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A simulation-based optimization algorithm for
dynamic large-scale urban transportation

problems

Linsen Chong, Carolina Osorio
Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Office 1-232,

Cambridge, Massachusetts 02139, USA, linsenc@mit.edu, osorioc@mit.edu,

This paper addresses large-scale urban transportation optimization problems with time-dependent continu-

ous decision variables, a stochastic simulation-based objective function, and general analytical differentiable

constraints. We propose a metamodel approach to address, in a computationally efficient way, these large-

scale dynamic simulation-based optimization problems. We formulate an analytical dynamic network model

that is used as part of the metamodel. The network model formulation combines ideas from transient queue-

ing theory and traffic flow theory. The model is formulated as a system of equations. The model complexity

is linear in the number of road links and is independent of the link space capacities. This makes it a scalable

model suitable for the analysis of large-scale problems.

The proposed dynamic metamodel approach is used to address a time-dependent large-scale traffic signal

control problem for the city of Lausanne. Its performance is compared to that of a stationary metamodel

approach. The proposed approach outperforms the stationary approach. This comparison illustrates the

added value of providing the algorithm with analytical dynamic problem-specific structural information. The

performance of a signal plan derived by the proposed approach is also compared to that of an existing signal

plan for the city of Lausanne and to that of a signal plan derived by a mainstream commercial signal control

software. The proposed method can systematically identify signal plans with good performance.
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1. Introduction

In the field of urban transportation, dynamic optimization problems, i.e., optimization

problems with time-dependent decision variables, have been addressed through the use of

analytical dynamic and, mostly deterministic, traffic models. Such models are based on an

aggregate, i.e., low-resolution, description of traffic dynamics. They are computationally

efficient to evaluate, yet lack a detailed description of heterogeneous traveler behavior,

of vehicle-infrastructure interactions, and thus of intricate traffic dynamics observed in

urban areas. A detailed description of these dynamics is provided by a family of high-

resolution simulation-based traffic models, known as stochastic microscopic or mesoscopic

traffic simulators. Nonetheless, these simulators are computationally inefficient to eval-

uate. Hence, their use to address optimization problems has been limited. This paper

proposes a methodology that enables high-resolution traffic simulators to be used, in a

computationally efficient way, to address large-scale dynamic transportation optimization

problems.

The complexity of the spatial-temporal vehicle-to-vehicle and vehicle-to-infrastructure

interactions has lead to the development of these high-resolution simulation-based traf-

fic models. These simulators emulate the behavior of individual travelers, e.g., how they

make pre-trip travel decisions (e.g., departure-time, travel mode, travel route) and en-

route travel decisions (e.g., driving behavior). They describe traffic dynamics at the scale

of individual, and heterogeneous, vehicles and travelers. Additionally, stochastic micro-

scopic or mesoscopic models can account for uncertainties in both demand and supply

components.

Given the increasing complexity of both network supply (e.g., traffic-responsive priority-

based traffic control strategies) and network demand (e.g., ubiquitous access and reaction

to real-time traffic information by individual travelers), major urban transportation agen-

cies, such as the New York City Department of Transportation (Chen et al. 2015), have

resorted to the use of such models to inform their network design and network operations.

Nonetheless, this high-resolution description of traffic dynamics comes with a significant

increase in the model complexity and the computational cost of evaluating the model.

Hence, the use of these high-resolution traffic models for optimization is limited. To the

best of our knowledge, they have not been used to address dynamic transportation opti-

mization problems; let alone large-scale dynamic problems.

This paper focuses on optimization problems of the following form:

min
x1,...,xL

f(x, z;p) =
1

L

L
∑

ℓ=1

E[Fℓ(xℓ, zℓ;p)] (1)

gℓ(xℓ;p) = 0 ∀ℓ∈L. (2)



Chong and Osorio: A simulation-based optimization algorithm for dynamic large-scale urban transportation problems
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 3

The time horizon is decomposed into a set of L disjoint time intervals L. Each time

interval ℓ considers a continuous decision vector xℓ (e.g., traffic signal plan), an objective

function defined as the expectation of a network performance function Fℓ (e.g., trip travel

time, network throughput within interval ℓ). The latter depends on a vector of interval-

dependent decision variables xℓ and endogenous variables zℓ (e.g., link travel times, traffic

assignment), and a vector of interval-independent exogenous parameters p (e.g., network

topology). The decision vector for all time intervals is denoted x= (x1, . . . , xL), similarly

we denote z = (z1, . . . , zL). For time interval ℓ, the feasible region is defined by a set of

general analytical and differentiable constraints, gℓ. This precludes the use of simulation-

based constraints (constraints that need to be evaluated via simulation). This is why

the function gℓ does not depend on the endogenous simulation variables zℓ. A discussion

on problems with simulation-based constraints is given in the Conclusions of this paper

(Section 5). Note that Constraint (2) is a general formulation for any type of constraint,

i.e., inequality constraints can be transformed and expressed as equality constraints of the

form (2). To summarize, Problem (1)-(2) considers a time-dependent decision vector with

a simulation-based objective function and general, analytical, differentiable constraints.

Hereafter, Problem (1)-(2) is referred to as a dynamic simulation-based optimization (SO)

problem.

The main challenges of addressing Problem (1)-(2) lie in the objective function,

f(x, z;p). The challenges are the following.

• The function f has no known analytical form. We can merely estimate it by running

simulation replications of the stochastic traffic simulator.

• An accurate estimation of f is computationally costly to obtain. It involves running

numerous simulation replications. In a high-resolution urban traffic simulator, such as the

one used in this paper, running a single replication is costly because it involves simulating

the travel behavior of typically tens of thousands of individual travelers. The behavior

of a single traveler is defined by hundreds of pre-trip and en-route travel decisions (e.g.,

route choice, lane-changing), which are each simulated by sampling from stochastic travel

behavioral models.

• The function f is typically nonconvex. For example, in Section 4 we study a signal

control problem where f represents the expected trip travel time of the travelers. In the

simulation model, the travel decisions of a given traveler (e.g., route choice) can depend

on the state of the network (e.g., congestion patterns), which itself is a consequence of the

past decisions of numerous travelers. Hence, the mapping of a signal plan (the decision

vector) to network-wide traffic assignment and to the corresponding expected trip travel

time (the objective function) is intricate.
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This highlights the general complexity of simulation-based problems across all applica-

tion fields, as well as the additional challenges that are unique to urban transportation

problems.

The focus of this paper is to propose computationally efficient algorithms for large-

scale dynamic simulation-based problems, i.e., algorithms that can identify solutions with

significantly improved objective function values within a tight computational budget (e.g.,

few simulation runs).

The remainder of this section reviews past work on addressing dynamic SO problems,

not limited to transportation applications, followed by a review of SO algorithms for urban

transportation problems. We conclude this section by stating the main contributions of

this paper.

Dynamic simulation-based optimization problems

The field of supply chain logistics has extensively used detailed stochastic simulators to

describe intricate spatial-temporal processes within supply chain networks. Schwartz et al.

(2006) and Jung et al. (2004) both consider a dynamic inventory management problem

and resort to the use of gradient-based SO algorithms. In both cases, the simulator is

seen as a black-box. It is used to obtain objective function and first-order derivative

estimates. Nonetheless, no problem-specific analytical structural information is provided to

the optimization algorithm. Legato et al. (2008) address a dynamic quay crane scheduling

problem at a maritime container terminal. The simulator, a stochastic queueing network

model, is also used as a black-box to derive objective function estimates. An approach that

addresses a dynamic supply chain problem, and that indeed attempts to exploit problem-

specific structure is proposed by Almeder et al. (2009). Although it is not an SO approach,

it is worth mentioning because it is also motivated by the ideas of: (i) combining efficient

optimization techniques with computationally costly simulation models; and (ii) exploiting

problem-specific structural information. In the framework of Almeder et al. (2009): the

following two steps are carried out iteratively: (i) certain parameters of the analytical

problems (linear programs and mixed-integer programs) are estimated via simulation; (ii)

given the estimated parameters, the analytical problems are solved. The iterations are

carried out until the distance between consecutive solutions is below a threshold.

To the best of our knowledge, in past work in the field of dynamic SO, the stochastic

simulator has been seen as a black-box. It has been coupled with general-purpose algo-

rithms. This allows for flexibility since the proposed frameworks can be readily extended

to address a variety of problems. Nonetheless, the proposed methods are not designed

to address problems within tight computational budget. In other words, the SO algo-

rithms used are designed to achieve asymptotic performance guarantees rather than good
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short-term performance. When using high-resolution computationally expensive simula-

tion models, the simulation run time significantly limits the scale and complexity of the

problems that can be addressed. Jung et al. (2004), for instance, clearly state this limita-

tion: “The key limitation of the overall approach lies in the large computing times required

to address problems of increasing scope.”

Simulation-based optimization for urban transportation problems

The use of high-resolution road traffic simulators for optimization is limited. Rather, they

have mostly been used to perform what-if analysis. In other words, they are mostly used

to evaluate the performance of a, typically small, set of predetermined alternatives (e.g.,

traffic management strategies) (Bullock et al. 2004, Ben-Akiva et al. 2003, Hasan et al.

2002, Stallard and Owen 1998, Gartner and Hou 1992, Rathi and Lieberman 1989). Few

SO methods that embed high-resolution simulators have been developed (Li et al. 2010,

Stevanovic et al. 2008, Branke et al. 2007, Yun and Park 2006, Hale 2005, Joshi et al.

1995). The most common approach is the use of general-purpose heuristic algorithms and,

in particular, the use of genetic algorithms (see Yun and Park (2006) for a review). Such

algorithms allow to address problems with complex (e.g., nonconvex, simulation-based)

objective functions. They are designed such as to achieve suitable asymptotic properties

(e.g., convergence properties), rather than to identify points with good performance within

few simulation runs. In other words, they are not designed to be computationally efficient.

Genetic algorithm case studies for low-dimensional problems report evaluating tens of

thousands of points (Kwak et al. 2012, Stevanovic et al. 2009, Park et al. 2009). They are

not suitable to address large-scale dynamic problems efficiently.

Paper contributions

This paper proposes an SO algorithm for large-scale networks with high-dimensional time-

dependent decision variables, i.e., we propose an SO algorithm for large-scale dynamic

transportation problems. The proposed approach is suitable to address a variety of trans-

portation problems that can be formulated as large-scale dynamic continuous simulation-

based optimization problems with general analytical constraints.

• We propose a framework to address dynamic SO transportation problems of the

form (1)-(2). The framework couples information from the simulator with analytical time-

dependent problem-specific structural information. More specifically, a time-dependent

analytical traffic model is formulated and used to derive an analytical description of the

spatial-temporal congestion patterns observed in the simulator. This analytical informa-

tion is provided to the SO algorithm. This coupling of information is achieved through
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the use of metamodel methods. This combination leads to SO algorithms that are com-

putationally efficient, i.e., they can identify solutions with good performance within few

simulation runs.

