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Abstract: A search for pair production of massive vector-like T and B quarks in proton-

proton collisions at
√
s = 13 TeV is presented. The data set was collected in 2015 by

the CMS experiment at the LHC and corresponds to an integrated luminosity of up to

2.6 fb−1. The T and B quarks are assumed to decay through three possible channels into

a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search

is performed in final states with one charged lepton and several jets, exploiting techniques

to identify W or Higgs bosons decaying hadronically with large transverse momenta. No

excess over the predicted standard model background is observed. Upper limits at 95%

confidence level on the T quark pair production cross section are set that exclude T quark

masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction

scenario. For other branching fraction combinations with B(T→ tH) +B(T→ bW) ≥ 0.4,

lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair

production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV.

The techniques showcased here for understanding highly-boosted final states are important

as the sensitivity to new particles is extended to higher masses.
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1 Introduction

The discovery of a light mass Higgs boson (H) [1–3] motivates searches for new interactions

and particles at the LHC [4]. Cancellation of the loop corrections to the Higgs boson mass

without precise fine tuning of parameters requires new particles at the TeV scale. Such

new particles are the bosonic partners of the top quark, in supersymmetric models, or the

fermionic top quark partners predicted by many other theories, such as little Higgs [5,

6] and composite Higgs [7–10] models. These heavy quark partners predominantly mix

with the third-generation quarks of the standard model (SM) [11, 12] and have vector-like

transformation properties under the SM gauge group SU(2)L ×U(1)Y × SU(3)C, hence the

term “vector-like quarks” (VLQ). While a chiral extension of the SM quark family has been

strongly disfavored by precision electroweak studies at electron-positron colliders [13, 14]

and by observed production cross sections and branching fractions of the Higgs boson [15],

models with VLQs are not excluded by present data.
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Figure 1. Examples of leading-order Feynman diagrams showing production of a TT pair with the

T quark decaying to bW (left), tH (middle), and tZ (right).

We search for a vector-like T quark with charge 2/3 (in units of the electron charge)

that is produced via the strong interaction in proton-proton collisions along with its an-

tiquark, T. Many models in which VLQs appear assume that T quarks decay to three

final states: bW, tZ, or tH [16]. Leading-order Feynman diagrams of these three processes

are shown in figure 1, created with the tools of ref. [17]. The partial decay widths de-

pend on the particular model [18], so that the branching fractions of these decay modes

can take on various possible values, with the sum of all three branching fractions equal to

unity. An electroweak isospin singlet T quark is expected to have a branching fraction of

approximately 50% for T → bW, and 25% for each of T → tZ and tH, and is used as a

benchmark for figures and tables. A T quark in a weak isospin doublet has no decays to

bW and equal branching fractions for tZ and tH decays [18–20]. As these are, however,

not the only possible representations of T quarks, the final results are interpreted for many

allowed branching fraction combinations.

Though this search is optimized for TT production, decays of vector-like bottom quark

partners (B quarks) can produce similar topologies and BB production is also considered.

The B quark with charge −1/3 is expected to decay to tW, bH, or bZ and can also

transform either as a singlet or doublet under the electroweak symmetry group. The

respective branching fractions are equal to those of the corresponding T quark decays to

the same SM bosons. For this search we assume that only one new particle is present,

either the T or B quark.

Most recently, searches for pair-produced T and B quarks were performed by both the

ATLAS and CMS collaborations at
√
s = 8 TeV [21–26]. Depending on the assumed com-

bination of branching fractions to the three decay modes, the CMS collaboration observed

lower limits on the T quark mass with values ranging from 720 to 920 GeV and on the B

quark mass with values ranging from 740 to 900 GeV at 95% confidence level (CL) [21, 25].

The ATLAS collaboration found similar lower mass limits, so that vector-like T and B

quarks with masses below 720 GeV are already excluded for all possible branching frac-

tion combinations. We therefore only consider VLQ masses above 700 GeV in this search.

The ATLAS collaboration has also searched for pair production of T and B quarks at√
s = 13 TeV [27, 28].

We require one electron or one muon in the final state, along with several jets. All

decay modes of the T and B quarks produce t quarks and/or W bosons, which are the

dominant sources of leptons. In the high mass region that we consider, the decay products
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can have a large Lorentz boost and result in highly collinear final state particles. This

search makes use of techniques to identify b quark jets and reconstruct hadronic decays of

massive particles that are highly Lorentz-boosted in the reference frame of the TT system.

The data are analyzed in two channels that are optimized for sensitivity to either boosted

W or Higgs bosons, referred to as the “boosted W” and “boosted H” channels. The boosted

W channel is most sensitive to scenarios where the T quark has a large branching fraction

for bW decays (such as the electroweak singlet benchmark) while the boosted H channel

has the highest sensitivity to scenarios with a large branching fraction to tH (such as the

electroweak doublet benchmark). The T → tZ decay mode is not a particular target of

this search, but Lorentz-boosted Z bosons decaying hadronically can be selected in either

channel since the signatures are similar to those of boosted hadronic W or Higgs boson

decays, thus providing some sensitivity to the tZ decay mode.

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel

and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass

and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap

sections. Forward calorimeters extend the pseudorapidity (η) [29] coverage provided by the

barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in

the steel flux-return yoke outside the solenoid.

A particle-flow (PF) algorithm [30] is used to reconstruct and identify each individual

particle in an event with an optimized combination of information from the various ele-

ments of the CMS detector. The energy of photons is directly obtained from the ECAL

measurement, corrected for zero-suppression effects. The energy of electrons is determined

from a combination of the electron momentum at the primary interaction vertex as de-

termined by the tracker, the energy of the corresponding ECAL cluster, and the energy

sum of all bremsstrahlung photons spatially compatible with originating from the electron

track. The momentum resolution for electrons with transverse momentum pT ≈ 45 GeV

from Z → e+e− decays ranges from 1.7% for low-bremsstrahlung electrons in the barrel

region to 4.5% for showering electrons in the endcaps [31]. The energy of muons is ob-

tained from the curvature of the corresponding track. Matching muons to tracks measured

in the silicon tracker results in a relative transverse momentum resolution for muons with

20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The

pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [32]. The

energy of charged hadrons is determined from a combination of their momenta measured

in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-

suppression effects and for the response function of the calorimeters to hadronic showers.

Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL

and HCAL energy.

