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ABSTRACT
Onboard sensors in smartphones present new opportunities

for vehicular sensing. In this paper, we explore a novel appli-
cation of fault detection in wheels, tires and related suspension
components in vehicles. We present a technique for in-situ wheel
imbalance detection using accelerometer data obtained from a
smartphone mounted on the dashboard of a vehicle having bal-
anced and imbalanced wheel conditions. The lack of observ-
able distinguishing features in a Fourier Transform (FT) of the
accelerometer data necessitates the use of supervised machine
learning techniques for imbalance detection. We demonstrate
that a classification tree model built using Fourier feature data
achieves 79% classification accuracy on test data. We further
demonstrate that a Principal Component Analysis (PCA) trans-
formation of the Fourier features helps uncover a unique observ-
able excitation frequency for imbalance detection. We show that
a classification tree model trained on randomized PCA features
achieves greater than 90% accuracy on test data. Results demon-
strate that the presence or absence of wheel imbalance can be ac-
curately detected on at least two vehicles of different make and
model. Sensitivity of the technique to different road and traffic
conditions is examined. Future research directions are also dis-
cussed.

∗Address all correspondence to these authors.

1 Motivation

Rim and tire imbalance and unevenness of wheel geome-
try are common problems in vehicles, with effects ranging from
minor annoyance to the driver due to diminished ride quality to
severe impact on vehicle function and reduction in service life of
high cost or safety-critical components. A bent wheel, or a wheel
out of balance, imparts unintended vibration on suspension com-
ponents and may manifest as a ”shimmy” or ”shake” on the steer-
ing wheel, rattle a vehicle and its contents, or cause loads to be
applied on vehicle components in unanticipated ways. This var-
ied loading can pose a challenge to gaining or maintaining trac-
tion due to complex dynamics. Additionally, wheel vibration can
cause uneven tire tread wear and the presence of vibration due to
imbalance is often an indicator correlated with the development
of larger problem, such as a bent tie rod occurring from the same
incident, causing the initial imbalanced condition. Large wheel
deformations can even lead to slow leaks and air loss, which at
best reduce fuel economy and vehicle performance, and at worst,
lead to a blowout with potentially dire consequences.

It is for these reasons that monitoring wheel and tire balance
is critical to the safe operation and proper long term maintenance
strategy for any wheeled vehicle, particularly those which are
lightweight and operate at high sustained speeds, such as many
modern passenger vehicles. Unfortunately these imbalance is-
sues are only detected and corrected for during vehicle mainte-
nance and inspection checks, set at fixed, infrequent intervals.
In-situ monitoring allows the collection of data about vehicle be-
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havior in real-time and can mitigate driver annoyances, reduce
the cost of ownership of a vehicle, and help to ensure safe and
comfortable operation of a vehicle across a range of speeds and
conditions. There have been several studies to enable real-time,
in-situ monitoring by instrumenting wheels and suspension com-
ponents with accelerometers and other sensors mounted to a ve-
hicle [1] [2]. While these approaches work well, the process
of instrumenting the vehicle with aftermarket external sensors
is cumbersome and costly. An alternative of accessing data from
manufacturer-proprietary sensors requires expensive and compli-
cated hardware and software interfaces that limit the utility of a
sensing algorithm to individual makes or models of vehicles.

In this work, we examine the possibility of using the on-
board sensors on a smartphone as a substitute for these external
or manufacturer-proprietary sensing devices so as to provide low
cost and easily deployable wheel balance detection. To this end,
we collect accelerometer data from the smartphone in both bal-
anced and imbalanced wheel conditions. We induce an artificial
imbalance by adding extra weights to the wheel, which mimics
real world situation stemming from wheel damage or loss of bal-
ancing masses. Typically, are vibrations felt above 60mph [1],
so we collected data at this speed on highways for balanced and
imbalanced states. There is no unique distinguishing signature
observed in an FFT of the accelerometer data. Therefore, we
use a supervised learning approach by building a classification
tree model using the FFT features, which yielded a classifica-
tion accuracy of 79% on test data. We then make use of a PCA
transform of the FFT data that helps uncover a single excitation
frequency that can be used to uniquely distinguish between the
balanced and imbalanced states. A classification tree trained with
the PCA features demonstrates greater than 90% classification
accuracy on test data.

