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In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system
to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains
a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional
response, it has been possible to measure the conditions compatible with a structurally stable system. However, the
functional response of biological communities is not always well approximated by deterministic linear functions.
Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models.
Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the
structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number
of nonlinear functional responses that have been intensively investigated both theoretically and experimentally.
We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide
a measure of structural stability for finite populations. Overall, we show that the structural approach can provide
reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

DOI: 10.1103/PhysRevE.97.012401

I. INTRODUCTION

Quantifying the tolerance of interacting populations to
environmental perturbations has been the center of theoretical
population-biology research for many decades [1–3]. The big
challenges behind this task are the difficulty in producing a
large number of exact experimental replicates on which to test
theories, the analytical intractability of complex mechanistic
models, and the possibility that the functional form of the
model itself can change throughout time [3,4]. In order to
deal with these challenges, a typical approach is to focus on
simple yet insightful models derived from first principles [5].
However, while simple models of population dynamics can be
tractable, they are often criticized for providing a nonrealistic
deterministic version of the factors shaping the time evolution
of population abundances [6]. The classic example of a simple
deterministic model that has attracted much attention, but that
has been strongly criticized, is the Lotka-Volterra (LV) model
[7,8]. While this model has been derived from thermodynamics
principles [9], from principles of conservation of mass and
energy [5], from chemical kinetics in large populations [10],
and can exhibit a rich behavior such as chaotic dynamics [11]
and limit cycles [12], it seems unreasonable to believe that such
a simple deterministic model could describe the time evolution
of population abundances that we observe in nature [6].

Certainly, despite its mechanistic foundation, the classic LV
dynamics does not take into account many important biological
and environmental processes ranging from fluctuations in birth
and death processes to saturating effects of species growth [5].
In order to deal with some of these limitations, recent theoreti-
cal work has developed structural approaches that are based on
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the concept of structural stability [2,13]—that is, stability of the
qualitative behavior of a dynamical system against fluctuations
of its parameters [14,15]. Following a structural approach,
studies have been able to reconcile foundational hypotheses
in ecology with observational data [14,16–18]. Importantly,
here we show that this approach can be directly applied to
a larger class of population dynamics models with nonlinear
functional responses. The main implication of our findings
is that the applicability of the structural approach does not
depend exclusively on the assumption of pairwise interactions
or that dynamics are generated by one single deterministic
model whose functional form remains fixed in time. We also
show how to extend the approach to investigate the structural
stability of stochastic dynamics.

The paper is organized as follows. In the Sec. II, we briefly
review the details of the structural approach focusing on its
geometrical interpretation. In Sec. III, we derive the conditions
under which we can apply the structural approach to study
the structural stability of nonlinear population dynamics. In
Sec. IV, we examine the applicability of this approach to
stochastic dynamical systems focusing on the stochastic LV
model. Finally, in Sec. V, we discuss the implications of our
findings.

II. BACKGROUND: STRUCTURAL APPROACH

The structural approach is a geometric methodology re-
cently introduced [14,15,19] to provide a quantitative measure
for the structural stability of the classic LV dynamics:

�̇x = �x(�r − A�x), (1)

where �x is the vector of population abundances (i.e., the
state variables), �r is the vector of intrinsic growth rates (i.e.,
the difference between death and birth rate), A is the d × d

interaction matrix, and d is the dimension of the state space
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FIG. 1. Structural approach to infer the structural stability of
feasible fixed points in the classic Lotka-Volterra dynamics. The figure
shows the feasibility domain in the parameter space of the intrinsic
growth rates. A fixed point of the classic LV dynamics is feasible if
the vector of intrinsic growth rates falls within the feasibility domain
spanned by the columns of the interaction matrixA, such as the vector
�rf illustrated in the figure. Otherwise, a vector �ru would generate an
unfeasible solution, i.e., one or more species would be extinct at the
fixed point. The structural approach uses the size of the feasibility
domain as a measure for the structural stability of the feasible fixed
point.

(i.e., the number of species). The classic LV dynamics is
a deterministic model derived from the infinite population
limit of a multispecies stochastic process with mass action
assumption on the transition rates [20,21].

