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Abstract. We address the problem of detecting whether an engine is
misfiring by using machine learning techniques on transformed audio
data collected from a smartphone. We recorded audio samples in an un-
controlled environment and extracted Fourier, Wavelet and Mel-frequency
Cepstrum features from normal and abnormal engines. We then imple-
mented Fisher score and Relief score based variable ranking to obtain an
informative reduced feature set for training/testing classification algo-
rithms. Using this feature set, we were able to obtain a model accuracy
of over 99% using a linear SVM on outsample data. This application of
machine learning to vehicle subsystem monitoring simplifies traditional
engine diagnostics, aiding vehicle owners in the maintenance process and
opening up new avenues for pervasive mobile sensing and automotive di-
agnostics.

Keywords: Pervasive sensing, mobile phones, sound classification, audio
processing, fault detection, machine learning

1 Introduction

People spend more time in their cars than ever before, and with increased miles
traveled [21], hours spent in traffic [17], and an aging vehicle fleet in the United
States and around the world [6], vehicle maintenance has become an increas-
ingly critical part of vehicle ownership. Proactive or rapid-response maintenance
saves significant cost over the life of a vehicle and reduces the likelihood of an
unplanned breakdown. Anticipatory maintenance can further alleviate reliabil-
ity concerns and increase the overall satisfaction of vehicle owners and operators
through reduced fuel consumption, emissions, and improved comfort. For these
reasons, the consumer-facing diagnostic market for vehicles has grown to include
products intended to help vehicle owners maintain and supervise the operation
of their vehicles without the assistance of a mechanic.

At the core of any vehicle’s maintenance requirement is the engine, responsi-
ble for efficient and reliable propulsion. Automotive internal combustion engines
require only three ‘ingredients’ to run: a supply of fuel, intake air, and ignition
sparks. Delivery of one or more of these elements can fail, as is the case when
an air filter or fuel injector clogs or when an ignition coil is damaged. One com-
mon engine fault results from a weak or non-existent spark, causing the fuel in



a cylinder to fail to combust. With one or more cylinders failing to explode and
generate motive force, fuel efficiency and power output drop, with the engine
operation increasing in noise, vibration, and harshness. This fault, called a ‘mis-
fire,’ results in engine wear and leads to hesitation upon acceleration. A weak
spark may be the result of neglected maintenance, such as fouled spark plugs, or
component failure, such as an intermittently connected plug wire or an ignition
coil pack stressed from powering improperly gapped spark plugs.

In modern vehicles, computer systems monitor combustion, misfires, and
other emission-related functions through a system called “On Board Diagnos-
tics” (OBD) [16]. While OBD systems are capable of detecting a misfire, they are
slow to react, rely on proprietary and non-standard algorithms, and necessitate
the use of a specialized interface device to provide human-readable information.
To better enable preventative maintenance, it is desirable to instead detect these
faults passively, more reliably, and without specialized equipment, applying sens-
ing from devices such as mobile phones. This would remove the barrier to entry
posed by requiring a dedicated code-reading device and enable pervasive sensing
to allow drivers to monitor the health of their vehicles with increasing frequency
at no additional cost. Through improved early detection, the source of the mis-
fire can be addressed easily and inexpensively with the replacement of a spark
plug, wire, or ignition coil, before the failure takes a more costly toll on other
components like the catalytic converter due to long-term rich fuel trim.

A concurrent proliferation in mobile devices, along with recent advances in
sensing and computation, has made pervasive sensing a valuable field for ex-
ploration. The use of mobile phones as “automotive tricorders” capable of non-
invasively detecting vehicle condition will encourage drivers to take an active role
in vehicle maintenance through improved ease-of-use and widespread adoptabil-
ity relative to current diagnostic offerings. Passive sensing will allow a shift from
today’s paradigm of reactive repair to one of proactive maintenance, with this
technique having been used successfully for passive monitoring of wheels and
tires [19] [18].

In this document, we show that pervasive sensing may be used to differentiate
normally operating engines from those operating with misfires. Because we lack
a robust physical model describing misfire phenomena, we apply machine learn-
ing techniques to uncontrolled data collection and demonstrate an approach to
misfire detection making use of extensive feature generation and set reduction to
improve classification without a physically-derived hypothesis. We demonstrate
that a mobile device may be used to generate data, create a set of features, re-
duce the size of that set, and apply machine learning to classify accurately and
efficiently based on the reduced set.