Section 2 discusses the causes of imbalance in wheels and
suspension systems. Section 3 discusses the related work in
wheel imbalance detection and positions our work in that con-
text. Section 4 discusses the experimental setup for our study,
e.g how imbalance was artificially introduced in a vehicle as well
as the mobile phone sensor data that was gathered to detect the
imbalance and support our hypothesis. Section 5 presents data
post processing and the development of machine learning algo-
rithms that were used for imbalance detection. Section 6 dis-
cusses the sensitivity of the hypothesis to factors such as variable
traffic flow, road conditions and vehicle make. Finally, Section 7
presents the conclusions of this study and directions for future
work.

2 Sources of Imbalance
In use, moving vehicles suffer from non-cyclic or non-

predictable vibration due to irregularities in the road surface. Ad-
ditionally, imperfections in the manufacturing of tires and wheel
rim components, or use-phase events, can create a vibration in-

duced in a vehicle related to the rotation of wheels and tires.
The net result of an unbalanced assembly or noncircularity is the
same regardless of the source of the issue: an unbalanced mass
distribution or a noncircularity will result in the creation of an
internal source of vibration in a vehicle, for which the severity of
the vibration depends upon the magnitude of the imperfection,
the vehicle suspension, and the wheel rotational frequency.

To some extent, these imbalances can be offset by the use of
balancing weights [3], but the efficacy of these weights need to
be periodically reassessed over time and car use as deformations,
wear, and related material loss continue to change the balanced
state of the wheel. Due to the constant rotation of the wheels in
motion, internal vibrations are a periodic phenomenon occurring
at a determinable frequency related to the loaded tire diameter
and vehicle velocity. Unbalanced wheels are the cause of several
detrimental effects such as loss of ride comfort as well as wear
and tear of suspension components [4] [5]. These vibrations ap-
ply unnecessary loading to wheel bearings, steering linkages, and
fasteners in the vehicle not designed to withstand constant, cyclic
loading. A severe imbalance can impact the traction of a tire and
reduce cornering and braking abilities due to temporarily reduced
grip.

There are many reasons a wheel might become out of bal-
ance. Common causes include a mechanical deformation of the
metal wheel, or loss of weights due to impact. Drivers hit curbs
while parking, warping or removing material and shifting the bal-
ance of the wheel and tire assembly, or a hub cap dislodges and
shifts the center of mass of the wheel. An isolated impact can
knock a balancing weight off of a wheel. Adhesive deteriorates
over time for many weight backings, and clip-on weights are fre-
quently secured improperly or the material properties of the clip
degrade due to cyclic loading. Continued traversal of a stretch
of road with poor surface roughness, corrosion, and many other
factors can cause early, unanticipated failure and loss of balanc-
ing weights.

Tire wear and damage can also impact the balance of a ro-
tating assembly. Steel belts inside a tire may become damaged
in an impact, due to a manufacturing defect, or due to prolonged
over or under inflation, causing a tire to go out of balance. Tires
have non-uniform density, so wear and tread loss alone can cause
a significant shift the balance of a wheel and tire assembly (poor
alignment can exacerbate this situation). In the case of rapid ac-
celeration and braking on a newly-seated or underinflated tire,
the rubber and metal components can experience a relative slip
causing a shift in the center of mass, while rubber bubbles that
form due to damage of the inner layers of the rubber can cause
the tire surface to become locally nonuniform.

In most cases, the risk and impact of wheel assembly im-
balance is directly related to vehicle load and speed. Increasing
vehicle load, or increasing speed even slightly, greatly amplify
the potential for damage and resulting imbalances. As vehicle
loads and speeds increase, the energy involved in an impact with
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a raised surface in the roadway increases and the likelihood of
damage rises substantially [6]. The energy in an impact is related
to the kinetic energy, KE = 1

2 mv2. Thus, an increase in mass in-
creases impact energy and the likelihood of damage, while even
a small increase in velocity can make for a substantially more
energetic collision. Similarly, the energy imparted by an imbal-
anced wheel rotating at high speed is higher than that of a wheel
rotating at low speed, and the potential for damage and discom-
fort increases.

