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ABSTRACT

Accurate imaging of residual limbs is necessary for the design of well-fitting sockets for
prosthesis wearers. Unfortunately, current methods of acquiring residual limb geometry are
often expensive and inaccessible. A measurement method is proposed using coordinated IMUs
to achieve residual limb imaging through motion processing. The IMUs are fixed to an object
which traces the surface of the residual limb. Trajectories are calculated for each IMU, and a
correction method is applied using all IMUs fixed to the instrument surface to mitigate
measurement drift. The IMU trajectories are then used to generate a triangulated geometry to
digitally represent the residual limb. This method was simulated to guide instrument design and
provide insight on performance and measurement process. The eventual goal is a glove with
IMUs at the fingertips which may be used by an untrained individual, who may simply wear the
glove and lightly survey the surface of the residual limb with their hand to produce data which
will then be used to generate a digital limb geometry. Using the results of the simulation, a
design is proposed for the glove.
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Title: Associate Professor of Media Arts and Sciences



4



Acknowledgements

I would first like to thank Professor Hugh Herr of the Biomechatronics Group in the MIT Media
Lab for his gracious support and motivation. Professor Herr's research was a main source of
inspiration for my choice to pursue mechanical engineering, and the chance to be involved in the
Biomechatronics Group excited me long before I arrived at MIT.

I also wish to express my thanks to current and past members of the Biomechatronics Group Dr.
Luke Mooney, Dr. Kevin Moerman, and Stephanie Ku for their advice and guidance throughout
this process, and to all the members of the Biomechatronics Group and Media Lab community
with whom I have had the pleasure to engage. I would also like to thank the Media Lab for its
support.

I would also like to express my gratitude to the faculty of the Department of Mechanical
Engineering for their inspiration and teaching throughout my undergraduate experience at MIT.

Finally, I would like to thank my family for their unyielding love and encouragement, and my
friends within and outside of MIT for filling this journey with joy.

5



6



Table of Contents

Abstract 3

Acknowledgements 5

Table of Contents 7

List of Figures 9

List of Tables 10

1 Introduction 11

2 Geometry Measurement Method 12

2.1 Motion Processing with IMUs 12

2.1.1 Background Mathematics 13

2.1.2 Calibration and Sensor Error Management 15

2.1.3 Trajectory Calculation 16

2.2 Coordinated IMU Trajectory Correction 17

2.2.1 Averaging Correction Method 17

2.2.2 Instrument Shape Correction Method 18

2.3 Three-Dimensional Geometry Reconstruction 22

3 Simulation 22

3.1 Virtual IMU 24

3.1.1 Error Parameters 25

3.2 Basic Simulated Test Path 27

3.3 Instrument Generation 29

3.4 Three-Dimensional Sample Geometries 31

7



3.4.1 Shape Options and Demonstrative Purposes

3.4.2 Measurement Path Generation Method

4 Evaluation of Simulation Results

4.1 Evaluation of Trajectory Correction Methods

4.2 Evaluation of Geometry Reconstruction

5 Summary and Conclusion

6 Appendices

Appendix A: Additional Geometry Ideal Measurement Results

Appendix B: Additional Geometry Reconstruction

Appendix C: MATLAB Simulation Code

7 Bibliography

8

32

35

39

39

46

48

51

51

54

55

82



List of Figures

Figure 2-1:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 3-8:

Figure 3-9:

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 5-1:

Quaternion Reference

Simulated IMU Sample Error

Raw MPU-6050 Data

Ideal Test Path

Instrument Generation

Instrument Motion and Rotation Demonstration

Shape Geometries (Sphere and Cube)

Shape Geometries (Hemiellipsoid and Biologically Inspired Geometry)

Position vs. Time Path for Sphere Geometry Measurement

Sphere Geometry Ideal Measurement Results for Various Time Lengths

Standard Test Path Simulation (10 IMUs, Error Level 1, no calibration)

Standard Test Path Simulation (10 IMUs, Error Level 10, no calibration)

Standard Test Path Simulation (4 IMUs, Error Level 1, no calibration)

Standard Test Path Simulation (4 IMUs, Error Level 10, no calibration)

Motion Processing and Correction Methods Accuracy Test

Sphere Geometry Reconstruction Using Averaging Correction Method

Proposed Measurement Instrument Design

9

14

26

27

28

30

31

33

34

37

38

41

42

43

44

45

47

50



List of Tables

Input Parameters for IMU Correction and Geometry Imaging Simulation

Relevant MPU-6050 Data Sheet Parameters

Simulation Input Parameters for Motion Processing Correction Evaluation

Simulation Input Parameters for Geometry Reconstruction Evaluation

10

Table 3-1:

Table 3-2:

Table 4-1:

Table 4-2:

23

25

40

46



1 Introduction

The number of amputees in the United States is estimated to be approximately two

million, and this number continues to grow every year [1]. Of this population, most prosthesis-

wearers use their prosthesis for upwards of eight hours per day [2]. Furthermore, amputees cite

comfort as their most common prosthesis concern [3]. A well-fitting socket is therefore crucial

for high quality of life for amputees.

Accuracy and comfort in socket fitting depends highly on the skill of the prosthetist, and

the generation of an accurate limb geometry is currently an expensive process [4]. However,

although they are expensive, digital methods for collecting a three-dimensional residual limb

geometry have been proven to be both accurate and consistent [5, 6]. Such methods include

noninvasive MRI procedures [7], laser scanning techniques [8, 9], and ultrasound [10].

The current state-of-the-art is not only expensive, but is also difficult to access. An ideal

system would allow an individual to access inexpensive and accurate residual limb geometry at

any point in time in order to ensure consistent socket comfort.

In order to allow accessibility and accuracy in limb geometry measurements, a novel

residual limb geometry measurement method is here proposed. The method uses coordinated six

degree of freedom inertial measurement units (IMUs) to calculate a trajectory in three-

dimensional space tracing the surface of the limb. The IMUs are placed on the fingertips of a

glove such that an individual wearing the glove may simply gently rub the residual limb, taking

care to trace over as much of the surface area as possible. The trajectories of each IMU are

calculated and used to generate a triangulated three-dimensional geometry representative of the

residual limb. A simulation was conducted to evaluate the feasibility of this measurement
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method, to provide realistic simulated measurements for a given instrument, and to inform

instrument design for accurate residual limb geometry reconstruction.

2 Geometry Measurement Method

A geometry may be measured and reconstructed by calculating a position trajectory of an

object guided across its surface. The proposed method to measure residual limb geometry using

motion processing with six degree of freedom inertial measurement units (IMUs), each

consisting of a three-axis accelerometer and a three-axis gyroscope. The measurement

instrument will consist of multiple IMUs fixed to objects with known relative IMU positions and

orientations.

During the measurement process, this instrument is guided across the surface of the

residual limb in a light back-and-forth rubbing motion over a short period of time. Trajectories

are calculated for each IMU, and the relative trajectories of IMUs fixed to the same surface are

used to apply a correction method in order to prevent drift in calculating the instrument

trajectory. A triangulation method is applied to the corrected position trajectory of the

instrument in order to generate a three-dimensional shape, which represents the geometry of the

residual limb.

2.1 Motion Processing with IMUs

A six degree of freedom IMU consisting of a three-axis accelerometer and a three-axis

gyroscope measures linear acceleration and angular rotation from the accelerometer and

gyroscope, respectively. Assuming initial orientation and position are known for each sensor,
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orientation over time is first calculated using the gyroscope data. Calculated orientation is then

used to rotate accelerometer data to the Earth reference frame, and velocity and position are

calculated using numerical integration.

Ideally, a measurement process includes an accurate calibration routine to calculate

determine sources of error intrinsic to the IMU and a motion processing method which takes

these error sources into account. The simulation in this thesis assumes the use of an accurate

calibration method, and utilizes motion processing methods that account for common sources of

IMU error.

2.1.1 Background Mathematics

Quaternions may be used as a computationally inexpensive representation of IMU

rotation for orientation calculations [11]. The motion processing and simulation methods to be

described proximately all rely on quaternions to calculate vector rotation and IMU orientation

calculations. Quaternions provide an alternate method to Euler angles to describe three-

dimensional rotation, proving advantageous through a significant reduction in computational

expense and the elimination of t 1800 uncertainties.

A quaternion is a four-element vector which fully describes a single rotation. As

depicted in the simple graphic in Figure 2-1, quaternion rotation may be visualized as a rotation

of angle 0 about a three-dimensional vector V. The full quaternion vector q is calculated as

follows:

[ F e 6 6 .6 1
[cos - V, sin - Vy sin - V sin-

22 ~' 2 2]
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Figure 2-1: Quaternion Reference

Two quaternion operations are of special importance for quaternion rotation. The first is

the quaternion conjugate, denoted by q*, which is calculated for a given quaternion q as follows:

q* = [q1 -q 2  -q 3  -q 4]

The second is the quaternion cross product, which for two quaternions qA and qB is

calculated as follows:

AqB - qA 2 qB2  A + 1
A 2 q1 + 3 4 + 1 + qA4 qB3

qA X qB + qA,1 q +A B qA 2 qB4

A 1qB4 +qA 4 qB1 +qA 2 qB3  qA 3 q2

These operations are combined to calculate the rotation of a vector v by quaternion q,

producing a resultant rotated vector vrog:

V,.t = (q x [0 vx vy vzI)x q*

In addition to the quaternion methods described here, another important process for IMU

motion processing methods is the conversion of matrix to a new reference frame. This is
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particularly useful for processing accelerometer data, which in its raw form is given in terms the

intrinsic IMU basis vectors. Not only must the data therefore be converted to the Earth reference

frame to calculate velocity and position, but if the sensor is calibrated such that any mechanical

misalignment of the accelerometer or gyroscope axes is known, the raw data must be modified to

account for this error. Consider a vector x with components in defined in a coordinate frame

denoted by 3x3 matrix A, which is described in Earth frame coordinates. The vector XEarth

describes the vector x in terms of Earth frame coordinates, and may be calculated as follows:

XEarth= Ax

Motion processing and simulated data generation for IMUs also rely on numerical

integration and differentiation. The processes to be described rely primarily on the forward

Euler method for numerical integration and the forward finite difference method for numerical

differentiation. Both were chosen for their low computational cost, and with a high enough

sampling rate allow sufficient accuracy in motion processing and simulated data generation.

