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Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities
as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems.
However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication
and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand
patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is
stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses,
our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of
sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel,
is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a
robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
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I. INTRODUCTION

Active soft structures are burgeoning in engineering for
their promise of compliant, dynamic, and programmable
mechanisms. Examples include soft robotics [1,2], deploy-
able structures [3–5], surface patterning [6,7], and four-
dimensional printing [8]. Mechanical instabilities have been
central to harnessing these new modes of shape morphing that
derive from the ensuing large elastic deformations [9]. As such,
shape morphing has been widely studied in slender filamentary
structures [10] and plates [6,11]. By contrast, instances of
surface patterning of curved shells are yet to be fully exploited
in technology, even if examples do exist in nature (e.g., pollen
grains [12] and drying green peas [7]), and synthetic analog
systems have been developed at the colloidal scale [13]. This
discrepancy is surprising given the ubiquitousness of shells for
enclosure, protection, and load bearing; from capsids [14] and
colloidosomes [15] to metallic shells [16] and architectural
domes [17].

Here, we study the postbuckling patterns obtained by pneu-
matic actuation of a thin elastic shell that is constrained from
within by a rigid mandrel [Fig. 1(a)]. The patterns comprise
a periodic lattice of dimples that tile the originally spherical
shell as they are sequentially triggered through buckling. Once
fully developed, the resulting pattern morphs into a reticulated
network of sharp ridges that separate adjacent facets of the
tiling [Fig. 1(a4)]. Combining experiments, scaling analyses,
and computer simulations, we rationalize the mechanics of
this system. Starting with the dimple as an individual building
block, we characterize how its size depends on the radius
of the shell and the gap between the shell and the mandrel. A
geometric construction is introduced to describe the nucleation
process. Once the pattern is fully developed, in the regime of
sharp ridges, we reduce the local deformation of the shell to
a two-dimensional problem and describe the evolution of the
ridge profile for increased loading. Our minimal theoretical
framework allows us to customize and control the surface
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patterning toward programmable topography. This versatility
in tuning the morphology of the patterns is in sharp contrast
with classic pattern formation of bilayer systems [18–21],
where patterns are primarily mediated by elasticity and set
by the material parameters that cannot be readily changed.

II. PERIODIC SURFACE PATTERNING
THROUGH BUCKLING

In our experiments, we used elastomeric hemispherical
shells produced via rapid fabrication techniques [22], with
radii in the range 25 � R [mm] � 77.5. A rigid hemispherical
foundation of radius Rm < R was placed concentrically inside
the shell, such that the gap between the shell centerline
and the surface of the outer mandrel was G = R − Rm

[Fig. 1(b)]. The ensemble was mounted onto a base plate,
and sealed, to pneumatically control the volume within the
gap, while monitoring the pressure. In Fig. 1(a) and Movie
S1 [23], we present a series of representative photographs of
the obtained buckling patterns for a shell (R = 38.5 mm, h =
200 μm, G = 2 mm, VPS-32) as its volume is progressively
decreased [(a1)–(a4) �V = {0,8,15,30} ml, respectively).
These patterns comprise a periodic tiling of dimples, which
are inwardly inverted localized caps of the hemispherical shell.
When the volume enclosed under the shell is decreased, these
dimples appear progressively and are stabilized by contact
with the mandrel. The regions in between neighboring dimples
then become increasingly sharper [Fig. 1(a3)] and morph into a
network of sharp ridges [Fig. 1(a4)]. The pattern topography is
quantified by digitizing the surface using a three-dimensional
laser scanner, to determine the centroids of each dimple.

The dimple size, L, is defined as the distance between two
neighboring centroids, averaged over the entire pattern. Each
dimple grows until it comes into contact with the mandrel.
Following the geometrical argument of Pogorelov [24,25], by
assuming that an inverted cap of radius R grazes the mandrel,
yields the characteristic length

�g = 2
√

RG, (1)
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FIG. 1. (a) Photographs of a shell as its volume is progressively decreased. (b) The dimple size L scales linearly with the characteristic
length �g = 2

√
RG. Solid black (respectively, green dashed) line represents the geometric prediction (respectively, the best fit of the data).