Less commonly, but still frequently occurring, there are
other wear and tear factors, as well as temporary, environment-
related conditions that can impact loading. Tires can pick up
debris such as screws or rocks from the road, or even snow and
ice buildup can temporarily shift balance to the point of inducing
a noticeable vibration. A small mass rotating at a radius can gen-
erate a substantial loading at a radius with a high angular speed.

3 Background
There are several well established practices to mitigate the

effect of wheel imbalance. For example, on-car balancing tech-
niques, which involve lifting a car and rotating each wheel to
check for imbalance, make use of weights attached to the wheel
rim to counteract the unbalanced mass of that particular wheel
[7]. The benefits are debatable since the vibration dynamics of
loaded, rolling tires on roadways can be significantly different
from those of an unloaded tire lifted off the ground [8]. Road-
force balancing offers an alternative approach, but it is difficult
for drivers to know when a re-balance is required unless a prob-
lem has significantly manifested.

With the advent of MEMS accelerometers and the devel-
opment of condition monitoring strategies there has been an in-
creased interest in on-road monitoring of wheel imbalances [9].
For example, Oblizajek et. al propose a system that makes use
of accelerometers and wheel rotation data to measure and miti-
gate the transference of vibrations from wheels to different com-
ponents in a car [8]. There have been several other instances
of wheel imbalance detection in instrumented vehicles [10]. A
demonstrated in-car system for monitoring tire balance relies on
accelerometers to identify radial and lateral acceleration of the
tire and compare amplitudes to a known good baseline at char-
acteristic frequencies, in effect examining differences in the am-
plitude of the Fourier component of radial acceleration [11] [12].
A variant on this setup uses an accelerometer on each wheel, to
identify vibration and even calculate tire pressure, but cost and
complexity of this system is significantly greater [13]. Another
application of accelerometer examines the use of wavelet trans-
forms for improved diagnostic accuracy while a Ford study relied
on the use of already-installed ABS sensors to detect imbalances
and and wheel hop, though access to this data is limited to partic-
ular makes and models of vehicles and requires low-level signal
interfaces [2] [1].

FIGURE 1. iPhone mounted in vertical orientation. The accelerome-
ter directions are labeled.

.

These studies provide good results but require the instru-
mentation of the vehicle with custom hardware containing ac-
celerometers, or data acquisition systems that average users do
not have available. The use of commoditized hardware like a
mobile phone greatly eases deployability and reduces cost of in-
strumentation. This study examines the feasibility of using the
smartphone’s accelerometer as a replacement.

4 Experimental Design
The ubiquity and low-cost of smart phones makes their use

as tools in vehicle diagnostics appealing. Application develop-
ment for smart phones is relatively simple, the devices are small,
light, and easy to mount, and power options are abundant. In re-
cent years, MEMS motion sensor resolution and sampling rates
have greatly improved in mobile devices, making data capture
increasingly useful [14]. Many mobile devices also include ad-
ditional sensors which could provide additional information. As
an example, most smartphones also have an on-board gyroscope
which can provide vehicle turning information if necessary.

The mounting location of the phone was chosen to be in a
rigid mount affixed to the windshield of the car in the vertical po-
sition (c.f Fig 1) as test data in the cupholder, door panel pocket,
and on the arm rest underwent unpredictable rotation and faced
additional vibration, picking up noise that would require signif-
icant filtering to eliminate. Keeping the phone in a fixed loca-
tion and orientation prevented the need for tracking the motion
of the phone itself, simplifying the analysis of accelerometer sig-
nal data and ensuring a higher signal to noise ratio for input data
for the classifier.

An experiment was constructed using a 2015 Subaru Im-
preza with P195/65R15 tires and later repeated with a 2013 Nis-
san Versa with 15 inch steel wheels and high profile P185/65R15
tires [15] [16]. The high profile sidewall of the tire and small
diameter of the wheel minimize the risk of pothole or curb dam-
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age due to its action as a compliant region, absorbing impact
energy that would otherwise be transferred to the wheel. This
helped to ensure a clean set of baseline data with minimal pre-
existing balance defects. An iPhone 5S sampling at 100 Hz was
mounted to the windshield, capturing 3-axis accelerometer data.
By the Nyquist-Shannon criterion, this would allow us to detect
features of up to 50 Hz without encountering aliasing issues. For
the purposes of this study we focus on the y-axis component of
acceleration, as this is the axis most impacted by wheel imbal-
ance [17].