• To the best of our knowledge, this is the first SO algorithm designed for dynamic

problems. It is also the first to enable dynamic transportation SO problems to be addressed

in a computationally efficient manner. Efficiency is achieved through the formulation of a

tractable transient analytical network model.

• The analytical network model is formulated as a simple system of equations. The

model complexity is linear in the number of links in the network and is independent of

the link space capacities. This makes it particularly suitable for large-scale networks.

• Our past work has developed efficient SO algorithms for problems with time-

independent decision variables. Appendix A summarizes the main methods, results and

insights of past work. It serves to motivate the ideas of this paper. The present paper is

the first to design an efficient algorithm suitable for SO problems with time-dependent

decision variables. In particular, in past work the analytical traffic models used are sta-

tionary models. They provide a description of the spatial propagation of congestion, yet

do not describe its temporal propagation. The proposed model is a transient model. It

describes both the spatial and the temporal propagation of congestion. More specifically,

it approximates the temporal variations of the spillback probabilities of each lane. The use

of a transient, rather than a stationary, model is recommended for scenarios where conges-

tion varies substantially within each time period (e.g., congestion build-up or dissipation

periods). The case study of this paper, indicates that providing the SO algorithm with a

temporal description of congestion propagation enables it to identify solutions that delay

the onset and the propagation of congestion. The proposed analytical model builds upon

the stationary model of Osorio and Chong (2015). A description of their main differences

is given in Section 2.4.

• The proposed algorithm is used to address a time-dependent traffic signal control

problem. This problem controls the signal plans of 17 intersections distributed across a city

with over 600 roads. This is considered large-scale for urban traffic signal control problems

(Aboudolas et al. 2010, 2007, Dinopoulou et al. 2006). This problem is a constrained

non-convex problem with a decision vector of dimension 198; this is also considered a

challenging and large-scale problem in the field of SO. The case study indicates that

the proposed method identifies signal plans that outperform: (i) a signal plan prevailing

in the field, (ii) a signal plan derived by a commercial signal control software, and (iii)

signal plans derived by the SO method of Osorio and Chong (2015), which is designed for

time-independent problems.
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We present the proposed dynamic SO framework in Section 2. We then apply the frame-

work to address a traffic signal control problem for the city of Lausanne. The optimization

problem is formulated in Section 3, the Lausanne city results are presented in Section 4.

The main conclusions are presented in Section 5. In our past work, we have developed

efficient SO algorithms for various transportation problems with case studies of Lausanne

(Switzerland), Manhattan (NYC, USA) and Berlin (Germany). Appendix A summarizes

the main insights obtained from past work. The formulation presented in this paper is

motivated by these insights. Appendix B details the formulation of the trust region sub-

problem that is solved at every iteration of the SO algorithm. Appendix C illustrates with

an example how the analytical derivatives of the metamodel are derived.

2. Methodology

This paper proposes a new metamodel formulation for SO problems with time-dependent

variables. This new formulation is then embedded within the SO algorithm of Osorio and

Bierlaire (2013) and used to address a signal control problem. In Section 2.1, we summarize

the main ideas of a metamodel SO algorithm. Sections 2.2 and 2.3 describe the proposed

model. A summary of the new model is given in Section 2.4.

2.1. Metamodel framework

Metamodel SO algorithms

The main idea of a metamodel SO algorithm is to approximate the unknown simulation-

based objective function (Equation (1)) with an analytical function known as the meta-

model. The main steps of a metamodel SO algorithm are displayed in Figure 1. At a given

iteration k, there are a set of points that have been simulated prior to iteration k. We

call these points, and their performance estimates, the current sample. Step 1 determines

which point of the current sample is considered to have the best performance. This point

is referred to as the current iterate and is denoted xk. In step 2, the parameters, βk, of

the metamodel, mk, are fitted based on the current sample. For example, in the algorithm

used in the case study of this paper, the vector βk is obtained as the solution of a least

squares problem that minimizes the distance, over the current sample, between metamodel

values and simulation-based objective function estimates.

Step 3a solves the following problem (or a subproblem of it):

min
x1,...,xL

mk(x, y; q, βk) (3)

gℓ(xℓ; q) = 0 ∀ℓ∈L. (4)

This problem differs from Problem (1)-(2) in that the simulation-based objective function

f of (1) is replaced with the metamodel function mk. The latter is an analytical, and
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1. Determine current iterate

2. Fit metamodel mk

3a. Optimize mk(x) 3b. Sampling strategy

4. Simulate

xk

βk

Trial point
Model improvement
point

Evaluate new point x

New performance estimate: f̂(x)

Figure 1 Metamodel simulation-based optimization framework

often differentiable, function that depends on the decision vector x = (x1, . . . , xL), on a

vector of endogenous variables y = (y1, . . . , yL), a vector of exogenous parameters, q, and

an iteration-specific metamodel parameter vector, βk. The solution to this problem is

called the trial point.

Step 3b allows to simulate points that may not be solutions to the approximate problem

(3)-(4). These are known as model improvement points. The corresponding sampling strat-

egy that defines these points may, for instance, have the goal of improving the properties

of the sampled space (e.g., increase the dimension of the space spanned, sample uniformly,

etc.) The new points (trial and model improvement) are simulated in step 4 to obtain an

estimate of the objective function, denoted f̂(x). As the iterations advance, more points

are sampled, leading to an improved metamodel and to points with improved objective

function estimates.

One feature of metamodel methods is that the trial points are derived by solving Prob-

lem (3)-(4), which is analytical and differentiable. Hence, it can be solved with a variety of

mainstream solvers. Additionally, the algorithm we use in this paper (Osorio and Bierlaire

2013) is a derivative-free algorithm. Hence, it does not require the estimation of first- or

second-order derivatives of the SO objective function, f(x). Many traditional SO algo-

rithms rely on derivative estimations, which can be computationally costly to obtain in

high-dimensional spaces. The use of a derivative-free algorithm is important to achieve

computational efficiency.

More generally, SO methods can be classified into three families: (i) direct-search meth-

ods, (ii) direct gradient and (iii) metamodel methods. For reviews, see Conn et al. (2009),

Balakrishna (2006), Barton and Meckesheimer (2006), Kolda et al. (2003). Direct search

methods rely only on simulation-based objective function estimations without fitting an

analytical model. Direct gradient methods use estimates of both the objective function
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and its derivatives to search the feasible region. To the best of our knowledge, existing

direct-search and direct gradient techniques do not perform well for high-dimensional

transportation problems and tight computational budgets, see Balakrishna (2006) for a

more detailed discussion. As is detailed in Appendix A, metamodel approaches have per-

formed well for such problems.

Metamodel functions

This section describes the main classes of metamodels and their properties. A review of

metamodel functions is given in Conn et al. (2009) and in Barton and Meckesheimer

(2006). Most metamodel SO work uses general-purpose metamodels (e.g., polynomials).

For such models, the functional form of mk is problem-independent and is typically chosen

based on mathematical properties (e.g., tractability). This generality allows the models to

be used for a variety of problems, yet it comes at the cost of not capturing problem-specific

structure.

Osorio and Bierlaire (2013) proposed the following functional form for the metamodel,

at a given iteration k:

mk(x, y; q, βk) = βk,0fA(x, y; q)+φ(x;βk,1, . . . , βk,D). (5)

It consists of a linear combination of a problem-specific component (also known as a physi-

cal component), denoted fA, and a general-purpose component, denoted φ. The function φ

is a polynomial that is quadratic in x, and has D coefficients (βk,1, . . . , βk,D). The problem-

specific component fA is defined as the approximation of f (Equation (1)). It is derived

by an analytical macroscopic traffic network model. It is scaled by the scalar coefficient

βk,0. The parameter vector of the metamodel is represented by βk = (βk,0, . . . , βk,D).

The metamodel mk can be interpreted as an analytical and macroscopic approximation

of the objective function provided by fA, which is corrected parametrically by both a

scaling factor βk,0 and a separable error term φ(xℓ;βk,1, . . . , βk,D). The general-purpose

approximation φ also allows to ensure asymptotic algorithmic convergence properties, for

more details on this see Osorio and Bierlaire (2013).

The problem solved at a given iteration k of the SO algorithm is of the form:

min
x1,...,xL

mk(x, y; q, βk) (6)

gℓ(xℓ; q) = 0 ∀ℓ∈L (7)

h(x, y; q) = 0. (8)

This problem differs from Problem (3)-(4) in the Constraint (8). This constraint represents

the analytical traffic network model used to derive the physical metamodel component
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(i.e., term fA of Equation (5)). The traffic model used in this paper is a transient network

model, that is also analytical and differentiable. It is defined as a system of nonlinear

equations and is represented by the function h of Constraint (8).

Problem (6)-(8) is solved at every iteration of the SO algorithm. Therefore, the devel-

opment of a computationally efficient SO algorithm requires solving Problem (6)-(8) effi-

ciently. Hence, the analytical network model (represented by (8)) needs to be tractable.

The problem-specific approximation fA contributes to the computational efficiency of

the algorithm in various ways. First, as an analytical and differentiable model, it allows

for the use of traditional and computationally efficient algorithms (e.g., gradient-based

algorithms) to solve Problem (6)-(8). Second, it provides an approximation of f in the

entire feasible region, i.e., it provides a global approximation. This is in contrast with

traditional general-purpose functions (e.g., polynomial functions) that are designed to

provide good local approximations of f . Third, the accuracy of this global approximation

is independent of the availability of simulation observations. In particular, if few or even

no simulation observations are available, this approximation may still provide a suitable

approximation of the objective function f . Fourth, if the network model h (Equation (8))

is tractable, then Problem (6)-(8) can be solved efficiently.

This paper proposes an analytical, differentiable and transient network model h (Sys-

tem of Equations (8)), that indeed is computationally efficient to evaluate. The proposed

transient network model combines ideas from transient queueing theory, queueing network

theory and traffic flow theory. It is analytical and differentiable. The model is formulated

as a system of nonlinear equations. The model complexity is linear in the number of links

in the network and is independent of the individual link space capacities. Hence, it is a

scalable model.

The proposed time-dependent network model extends the time-independent network

model of Osorio and Chong (2015), which is described in Section 2.2. Traffic dynamics

are described by combining transient queueing theoretic ideas inspired from the works of

Morse (1958), Cohen (1982) and Odoni and Roth (1983). These ideas are described in

Section 2.3.2. Recently, link models that are both based on transient queueing theory and

are fully consistent with traditional deterministic traffic flow theoretic link models have

been proposed (e.g., Osorio et al. 2011, Osorio and Flötteröd 2014). Their extension to

full network models is a topic of ongoing research.