Jets are reconstructed from the individual particles produced by the PF event algo-

rithm, clustered using the anti-kT algorithm [33, 34] with distance parameters of 0.4 (“AK4
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jets”) or 0.8 (“AK8 jets”). Jet momentum is defined as the vectorial sum of all particle

momenta in the jet, and is found from simulation to be within 5 to 10% of the true mo-

mentum over the whole pT spectrum and detector acceptance. All jets are required to

have |η| < 2.5 and AK4 (AK8) jets must have pT > 30 (200) GeV. An offset correction is

applied to jet energies to take into account the contribution from additional proton-proton

interactions within the same or nearby bunch crossings (pileup) [35]. Jet energy corrections

are derived from simulation, and are confirmed with in situ measurements of the energy

balance in dijet and photon/Z(→ ee/µµ) + jet events [36]. A smearing of the jet energy

is applied to simulated events to mimic the energy resolution observed in data, typically

15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. Additional selection criteria are applied

to each event to remove spurious jet-like features originating from isolated noise patterns

in the HCAL [37], anomalously high energy deposits in certain regions of the ECAL, and

cosmic ray and beam halo particles that are detected in the muon chambers.

The missing transverse momentum vector is defined as the projection on the plane

perpendicular to the beams of the negative vector sum of the momenta of all reconstructed

particles in an event. Its magnitude is referred to as Emiss
T . The energy scale corrections

applied to jets are propagated to Emiss
T .

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [29].

3 Data and simulated samples

The data used in this analysis were collected during 2015 when the LHC collided protons

at
√
s = 13 TeV with a bunch spacing of 25 ns. The data set for the boosted W channel

corresponds to an integrated luminosity of 2.3 fb−1. The data set for the boosted H channel

in the electron (muon) channel corresponds to 2.5 (2.6) fb−1 and includes additional data

collected with poor forward calorimeter performance where the Emiss
T has been re-computed

excluding the affected region of the detector.

To compare the SM expectation with the experimental data, samples of events for all

relevant SM background processes and the TT signal are produced using Monte Carlo (MC)

simulation. Background processes are simulated using several matrix element generators.

The powheg v2 generator [38–41] is used to simulate tt events, as well as single top quark

events in the tW channel at next-to-leading order (NLO). The MadGraph5 amc@nlo

2.2.2 generator [42] is used for generation at NLO of Drell-Yan + jets and tt + W events,

as well as tt + Z events, and s- and t-channel production of single top quarks. The FxFx

scheme [43] for merging matrix element generation to the parton shower is used. The

MadGraph v5.2.2.2 generator is used with the MLM scheme [44] to generate W + jets,

Drell-Yan + jets, and multijet events at leading order. pythia 8.212 [45, 46] is used for the

simulation of multijet and diboson events.

The boosted W channel uses the NLO Drell-Yan + jets simulation and the Mad-

Graph multijet simulation. The boosted H channel uses the MadGraph Drell-Yan +

jets simulation, and the pythia multijet simulation which is filtered for processes likely

to pass the lepton selection in this channel. Background samples are grouped into three
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T or B quark mass [GeV] Cross section [fb]

700 455± 19

800 196± 8

900 90± 4

1000 44± 2

1100 22± 1

1200 11.8± 0.6

1300 6.4± 0.4
0.3

1400 3.5± 0.2

1500 2.0± 0.1

1600 1.15± 0.09
0.07

1700 0.67± 0.06
0.04

1800 0.39± 0.04
0.03

Table 1. Predicted cross sections for pair production of T or B quarks for various masses. Uncer-

tainties include contributions from energy scale variations and from the PDFs.

categories for presentation: “TOP”, dominated by tt and including single top quark and tt

+ W/Z samples; “EW”, dominated by W + jets and including Drell-Yan + jets and diboson

samples; and “QCD”, including multijet samples.

Signal samples for both TT and BB production are simulated using MadGraph for

mass points between 700 and 1800 GeV in steps of 100 GeV. A narrow width of 10 GeV

is assumed for the vector-like quarks. Predicted cross sections, which depend only on the

vector-like quark mass, are computed at next-to-next-to-leading order (NNLO) with the

Top++2.0 program [47–52] and are listed in table 1.

Parton showering and the underlying event for all simulated samples are obtained

with pythia using the CUETP8M1 tune [53, 54]. To simulate the momentum spectrum

of partons inside the colliding protons, the NNPDF3.0 [55] parton distribution functions

(PDFs) are used. Detector simulation for all MC samples is performed with Geant4 [56]

and includes the effect of pileup.

4 Reconstruction methods

We perform a search for T quarks that decay to final states with an electron or a muon, and

jets. Selected events must have one or more pp interaction vertices within the luminous

region (longitudinal position |z| < 24 cm and radial position ρ < 2 cm), reconstructed

using a deterministic annealing filter algorithm [57]. The primary interaction vertex is the

vertex with the largest
∑
p2T from its associated jets, leptons, and Emiss

T . The number of

pileup interactions differs between data and simulation, so simulated events are weighted

to reflect the pileup distribution expected in data given a total inelastic cross section of

69 mb [58].

– 5 –
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Two observables that are useful in discriminating signal from background events, ex-

ploiting the fact that the decays of T quarks to single-lepton final states produce a large

number of hadronic objects, are the following: the quantity HT, defined as the scalar pT
sum of all reconstructed AK4 jets with pT > 30 GeV and |η| < 2.4, and the quantity ST,

defined as the scalar sum of Emiss
T , the pT of the lepton, and HT.

4.1 Lepton reconstruction and selection

This search requires one charged lepton, either an electron or a muon, to be reconstructed

within the acceptance region of |η| < 2.4. The event must satisfy a single-electron or single-

muon trigger. The choice of triggers is adapted to the particular final state targeted in each

channel. In T→ bW decays, the W boson is generally well separated from the associated

bottom quark since the T quark has low pT compared to its mass, leading to a low level of

hadronic activity in close proximity to the lepton. In contrast, a lepton originating from

a top quark decay (e.g., from a T → tH decay) becomes increasingly collinear with the

associated bottom quark as the T quark mass increases and the Lorentz boost of the top

quark rises.

As a consequence of the above, the boosted W channel uses triggers selecting leptons

that are isolated with respect to nearby PF candidates, either electron candidates with

pT > 27 GeV and |η| < 2.1, or muon candidates with pT > 20 GeV. The triggers used

in the boosted H channel do not require that the leptons are isolated. In the electron

channel, events with at least one electron candidate with pT > 45 GeV, one AK4 jet with

pT > 200 GeV, and another AK4 jet with pT > 50 GeV are selected by the trigger. The

muon channel trigger selects events with a muon candidate with pT > 45 GeV and |η| < 2.1.