The vehicle was first driven at a controlled speed of 60 mph
using the cruise control feature. Sampled data were available-
captured for at least 10 minutes in aggregate, with accelerometer
and gyroscope data captured to the smartphone mounted to the
windshield. We refer to this set of data as the baseline case in our
subsequent analysis. 60 mph was chosen as being a significant
speed capable of exciting a perceptible imbalance, but not signif-
icantly over the cutoff frequency of 50 Hz (the Ford paper iden-
tifies this velocity as 58mph, for their vehicle configuration). [1]
Next, four 1/4 oz adhesive-backed weights were applied to the
inside edge of the front right and rear left and right wheels, for a
total of 28g per wheel. The addition of these weights served to
induce a moderate level of wheel imbalance, perceptible but not
only when attention was drawn to it (in a similar study conducted
by Ford, 60 g weights were referred to as imperceptible by two of
three test drivers, indicating the subtlety of the imbalance). This
ensured that any classification would be at or below the level of
human sensitivity, and as such could be an early indicator capa-
ble of detecting a problem prior to the driver becoming aware of
an issue. We refer to this data set as the imbalanced case in the
subsequent analysis. We repeated the data collection for uncon-
trolled (driver throttle modulation) to analyze the impact of ve-
hicle velocity constancy, throttle control, and traffic to gauge the
efficacy of any devised algorithms in more realistic, real-world
scenarios. In the following section, we present the analysis of
the accelerometer data.

5 Data Analysis
The analysis of the accelerometer data proceeds in three

phases. First, we apply signal processing techniques to reduce
obvious sources of noise in the data. Next, we conduct a spec-
tral analysis of the data. Finally, we discuss the development
of machine learning techniques used to detect wheel imbalance
conditions. The following sections discuss each phase:

5.1 Data pre-processing
We first mitigate the contaminating effects of low-frequency

dynamics such as pothole striking events, road surface imper-
fections and infrastructure contributions such as expansion joint
periodicity. This is achieved by passing the accelerometer data

TABLE 1. Student t-statistics for peak frequencies observed in the
imbalanced condition

Frequency (Hz) t-stat Result (α=0.05)

14 7.8810 (d.o.f 118) Significant peak

28 6.9773 (d.o.f 118) Significant peak

through a high-pass filter. The value of the cutoff frequency for
this filter is obtained by considering both the low-frequency dy-
namics as well as typical wheel and tire sizes and common high-
way speeds. We assume that events such as pothole impacts and
road imperfections are aperiodic one-off events, which have an
impulse of energy diffused across the frequency spectrum. Ex-
pansion joints spaced at 5 m appear at a periodic 5.36 Hz for a ve-
hicle speed of 60 mph, while acceleration and deceleration events
under h control of the throttle tend to be modulated at low fre-
quencies. In the case of our study, at 60 mph (26.8 m/s), and as-
suming a tire circumference of 1993.34 mm (for the P195/65R15
tire size of the Subaru Impreza) 1, we anticipate a tire rotational
frequency of 13.4 Hz (13.6 for the Nissan Versa’s smaller tire).
We therefore set the cutoff frequency for the filter at 5 Hz, to
minimize environmental measurement.

5.2 Spectral analysis
From Section 4, recall that we obtained 10 minutes of ac-

celerometer data for both the baseline and imbalanced cases. We
segment this data into 120 sub-sets each containing 5 s worth of
data. We obtain a spectral representation of each sub-set using a
Fast Fourier Transform (FFT). Fig 2 presents statistics from the
spectral analysis of the 120 sub-sets for both the baseline and
imbalanced case. We note significant energy contributions at the
following frequencies:

Common peaks: We note a peak in the Fourier Transform
plots at about 10 Hz and another at 18-20 Hz. These oc-
cur in both the baseline and imbalanced cases. Section 5.3
discusses the sources of these energy components in more
detail.
Imbalance specific peaks: There also appears to be a visible
peak at 14 and 28 Hz for the imbalanced case which are sta-
tistically significant under the Student’s t-test (see Table 1).