2.2. Stationary network model

The proposed transient model builds upon the stationary model formulated in Osorio and

Chong (2015). The latter model combines ideas from finite capacity queueing network
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theory, traffic flow theory and various national transportation norms. The detailed formu-

lation is given in Osorio and Chong (2015). In what follows, we outline the key ideas of

the formulation.

Each lane of an urban road network is modeled as one or two queues. In order to

account for the limited physical space that a queue of vehicles may occupy, we use finite

capacity queueing theory, where there is a finite upper bound on the length of each queue.

Each queue is an M/M/1/k queue. The queue-length upper bound k is determined by the

length of the underlying lane. The network model analytically describes the occurrence and

impact of vehicular spillbacks with the queueing-theoretic notion of blocking. A vehicular

spillback occurs when a lane is full and, hence, blocks or inhibits vehicular arrivals from

upstream lanes. The model describes the occurrence of blocking, as well as its network-wide

impact.

The stationary model is defined as the following system of nonlinear equations, where

index i refers to a given queue.

γi external arrival rate;

λ̂i effective arrival rate;
µi service rate;
ρ̂i effective traffic intensity;
ki upper bound of the queue length;
Ni total number of vehicles in queue i;
P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;
pij turning probability from queue i to queue j;
Di set of downstream queues of queue i.







































λ̂i = γi(1−P (Ni = ki))+
∑

j

pjiλ̂j (9a)

ρ̂i =
λ̂i

µi

+

(

∑

j∈Di

pijP (Nj = kj)

)(

∑

j∈Di

ρ̂j

)

(9b)

P (Ni = ki) =
1− ρ̂i

1− ρ̂ki+1
i

ρ̂kii . (9c)

Equation (9a) is a flow conservation equation. It describes flow transmission between

upstream and downstream queues. Equation (9b) defines the effective traffic intensity of

queue i (denoted ρ̂i). The first term on the right-hand side of Equation (9b) represents

the traffic intensity of queue i when none of the queues downstream of queue i spillback.

It is given by the ratio of the effective arrival rate of queue i, λ̂i, and the service rate

of queue i, µi. The latter represents the flow capacity of the underlying lane when there

are no downstream spillbacks. It is determined from national transportation norms. For

instance, for signalized lanes, the service rate is defined as a function of the duration

of green time allocated to the underlying lane. The second term on the right-hand side
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of Equation (9b) accounts for the occurrence and impact of downstream spillbacks. The

effective traffic intensity of queue i, ρ̂i, can be interpreted as the ratio of the expected

demand to the expected supply. Equation (9c) defines the probability that queue i is

full. This is also referred to as the spillback probability or the blocking probability. This

expression is derived from finite capacity queueing theory (e.g., Bocharov et al. 2004).

For a given queue i, the exogenous parameters are γi, µi, pij and ki, the endogenous

variables are λ̂i, ρ̂i and P (Ni = ki). In the signal control problem studied in Section 3.1,

the flow capacities, µi, of the signalized lanes become endogenous variables. Hereafter, we

assume µi to be endogenous.

For a network with n queues, this model consists of 3n equations. The model complexity

is linear in the number of queues, and is independent of the space capacity of the queues.

This has made it suitable for the analysis of large-scale problems.

2.3. Transient network model

The stationary model uses time-independent endogenous variables and parameters. It does

not provide any temporal information, and is therefore not suitable to address dynamic

optimization problems. In this paper, we propose a transient network model. This model

is then used to approximate the physical component of the metamodel, i.e., fA of Equa-

tion (5). The transient metamodel is used in Section 4 to address a dynamic SO problem.

This section formulates the transient network model. We discretize the time horizon of

interest into a set L of disjoint equal-length time intervals. In this section, we present the

model formulation for a given time interval ℓ, ℓ∈L.

Section 2.3.1 defines, for interval ℓ, a set of endogenous queueing variables. Section

2.3.2 and 2.3.3 describe how these variables are used to derive time-dependent spillback

probabilities, which describe traffic dynamics throughout the network.

2.3.1. Interval-specific queueing variables

The proposed transient model extends the above stationary model by accounting for the

temporal variations of the spillback probability. For a given time interval ℓ and queue i,

we consider the following interval-specific variables:

λ̂i,ℓ effective arrival rate;
ρ̂i,ℓ effective traffic intensity;
µi,ℓ service rate;
Pℓ(Ni = ki) stationary spillback probability.
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These variables are defined by solving the following system of equations:







































λ̂i,ℓ = γi(1−Pℓ(Ni = ki))+
∑

j

pjiλ̂j,ℓ (10a)

ρ̂i,ℓ =
λ̂i,ℓ

µi,ℓ

+

(

∑

j∈Di

pijPℓ(Nj = kj)

)(

∑

j∈Di

ρ̂j,ℓ

)

(10b)

Pℓ(Ni = ki) =
1− ρ̂i,ℓ

1− ρ̂ki+1
i,ℓ

ρ̂kii,ℓ. (10c)

This system of equations is the interval-specific version of the System of Equations (9). It

assumes that the exogenous parameters (γi, pij and ki) do not change across time intervals.

This assumption can be easily relaxed. By solving the above system of equations, we obtain

interval-specific endogenous variables for each queue: λ̂i,ℓ, ρ̂i,ℓ and Pℓ(Ni = ki). These

variables may vary from one time interval to the next, yet are assumed constant within

a time interval. This assumption significantly reduces model complexity and preserves

model tractability.

In the case study of this paper, the decision vector consists of the green times of the

signalized lanes. There is a one-to-one mapping between the total green time of a lane and

the service rate of the corresponding queue (denoted µi,ℓ). Given a specific decision vector

value (and hence a specific set of µi,ℓ values), the above System of Equations (10) can be

solved simultaneously for all queues, yet independently for each time interval. Therefore,

given a decision vector value, a set of L decoupled systems of equations can be solved to

obtain the endogenous variables for all time intervals. The formulation of these variables

as decoupled systems of equations contributes to the tractability and scalability of the

proposed formulation.

Consider a network with a total of n queues. For a given decision vector value and a

given time-interval ℓ, the System of Equations (10) consists of a total of 3n variables, 3n

equations: n linear (10a), n quadratic (10b) and n non-quadratic convex (10c). The system

can therefore be solved efficiently. For any feasible set of demand and supply parameters,

i.e., {γ ≥ 0, µ≥ 0}, the system contains at least one solution. In particular, the use of finite

capacity queues ensures that for any positive value of the traffic intensity (i.e., the ratio

of the expected demand to the expected supply) of each queue, there exists a stationary

regime for the network of queues, and hence the stationary probabilities are well-defined.

If we had resorted to the use of infinite capacity queues, then the traffic intensities would

need to be strictly smaller than 1 to ensure stationarity.

2.3.2. Observations from existing transient queueing models

The goal is to describe the temporal variations of the spillback probabilities. Such time-

dependent probabilities are referred to in queueing theory as transient probabilities. In the
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field of transportation, models based on transient queueing theory have focused on infinite

capacity queues: Heidemann (2001), Peterson et al. (1995) and Odoni and Roth (1983).

More broadly, in the field of queueing network theory, research has focused mostly on: (i)

networks with infinite capacity queues, and (ii) the analysis of the stationary regime. This

is, arguably, because between-queue (i.e., spatial) dependencies are intricate to describe

analytically, let alone their temporal variations.

The analytical transient analysis of a single isolated finite capacity queue is presented

in the seminal work of Morse (1958) and Cohen (1982). The formulation of the proposed

transient network model builds upon ideas from these two works.

Morse (1958) considers an isolated M/M/1/k queue, with fixed arrival rate λ, service

rate µ, traffic intensity ρ= λ/µ, and a given queue-length distribution at the beginning

of a time interval (i.e., initial conditions). The latter is called the initial queue-length

distribution. We denote the beginning of the time interval by t0. Morse (1958, Equation

(6.13)) derives an exact closed-form expression for the transient queue-length distribution.

More specifically, t time units after t0, the probability of observing a queue of length m is

given by:



























P (N =m,t) =P (N =m)+ . . .

· · ·+ ρ
m
2

k
∑

s=1

Cs

[

sin

(

smπ

k+1

)

−√
ρ sin

(

s(m+1)π

k+1

)]

e−wst (11a)

ws = λ+µ− 2
√

λµ cos

(

sπ

k+1

)

. (11b)

The probability that the queue is of length m at time t is denoted P (N =m,t), which

is also known as the transient probability. The corresponding stationary probability is

denoted P (N = m). The coefficients Cs are determined by solving a linear system of

equations that ensure initial boundary conditions:

P (N =m,0) = P 0(N =m), (12)

where P 0(N =m) denotes the given initial conditions, i.e., the probability that the queue

is of length m at time t0.

The System of Equations (11) could be used within a network setting in order to

approximate the marginal queue-length distribution of each queue in a network. The main

challenge of such an approach is that in order to compute the coefficients Cs, the full

queue-length distribution of each queue would need to be computed. In other words, for

each queue i, a set of ki +1 probabilities would need to be computed, and this for every

time interval. This would lead to a model complexity that depends on the space capacity,

ki, of each queue. For instance, in a network with n queues, and a problem with L time
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intervals, the total number of probabilities to approximate would be
∑n

i=1(ki+1)L. Such

an approach would not scale well for large-scale urban networks.

The factor 1/ws of Equation (11a) is known in queueing theory as the relaxation time. It

is the time needed for a given performance metric to reach its stationary value. Equation

(11a) states that the transient queue length distribution converges exponentially to the

stationary distribution. Seminal papers that have studied the relaxation time of an isolated

infinite capacity queue include Cohen (1982) and Odoni and Roth (1983), where the

exponential decay term is written as e−t/τ̃ , and τ̃ is the relaxation time. Cohen (1982)

considers an isolated M/M/1 queue and proposes:

τ̃ =1/(µ(1−√
ρ)2). (13)

Odoni and Roth (1983) propose an approximation of τ̃ for an isolated G/G/1 queue. For

an M/M/1 queue, their approximation is similar to that of Cohen (1982) and is given by:

τ̃ = 2/(2.8µ(1−√
ρ)2).

These approximations share the following properties, which will be preserved in our

proposed relaxation time approximation.

• The relaxation time increases as congestion increases (for an infinite capacity queue

the stationary state is only defined if ρ < 1, and increasing congestion corresponds to

ρ→ 1).

• For a fixed traffic intensity ρ, the relaxation time should be proportional to the time

units of the queueing system parameters. In other words, it should be inversely proportion

to either the arrival or the service rates. For example, in the above approximations, τ̃ is

proportional to 1/µ.

2.3.3. Transient queueing model

This section formulates a transient queueing model that preserves the following properties

of the stationary queueing model of Section 2.2.

