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In this work, motivated by the sine-square deformation (SSD) for (1+1)-dimensional quantum critical systems,
we study the nonequilibrium quantum dynamics of a conformal field theory (CFT) with SSD, which was recently
proposed to have a continuous energy spectrum and continuous Virasoro algebra. In particular, we study the time
evolution of entanglement entropy after a quantum quench from a uniform CFT, which is defined on a finite space
of length L, to a sine-square deformed CFT. We find that there is a crossover time t∗ that divides the entanglement
evolution into two interesting regions. For t � t∗, the entanglement entropy does not evolve in time; for t � t∗,
the entanglement entropy grows as SA(t) � c

3 log t , which is independent of the lengths of the subsystem and
the total system. This log t growth with no revival indicates that a sine-square deformed CFT effectively has an
infinite length, in agreement with previous studies based on energy spectrum analysis. Furthermore, we study
the quench dynamics for a CFT with Möbius deformation, which interpolates between a uniform CFT and
a sine-square deformed CFT. The entanglement entropy oscillates in time with period Leff = L cosh(2θ ), with
θ = 0 corresponding to the uniform case and θ → ∞ corresponding to the SSD limit. Our field theory calculation
is confirmed by a numerical study on a (1+1)-dimensional critical fermion chain.

DOI: 10.1103/PhysRevB.97.184309

I. INTRODUCTION

(1+1)-dimensional [(1+1)D] quantum many-body systems
with sine-square deformation (SSD) have been studied ex-
tensively in recent years [1–18]. The SSD was originally
introduced as a spatial deformation of Hamiltonian density that
efficiently suppresses the boundary effects [1–4]. The setup is
as follows: Consider a (1+1)D quantum many-body system
with an open boundary condition and a Hamiltonian

H0 =
∫ L

0
h(x)dx, (1.1)

where h(x) is the Hamiltonian density. For simplicity, we
assume h(x) is uniform. Now we deform the Hamiltonian as
follows:

HSSD =
∫ L

0
2 sin2

(πx

L

)
h(x)dx. (1.2)

Apparently, the system is disconnected at x = 0 (L). This
kind of deformation shows remarkable properties for (1+1)D
quantum critical systems. It was found that the ground state of
(1.2) is identical to that of a uniform system with a periodic
boundary condition within numerical accuracy [3–7]. This
property was further verified analytically in some exactly
solvable models [8–10,12].

Later, the SSD of a two-dimensional conformal field theory
(CFT) was investigated in Ref. [8], where it was found that the
Hamiltonian for a generic CFT with SSD can be expressed as
L0 + L̄0, where

L0 = L0 − L1 + L−1

2
, (1.3)

and similarly for L̄0. Here Ln (n = 0,±1, . . . ) are Virasoro
generators in a CFT.1 Considering the Hamiltonian (1.2), since
sin2( πx

L
) vanishes at the boundary, there is no difference in the

system between an open boundary condition and a periodic
boundary condition. On the other hand, for the periodic
boundary condition the Hamiltonian (1.3) has the same ground
state as a uniform CFT with a Hamiltonian L0 + L̄0, because
in the periodic system the CFT vacuum is annihilated by
(L1 + L−1)/2 and (L̄1 + L̄−1)/2. With these two observations,
the ground state of the SSD system with an open boundary
condition is the same as that for a uniform system with a
periodic boundary condition.

In two recent papers by Ishibashi and Tada [13,14], they
studied the sine-square deformed CFT by dipolar quantization.
Choosing different time slices and time translations, they
showed that 2D CFTs with SSD have different quantization
other than the radial quantization, which is called dipolar
quantization. They also found a continuous Virasoro algebra,
which is labeled by a continuous real index κ:

[Lκ ,L′
κ ] = (κ − κ ′)Lκ+κ ′ + c

12
κ3δ(κ + κ ′), (1.4)

with κ > 0, and here c is the central charge of the CFT. This
continuous Virasoro algebra results in a continuous spectrum
in the CFT with SSD, which implies that the sine-square
deformed CFT effectively has an infinite length, even though
it is defined on a finite space.