Methods to evaluate lepton isolation efficiency after trigger selection are described below.

Additional lepton identification quality criteria are required to reduce the contribution

from background events containing other particles misidentified as leptons. For electrons

these quality requirements [31] combine variables measuring track quality, the association

between the track and electromagnetic shower, shower shape, and the likelihood of the

electron to originate from a photon. Electrons are identified in the boosted H channel

using a set of selection criteria with an efficiency of ≈88% and misidentification rate of

≈7%. In the boosted W channel, two working points are defined based on a multivariate

identification algorithm: a tight level with ≈88% efficiency (≈4% misidentification rate)

and a loose level with ≈95% efficiency (≈5% misidentification rate).

Muons are reconstructed by fitting hits in the silicon tracker together with hits in

the muon detectors [32]. Identification algorithms consider the quality of this fit, the

number or fraction of valid hits in the trackers and muon detectors, track kinks, and

the minimum distance between the extrapolated track from the silicon tracker and the

primary interaction vertex. Several working points are defined: the boosted W channel

uses so-called “tight” (“loose”) muons with ≈97% (100%) efficiency in the barrel region,

and the boosted H channel uses “medium” muons with ≈99% efficiency in the barrel region.

All muon identification working points have hadron misidentification rates of <1%.

Leptons that pass the requirements in the two channels are removed from jets that

have an angular separation of ∆R < 0.4 from the lepton. This is done by matching PF

– 6 –
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candidates identified as leptons to the ones identified as jets and subtracting the four-

momentum of a matched lepton candidate from the jet four-momentum.

In order to reduce the rate of background events that contain a soft lepton (e.g.,

from semileptonic bottom quark decays in multijet events), several metrics can be used to

evaluate the isolation of a lepton from surrounding particles. In the boosted H channel,

either an angular separation of ∆R(`, j) > 0.4, or prelT (`, j) > 40 GeV is required. Here, `

denotes the highest pT lepton, j is the jet closest to that lepton in angular separation, and

prelT (`, j) is the projection of the lepton momentum on the direction perpendicular to the

jet momentum in the `-j plane. These criteria, also referred to as “2D isolation”, ensure a

high signal efficiency for decays such as T→ tH, with leptons produced close to jets, while

rejecting a large fraction of the multijet background.

In the boosted W channel, where fewer leptons with nearby b quarks are expected,

isolation is evaluated using mini-isolation (Imini), defined as the sum of the transverse

momenta of PF candidates within a pT-dependent cone around the lepton, corrected for

the effects of pileup and divided by the lepton pT. The radius of the isolation cone, RI , is

defined as:

RI =
10 GeV

min(max(pT, 50 GeV), 200 GeV)
. (4.1)

Using a pT-dependent cone size allows for greater efficiency at high energies where

jets and leptons are more likely to overlap. “Tight” electrons (muons) must have Imini <

0.1 (0.2) while “loose” electrons and muons satisfy Imini < 0.4. In addition, the 2D isola-

tion requirement is applied to remove any residual overlap between mini-isolated leptons

and jets.

Scale factors that account for selection efficiency differences between data and simula-

tion are calculated as a function of lepton pT and η using a “tag-and-probe” method [31, 32,

59]. These were calculated in separate measurements for the single-lepton trigger, lepton

identification, and Imini requirements.

These scale factors are applied to simulated events for both lepton flavors. For the 2D

isolation requirement, no significant difference is found between the selection efficiencies in

data and simulation and hence no scale factor is applied.

4.2 Hadronic W and H tagging

In the decay of a heavy T quark, particles are produced with high momentum and large

Lorentz boost. The decay products of top quarks and W, Z, or Higgs bosons are therefore

often collimated. This can be seen in figure 2 in which the angular separation ∆R between

the products of simulated W → qq′ and H → bb decays are shown for several T quark

masses. Even for the lightest considered mass point this separation often has values of

∆R < 0.8, where the decay products of heavy bosons can merge into a single AK8 jet.

A jet shape variable called “N -subjettiness” [60], denoted as τN , is defined as the sum

of the transverse momenta of k constituent particles weighted by their minimum angular

separation from one of N subjet candidates (∆RN,k), which are in a jet of characteristic

– 7 –
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Figure 2. Angular separations ∆R between the products of simulated W → qq′ (left) and H→ bb

(right) decay processes for three different mass points of the T quark. Even for the lowest mass

point shown, the final state particles are typically emitted with a separation of ∆R < 0.8 and are

merged into an AK8 jet.

radius R0:

τN =
1

R0
∑

k pT,k

∑
k

pT,k min(∆R1,k,∆R2,k, . . . ,∆RN,k). (4.2)

This variable quantifies the consistency of a jet with originating from an N -prong particle

decay. The ratio τ2/τ1 provides high sensitivity to two-prong decays such as W → qq′. Jet

grooming techniques (“pruning” and “soft drop”) are used to remove soft and wide-angle

radiation so that the mass of the hard constituents can be measured more precisely [61, 62].

The pruning procedure reclusters the jet, removing soft or large-angle particles, while the

soft drop algorithm recursively declusters the jet, removing sub-clusters until two subjets

are identified within the AK8 jet. AK8 jets are reconstructed independently of AK4 jets,

so they will frequently overlap. Unless otherwise stated, such overlapping jets are not

removed when applying selections based on jet multiplicity.

The AK4 jets and subjets of AK8 jets can be tagged as originating from b quarks based

on information about secondary vertices and displaced tracks within the jet. The efficiency

for tagging b hadron jets in simulation is approximately 65%, averaged over jet pT (slightly

lower for subjets of AK8 jets), and the probability of mistagging a charm (light) quark jet

is 13% (1%) [63]. Scale factors, which are functions of jet pT and flavor, are applied to

account for efficiency differences between data and simulation.

An AK8 jet is labeled as “W tagged” if it has pT > 200 GeV, |η| < 2.4, pruned jet

mass between 65 and 105 GeV, and the ratio τ2/τ1 < 0.6. Differences in the pruned jet

mass distribution and τ2/τ1 selection efficiency between data and simulation have been

evaluated in ref. [64]. To account for these differences, pruned jet mass scale factors and

mass resolution smearing factors are applied in simulation to all AK8 jets. A τ2/τ1 selection

scale factor is applied in simulation to jets that are spatially matched to true boosted

products of a hadronic W boson decay.