2.1.2 Calibration and Sensor Error Management

IMUs are subject to significant intrinsic error, which poses significant challenge to

accurate motion processing. Four common sources of error are axis misalignment, constant

offset, sensitivity scale factor, and noise, though additional error may result due to other error

sources including nonlinearity and moving bias [12]. The simulation presented assumes accurate

calibration to determine axis misalignment, offset, and sensitivity, neutralizing their effects on

raw IMU data and filtering to mitigate the effects of noise.

Common methods for IMU calibration include the use of high-accuracy turntables [13]

and in-field calibration methods which require no external devices [14]. Accuracy varies
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significantly across calibration methods; for the purposes of residual limb requirement, since

high accuracy is crucial, a high-precision calibration method is assumed. The simulation

therefore mitigates error by executing the motion processing methods using the exact error

parameters applied to the raw simulated data by the virtual IMU.

2.1.3 Trajectory Calculation

IMU trajectory calculation consists of two distinct steps. First, orientation is calculated

using the angular velocity data from the gyroscope and a known initial orientation (or an

approximate initial orientation found using the direction of gravity from the accelerometer data).

Position is then calculated by rotating the accelerometer data from the IMU reference frame

(simply according to its basis vectors) into the Earth reference frame, then applying numerical

integration to calculate velocity and position over time. The motion processing methods

described here assume a calibrated system such that constant offset, sensitivity scaling, and axis

misalignment are known.

When calculating orientation, first the known offset is removed from the raw data. The

raw data is then scaled to workable units (for example, radians per second) using the known

sensitivity, and axis misalignment error is removed. The angular velocity data is used in

conjunction with quaternion orientation representation to calculate orientation over time. The

final form of the calculated orientation consists of three 3x1 unit vectors (combined to form a

3x3 orientation matrix), to describe the x, y, and z basis vectors of the IMU coordinate frame.

To calculate position, offset is first removed from the raw data, then the data is scaled to

workable units and axis misalignment error is removed. Accelerometer data is then rotated from

the IMU frame of reference to the Earth frame, and the gravity vector is removed by simple

subtraction. The method then uses numerical integration to calculate velocity and position.
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Known initial velocity may also be taken into account at this point; however, initial velocity will

be assumed to be zero during physical data collection.

2.2 Coordinated IMU Trajectory Correction

The propensity of IMUs for dramatic error accumulation over a short period of time

merits the introduction of multiple sensors for a single trajectory calculation. A common method

for IMU trajectory calculation correction is the coordination of the IMU with the Global

Positioning System (GPS) to improve position accuracy [15]. However, the small-scale

requirements of residual limb geometry reconstruction and the goal of a self-contained system

suggest that the GPS correction method is impractical for this application. Another method of

IMU trajectory correction is the introduction of redundant IMUs, which has been demonstrated

to notably improve IMU trajectory measurements [16, 17].

The motion processing method used in limb measurement must have an implicit

correction method integrating the redundant IMUs to prevent unacceptable levels of

measurement drift. Two distinct methods of trajectory correction were designed for this

simulation: correction by averaging the trajectories from multiple IMUs, and correction by

constantly constricting the positions and orientations of IMUs on a fixed surface to their known

relative values.

2.2.1 Averaging Correction Method

The averaging correction method is a computationally inexpensive position and

orientation correction strategy, relying on the idea that points on a fixed surface experience

position and orientation changes at the same rate.
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Orientation correction specifically relies on the fact that all fixed points on a surface

rotating in space experience the same angular velocity. The averaging correction method for

orientation first performs the basic orientation calculation method (described in Section 2.1.3).

An approximate angular velocity is calculated by taking the difference between orientations at

consecutive time steps. This angular velocity is averaged across all IMUs, and each IMU

orientation trajectory is recalculated using the overall average IMU angular velocity.

The position averaging correction process is slightly more complicated: since each IMU

experiences its own orientation trajectory throughout the motion path, each set of accelerometer

data (one per IMU) must first be converted to Earth reference frame coordinates (as seen in

Section 2.1.3). Once the accelerometer data is in Earth frame coordinates, similar to the

orientation correction process, the velocity is calculated using the Euler method and an average

velocity is calculated across all IMUs. In the Earth frame, each IMU experiences the same

angular velocity, so this velocity is assigned to each IMU and the Euler method is used again to

calculate position at each IMU.

2.2.2 Instrument Shape Correction Method

The instrument shape correction method applies a correction to all IMU orientation and

position calculations at every time step. The goal of the correction process is to restrict all

orientation and position methods at every point in time to their known relative positions and

orientations on the measurement instrument shape. The method requires knowledge of exact

IMU positions and orientations on the instrument; as such, precision in instrument manufacturing

becomes absolutely necessary.

The orientation shape correction method relies on the fact that all IMUs fixed to the

measurement maintain the same relative orientation throughout the entire measurement process.
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Two unique IMUs with with orientations described according to the method in Section 2.1.3

have orientation matrices A and B, respectively:

-AX, AY, Azj Bx By, Bzl
A = AX 2 AY 2 A Z2 B= Bx 2  BY2  BZ2

3AX AY3 AZ 3 - B 3  BY3  Bz3

The matrix N describes the normalized difference between the two orientations, using the

distance between the x, y, and z basis vectors of each IMU:

(Ax, - BX) 2 + (AX 2 - Bx 2) + (AX 3 -Bx3)2

N = (Ay, -By )2 + (AY 2 -BY 2 )2 + (AY 3 ~BY3 )
2

(Az, - Bz 1)2 + (AZ 2 - Bz 2 ) 2 + (AZ 3 - Bz

For IMUs fixed on a given surface, although each IMU experiences orientation changes

throughout the span of measurement, the normalized difference between each IMU orientation

will remain the same.

The instrument shape correction method for orientation calculates the initial normalized

orientation difference across all IMUs, and constructs a shift matrix S for each IMU of the same

size as the orientation matrix. For two unique IMUs with orientation matrices A and B, we may

denote the orientation shift matrices as SA and SB, respectively:

[SAX SA Y A1 [SBx S BY1 S B1

SA = X2 SAY2 SA Z SB = SBX S B 2  SBzj
SAX3 SAY3 SAZ 3 SBX3 S BY3 SBz 3 ]

19



At each time step, an orientation shift is applied to each IMU, and the normalized

difference between each IMU pair is calculated given the updated (shifted) orientation for each

IMU. For two IMUs with orientation matrices A and B at a given time step, and with an initial

normalized difference between the two IMUs given by matrix No, the following matrix is

minimized to calculate the orientation shift matrices SA and SB for the two IMUs:

I((A + SA,)- (B+- + + SBX) + + SAN) (B-2 + SBX)) + + SAN) (B,, + SBX)) - Nox

j ((AY_ + SA)- (By + SBy)) + ((A 2 + SAy - (BY 2 + SB)) 2 y ((A + SA) _ (RY 3 + SBy)) - No,

7(QAz__ + SA1) - (Bz 1 + SB)2+ AZ + SA 2) - (BZ 2 + SB)) 2 z + SAz) - (Bz, + SBz2,) -- NoZ

The orientation shift matrices are calculated to minimize the above system for each set of

two IMUs fixed to the measurement instrument. The total resulting system, empirically solved

in MATLAB, consists of 3x (n) nonlinear equations, where n is the number of total IMUs fixed

to the instrument. The minimized system provides a unique shift variable assigned to each of the

total 9n orientation components in the system.

After the shift matrices are calculated, the correction method updates each orientation

matrix. For the two IMU example, the updated orientation matrices are given by A,,, and Bnew:

Anew = A + SA Bnew = B + SB

The position shape correction method, like the orientation correction method, relies on

the knowledge that relative positions of the IMUs remain constant throughout the measurement

span. As in the averaging position correction method, at each point in time the x, y and z

positions must first be converted to the Earth reference frame. Following a similar process to the
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orientation correction method, consider two unique IMUs at a given time with position vectors C

and D, respectively (assume both position vectors have already been converted to Earth frame

coordinates):

C = [CX CY Cz] D = [Dx Dy Dz]

The matrix M describes the normalized difference between the two positions, which for

two 1x3 vectors amounts to simply:

|Cx - DxI]
M = |CI - Dyj

LICz - DzII

As in the orientation correction method, each IMU is assigned a shift vector, in this case

denoted by Sc and SD:

Sc = [ScX Scy Scz] SD = [SDX SDy SDz]

Assume that Mo is the initial normalized position difference between two specific IMUs.

The correction routine then calculates position shift by minimizing the following matrix for each

IMU pair:

I ICX + SCx) - (Dx + SDx)I - -

(Cy + Scy) - (Dy + SDY) - Mo

I Cz + Scz ) - (Dz + SDzJ MOZ -

Once the shift matrices have been solved for each IMU, the correction method updates

each the position vector:
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Cnew = C + SC Dnew = D+ SD

Both the orientation and position shape correction methods are applied at every time step,

across all IMUs. This method is significantly more computationally expensive than the

averaging correction method.

2.3 Three-Dimensional Geometry Reconstruction

After generating an array of corrected position matrices for each IMU, I generated an

instrument position matrix. The instrument position was calculated by taking the average

position trajectory across all IMUs, after adjusting each IMU trajectory to begin at the origin.

Finally, the instrument position is adjusted to account for the offset between the instrument

origin and the geometry surface.

3 Simulation

The goal of the simulation is the generation and processing of realistic IMU data in order

to test the viability of the proposed three-dimensional imaging method for residual limbs. The

user first sets inputs for desired quantities, according to the metrics in Table 3-1.