1See Eqs. (2.7) and (2.8) for an explicit definition of the Hamiltonian
in terms of stress-energy tensors.
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To further understand the property of CFTs with SSD, some
regularization schemes were proposed recently [15,16]. It was
found that the connection between the uniform system and
the SSD system can be built by considering the parametrized
Hamiltonian L0 + L̄0 with [15]

L0 = L0 − tanh(2θ )
L1 + L−1

2
, (1.5)

and similarly for L̄0. Here one can choose θ � 0 without loss
of generality. It can be checked that the rescaled Hamiltonian
cosh(2θ )(L0 + L̄0) is related to the conventional one L0 + L̄0

by a Möbius transformation [15]. For this reason, we will refer
to the Hamiltonian defined through Eq. (1.5) as the Möbius
Hamiltonian, and we will call this kind of deformation Möbius
deformation. It is noted that for Möbius deformation, one has
a Möbius quantization that bridges the radial quantization for
the conventional case and the dipolar quantization for the SSD
case. One can refer to Ref. [15] for more details. Then θ =
0 corresponds to the uniform case, and θ → ∞ corresponds
to the SSD limit. Within Möbius deformation, one can find
a Virasoro algebra that is the same as Eq. (1.4), except that
now κ is not a continuous real index but it has the expression
κ = n

cosh(2θ) , where n is an integer. In the SSD limit θ → ∞, κ
becomes continuous, which results in a continuous spectrum
as observed by Ishibashi and Tada [13,14].

A. Our motivation

Based on the introduction above, let us now state our
motivations in this work:

(i) Given the continuous energy spectrum for a CFT with
SSD, how does it affect the nonequilibrium quantum dynam-
ics? To avoid any operator dependence, we will study the entan-
glement evolution in quench dynamics. It is interesting to see
if there is any universal feature in the entanglement evolution,
and if yes, how it is related with the continuous spectrum. As
far as we know, there is no work studying the entanglement
property of a CFT with SSD in the nonequilibrium case.

(ii) Since the Möbius Hamiltonian [see Eq. (1.5)] interpo-
lates between the uniform system and SSD system, it is also
interesting to study the quench dynamics governed by this
Hamiltonian, and see how it behaves as we approach the SSD
limit.

(iii) There is much recent interest in studying the entan-
glement property in CFT in curved spacetime. (See, e.g.,
Refs. [19–27].) One interesting setup is based on the inho-
mogeneous Hamiltonian density [24]. We hope that our work
will provide a nice setup and approach in this direction.

The rest of this paper is organized as follows: In Sec. II,
we introduce our setup of quantum quench, and we study
the entanglement evolution after a quantum quench from a
uniform system to a SSD system. Then in Sec. III, we study
the quench dynamics for the Möbius case, and see how it
connects the uniform and SSD cases. In Sec. IV, we present
some discussions and conclude our work. In Appendix A, we
introduce the lattice model based on which we do numerical
calculations. In Appendix B, we interpret the SSD and Möbius
Hamiltonian as a CFT in curved spacetime.

FIG. 1. For t < 0, we prepare our initial state as the ground state
of a uniform CFT with an open boundary condition. From t = 0, we
evolve the initial state with a sine-square deformed Hamiltonian. The
red solid lines represent the strength of the Hamiltonian density. The
lattice represents a microscopic model that may realize the CFT in
the IR limit.

II. ENTANGLEMENT EVOLUTION: QUENCH FROM
UNIFORM TO SSD SYSTEMS

A. Setup

There are several interesting setups for quantum quenches,
such as the global quench [28–30], the local quench [31–34],
and the inhomogeneous quantum quench2 [21–24,35–38].

Here, we consider a quantum quench from a uniform CFT
to a nonuniform CFT. As shown in Fig. 1, we prepare our initial
state as the ground state |G〉 of a uniform CFT on a finite space
[0,L], with an open boundary condition. [The reason we do
not choose a periodic boundary condition (PBC) is that, as
mentioned in the Introduction, a critical system with a PBC
shares the same ground state with the SSD system, and no
quench is expected to happen in this case. It is noted, however,
that there may be some difference in the ground states at UV
scale. We are not interested in quantum quench in this case,
the feature of which is nonuniversal.] Then at t = 0, we switch
the Hamiltonian to the sine-square deformed one. Then the
time-dependent state can be written as |ψ(t)〉 = e−iHSSDt |G〉.
The correlation function of O(x1) · · · O(xn) at time t can be
expressed as 〈G|eiHSSDtO(x1) · · · O(xn)e−iHSSDt |G〉.

Throughout this work, to study the quench dynamics of
a sine-square deformed CFT, we are interested in the time
evolution of entanglement entropy for a subsystem A = [0,l].
The entanglement measure we use is the so-called Renyi
entropy

S
(n)
A (t) = 1

1 − n
log tr

[
ρn

A(t)
]

(2.1)

and the von Neumann entropy

SA(t) = lim
n→1

S
(n)
A (t). (2.2)

The term tr(ρn
A) in S

(n)
A (t) is related with the single-point

correlation function of a twist operator as follows [39]:

tr(ρn
A) = 〈G|eiHSSDtTn(x = l)e−iHSSDt |G〉, (2.3)