Higgs boson candidate jets are reconstructed by exploiting the significant branching

fraction of the Higgs boson to bb pairs. AK8 jets are marked as “H tagged” if they have

pT > 300 GeV, soft drop jet mass in the range 60–160 GeV, and if at least one of the two

subjets from the soft drop algorithm is tagged as a bottom subjet.

– 8 –
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5 Boosted H channel

5.1 Event selection and categorization

In this channel, one electron with pT > 50 GeV and |η| < 2.4, or one muon with pT >

47 GeV and |η| < 2.1 is required. In events with an electron, at least one AK4 jet with

pT > 250 GeV and a second AK4 jet with pT > 70 GeV are required to select events with a

nearly constant trigger efficiency. Furthermore, selected events must have ST > 800 GeV,

at least three AK4 jets, and at least two AK8 jets, since we expect a hadronic decay of a

boosted Higgs boson in each event along with at least one other hadronic t quark, W, Z,

or further Higgs boson decay. For the rejection of non top quark backgrounds, at least one

b-tagged AK4 jet is required.

Distributions of the variables used in the H-tagging algorithm, as described in sec-

tion 4, are shown in figure 3. These distributions are from events that pass all selection

criteria outlined above except for the b-tagging requirement, and that have the corrections

described in section 5.2 applied. The distribution of the number of b-tagged subjets for

the highest pT AK8 jet with soft drop jet mass within 60–160 GeV is shown along with the

mass of the highest pT AK8 jet with two b-tagged subjets, before the mass requirement.

To illustrate the sensitivity of the H-tagging algorithm to the presence of boosted Higgs

bosons, the TT signal with a mass of 1200 GeV is split into two curves: the solid curve

shows TT events where at least one Higgs boson is present in the decay chain and the

dashed curve shows TT events with only T → tZ or T→ bW decays. It can be seen that

signal events with at least one T→ tH decay produce a clear peak at 125 GeV in the mass

distribution of the H-tagged jet. Signal events without a Higgs boson in the decay chain

have a less pronounced increase at 90 GeV because of hadronic Z boson decays.

After passing the selection defined above, events are split into two exclusive categories,

which depend on the number of b-tagged subjets of H-tagged jets, and are defined as follows:

• H2b: events with at least one H-tagged jet with exactly two b-tagged subjets.

• H1b: events with at least one H-tagged jet with exactly one b-tagged subjet.

To avoid an overlap between the two categories, any event is first checked whether it

falls into the H2b category and only if it does not, it can enter into the H1b category.

5.2 Background modeling

To evaluate the modeling of tt and W + jets production, the dominant background pro-

cesses, two control regions that are enriched in events from these processes are defined

by modifying the event selection defined in section 5.1. In the tt control region, at least

two b-tagged jets are required instead of at least one. In the W + jets control region, the

requirement of at least one b-tagged jet is inverted and events with any b-tagged jets are

rejected. Events with an H-tagged jet are rejected in both control regions to reduce the

signal contribution in these regions, and Emiss
T > 100 GeV is required to reject events from

multijet production. The signal to background ratio is about six times smaller than the

one in the H2b category in the tt control region and about 30 times smaller in the W + jets

– 9 –
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Figure 3. Distributions of the number of b-tagged subjets of the highest pT H-tagged jet candidate

with pT > 300 GeV and Mjet in the range [60, 160] GeV (left), and Mjet of the highest pT H-tagged

jet candidate with pT > 300 GeV and two subjet b tags (right). A T quark signal with M(T) =

0.8 TeV is shown (right), normalized to the predicted cross section and scaled by a factor of 20,

with the singlet benchmark branching fractions assumed. The solid (dashed) curve shows TT events

with at least one (zero) Higgs boson decay, where contributions from each decay mode are weighted

to reflect the singlet branching fraction scenario. The uncertainty in the background includes the

statistical and systematic uncertainties described in section 7.

control region. Events are corrected for all known sources of discrepancies between the

data and simulation such as differing reconstruction or tagging efficiencies. It is observed

that jets have a harder pT spectrum in simulation, leading to significant discrepancies from

observed distributions of quantities such as HT. The discrepancies in both control regions

are well described by 2-parameter linear fits with negative slopes to the ratio between data

and simulation in the HT distributions [65, 66]. Modeling of the tt and W + jets back-

ground samples is corrected using the results of these fits. The ST distributions for both

control regions are shown in figure 4 with all corrections applied.

To evaluate the uncertainty in the normalization of the tt and W + jets background

processes, a binned maximum likelihood fit [67] of the background-only hypothesis is per-

formed in the two control regions using the Theta framework [68]. All systematic uncer-

tainties (discussed in more detail in section 7) are accounted for, except for uncertainties

in the rate of tt and W + jets backgrounds that are constrained using this fit. The re-

sulting uncertainties in the normalizations of the two backgrounds are 8.7% for tt and 6%

for W + jets. These uncertainties are included in the final statistical interpretation of the

results (discussed in section 8) as rate uncertainties. In both control regions, data and

simulation agree within the systematic uncertainties described in section 7.

6 Boosted W channel

6.1 Event selection

The selection in this channel is optimized for the identification of boosted W boson decays.

Selected events are required to have no H-tagged jets ensuring that the event sample in this
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Figure 4. Distributions of ST in the tt (left) and W + jets (right) control regions of the boosted

H channel after applying all corrections to their shape and normalization. The TT signal, shown

for T quark masses of 0.8 and 1.2 TeV, is normalized to the theoretical cross section and the singlet

benchmark branching fractions are assumed. The uncertainty in the background includes statistical

and systematic uncertainties described in section 7.

channel is complementary to that for the boosted Higgs channel, allowing a straightforward

combination of the two channels. Events are selected that have one electron or muon,

usually from the decay of a W boson in the T → bW decay mode or from a leptonic top

quark decay in the T→ tZ or tH decay modes. Electrons (muons) must have pT > 40 GeV,

|η| < 2.1 (2.4) and pass the tight identification and isolation requirements described in

section 4. Events having additional loose electrons or muons with pT > 10 GeV are rejected.