(c) Ratio of the numbers of dimples N2/N1 vs the gap ratio G2/G1. The solid line is the prediction from Eq. (1). (d) Number of dimples N

versus the pressure P in the inner inflatable mandrel. Scale bars indicate 20 mm.

which we use to model the diameter of each dimple when it first
contacts the mandrel. In Fig. 1(b), we plot L as a function of
the characteristic length �g , for shells with different stiffnesses
E = {1.25,1.96} MPa, thicknesses 140 � h [μm] � 520,
radii R = {25,38.5,63.5} mm, and gaps 0.4 � G [mm] � 4.2.
The data collapse onto a linear master curve. We find
that the best fit of the data [dashed line in Fig. 1(b)] is
obtained for L/�g = 1.22 ± 0.05, so that L is independent
of the material properties and thickness of the shell over the
experimental conditions explored. These results contrast with
the characteristic buckling length near threshold predicted
by the classic theory for pressurized shells [16,26,27], �b =
2π

√
Rh/[12(1 − ν2)]1/4, for a spherical shell with radius R,

thickness h, and Poisson’s ratio ν. Note that the classical
bifurcation mode is only valid for a small range of deflection,
of the order of the shell thickness, whereupon the buckling
mode localizes at the pole as an inward dimple [28]. In our
constrained case, the selection of the dimple size occurs well
into the postbuckling regime and the geometry of the gap
dictates the sequence of buckling events. For gaps smaller
than the shell thickness, the shell can fully conform to the
mandrel, with no dimples, as the deformation is smoothly
accommodated through stretching. At the opposite end, in the
limit of large gaps, the first dimple may display localized
features (s cones) [29,30], prior to triggering a second dimple.
To further illustrate the key role of geometry in this problem
we proceed to vary the gap G in two ways: spatially and
dynamically.

In Fig. 1(c), we present snapshots for the case where G is
a step function; the radius of the mandrel decreases sharply
along one of its great circles, from G1 (left region) to G2

(right region), with G1 > G2. We find that there are two
possible outcomes: (i) two populations with different dimple
sizes coexist on the shell, separated by a common ridge at the
locus of the step; and (ii) for small enough values of G2, only
one half of the shell (with G1) is dimpled, whereas the shell
conforms uniformly to the mandrel on the other half. These
two regimes are evident from Fig. 1(c), where we plot the ratio
between the number of dimples N1 and N2 in the regions with
G1 and G2, respectively, as a function of G1/G2 for a VPS-32
shell (R = 63.5 mm, h = 320 μm, 0.4 < G [mm] < 4.2).
From Eq. (1), we expect N1/N2 = G2/G1 [Fig. 1(c), solid
curve], which is in agreement with the experimental data,
except for case (ii) with N2 = 0, when G2 becomes of the

order of the shell thickness and the shell conforms to the
mandrel. Therefore, modulation of the gap between the shell
and the mandrel can be an effective route to produce Janus-like
particles [31,32], with regions of distinct surface topography.

We now demonstrate that the pattern size may also be tuned
dynamically when actively controlling the gap between the
shell and the mandrel. We used an inflatable elastic mandrel
(Young’s modulus Em = 1.25 MPa, thickness hm = 2.2 mm),
whose size can be modulated by actuating its internal pressure,
P . This inner pressure is set independently from the pressure
inside the gap. Reverting to an unbuckled configuration each
time P is changed, we find that N varies in discrete steps
[Fig. 1(d)]. To rationalize our observations we return to the
rigid mandrel case and proceed to investigate the pattern
formation. First, we focus on the nucleation of the dimples
at moderate pressures of the order of the critical buckling
pressure. Second, we describe how the fully developed
periodic pattern morphs into a network of sharp ridges for
larger values of depressurization.

III. NUCLEATION OF THE PERIODIC
BUCKLING PATTERN

In Figs. 2(a1)–2(a6), we present a sequence of photographs
of a vinylpolysiloxane (VPS) shell (R = 38.5 mm, h =
430 μm, G = 3.05 mm) that is progressively depressurized,
from the onset of the first dimple up to full coverage of the sur-
face (�V = {1.05, 2.26, 3.03, 4.17, 5.22, and 15} mL, re-
spectively). A single dimple first appears at d1, the locus of the
largest imperfection [26] set uncontrollably by the fabrication
process [Fig. 2(a1)]. This dimple then itself acts as a seed
for the second buckling event nucleated at d2, at a distance
L from d1 [permissible at any point of the circle of center
d1 and radius L plotted in Fig. 2(a2)]. Both dimples now act
as a combined seed and the third dimple forms where the
perturbation is strongest; the intersection of the two circles
of radius L centered at d1 and d2, respectively [Fig. 2(a3)].
The subsequent dimples are induced following an identical
inductive scheme [Figs. 2(a4) and 2(a5)] until the entire surface
of the hemisphere is populated. By design, this geometrical
construction leads to a hexagonal tiling and the corresponding
Voronoi mesh of the centers of the dimples overlaps with ridges
of the pattern [Fig. 2(a6)]. However, since a curved surface is
not compatible with a perfect hexagonal lattice [33–35], the
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FIG. 2. (a1)–(a6) Progression of the dimple front as the volume
is decreased. The dimple centered at d2 may form anywhere on the
circle C1 of center d1 and radius L. C1 and C2 (centered on d2