• The focus is on the approximation of the transient spillback probabilities. In other

words, for each time interval ℓ and each queue i, our objective is to approximate Pℓ(Ni =

ki, t) rather than the full distribution. This leads to a model complexity in the order of

nL (instead of
∑n

i=1(ki +1)L). The model complexity is linear in the number of queues,

and more importantly, is independent of the space capacities.

• The between-queue dependencies are captured through the queueing variables (λ̂, ρ̂).

Given these queueing variables, the spillback probability of a given queue does not depend

on any information from other queues. These variables describe, respectively, the expected

demand and the ratio of expected demand to expected supply. They capture problem

structure, and are therefore referred to as structural variables.
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• The structural variables of the queues can be derived by solving a simple system of

equations.

Consider time interval ℓ that begins at time tℓ and a given queue i. The spillback

probability t time units after tℓ is approximated by:











Pℓ(Ni = ki, t) =Pℓ(Ni = ki)+ (Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))e
−

t
τi,ℓ (14a)

τi,ℓ =
cρ̂i,ℓki

λ̂i,ℓ(1−
√

ρ̂i,ℓ)2
. (14b)

Equation (14a) is inspired from Equation (11a) in that the transient probability of a

queue is defined as the sum of its stationary probability (term Pℓ(Ni = ki)) and a term

that decays exponentially with time. The stationary probability is defined by the System

of Equations (10).

Equation (14b) is inspired from Equation (13) in that the relaxation time is: (i) directly

proportional to 1/(1−√
ρ̂)2, and (ii) proportional to the service rate term given by ρ̂/λ̂.

Equation (14b) is inspired from (11b) in that the relaxation time depends on the space

capacity k. Note that the works of Cohen (1982) and of Odoni and Roth (1983) consider

infinite capacity queues, hence their relaxation time approximations do not depend on

space capacity. In Equation (14b), the term c is an exogenous scaling parameter, that is

fitted based on traffic simulation outputs.

For any set of feasible initial conditions, (i.e., 0≤ Pℓ(Ni = ki, tℓ)≤ 1) System (14) con-

verges asymptotically to Pℓ(Ni = ki). Convergence is guaranteed for any positive value of

the traffic intensity (even for values larger than 1).

2.4. Methodology summary

Let us summarize the proposed methodology. A dynamic extension of the metamodel SO

framework of Osorio and Bierlaire (2013) is used. The metamodel is defined by Equa-

tion (5). The key to developing a computationally efficient SO algorithm lies in the for-

mulation of an analytical and tractable problem-specific approximation (denoted fA in

Equation (5)) of the objective function (denoted f in Equation (1)). This paper proposes

a transient queueing network model that yields a tractable approximation of fA. The

model considers, for each time interval ℓ, a set of endogenous queueing model variables

defined by the System of Equations (10). These variables approximate the between-queue

dependencies, e.g., how spillback at a given queue impacts the performance of upstream

queues. Given this set of variables, the spillback probability of each queue varies across

time, within time interval ℓ, following Equation (14). The transient queueing network

model is then used to derive the functional form of fA. An example of the derivation of

an expression for fA is given in Section 3.2 for a traffic signal control problem.
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Algorithm 1 Algorithm to evaluate the transient network model

Carry out each of the following steps for all queues i before proceeding to the next

step.

Steps:

1. define the exogenous parameters γi, ki, pij , µi.

2. define the start of each time interval t1, t2, . . . , tL.

3. define the initial condition of each queue: P (Ni = ki, t1).

4. repeat the following for time intervals ℓ= 1,2, . . . ,L

(a) solve the System of Equations (10) to obtain λ̂i,ℓ, ρ̂i,ℓ and Pℓ(Ni = ki).

(b) compute the spillback probabilities at the end of the time interval according

to (14) with t= tℓ+1.

An algorithmic summary of the transient network model is given in Algorithm 1. For a

network with L time intervals and n queues, the number of endogenous variables is 3nL.

In other words, for each queue and each time interval, the endogenous variables are: λ̂i,ℓ,

ρ̂i,ℓ, and Pℓ(Ni = ki).

We now summarize the main differences between the proposed transient and the sta-

tionary analytical network model of Osorio and Chong (2015). The stationary model yields

stationary (hence, time-independent) lane spillback probabilities, while time-dependent

probabilities are derived by the transient queueing model. Thus, the proposed model

provides a temporal description of congestion propagation. The queueing variables that

describe demand and supply (e.g., arrival rates, traffic intensities) are time-independent

for the stationary model, they are constant for the entire time horizon. The transient

model uses a set of variables for each time period, this allows to describe temporal changes

in demand and supply.

The proposed analytical model builds upon the stationary model of Osorio and Chong

(2015). For a network with n lanes and a set of L time intervals, the stationary model

consists of a system of 3n equations with 3n endogenous variables, while the transient

model consists of a system of L systems of equations that are solved sequentially and

each have a dimension 3n. The transient model consists of 3nL endogenous variables. The

complexity of the proposed model scales linearly with the number of time intervals. Thus,

it is less tractable than the stationary model. The complexity of both models is linear

in n and is independent of the link space capacities. This makes them both suitable for

large-scale network analysis.

3. Time-dependent traffic signal control problem

The proposed method is suitable to address a variety of simulation-based dynamic

transportation problems. In this section, we illustrate the computational efficiency of
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the methodology by considering a large-scale traffic signal control problem with time-

dependent decision variables. Section 3.1 formulates the traffic control problem. Section 3.2

presents the analytical expression for fA (of Equation (5)) for this specific problem. Sec-

tion 3.3 discusses implementation details.

3.1. Optimization problem formulation

A detailed review of traffic signal control terminology is given in Appendix A of Osorio

(2010) or in Lin (2011). We consider fixed-time (also called time of day or pre-timed)

signal control plans. A fixed-time signal plan is a periodic plan that repeats itself in

a certain interval (e.g., evening peak hour). Fixed-time signal plans are pre-determined

based on historical or simulation-based traffic patterns. They are determined offline. Unlike

traffic-responsive strategies, they do not respond to prevailing real-time traffic conditions.

Congested networks with complex traffic dynamics (e.g., grid topology, congested multi-

modal traffic) often resort to the use of fixed-time plans (Chen et al. 2015).

We divide the time horizon of interest (e.g., evening peak period) into L time intervals.

For each time interval, we determine a fixed-time signal plan. The signal plans for all

intersections and all L time intervals are determined jointly.

The main decision variables of fixed-time signal control problems are green splits, cycle

lengths and offsets. The cycle length of a given intersection is the period of the signal plan,

i.e., the time required to complete one sequence of signals. The green split of a given lane

corresponds to the ratio of the total green time allocated to that lane during the cycle

and the cycle length. The offsets are defined as the differences in the starting time of a

cycle for a sequence of intersections. They enable the coordination of adjacent signals.

This paper focuses on the optimization of green splits, i.e., the decision variables are

the green splits of the signal controlled lanes. Cycle lengths and offsets are fixed. All other

signal plan variables (e.g., stage structure) are also assumed fixed.

To formulate this problem we introduce the following notation:

bi ratio of available cycle time to total cycle time for intersection i;
xℓ vector of green splits for time interval ℓ;
xℓ(j) green split of signal phase j for time interval ℓ;
xLB vector of lower bounds for green splits;
I set of intersection indices;
PI(i) set of endogenous signal phase indices of intersection i.

The problem is formulated as follows:

min
x1,...,xL

f(x, y;p) =
1

L

L
∑

ℓ=1

E[Fℓ(xℓ, yℓ;p)] (15)
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subject to

∑

j∈PI (i)

xℓ(j) = bi, ∀i∈I , ℓ∈L (16)

xℓ ≥ xLB, ∀ℓ∈L. (17)

The decision vector x consists of the green splits of all signal phases in all L time intervals.

The objective is to minimize the expected trip travel time, where E[Fℓ(xℓ, zℓ;p)] represents

the expected trip travel time during time interval ℓ.

The linear constraints (16) ensure that, for each intersection, the sum of the green times

for each signal phase is equal to the available (i.e., non-fixed) cycle time. Equation (17)

ensures lower bounds for the green splits. These bounds may vary according to the city,

the time horizon of interest, and even the intersection.

3.2. Derivation of the analytical objective function, fA

Recall that the transient network model of Section 2 is used to derive the analytical

approximation (fA of Equation (5)) of the simulation-based objective function (f of

Equation (15)). We now derive the analytical expression for fA for the specific objec-

tive function (15). More specifically, we derive the analytical approximation of the term

E[Fℓ(xℓ, zℓ;p)] in Equation (15). Let fA,ℓ denote this approximation.

For time interval ℓ, we can derive the expected time in the network per user by applying

Little’s law (Little 1961) to the entire road network. This leads to:

fA,ℓ =

∑

iEℓ[Ni]
1

tℓ+1−tℓ

∫ tℓ+1

tℓ

∑

i γi(1−Pℓ(Ni = ki, t))dt
, (18)

where Eℓ[Ni] represents the expected number of vehicles in queue i during time interval ℓ,

tℓ denotes the start time of time interval ℓ, and tℓ+1 denotes the end time of time interval

ℓ. The numerator is the expected number of vehicles in the network during time interval ℓ.

The denominator is the effective external arrival rate to the network during time interval

ℓ. In the denominator, the term within the integral represents the instantaneous effective

external arrival rate to queue i at time t. The external arrival rate γi is an exogenous

parameter, and the transient spillback probability Pℓ(Ni = ki, t) is given by Equation

(14a).

We now derive the closed-form expression used to approximate the numerator of Equa-

tion (18), we then derive a closed-form expression for the denominator. The closed-form

expression for Eℓ[Ni] of the numerator is derived as follows. For an isolated queue i of the

type M/M/1/ki, with traffic intensity ρi, the stationary expected number of vehicles is

given by:

E[Ni] = ρi(
1

1− ρi
− (ki+1)ρi

ki

1− ρiki+1
). (19)
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An analytical derivation of Equation (19) is given in Osorio and Chong (2015). We assume

this functional form holds within a given time interval, i.e., we use the following approxi-

mation:

Eℓ[Ni] = ρi,ℓ(
1

1− ρi,ℓ
− (ki+1)ρi,ℓ

ki

1− ρi,ℓki+1
). (20)

An analytical expression for ρi,ℓ is obtained as follows. The model of Osorio and Chong

(2015) (presented in Section 2.2 of this paper) is formulated based on the effective traffic

intensity ρ̂i, rather than the traffic intensity ρi of a queue. The effective traffic intensity

is related to the traffic intensity ρi as follows: ρi = ρ̂i/(1 − P (Ni = ki)). We therefore

approximate the traffic intensity of queue i during time-interval ℓ by:

ρi,ℓ =
ρ̂i,ℓ

1
tℓ+1−tℓ

∫ tℓ+1

tℓ
(1−Pℓ(Ni = ki, t))dt

, (21)

where ρ̂i,ℓ is defined by Equation (10b). A closed-form expression for the integral in the

denominator of Equation (21) is obtained as follows. We insert the expression for Pℓ(Ni =

ki, t) given by Equation (14a) to obtain:

A =

∫ tℓ+1

tℓ

(1−Pℓ(Ni = ki, t))dt (22)

=

∫ tℓ+1

tℓ

(

1−
[

Pℓ(Ni = ki)+ (Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))e
−

t
τi,ℓ

])

dt (23)

=

∫ tℓ+1

tℓ

(1−Pℓ(Ni = ki))dt− (Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))

∫ tℓ+1

tℓ

e
−

t
τi,ℓ dt (24)

= (tℓ+1− tℓ)(1−Pℓ(Ni = ki))+ τi,ℓ(Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))(e
−

tℓ+1
τi,ℓ − e

−
tℓ
τi,ℓ ).(25)

In summary, the term Eℓ[Ni] of the numerator of Equation (18) is given by Equa-

tions (20), (21) and (25).