This paper covers topics ranging from data collection to feature generation
to classification. In Section 2, we consider prior art and how our method differs
from the in-situ and externally sensed solutions before it, illustrating the oppor-
tunity space and motivating our work. Section 3 describes our approach to data
generation, and how we minimize experimental setup in favor of more natural-
istic and representative data collection capable of more easily translating to a



consumer-friendly application. Section 4 explores the algorithms we use to gen-
erate a comprehensive feature vector. Our approach applies exhaustive feature
generation because we have no prior art to distinguish what might be important
to classify misfires from normally operating engines. We further discuss our ap-
proach to reducing feature set size using feature ranking techniques to facilitate
lower computational and other resource overheads. In sub-section 4.3, we briefly
discuss the various classification algorithms we implemented and their relative
merits, drawbacks, and efficacy. We conclude in Section 5 and show 99% clas-
sification accuracy with 50% outsample data, before Section 6 which discusses
plans for future work in this area.

2 Prior Art

Engine misfires have been detected in a variety of ways. Under normal oper-
ating conditions, the crankshaft rotates through a fixed angular displacement
between every cylinder firing attempt. A misfire detectably alters the precession
of the crankshaft which is sensed by a crankshaft position sensor. Measuring a
series of unexpected angular measurements within a time window prompts the
illumination of check engine light indicating that the engine is operating out-
side of specifications and malfunctioning. The use of an OBD scan tool may
reveal which cylinder or cylinders are misfiring, but this information is of uncer-
tain provenance and dubious value due to the use of proprietary classification
schemes [13] [23]. Some direct-sensing alternatives to crankshaft position-based
detection include sampling of the instantaneous exhaust gas pressure, measur-
ing ionization current in the combustion chamber, or installing other sensors
within [25] [4] or outside the combustion chamber [14] [24].

Other diagnostics have demonstrated the capacity to identify misfires through
audio signal processing. Aside from less obviously discernible symptoms like
increased fuel consumption or visual indications like an oily or white residue on
the tip of the spark plug, misfires have a characteristic audible “pop” and cause
the engine to vibrate as though it is unbalanced or otherwise “missing a beat.”
The sound emanating from an abnormally-firing engine can be captured at a
distance by a microphone and analyzed in both the time and frequency domains
for patterns indicative of cylinder misfires. Auto mechanics have long employed
a form of auditory diagnosis, listening to engines and easily determining the
presence of a misfire. The fact that physical models of the sound and vibration
profiles produced by an engine misfire are complex, yet “old pro” mechanics can
classify a firing abnormality by ear lends credence to the idea that a machine
learning approach to detection may be tenable.

Researchers have applied this sort of classification technique successfully. To
acquire the audio signals, Dandare [3] and Sujono [20] made use of dedicated
recording equipment to analyze the sound from automotive internal combustion
engines in a laboratory environment. Engines were recorded during normal op-
eration, as well as in the presence of different faults including cylinder misfire.
In Dandare, an Artificial Neural Network classified faults with accuracies rang-



ing from 85-95% overall. Kabiri and Ghaderi [8] [7] introduced noise into their
misfire measurements of over 300 single cylinder engines by moving outside the
laboratory and into a garage. Principal Component Analysis and correlation-
based feature selection in the time and frequency domains achieved an accuracy
between 70% and 85% for these vehicles. Anami made similar recordings of mo-
torcycles [1] to aid mechanics in the rapid classification of healthy versus faulty.
Several hundred motorcycle engines were recorded from a distance of half a
meter, with wavelet-based machine learning techniques distinguishing not only
between healthy and faulty motorcycles, but also the category of fault present.
This included, for example, whether the fault was in the engine or exhaust
system. Experienced mechanics provided ground truth, with the classification
system reporting > 85% accuracy relative to these uncertain reference values.