Each event must have three or more AK4 jets, and the three highest pT jets must satisfy

pT > 300, 150, and 100 GeV, respectively. Since a neutrino is expected from a leptonic W

boson decay, Emiss
T is required to be greater than 75 GeV, which also significantly reduces

the background from multijet events. Control regions are separated from the signal region

based on the angular separation between the lepton and the second-highest pT jet in the

event, ∆R(`, j2). In both TT and background processes, the lepton is usually observed

back-to-back with the highest transverse momentum AK4 jet, and in TT events the second-

highest pT jet also tends to be back-to-back with the lepton, as seen in figure 5. The signal

region selection requires ∆R(`, j2) > 1. Figure 5 shows the distribution of ∆R(`, j2) after

all selection requirements except for ∆R(`, j2) > 1. All selection efficiency corrections for

differences between data and simulation are applied, as well as the HT-based reweighting

described in section 5.2.

To maximize sensitivity to the presence of TT production, events are divided into 16

categories based on lepton flavor (e, µ), the number of b-tagged jets (0, 1, 2, ≥3), and the

number of boosted W-tagged jets (0, ≥1). In events with no W-tagged jet, we require a

fourth jet with pT > 30 GeV. Figure 6 shows the distributions used for tagging boosted W

bosons as well as the number of b-tagged and W-tagged jets. The pruned mass distribution

for AK8 jets with τ2/τ1 < 0.6 shows a significant contribution of boosted W bosons in

signal events weighted to correspond to the singlet branching fraction benchmark. The

τ2/τ1 distribution in AK8 jets with pruned mass between 65–105 GeV shows that W + jets

– 11 –
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Figure 5. Distribution of ∆R(`, j2) in the boosted W channel after all selection requirements

except for ∆R(`, j2) > 1. Also shown are the distributions of TT signal events with T quark masses

of 0.8 and 1.2 TeV, scaled by factors of 20 and 60, respectively. The uncertainty in the background

includes the statistical and systematic uncertainties described in section 7.

and multijet backgrounds are concentrated at higher values, as expected for jets without

substructure.

We finally analyze the minimum mass constructed from the lepton (`) and a b-tagged

AK4 jet, labeled min[M(`, b)]. In leptonic top quark decays, forming a mass from two

of the three decay products, the lepton and b quark jet, produces a sharp edge near the

top quark mass. Therefore this distribution is particularly suited to identifying T → bW

decays, where the corresponding edge forms at much higher masses, near M(T). In the

categories with zero b-tagged AK4 jets, we consider the minimum mass of the lepton and

any AK4 jet, denoted min[M(`, j)]. This combination of discriminating variables provides

the best sensitivity to low mass T quark production (.1 TeV) in the singlet branching

fraction scenario. Figure 7 shows distributions of min[M(`, j)] and min[M(`, b)] after the

final selection but before the likelihood fits described in section 8.

6.2 Background modeling

To cross check the modeling of background processes, we consider two control regions

enriched by two dominant background processes, W + jets and tt. To define these regions

we invert the signal region requirement of ∆R(`, j2) > 1 and modify the requirement on

the number of b-tagged jets to maximize either W + jets or tt yield. For an 800 GeV T

quark we expect only 3 events in both control regions compared to a total background of

444, for a signal to background ratio that is a factor of ≈3 smaller than in the signal region.

The W + jets control region has zero b-tagged jets and events are categorized according

to the number of W-tagged jets (0, ≥1). The tt region has one or more b-tagged jets and

events are categorized according to the number of b-tagged jets (1, ≥2). Figure 8 shows

distributions of min[M(`, j)] in the W + jets control region and min[M(`, b)] in the tt

control region. Both regions show that simulation-based background predictions agree with

data within the systematic uncertainties described in section 7. Observed and predicted
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Figure 6. Distributions of (left-to-right, upper-to-lower) pruned jet mass for AK8 jets with τ2/τ1 <

0.6, τ2/τ1 for AK8 jets with pruned mass within 65–105 GeV, number of b-tagged AK4 jets, and

number of W-tagged AK8 jets in the boosted W channel with all categories combined. Also shown

are the distributions of TT signal events with T quark masses of 0.8 and 1.2 TeV, scaled by factors

of 20 and 60, respectively, in the upper figures. The uncertainty in the background includes the

statistical and systematic uncertainties described in section 7.

event yields in the control regions for all categories are compared as a closure test, and

differences in yields are assigned as an additional systematic uncertainty. This uncertainty

accounts for any background mismodeling after selection and scale factor application.

7 Systematic uncertainties

We consider sources of systematic uncertainty that can affect the normalization and/or

the shape of both background and signal distributions. A summary of these systematic

uncertainties along with their numerical values and whether they are applied to signal or

background samples can be found in table 2.

The uncertainty in the integrated luminosity is 2.3% [69] and is applied to all simu-

lated samples. Normalization uncertainties in the rates of SM processes include 20% for

single top quark production and 15% for diboson production, based on CMS measure-
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Figure 7. Distributions of min[M(`, j)] in events without b-tagged AK4 jets (left) and

min[M(`, b)] in events with ≥1 b-tagged AK4 jets (right) in the boosted W channel with all

categories combined. Also shown are the distributions of TT signal events with T quark masses of

0.8 and 1.2 TeV, scaled by factors of 20 and 60, respectively. The uncertainty in the background

includes the statistical and systematic uncertainties described in section 7.

ments [70, 71]. For multijet production a rate uncertainty of 100% is assigned in the

boosted H channel since the simulation used in this channel does not contain either the

PDF or matrix element scale uncertainties, unlike those used in the boosted W channel.

No rate uncertainty is applied to Z + jets production since for this process experimental

and theoretical uncertainties are small compared to the energy scale and PDF uncertainties

described below. Additionally, both channels derive normalization uncertainties for tt and

W + jets samples from control regions, with values of 5–12% and 4–20% in the boosted

W channel, and 8.7% and 6.0% in the boosted H channel. Trigger, lepton identification,

and lepton isolation efficiency scale factor uncertainties are also applied as normalization

uncertainties.

Uncertainties in both channels affecting the shape and normalization of the distribu-

tions include uncertainties related to jet energy scale, jet energy resolution, pruned or soft

drop jet mass scale and resolution, and b tagging and light-flavor mistagging efficiencies.

