes. Thus, the
empirical implications concern the relation between news arrival (and news
processing) and certain types of price behavior.

Although difficult to identify by econometric analysis of historical
data, many participants and analysts on contemporary asset markets have

suggested the existence of excess price volatility, self-feeding, and over-
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shooting. For example, with respect to excess price volatility, the
‘variance bounds’ literature attempted to demonstrate that U.S. stock
market prices had higher variance than could be accounted for by rationally
valued underlying dividend or earnings streams.”® The present consensus
appears to be that these empirical tests are inconclusive because the
theoretical models they employ rely too heavily on the exogeneity and
stationarity of the relevant time series {e.g. dividend or earnings
streams).26 A more direct test requires data on the information employed by
investors, but of course such data are not normally available to the
econometrician. Roll (1984) studied perhaps the most assessable case: he
argued persuasively that, over the period he considers, the only
information relevant to short-term fluctuations in orange juice futures
prices is the predicted temperature in central Florida, yet ‘surprises’ in
the latter variable explain only a small fraction of the observed daily
price variability.2’

There is also a set of recent articles that seek empirical tests of
the exponential rational bubbles litcrature. For example, Meese (1986),
employing a specification test suggested by West (1988), finds that monthly

foreign exchange rate data reject a joint hypothesis of no bubbles and a

2 For instance, see Shiller (1981) or LeRoy and Porter (1981). These
authors base the variance bound on the fact that conditioning on a larger
information set can only increase the conditional variance. This fact has
no bite in our model because our asset price is the expectation of a
particular trader (the median) whose identity changes over time, and our
traders have heterogeneous, non-nested information sets.

26 See Marsh and Merton (1986) or Kleidon (1984).

27 He also points out that price variance across weekends should be three
times as large as across weekdays under the efficient markets hypothesis,
but it is actually only about 1.5 times as large.
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stable driving process for a monetary exchange rate model. He carefully
qualifies his tentative corclusion that bubbles are present. On the other
hand, Hamilton and Whiteman (1986) argues strongly that bubbles are
impossible to detect econometrically when market participants respond to
variables not observed by the econometrician, and that previous empirical
detection of bubbles (and excess volatility) was invalid.

A different empirical approach involves laboratory experiments with
asset markets in which researchers control and observe each trader’s
information. Smith, Suchanek, and Williams (1988) reports massive positive
(but non-exponential) bubbles in a double auction asset market even when
the news arrival process is trivial. It remains to be seen whether such
phenomena persist under conditions more closely resembling those of our
model, but we regard the experimental approach as a promising empirical
technique for studying information aggregation and asset price dynamics.

Our economy as presented in this paper involves a single payoff,
extreme indivisibility, and no exogenous public information, and therefore
we cannot directly apply this model to most contemporary asset markets.
However, intuition and some preliminary analysis suggest that its main
conclusions survive considerable generalization. For example, most
important securities have a payoff stream that extends over time. The cost
of modeling such securities is more complex notation and calculations.
Preliminary work with models of this sort reveals no major new insights,
but does point up the convenient fact that the expected present value of an
infinite-lived payoff stream need not have a variance that decreascs over

time, so excess volatility can be measured directly. Relaxing the

156



indivisibility and risk neutrality assumptions blurs the distinction
between the median and mean, but some preliminary work indicates that
(except under some special parametric specifications) price is still not a
sufficient statistic for all private information and our main argument
remains valid. Exogenous public information is not usually transparent.
When asset market participants differ in their evaluations of public news,
then we can regard this as independent sample information.2® Perhaps one
could model the impact of transparent exogenous public information in the
same manner as the impact of a price change, but this remains a matter for
further investigation.2??

We are not the first to argue that asset prices do not fully aggregate
information available to market participants.3® As we see it, our main
contributions are to show how excess variance due to imperfect information
aggregation is related to asset price bubbles that are seii-feeding,
overshoot, etc., and to show how these phenomena arise from the underlying
information conditions and market structure. Once bubbles of our sort
become prevalent, some traders can find it worthwhile to pursue short-run

technical strategies, in which ‘beauty contest’ bubbles become plausible.3!