With the proliferation of smartphones among the car owning public, re-
searchers have considered how these devices can be used to aid in vehicle di-
agnostics and more specifically engine misfire detection. Using the smartphone
at the center of a remote maintenance system, Tse [22] installed sensors including
accelerometers and laser encoders within a test vehicle. When a misfire or other
engine events were detected, a message was sent via smartphone to inform the
user. In Navea [15], the smart phone itself was used as the data collection and
processing device, and was held 30cm above the engine cover to record sounds of
the engine and drive belt during startup, while idling, and at 1000rpm. Thirty-
five Honda Civics were used and recordings were taken at various locations and
ambient conditions as input data for Fast-Fourier Transformed data based clas-
sification. Startup issues relating to the car battery, fuel supply and timing were
recognized 100% of the time, while a normal engine at idle or 1000rpm was iden-
tified with a 33% false positive rate. Pulley bearing defects or belt slips were
properly diagnosed less than 50% of the time, while valve clearance issues were
more reliably detected.

Previous work has laid a strong foundation and shown great potential for us-
ing audio signals as a vehicle diagnostic technique, with the capacity for smart-
phones to serve as capable diagnostic tools within the reach of the general public.
Indeed, in past studies we have utilized internal smartphone sensors for a variety
of automotive applications, from wheel imbalance detection [19] to tire pressure
monitoring [18]. Thanks to mobile computing and pervasive sensing, there is an
opportunity to help vehicle owners passively supervise the operation and main-
tenance of their cars without environmental control or specialized equipment,
yielding accuracy meeting or exceeding that of a trained and certified mechanic.

3 Data Collection

3.1 Experimental Design

The goal of the experiment was to collect audio in a manner that could reason-
ably be duplicated by typical vehicle owners with access to a smartphone. To
that end, the procedure did not rely on fixed position or orientation of the vehi-
cle or mobile phone, and the background environment was not controlled, which



allowed ambient sources such as wind and other vehicles to add noise to both
the training and testing data. In effect, we applied non-invasive and uncontrolled
data collection.

To record the audio samples, each vehicle was warmed up for at least five min-
utes to ensure the engine was no longer running a “fast idle,” which could provide
unwanted audio artifacts. Then, the vehicle’s hood was opened and propped up.
For between two minutes and thirty seconds and six minutes, we used a mobile
phone to record the engine idle sound as an uncompressed stereo .WAV file at
48000Hz. The mobile device was “swept” over the engine to provide a robust
training set that incorporated noise from the engine intake, exhaust, belts, and
other periodic signals present in the engine compartment. This relative motion
is shown in Figure 1.

Fig. 1. The phone recorded as it was moved over the engine to provide background
noise to test algorithm robustness. Engine covers were left on to minimize prep work
and provide a better representative use case for in-situ monitoring.

With baseline testing completed, the procedure was repeated for anomalous
engine operation and misfires. To simulate a misfire, the engine coil pack was
disconnected with the engine turned off, removing the 12V supply. This connec-
tor is shown for two vehicles in Figure 2. The engine was allowed to run for two
minutes in this configuration prior to recording in order to allow the engine time
to adapt to a cycle with periodic non-ignition. In all cars, at least one cylinder
was “deactivated” via induced misfire; in some cars, data were collected for mul-
tiple cylinders misfiring individually and in aggregate. After testing, the engine
was shut off and the coil pack reconnected. If a check engine light had illumi-
nated during testing, it was cleared using a standard ELM327-based automotive
diagnostic tool.

Audio data were collected from multiple vehicles with different engine con-
figurations over several days and in different parking locations (outdoor parking
lots, a garage, and indoor parking structures). This allowed for the creation of
a rich training set capable of providing in-data and out-data for testing. In the
case of this experiment, the two engine configurations tested were a normally as-
pirated inline-four cylinder layout in a Kia Optima and a Ford Focus, as well as



Fig. 2. The supply to the ignition coil pack was disconnected in order to induce a
complete misfire on individual cylinders.

a normally aspirated V6 configuration in a Chevrolet Traverse and Nissan Fron-
tier SUV. In cases where the engine cover had been removed to disconnect the
coil pack, the cover was replaced prior to recording to better replicate a typical
misfire condition wherein the engine’s exterior features remain unperturbed.

4 Audio Analysis and Engine State Classification

Armed with audio samples from vehicle engines, we employed several data min-
ing techniques in an attempt to detect and classify misfires occurrences. The
detection task was formulated as a supervised learning problem, and to simplify
initial algorithm development, the audio samples were classified over only two
operational states (normal and anomalous) as opposed to three or more (normal
and different cylinder misfire configurations).