After the user sets parameters, the simulation sets a motion path including a position

trajectory over time and iterative quatemions to update orientation at each time step.

The simulation then generates a measurement instrument of the specified shape, and

places the desired number of IMUs at random locations on the instrument surface. Each IMU is

assigned intrinsic error parameters according to the specified error level.
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Input Parameter Description

simtime Simulation time (seconds)

sampling-rate IMU sampling rate (Hz)

imunum Number of IMUs fixed to measurement instrument surface

ADClength Resolution of IMU analog-to-digital converter (bits)

A-range Upper bound for accelerometer measurement (g)

G-range Upper bound for gyroscope measurement (*/s)

geomshape Shape of geometry for simulated measurement
(Options: sphere, cube, hemiellipsoid, biologically-inspired geometry)

instrument-shape Shape of instrument for simulated measurement
(Currently only one option: sphere)

correctionmethod Correction method to improve IMU measurement accuracy
(Options: averaging, instrument shape, none )

errorlevel IMU intrinsic sensor error (including axis misalignment, bias,
sensitivity error, and noise); normalized to MPU-6050 at error level 5

error-type Allows error to be applied only partially to accelerometers and
gyroscopes for testing purposes
(Options: all, noise only, gyroscope only, accelerometer only,
gyroscope noise only, accelerometer noise only, none)

Table 3-1: Input Parameters for IMU Correction and Geometry Imaging Simulation

Next, the virtual IMU method produces realistic accelerometer and gyroscope data for

each IMU on the surface of the instrument, following the previously calculated trajectory. The

orientation and position of each IMU is calculated, and a correction method for each is applied

(as described in Section 2.2). Trajectories from all IMUs are then combined to produce an

overall instrument trajectory, which is corrected to account for the offset between the instrument

center and the geometry surface. Finally, the simulation generates a three-dimensional

triangulated figure to represent the geometry measured by the instrument.
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3.1 Virtual IMU

As the virtual IMU determines the integrity of the entire simulation, I designed it to

reflect real, physical IMUs as accurately as possible. Therefore, it takes into account sensor error

and measurement limitations intrinsic to analog-to-digital converters. The virtual IMU accepts

the trajectory and IMU parameters produced in the simulated test path and IMU setup routines,

and applies them to produce realistic accelerometer and gyroscope data for each IMU on the

measurement instrument.

For a series of N measurements, for each sensor, the virtual IMU accepts an Nx3 position

matrix, an Nx4 gyroscope matrix, a 3x3 initial orientation, and a time vector of length N. In

order to account for intrinsic IMU error, it also receives a 3x6 IMU axis alignment matrix, a 3x2

offset matrix, a 1x2 sensitivity matrix, an Nx6 noise matrix, and a scalar ADC resolution for the

IMU.

In order to produce simulated gyroscope data, the angular velocity of the sensor is first

calculated at each time step directly from the quatemion matrix (see Section 2.1.1 for reference

on quaternion mathematics). The resultant angular velocity is adjusted to reflect the misaligned

coordinate frame, and divided by the sensitivity to convert the data to least standard bits (LSB),

the standard units for raw IMU data. Finally, the virtual IMU adds offset and noise to the

gyroscope data.

To produce simulated accelerometer data, the initial orientation is first adjusted to reflect

the misaligned coordinate frame, then rotated through time according to the quaternion matrix.

The acceleration is calculated from the position matrix using numerical differentiation, and

gravity is added to reflect actual physical conditions. The resultant acceleration is adjusted to
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reflect the misaligned coordinate frame, and divided by the sensitivity to convert the data to

LSB. Finally, the virtual IMU adds offset and noise to the accelerometer data.

3.1.1 Error Parameters

The virtual IMU incorporates errors due to sensitivity, axis misalignment, and constant

offset (see Section 2.1.2 for background on IMU error). These error parameters are assigned to

each IMU, and are randomly generated according to a normal distribution about the ideal (the

zero error case) value with a maximum magnitude determined by the user's designated error

level.

These error parameters are designed such that input error level 5 designates error intrinsic

to a standard MPU-6050 IMU (a standard commercial IMU), and directly scaled to other error

level values. Some relevant MPU-6050 parameters are as follows [18]:

Table 3-2: Relevant MPU-6050 Data Sheet Parameters

25

MPU-6050 Data Sheet Parameter Value Units
Gyroscope Full-Scale Range 250, - 500, 1000, 2000 */s
Gyroscope ADC Word Length 16 bits
Gyroscope Sensitivity Scale Factor 131, 65.5, 32.8, 16.4 LSB/(*/s)
Gyroscope Sensitivity Scale Factor 3 %
Tolerance

Gyroscope Total RMS Noise 0.05 */s-rms
Accelerometer Full-Scale Range 2, 4, 8, 16 g
Accelerometer ADC Word Length 16 bits
Accelerometer Sensitivity Scale Factor 16384, 8192, 4096, 2048 LSB/g
Accelerometer Initial Calibration Tolerance 3 %



Figure 3-1 shows the effect of the addition of IMU error at various error level parameters

on accelerometer and gyroscope data generated by the virtual IMU for a simple circular

translation with no rotation. Additionally, a set of raw data for a trajectory using the MPU-6050

is provided in Figure 3-2. Although the trajectory in Figure 3-2 is significantly more dynamic

than the simulated path used in Figure 3-1, we may conclude by qualitative observation that

Error Level 5 is a reasonable match to MPU-6050 performance.
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3.2 Basic Simulated Test Path

While the simulation is intended to demonstrate three-dimensional geometry

measurement, I also developed a basic circular test path to test and data generation and motion

processing, and to compare motion processing correction methods (Figure 3-2).

The path consists of a circular rotation with motion in the x, y, and z directions. At angle

6(where 0: s 6 s 2n), the position in three-dimensional space is calculated as follows:

( 

=o 5 i [cos 0 sin 0 0] -[os 0 +1]n

3

The test path generation method then shifts the position such that its trajectory starts at

the origin, and calculates the initial velocity of the trajectory (by taking the derivative of the

above position equation).
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Orientation is calculated so as to depend on the location of the instrument relative to the

path's center. Basis vectors in the x, y, and z directions are then computed and used to back-

solve for a rotation quaternion matrix. The rotation quaternion is calculated entirely empirically,

since an attempt to solve symbolically for the expression for a quaternion resulting from basis

vector rotation does not lend itself to a simple solution.

This test path was chosen for its simplicity and smoothness, and since it requires

translation and rotation across x, y, and z. The fact the trajectory started and ended at the same

point also allowed quick evaluation of the success of motion processing and correction methods.
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3.3 Instrument Generation

I designed the instrument generation method to produce an instrument of the shape and

number of IMUs provided by the simulation user in the overall simulation parameters.

The instrument generation method first calculates the x, y, and z coordinates of the

instrument shape, centered at the origin. The specified number of IMUs are then placed at

random locations on the instrument shape. The x, y, and z basis vectors for each IMU are

calculated such that the z vector extends orthogonal to the IMU base.

All simulations conducted thus far have utilized a spherical instrument geometry.

Therefore, the z basis vector is simply the unit vector in the direction extending from the origin

to the IMU location on the instrument surface, and the x and y basis vectors lie tangent to the

surface. For an IMU placed on a spherical instrument centered at the origin and with location

xIMu, a set of basis vectors xa, y., and z,, may be calculated as follows:

Zbas = XIMU = [Zbasx Zbasy Zbas,]T

IIXIMu I

T

(Zbasy
Ybas = \Zbs / 2 0 = [Ybasx Ybasy YbaszJ TIbs JZbas 2 +Zb as I

1+ + Zbas)

YbasyZbasz - YbaszZbasy T YbasyZbasz - YbaszZbasy T

xbas= YbaszZbasx - YbasxZbasz + YbaszZbasx - YbasxZbasz = [Xbasx Xbasy XbasT

.YbasxZbasy ~ YbasyZbasxl YbasxZbasy ~ YbasyZbasx

Figure 3-2 shows a generated instrument with spherical shape and six IMUs randomly

placed on its surface. The IMU locations are shown in blue, with basis vectors in green
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extending from each location. The red center line extends from the origin to the top of the

instrument, and is intended to make instrument rotations clear in the demonstrated instrument

trajectory shown in Figure 3-3. In Figure 3-3, the instrument shown in Figure 3-2 follows the

sample trajectory described in Section 3.2.

Although the simulation currently uses only a spherical measurement instrument, the

overall simulation is robust and will accept any instrument shape. The only requirement for a

new instrument shape design is that it specifies the X, Y, and Z coordinates of the shape centered

at the origin, and provides IMU locations and initial IMU orientations.

0.1.

0.05.

01

-0.05

-0.1

-0.1 X (M)

Figure 3-4: Instrument Generation

30



4-

2,

o 02

-22

22 -

6

442

2 0

Y (m) * 8 X m

6

4,

-2

-4

2 - --

6

2 0
o -2

4-.
22

Y (M) 4 - X(M)

6

4,

2x0

Figure 3-5: Instrument Motion and Rotation Demonstration

3.4 Three-Dimensional Sample Geometries

In order for the simulation to realistically represent a measurement process for three-

dimensional geometries, randomized trajectories were generated for a number of geometric

shapes. These trajectories were used to evaluate the overall measurement method and the

success of the multiple-IMU motion processing correction routines for their intended purpose.
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3.4.1 Shape Options and Demonstrative Purposes

I built four sample geometries into the code, each with a specific purpose in testing

functionality, limitations, and performance of surface motion tracking. The simulation contains

a sphere, a cube, a hemiellipsoid, and a biologically-inspired irregular shape.

The sphere and cube were chosen to reflect the two extremes of shape measurement

difficulty. As spheres are continuous and have the same curvature throughout, they provide the

easiest shape for measurement. The cube, however, has multiple right-angles, which pose a

greater challenge. The exact test geometries used in the simulation are shown in Figure 3-5.