28 In Bayesian terms, participants may have different priors as well as
different likelihood functions for the asset value implications of news, so
even weather forecasts may present an information aggregation problem for
the orange juice futures market.

2 Froot and Obstfeld (1991) develops the notion of intrinsic bubbles that
rely on exogenous public information in the form of aggregate dividends.
This rational bubbles approach is unrealistic since the economy rmust be
stuck on a path along which price-dividend ratios approach infinity in the
limit.

30 See Grossman (1976), Froot, Scharfstein, and Stein (1992), and especially
Figlewski (1982) for an excess variance argument.

31 Tt is precisely this insight that DeLong er. al. (1990) exploit.
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Thus our theory of bubbles does not replace the older theories surveyed in
the introduction, but rather suggests conditions under which these theories

may become germane.
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APPENDIX

Lemma 1. Let a, b, c, d be positive numbers, then g D ﬁ—j’_g 2 g
Proof. Observe that

a+c _ b
b+d b +d

a . b\c
b b +d|d
=a%+(l-a)§f0r0<a=5%d<l,

and the conclusions follow immediately. =

Proof of Proposition 1: Since X is non-negative,

EXIv(i, 0,y - p)) = ¢(i, 0,y - p) 20,
fory = 0and all p 2 0 and 7, e I'. By (A3) we have

G 0,y - p) <,
for y sufficiently large. Hence, (employing (A1) and (A3)) the function
h(y) = ¢(i, 0, y - p) -y
is continuous, decreasing, positive at y = 0, and negative for y
sufficiently large. Therefore, by the intermediate value theorem, h(y) has
a unique root y*, as required. Note that h(y) = 0 iff y = y*.
The optimization problem for a non-shareholder is

max E{(X - py)lP1 = V117 [Pisr 5 VI
where I[e] = 1 if the event e occurs and is 0 otherwise. Thus the maximand
is

[ eI, 0,y - p) - NEF*G) = [ )IF @D,

where F* is the (subjective) distribution of p,,. Clearly, whatever F*
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might be, the maximum is achieved by integrating over {y: h(y) = 0}, so
v = y* is optimal.
The optimization problem for a shareholder i is

max E{(Pes1 - XUPss = v1I%y [Prsr = V1)

A similar analysis also leads to the same conclusion in this case. =

Proof of Proposition 2. For arbitrary 7; (suppressed), we know by (A3)
that the following function is differentiable:
h(y, p) = ¢°(@p1,---,8P1, P, ¥ - (1 + P)) - Y,

where p = Ap, is the most recently observed price change. By Proposition
1, the optimal bid v, is y* = h;'(O, p), the inverse function taken with
respect to the first (y) argument of h. Under PPI, h, is independent of p,
so y* is also independent of p = Ap,. By induction, it is also independent
of Apy, T =1, 2, ..., T-1 as well so the first part of the proposition
follows. Under DHP, we see that h, is increasing in p since the last
argument y - (p,,, + p) of ¢ is hypothetical but the previous argument p

is not. Consequently, y* is also increasing in p = Ap,,,- =

Proof of Proposition 3. Assume that no two v,’s coincide. Recall that
traders are assumed not to attempt to exercise monopoly power and that
S(p) = #{i € H; v, s p},
and
D(p) = #{i € H; v, = p}
are the supply and demand functions. For p > v,, one clearly has

S(p) = M and D(p) = Q. Aspdecreasesfromp* = v, + €to p = v, - €,
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we have either S(p) = S,(p*) - 1 (when i € H) or D(p) = D,(p*) + 1
(when i € H). Consequently, S(p) > D(p) iff p > vgy,. It then foliows

from the definitions that p,, = vy, and H,,, = {i: v, = p,} while

H,, = {it v, < p4i}. Now

Xier = i 0, Bpyy) > vy iff puy > y* = v,
by (A3) so we replace v, by ;?H, in the previous sentence. By the same
argument, v, = p,,; implies ;M, = v, S0 we conclude that
Pist = ;(M),H under PPI. The weaker statements in the proposition then
follow from assuming only DHP and allowing for the possibility of two or