2For a more complete review of recent progress on various quantum
quenches in CFTs, one can refer to Ref. [30] and references therein.
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FIG. 2. Path-integral representation for the correlation function
〈G|eiHSSDtO(x = l)e−iHSSDt |G〉. The ground state |G〉 of Hamiltonian
H0 can be considered as the path integral starting from τ = −∞
and evolving to τ = 0 according to Hamiltonian H0. The width of
this strip is L. Then the ground state evolves in the Lorentzian time
direction according to the new Hamiltonian HSSD. After inserting an
operator O(x) at x = l, we evolve the state back to τ = 0. Then the
state evolves to τ = +∞ with H0.

where Tn is a primary operator with conformal dimension

h = c

24

(
n − 1

n

)
. (2.4)

In the following, we will evaluate the correlation func-
tion in Eq. (2.3) with the path-integral method. Pictorially,
〈ψ(t)|Tn(x = l)|ψ(t)〉 is shown in Fig. 2 by setting O(x) =
Tn(x). Note that there is both Euclidean time and Lorentzian
time in the path integral. As shown in the following part, we
will do a calculation in the Euclidean spacetime by setting
it = τ , and analytically continue back to Lorentzian time in
the final step.

B. Entanglement evolution after a quantum quench
from uniform to SSD systems

To study the entanglement entropy evolution, we will go to
Euclidean spacetime by setting it = τ . Then the correlation
function in Eq. (2.3) has the form

〈G|eHSSDτT (w)
n (w0,w̄0)e−HSSDτ |G〉. (2.5)

Here in the Euclidean plane w = τ + iσ , one has −∞ < τ <

∞, 0 � σ � L, and w0 = 0 + il (0 � l � L) is used to label
the position of the twist operator. The superscript (w) in T (w)

n

denotes the coordinate. Two conformal boundary conditions
are imposed along σ = 0 and L, respectively. For simplicity,
we assume that the two boundary conditions are the same.3

To evaluate the correlation function in Eq. (2.5), we take
the following two strategies:

(i) Heisenberg picture. Instead of evolving the states, we
will evolve the operator Tn with the Hamiltonian HSSD in
the Heisenberg picture. By conformal transformation into a
certain coordinate, it is quite straightforward to write down the
operator’s evolution.

3If the two boundary conditions alongx = 0 andx = L are different,
one needs to consider the boundary condition changing operator in
the following discussions.

(ii) We start from the Möbius Hamiltonian HMöbius(θ ) first.
Taking θ → ∞, we can read out the SSD result. As we
mentioned in the Introduction, the SSD Hamiltonian has a
continuous spectrum. In case of an unnecessary IR problem, we
regard the Möbius Hamiltonian as a regularization of SSD. To
be concrete, in terms of stress-energy tensorT , the Hamiltonian
HMöbius(θ ) in a w plane can be written as [15]

HMöb = H0 − tanh(2θ )

2
(H+ + H−), (2.6)

where

H0 =
∫ L

0

dσ

2π
Tττ (σ ) =

∫ L

0

dσ

2π
[T (w) + T̄ (w̄)] (2.7)

and

H± =
∫ L

0

dσ

2π
[e±2πw/LT (w) + e∓2πw̄/LT̄ (w̄)]. (2.8)

Apparently, for θ → ∞ we have HMöbius(θ → ∞) = H0 −
1
2 (H+ + H−), which is the SSD Hamiltonian [8].

Based on the above two strategies, we are ready to calculate
the correlation function in Eq. (2.5). Readers who are not
interested in the technical part can go to the result in Eq. (2.22)
directly. Now let us consider the conformal mapping

z = e
2π
L

w, (2.9)

which maps the strip in the w plane to a complex z plane. The
two boundaries along σ = 0,L in the w plane are mapped to a
slit along z = x ± i0, with x ∈ [0,∞). The holomorphic part
of HMöbius in the z plane is

H
(z)
Möbius = 2π

L cosh(2θ )

[
cosh(2θ )

∮
zdz

2πi
zT (z)

− sinh(2θ )

2

∮
z2 + 1

2πi
T (z)dz

]
− πc

12L
. (2.10)

Apparently, the Hamiltonian H
(z)
Möbius is still complicated and

we do not know how to apply it on the primary field. It is found
that one can use a Möbius transformation to further map it to
the z̃ plane [15]:

z̃ = f (z) = −cosh θz − sinh θ

sinh θz − cosh θ
. (2.11)

Then the holomorphic part of HMöbius has the simple form

H
(z̃)
Möbius = 1

iL cosh(2θ )

∮
z̃T (z̃)dz̃ − πc

12L

= 2π

L cosh(2θ )
L

(z̃)
0 − πc

12L
. (2.12)

It is similar for the antiholomorphic part of H
(z̃)
Möbius. Then we

have

eHMöbiusτT (z̃)
n (z̃, ¯̃z)e−HMöbiusτ = λ2hT (z̃)

n (λz̃,λ ¯̃z), (2.13)

which is merely the dilatation operation in the z̃ plane. Here h

is the conformal dimension of Tn in Eq. (2.4), and

λ := exp

(
2πτ

L cosh(2θ )

)
. (2.14)
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Back in the z plane, its effect is to shift the operator T (z)
n from

z to znew, where znew is related with z as

f (znew) = λf (z), (2.15)

with f (z) given in Eq. (2.11). Then one can obtain

znew = [(1 − λ) cosh 2θ − (λ + 1)]z + (λ − 1) sinh 2θ

(1 − λ) sinh 2θ z + [(λ − 1) cosh 2θ − (λ + 1)]
.