A dynamical system is said to be structurally stable if
smooth variations of the model (e.g., its parameters) leave
some properties of the system unchanged [22]. For example,
hyperbolic dynamical systems are a typical case of structurally
stable models [23]. Additionally, structural stability has a
geometrical interpretation. That is, the parameter space of
structurally stable dynamical systems can be partitioned into
structurally stable domains separated by regions that are struc-
turally unstable [24]. Within the structurally stable domains,
smooth changes of the parameters (caused for example by
environmental perturbations) do not change the nature of the
fixed point. For instance, if a fixed point of a dynamical system
exists and is feasible (i.e., all species have positive abundances
on the attractor), perturbations that keep the parameters within
the structurally stable domains preserve its feasibility.

The structural approach uses the size of the structurally
stable domains of feasible fixed points as a measure for
the structural stability of the population dynamics model
[14,15,19]. This domain is known as the feasibility domain
[5,14], i.e., a convex region within the parameter space of
a dynamical system from which it is possible to sample
parameters that generate feasible solutions. The larger the
feasibility domain, the larger the structurally stability of a
feasible fixed point (see Fig. 1). Formally, for classic LV
dynamics, because of the linearity of the functional response,
the feasibility domain is a convex hull in the parameter space

of the intrinsic growth rates �r spanned by the columns of the
interaction matrix A:

DF (A) =
{

�r ∈ Rd |∃λ1, . . . ,λd > 0, rj =
∑

i

λiaij

}
. (2)

A fixed point is feasible if the vector of intrinsic growth
rates lies within the feasibility domain [5] (see Fig. 1 for
a graphical example). In fact, by considering a nonsingular
interaction matrix A, the vector of state variables can be
rewritten as a combination of a standard basis of Rd , i.e.,
�x = x1e1 + · · · + xnen and A�x = ∑

j xjAej . Therefore the
positive orthant (i.e., the state space of LV) is contracted to
a n-hedral angle with generatrices formed by the columns
of the interaction matrix. Hence a feasible (positive) solution
of A�x = �r exists if �r ∈ DF (A) [5,14]. This is precisely the
nonzero fixed point of Eq. (1).

Following the structural approach [14,15], the structural
stability of the classic LV dynamics can be quantified by
measuring the volume of the feasibility domain in the Lp

norm: � = |detA|
||Ae1||Lp ...||Aed ||Lp

, where d is the dimension of the

system. The choice of the norm or the normalization factors
of the interaction matrix does not change the computation of
the volume [5,19]. Particularly, the relevance of the feasibility
domain relies on its quantitative characterization of structural
stability and its conceptual interpretation as the tolerance of a
dynamical system to environmental perturbations [15,17,25].

III. GENERALIZATION TO NONLINEAR
FUNCTIONAL RESPONSES

One important question that remains to be answered is to
which other models the structural approach can be extended.
To answer this question, let us consider a more general form
for the classic LV dynamics:

�̇x = �x[�r − Af (�x)], (3)

where f (�x) denotes a general functional response. This type
of model has been typically called generalized Lotka-Volterra
(GLV), and their association with the classic LV dynamics has
been extensively studied [26]. For example, under classic LV
dynamics, the non-negative equilibrium point is the solution
to the linear complementary problem (LCP) for A and �r
[i.e., LCP(A, − �r)]. Similarly, the non-negative equilibrium
point of GLV is the solution to the nonlinear complementary
problem (NCP) for Af (�x) and �r [i.e., NCP(Af (�x), − �r)]. It is
also known that if f (�x) is continuous and monotone in Rd ,
then there exists a non-negative equilibrium of Eq. (3) for
some �r ∈ Rd . Importantly, these associations allow us to be
more concrete and redefine the question above to whether it is
possible to apply the structural approach to study the structural
stability of the feasible fixed point of Eq. (3).