more traders bidding vy,,. =

Proof of Proposition 4. Let n, = the number of messages received by
trader i up to time t, and let n, = ._lni,. Since n, » » with
probability 1 as t —» w, it follows from (A2‘) and the definition of f, that
f, is unbiased and consistent. Suppose now that n = 0, the prices are
uninformative.  Since by (A4), an unbiased prior 7, can be regarded as
7(4,) for some realization z;, of the news process and since n, — «, the
same argument shows that ;“ is also unbiased and consistent for each i, so
by Proposition 3, we obtain the same conclusion for p. When n > 0, the
argument is more delicate; essentially we must show that the news
{z,,...,z,} eventually dominates the effect of price changes. We first
note that
p = max{;“: i = 1,...,n} = sup{EXI¥): v € T} s B,

by the inequalities from Proposition 3, the definition of ;, and (A4)
respectively. Consequently,
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YesbP =P - Po =B,
so the bound »n =1 -5 from (A3) then yields a uniform bound on
E(Xlw*(Ap,,...,Apl)). Now (Ad) implies that E(X|7(z,)) exceeds this bound
with positive probability, but (A2) assures us that even in this event we
have
EX1%(20,2y,.--,2,)) — E(X6) as t — w with probability 1,

for (z),...,z) the actual news received by a trader i. Heuce, by
Propositions 1 and 3 and the Dominated Convergence Theorem, we must have

E(X17,) — E(XI8) for each i,
establishing the consistency of each ;il and hence p,.  Finally, for
unbiasedness, note that ;iO’ Po,» and p, are unbiased by the hypothesis on
¥io- Under the inductive assumption, that

Ep, = Ep, = E(X16) = Ex,,
for all i, we note that E;i, is a convex combination of the latter variable
and

EE(X17(Z+1)) = E(XI8),

since EAp, = 0, SOE’-‘im = E(X|6) also. Consequently, Ep,,;, = E(X!6).

Derivation of Equation (2.9). We now analyze the dependence of the bubble
index,

EV, = Var(p)/Var(f),
on the parameters describing the news process. Assume that news z, is
i.i.d. G(zlg, 6), where a = Var"‘(z) is the precision of a news message,
and n is its probability of arrival. Thus the intensity of the news

process, defined as I = Hu, summarizes the rate at which an individual
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becomes informed. By redefining the time scale t, we can (apart from the
effect of more frequent market clearings) normalize on a given news
intensity I,. Recall that a news process (m, a) is lumpier than a process
(;, 5) with the same intensity (I, = an = E) ifn < mn. The limiting cases
are n = 1, in which case all traders are always equally well informed, and
n — 0, in which case news is very lumpy and typically a few traders are
far better informed than others.

It is convenient in this analysis to assume that prior beliefs at
t = 0 arise from a preliminary message z; ~ i.i.d. G(zla, 5). Now
traders’ expectations at time t are described by St = {;n: i=1,.,N}
for the case n» = O (prices regarded as uninformative), S, is an i.i.d.
random sample from a distribution G} derived from G and the binomial
distribution with parameters m and t, as noted below. We employ the
decomposition

EV, = (Var(p)/Var(S))(Var(S)/Var(£)),

where Var(S) is the variance of S' (the sample mean), and analyze the two
factors separately.

We explicitly analyze the case that n = 0. Let n, be the number of
actual (not preliminary) news messages received by trader i by the end of

period t; clearly it has the binomial distribution so
Pr[n, = n] = [;]n"(l - n)tn,
The conditional variance of ;i, is
Var(xn) = a'(n, + 1)

if follows that the unconditional variance is
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{

Var(x) = 1 E[nh—}*_l—lu, t].