(2.16)

Therefore, the correlation function of Tn can be written as

〈G | eHMöbiusτT (w)
n (w0,w̄0)e−HMöbiusτ | G〉

=
(

∂z

∂w

)h(
∂z̄

∂w̄

)h(
∂znew

∂z

)h(
∂z̄new

∂z̄

)h〈
T (z)

n (znew,z̄new)
〉
.

(2.17)

Here 〈T (z)
n (z,z̄)〉 is the one-point correlation function in a

boundary CFT. The boundary condition is imposed along the
slit z = x ± i0 on a real axis, with x ∈ [0,∞). Explicitly,
〈T (z)

n (z,z̄)〉 can be expressed as

〈
T (z)

n (z,z̄)
〉 = Ab

n

(
1

4
z− 1

2 z̄− 1
2

)h( 2ai

z
1
2 − z̄

1
2

)2h

, (2.18)

where Ab
n is an amplitude depending on the selected boundary

condition, which will affect the entanglement entropy by an
order ∼O(1) term. a is a UV cutoff, which may be considered
as the lattice spacing in a microscopic lattice model.

Recall that in the procedures above, the Hamiltonian we
use is HMöb(θ ). One needs to further take θ → ∞ to obtain
the SSD limit. After some tedious but straightforward steps,
finally we arrive at

〈G|eHSSDτT (w)
n (w0,w̄0)e−HSSDτ |G〉

= Ab
n

(
2π2a2

L2

)h( 1

m(t)2 + m(t)n(t)

)h

, (2.19)

where

m(t) =
√

n(t)2 + sin2 2πl

L
(2.20)

and

n(t) =
(

1 − cos
2πl

L

)
2π2t2

L2
− cos

2πl

L
. (2.21)

Here we have already taken the analytical continuation τ → it .
Then based on Eqs. (2.1)–(2.3), one can obtain the entangle-
ment entropy for A = [0,l] as follows:

SA(t) = c

12
log

{
L2

2π2a2
[m(t)2 + m(t)n(t)]

}
, (2.22)

where we have neglected the O(1) term ∼c log Ab
n=1 con-

tributed by the conformal boundary condition. As shown in
Fig. 3, we compare our field theory result SA(t) with the
numerical calculation on a lattice fermion chain. [See the
Appendix A for numerics. The only fitting parameter we used
is the global constant shift in the ground-state entanglement
entropy SA(t = 0). It is noted that for a free fermion model,
this constant term in SA(t = 0) has been exactly evaluated in
Ref. [40].] They are in excellent agreement. One remarkable

10
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1.8
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2.2

2.4

2.6

2.8

t
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A
(t

)

 

 

A=[0, 0.5L]
A=[0, 25L]
A=[0, 0.15L]
A=[0, 0.1L]
A=[0, 0.04L]
CFT

FIG. 3. Comparison between numerical results and CFT calcula-
tion for entanglement entropy evolution SA(t) after a quantum quench
from a uniform CFT to a sine-square deformed CFT. Here we choose
L = 500.

feature is that the entanglement entropy SA(t) grows as SA(t) �
c
3 log t in the long-time limit. Although the system is defined
on a finite space [0,L], in contrast to the uniform CFT [41], no
revival appears here. This agrees with previous observations
that a CFT with SSD effectively has an infinite length limit.
In our case, the signal caused by a quench can never reach the
“boundary” of the SSD system and reflect back. One intuitive
picture is to consider the sine-square deformation directly.
Since sin2 πx

L
vanishes near the boundaries x = 0,L, the local

group velocity of quasiparticles v(x) = 2 sin2 πx
L

will go to
zero when approaching the boundary. Then it takes an infinite
time for the quasiparticles to reach the boundary and reflect
back. We will provide further discussion on this effect in the
next section.

It is noted that there is much more information in SA(t) in
Eq. (2.22) and Fig. 3, which we will analyze case by case in
the following:

(i) t = 0. This corresponds to the ground state of a CFT
with an open boundary condition. SA(t) in Eq. (2.22) can be
simplified as

SA(t = 0) = c

6
log

[
L

πa
sin

(
πl

L

)]
. (2.23)

This is the well-known result for a finite interval of length l at
the end of a CFT living on [0,L] [42].