Here, we derive the sufficient conditions for the applicabil-
ity of the structural approach to Eq. (3). We do this by mapping
the nonlinear functional response into a linear response and
finding the conditions for f (�x) under which this change of
variable leaves the state space of Eq. (3) unchanged. Then,
we ensure that the system in the new variable is topologi-
cally equivalent to LV. Formally, let us call �z = f (�x). Then,
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FIG. 2. Topological equivalence between classic and generalized Lotka-Volterra dynamics for a polynomial response function. Panel
(a) shows the direction field of Eq. (3) with a polynomial response function, i.e., f (�x) = �x2. Panel (b) shows the direction field of the linear
transformation of GLV dynamics, as given by Eq. (8) with β = 2. As a reference, panel (c) shows the direction field of the classic LV dynamics,
i.e., Eq. (1). The figure shows that the state spaces are equivalent. Note that changing the exponent of the polynomial would just modify the
qualitative picture of the state space but would leave the structure of the state space unchanged. The polynomial response function satisfies the
conditions in Eq. (6). Parameters: ri = 0.5, Aii = 0.9, and Aij = 0.1

�x = f −1(�z):

�̇x = �x[�r − Af (�x)] ⇒ d[f −1(�z)]

dt
= f −1(�z)(�r − A�z), (4)

which can be rewritten as

d�z
dt

= 1

∇[f −1(�z)]
f −1(�z)(�r − A�z). (5)

Because we are interested in a feasible fixed point, we need
to guarantee that the inverse of the transformation must map
points in the state space S of Eq. (5) to points in the positive
orthant of the original dynamical system of Eq. (3) (i.e., f −1 :
S ⊆ Rd

>0 → Rd
�0). The topological equivalence to the classic

LV dynamics also implies that Eq. (3) and Eq. (5) must have
only two fixed points in S : one feasible stable point and one
feasible (or unfeasible) unstable point. Thus, the change of
variable also must map the unstable fixed point of Eq. (3) onto
the unstable fixed point of Eq. (5) and the same for the stable
one. Specifically, this translates into requiring the condition
that f −1(�z)

∇[f −1(�z)] is well defined in S (i.e., ∇[f −1(�z)] �= 0) and that
its (only) root is an unstable fixed point of Eq. (5). Formally,
the conditions under which we can consider Eq. (3) and Eq. (5)
to be topologically equivalent to the classic LV can be written
as

∃! �x ∈ Rd
>0

∣∣ �r − Af (�x) = 0, f −1 : S ⊆ Rd
>0 → Rd

�0,

∃! �z∗ ∈ Rd
�0

∣∣ f −1(�z∗)

∇[f −1(�z∗)]
= 0, (6)

where �z∗ is an unstable fixed point of Eq. (5). Note that the
first two conditions derive directly from previous results on
GLV dynamics [26]. To illustrate the conditions of Eq. (6), let
us consider a practical example. If we take f (�x) = �xβ ⇒ �x =
�z1/β ,

�̇x = �x(�r − A�xβ), (7)

�̇z = β�z(�r − A�z), (8)

then a feasible solution of Eq. (8) guarantees the feasibility of
Eq. (7) given that the inverse function f −1 maps each point
onto the positive orthant of Eq. (8) to the positive orthant of
the original system. Furthermore, because the system �z has a
linear stationary state (see Fig. 2), we can apply the structural
approach to Eq. (8) to measure the structural stability of the
fixed point of Eq. (7).

Following the rationale above, we can generalize our results
beyond GLV dynamics. To illustrate this, let us now consider
the following general population dynamics model:

�̇x = g(�x)[�r − Af (�x)]. (9)

Using the change of variable �z = f (�x), we can rewrite Eq. (9)
as

d�z
dt

= 1

∇[f −1(�z)]
g[f −1(�z)](�r − A�z). (10)

We call S1 and S2 the state spaces of Eq. (9) and Eq. (10),
respectively. Note that S1 is not necessarily the entire positive
orthant, but we continue to assume that the function g(�x) has at
most one zero in S1 and it is an unstable fixed point of Eq. (9).
It is now straightforward to see that the conditions leading
to topological equivalence are (1) the system �r − Af (�x) = 0
has only one solution in the positive orthant, (2) f −1 : S2 ⊆
Rd

>0 → S1, and (3) g[f −1(�z)]
∇[f −1(�z)] has at most one root in S2. This

last condition needs to be satisfied given that we have imposed
that g(�x) has only one root.