But

t t+1

s[n_hm, t] (I L (R IV e
k=1

1 alt - ) B+ T-0 + Dr
n=0
1 1-(1 - !
= @ -Prk = 0Dy = (t(+ 13?:

Consequently,

varS) = & Var(x) = o E|l-—Ljn, t| = L1 o
J = § Yo = @ Elg 1™ ! = Ragg e

Now Var(f) can be computed in an analogous fashion. For n, = Zn,, the
total number of messages incorporated in f, (counting, as we should in this
context, the preliminary messages) is n, + N, so the conditional variance
of f is al(n, + N)! and the unconditional variance is

_1 1 1nt + N! 1

_ (xt + NI(1 - (1 - m)N+1)
(nt + I)(Nt + Dina

We employed the approximation

1 __1 mWN+UN | a+UN
n+N n+1 n/N+1 n+1 at+ 1"

valid for t sufficiently large that = = n/Nt. It follows that the second

factor in the decomposition of EV, is

+ l t + l 1 _ 1 _ t+1
Var(S)/Var(f) = %Tr% (S'+ 11121) (f - (f - u,)z')““)

o 1= (1 - mt!
1= (1 - myNer

The last formula clearly shows that the second factor is decreasing in
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n (increasing in the lumpiness of news), is equal to 1 for * = 1, and (by
L'Hospital’s rule) approaches » as n — 0. These conclusions may also be
confirmed more laboriously from the exact formulae. The result may be
familiar from statistical theory: Var(S,) corresponds to an OLS estimator
and Var(f) corresponds to a GLS estimator employing the known
heterosckasticity of the ‘sample’ St.

As for the first factor Var{p)/Var(S), Proposition 2 implies that we
are comparing the efficiency of the sample median (or more generally, the
M% order statistic) to that of the sample mean. It is known that this
ratio depends on the shape of the underlying distribution G} but is rather
insensitive to its location or scale, and therefore is, to a first
approximation, independent of t, m and a. Specifically, Fisz (1963,
p. 383) shows that if N is reasonably large, then Var(p) is approximately
(M/N)(1 - M/N)N"g;2(;), where g, is the density of G}, assumed continuous
at the M/N quantile x. By (A2), x is the mean of G, and the Central Limit
Theorem suggests that gl(;) = (2no?)12, where here n = 3.14 and o? is the

variance of Gf. Hence, for the case M = N/2, we have

Var(p) = 55y 2007 = "-‘g.
Since in the present casc Var(S,) = o¢2/N, we obtain Var(p)/Var(S) = 1.57
as an approximation valid for reasonably large N and nt.
We do not attempt an explicit analysis of the case n > 0 (informative
news), but note that n should depend on news intensity rather than news
lumpiness. Indeed, ¢ is probably chosen to minimize Var(;h); when this

is successful (and ‘noise’ does not overwhelm ‘signal’), Var(S) and
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Var(p) should both be reduced relative to the n = 0 case. On the other
hand, S, is positively correlated when n > 0, tending to increase Var(S)
and Var(p). On balance, the first factor of EV, appears little affected
by m and the second factor appears to exhibit the same qualitative features
(e.g.,it > lasm — 1, and it - » as = — 0) for any n.

We conclude that given the news process defined above, EV, is an

increasing function of news lumpiness. For N and nt large, we have

(- (1 - e
where k depends on n and the news distribution G. For n small, k = 1.57.

In particular, EV, —» » as = — 0, or as news becomes extremely lumpy.

Lemma 5.1. E(af, If) is a decreasing linear function of f, whose sign

agrees with that of X - f.

Proof: Note that
fior = 8 @i ZistresZmet) = (1= D + 38" @i Zni),
since the first equality restates the definition of f and the second holds
by (A2(B)) and induction, for sume a € (0,1). Consequently
Af ., = -af + a¢'(z,,+,,...,zm+,).
Now by (A2(A)),
E¢~*(z“+,,...,zm+,) = X.

Since z,,, is independent of f,, we conclude that

EGfIf) = aX - f). =
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Lemma 5.2. Assume PPI holds. E(Avit-i-ll;in Py is a decreasing function

of x, whose sign agrees with that of ¢%(z,) - ;i,. Given ¥, it is
t (13

independent of p,.