(ii) l = L/2, t > 0. Now the subsystem is the left half
(or right half) of the total system. SA(t) has a very simple
expression as follows:

SA(t) = c

6
log

[
1

a2

(
t2 + L2

4π2

)]
− c

6
log

(
L

4πa

)
. (2.24)
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One can find that there is a crossover around t∗ = L/2π (see
also Fig. 3). For t � t∗, SA(t) = c

6 log(L/πa) is independent
of time, while for t � t∗, SA(t) � c

3 log t , which is universal
and independent of l and L, as can be observed in Fig. 3.

(iii) l � L, t > 0. As shown in Fig. 3, for arbitrary l ∈
(0,L) there is a crossover time t∗, so that for t � t∗ one has
SA(t) � SA(t = 0), and for t � t∗ one has SA(t) � c

3 log t . In
particular, for l � L one can find a simple expression of t∗ as
follows:

t∗ = L2

2π2l
, l � L. (2.25)

When the length L of the total system is fixed, one can find
that t∗ ∝ l−1. This explains why there is a wider plateau
for smaller l in Fig. 3. In other words, the smaller l is, the
longer SA(t) stays in its initial value SA(t = 0). This may
be intuitively understood as follows. Since the Hamiltonian
density is sine-square deformed, the local group velocity of
quasiparticles also varies in position. The group velocity is
smaller near the boundary, and larger near the center of the
system. If the entanglement cut is close to the boundary (this
corresponds to l � L or L − l � L), it takes the quasiparticles
longer to reach (or escape) subsystem A. Therefore, SA(t) will
stay at its initial value for a longer time.

For general l ∈ (0,L), the crossover time t∗ is determined
by

t∗ = L

2π
sin−1

(
πl

L

)√
max

(∣∣∣∣ cos
2πl

L

∣∣∣∣,
∣∣∣∣ sin

2πl

L

∣∣∣∣
)

. (2.26)

We emphasize that for t � t∗, the entanglement entropy grows
as SA(t) � c

3 log t all the way, with no revival. This is the
feature of an infinite system. On the other hand, in the works
by Ishibashi and Tada [13,14], it was found that the energy
spectrum of a CFT with SSD is continuous. Recall that a
uniform CFT on a finite space of length L has energy spacing
∼1/L, which is discrete for a finite L. From this point of view,
a CFT with SSD seems to have an infinite length limit. Here,
we studied this effect from the time evolution of entanglement
entropy after a quantum quench.

As a remark, it is noted that in the CFT calculation the
entanglement entropy grows as SA(t) � c

3 log t with no upper
bound in the long-time limit. Apparently, this is not the case
for a lattice model, since there is a finite number of degrees of
freedom in a subsystem of finite length and the energy spectrum
is of finite width. In a lattice model, the entanglement entropy
will finally saturate. One can refer to Ref. [43] for more related
discussions.

C. Physical interpretation of t∗

To further understand the physical meaning of t∗ in
Eq. (2.25), it is helpful again to consider the quasiparticle
picture. Compared to the cases of global quench [28–30],
local quench [31–34], and inhomogeneous quantum quench
[21–24,35–38], there is a fundamental difference here. In our
case, since the initial state is the ground state of a uniform CFT,
which is long-range entangled, there is not an intuitive picture

on how the entangled pairs of quasiparticles are distributed in
the initial state.4

To discuss the physical meaning of t∗, we assume that the
quasiparticles are emitted from the main bulk of the system, and
then we check the time scale that these quasiparticles propagate
into the region (0,l) with l � L. This assumption is quite
reasonable because the Hamiltonian density 2 sin2 ( πx

L
)h(x) is

more uniform near the two ends of the SSD system, and it looks
almost the same as the uniform Hamiltonian density h(x) up
to a global factor. Then in the quantum quench by evolving the
ground state of H0 with HSSD, the quasiparticles are mainly
emitted from the bulk of the system.

Now we consider the quasiparticles emitted from ξ , with
ξ ∼ O(L). These quasiparticles will contribute to the entan-
glement entropy of A = (0,l) after a time,

tq =
∫ ξ

l

dx

v(x)
. (2.27)

Here v(x) = 2 sin2 ( πx
L

) is the group velocity of quasiparticles
at x. It is straightforward to obtain

tq = L

2π

(
1

tan πl
L

− 1

tan πξ

L

)
. (2.28)

Recall that l � ξ and l � L. Then tq can be further simplified
as

tq � L2

2π2l
, (2.29)

which is merely t∗ in Eq. (2.25). That is, t∗ actually character-
izes the light cone of quasiparticles that enter the subsystem
A = (0,l). This explains why for t � t∗, the entanglement
entropy SA(t) of A = (0,l) does not increase, while for t ∼ t∗
the entanglement entropy starts to grow in time.