4.1 Feature Construction

The 48kHz audio samples were first assigned labels based on whether the engine
was operating normally or abnormally (an engine operating with a single mis-
firing cylinder) during recording. These samples were merged from stereo into a
single, mono channel via averaging and the averaged samples were then subdi-
vided into 2.5s segments. The first 1s and the last 2s of each audio sample were
discarded to reduce noisy edge effects and clips with poor signal strength caused
as a result of manipulating the mobile device.

2.5s samples recorded at 48kHz correspond to 120, 000 discrete signal ele-
ments. The total number of samples in our data set was 992, out of which 373
corresponded to a normal engine. Fig. 3 shows a segment of a normal engine
audio signal overlayed with a misfiring engine audio sample.

To generate features for use in classification, each 120, 000 discrete signal ele-
ment was then converted into a feature vector. We sought to generate a range of
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Fig. 3. Comparison of a segment of a normal audio sample with a misfiring audio
sample.

features to allow classification without the need for targeted, hypothesis-driven
feature creation. Three classes of feature construction were employed and con-
catenated to form a long feature vector. The three classes include binned Fourier
Transform coefficients, Wavelet Transform coefficients, and Mel Frequency Cep-
stral coefficients.

Though dense feature generation is an intensive process, this approach was
adopted to remove any preconceived bias on what features have good discrimi-
native power and rather allow machine learning techniques to drive the solution
towards a reduced size feature set. A reasonable feature set size will allow rapid
computation using the programmable Digital Signal Processors (DSPs) on mo-
bile devices. Use of such processors has been shown to minimize a classification
algorithm’s impact on battery life significantly, even allowing Cloud-free opera-
tion [10], though further studies are required to optimize DSP computation and
data transmission to the cloud in order to minimize overall power consumption
and enable pervasive sensing with minimal annoyance to drivers.

Binned Fourier Transform (FT) Coefficients The discrete samples were
first normalized based on power and detrended to remove bias and linear drift.
The Fast Fourier Transform (FFT) was then applied to convert the detrended
time-domain signals into the frequency domain. Frequencies < 10kHz were di-
vided into bins 10Hz wide. The average FT magnitude in each bin provided one
feature. This process resulted in the creation of a feature vector of size 1000.

Fig. 4 shows an example comparison of the magnitude of the FT of a normal
engine audio signal with a misfiring engine audio sample. We observe that several
frequencies (for example, around 2kHz and 8kHz) have a distinct pattern in the
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Fig. 4. Comparison of the spectral density of a normal audio sample with a misfiring
audio sample.

normal vs. abnormal cases. These frequencies that are statistically more powerful
classifiers will be identified and used to classify a normal engine from a misfiring
engine.

Discrete Wavelet Transform (DWT) Coefficients In addition to the binned
FT, we conducted a wavelet decomposition at level 10 on the power normalized,
detrended discrete signal using Daubechies 4 wavelet. At each level of signal
decomposition, mean, standard deviation and skewness was computed resulting
in a 33-dimensional feature vector.

Mel Frequency Cepstral Coefficient (MFCC) The MFCC creates a spec-
tral signature of short-term frames of the original signal that has been success-
fully applied to speech recognition [12]. We used a frame size of 1024 samples,
with each frame incrementally shifted by 512 samples leading to a total number
of 233 frames. For each frame 12 MFCC coefficients were extracted to form a
feature vector of size 2796. We made use of the GNU-licensed Voicebox toolbox
for MATLAB to conduct MFCC feature extraction.1

Concatenating the three sets of feature vectors from the FT, DWT, and
MFCC resulted in a 3829-dimensional feature representation of the audio signal
and a data matrix of size 992 × 3829. The data set was randomly divided into
a 50% training set and a 50% test set. Subsequent work continued to develop
appropriate feature reduction and classification techniques.

1 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html


4.2 Feature Selection

To simplify computation, reduce redundancy and training time, and minimize
overfitting, it was necessary to reduce the higher-dimensional feature vector using
feature selection techniques [5] [9] [11]. Two filter-based methods were used for
feature ranking: Fisher Score (FS) and Relief Score (RS) [9].

The Fisher score [9] of a feature for binary classification is calculated using:

FS(fi) =
n1(µi1 − µi)2 + n2(µi2 − µi)2

n1
(
σi1
)2

+ n2
(
σi2
)2 (1)

=
1

n

(µi1 − µi2)2

(σi
1)

2

n1
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(σi
2)

2
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,

where nj is the number of samples belonging to class j, n = n1 + n2, µi is the
mean of the feature f i, µij and σij are the mean and the standard deviation of fi
in class j. A larger value corresponds to a variable having higher discriminating
power.