Proof: For fixed 7, and p, we see that v, is predetermined and v,
depends only on z = z,, More specificaily, let ;(y) = ¥, 0, y - p)
and define h(y, 2) = ¢(2(y), z, 0) - y.  Thus, h(», 0) = O and
h(vy,+;, 2) = 0 by Proposition 1, PPI, and Proposition 2. Applying the
implicit function theorem to h and noting assumption (A2(B)) we see that
Av,,, - v, is a strictly increasing and sign-preserving function of
¢*(2) - ;n- Since the response to z is independent of previous news, we
conclude (upon taking expectation over all news paths that yield the given
7. and p) that E(Av,, ,I;i,, p) inherits the same properties. The

independence from p, follows from Proposiion 2. =

Proof of Proposition 5. Observe:
E@v111P) = E[E@ia 1% )],
since ;i‘ is monotone increasing in p,, we conclude from Lemma 5.2 that
E(Av;4,1p) is decreasing in p. Now Ap,, = Av,,, if [i = (M) at t and
t + 11 (‘Event 0’), and is an increasing function of av,,, for
i =M ztkattandi = (M)att + 1] (‘Event ¢tk’). Hence, in any event,
E(ap,4,Ip) is decreasing in p. Assume for the moment that event 0
occurs, Ap,,; = Avyy,;- By Proposition 3, we have vy, = ;‘(’M)l = p, and
Y+l = ;(()M)Hl = Pi41- Thus,

E(Apl+l|pu event 0) = E((Av(M)tl_x-?M)npt)l;M)t) = pt 2 O’
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¢*(Z\) - ;(M)l % 0!
by Lemma 5.2 applied to the x0’s, Pairing cvents tk and making a similar

argument, the conclusion follows. =

Proof of Proposition 6. Suppose that no trader receives news during period
t and the observed price change was Ap, > 0. As a consequence of
Proposition 2, we then have Av,,, > O for all traders i. Consider the
following events:

©) [M), = (M),,,], the same trader made the Mt highest bid in

period t + 1 as in period t;

(k) [M t k), = (M),;,], the trader who made the (M t k)b

highest bid in period t makes the M% highest bid in period

t+ 1,0 < k < M.
All these events have positive probability since n < 1. Events tk produce
transactions and so involve an announced price change, while with positive
probability event 0 does not involve a transaction and hence no announced
price change. Since Av,,, > O for all i implies Ap,,, = 0 in any event,
we see that under present assumptions Ap,,, is a non-negative random
variable with positive expectation.  Moreover, since the magnitude of
Av,,, as well as the probabilities of events (k) are increasing in Ap,
we conclude that E(aAp,,;lAp) is positive and increasing in ap,. Likewise,
if ap, < 0, we find that E(ap,,,|ap) is negative and decreasing in [p,l.
Consequentiy, E(Ap,,,iAp) is a monotone and sign-preserving function of

Ap,. Since Af,, = 0 when no news arrives, we conclude that E(Ab,,,|Ap)
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has the same property.
Consider now the possibility of private news arrival when f, = X. It

is not hard to see that

E(ye1 - Xir) = 0,
for i = (M),,, in this case so E(Ap,,,lap) is still an increasing, sign-
preserving function of Ap, even though Ap,,, can differ in sign from ap,
with positive probability. Again, E(Af,,;) = 0 —see Lemma 5.1 above— so
E(Ab,,,14p) remains monotone and sign-preserving in Ap,.  Finally, a
continuity argument shows that E(ab,,,lAp) is monotone (though not

necessarily sign-preserving) when |f| - X| is small. @
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FIGURE 1: SAMPLE MODEL SIMULATIONS.
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FIGURE 2: PRICE TRANSITION EVENTS.
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TABLE 1: EXCESS VARIANCE RATIOS, EV, = Var(p)/Var(f).
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1.0, and A = 1.0. Each column of

estimates is based on 1000 Monte Carlo simulations, across which Var(p)

and Var(f) were computed for each t.

Other parameters are constant at N = 19, M

1.0, ¢ = 1.0, HDF

1/n.
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