These are evaluated by raising and lowering their values with respect to the central val-

ues by one standard deviation of the respective uncertainties and recreating a distribution

using shifted values at each step of the analysis. An additional uncertainty of 5% is ap-

plied in the boosted H channel to account for potential differences when propagating the

jet mass scale and resolution scale factors, measured using hadronic W boson decays, to

Higgs boson candidate jets. This uncertainty has been determined by comparing samples

simulated with the pythia 8 and herwig++ [72] (with the CUETP8M1 tune [53, 54])

hadronization programs and evaluating the difference between the two programs in the

jet mass distributions for hadronically decaying W and Higgs bosons. In the boosted W

channel we also apply shape uncertainties to the W boson tagging corrections for the τ2/τ1
selection efficiency and its pT dependence. To account for small differences in the H-tagging

efficiency between the boosted W and boosted H channel, a 3% normalization uncertainty

– 14 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
5

<
 E

v
e
n
ts

 /
 G

e
V

 >

4−10

3−
10

2−10

1−10

1

10

210

+jets, 0 W, 0 bµe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,j)] [GeV]

0 200 400 600 800

s
td

. 
d

e
v
.

(d
a

ta
-b

k
g

)

1−

0
1

<
 E

v
e
n
ts

 /
 G

e
V

 >

4−10

3−
10

2−10

1−10

1

10

210

 1 W, 0 b≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,j)] [GeV]

0 200 400 600 800

s
td

. 
d

e
v
.

(d
a

ta
-b

k
g

)

1−
0
1

<
 E

v
e
n
ts

 /
 G

e
V

 >

4−10

3−
10

2−10

1−10

1

10

210

 0 W, 1 b≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800

s
td

. 
d

e
v
.

(d
a

ta
-b

k
g

)

1−
0
1

<
 E

v
e
n
ts

 /
 G

e
V

 >

4−10

3−
10

2−10

1−10

1

10

210

 2 b≥ 0 W, ≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800

s
td

. 
d

e
v
.

(d
a

ta
-b

k
g

)

1−
0
1

Figure 8. Distributions of min[M(`, j)] in the W + jets control region of the boosted W channel

(upper) for 0/≥1 W tag categories (left/right), and min[M(`, b)] in the tt̄ control region of the

boosted W channel (lower) for 1/≥2 b tag categories (left/right). Also shown are the distributions

of TT signal events with T quark masses of 0.8 and 1.2 TeV. The uncertainty in the background

includes the statistical and systematic uncertainties described in section 7.

is assigned that is correlated with the b tagging uncertainty in the boosted H channel and

anticorrelated in the boosted W channel.

The uncertainty due to pileup modeling is evaluated by varying by ±5% the total

inelastic cross section used to calculate the pileup distribution. The systematic uncertainty

in the HT-based background reweighting procedure is taken to be the difference between

the unweighted distribution and a distribution where the correction factor is applied twice.

The uncertainties in the PDFs used in MC simulation are evaluated from the set of

NNPDF3.0 fitted replicas, following the standard procedure [55]. Renormalization and

factorization scale uncertainties are calculated by varying the corresponding scales up or

down (either independently or simultaneously) by a factor of two and taking as uncertainty

the envelope, or largest spread, of all possible variations. These theoretical uncertainties are

applied to the signal simulation as shape uncertainties, together with small normalization

uncertainty contributions due to changes in acceptance.

The PDF and scale variation uncertainties affect both the normalization and shape

of background distributions for multijet (in the boosted W channel), Z + jets, and sin-
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gle top quark MC samples. For the tt and W + jets backgrounds the theoretical and HT

reweighting uncertainties dominate the total uncertainty in this search, and theoretical

uncertainties are treated differently across the two channels. Changes of energy scale or

parton momentum strongly influence HT and therefore these uncertainties are correlated

with the uncertainty in the HT reweighting method. In the boosted H channel, only the un-

certainty in the HT reweighting procedure is considered as this uncertainty dominates over

energy scale variations and PDF uncertainties, especially in the tails of the ST distribution.

In the boosted W channel the uncertainty in the HT reweighting dominates over the PDF

uncertainty, but is comparable in shape and magnitude to the scale variation uncertainty,

with scale variations providing the dominant uncertainty at low values of min[M(`, b)].

In this channel both HT reweighting and scale variation uncertainties are considered for

tt and W + jets backgrounds. All of these shared uncertainties are treated as correlated

between the two analysis channels in the statistical interpretation of the results.

8 Results

Signal efficiencies for all possible final states of TT and BB production in the boosted W and

boosted H channels (after combining all categories in each channel) are listed in table 3 for

two signal hypotheses with a high and a low vector-like quark mass. The values are derived

by dividing the number of signal events that have the corresponding decay mode in each

category by the number of expected events in the same decay mode before any selection.

It can be seen that the selection applied in the boosted H channel is most efficient if a

Higgs boson is present in the final state, whereas the selection in the boosted W channel

favors T → bW decays, thus showing how the combination of the two channels improves

sensitivity to most branching fraction combinations of the T quark. For B quark decays

the boosted W channel has high efficiency for the tW decays and reduced efficiency for the

bZ/bH decays owing to the lack of semileptonic top quark decays. Similarly, the boosted

H channel is most efficient for the bHtW final state since a leptonic decay is required as

well as an H-tag.

In figure 9, min[M(`, j)] or min[M(`, b)] distributions are shown for each of the 8

tagging categories in the boosted W channel after the final event selection, with the electron

and muon channels combined. Figure 10 shows distributions of ST in the H1b and H2b

categories after combining the electron and muon channels. As these two variables provide

good discrimination between signal and background in their respective categories, they

are used for the final statistical interpretation of the data. In all plots, the TT signal

distributions assume the singlet benchmark branching fractions. The event yields are given

in table 4.

After the final event selection, no significant excess above the SM expectations is ob-

served in data. We set 95% CL upper limits on the cross section of TT production in

various branching fraction scenarios. These limits are defined as Bayesian credible inter-

vals [67] and are derived using the Theta [68] program. Statistical uncertainties due to the

finite size of the MC samples are accounted for using the Barlow-Beeston lite method [73].