The Relief score [11] of a feature is computed by first randomly sampling m
instances from the data and then using:

RS(fi) =
1

2

m∑
k=1

d
(
f ik − f iNM(xk)

)
− d

(
f ik − f iNH(xk)

)
, (2)

where f ik denotes the value of the feature fi on the sample xk, f iNH(xk)
and

f iNM(xk)
denote the values of the nearest points to xk on the feature fi with the

same and different class label respectively, and d(.) is a distance measure which
was chosen to be the `2 norm. Here again, a larger score indicates a higher
discriminating power of the variable.

Fig. 5 shows the normalized score (scaled to ∈ [0, 1]) computed by the three
methods noted above for each of the generated features. Though there is a sig-
nificant correlation between the weights of FS and RS (a linear correlation co-
efficient of 0.49), combining the information from the two methods may reduce
the likelihood of overfitting. To achieve this, we take a simple average of the
scores from the two methods, calculated by:

AS(fi) =
1

2

(
FS(fi)

max(FS(fi))−min(FS(fi))
+

RS(fi)

max(RS(fi))−min(RS(fi))

)
.

(3)
With the features scored, we performed a systematic feature reduction study

in order to identify a suitable subset of features. These feature subsets were
parametrized by a variable p, with all features whose scores were in the top p
percentile for discrimination were included in the subset.

Fig. 6 shows the variation in the 10−fold misclassification error rate (MCR)
on the training set using a linear Support Vector Machine (SVM), as well as the
feature set size (#F) for different scoring schemes and the percentile cutoff p.
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Fig. 5. Comparison of the feature score calculated by the Fisher and the Relief Score
methodology.

We performed a grid search to find the optimal box constraint hyper-parameter
(C) for each of the feature subsets in the figure. From inspection, we identified a
minimum MCR at p = 90 for each of the three feature scoring methods. Selection
of a lower p results in a higher number of less informative features in the subset,
leading to overfitting and poorer cross-validation performance. Use of a higher
p removes important features from the subset leading to a weaker model with
decreased accuracy. We additionally observe that with the AS feature ranking
the MCR increases less sharply after p = 90 when compared to FS or RS, likely
due to variance reduction by model averaging. For these reasons, we selected AS
with p = 90 as the optimal feature subset selection criterion.

The binned FT features alone result in a 10−fold misclassification rate of
0.8%, while with the DWT the error is 36% and the MFCC based features provide
a 29% error. Concatenating all the above features results in a misclassification
rate of 2.6% which is higher than FT alone. The minimum misclassification rate
with FS, RS and AS scoring is 1.8%, 0.4% and 1.0% respectively (Fig. 6).

The FT features have a higher discriminating power when compared to the
other two classes of features. Simply combining the features from all three does
not provide more discrimination than using the FT features. The ability to
perform feature ranking and selecting the optimal subset improves the ratio of
the discriminating power to the feature set size (i.e. (1-MCR)/#F) and therefore
helps determine a small feature set with high discriminative power. It is also
noted that the feature subset with AS and p = 90 has 358 FT features out of a
total of 383 features, 5 DWT features and 20 MFCC features. Among the FT
features selected, several were found to group around the 2.5kHz and 7.5kHz
frequency bands.
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4.3 Classification Algorithms

Using the chosen reduced feature set (AS feature weighting with the top 90th

percentile of features selected), several classification algorithms were studied.
The hyperparameters of the classification algorithms were optimized by con-
ducting a grid search to minimize 10−fold cross-validation on the training data.
The algorithms tested were k-Nearest Neighbor, Adaboost and SVM with linear,
quadratic and RBF kernels. We found that for the SVM with a quadratic kernel
all choices of the hyper parameter box-constraint cost (C) led to the same 10-fold
misclassification error while for the RBF kernel the error sharply dropped from
38% to 0% around the optimal grid points (for finding C and γ). We therefore
decided to remove the quadratic and RBF SVM from the final list of classifiers
because we were unable to find a robust set of optimal hyperparameters.