In sum, in this section, we have provided the sufficient
conditions that need to be assumed in a response function
in order to study the structural stability of nonlinear models
under the structural approach derived for linear functional
responses. As a final note, we want to stress that the conditions
in Eq. (6) are sufficient but not necessary. To illustrate this
point, let us consider the case of a functional response of
type II, that is fII (�x) = M�x, where M is a diagonal matrix
with diagonal entries Mii = 1

1+xi
. For this type of functional

response the conditions in Eq. (6) are not satisfied. Specifically,
because �z ∈ Rd

�0, then f −1 : Rd
�0 → Rd and there also exists

an additional feasible fixed point which is not globally (and
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FIG. 3. Direction field of Lotka-Volterra dynamics with a functional response of type II. While the state space of Eq. (9) with a functional
response of type II (a) is mapped into a state space that is not topologically equivalent to LV (b), the restriction of this state space on the basin
of attraction B = [0,1) × [0,1) of the stable fixed point is. As a reference, panel (c) shows the direction field of the classic LV dynamics.
Parameters: ri = 0.5, Aii = 0.9, and Aij = 0.1.

locally) stable. Nevertheless, it has already been shown that
the structural approach can still be applied to these types of
functional responses [15]. As illustrated in Fig. 3, the basin of
attraction of the only stable fixed point is the only subregion
of S2 that can be mapped back into the positive orthant of the
original system. The basin of attraction of this feasible stable
fixed point (plus the origin) is, indeed, topologically equivalent
to the classic LV dynamics. This example suggests that (1) if
there exists a basin of attraction B of the stable fixed point of
Eq. (10) topologically equivalent to LV, and (2) this is the only
subregion of S2 that is mapped back by f −1 to S1, then we
can still apply the structural approach to the restriction of the
state space on B. These results imply that we can relax the
conditions in Eq. (6), and extend the validity of the structural
approach to a much larger class of functional responses if there
exists a unique subregion of the state space of Eq. (10) for
which the conditions in Eq. (6) hold.

IV. STRUCTURAL STABILITY OF STOCHASTIC
DYNAMICS

The analysis in the previous section was limited to deter-
ministic dynamical systems. This is a good approximation
in the limit of infinitely large populations. However, when
this limit cannot be assumed, noise in the state variables
(i.e., demographic stochasticity) cannot be neglected. That is,
fluctuations of the state variables need to be considered explic-
itly. In this section, we show under which conditions we can
study the structural stability of stochastic LV dynamics (SLV)
under the structural approach derived for linear functional
responses. Then, we introduce an extension of the structural
approach to take into account the extinction probability in finite
populations.

The SLV can be derived from the linear noise approxima-
tion (LNA) of the chemical master equation [27,28] for the
probability distribution of the stochastic process that generate
the classic LV dynamics. In terms of chemical kinetics, this
stochastic process is typically defined as X → ∅, X → X +
X, and X + Y → X, where X and Y stand for species X and
species Y [10,20]. Within this framework, the SLV dynamics

then reads [20]

�̇x = �x(�r − A�x) + 1√
N

ν(t), (11)

where the first term on the right hand side is the deterministic
vector field, N is the system size, and ν(t) is Gaussian
white noise [29] with zero mean and correlations given by
〈νi(t)νj (t ′)〉 = Bij δ(t − t ′), where Bij = �x(�r + A�x) ∀ i = j

and zero otherwise. The δ function in the last expression
characterizes the white noise.

Here we ask whether we can apply the structural approach
to finite populations, i.e., to Eq. (11). For globally stable
systems, because the dynamics away from the fixed point
are dominated by the deterministic component, the determin-
istic vector field pushes back the perturbations induced by
stochastic fluctuations of the state variables to the feasible
solution. Nevertheless, note that the extinction probability is
always different from zero because the system size is finite.
That is, globally stable fixed points are only metastable since
demographic stochasticity will eventually induce a transition
into an absorbing state [30]. Generally, the smaller the system
size, the larger the extinction probability. However, the time for
extinction Text due to stochastic fluctuations is typically very
large, and in globally stable SLV systems this time scales as
Text ∝ eN [31]. Note that N is finite but assumed to be large,
hence Text can be regarded as infinity for practical purposes.
Thus, in this limit, the structural approach can be applied to
globally stable SLV systems.