Since the intended purpose of the motion-processing imaging method is the measurement

of residual limbs, the other two geometries were chosen to reflect this task. The hemiellipsoid is

the simplest shape which resembles a residual limb, and therefore was chosen as a test geometry.

However, in order to achieve results from the simulation as close as possible to the actual

measurement scenario, a biologically-inspired irregular geometry was also generated to represent

a shape similar to that of a residual limb. Both the hemiellipsoid and biologically-inspired

geometries used in this simulation are shown in Figure 3-6.
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3.4.2 Measurement Path Generation Method

The proposed measurement method for residual limb imaging involves a moving a

measurement instrument in a light rubbing motion around the shape of a limb, gathering IMU

data over time, which will be converted into a three-dimensional geometry. In order for the

simulation to accurately reflect the measurement process, I designed a randomized path

generation method to gather measurement data for a given shape geometry and over set period of

time. In the case of simply generating the motion path, the position is a single point instead of

the whole measurement instrument; however, this trajectory is the path that the instrument will

follow in the overall measurement simulation.

In order to generate the randomized measurement motion path over a set period of time,

the position is first set at an initial location on the geometry shape. A random time sub-interval

is chosen, between 0 seconds and 1 second in duration, and a random direction of motion tangent

to the surface is calculated. The path generation method then creates a curved trajectory for the

IMU following the geometric surface in the specified direction.

The path generation method creates the curve by selecting an odd number N total points

spaced a given distance apart, centered at the initial point for the trajectory and extending both

forwards and backwards in the specified direction. The method determines the points on the

geometric surface closest to these generated points, such that the set of points defines a curve

wrapping around the geometric surface. These points are stored in vector xcue, ycurve, and Zcune,

each of length n.

Consider first the case of solving for the trajectory curve in the x direction. An effective

time vector t of length n is constructed with each point corresponding to a point in Xcurve. The
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time vector is centered at 0, with equal spacing between the times extending in the positive and

negative directions, whose values are determined by the step size and trajectory velocity.

The x position at a given time is described by a Lagrange polynomial of the form:

n

x(t) = an t0

i=1

The vector coefficients a (of length n) may be found by solving the following system:

t0 t0 to 1 - an Xcurven

tn t'-1 .. t1  1jan_1 Xcurveni

Stn_1 t_-1 .-- tn_- 1 a J Xcurve,
_n tn-1 ... t .ao - xcurveo

The Lagrange polynomial is then used to update the sensor location point.

The y and z locations are updated according to the same method. This process repeats,

generating new curves in the specified direction for x, y, and z at each time step until the end of

the time sub-interval. At this point, the direction switches to a new randomized vector, and the

process repeats itself. This routine continues until the predetermined maximum time, at which

point the measurement and corresponding trajectory finishes.

A position trajectory for the measurement curve tracing the spherical geometry depicted

in Figure 3-5 is shown in Figure 3-7. The measurement path generation method maintains

constant orientation of the instrument throughout the measurement process, but could be easily

modified to include arbitrary orientation motion to further demonstrate the viability of the

measurement process.
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Figure 3-8: Position vs. Time Path for Sphere Geometry Measurement

There is a direct correlation between the time span of the measurement process and the

accuracy of the geometry generated by the measurement routine. Figure 3-8 depicts the

measurement path for the spherical geometry and resulting triangulated geometry for a series of

increasing time spans. Note that this figure represents the ideal case; the geometries produced in

the figure are a product of simply the generated trajectory, and have not been converted to IMU

data and passed through the motion processing and correction methods.

A similar demonstration from shape measurement trajectory and geometry reconstruction

for the three additional sample geometries is provided in Appendix A.
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4 Evaluation of Simulation Results

Performance evaluation was conducted in two stages. First, the two motion processing

correction methods were compared at a variety of simulation settings using the basic test

trajectory to evaluate the functionality and limitations of each, and to determine which was more

appropriate for a realistic geometry measurement. Second, the full simulation was used to

generate a motion path for a measurement instrument surveying a chosen geometry, generate the

instrument and simulated data for all IMUs, and motion processing and correction were applied

to calculate the instrument trajectory in order to produce a final shape geometry. The full

simulation provided insight on the viability of the overall measurement process.

4.1 Evaluation of Trajectory Correction Methods

In order to evaluate the success of the motion processing methods and trajectory

correction, I produced and processed and simulated data across a variety of simulation

parameters, and compared the results at each set of parameters using the two error correction

methods.

The methods were both tested without the use of calibration in order to dramatically

demonstrate the effects of each correction strategy. Please note that as a result, the motion

processing results shown in Figures 4-1 through 4-4 are not representative of the capabilities of

the motion processing method; the calculated trajectories depicted in these plots are expected to

demonstrate significantly lower accuracy than the standard case.

The simulation parameters used in this evaluation are given in Table 4-1. In addition to

the specified parameters, the two methods were tested at error levels 1 and 10, and using

instruments with 4 and 10 IMUs.
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Table 4-1: Simulation Input Parameters for Motion Processing Correction Evaluation

The results demonstrated in Figure 4-1 through 4-4 demonstrate that motion processing

using the designed trajectory correction methods is significantly more accurate than motion

processing without trajectory correction. Since the system is entirely uncalibrated for these

examples, deviation of the measured trajectory from the actual trajectory is significant; however,

in the cases in which correction is applied, the behavior of the calculated trajectory is notably

closer to the actual trajectory behavior, even when the system still exhibits large discrepancies

due to the lack of calibration.

In general, the instrument shape correction method performed better in systems with

many IMUs and which exhibited large error. The averaging method exhibited slightly higher

performance in small-error systems with fewer IMUs. For high-accuracy motion processing

using a high number of IMUs (in the range of ten or more), I recommend the instrument shape

correction method.
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Input Parameter Value Units

Simulation Time 5 seconds

Sampling Rate 100 Hz

ADC Length 32 bits

Accelerometer Range 2 g
Gyroscope Range 250 */s

Instrument Shape sphere N/A

Error Type all N/A
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In order to confirm the viability of the motion processing and correction methods, the

following test was conducted, simulating data following the position trajectory shown in Figure

3-3, scaled to a diameter of 0.2 meters. Simulated data was collected at a rate of 1 kHz with an

IMU error level of 0.1 (indicating an IMU of very high accuracy), with an instrument consisting

of ten calibrated IMUs randomly positioned on the surface of a sphere. Millimeter-level

accuracy was achieved for the first 5 seconds of motion, with unacceptable levels of drift starting

to accumulate towards 10 seconds; the error over time is shown in Figure 4-5 below. The results

of this test demonstrate that in ideal conditions and over short periods of time, this method may

be acceptable for imaging.
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Figure 4-5: Motion Processing and Correction Methods Accuracy Test
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4.2 Evaluation of Geometry Reconstruction

Geometry reconstruction was attempted using the simulated measurement paths

described in Section 3.4. The simulation parameters used in the evaluation are outlined in Table

3-2, with a noise only error applied to mimic perfect calibration conditions, and the error level

was set to 1 to represent a high-accuracy IMU. The simulation time was set to 30 seconds to

allow comparison between the motion processing results and the ideal geometry reproduction

(from only the simulated trajectory, without IMU motion processing) shown in Figure 3-9. A

simulation time of 30 seconds was also selected because it provides a good measurement of

shape progress while not allowing significant error to accumulate. For measurement of a

physical system with a necessary error bound on the order of millimeters, as in the case of

measurement of residual limbs, higher accuracy may be achieved using a series of short

measurements (for example, in the range of five to ten seconds).

Input Parameter Value Units
Simulation Time 30 seconds

Sampling Rate 100 Hz

Number of IMUs 10 N/A
ADC Length 32 bits

Accelerometer Range 2 g
Gyroscope Range 250 */s
Instrument Shape sphere N/A

Correction Method averaging N/A

Error Level 1 N/A

Error Type noise only N/A

Table 4-2: Simulation Input Parameters for Geometry Reconstruction Evaluation
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The error demonstrated in the geometry reconstruction shown in Figure 4-6 is too large to

be ideal for residual limb geometry measurement; however, this is due in part to the nature of the

simulated trajectory (an example of which is shown in Figure 3-8). Please see Section 4.1 and

Figure 4-5 for a demonstration of the performance of the motion processing correction methods

used in this simulation.

In general, however, the results of the simulation suggest that this is a viable

measurement method for residual limb geometry, given very high quality IMUs with excellent

calibration.

5 Summary and Conclusion

A simulation was designed to test the viability of measuring residual limb geometry using

motion processing with inertial measurement unit (IMU) sensors and to provide insight on

instrument design. The simulation generated a measurement instrument consisting of randomly

spaced IMUs on a three-dimensional shape. Each IMU was generated using a virtual six degree

of freedom IMU which incorporated realistic sources of error based on variability in commercial

sensors, and used these errors and a given trajectory to produce simulated accelerometer and

gyroscope data. Two categories of trajectory were used in this simulation: a regular curve with

simple sinusoidal motion in each direction, and a randomized trajectory mimicking the physical

measurement process of surveying a three-dimensional shape (in this case, a residual limb) using

a light rubbing motion over the shape's surface. The simulation then applied motion processing

methods to the simulated data, and used correction routines coordinating the data from multiple
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IMUs on the surface of the instrument, using trajectory averaging and correction according to the

relative positions and orientation of the IMUs.

The trajectory correction methods in combination with the motion processing routine

used in this simulation (which are included in the MATLAB code given in Appendix C, and

described in detail in Chapter 2) demonstrated high accuracy over short periods of time with the

simple sinusoidal motion path, demonstrating accuracy on the order of millimeters for very high

quality IMUs up to five seconds, with unacceptable levels of drift accumulating towards ten

seconds. The motion processing method for the randomized shape-measuring simulated

trajectory, while demonstrating general performance similar to that seen in the ideal

measurement case (using perfect IMUs), did not demonstrate this level of accuracy; however,

this is most likely due to the high prevalence of sharp corner turns in the simulated path. As

such, during actual measurement, I recommend prioritizing smooth motion while measuring a

residual limb.