It is also worth noting the variability between sub-sets of data
as illustrated by the spread in the average data. Therefore, we
explore the use of supervised machine learning techniques, and
specifically a decision tree algorithm, to quantify the success of
imbalance detection in the next section. Fig 3 presents a high
level overview of the machine learning techniques. The reader is
referred to Section 5.4 and Section 5.5 for details.

1http://www.discounttire.com/dtcs/infoTireMath.do
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Imbalance specific DFT peaks

FIGURE 2. Spectral analysis statistics from the 120 sub-sets of data
for both the baseline and imbalanced case. Each sub-set contains about
500 data points (for a sampling rate of 100 Hz). DFT magnitudes are
computed in 2 Hz buckets from 6 - 50 Hz and the mean and standard
errors are plotted across the 120 subsets of data.

.
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FIGURE 3. Supervised machine learning techniques that are imple-
mented in this study

.

5.3 Common peak characterization
The frequency peaks observed at 10 and 18-20 Hz may be

attributed to several factors — engine vibration dynamics, trans-
mission rotating components or windshield and phone mount res-
onance. We investigate these excitation frequencies in more de-
tail to make sure that they are not attributed to wheel motion or
balance issues.

First, the car was allowed to idle and data was recorded with
the vehicle engine on and the phone in the mount, and the data
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FIGURE 4. A plot showing a comparison of the Fourier Transform
results for a vehicle with the engine off and the phone mounted, and
idling with the engine on and phone mounted.

were recorded in the same vehicle and mount configuration with
the engine off. The peak at 20Hz still appeared with the engine
on, indicating that this excitation frequency is attributed to en-
gine operations and its manifestation in windshield and phone
mount vibrations. The comparison of engine on and engine off is
shown in Fig 4. Second, we attempt to attribute the 10 Hz exci-
tation frequency with the vehicle’s mechanics. Few components
in a vehicle rotate. The engine and wheels could be eliminated
based on their difference the measured frequency. The transmis-
sion, however, rotates when the vehicle is in motion and contains
several rotating elements operating at different speeds. An ex-
periment was conducted to determine the relationship between
transmission engagement and the 10 Hz signal. Data was col-
lected for the vehicle with the engine on and in park, and with
the engine on and in gear with the parking brake applied. In
park, a pawl keeps the transmission from rotating. In drive, the
rotating elements are free to move and a torque converter regu-
lates engagement of the various rotating elements.

With a cold engine operating at fast idle to warm up, the
Fourier Transform plot shows a 10 Hz peak when in gear but not
when idling in park (c.f Fig 5). With a hot engine, the 10 Hz
peak is not present, perhaps because engine speed is lower than
the torque converter’s stall speed (c.f Fig 6).

As a final validation, the experiment was repeated, compar-
ing a warm engine with transmission in gear at idle and brake
applied to a warm engine with transmission in gear at elevated
RPM. The results clearly indicate a peak at the 10 Hz frequency
in the case where throttle is applied, confirming that the peak is
due to a transmission rotational component. This appears in (c.f
Fig 7).

We therefore infer that the transmission’s engagement ap-
pears to be closely coupled with the 10 Hz peak, and may explain
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FIGURE 5. A plot showing a comparison of the Fourier Transform
results for a vehicle with engine warming up from the cold state when
in gear and when idling in park. The frequency shift from 10 Hz is due
to the increased crankshaft speed to help warm up a cold engine

FIGURE 6. A plot showing the Fourier Transform results for a vehicle
with a hot engine and when in gear

its presence in all of the motion studies. A detailed examination
of the effect of operation of the individual component’s of the
vehicle’s transmission is beyond the scope of this work.

5.4 Wheel balance state classification using Fourier
Transform feature data

We utilize a decision tree algorithm to detect wheel imbal-
ance from the spectral analysis of accelerometer data. Fig 8 and
Fig 9 illustrate the process of feature selection, segmentation of
the dataset into sub-sets for training and testing the algorithm
and our metric for measuring classification accuracy. Following
the process described in the algorithm, we compute a histogram
of classification accuracy as illustrated in Fig 10. We observe
that the accuracy is between 70-88% with a weighted average of
79.25%. Fig 11 illustrates a typical decision tree generated. The

FIGURE 7. A plot comparing the Fourier results for a warm engine
left in gear and with the brake applied for slow idle and elevated engine
speed. In the elevated RPM case, the transmission’s components engage
and a 10 Hz peak appears.