For a generic l that is of order O(L), to have a quasiparticle
interpretation of t∗ in Eq. (2.26), one needs to know more
concrete information about the distribution of entangled pairs
of quasiparticles in the initial state. This is beyond the scope
of our current work.

III. ENTANGLEMENT EVOLUTION: QUENCH FROM
UNIFORM TO MÖBIUS DEFORMED SYSTEMS

In the previous section, we studied the quantum quench
from a uniform system to a SSD system. It is natural to ask
the following: what happens for the Möbius deformation? It
is interesting to see how the Möbius deformation interpolates
between the uniform and SSD cases.

To be concrete, we prepare the initial state as the ground
state of a uniform CFT on a finite space [0,L]. Starting from
t = 0, we have the initial state evolve according to the Möbius
Hamiltonian in Eq. (2.6), and we study the time evolution of

4It is noted that in the global quench [28–30], since the initial state
is short-range entangled, the entangled pairs in the initial state are
localized in space. In the local quench in Ref. [31], the entangled
pairs are emitted from the region where two CFTs are connected. In
both cases, we know clearly the distribution of entangled pairs in the
initial state.
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FIG. 4. Comparison between numerical results and CFT calcula-
tion for entanglement entropy evolution after a quantum quench from
a uniform CFT to a Möbius deformed CFT. It is found that the period
of oscillations is L cosh(2θ ) and the amplitude of oscillation is 2θ/3.
Here we choose l = L/2 with L = 500.

entanglement entropy. The procedures are almost the same as
those in Sec. II, except that now we do not take the limit θ →
∞. After some straightforward algebra, one can find the time
evolution of entanglement entropy for subsystem A = [0,l] as

SA(t) = c

12
log

{
L2

2π2a2
[f (t)2 + f (t)h(t)]

}
, (3.1)

where, as before, we have neglected the O(1) contribution
from the conformal boundary condition. f (t) and h(t) have
the expressions

f (t) =
√

h(t)2 + sin2 2πl

L
(3.2)

and

h(t) = −
(

sin2 πt

Leff
cosh(4θ ) + cos2 πt

Leff

)
cos

2πl

L

+ sin2 πt

Leff
sinh(4θ ), (3.3)

where

Leff = L cosh(2θ ). (3.4)

This effective length can be alternatively obtained by con-
sidering a CFT in curved spacetime (see Appendix B). As
a self-consistent check, one can find that SA(t) reduces to
Eq. (2.23) for t = 0, and reduces to Eq. (2.22) for θ → ∞,
as expected.

The comparison between CFT results and the numerical
calculation is shown in Fig. 4, and the agreement is excellent.
For θ = 0, since the Möbius Hamiltonian is the same as the
uniform case, then there is essentially no quench (see Fig. 4).

For θ > 0, it is interesting that oscillations appear in SA(t).
Based on SA(t) in Eqs. (3.1)–(3.4), one can find the period of
oscillations is Leff = L cosh(2θ ). For θ → 0, the oscillation
period is L, which is as expected for a uniform CFT. On the
other hand, in the SSD limit θ → ∞, the oscillation period
becomes L cosh(2θ ) → ∞. This agrees with the fact that there
is no revival in SA(t) for a CFT with SSD.

To see the features of SA(t) in Eq. (3.1) more clearly, let us
focus on the case l = L/2. Then SA(t) can be simplified as

SA(t) = c

6
log

{
L

πa

[
sin2

(
πt

Leff

)
e4θ + cos2

(
πt

Leff

)]}
.

(3.5)

The period of oscillations with T = Leff = L cosh(2θ ) can be
explicitly seen in this expression. In addition, one can find that
the amplitude of oscillations grows as we increase θ . For l =
L/2, the amplitude of oscillations has a very simple expression,

SA

(
t = Leff

2

)
− SA(t = 0) = 2c

3
θ, (3.6)

which grows with θ linearly, as can be observed in Fig. 4.
Furthermore, it is straightforward to check that as θ → ∞,

the entanglement entropy evolution in Eq. (3.1) will reduce to
the SSD case in Eq. (2.22), as expected.

As a short summary, by studying the quench dynamics
in a CFT with Möbius deformation, one can find that the
effective length of the system becomes Leff = L cosh(2θ ),
which interpolates between the uniform and SSD systems, as
we tune θ from 0 to ∞.

Remark: It is noted that the effective length Leff can also be
understood based on the quasiparticle picture. For the Möbius
deformation, the group velocity of quasiparticles at x is v(x) =
1 − tanh(2θ ) cos 2πx

L
. Since the system is symmetric about x =

L/2, for an entangled pair of quasiparticles emitted from x,
they will meet again at L − x at time

tq =
∫ L

0

dx

v(x)
= L cosh(2θ ). (3.7)

Similarly, the entangled pair of quasiparticles emitted from
L − x will meet again for the first time at x with time tq =
L cosh(2θ ). This explains why we observe a revival of SA(t)
with a time period L cosh(2θ ).