Systematic uncertainties are treated as nuisance parameters with log-normal priors for nor-
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Source
Uncertainty

Signal
Background

Boosted W Boosted H Boosted W Boosted H

Int. luminosity 2.3% Yes All All

Diboson rate 15% No diboson diboson

Single t quark rate 20% No t t

QCD rate — 100% No — QCD

tt rate 5–12% 8.7% No tt tt

W + jets rate 4–20% 6.0% No W + jets W + jets

Trigger (e) 5% 2% Yes All All

Trigger (µ) 5% 1% Yes All All

Identification (e,µ) 1% 2% Yes All All

Isolation (e,µ) 1% — Yes All —

Pileup σinel. ± 5% Yes All (0–3%) All (0–3%)

Jet energy scale ±σ(pT , η) Yes All (0–12%) All (0–4)%

Jet energy res. ±σ(η) Yes All (0–8%) All (0–1)%

HT reweighting
envelope(no weight,

No
tt, W + jets, QCD tt, W + jets

weight squared) (17–34%) (13–21%)

b tag: b ±σ(pT) Yes All (0–16%) All (3–8%)

b tag: light flavors ±σ Yes All (0–6%) All (1–4%)

W/H tag: mass scale ±σ(pT, η) Yes All (0–3%) All (0–7%)

W/H tag: mass res. ±σ(η) Yes All (0–5%) All (0–7%)

H tag: efficiency 3% Yes All All

H tag: propagation — 5% Yes — All

W tag: τ2/τ1 ±σ — Yes All (0–2%) —

W tag: τ2/τ1 pT ±σ(pT) — Yes All (0–2%) —

Renorm./fact. scale envelope (×2,×0.5) Shape All (22–44%) Z + jets, t (2–23%)

PDF ±σ Shape Z + jets, t, QCD (1–7%) Z + jets, t (0–13%)

Table 2. Summary of the systematic uncertainties, along with numerical values and application

to signal and/or background samples. The second column gives the magnitude of normalization

uncertainties or the procedure used to evaluate shape uncertainties. The symbol σ indicates one

standard deviation of the corresponding systematic uncertainty. Renormalization and factorization

energy scale uncertainties are treated as shape-only for signal but include normalization uncertain-

ties in background. Values stated for shape uncertainties indicate a representative range over the

categories for the dominant backgrounds and/or signal.

malization uncertainties, Gaussian priors for shape uncertainties with shifted templates,

and a flat prior on the signal cross section. The limits are then calculated by simultaneously

fitting the binned marginal likelihoods obtained from the min[M(`, b)] distributions in all

boosted W categories and the ST distributions in all boosted H categories. This creates

a combined search with 20 categories after dividing into electron and muon channels: 16

categories from the boosted W channel and 4 categories with a boosted Higgs boson. The

systematic uncertainties for these categories are correlated, as described in section 7.

Results for the individual channels are shown in figure 11. The boosted W channel ex-

cludes T quarks decaying only to bW with masses below 910 GeV (870 GeV expected), and

the boosted H channel excludes T quarks decaying only to tH for masses below 890 GeV

(860 GeV expected). In figure 12 we present combined 95% CL upper limits on the TT

production cross section for two VLQ benchmark branching fraction combinations: sin-

glet (50% bW, 25% tZ/tH) and doublet (50% tZ/tH). For an electroweak singlet T quark,
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Production process Decay mode Boosted W categories Boosted H categories

TT (0.8 TeV)

tHtH 2.9% 8.7%

tHtZ 3.2% 7.3%

tHbW 5.8% 6.3%

tZtZ 3.7% 5.6%

tZbW 6.3% 4.2%

bWbW 10.0% 2.5%

TT (1.2 TeV)

tHtH 3.6% 10.5%

tHtZ 4.1% 9.0%

tHbW 7.3% 7.1%

tZtZ 4.7% 6.7%

tZbW 8.3% 4.8%

bWbW 13.2% 2.5%

BB (0.8 TeV)

bHbH 1.7% 1.9%

bHbZ 1.3% 1.9%

bHtW 5.8% 6.1%

bZbZ 0.8% 1.4%

bZtW 6.4% 4.2%

tWtW 7.9% 5.7%

BB (1.2 TeV)

bHbH 1.7% 2.1%

bHbZ 1.4% 1.9%

bHtW 7.3% 7.1%

bZbZ 0.8% 1.5%

bZtW 8.2% 4.7%

tWtW 11.4% 7.0%

Table 3. Signal efficiencies in the boosted W and boosted H event categories, split into the six

possible final states, of both TT and BB production for two illustrative mass points. Efficiencies

are calculated with respect to the expected number of events in the corresponding final state before

any selection. The relative uncertainty in the efficiencies after combining systematic and statistical

uncertainties in the MC samples is about 8% in the boosted W categories and about 12% in the

boosted H categories.

the observed (expected) upper limits on the production cross section range from 0.26 to

0.04 pb (0.31 to 0.04 pb) and we exclude masses below 860 GeV (790 GeV). For a doublet

T quark, the observed (expected) upper limits on the production cross section range from

0.37 to 0.04 pb (0.34 to 0.03 pb) and we exclude masses below 830 GeV (780 GeV). The cor-

responding benchmarks for B quark production are shown in figure 13, and we can exclude

masses below 730 GeV (720 GeV expected) for the singlet branching fraction combination

while for the doublet scenario, no lower mass limit above 700 GeV was observed. Sensi-

tivity to BB production in this search is limited by the single lepton selection efficiency

for bZ and bH decays, as noted above. The combinations benefit from the difference in

discriminating variables between the channels: the min[M(`,b)] distributions used in the

– 18 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
5

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

210

+jets, 0 W, 0 bµe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,j)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−

0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

210

 1 W, 0 b≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,j)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−
0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

210

+jets, 0 W, 1 bµe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−

0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

 1 W, 1 b≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT QCD

Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−
0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

+jets, 0 W, 2 bµe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−

0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

 1 W, 2 b≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−
0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

10

 3 b≥+jets, 0 W, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−
0
1

<
 E

v
e

n
ts

 /
 G

e
V

 >

3−
10

2−10

1−10

1

 3 b≥ 1 W, ≥+jets, µe/

Data TOP

=0.8 TeV)
T

 (MTT EW

=1.2 TeV)
T

 (MTT Bkg. uncert.

 (13 TeV)-12.3 fb

CMS

min[M(l,b)] [GeV]

0 200 400 600 800 1000

s
td

. 
d
e
v
.

(d
a
ta

-b
k
g
)

1−
0
1

Figure 9. Distributions of min[M(`, j)] or min[M(`, b)] in the combination of electron and muon

channels in the boosted W categories with 0 (left) or ≥1 (right) W-tagged jets and (upper to lower)

0, 1, 2, or ≥3 b-tagged jets. Also shown are the distributions of TT signal events with T quark

masses of 0.8 and 1.2 TeV. The uncertainty in the background includes the statistical and systematic

uncertainties described in section 7.
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Figure 10. Distributions of ST in the H1b (left) and H2b (right) categories in the combination

of electron and muon channels. The TT signal, shown for T quark masses of 0.8 and 1.2 TeV,

is normalized to the theoretical cross section and the singlet benchmark branching fractions are

assumed. The uncertainty in the background includes the statistical and systematic uncertainties

described in section 7.

boosted W channel provide good sensitivity to low-mass T quarks, while the peaking signal

shape in the ST distribution drives the combination at high masses. The observed exclu-

sion limits are stronger than expected due to an over-prediction of the background that

remains after the HT-based reweighting, particularly in categories with a W-tagged jet and

several b-tagged jets. This effect is not significant given the systematic uncertainty in the

reweighting procedure.