5 Results and Conclusions

Table 1 summarizes the performance of the different classification algorithms
on the 50% outsample data. We observe that the linear SVM significantly out-
performs the knn and Adabosst classification algorithms. With linear SVM, we
obtained a misclassification rate of 1.0% and the confusion matrix shown in
Table 2. The 99% accuracy of our approach well exceeds the prior art, indicat-
ing that our feature selection and reduction techniques are effective at not only
improving algorithm efficiency, but increasing accuracy as well.

Considering that the reduced feature set is primarily comprised of the FT
features, we trained a linear SVM (with C = 0.01) using only the FT features
contained in the final reduced set from the previous section. The outsample
misclassification rate with the top FT features was a slightly higher 1.2% when
compared to the results with using the top features of all types (see Table 1).
This indicates that most of the discriminative information is contained in the



Table 1. This table compares the classification accuracy (misclassification rate,
reported-normal-when-abnormal false positive rate) for different tested algorithms.

Classifier Type Optimal Hyperpa-
rameters

Misclassification
Rate

False Positive Rate
(Abnormal as Normal)

kNN (l2 distance
based)

Number of neighbors
(n) = 11

25% 27%

Adaboost (learn-
ing rate = 0.3)

Tree depth = 7, Num-
ber of trees = 70

15% 11%

Linear SVM Box-constraint cost
(C) = 0.01

1.0% 1.6%

FT features, with the DWT and MFCC features helping primarily differentiate
edge cases. This presents an interesting trade off between computing cost and
accuracy which will be relevant for designing a mobile application employing this
technique. Current efficient implementations of FFT on smartphones [2] can be
directly implemented for constructing the FT features in our reduced feature
set, while there exist fewer algorithms to efficiently generate DWT and MFCC
features.

Finally, we note that in only one of the four vehicles did a “check engine”
light come on at any point during testing, indicating that an audio detection
such as the one presented here with high accuracy and sensitivity may lend itself
to the identification of a misfire prior to detection by an On-Board Diagnostic
system. Early detection facilitates proactive response, and can help to lower
vehicle maintenance and operating costs relative to drivers relying on the reactive
diagnostic systems found in cars today.

Table 2. The confusion matrix shows promising results for misfire detection, with 1.6%
false positives (reported normal when actually abnormal). We achieve similarly strong
performance for false negatives (reporting abnormal when actually normal), potentially
saving drivers money on unnecessary repairs.

Predicted
Normal Abnormal

Actual
Normal 100.0% 0.0%

Abnormal 1.6% 98.4%

6 Future Work

As a component of future work, we intend to explore the resource savings (com-
putational and power) afforded by working with a reduced feature set. We have
shown that feature ranking techniques facilitate the discarding of features with
minimal loss in accuracy. These unused features need not be computed, enabling



more efficient implementations of our feature generation algorithms suited to the
limited resources found on mobile devices. Additionally, improving the off-line
efficiency of these algorithms will allow us to develop an improved on-line ap-
proach, by minimizing bandwidth used for unnecessary data transmission and
decreasing reference database size.

While this paper demonstrates promising results for the use of a mobile phone
as a pervasive automotive diagnostic tool, the classification can be enriched and
robustness improved to yield a more beneficial application, namely identification
of the misfiring cylinder itself. That was difficult to discern in this study, as we
suspect that information to be embedded within phase-based audio features,
which are difficult to discern without a reliable indexing feature in the audio
relative to engine component rotations. Other, non-combustion sounds are as
of yet ill-defined (considering amplitude/frequency spread) and not available
as a phase reference. Similarly, with the collected data it was not immediately
feasible to distinguish among various anomalous misfire configurations, but we
aim to study other techniques which may be used to improve differentiation
among failed states. Such approaches may also improve classification of faults
with lesser-defined signals, such as partial misfires due to lean conditions, and
non-misfire faults such as clogged air filters or exhaust leaks.

To account for background noise, we intend to build a model to determine de-
pendency of the audio waveform on the engine configuration (idle speed, cylinder
count, aspiration, displacement, and firing order). Additionally, audio samples
will be recorded from within the car to test whether the application can function
from inside the vehicle.

Providing further data to enrich classification, the authors intend to develop
algorithms for differential diagnosis: for example, measuring the sound near the
air intake and exhaust to monitor airflow issues, identifying where in the airflow
process an issue might be occurring. Finally, integrating audio data with infor-
mation from the On-Board Diagnostic system may be possible, yielding richer
fault information than is possible with either system alone.
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