IV. CONCLUDING REMARKS

Let us first summarize our main results, and then make some
comments.

We studied analytically the quench dynamics of a sine-
square deformed CFT, which was proposed to have a continu-
ous energy spectrum and an infinite length limit. By quenching
from a uniform CFT to a sine-square deformed CFT on [0,L], it
was found that the entanglement entropy SA(t) for subsystem
A = [0,l] evolves in time in a universal way. There exists a
crossover time t∗. For t � t∗, SA(t) does not evolve in time;
for t � t∗, SA(t) grows in time all the way as SA(t) � c

3 log t ,
with no revival. This feature indicates that the CFT with SSD
effectively has an infinite length limit, consistent with previous
analysis on the energy spectrum. In addition, we studied
analytically the quench dynamics of a Möbius deformed CFT.
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Aside from some interesting features, it was found that a
length scale Leff = L cosh(2θ ) appears in the time evolution
of the entanglement entropy, which interpolates between the
uniform and SSD systems. We hope our work can stimulate
more interest in the nonequilibrium dynamics in sine-square
deformed CFTs and other related nonuniform CFTs.

As will be studied in Ref. [43], the setup in this work
provides a building block for studying the Floquet dynamics
in a conformal field theory. That is, one can drive a CFT
with Hamiltonians H0 and HSSD [see Eqs. (1.1) and (1.2)]
periodically, and see if the system can be heated or not.
Compared to the previous work on boundary-driven CFT [44],
now we have a bulk-driven Floquet CFT that can be solved
analytically [43].

In addition, careful readers may have noticed that when
evaluating the correlation function in Eq. (2.5), we did not
introduce any UV regularization, in contrast to other setups
such as in Refs. [28–34]. The reason is as follows. The effect of
the time evolution operator U (t) = e−iHSSDt is simply to evolve
the primary operator O(z,z̄) to O(znew,z̄new). The rest of the
calculation is essentially evaluating the correlation function
within the ground state of H0. This is in contrast to other
setups in which the evaluation of correlation functions cannot
be reduced to the calculation within the ground state of H0.

There are many open questions, and we would like to
mention some of them here:

(i) In our work, we quench a uniform CFT to a nonuniform
CFT. There are many other interesting setups for quantum
quenches, which may be used to study the property of sine-
square deformed CFTs, such as the global and local quenches
as introduced in Refs. [29,31]. Technically, it will be more
involved to study these setups because the CFT with SSD is
defined on a finite space. There are more boundaries introduced
by the global/local quenches, and one needs complicated
conformal mappings to study these quenches. We also want to
point out that there are other interesting entanglement measures
that may be helpful to detect how the entanglement is generated
(or propagates) in a CFT with SSD. See, e.g., Fig. 10 in
Ref. [45] for how to use entanglement negativity to detect the
distribution of EPR pairs in a CFT after a quantum quench.

(ii) It is also interesting to study other kinds of deformations,
such as a sinn deformation. It is expected that the Virasoro
generators Ln and L−n with n > 1 will also appear in the
Hamiltonian. The feature of the energy spectrum for CFTs with
such deformations was not well understood. It is interesting to
see if such deformations can be analytically studied within the
CFT approach.

(iii) Recently, measuring the time evolution of (Renyi)
entanglement entropy after a quantum quench was realized
in cold-atom experiments [46], where the (1+1)D quantum
system is quenched from a Mott insulator phase to a superfluid
phase. Here, the setup in our work applies to arbitrary (1+1)D
quantum critical systems that can be described by a CFT. We
expect that our setup may be realized in cold-atom experiments
by tuning the tunneling strength between neighboring sites
through the optical lattice depth [47]. It is noted that the
tunneling strength corresponds to the hopping strength in
the lattice model (see Appendix A). By tuning the tunneling
strength in space in a sine-square deformed way, one may
realize SSD as well as its quench dynamics in experiments.
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APPENDIX A: LATTICE MODEL

To confirm our field theory result in the main text, we
calculate the entanglement entropy evolution based on a free
fermion lattice model. We prepare the initial state as the ground
state |G〉 of a uniform free fermion chain with half-filling:

H0 =
L−1∑
i=1

hc
†
i ci+1 + H.c., (A1)

where h is the hopping strength, and we choose h = 1/2
throughout the calculation. The length of the chain is L, and the
open boundary condition is imposed. ci (c†i ) are fermionic op-
erators, which satisfy the anticommutation relations {ci,cj } =
{c†i ,c†j } = 0 and {ci,c

†
j } = δij .