TABLE 2. Student t-statistics for Fourier Transform feature frequen-
cies used in decision tree training

Freq (Hz) t-stat Magnitude Diff. (α=0.05)

42 4.0475 (d.o.f 118) Significant

10 2.2454 (d.o.f 118) Significant

38 2.1805 (d.o.f 118) Significant

6 5.9985 (d.o.f 118) Significant

16 0.744 (d.o.f 118) Not Significant

18 1.2384 (d.o.f 118) Not Significant

algorithm uses Fourier Transform magnitudes of the following
frequencies to make branching decisions for the tree in decreas-
ing order of importance: 42,10&38,6&16&18Hz. The statistical
significance of the differences in Fourier Transform magnitudes,
between the baseline and imbalanced cases, at these frequencies
is listed in Table 2. Referring to Fig 2, it seems surprising that
the tree assigns most importance to the 42 Hz feature for clas-
sification while completely ignoring the statistically significant
visible peaks at 14 and 28 Hz in the imbalanced case. The dif-
ference between the FFT magnitudes between the baseline and
imbalanced case for the chosen frequencies of 16 and 18 Hz are
not statistically significant either. Furthermore, the decision tree
itself is quite complex consisting of at least 5 levels. To im-
prove confidence in the tree’s performance, we focus on improv-
ing the features being used for tree training and testing. In the
subsequent section, we discuss a Principal Component Analy-
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FIGURE 8. Generation of DFT transform from the baseline and im-
balance datasets.

.

FIGURE 9. Using DFT features for decision tree training.
.

sis (PCA) transformation of the FFT data that seeks to generate a
feature space having maximum separability between the baseline
and imbalanced cases.

5.5 Wheel balance state classification using a PCA
transform of FFT feature data

Fig 8 and Fig 12 illustrate the process of feature generation
using the PCA transform, selection of training and test sets for

FIGURE 10. Histogram of classification accuracy across 10 runs of
the decision tree algorithm.

.

FIGURE 11. Decision tree generated using the FFT data as features.
If the FFT magnitude at a node is < y, the left branch is chosen else the
right branch is chosen

.

the decision tree algorithm. The 1x22 vector illustrated in Fig 12
represents the projection of FFT data along the most significant
PCA component direction. Following the procedure outlined in
the algorithm, a histogram of classification accuracy is computed
as illustrated in Fig 13. There is a significant improvement in
classification accuracy with a weighted average of 91.6%. Also,
the decision tree, shown in Fig 14, the tree is only 1 level and
uses the PCA transformed magnitude at 12 Hz to classify state.
Referring to Fig 15, we notice a peak at 12 Hz for the imbal-
ance case, and a corresponding trough in the baseline case, which
is further confirmed by a statistically significant Student’s t-test
(tstat = 4.0791 for 18 d.o.f. at α = 0.05). We therefore conclude
that the PCA transformation of the FFT data significantly boosts
the ability of the decision tree to detect the presence of a wheel
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.

FIGURE 13. Histogram of classification accuracy across 10 runs of
the decision tree algorithm using the PCA transformation.

.

imbalance.

6 Sensitivity Analysis
While we have demonstrated good detection of wheel im-

balance using smartphone acceleration data, it is important to
examine the universal applicability of this technique to vehicles
of different makes, different road conditions and variation in ve-
hicle speed due to variable traffic flow conditions. In this section,
we examine the sensitivity of our algorithm to these variables.

FIGURE 14. Decision tree generated using the PCA transformed FFT
data. If the PCA transformed FFT magnitude at a node is < y, the left
branch is chosen else the right branch is chosen

.

Imbalance specific frequency peak

FIGURE 15. Spectral analysis statistics from the 120 sub-sets of data
for both the baseline and imbalanced case using a PCA transformation
of the FFT data. We choose the most significant PCA component in our
analysis.

.