However, recently it has been shown that in neutral and
quasineutral conditions, the argument provided above does not
hold anymore [20,31,32]. Specifically, the extinction time for
neutrally stable SLV models scales proportionally to the system
size N , i.e., Text,neut ∼ Nα rather than exponentially [30,31,33].
The reason for this change in behavior of the system is that,
near neutrality, there exists a new dynamics on the center (CM)
and slow (SM) manifold of SLV, that cannot be studied in the
deterministic setting. That is, extinctions of species in time
proportional to Text,neut are driven by a stochastic drift on the
CM or the SM [20,32].

Importantly, the existence of a center manifold is a hallmark
of structural instability given that the dominant eigenvalue of
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FIG. 4. Extinction probability as a function of the structural stability of the system. The figure shows the fraction of stochastic extinctions
in a two species LV system, that is predicted to be feasible in the deterministic setting, as a function of the size of the feasibility domain. We
observe a transition from a state in which the probability of extinction is effectively 1 (i.e., the structural approach fails) to a region where this
probability is approximatively 0 (i.e., validity of the structural approach). The structural stability of the feasible solution increases with the size
of the feasibility domain, reducing the effect of stochasticity on feasibility. We run simulations for a time T̃ � Text ∼ eN , where eventually all
finite systems will go extinct.

the Jacobian matrix is zero [34]. That is, the feasibility domain
shrinks to a line. Then, because stochastic fluctuations of the
state variables in the vicinity of the fixed point are equivalent
to fluctuations of the parameters [35], infinitesimally small
demographic noise can turn feasible into unfeasible solutions.
As discussed above, within this regime of parameters (i.e., near
neutrality) Text ∼ Nα , extinction takes place with probability 1
in finite time. Note that globally stable fixed points correspond
to the opposite side of the spectrum, for which Text ∼ eN . Thus,
focusing on a finite time scale, by moving from one side of the

spectrum to the opposite we can observe an abrupt transition
for the extinction probability in times that are small compared
to eN (see Fig. 4). Notably, this probability is a function of the
dominant eigenvalue of the Jacobian, and therefore, of the size
of the feasibility domain.

The statement above has an important implication for
the structure of the feasibility domain itself. In fact, the
investigation of the explicit stochastic dynamics reveal that,
within the feasibility domain, there exists a nonuniform
distribution of the extinction probability. This was already
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FIG. 5. Partition of a two species feasibility domain in regions that undergo extinctions within different time scales. Panel (a) shows the
extinction probability as a function of the position of a vector of intrinsic growth rates inside the feasibility domain. To generate panel (a), we
selected a vector of intrinsic growth rates �r on one of the columns of the feasibility domain and compute the extinction probability of Eq. (11)
over an ensemble of 103 realizations. Then, we selected a new vector �r until we reached the opposite border. The x axis shows the distance (in
the L1 norm) of the new sampled vector �r from the border of the feasibility domain, which we have fixed as origin. Panel (b) shows how the
separation of time scales �τ changes as a function of space on the surface of a two dimensional feasibility domain (i.e., a line).
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FIG. 6. Structural approach applied to stochastic Lotka-Volterra dynamics. The figure shows the surface of two different feasibility domains
in the parameter space of intrinsic growth rates ri of three-dimensional systems. The colors within the feasibility domains show the relative
difference between the largest and smallest eigenvalue of the corresponding Jacobian matrix. Note that the separation of time scales between
the most and least stable direction is proportional to the extinction probability. Then, the structural approach can be applied by measuring the
size of the region with minimum time-scale separation (center blue region).

noticed in previous work [36] in the context of environmental
stochasticity. Importantly, for a given (fixed) population size
N and a given (fixed) interaction matrix A, the distribution
of the extinction probability is nonhomogeneous in space (in
the parameter space of intrinsic growth rates). As shown in
Fig. 5(a), regions near the border of the feasibility domain have
a larger extinction probability than regions that are far away
from the border. Therefore, using the size of the feasibility
domain to study the structural stability of stochastic systems
can be misleading. Instead, one needs to use the size of the
region within the feasibility domain for which, in finite times,
Pext = 0. Note that other regions are deterministically feasible,
but will undergo extinction with probability 1 in the presence
of demographic noise.