From the results of this simulation, I have proposed a design for a measurement glove,

shown in Figure 5-1. The thumb, index finger, and middle finger are each capped with a sphere

containing 10 IMUs, dispersed evenly over an inner sphere. Flexible electronics casing runs

down the side of each finger and traces the back of the hand, leading to an inflexible electronics

casing at the back of the wrist, on top of the elastic cuff of the glove. Behind each finger is a

small ridge which will be used to guide the spheres at each finger to tracks on a known,

grounded base to reset every five to ten seconds in order to ensure continued accuracy in

measurement.
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Back Front

Figure 5-1: Proposed Measurement Instrument Design

A continuation of this project should involve the physical implementation of the proposed

coordinated IMU trajectory correction methods in order to ensure measurement accuracy at the

desired order, and eventual implementation of these processes into a measurement glove for ease

and accuracy in imaging of residual IMUs.
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Appendix A: Additional Geometry Ideal Measurement Results
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Appendix B: Additional Geometry Reconstruction
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Appendix C: MATLAB Simulation Code

main.m

clear; close all;

% Define parameters
simtime = 10; % seconds
samplingrate = 100; % Hz
imunum = 10;
ADC length = 32; % bits
Arange = 2;
Grange = 250;
geom shape = 'sphere'; % options: 'sphere', 'cube', 'hemiellipsoid',
'irregular'
instrumentshape = 'sphere'; % options: 'sphere'
correctionmethod = 'instrumentshape'; % options:
'averaging','instrumentshape','none'

errorlevel = 0.1; % eps lowest for instrument-shape correction method
error-type = 'all'; % options:
'gyroonly', 'accel only', 'all', 'gyro noise only', 'accelnoiseonly', 'noise-on
ly')

addpath('Quaternion');

N = simtime*sampling rate;

Arange = A-range*[-1 1];
G_range = G-range*[-1 1];

% % Choose shape to trace
% disp('Generating motion path...');
% [ppath,qpath,ori-i_path,vel_ipathtime] =
% shapepath(geom-shape,sim time,samplingrate);

% Generate x y z path, orientations (baseline)
disp('Generating motion path...');
[p_path, qpath, ori_i_path,vel_ipath, time I = ...

circle-path(sim time,samplingrate);

% Choose instrument shape
disp('Generating instrument...');
[instrumentxyz,imupts,imu-ori] ...

generateinstrument ( instrumentshape, imu-num);

% Add instrument "bobbing" over time (mimicking real measurement motion)

% Initialize IMUs
disp('Initializing IMUs...');
[alignment,offset,sensitivity,noise] = imu_setup(Arange,Grange,...

ADC lengtherrorlevel,time,imunumerror type);

% Move instrument according to baseline path and orientations
% Collect IMU data along the way

55



disp('Generating simulated IMU data...');
imupos = repmat(imupts,N,1,1) + repmat(ppath,1,1,imu-num);
imu_ori _i = imu_ori + repmat(ori_i_pathi,1,imu-num);
for i = 1:imunum

imuori_i(:,1,i) = imu ori i(:,1, i)/norm(imu-ori-i(:,1,i));
imuori_i(:,2,i) - imu ori i(:,2,i)/norm(imu ori i(:,2, i));
imuorii(:,3,i) = imu-ori-i(:,3,i)/norm(imu-ori-i(:,3,i));

end
accelerometer = ones (N, 3, imu-num); gyroscope = ones (N, 3, imu-num);
for i = 1:imunum

[accelerometer(:,:,i),gyroscope(:,:,i)] =

virtualIMU(imupos(:,:,i),qpath,time,alignment(:,:,i),...
offset(:,:,i),sensitivity(:,:,i),noise(:,:,i), ...
ADClength,imu-ori-i(:,:,i));

end

% accelerometer(1,:,:) = accelerometer(2,:,:);
% gyroscope(1,:,:) = gyroscope(2,:,:);

% % Filter raw data
% [BA] = butter(4,0.9);
% accelerometer(10:end,:,:) = filter(B,Aaccelerometer(10:end,:,:));
% gyroscope(10:end,:,:) = filter(B,A,gyroscope(10:end,:,:));

% % Assume no knowledge of IMU error parameters
% alignment = repmat(eye(3),1,2,imunum);
% offset = zeros(3,2,imunum);
% raw max = 2^(ADClength-i);
% sens = [rawmax/A range(2) raw max/G_range(2)];
% sens = repmat(sens,1,1,imunum);

% Motion processing and correction
disp('Motion processing...');
pos = ones(N,3,imu-num); ori = ones(3,3,N,imunum);

for i - 1:imunum
ori(:,:,:,i) - ori _basic calc(gyroscope(:,:,i),...

time,alignment(:,:,i),offset(:,:,i),sensitivity(:,:,i),...
imu-ori-i(:, :,i));

end
orimod = oricorrect(oriinstrument-xyzimu_ori_i,...

correctionmethod,gyroscope,time,alignment,...
offset,sensitivity);

for i = 1:imunum
pos(:,:,i) = posbasic calc(ori(:,:,:,i),accelerometer(:,:,i),time,...

alignment(:, :,i) ,offset(:, :,i) ,sensitivity( :,i)...
imu-pos(1,:,i),velipath(1,:));

end
posmod = poscorrect (pos, instrumentxyz, imupts, correction_method,...

ori,accelerometer,timealignment,offset,sensitivity, imupos(1, :,),vel_i_path
(1,:));
pos mod(1,:,:) = pos-mod(2,:,:);
posmod = pos mod - pos-mod(1,:,:) + imupos(1,:,:);

oriinstr = mean(ori mod-repmat(permute(imu-ori,[1 2 4 3]),1,1,N,1),4);
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ori _instr = oriinstr + ori-i-path;
for i = 1:3

oriinstr(:,i,:) = oriinstr(:,i,:) ./
endsqrt(ori-instr(1,i,:).^2+ori-instr(2,i,:).^2+ori-instr(3,i,:).^*2);end

% assume initial positions and orientations known
posinstr = mean(pos mod-repmat(imupos(1,:,:),N,1,1),3) + p-path(1,:);
pos-instr = mean(pos-mod,3)+ppath(1,:);

% New instrument shapes require design of new trajectory correction methods
if strcmp(instrumentshape,'sphere')

instrumentradius = ...
max(instrument-xyz(:,1))-min(instrument xyz(:,1))/2;

for j = 1:length(pos instr)
posinstr(j,:) = posinstr(j,:) -

instrumentradius*posinstr(j,:)/norm(posinstr(j,:));
end

end

% Generate plots
disp('Generating plots...');
drawplots(time,pos,ori,imupos,posinstr,ori_instr,ppath,...

orimod,pos mod,accelerometergyroscope);

shapepath.m

function [ppath,qpath,ori_i_path,vel_ipath,time] =
shapepath ( geom shape, sim time, sampling rate)

% INPUTS: geometry shape ('cube', 'sphere', 'hemiellipsoid' or 'irregular')
% simtime (seconds), sampling rate (Hz)
% OUTPUTS: ppath (xyz coordinates over time, m, Nx3)
% q_path (iterative quaternion over time, Nx4)
% ori _ipath (initial orientation, 3x3)
% vel_ipath (initial velocity, m/s, 3x1)
% time (Nxl)

NN = simtime*samplingrate;
dt = 1/samplingrate;

% Set reference geometry
% Options: 'cube','sphere','hemiellipsoid','irregular'
def shape = geom shape;
XYZscale = 0.125;

[X,Y,Z] = testsurfaces(defshape,XYZscale);
X = reshape(X,[],1); Y = reshape(Y,[],1); Z = reshape(Z,[],1);
XYZ = [X Y Z];

% Set starting point
startloc = 3*round(length(XYZ)/4);
xyzstart = XYZ(start_loc,:);
x = xyzstart(1); y = xyzstart(2); z = xyzstart(3);
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% Set starting velocity coefficient
V = samplingrate/10;
% V = 200; % - M/s

XYZcenter = [mean(X) mean(Y) mean(Z)];
dir = (XYZcenter-xyzstart)/norm(XYZ-center-xyzstart);

t = 0;
i = 1;
reached_object = 0;
enoughdata = 0;
xyz(1,:) = xyzstart;
velinit = ones(1,3);

% vector to object center
v_cen = (xyz(i,:)-XYZcenter)/norm(xyz(i,:)-XYZcenter);
% Calculate orthogonal vector to v cen
dir z = 2; dirx = 2;
diry = -(dir_z*v_cen(3)+dir-x*v-cen(1))/v-cen(2);
dir = [dirx diry dir z];

while (enoughdata == 0)

t_path-init = t;
t_path = (V*simtime*dt)/4;
t_path = rand;

% vector to object center
v_cen = (xyz(i,:)-XYZcenter)/norm(xyz(i,:)-XYZcenter);