6.1 Effect of vehicle make and road conditions
The results presented in Section 5 were obtained by driving a

2015 Subaru Impreza Hatchback vehicle on a stretch of highway
connecting Boston, MA and Albany, NY. We conduct another set
of experiments using a Nissan Versa vehicle on a stretch of high-
way connecting Boston, MA and Kittery, ME. This vehicle was
driven at a controlled speed of 60 mph as well. The only differ-
ence is that for this series of experiments we mounted 4 1/4 ounce
weights on the front left and rear right tire to simulate imbalance
conditions. Fig 16 illustrates the classification accuracy using a
decision tree learning algorithm when using Fourier Transform
features and PCA transformed Fourier features. We observe su-
perior classification accuracy using the PCA transformed Fourier
data in this case as well with a weighted average accuracy of 70%
and 97.6% without and with using the PCA transformation re-
spectively. These results indicate that smartphone accelerometer
data can successfully be used to classify imbalance for at least 2
common passenger vehicles of comparable class, and at less than
half the mass (28g vs. 60g) of prior art [1].
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FIGURE 16. Histogram of classification accuracies using the FT fea-
tures and PCA transformed FT features in decision tree training. The
PCA transformed FT features yield better average accuracy.

.

6.2 Effect of traffic flow conditions
The experiments were conducted by driving the vehicle at a

controlled speed of 60 mph. In general, traffic flow conditions
may cause variations in speed brought about by lane changing,
breaking and acceleration. We conducted another set of experi-
ments, this time allowing vehicle speed variations of ± 8 mph.
We consider the case where the decision tree is trained with PCA
transformed FT features due its better classification accuracy.
Fig 17 and Fig 18 illustrate the change in classification accuracy
for the Subaru Impreza and Nissan Versa vehicle under variable
vehicle speed conditions. Although variations in speed do reduce
classification accuracy, the variation in weighted accuracy from
97.6% - 89.45% when using the Nissan Versa and 91.2% - 89.8%
for the Subaru Impreza is within 10%. Therefore the trade-off be-
tween accuracy and need for controlled vehicle speed may in-fact
be acceptable.

7 Conclusions and Future Work
We demonstrated that accelerometer data collected from a

smartphone mounted on a vehicle’s dashboard can successfully
be used to detect wheel imbalance in a vehicle. A decision tree
algorithm trained with features from an FFT transform of the
accelerometer data yielded classification accuracies of 70-88%,
with an average of about 79%. By using a PCA transformation
of the FFT features, we were able to improve the average clas-
sification accuracy to 91%. We demonstrated that our technique
works for at least 2 types of vehicles on different road conditions
and is relatively robust to minor speed variations.

Future work will explore the implications of changing the
feature and training set from randomized to sequential. It is our
belief that due to the nonuniformity of the road surface, a se-
quential approach would diminish the accuracy of our the clas-

FIGURE 17. Histogram of classification accuracies for vehicles
where vehicle speeds are controlled and where they are not allowed.
Results from the algorithm where the decision tree is trained with PCA
transformed FT features is presented. Results are shown for the Nissan
Versa vehicle.

.

FIGURE 18. Histogram of classification accuracies for vehicles
where vehicle speeds are controlled and where they are not allowed.
Results from the algorithm where the decision tree is trained with PCA
transformed FT features is presented. Results are shown for the Subaru
Impreza vehicle.

.

sification algorithm. A standardized testing route will allow for
normalized data collection.

This model worked well, but relied on relatively heavy im-
balances for detection. As next steps, we plan to examine the ef-
fect of reducing the weight added to the wheel rims and quantify
the effect on algorithm performance, such that imbalances may
be detected before the driver perceives anything is amiss. Also,
this study focused on a simple case of identifying the presence
of wheel imbalance. As a next step we seek to classify which
wheel is out of balance, thus improving the utility of the study
and providing a practical application.

9 Copyright c© 2015 by ASME



In the future, additional data inputs may be used to enhance
the model, or to apply the model to other problems in a vehicle.
For example, OBD (On-Board Diagnostic) data may be used to
identify trip segments at a constant velocity to mitigate the effects
of traffic or turning on analysis, or the magnitude of acceleration
may be used to identify braking events such that this model might
be applied to identify warped or built up brake rotors.

Additional areas of model improvement will focus on more
granular identification of particular wheels, as well as attempting
to quantify the severity of imbalance such that maintenance may
be performed prior to a vehicle sustaining lasting damage.
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