with radius L) determines the locus of the next dimple, thereby
extending the pattern, which eventually forms a regular hexagonal
tiling on the sphere (with some distributed defects). (b) Bifurcation
diagram. The buckled area S̄ = S/2πR2 is shown as a function
of the normalized pressure p̄ = �p/pct. Experimental data for
the unconstrained (circles) and constrained shell (diamonds/squares
for increasing/decreasing �V ). FEM results show unconstrained
(solid line) and constrained (dashed lines) cases; regions where the
corresponding experimental configuration is nonaxisymmetric are
indicated by the dotted line (axisymmetry is assumed in the numerics).
Inset: Surface topography z/G of the shell for the constrained case
(1)–(4) and the unconstrained case (5) and (6).

patterns contain pentagonal topological defects of the lattice
[Fig. 2(a6)]. For a given shell, the buckling process is highly
reproducible, even if the order in which the dimples appear
and their positions can be tailored and controlled by seeding
defects at specific locations on the surface of the specimen
[23].

The resulting postbuckling periodic pattern is now con-
trasted to the unconstrained case (no mandrel) for the same
shell. Specifically, we compare the dimensionless cumulative
surface area covered by the dimples S̄ = S/2πR2 in both cases
(i.e., the area S of the regions that are inverted normalized by
the total area of the hemisphere of radius R). The digitized
surface profile of the sample [Fig. 2(b), inset] is used to
evaluate S̄. To quantify the extent of loading, we define
p̄ = �p/pct, where �p is the pressure differential between
the inside of the shell and the outer ambient pressure, and
pct is the classic critical buckling pressure prediction [26],
pct = 2E/

√
3(1 − ν2)(h/R)2.

In Fig. 2(b), we plot S̄ versus p̄, for both the unconstrained
and the constrained cases (R = 38.5 mm, h = 240 μm, G =
2.2 mm). The onset of the first dimple (in both cases) occurs at
p̄ = 0.67, since intrinsic imperfections of the shells reduce
the buckling pressure to a fraction of the critical pressure

required for a perfect shell to buckle, pct [26,36–38]. After
a dimple appears in the unconstrained case [circles in Fig. 2(b)
and insets (5) and (6)], its size increases throughout the
process, p̄ decreases monotonically [39], and no other dimples
are observed. Conversely, in the constrained case [Fig. 2(b),
diamonds for increasing p̄ and squares for decreasing p̄],
a single large buckled region cannot occur since the shell
eventually contacts the inner rigid mandrel at the pressure p̄m.
As a result of this geometrical frustration, an increase in S̄

comes at the expense of an increase in p̄. Increasing p̄ along
the branch B1, we find that a second dimple eventually appears
for p̄ � 0.5 and the system jumps to a new branchB2. A similar
sequence of events yields subsequent dimples until the pattern
is fully developed. The associated jumps onto new branches
(B3 denotes the third dimple and B4 for the fourth) are reported
in Fig. 2(b). The threshold pressure from one branch to the
next occurs at an approximately constant value of p̄ � 0.5 for
all dimples. The reverse path, decreasing p̄ from the fully
developed pattern down to the unbuckled configuration, is
presented in Fig. 2(b) (squares). Each branch is followed down
until a dimple snaps back and the system jumps to a lower
branch, with strong hysteresis. The various jumps from one
branch to another (as dimples disappear sequentially) occur at
a similar value of pressure, p̄ � 0.2.

To further explore the role of the mandrel in our system,
we performed numerical simulations using a finite element
method (FEM) accounting for contact between the shell
and mandrel [23]. The FEM results [dashed and solid lines
in Fig. 2(b) for the constrained and unconstrained cases,
respectively] are superposed onto the experimental data with
favorable agreement. For the values of p̄ beyond which the ex-
perimental configuration is nonaxisymmetric (not considered
in the simulations), the FEM data are plotted as dotted lines.
We recover the fact that p̄ increases (respectively, decreases)
with S̄ in the constrained (respectively, unconstrained) case.
These results suggest that the modified energetics induced by
the constraining mandrel [23] are at the basis of the periodic
buckling patterns.

IV. FROM DIMPLES TO A RETICULATED PATTERN
OF SHARP RIDGES

Thus far, we have identified the role of geometry in
the selection of the dimples size and number, as well as
their sequential apparition at the surface of the shell. Next,
we turn to examining the patterns obtained in the limit of
large depressurization, i.e., beyond the point of full coverage
[Figs. 1(a2)–1(a4)]. As p̄ is increased, the ridges between
neighboring dimples become increasingly sharper, and even-
tually localize into a reticulated network [Fig. 1(a4)]. We have
cycled the pressure ∼ 1000 times in the range 0 � p̄ � 30 and
found that the process is fully reversible, with no structural
damage, owing to the elastomeric nature of the shells.