While measuring the extinction probability as a function of
the parameter space of high-dimensional feasibility domains is
a challenging task, we propose that this can be estimated by the
difference between the largest and the smallest eigenvalue of
the Jacobian matrix of the deterministic system [see Fig. 5(b)]
[37]. Indeed, the lack of structural stability is characterized
by a strong separation of time scales between the most stable
(largest eigenvalue λmax) and the least stable (smallest eigen-
value λmin) dynamics. Importantly, this separation reaches its
minimum within the interior of the feasibility domain, where
the slow and fast dynamics are not fully separated. On the
contrary, along the borders of the feasibility domain, this
separation will be maximum (see Fig. 6). Thus, we can quantify
the structural stability of a community by measuring the size
of the region, within a feasibility domain, in which the fast
and slow dynamics are not well separated. For example, a
possible way to perform this analysis is to measure the relative
difference of time scales �τ = λmax−λmin

λmax
across the feasible

region of the parameter space (see Fig. 6). Then, we can fix a
threshold ε on �τ (typically ε = �τc at which Pext goes from
0 to 1) and measure the size of the feasibility domain that falls
below this threshold. Generally, the larger this region is, the
larger the structural stability of a SLV dynamics. Note that, for
fixed N and A, �τ is a function of the location of a system in
the feasibility domain (i.e., a function of �r), and resembles the
distribution of the extinction probability (see Fig. 5).

V. CONCLUSION

The structural stability of a population dynamics model can
be used as a measure to quantify the tolerance of biological
communities to environmental perturbations [2]. For example,
the structural approach based on the classic LV model uses the
size of the feasibility domain (the set of parameter values that
guarantees the existence of a fixed point at which all species
coexist) as a measure for structural stability [14]. Although this
approach was derived to investigate the structural stability of
the LV dynamics, its applicability is not limited exclusively to
population dynamics models with linear functional responses
[15]. Indeed, in this paper, we have shown that the structural
approach can be applied to investigate the structural stability
of biological communities governed by a large class of deter-
ministic nonlinear models. Furthermore, we have shown how
to extend this approach to stochastic models.

In particular, we have shown that in order to guarantee the
validity of the structural approach under a general nonlinear
model, the functional response of Eq. (3) needs to satisfy
Eq. (6). Importantly, these conditions are satisfied by many
functional responses that have been found to reasonably ex-
plain experimental data [38]. The results of Sec. III imply
that the structural approach can be applied even when the
underlying population dynamics model changes across time,
provided that every model satisfies Eq. (6). This is relevant for
the analysis of empirical data. In fact, because the functional
response of biological communities are typically context de-
pendent [39], it is advantageous to have methods that do not
rely too strictly on the assumption of a particular functional
form.

Finally, we have discussed the applicability of the structural
approach to investigate the structural stability of the feasible
fixed point for populations governed by the SLV dynamics.
We have shown that in finite populations, structural stability
is strongly correlated with the time-scale separation between
fast and slow dynamics. Thus, it is possible to divide regions of
the feasibility domain into those where the population exhibits
either a zero or nonzero extinction probability in finite times.
We have proposed that the size of the region for which the
extinction probability is zero can be used as an appropriate
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measure of structural stability in finite populations. Note that
because the SLV dynamics are derived from a linear noise
approximation of a master equation, the extension of the
structural approach to Eq. (11) applies to finite but small noise.
This should not be seen as a strong limitation of this approach.
Empirical studies have shown that stochastic effects are not
always the main drivers of community dynamics [40]. Indeed,
recent experiments have shown that population dynamics, in
closed communities, exhibit a strong deterministic component
with stochasticity mainly driven by environmental variations
[41]. Overall, we hope that this research will serve as a
baseline for future studies investigating the structural stability

of biological communities, where the dynamics are typically
driven by time-varying, nonlinear, functional responses and by
small demographic stochasticity [42].
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