N = 13; spacing = 4; % N = odd; spacing = dist between pts for interp
while t-tpathinit < tpath

curveXYZ = ones(N,3);
for n = -(N-1)/2:(N-1)/2

curveXYZ(n+(N+1)/2,:) -
closestpt((xyz(i,:) - spacing*n*V*dt*dir), XYZ);

end
t_eff = (-(N-1)/2:(N-1)/2) * dt*spacing*V; % effective time for

interp pts
expmat = (N:-1:0);
Vand = teff'.^expmat; % Vandermonde matrix
Ax = Vand\curveXYZ(:,1);
Ay = Vand\curveXYZ(:,2);
Az = Vand\curveXYZ(:,3);
x_step = sum(((dt*V).^expmat').*Ax)-xyz(i,1);
y_step = sum(((dt*V).^exp_mat').*Ay)-xyz(i,2);
z_step = sum(((dt*V).Aexpmat').*Az)-xyz(i,3);
xyz(i+1,:) = closestpt(xyz(i,:),XYZ) + V*dt*[xstep ystep zstep];

if t == 0
velinit = V*[xstep y-step zstep];

end
i = i+1; t = t+dt;

end
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% Calculate orthogonal vector to vcen
dirz = 2*(rand-0.5); dirx = 2*(rand-0.5);
diry = -(dir_z*v_cen(3)+dirx*vcen(1))/v-cen(2);
dir = [dir-x diry dir z];

if t > simtime-dt
enough data=1;
break

end
end

if strcmp(defshape,'cube')
velinit = velinit + [0 0.166 0.166];

elseif strcmp(defshape,'sphere')
velinit = velinit + [-0.048 0.082 -.001];

elseif strcmp(defshape,'hemiellipsoid')
velinit = velinit + [-0.051 0.078 0.071];

elseif strcmp(defshape,'irregular')
velinit = velinit + [0.038 -0.054 0.002];

end

p_path = xyz(1:NN,:);
vel_i_path = velinit;
time = 0:dt:dt*(length(p_path)-1);
ori_i_path = eye(3);
q_path = repmat([1 0 0 0],length(ppath)-1,1);

end

testsurfaces.m

function [x,y,z] = testsurfaces(shape,XYZ_scale)
% Defines reference geometry (goal shape)
% Possible paths: cube, sphere, hemiellipsoid, irregular
% Returns set of x,y,z points

%% CUBE
% NxNxN cube centered at 0 in xy plane, with max z at N

if strcmp(shape,'cube')
N = 4;
n = 0.05;

% n = 0.2;
N = N*XYZscale; n = n*XYZscale;
[a,b] = meshgrid(-(N/2):n:(N/2),-(N/2):n:(N/2));
a = reshape(a,[numel(a) 1]); b = reshape(b,[numel(b) 1]);
x = [a a b b -N/2*ones(size(a)) N/2*ones(size(a))];
y = [b b -N/2*ones(size(a)) N/2*ones(size(a)) a a];
z = [zeros(size(a)) N*ones(size(a)) a+N/2 a+N/2 b+N/2 b+N/2];

% x = x*XYZ-scale; y = y*XYZscale; z = z*XYZscale;
Al = [min(a) max(a) max(a) min(a)];
A2 = [min(a) min(a) max(a) max(a)];
A3 = min(a)*ones(1,4); A4 = max(a)*ones(1,4);
xsurf = [Al; Al; Al; Al; A3; A4];
ysurf = [A2; A2; A3; A4; A2; A2];
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zsurf = [zeros(1,4); N*ones(1,4); A2+N/2; A2+N/2; A1+N/2; Al+N/2];
figure()
subplot(1,2,1)
for i = 1:6

patch('XData',xsurf(i,:),'YData',ysurf(i,:),'ZData',zsurf(i,:),
'FaceColor',[0 0.8 0.7],'FaceAlpha',0.2,'LineStyle',':')

hold on
view(3)
axis([-N/2-XYZscale N/2+XYZscale -N/2-XYZscale ...

N/2+XYZscale -XYZscale N+XYZ scale])
% axis([-N/2-1 N/2+1 -N/2-1 N/2+1 -1 N+1])

pbaspect([1 1 1])
end
title('Reference Geometry')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
subplot(1,2,2)
plot3(x,y,z,'.');

% plot3(x,y,z,'k.');
axis([-N/2-XYZscale N/2+XYZscale -N/2-XYZscale ...

N/2+XYZscale -XYZscale N+XYZ_scale])
% axis([-N/2-1 N/2+1 -N/2-1 N/2+1 -1 N+1])

pbaspect([1 1 1])
title('Reference Points')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
suptitle('Generated Shape: Cube')

end

%% SPHERE

if strcmp(shape,'sphere')
sphereN = 200;

% sphereN = 50;
theta = 0:0.2:2*pi;
[x,y,z] = sphere(sphere N);
x - x*XYZscale; y = y*XYZscale; z = z*XYZ scale;
figure()
subplot(1,2,1)
surf(x,y,z,'EdgeColor','none','FaceColor',[0 0.8 0.7],'FaceAlpha',0.2)
hold on
plot3(cos(theta)*XYZscale,sin(theta)*XYZ_scale,...

zeros(size(theta)),'k:')
hold on
plot3(zeros(size(theta)),cos(theta)*XYZ_scale,...

sin(theta)*XYZ_scale,'k:')
hold on
plot3(sin(theta)*XYZscale,zeros(size(theta)), ...

cos(theta)*XYZ_scale,'k:')
axis equal
title('Reference Geometry')
xlabel('x (m)'); ylabel('Y (m)'); zlabel('Z (m)');
subplot(1,2,2)
plot3(x,y,z,'.');

% plot3(x,y,z,'k.');
axis equal
title('Reference Points')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
suptitle('Generated Shape: Sphere')

end
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%% HEMIELLIPSOID

if strcmp(shape,'hemiellipsoid')
circleN = 200;

% circleN = 50;
dtheta = 0.05;

% dtheta = 0.1;
theta = (0:dtheta:(2*pi+dtheta))';
theta = repmat(theta,1,circleN+1);
T = length(theta(:,1));
xy-scale = 0:1/circleN:1;
xyscale = repmat(xyscale,length(theta(:,1)),1);
x = xyscale.*cos(theta); y = xyscale.*sin(theta);
z_scale = 5;
z = sqrt(1-x.^2-y.^2)*zscale;
z = real(z);
x = x(:,1:length(x(1,:))-round(1/10*circleN));
y = y(:,1:length(y(1,:))-round(1/10*circleN));
z = z(:,1:length(z(1,:))-round(1/10*circleN));
z = z-min(z(:,end));
x = x*XYZscale; y = y*XYZ scale; z = z*XYZscale;
figure()
subplot(1,2,1)
surf(x,y,z,'EdgeColor','none','FaceColor',[0 0.8 0.7],'FaceAlpha',0.2)
hold on
plot3(x(end,:),y(end,:),z(end,:),'k:')
hold on
plot3(x(1,:),y(1,:),z(1,:),'k:')
hold on
plot3(x(round(T/4),:),y(round(T/4),:),z(round(T/4),:),'k:')
hold on
plot3(x(round(T/2),:),y(round(T/2),:),z(round(T/2),:),'k:')
hold on
plot3(x(round(3*T/4),:),y(round(3*T/4),:),z(round(3*T/4),:),'k:')
axis equal
title('Reference Geometry')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
subplot(1,2,2)
plot3(x,y,z,'.');

% plot3(x,y,z,'k.');
axis equal
title('Reference Points')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
suptitle('Generated Shape: Hemiellipsoid')
x = repmat(x,2,1); y = repmat(y,2,1); z = [zeros(size(z)); zj;

end

%% IRREGULAR BIOLOGICALLY-INSPIRED SHAPE

if strcmp(shape,'irregular')
N = 300;

% N = 50;
dtheta = 0.05;

% dtheta = 0.1;
theta = (0:dtheta:(2*pi+dtheta))';
theta = repmat(theta,1,N+1);
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T = length(theta(:,1));
xy-scale = 0:1/N:l;
xyscale = repmat(xyscalelength(theta(:,1)),1);
x = xy_scale.*cos(theta); y = xy-scale.*sin(theta);
z_scale = 4;
z = sqrt(1-x.A2-y.^2)*zscale;
z = real(z);
for i = round(T/6):round(T/3)

for j = round(N/2):round(7*N/8)
x(i,j) = x(i,j)*...

(1-0.3*(l-(abs(ll*N/16-j)/abs(11*N/16-N/2))^1.5)*.
(1-(abs(T/4-i)/abs(T/4-T/6))^1.5));

y(i,j) = y(ij)*...
(1-0.3*(1-(abs(l1*N/16-j)/abs(ll*N/16-N/2))^1.5)*..

(1-(abs(T/4-i)/abs(T/4-T/6))^1.5));
end

end
for

end
for

end
for

end
for

end
for

end

i = round(9*T/16):round(15*T/16)
for j = round(N/2):N

y(i,j) = y(ij)*...
(1-0.3*(l-(abs(3*N/4-j)/abs(N/4))^"1.5)* ...

(1-(abs(3*T/4-i)/abs(3*T/4-9*T/16))^*1.5));
end

i = round(T/3):round(2*T/3)
for j = round(N/2):round(19*N/20)

x(i,j) = x(ij)*...
(1-0.4*(1-(abs(29*N/40-j)/abs(29*N/40-N/2))^1.5)*...

(1-(abs(T/2-i)/abs(T/2-T/3))A1.5));
end

i = round(T/3):round(2*T/3)
for j = 1:round(N/2)

x(i,j) = x(i,j)*...
(1+0.3*(l-(abs(N/4-j)/abs(N/4))^1.5)* ...

(1-(abs(T/2-i)/abs(T/2-T/3))^1.5));
end

i = [1:round(T/6) round(5*T/6):T]
for j = 1:round(5*N/6)

x(i,j) = x(i,j)*...
(1-0.3*(l-(abs(5*N/12-j)/abs(5*N/12))^'1.5)* ...

(1-(abs(l-i+T*(i>T/2))/abs(T/6))^1.5));

y(i,j) = y(i,j)*...
(1-0.3*(e-(abs(5*N/12-j)/abs(5*N/12))^d.5)*...