We now quantify the morphology of the ridges and measure
their width, λ, and amplitude, δ, using a laser sheet [Fig. 3(a),
inset]. In Fig. 3(a), we show an example of the height profile
of a single ridge for a shell (R = 38.5 mm, h = 450 μm,
G = 2.2 mm) at �p = 510 Pa (black dotted line). The
corresponding dependencies of λ and δ on �p are plotted
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FIG. 3. (a) Evolution of the computed ridge profile predicted by integration of the elastica, for increasing values of �p. The dotted line
corresponds to an experimental profile for a polydimethylsiloxane (PDMS) shell (R = 38.5 mm, h = 450 μm, G = 2.2 mm, �p = 510 Pa).
Inset: Schematic of the ridge profile. (b) Width, λ (green circles), and amplitude, δ (blue squares), of the ridge for the same shell as in (a),
as a function of the pressure load, �p. The solid lines correspond to the integration of the elastica for the amplitude (respectively, width)
accounting for the shell thickness [23]. (c) Linear dependence of λ with respect to the elastopneumatic length �ep = (B/�p)1/3 for the PDMS
shell (R = 38.5 mm, 195 < h [μm] < 450, G = 2.2 mm). The solid line corresponds to our model when accounting for the effect of the shell
thickness on λ.

in Fig. 3(b). As �p increases, both λ and δ decrease, such that
the aspect ratio δ/λ increases and the ridges become sharper.

The evolution of the shape of the ridges with �p is ratio-
nalized by further reducing the problem to a two-dimensional
construct that considers a slice of the shell perpendicular to
the ridge, and modeling it as an elastica with bending stiffness
B = Eh3/12(1 − ν2) [23]. In Fig. 3(a), we present a family
of solutions for loadings in the range 0 � �p [kPa] � 101,
for the shell considered above. For relatively low values of
�p, the solution has a sinusoidal profile [Fig. 3(a), blue
curves], similarly to a ruck on a rug [40], whereas at high �p

[Fig. 3(a), red curves], the ridges collapse onto the surface of
the mandrel and become sharper. In Fig. 3(a), we superpose the
computed shape, for the specific case of �p = 510 Pa, on top
of the experimental profile (dotted line). Favorable quantitative
agreement is found with no adjustable parameters.

Likewise, the evolution of the amplitude, δ, and width, λ, of
the ridge, as a function of �p is well captured by our reduced
elastica description while taking the finite shell thickness into
account [23] [Fig. 3(b)]. Note that, in this regime, the shell is
almost entirely in contact with the mandrel. Surprisingly, even
if our reduced model neglects the initial stretching in the ridges,
it does successfully capture the evolution of both the profile and
dimensions of the ridges, as a function of �p. However, our
description is limited to the central part of the ridges and fails to
describe the interconnection of the network, where stretching
is likely localized. In Fig. 3(c), we plot λ versus �ep =
(B/�p)1/3, the elastopneumatic length set by the balance
of elasticity of the shell and the pressure loading, for three

shells of thickness h = {195,240,450} μm, R = 38.5 mm.
and G = 2.2 mm. All the data collapse onto a master curve
with λ ∼ �ep. Integration of the model yields the solid lines in
Fig. 3(c) when accounting for the finite shell thickness [23].
At high values of �p, the theory suggests that there is a lower
bound at �ep ≈ 1, below which self-contact in the ridge occurs
and the description is no longer valid. This is consistent with
our observation that the experimental data in Fig. 3(c) departs
from the λ ∼ �ep regime when �ep � 1. In physical units, we
find that λ ∼ �p−1/3 such that producing sharp ridges requires
relatively high pressures (considerably larger than the atmo-
spheric pressure). In turn, we observe that the variation of δ

with �p is weaker than that of λ [see Fig. 3(b)]. Consequently,
the sharpness (aspect ratio) of the ridge, δ/λ, can be readily
varied and controlled through �p, a single scalar parameter.

The ability to control dimpled patterns on demand could
find applications for the fabrication of microlens arrays
[41,42], nanoscale surface patterning [6], or tunable aerody-
namic drag reduction [18]. Our study may also extend avenues
for geometry-dominated responses in the buckling of shells
that have been recently developed at the microscale, such
as colloids that self-assemble [13], Janus-like particles with
regions of distinct surface topography [32], or deformation of
colloidosomes [15].
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