The denominator of Equation (18) can be rewritten by interchanging the summation

with the integral to obtain:

B =
1

tℓ+1 − tℓ

∫ tℓ+1

tℓ

∑

i

γi(1−Pℓ(Ni = ki, t))dt (26)

=
1

tℓ+1 − tℓ

∑

i

γi

∫ tℓ+1

tℓ

(1−Pℓ(Ni = ki, t))dt. (27)

A closed-form expression for the integral of Equation (27) is given by Equation (25).

Note that the analytical expressions derived above allow us to approximate the expected

trip travel time (i.e., the objective function) based on the knowledge of spillback prob-

abilities Pℓ(Ni = ki, t) rather than the knowledge of full queue-length distributions. This

contributes to the tractability and scalability of the proposed approach. This leads to a

model complexity that is linear in the number of queues and that is independent of the

space capacity of each queue.
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3.3. Implementation notes

We implement the lower bound constraints (17) as nonlinear equality constraints by intro-

ducing a new variable v and implementing:

xℓ = xLB + v2ℓ . (28)

In addition, we enforce the positivity of the endogenous variables ρ̂i,ℓ by introducing a

new variable ui,ℓ and adding the equalities:

ρ̂i,ℓ = u2
i,ℓ. (29)

We do not enforce the positivity of the other endogenous variables, rather we check a

posteriori that all other endogenous variables are positive. In our numerous experiments,

all solutions to the system of equations obtained by the solver have consisted of positive

values.

Note that the green splits are related to the service rate of the underlying queue i

through the following equation:

µi,ℓ =



ei+
∑

j∈PI (i)

xℓ(j)



s, (30)

where PI(i) represents the set of endogenous phase indices of the lane represented by

queue i, ei is the ratio of fixed green time to cycle time of signalized queue i, and s is the

saturation flow rate. We assume a common saturation flow for all signalized lanes. For each

signalized queue, Equation (30) is inserted into Equation (10b), in order to implement

both constraints as a single constraint.

In order to further enhance tractability, for the large-scale case study of Section 4, we

approximate the arrival rate to each queue (denoted λ̂i,ℓ) as exogenous; i.e., it does not

vary with the decision vector values. The exogenous value is obtained by considering the

prevailing fixed-time signal plan of the city for the whole time horizon, this yields a set of

µi,ℓ values (through Equation (30)). Then the System of Equations (10) is solved, and the

corresponding λ̂i,ℓ values obtained are used as fixed values throughout the optimization.

This simplification enhances model tractability. Nonetheless, the assumption of arrival

patterns to the links independent of the signal plans may lead to a misestimation of the

link spillback probabilities. Appendix C derives, as an example, the expression of the

derivative of the objective function with regards to an endogenous variable.

For a problem with L time intervals, n lanes (where each lane is modeled as a single

queue), where we determine r endogenous signal phases at a total of o signalized inter-

sections per time interval, our implementation leads to a total of (2n+ r)L endogenous
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variables. These consist of two endogenous queueing variables per queue per time inter-

val (ui,ℓ and Pℓ(Ni = ki)), and one green split variable (vl(j)) for each signal phase. The

corresponding optimization problem (i.e., a trust region subproblem) solved at every iter-

ation of the SO algorithm consists of (2n+ o)L nonlinear equality constraints and one

nonlinear inequality constraint (which is the trust region constraint). Of the nonlinear

equality constraints, 2nL correspond to Equations (10b) and (10c), and oL correspond to

Equation (16) (the latter becomes nonlinear since vℓ is implemented instead of xℓ). The

trust region (TR) subproblem, that is solved at every iteration, is a variation of the signal

control problem formulated in Section 3.1. The detailed formulation of the TR subproblem

is described in Appendix B.

4. Lausanne city case study

This section addresses a traffic signal control problem for the city of Lausanne, Switzer-

land. Section 4.1 describes the network. Section 4.2 benchmarks the proposed transient

metamodel SO method against the stationary metamodel SO method proposed by Osorio

and Chong (2015). Sections 4.3 and 4.4, respectively, compare the performance of a signal

plan derived by the proposed method to that of an existing signal plan for the city of

Lausanne, and to that of a signal plan derived by a mainstream commercial signal control

software.

4.1. Network

We evaluate the performance of the proposed SO algorithm by considering a large-scale

signal control problem for the entire Swiss city of Lausanne. The city map is displayed in

Figure 2(a), the considered area is delimited in white. We use a microscopic traffic simula-

tion model of the Lausanne city developed by Dumont and Bert (2006). It is implemented

with the Aimsun simulator (TSS 2011), and is calibrated for evening peak period demand.

The modeled road network is displayed in Figure 2(b).

Details regarding this Lausanne network are given in Osorio (2010, Chap. 4). We con-

sider the first hour of the evening peak period: 5-6 pm. During this hour, congestion

gradually builds up. Hence, it is important to design a signal plan that accounts for this

temporal propagation of congestion. We use the proposed algorithm to determine one

signal plan for 5-5:30 pm and a second signal plan for 5:30-6 pm. In other words, we

decompose the hour into two 30-minute intervals, and determine a signal plan for each of

the two intervals.

The road network consists of 603 links and 231 intersections. The signals of 17 intersec-

tions are controlled in this case study. These 17 intersections are depicted as filled squares

in Figure 2(b). The controlled intersections are located throughout the entire city. The
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(a) Lausanne city road network (adapted

from Dumont and Bert (2006))

(b) Lausanne network model

Figure 2 Lausanne city network and network model

cycle times of these intersections are 80 seconds (for 2 intersections), 90 seconds (for 13

intersections) and 100 seconds (for 2 intersections). The signal control problem has a total

of 198 endogenous signal phase variables (99 signal phases per time interval), i.e., the

dimension of the decision vector is 198. The phase variable is defined as the ratio of green

time (i.e., the total duration of a phase) to cycle time.

The transient queueing model of this network consists of 902 queues. The trust region

(TR) subproblem solved at every iteration of the SO algorithm consists of 3806 endogenous

variables with 3642 nonlinear equality constraints, and one trust region inequality. The

lower bounds of the green splits (Equation (17)) are set to 4 seconds according to the

Swiss transportation norm (VSS 1992).

In the field of urban traffic signal control, networks in the order of 70 links and 16

controlled intersections are considered large-scale problems (Aboudolas et al. 2010, 2007,

Dinopoulou et al. 2006). The problem considered in this paper is therefore a large-scale

signal control problem. The SO algorithm of this paper is based on the use of a derivative-

free algorithm. Unconstrained deterministic problems in the order of 200 variables are

considered large-scale for derivative-free algorithms (Conn et al. 2009). Additionally, the

considered problem is constrained and simulation-based, it is particularly difficult to

address.

4.2. Comparison of the dynamic SO method with the stationary SO method

In order to benchmark the performance of the dynamic SO (DSO) method, we compare

its performance to that of an SO method that has been successfully used to address

large-scale SO problems. We benchmark the performance of the dynamic SO method

against the performance of the stationary SO (SSO) method proposed in Osorio and
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Table 1 Traffic models used by each of the compared SO methods.

Microscopic Macroscopic
simulation-based analytical stationary analytical transient

Dynamic SO X X

Stationary SO X X

Chong (2015). Both methods consider a metamodel defined by Equation (5). They differ

only in the physical component of the metamodel (fA of Equation (5)). The proposed

DSO method considers the transient network model formulated in Section 2.3. The SSO

method considers the stationary network model defined by the System of Equations (9).

All other algorithmic details and parameters are identical in both methods. The difference

between these two methods is also described in Table 1. This comparison allows us to

evaluate and quantify the added value of using transient analytical information in the

metamodel (i.e., the added value of using a time-dependent network model to derive fA

of Equation (5)).

For both methods, we consider a tight computational budget, which is defined as a

maximum of 100 simulation runs that can be carried out. In other words, the SO algorithm

is initialized with no simulation observations available, and it stops once a total of 100

simulation runs have been carried out. We refer the readers to Osorio and Chong (2015)

for more information about the SSO algorithm, and for a comparison of its performance

to that of a traditional SO algorithm.

We consider four different initial points (i.e., initial signal plans) to initialize the SO

algorithms. These points are uniformly randomly drawn from the feasible space defined

by Equations (16) and (17). This uniform sampling is carried out according to the code

of Stafford (2006). For each initial point, we run each SO method (i.e., SSO and DSO)

three times, each time allowing for a total of 100 simulation runs. Thus, for each method

and each initial point, we derive three proposed signal plans. In order to evaluate the

performance of a proposed signal plan, we embed it within the traffic simulator and run

50 simulation replications. We then compare the performance of the proposed signal plans

both with statistical tests, and by comparing the cumulative distribution function (cdf)

of the objective function realizations (i.e., the average trip travel times) obtained from

these 50 simulation replications.

Each plot of Figure 3 considers a different initial point. Each curve of each plot displays

the cdf of a given signal plan. For each plot, the x-axis displays the average trip travel time

(ATTT). For a given x value, the y-axis displays the proportion of simulation replications

(out of the 50 replications) that have ATTT values smaller than x. Hence, the more a

cdf curve is located to the left, the higher the proportion of small ATTT values; i.e., the

better the performance of the corresponding signal plan.
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For each plot, the solid thick curve corresponds to the cdf of the initial signal plan, the

solid thin curves are the cdf’s of signal plans proposed by DSO and the dashed curves are

the cdf’s of signal plans proposed by SSO.

For all four initial points (Figures 3(a)-3(d)), all three plans derived by both DSO and

SSO yield improved performance when compared to the initial signal plan. For three of

the four initial points (Figures 3(a)-3(c)), all three plans derived by DSO outperform all

three plans derived by SSO. For Figure 3(d), two out of the three DSO plans outperform

all three SSO plans. The third DSO plan performs similarly to two of the SSO plans. It

outperforms the third plan proposed by SSO.