(1-(abs(l-i+T*(i>T/2))/abs(T/6))^1.5));
end

i = 1:round(T/4)
for j = round(N/4):round(3*N/4)

y(i,j) = y(i,j)*...
(1-0.2*(l-(abs(N/2-j)/abs(N/4)

(1-(abs(T/8-i)/abs(T/8)

x(i,j) - x(ij)*...
(1-0.2*(1-(abs(N/2-j)/abs(N/4)

(1-(abs(T/8-i)/abs(T/8)
end

)^1.5)*
)A1.5));

)A1.5)*
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x = x(:,1:length(x(1,:))-round(1/20*N)) * 3/4;
y = y(:,1:length(y(1,:))-round(1/20*N)) * 3/4;
z = z(:,1:length(z(1,:))-round(1/20*N));
z = z-min(z(:,end));
x = x*XYZscale; y = y*XYZ scale; z = z*XYZscale;
figure()
subplot(1,2,1)
surf(x,y,z,'EdgeColor','none','FaceColor',[O 0.8 0.7],'FaceAlpha',0.2)
hold on
plot3(x(end,:),y(end,:),z(end,:),'k:')
hold on
plot3(x(1,:),y(l,:),z(l,:),'k:')
hold on
plot3 (x(round(T/4),:),y(round(T/4),:),z(round(T/4),:),'k:')
hold on
plot3(x(round(T/2),:),y(round(T/2),:),z(round(T/2),:),'k:')
hold on
plot3(x(round(3*T/4),:),y(round(3*T/4),:),z(round(3*T/4),:),'k:')
axis equal
view(-15,28)
title('Reference Shape')
xlabel('x (m)'); ylabel('Y (m)'); zlabel('Z (m)');
subplot(1,2,2)
plot3(x,y,z,'.')

% plot3(x,y,z,'k.');
axis equal
view(-15,28)
title('Reference Points')
xlabel('x (m)'); ylabel('Y (m)'); zlabel('Z (m)');
suptitle('Generated Shape: Irregular')
x = repmat(x,2,1); y - repmat(y,2,1); z = [z; zeros(size(z))];

end

end

closestpt.m

function [XYZ closest] = closestpt(xyz,XYZ)
% Returns point within XYZ which minimizes squared distance to point xyz

distsquared = sum((xyz-XYZ).A2,2);
closestpt = find(distsquared == min(distsquared));
if numel(closestpt)>1

closestpt = min(closestpt);
end
XYZclosest = XYZ(closestpt,:);

end
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circlepath.m

function [ppathq_path,ori_i_path,vel_i_path,time] = ...
circlepath(sim time, samplingrate)

% INPUTS: simtime -- simulation run time (seconds, scalar)
% samplingrate -- simulation sampling rate (Hz, scalar)
% OUTPUTS: ppath -- xyz points through time (m, Nx3)
% q_path -- iterative quaternion through time (Nx4)
% ori i_path -- initial normal vector to path (3x3)
% vel i_path -- initial velocity following path (m/s, 3x1)
% time -- corresponding time matrix (seconds, Nx1)

t = sim time; % seconds
dt = 1/samplingrate;
N = t/dt;

% Define translational path
maxtheta = 2*pi; % rotation
dtheta = maxtheta/N;
theta = (0:dtheta:maxtheta-dtheta)';
p = [cos(theta) sin(theta) zeros(N,1)]

repmat(cos(theta)+sin(theta),1,3)/3; % position, m

p = p-p(1,:;
v = [-sin(theta) cos(theta) zeros(N,1)] -

repmat(-sin(theta)+cos(theta),1,3)/3;
xyzscale = 0.1;
p = p*xyz_scale; v = v*xyzscale;
v = v*dtheta/dt; % velocity, m/s

path-center = mean(p,1);

% Define basis vectors
z_bas = (p-pathcenter);
z_basnorm = sqrt(z bas(:,1).^2+z-bas(:,2).^2+z-bas(:,3).^2);
z_bas = zbas./zbasnorm;
z_const = (z-bas(:,2)./z-bas(:,1)).^2;
y_bas = [(z-const./(1+zconst)).A(1/2)

(1./(1+zconst)).^(1/2) zeros(N,1)];
x_bas = [ybas(:,2).*z-bas(:,3)-y_bas(:,3).*zbas(:,2) ...

y_bas(:,3).*z bas(:,1)-ybas(:,1).*z bas(:,3) ...
y_bas(:,1) .*z bas(:,2)-ybas(:,2) .*z bas(:,1)];

x basnorm = sqrt(xbas(:,1).^2+x-bas(:,2).^2+x-bas(:,3).^2);
x_bas = xbas./xbas_norm;

% Define rotation (reverse solve for quaternion)
% q = ones(length(z-bas)-1,4);
% for i = 1:length(z bas)-1
% q(i,:) = Qbacksolve(z-bas(i,:),z-bas(i+1,:));
% end
% qtheta = 0.05; % rad/s
% dqtheta = qtheta*dt;
% dqtheta = dqtheta*ones(N,1);
% qv = [1 2 3];
% qv = qv/norm(qv);
% q = [cos(dqtheta/2) qv(1)*sin(dqtheta/2) ...
% qv(2)*sin(dqtheta/2) qv(3)*sin(dqtheta/2)];

q = repmat([1 0 0 0],N,1);
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% OUTPUTS
p-path = p;
q_path = q;
ori _ipath = [x_bas(1,:)' ybas(1,:)' z-bas(1,:)']';
vel_ipath = v(l,:);
vel_ipath = vel-i-path;
time = dt:dt:t;

end

generateinstrument.m

function [instrumentxyz,imupts,imu_ori] =
generateinstrument(instrument shapeimu-num)

% Defines x,y,z points for measurement instrument and places IMUs in random
% locations on instrument outer surface
% x, y centered at 0, z starts at 0
% Options: sphere
% OUTPUTS: instrumentxyz -- instrument shape (Nx3, meters)
% imujPts -- imu locations on instrument (Mx3, meters)
% imu_ori -- imu orientations (3x3xM)

if instrumentshape == 'sphere'
N = 40;
xyz scale = 0.5;
[x,y,z] = sphere(N);
x = x*xyzscale; y = y*xyzscale; z = z*xyzscale;
z = z-min(reshape(z,[],1));
instrumentxyz = [reshape(x,[],1) reshape(y,[],1) reshape(z,[],1)];
locs = randi(N-1,[1 imunum])+1;
imuypts = ones(imu-num,3);
imu ori = ones(3,3,imu-num);

for i = 1:imunum
imupts(i,:) = [x(locs(i),locs(i)),y(locs(i),locs(i)),...

z(locs(i),locs(i))];
z_bas = (imupts(i,:)-mean(instrumentxyz(:,3)))' / ..

norm(imupts(i,:)-mean(instrumentxyz(:, 3)));
z_const = (z-bas(2)/z-bas(1))^2;
y_bas = [(z const/(1+z-const))A(1/2) (1/(1+z-const))A(1/2) 0]';
x_bas = [y_bas(2)*z bas(3)-y_bas(3)*z bas(2) ...

y_bas(3)*z bas(1)-ybas(1)*z bas(3) ...
y_bas(1)*z bas(2)-y_bas(2)*z-bas(1)]';

x_bas = xbas/norm(xbas);
imu-ori(:,:,i) = [xbas ybas z-bas];

end

imu-pts = permute(imupts,[3 2 1]);
end

end
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imu-setup.m

function [align,offsens,noise] - imusetup(Arange,Grange, ...
ADC length, error lvl, t, imu num, error type)

% Calculates error parameters (axis alignment, offset, sensitivity, noise)
% based on IMU parameters

rawmax = 2^(ADC_length-1); % LSB

align = [eye(3) eye(3)]; % accelerometer, gyroscope (unitless)
align = repmat(align,1,1,imu-num);
for i = 1:6

for j = 1:imunum
% align(:,i,j) = align(:,i,j).*...
% (1+0.1*error -lvl*(2*rand(size(align(:,i,j)))-l));

align(:,i,j) - align(:,i,j) .* ...
(1+errorlvl/5*normrnd(O,1e-2,[3 1 1]));

align(:,i,j) = align(:,i,j)/norm(align(:,i,j));
end

end

% off = 0.1*errorlvl * [A_range(2)*(2*rand(3,1,imunum)-1) ...
% G_range(2)*(2*rand(3,1,imunum)-1)]; % g, rad/s

off = errorlvl/5 * [Arange(2)*normrnd(O,1e-2,[3 1 imu-num]) ...
G_range(2)*normrnd(O,1e-2,[3 1 imunum])]; % g, rad/s

sens = [rawmax/Arange(2) rawmax/G-range(2)]; % LSB/g, LSB/(deg/s)
sens = repmat(sens,1,1,imu num);
% sens = sens.*(1+0.1*error lvl*(2*rand(size(sens))-1));
sens = sens.*(1+errorlvl/5*normrnd(O,1e-2,[1 2 imu-num]));
sens = [1 1]./sens; % g/LSB, (deg/s)/LSB

noise = errorlvl/5 * [normrnd(O,1e-2,[length(t) 3 imu_nnum]) ...
10*normrnd(O,1e-2,[length(t) 3 imu-num])];

noise - noise + eps*ones(size(noise));

if strcmp(error type,'accelonly') || strcmp(error type,'accelnoiseonly')
align(:,4:6,:) - repmat(eye(3),1,1,imu-num);
off(:,2,:) = repmat(zeros(3,1),1,1,imu num);
sens(:,2,:) = repmat(raw-max/G-range(2),1,1,imu-num);
noise(:,4:6,:) = eps*ones(size(noise(:,4:6,:)));

elseif strcmp(error type,'gyroonly') || ...
strcmp(error type,'gyro noiseonly')

align(:,1:3,:) = repmat(eye(3),1,1,imu num);
off(:,1,:) = repmat(zeros(3,1),1,1,imunum);
sens(:,1,:) = repmat(rawmax/A range(2),1,1,imu num);
noise(:,1:3,:) = eps*ones(size(noise(:,1:3,:)));

end

if strcmp(error type,'accelnoise_only') || strcmp(error type,'noiseonly')
align(:,1:3,:) = repmat(eye(3),1,1,imu num);
off(:,1,:) = repmat(zeros(3,1),1,1,imunum);
sens(:,1,:) = repmat(rawmax/A range(2),1,1,imu num);

end
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if strcmp(errortype,'gyronoise only') || strcmp(errortype,'noise only')
align(:,4:6,:) = repmat(eye(3),1,1,imu-num);
off(:,2,:) = repmat(zeros(3,1),1,1,imunum);
sens(:,2,:) = repmat(raw-max/G-range(2),1,1,imunum);

end

end

virtualIMU.m

function [accelerometer, gyroscope] = virtualIMU(pos ,q, time,...