Then at time t = 0, we have the initial state |G〉 evolve
according to the new Hamiltonian, which is nonuniform in
space:

H1 =
L−1∑
i=1

[
1 − tanh(2θ ) cos

(
2π (i + 1/2)

L

)]
c
†
i ci+1 + H.c.

(A2)

Note that for θ = 0, H1 corresponds to the uniform Hamilto-
nian, and for θ → ∞, H1 corresponds to the Hamiltonian with
SSD. Then one can calculate the two-point correlation function
〈ψ(t)|c†i cj |ψ(t)〉 in subsystem A, with |ψ(t)〉 = e−iH1t |G〉.
Based on the two-point correlation functions, one can calculate
the entanglement entropy SA(t) following Peschel’s method
[49].

We compare our numerical calculation with the CFT results
for cases with θ → ∞ and finite θ , respectively. The only
fitting parameter we choose is the global shift (which is a
constant) in the ground-state entanglement entropy SA(t = 0),
arising from the cutoff and boundary conditions. [It is noted
that for a free fermion model, this constant term in SA(t = 0)
has been explicitly evaluated in Ref. [40].] The agreement is
excellent, as shown in Figs. 3 and 4.

APPENDIX B: CFT IN CURVED SPACE-TIME

In this section, we explain that the sine-square deformed
Hamiltonian or Möbius Hamiltonian can be regarded as a CFT
in curved space-time. The CFT in curved space is invariant
under coordinate transformation and Weyl transformation. For
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example, we consider a multipoint correlation function

〈O1(x1)O2(x2) · · · 〉ds2
1

(B1)

in the space with a metric

ds2
1 = gμν(x)dxμdxν. (B2)

The correlation function is invariant under the coordinate
transformation

Oi(xi) → Oi(yi) |yi=f (xi ) ,

ds2
1 → ds2

2 = gμν(x)
∂xρ

∂yμ

∂xσ

∂yν

∣∣∣∣
x=f −1(y)

, (B3)

and the Weyl transformation

Oi(xi) → e−�iσ (xi )Oi(xi),

ds2
1 → ds2

3 = e2σ (x)ds2
1 , (B4)

where �i = hi + h̄i . More explicitly, the three correlation
functions

〈O1(x1)O2(x2) · · · 〉ds2
1

= 〈O1(y1)O2(y2) · · · 〉ds2
2
|yi=f (xi )

= e− ∑
i �iσ (xi )〈O1(x1)O2(x2) · · · 〉ds2

3

(B5)

are equal to each other. With these results, we can rewrite the
theory with the Möbius Hamiltonian as a CFT in curved space.

As discussed in Sec. II, the operators in coordinate w and
coordinate z̃ are related by

φ(w)(tE,x) = eHtE φ(w)(0,x)e−HtE

=
(

2π

L

)2h
e

4πh
L cosh 2θ

tE

(cosh 2θ − sinh 2θ cos 2πx
L

)2h
φ(z̃)(z̃, ¯̃z),

(B6)

where

z̃ = −e
2πtE

L cosh 2θ
cosh θe

2πi
L

x − sinh θ

sinh θe
2πi
L

x − cosh θ
,

¯̃z = −e
2πtE

L cosh 2θ
cosh θe

−2πi
L

x − sinh θ

sinh θe− 2πi
L

x − cosh θ
. (B7)

We will show that the Möbius Hamiltonian in the w coordinate
can be regarded as CFT in the space with a metric,

ds2
(w) = dt2

E

cosh2 2θ

(
cosh 2θ − sinh 2θ cos

2πx

L

)2

+ dx2.

(B8)

Note that the metric in z̃ is

ds2
z̃ = dz̃ d ¯̃z. (B9)

The metric in z̃ and w can be transformed to each other by a
coordinate transformation (B7) and a Weyl transformation

ds2
(z̃) = e2σ ds2

(w), (B10)

where

e2σ =
(

2π

L

)2
e

2πtE
L cosh 2θ(

cosh 2θ − sinh 2θ cos 2πx
L

)2 . (B11)

With (B3) and (B4), we get the same relation (B6) from CFT
in curved space. Furthermore, we can calculate the effective
length of the system,∫ L

0

√
gxx

gtt

dx = L cosh 2θ, (B12)

which is the same as Leff in Eq. (3.4). As studied in Sec. II C,
it is also interesting to check the effective distance between
x1 = l and x2 = ξ as follows:

Leff(x1,x2; θ → ∞) =
∫ ξ

l

√
gxx

gtt

dx

= L

2π

(
1

tan πl
L

− 1

tan πξ

L

)
. (B13)

For l � L and l � ξ , one has

Leff(x1,x2; θ → ∞) � L2

2π2l
. (B14)
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