In summary, for all four initial points, DSO systematically derives signal plans with

improved performance when compared to the initial plan, and most often, when compared

to the plans derived by SSO.

We study the robustness of the DSO solutions to the initial points. Figure 4 displays the

cdf’s of the 12 solutions derived by DSO (solid thin curves) and all 4 initial points (solid

thick curves). In other words, all curves of all four plots of Figure 3 are displayed here

in a single plot in Figure 4. The plot shows that: (i) the DSO solutions systematically

outperform the initial solutions, (ii) all DSO solutions have similar performance. The DSO

plans have good and consistent performance across all SO runs and all initial points. This

illustrates the robustness of the proposed method to both the initial points and to the

stochasticity of the simulator.

In order to test whether the performance of DSO is statistically significantly better

than that of SSO, we carry out, for each initial point, a one-sided paired t-test. We choose

a performance metric that accounts for the overall performance of an SO method over

all three SO runs. The 50 simulation replications used to derive each of the cdf curves

of Figure 3 use the same 50 random seeds. Hence, we use a statistic that aggregates the

performance of a given SO method for a given random seed. For a given SO method,

let Xij denote the average travel time obtained under the jth run (j ∈ {1,2,3}) and the

ith simulation replication seed (i ∈ {1,2, . . . ,50}). The considered performance metric is

defined as:

Yi =
1

3

3
∑

j=1

Xij, ∀i∈ {1,2, . . . ,50}. (31)

We treat Yi as the average algorithmic performance of an SO method (DSO or SSO) under

replication i.

We use a paired one-sided t-test that assumes that the simulation observations are

independent and arise from a normal distribution with common but unknown variance.

We pair the observations with common random replication seeds. The null hypothesis
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(a) Initial point 1
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(b) Initial point 2
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(c) Initial point 3
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(d) Initial point 4

Figure 3: Cumulative distribution functions of the average travel times considering different initial signal plans.
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Figure 4 Cumulative distribution functions of the average travel times for all 4 initial points and all

12 proposed solutions

Table 2 Paired one-sided t-test results that compare the performance of DSO and of SSO

Initial point T-statistic P-value Average Standard deviation
1 -4.23 5e− 5 -0.35 0.58
2 -9.31 1e− 12 -0.65 0.49
3 -3.92 1e− 4 -0.28 0.51
4 -4.01 1e− 4 -0.26 0.46

assumes equal expected trip travel times for both DSO and SSO (i.e., equal expected value

of Y for each method). The alternative hypothesis assumes that the expectation of the

DSO method is lower than that of the SSO method.

The test significance level is 0.05. It has 49 degrees of freedom. The corresponding critical

value is -1.677. Table 2 summarizes the test statistics. Each row of the table displays the

result of the t-test for a given initial point (i.e., one test for each plot of Figure 3). Columns

1 to 5 display, respectively, the initial point index, the t-statistic, the p-value, the average

paired difference and the standard deviation of the paired differences.

All t-statistics (Column 2) are smaller than -1.677, hence the null hypothesis of all four

tests is rejected. In other words, for each initial point, the signal plans derived by DSO

lead to average travel times that are statistically significantly lower than those of the

signal plans derived by SSO.

Performance under increasing congestion levels

We now analyze how the performance of the proposed signal plans varies over time. The

traffic simulation considers the first hour of peak period traffic (5-6 pm). Over this hour,

congestion gradually increases (for more details regarding the temporal evolution of con-

gestion in this network, see Osorio (2010, Chap. 4)). This temporal analysis allows us to
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understand how the proposed signal plans perform under increasingly congested condi-

tions.

For a given signal plan, we estimate the expected trip travel time in ten minute incre-

ments. In other words, we consider 6 time windows indexed, respectively, 1 through 6.

The corresponding time windows are 5-5:10, 5-5:20, 5-5:30, 5-5:40, 5-5:50 and 5-6 pm.

In Figure 5, each plot displays the results considering the same initial plans and the

same proposed signal plans as in Figure 3. The x-axis corresponds to the time window

index. The y-axis represents the average trip travel time during the corresponding time

window. These are averages obtained over the same 50 simulation replications used in the

previous analysis. Each of the solid curves corresponds to one of the three signal plans

proposed by DSO. Each of the dashed curves corresponds to one of the three signal plans

proposed by SSO. In each curve, the dots represent the average travel time during the

corresponding time windows. The curves are interpolated from the dots.

Note that the average travel time estimate for the last time window (time window 6) is

the trip travel time averaged over all trips from 5-6 pm. This corresponds to an estimate of

the objective function of the optimization problem. This estimate also equals the average

of all 50 simulation replications points used to construct a given cdf curve of Figure 3.

In Figures 5(a), 5(b) and 5(c), all three plans derived by DSO have better performance

compared to the three plans of SSO throughout all six time windows. This holds for two

of the three plans derived by DSO in Figure 5(d). In Figure 5(d), the third plan derived

by DSO has worse performance than the three SSO plans for the first three time windows,

and worse performance than two of the SSO plans for the remaining three time windows.

For all DSO plans of Figures 5(a), 5(b) and 5(c), their performance seems stable for

congested conditions (time windows 4-6). Overall, the difference in performance between

the DSO plans and the SSO plans seems to increase with increasing levels of congestion.

This illustrates again the added value of using an analytical model that is time-dependent,

such that it describes this temporal evolution of congestion within the time horizon of

interest (5-6 pm).

In order to test the statistical significance of the difference in performance over time,

we proceed as before: we carry out for each initial point and each time window a paired

one-sided t-test. For each t-test, the metric we use is the average algorithmic performance

of an SO method (DSO or SSO) during the corresponding time window.

Table 3 contains four subtables (a)-(d) that display, respectively, the corresponding t-

test statistics, the p-values, the average paired difference and the standard deviation of

the paired differences. For a given table, a row corresponds to an initial point, a column
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(b) Initial point 2
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(c) Initial point 3
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(d) Initial point 4

Figure 5: Time-dependent average trip travel times for different initial signal plans
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Table 3 Paired one-sided t-tests that compare the time-dependent performance of DSO and of SSO

(a) T-statistics

Time window index
1 2 3 4 5 6

In
it
ia
l

p
o
in
t

1 -9.64 -8.95 -5.11 -4.36 -4.36 -4.23
2 -16.31 -13.42 -10.84 -9.56 -9.28 -9.31
3 -9.78 -7.97 -5.37 -4.33 -4.11 -3.92
4 0.38 -1.55 -1.83 -2.59 -3.58 -4.01

(b) P-values

Time window index
1 2 3 4 5 6

In
it
ia
l

p
o
in
t

1 3e− 13 3e− 12 3e− 6 3e− 5 3e− 5 5e− 5
2 9e− 22 2e− 18 6e− 15 4e− 13 1e− 12 1e− 12
3 2e− 13 1e− 10 1e− 6 4e− 5 7e− 5 1e− 4
4 0.65 0.063 0.036 0.006 4e− 4 1e− 4

(c) Average paired differences

Time window index
1 2 3 4 5 6

In
it
ia
l

p
o
in
t

1 -0.14 -0.25 -0.25 -0.29 -0.34 -0.35
2 -0.24 -0.37 -0.43 -0.50 -0.57 -0.65
3 -0.13 -0.21 -0.21 -0.23 -0.25 -0.28
4 -0.01 -0.04 -0.07 -0.13 -0.21 -0.26

(d) Standard deviation of paired differences

Time window index
1 2 3 4 5 6

In
it
ia
l

p
o
in
t

1 0.1 0.19 0.35 0.47 0.55 0.58
2 0.1 0.2 0.28 0.37 0.43 0.49
3 0.1 0.19 0.28 0.37 0.44 0.51
4 0.11 0.18 0.25 0.35 0.42 0.46

corresponds to a time window. As before, the test significance level is 0.05, it has 49

degrees of freedom, and the critical t-value is -1.677.

Table 3(b) (or equivalently Table 3(a)) shows that for initial point 1, 2 and 3, the null

hypothesis of equal expectation for DSO and SSO is rejected for initial points 1, 2 and

3, at all time windows. This means that as congestion increases (i.e., as time advances

from 5 pm to 6 pm), the DSO signal plans consistently outperform the SSO plans. For

initial point 4, the null hypothesis is rejected for time windows 3-6, and not rejected for

time windows 1 and 2. This means that for initial point 4 at low levels of congestion

(i.e., the first 20 minutes of the peak hour), the DSO plans do not outperform the SSO

plans. Additionally, Table 3(c) shows that for a given initial point (i.e., a given row), the

average difference increases with the time window index. This shows that the difference

in performance between DSO and SSO increases as congestion increases.

Computational runtime of DSO

The steps of the DSO algorithm that are the most computationally demanding are: (i) eval-

uating the simulator, and (ii) solving the trust region (TR) subproblem. Details on the for-

mulation and numerical solver used to solve the TR subproblem are given in Appendix B.

To illustrate the computational runtimes for each of these steps, we consider the 3 SO runs

of the DSO method carried out with initial point 2. Each of the 3 SO runs allows for 100

simulation evaluations. We use a standard laptop with an Inter(R) Core(TM) i7-2960XM

2.7 GHz processor and 8GB RAM. The average runtime for one simulation replication

is 1.2 minutes with a standard deviation of 0.2 minutes. The average time to solve the

TR subproblem is 5.5 minutes with a standard deviation of 3.6 minutes. These runtimes

are suitable for solving the problem offline. As part of ongoing work, we are formulating

real-time SO frameworks, where the runtime of both steps needs to be improved. For
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Figure 6 Comparison of the performance of a DSO signal plan and an existing signal plan of the city

of Lausanne

instance, we currently use the standard Matlab routine for nonlinear constrained problems

(fmincon) to solve the TR subproblem. The use of a standard TR method would reduce

the computational runtime for solving the TR subproblem. For real-time SO methods,

the main runtime constraint remains the number of sequential simulation evaluations that

can be carried out in real-time.

4.3. Comparison with an existing signal plan of the city of Lausanne

We now compare the performance of the best signal plan derived by DSO with that of an

existing signal plan for the city of Lausanne. The best DSO signal plan is defined as the

one (among the 12 DSO signal plans analyzed in the previous section) with the lowest

average travel time over the 50 simulation replications. This corresponds to the left-most

cdf curve of Figure 3(b), or equivalently the signal plan with the smallest y-value at time

window 6 of Figure 5(b). Figure 6 displays the cdf of this DSO plan (solid line) and of

the Lausanne plan (dashed line). The DSO plan outperforms the Lausanne plan. In order

to test whether these differences are statistically significant, we carry out a paired one-

sided t-test as before. The t-test has, once again, a significance level of 0.05, 49 degrees

of freedom, and a critical value of -1.677. The average trip travel time (average over all

50 simulation replications) of the DSO plan is 5.52 minutes, and that of Lausanne signal

plan is 5.77 minutes. The average paired difference is 0.25, the corresponding standard

deviation is 0.94. This leads to a t-statistic of -1.83, and a p-value of 0.037. The hull

hypothesis is rejected. Therefore, the DSO approach can derive signal plans that perform

significantly better than the Lausanne plan.