Figure 14 shows expected and observed exclusion limits at 95% CL on the T quark

mass, for a scan of possible branching fractions: we set lower mass limits with values ranging

from 790 to 940 GeV for combinations with B(T → tH) + B(T → bW) ≥ 0.4. Compared

to the combination of many leptonic and hadronic search channels in
√
s = 8 TeV collision

data corresponding to an integrated luminosity of 19.7 fb−1, the current combination of

two single lepton channels produces similar expected exclusion limits. This represents

an improved sensitivity to TT pair production at
√
s = 13 TeV due to the increase in

the TT production cross section from 8 to 13 TeV as well as to significant improvements in

techniques for identifying boosted hadronic massive-particle decays. For branching fraction

scenarios with B(T → tH) + B(T → bW) ≥ 0.4 these results extend the excluded mass

range of the 8 TeV search by up to 160 GeV.

9 Summary

The first search by CMS for pair-produced vector-like T and B quarks at
√
s = 13 TeV

is presented, using data from proton-proton collisions recorded in 2015 corresponding to

integrated luminosities of 2.3–2.6 fb−1. The search requires at least one lepton in the final

state and is optimized for cases where a T quark decays to a boosted W or Higgs boson.

No excess above the standard model background is observed and 95% confidence level

upper limits are placed on the cross section of TT and BB production. For an electroweak
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Sample 0 W, 0 b 0 W, 1 b 0 W, 2 b 0 W, ≥3 b

TT (0.8 TeV) 2.5 ± 0.7 5.3 ± 1.3 3.9 ± 1.0 1.4 ± 0.4

TT (1.2 TeV) 0.23 ± 0.06 0.42 ± 0.11 0.26 ± 0.07 0.09 ± 0.02

TOP 103 ± 41 205 ± 78 111 ± 41 16.3 ± 6.8

EW 460 ± 160 80 ± 30 10.7 ± 4.0 0.6 ± 0.2

QCD 14.1 ± 6.3 6.2 ± 3.7 <1 <1

Total bkg. 570 ± 170 292 ± 84 122 ± 41 16.9 ± 6.8

Data 588 288 131 14

Sample ≥1 W, 0 b ≥1 W, 1 b ≥1 W, 2 b ≥1 W, ≥3 b

TT (0.8 TeV) 3.3 ± 0.9 6.6 ± 1.7 4.2 ± 1.1 1.0 ± 0.3

TT (1.2 TeV) 0.34 ± 0.09 0.52 ± 0.13 0.27 ± 0.07 0.06 ± 0.02

TOP 71 ± 26 111 ± 42 56 ± 20 7.6 ± 3.3

EW 180 ± 50 29.0 ± 8.4 4.4 ± 2.0 0.2 ± 0.1

QCD 12.6 ± 7.0 3.5 ± 2.6 0.2 ± 0.2 < 1

Total bkg. 263 ± 57 143 ± 43 60 ± 20 7.8 ± 3.3

Data 274 155 45 7

Sample H1b category H2b category

TT (0.8 TeV) 21.5± 2.1 4.4± 0.7

TT (1.2 TeV) 1.5± 0.2 0.31± 0.05

TOP 1050± 220 29.6± 8.6

EW 45± 11 2.5± 0.9

QCD 50± 55 4.4± 5.1

Total bkg. 1150± 260 37± 12

Data 1204 43

Table 4. Number of events in each category after combining the electron and muon channels.

Uncertainties include statistical and systematic components from table 2, with uncertainty in the

total background yield accounting for correlations across background processes. Yields of TT signal

assume the theoretically predicted production cross section within the singlet branching fraction

scenario.

singlet T quark, masses below 860 GeV are excluded, and for a doublet T quark, masses

below 830 GeV are excluded. Considering other possible branching fraction combinations

for T quarks, and assuming that the sum of the branching fractions to bW, tH and tZ is

equal to unity, we set lower mass limits that range from 790 to 940 GeV for combinations

with B(T → tH) + B(T → bW) ≥ 0.4. These results extend the sensitivity of previous

CMS searches for many possible T quark decay scenarios, and showcase the importance of

new techniques for understanding highly-boosted final states in extending searches for new

particles to higher masses.
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Figure 11. The expected and observed upper limits (Bayesian) at 95% CL on the cross section of

TT production for 100% T→ bW in the boosted W channel (left), and 100% T→ tH in the boosted

H channel (right). The theoretically predicted cross section for TT production calculated at NNLO

is shown as red line, with the uncertainties in the PDFs and renormalization and factorization scales

indicated by the shaded area. Masses below 700 GeV were excluded previously.
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calculated at NNLO is shown as red line, with the uncertainties in the PDFs and renormalization and

factorization scales indicated by the shaded area. Masses below 700 GeV were excluded previously.
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J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard,

K. Lipka, W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag,

J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland,

M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem,

R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

S. Bein, V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez,

J. Haller, M. Hoffmann, A. Junkes, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,

S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin,

F. Pantaleo15, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann,

J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen,
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University, Budapest, Hungary

M. Csanad, N. Filipovic, G. Pasztor

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath19, Á. Hunyadi, F. Sikler, V. Veszpremi,
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di

Pisa c, Pisa, Italy

K. Androsova, P. Azzurria,15, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello,

R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, L. Gianninia,c, A. Giassia,

M.T. Grippoa,29, F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, L. Martinia,b,

– 35 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
5

A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,31, P. Spagnoloa, R. Tenchinia,

G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
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M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas47, J. Steggemann, M. Stoye, M. Tosi,

D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, G.I. Veres20, M. Verweij, N. Wardle,

W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl†, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,

U. Langenegger, T. Rohe, S.A. Wiederkehr

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar,
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31: Also at Purdue University, West Lafayette, U.S.A.

32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia

33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia

34: Also at Consejo Nacional de Ciencia y Tecnoloǵıa, Mexico city, Mexico
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