We now compare the values of the signal plans of the best DSO plan, the best SSO

plan and the current Lausanne plan. The best DSO plan is defined as that with the lowest
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(a) Comparison of the best DSO and the best SSO signal plans
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(b) Comparison of the best DSO and the Lausanne plans

Figure 7 Total green time (in seconds) per signalized lane for the best DSO, the best SSO and the

Lausanne signal plans

average travel time over the 50 simulation replications. This corresponds to the left-most

cdf curve of Figure 3(b). Similarly, the best SSO plan is the left-most dashed cdf curve in

Figure 3(d).

The x-axis of Figure 7(a) displays, for each signal controlled lane at a time interval, the

total green time (in seconds), under the DSO plan. Since the DSO plan yields two different

plans for the two intervals, Figure 7(a) displays one point for each of these two time

intervals. The y-axis displays the total green time under the SSO plan. The diagonal line

y= x is also plotted. The points close to the diagonal line indicate lanes that have similar

green time values under both plans. Similarly, Figure 7(b) displays the green times for

the DSO plan (x-axis) and the Lausanne plan (y-axis). The plots indicate that there are

many lanes with significantly different green times. We have also studied the variations of

the green times over time for the DSO plan, but have not found any interesting temporal

trends.

Figure 8(a) displays, for each of these 3 signal plans, the average trip travel time as a

function of time. Figure 8(b) displays the average link density of the 60 controlled links.

For both plots, the x-axis corresponds to a time window index, and for each estimate,

the confidence intervals (obtained from the 50 simulation replications) are displayed. The

trip travel time metric of Figure 8(a) is defined just as that of Figure (5). Notice that the

objective function corresponds to the average travel time estimated at time interval 6 (i.e.,

it is the average travel time from 5-6pm). Figure 8(b) displays the average link density of

the 60 controlled links. For time intervals 1 through 6, this average is computed during

time 5:00-5:10, 5:10-5:20, 5:20-5:30, 5:30-5:40, 5:40-5:50 and 5:50-6:00, respectively. This

figure illustrates the impact of the signal plans on local (link-level) performance.
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(b) Time-dependent average link density of the signal controlled

links

Figure 8 Time-dependent congestion metrics of the best DSO, the best SSO and the Lausanne plans

Figure 8(a) indicates that as congestion increases, so does the difference in performance

between the DSO plan and the 2 other plans. Figure 8(b) indicates that the main difference

between the DSO plan and the 2 other plans is that the DSO plan leads to significantly

lower levels of congestion at the start of the peak-period. As a consequence, it delays the

onset and the propagation of congestion. This is observed in Figure 8(a), where the travel

times at 6pm under the DSO plan are those observed under the Lausanne plan around

5:30pm, and under the SSO plan around 5:40 pm. Figures 8(a) and 8(b) indicate that as

congestion increases, so does the variance of the estimators. This increased variance illus-

trates one of the challenges of performing SO for congested scenarios, where the objective

function estimators tend to have high variance.

4.4. Comparison with a signal plan derived by commercial signal control

software

We compare the performance of the best DSO signal plan with that of a signal plan

derived with the signal control software Synchro, which is a mainstream, commercial and

popular signal control software (Trafficware (2011)). It is widely used across the United

States. Major cities, such as New York, rely on it to design their signal plans (NYCDOT

2012). For details on Synchro’s green split optimization technique, we refer the reader to

Chapter 14 of Trafficware (2011). Synchro is based on a macroscopic, deterministic and

local traffic model. We give Synchro the same input data (e.g., network and traffic data)

as for the DSO method. The details on the Synchro input configuration used are given in

Osorio and Chong (Section 5.3, 2015). As before, the best DSO signal plan is that with

the lowest average trip travel time among the 12 plans derived by DSO (i.e., left-most cdf

curve of Figure 3(b)).
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(b) Comparison of the time-dependent expected trip travel time of

the best DSO signal plan and the signal plan derived by Synchro

Figure 9 Comparison of the performance metric of the best DSO signal plan and the signal plan

derived by Synchro

To evaluate the performance of the Synchro and the DSO signal plans, we proceed as

in Section 4.3. Figure 9(a) displays the cdf of the average trip travel time of the DSO

signal plan (solid curve) and of the Synchro plan (dashed curve). The DSO plan yields a

significant improvement in the average trip travel times. The average objective function

value, among the 50 simulation replications, is 5.5 minutes for the DSO plan and 7.3

minutes for the Synchro plan. The DSO plan yields a 25% reduction in the trip travel

times compared to the Synchro plan.

Figure 9(b) evaluates the performance of the plans as a function of time. This figure

considers the same performance metrics as the plots of Figure 5, i.e., the x-axis considers

the 5pm-6pm period discretized in 10 minute time increments, and the y-axis displays the

average trip travel time. As a result, the best DSO plan outperforms the Synchro plan for

all the six time intervals. This figure indicates that, as congestion increases, the DSO plan

mitigates the increase in the travel times, while the Synchro plan leads to higher travel

times.

5. Conclusions

This paper proposes a novel metamodel method that addresses large-scale simulation-

based urban transportation optimization problems with time-dependent decision variables.

The proposed metamodel embeds a tractable transient network model that accounts for

the time variations of traffic flow and the temporal propagation of congestion in the

underlying road network. The transient network model is formulated based on transient

queueing theory. The proposed transient metamodel method is a computationally efficient
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technique that identifies good solutions (e.g., signal plans) under tight computational

budget.

We evaluate the performance of this approach by addressing a large-scale network-

wide time-dependent signal control problem for the Swiss city of Lausanne. This problem

considers a congested network (evening peak period demand) with an intricate topology.

We compare the performance of the proposed dynamic metamodel SO method with that of

a stationary metamodel SO method proposed by Osorio and Chong (2015). The dynamic

metamodel SO method identifies signal plans that outperform both the initial signal plans,

and most often, the signal plans derived by the stationary metamodel SO method. The

analysis of this paper also illustrates that the best DSO plan outperforms an existing

signal plan for the city of Lausanne, as well as a plan derived by Synchro.

This paper allows practitioners to use a computationally efficient SO method to address

a variety of dynamic large-scale transportation problems. In this paper, the analytical

transient network model is used to approximate the simulation-based objective function.

Of current interest is the study of the use of this model to enhance other algorithmic steps,

such as sampling strategies and ranking and selection strategies to statistically compare

the performance of multiple points. As part of ongoing research, we are extending the use

of the proposed transient metamodel SO method to address traffic-responsive simulation-

based optimization problems.

This paper considers SO problems where the constraints are available in analytical,

rather than simulation-based form. Problems with simulation-based (i.e., stochastic) con-

straints require evaluating the feasibility of a point via simulation. The feasibility of a

point cannot be guaranteed. It can be tested statistically but at the computational cost of

obtaining an accurate estimate of the simulation-based constraints. In other words, numer-

ous simulation replications need to be run in order to test for feasibility. For this reason,

SO problems with simulation-based constraints can be computationally more challenging

to address. In transportation, examples of stochastic constraints would be, for instance,

bounds on link or network performance metrics (e.g., travel times, emissions, energy con-

sumption). Efficient algorithms for such problems are needed. The metamodel ideas of this

paper could be used to formulate computationally efficient algorithms for SO problems

with stochastic constraints. In other words, problem-specific analytical metamodels of the

stochastic constraints can be formulated.

Discrete SO problems are another family of problems, where these metamodel ideas

could prove beneficial. There is a lack of efficient methods for such problems, yet many

network design problems are naturally formulated as discrete problems. As part of ongoing

work in bike-sharing and car-sharing problems, we are exploring ideas in this area.
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Appendix A: Metamodels for transportation problems

In our past work, we have developed efficient SO algorithms for various transportation problems

with case studies of Lausanne (Switzerland), Manhattan (NYC, USA) and Berlin (Germany). We

summarize here the main insights obtained from past work. The formulation presented in this

paper is motivated by these insights. Table 4 summarizes the main features of the methods and

case studies used for signal control problems. The last row represents the present paper. The second
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Table 4 Summary of metamodel SO methods for signal control problems

Model Outperforms Number of Metamodel of
Stat. Trans. Random Field Synchro Roads Inter. Dec. var.

Osorio and Bierlaire (2013) X X X 48 15 51 Trip travel time
Osorio and Nanduri (2015a) X X 47 15 51 Fuel consumption and

trip travel time
Osorio and Nanduri (2015b) X X X 47 15 51 Pollutant emissions

and trip travel time
Osorio et al. (2014) X X X 134 32 64 Queue-lengths
Osorio et al. (2016) X X 603 231 99 Link travel time variance

and expectation
Osorio and Chong (2015) X X X 603 231 99 Trip travel time
Chong and Osorio X X X X 603 231 198 Trip travel time

and third columns indicate whether the SO method is designed for time-independent or time-

dependent problems. More specifically, these methods embed information from analytical traffic

models. Columns 2 and 3 indicate whether the analytical models are stationary or transient, respec-

tively. Columns 4-6 indicate whether the case studies have benchmarked the derived signal plans

versus signal plans that are: randomly drawn, prevailing in the field or derived from the commercial

signal control software Synchro. Columns 7-9 indicate the number of roads, of intersections and

of decision variables of the case studies. For papers that include multiple case studies, the table

indicates the largest-scale case study. The last column indicates the objective function.

Column 2 indicates that all past work has formulated metamodels with stationary traffic models.

The present paper is the first to formulate a metamodel with a transient (i.e., time-dependent)

traffic model. This table indicates that formulations for a variety of objective functions have been

proposed and successfully used for problems that are considered large-scale for both signal control

and for SO.

Recall that in a metamodel framework, the objective function needs to be approximated analyt-

ically by the metamodel. For a specific objective function, the key to designing a computationally

efficient SO algorithm lies in the formulation of an analytical traffic model that is both: (i) a

good approximation of the unknown objective function, and (ii) is sufficiently tractable such that

Problem (6)-(8) can be solved efficiently. Column 10 of the table indicates that we have designed

algorithms for objective functions that are intricate to approximate analytically (e.g., vehicular

emissions, fuel consumption, travel time variability).

All these case studies include analysis with tight computational budgets, where the simulation

budget ranges from 50 to 150. Even for such tight budgets, the signal plans identified by the

metamodel methods outperform a variety of signal plans: (i) randomly drawn plans, (ii) plans

prevailing in the field, and (iii) plans derived by mainstream widely used commercial software. The

results of these various case studies consistently indicate that the ability of these SO methods to

identify good solutions under tight budgets is due to the combination of simulation observations

with analytical traffic model information.

More specifically, the papers tabulated in Table 4 (excluding Osorio et al. (2014)) have bench-

marked the metamodel of Equation (5) with a metamodel that does not include information from

the analytical traffic model (i.e., m = φ in (5)). All case studies have shown that by embeding

information from analytical traffic models, the following properties are achieved: (i) solutions with
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better performance are identified, (ii) good quality solutions are identified within significantly fewer

simulation runs, and (iii) the algorithm becomes robust to the quality of the initial points. Note

that a metamodel approach with m= φ (i.e., with a local quadratic general-purpose metamodel)

is a traditional SO approach. It corresponds to an iterative response-surface methodology, which is

broadly and commonly used in the literature and is often not referred to as a metamodel technique.

For lower-dimensional problems with larger computational budgets (i.e., easier problems to solve),

the traditional approach and the metamodel with analytical traffic information identify solutions

with similar performance (see Osorio and Bierlaire (2013), for problems with: (i) 2 controlled inter-

sections, a decision vector of dimension 13 and a buget of 750, and (ii) 9 controlled intersections,

a decision vector of dimension 51 and a budget of 3000).

Recent work has investigated what type of structural information provided by the analytical

traffic model is key to identifying signal plans that perform well for networks with high levels of con-

gestion and intricate traffic patterns (Osorio et al. 2014). The latter work considered a Manhattan

case study. It indicates that providing the algorithm with an analytical description of between-link

interactions or dependencies is critical to identifying signal plans that can contribute to mitigate

congestion. In particular, the algorithms are particularly efficient when they are provided with

an analytical description of the occurrence and the impact of vehicular spillbacks. The analytical

traffic model formulated in this paper builds upon these insights. It proposes a time-dependent

description of spillback probabilities, and it accounts for the impact of spillbacks on the underlying

link’s flow capacity.

These metamodel ideas have been recently used to efficiently address two other classes of opti-

mization problems. First, metamodels have been formulated for an offline demand calibration prob-

lem for the metropolitan area of Berlin (Osorio et al. 2015). The formulated analytical traffic model

is shown to provide a highly accurate approximation of the unknown simulation-based objective

function. The time-dependent model formulated in the present paper can be used to extend the

ideas in Osorio et al. (2015) for online calibration problems. This calibration work also illustrates

the use of these metamodel ideas for problems where the decision variables are demand, rather

than supply, variables. In particular, in that work the decision variables are coefficients of a route

choice model. Second, metamodels have been formulated to design multi-model SO algorithms,

where multiple simulators with different computational runtime costs are jointly used (Osorio and

Selvam 2015).

This past work highlights that these metamodel ideas have been successfully used to address

problems with intricate objective functions, intricate traffic patterns (e.g., Manhattan), and very

different demand-supply interactions. This encourages us to design algorithms for real-time prob-

lems. The time-dependent formulation proposed in this paper is a first-step towards this goal.
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Appendix B: Trust region subproblem

To formulate the trust region (TR) subproblem that is solved at each iteration k of the SO algo-

rithm, we use the following notation.

x vector of decision variables;
xℓ vector of green splits for time interval ℓ;
xℓ(j) green split of signal phase j for time interval ℓ;
xLB vector of lower bounds for green splits;
xk current iterate at iteration k;
µd,ℓ service rate of lane d for time interval ℓ;
y vector of endogenous variables;
q vector of exdogenous parameters;
βk vector of metamodel parameters at iteration k;
∆k trust region radius at iteration k;
bi ratio of available cycle time to total cycle time for intersection i;
ed ratio of fixed green time to cycle time of signalized lane d;
s satuation flow rate;
PD(d) set of endogenous phase indices of lane d;
I set of intersection indices;
PI(i) set of endogenous signal phase indices of intersection i.

The TR subproblem is formulated as follows.

min
x

mk(x, y; q, βk) (32)

subject to

∑

j∈PI(i)

xℓ(j) = bi ∀i∈I , ℓ∈L (33)

h(x, y; q) = 0 (34)

µd,ℓ −
∑

j∈PD(d)

xℓ(j)s= eds, ∀d∈D, ℓ∈L (35)

‖x− xk‖2 ≤∆k (36)

y≥ 0 (37)

xℓ ≥ xLB ,∀ℓ∈L. (38)

The objective function is the metamodel mk(x, y;βk, q). Equations (33) and (38) are the signal

control constraints, they correspond to Equations (16) and (17). The function h of Equation (34)

represents the transient network model. It represents Equations (10a)-(10c). Equation (35) asso-

ciates the green splits of a phase with the flow capacity of the underlying lanes (i.e., the service

rate of the queues). Constraint (36) is the trust region constraint, where ∆k is the trust region

radius. The endogenous variables of the queueing model are subject to positivity constraints (Equa-

tion (37)). Thus, the TR subproblem consists of a nonlinear objective function subject to nonlinear

equalities, linear equalities, a nonlinear inequality and bound constraints.

The TR subproblem is solved with the Matlab routine for constrained nonlinear problems, fmin-

con, and its interior point programming method (Coleman and Li 1996, 1994). We set the tolerance

for relative change in the objective function to 10−3 and the tolerance for the maximum constraint

violation to 10−3. For further details on the TR subproblem formulation and its implementation,

see Osorio and Chong (2015).
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Appendix C: Derivative of the objective function

This appendix serves to illustrate how the analytical expression for the objective and constraint

functions of Problem (15)-(17) are derived. The example we provide is for the derivative of the

objective function (denoted fA,ℓ in Equation (18)) with regards to the variable ρ̂i,ℓ. The analytical

form of any other derivative with respect to any of the endogenous variables can be derived following

the same logic.

By definition, we have:

fA,ℓ =

∑

i
Eℓ[Ni]

1
tℓ−tℓ+1

∫ tℓ+1

tℓ

∑

i
γi(1−Pℓ(Ni = ki, t))dt

. (39)

Let C denote the numerator and D denote the denominator. Following the quotient rule, we

obtain:
∂fA,ℓ

∂ρ̂i,ℓ

=

∂C

∂ρ̂i,ℓ

D
−

∂D

∂ρ̂i,ℓ
C

D2
. (40)

We first derive the analytical expression for ∂C

∂ρ̂i,ℓ
, then we derive that of ∂D

∂ρ̂i,ℓ
.

Using the chain rule, we have:
∂C

∂ρ̂i,ℓ

=
∂Eℓ[Ni]

∂ρi,ℓ

∂ρi,ℓ

∂ρ̂i,ℓ

. (41)

The analytical form of Eℓ[Ni] and ρi,l are given in Equations (20) and (21), respectively.

Equation (20) can be rewritten as:

Eℓ[Ni] =
ρi,ℓ

1− ρi,ℓ

− (ki +1)ρi,ℓ
ki+1

1− ρi,ℓ
ki+1

, (42)

and its derivate is given by:

∂Eℓ[Ni]

∂ρi,ℓ

=
1

(1− ρi,ℓ)2
− (ki +1)2ρki

(1− ρki+1
i,ℓ )2

. (43)

Equation (21) can be rewritten as:

ρi,ℓ = (tℓ+1 − tℓ)
ρ̂i,ℓ

A
, (44)

where A is defined by Equation (22). This leads to:

∂ρi,ℓ

∂ρ̂i,ℓ

= (tℓ+1 − tℓ)(
1

A
− ρ̂i,ℓ

A2

∂A

∂ρ̂i,ℓ

). (45)

In order to derive an expression for ∂A

∂ρ̂i,ℓ
, we use the analytical expresion of A given by Equa-

tion (25), this leads to:

∂A

∂ρ̂i,ℓ

=
∂τi,ℓ
∂ρ̂i,ℓ

[

(Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))(e
−

tℓ+1

τi,ℓ − e
−

tℓ
τi,ℓ )

]

+ . . .

· · ·+ τi,ℓ(Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))





∂e
−

tℓ+1

τi,ℓ

∂ρ̂i,ℓ

− ∂e
−

tℓ
τi,ℓ

∂ρ̂i,ℓ



 (46)

=
∂τi,ℓ
∂ρ̂i,ℓ

[

(Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))(e
−

tℓ+1

τi,ℓ − e
−

tℓ
τi,ℓ )

]

+ . . .

· · ·+ (Pℓ(Ni = ki, tℓ)−Pℓ(Ni = ki))

(

tℓ+1

τi,ℓ
e
−

tℓ+1

τi,ℓ
∂τi,ℓ
∂ρ̂i,ℓ

− tℓ
τi,ℓ

e
−

tℓ
τi,ℓ

∂τi,ℓ
∂ρ̂i,ℓ

)

. (47)

Equation (46) is obtained by observing that the derivative of (tℓ+1 − tℓ)(1− Pℓ(Ni = ki)) with

regards to ρ̂i,ℓ is zero. This is because the terms tℓ+1 and tℓ are constant, and because ∂Pℓ(Ni=ki)
∂ρ̂i,ℓ

= 0,
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since both Pℓ(Ni = ki) and ρ̂i,ℓ are both endogenous variables. And because Pℓ(Ni = ki, tℓ) is the

initial spillback probably at interval ℓ and does not depend on ρ̂i,ℓ,
∂Pℓ(Ni=ki,tℓ)

∂ρ̂i,ℓ
= 0.

In order to derive
∂τi,ℓ

∂ρ̂i,ℓ
, let us recall that τi,ℓ is defined in Equation (14b) by:

τi,ℓ =
cki

λ̂i,ℓ

ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)2
. (48)

Therefore,

∂τi,ℓ
∂ρ̂i,ℓ

=
cki

λ̂i,ℓ

∂(
ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)2
)/∂ρ̂i,ℓ (49)

=
cki

λ̂i,ℓ







1

(1−
√

ρ̂i,ℓ)2
−

ρ̂i,l

∂((1−
√

ρ̂i,ℓ)
2)

∂ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)4






(50)

=
cki

λ̂i,ℓ

(

1

(1−
√

ρ̂i,ℓ)2
+

√

ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)3

)

. (51)

Note that Equation (49) is derived by observing that
∂λ̂i,ℓ

∂ρ̂i,ℓ
= 0, since both variables are endoge-

nous.

Combining Equations (41), (43), (45), (47) and (51), we obtain the analytical derivative of the

numerator of the objective function, ∂C

∂ρ̂i,ℓ
.

In order to derive the derivative of the denominatorD, note that it can be expressed as the following

function of A:

D=
1

tℓ − tℓ+1

∑

i

γiA. (52)

Thus,

∂D

∂ρ̂i,ℓ

=
γi

(tℓ+1 − tℓ)

∂A

∂ρ̂i,ℓ

. (53)

The expression for ∂A

∂ρ̂i,ℓ
is given by Equation (47).