alignment,offset,sensitivity,noise,bits,init_ori)

% Calculates accelerometer and gyroscope output given position,
% orientation, linear acceleration, angular velocity, direction of gravity
% INPUTS: position (3xN, GRF), rotation quaternion (3xN, iterative),
% initial gyroscope and accelerometer orientations (3x3, GRF)
% initial position 3x1, initial orientation 3x3
% OUTPUTS: simulated accelerometer, gyroscope data

% Separate error parameters into accelerometer, gyroscope values
align A = alignment(:,1:3); alignG = alignment(:,4:6);
offsetA = offset(:,1); offsetG = offset(:,2);
sensA = sensitivity(1); sensG = sensitivity(2);
noiseA = noise(:,1:3); noiseG = noise(:,4:6);

% Add gravity to acceleration values
N = length(pos);
dt = max(time)/(N);
gravity = 9.81*[zeros(N,2) -1*ones(N,1)];

% Convert offset to Nx3 matrices in LSB (from g, rad/s)
offsetA = offsetA/sensA;
offsetG = offsetG/sensG;
offsetA = [offsetA(1)*ones(N,1) offsetA(2)*ones(N,1)
offsetA(3)*ones(N,1)];
offsetG = [offsetG(1)*ones(N,1) offsetG(2)*ones(N,1)
offset_G(3)*ones(N,1)];

% Convert noise to LSB (from g, rad/s)
noiseA = noiseA/sensA;
noiseG = noiseG/sensG;

% Change sensitivities to (m/s^2)/LSB, (rad/s)/LSB
sensA = sensA*9.81;
sensG = sensG*pi/180;

% Calculate accelerometer, gyroscope ranges
% bits = 32; % 24 max; raise for ideal situation; aim for 16
rangeA = sensA*2A(bits-1);
rangeG = sensG*2^(bits-1);
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% Define orientation matrices (3x3)
Oa = zeros(3,3,N); Og = zeros(3,3,N);
Oa(:,:,1) = initori*alignA;
Og(:,:,1).= initori*align_G;

% Rotate accel, gyro orientations iteratively using quaternion array q
for i = 1:N-1

Oa(:,:,i+1) = [Qrotate(Oa(:,1,i),q(i,:)) ...

Og(:,:,i+1) =

Q_rotate(Oa(:,2,i),q(i,:)) ...
Q_rotate(Oa(:,3,i),q(i,:))];
[Qrotate(Og(:,1,i),q(i,:)) ...
Q_rotate(Og(:,2,i),q(i,:)) ...
Q_rotate(Og(:,3,i),q(i,:))];

acc = zeros(N,3);
for i = 1:N-2

acc(i,:) = (pos(i,:)-2*pos(i+1,:)+pos(i+2,:))/dt^2;
end
acc = acc+gravity;

% Calculate GRF gyro from orientation quaternion
theta = 2*acos(q(:,1))+eps;
omega = [q(:,2).*theta./sin(theta/2)

q(:,3).*theta./sin(theta/2)
q(:,4).*theta./sin(theta/2)];

% omega(isnan(omega))=O; % new line
omega = omega/dt;

accelerometer = zeros(N,3); gyroscope = zeros(N,3);

% Calculate rotated accel, gyro from Oa/Og and acc/omega
for i = 1:N-1

accelerometer(i,:) - Oa(:,:,i)\acc(i,:)';
% gyroscope(i,:) = Og(:,:,1)\omega(i,:)'; % Note: Og(:,:,1) = align_G

gyroscope(i,:) = alignG\omega(i,:)';
end

% accelerometer = round(accelerometer/sens A)*sensA;
% gyroscope = round(gyroscope/sens A)*sens_A;

% accelerometer(abs(accelerometer)>rangeA) = range_A;
% gyroscope(abs(gyroscope)>rangeG) = range_G;

% Convert accelerometer and gyroscope data to LSB
accelerometer = accelerometer/sensA;
gyroscope = gyroscope/sens_G;

% Add noise, offset
accelerometer = accelerometer + offsetA + noiseA;
gyroscope = gyroscope + offsetG + noiseG;

end
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oribasiccalc.m

function [ori] = oribasiccalc(gyro,time,alignmentoffset,...

sensitivity,init_ori)

N = length(time);
tstep = max(time)/N;

alignG = alignment(:,4:6);
sensG = sensitivity(2)*pi/180; % deg/s / LSB to rad/s / LSB
offsetG = offset(:,2)/sensG;
offsetG = [offset G(1)*ones(N,1) ...

offsetG(2)*ones(N,1) offsetG(3)*ones(N,1)];

offsetG = offsetG * pi/180;
gyro = gyro-offsetG;
gyro = gyro*sensG;

Og = zeros(3,3,N);
Og(:,:,1) = init_ori*alignG;
% Og(:,:,1) = alignG;%%

theta = 0;
tsave = zeros(N,1);

r = ones(N,4);
for i = 1:N

% Rotate angular velocity to GRF
% % w g = Og(:,:,1 )*gyro(i,:)';

wg = alignG*gyro(i,:)';%%%
% Rotation quaternion, based on angular velocity
theta = theta+norm(wg)*tstep;
tsave(i) = theta;
u = w g/norm(w_g);
u(find(isnan(u)))=0;
r(i,:) = [cos(theta/2); u*sin(theta/2)J';

end

Og = repmat(Og(:,:,1),1,1,N);
Ogl = QrotateN(permute(Og(:,1,:),[3 1 2]),r);
Og2 = Q-rotateN(permute(Og(:,2,:),[3 1 2]),r);
Og3 = Q_rotateN(permute(Og(:,3,:),[3 1 2]),r);
Og = [permute(Ogl,[2 3 1]) permute(Og2,[2 3 1]) permute(Og3,[2 3 1])];

ori = Og;

for i = 1:3

sqrt(ori(1,i,:).^2+ori(2,i,:).^2+ori(3,i,:).^2);
end

end
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oricorrect.m

function [orimod] = oricorrect(ori, instrument xyz, imu-ori-i,...
correctionmethod, gyroscope, time, alignment, offset, sensitivity)

N = length(time);
tstep = max(time)/N;
imu-num = length(ori(1,1,1,:));

if strcmp(correctionmethod,'averaging')
ori _mod = ones(size(ori));
for i = 1:imunum

ori-mod(:,:,:,i) = oribasic calc(mean(gyroscope,3),...
time,alignment,offset,sensitivity,imu-orii(:,:,i));

end

elseif strcmp(correctionmethod,'instrument shape')
%MODIFY METHOD TO CALCULATE INITIAL ORIENTATIONS WITH ACCELEROMETER
% also rotate instrument through time to check accuracy

normdiff_init = ones(nchoosek(imu-num,2),3);
i = 1;
for n = 1:(imu-num-1)

for m - (n+1):imunum
diffinit - imu-ori-i(:,:,m) - imuori-i(:,:,n);
normdiff init(i,1) = n; norm diffinit(i,2) = m;
normdiff init(i,3) = norm(diff-init(:,1));
normdiff init(i,4) = norm(diff-init(:,2));
normdiffinit(i,5) = norm(diff-init(:,3));
i = i+1;

end
end

orimod = ones(size(ori));
ori _mod(:,:,1,:) = imuori-i;
for j = 2:N

% update orientation
for k = 1:imunum

orimod(:,:,j,k) = ori_stepupdate(gyroscope(j,:,k),tstep,...
alignment(:,:,k),offset(:,:,k),sensitivity(:,:,k),...
ori-mod(:,:,j-1,k));

end
orimodshift = orishift_solve(normdiff_init(:,3:5),imu-num,...

ori mod(:,:,j,:));
ori mod(:,:,j,:) = orimod(:,:,j,:) + orimod shift;

end

elseif strcmp(correctionmethod,'none')
orimod = ori;

end

end
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oristepupdate.m

function [ori_step] = ori_stepupdate (gyro, tstep, alignment,offset, ...
sensitivity,initori)

% gyro = 3x1, alignment = 3x6; offset = 3x2; sensitivity = 1x2
% init_ori = 3x3

alignG = alignment(:,4:6);
sens G = sensitivity(2)*pi/180;
offsetG = offset(:,2)/sensG;

offsetG = offsetG * pi/180;

gyro = gyro-offsetG';
gyro = gyro*sensG;

Og = init-ori*alignG;

wg = alignG*gyro';
theta = norm(wg)*tstep;
u = w g/norm(wg);
q = [cos(theta/2); u*sin(theta/2)]';

orix = Q_rotate(Og(:,1),q);
ori_y = Q_rotate(Og(:,2),q);
oriz = Qrotate(Og(:,3),q);

orix = orix/norm(ori-x);
ori_y = ori_y/norm(oriy);
oriz = oriz/norm(oriz);

ori_step = [ori-x ori-y ori-z];

end

orishiftsolve.m

function [ori_shift] = orishift solve(norm diff,imunum,ori)

global n_IMU ND ol

n_IMU = imu-num;
ND = normdiff;
ol = ori;

options = optimset('Display','off','Algorithm','Levenberg-Marquardt');
orishift = fsolve(@shiftcalc,zeros(size(ol)),options);

end

function y = shiftcalc(oshift)

global n_IMU ND 01
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i = 1;
nd = ones(nchoosek(nIMU,2),3);
for n = 1:nIMU-1

for m = n+1:nIMU
odiff = (ol(:,:,m)+o-shift(:,:,m))-(ol(:,:,n)+o-shift(:,:,n));
nd(i,1) = norm(odiff(:,1));
nd(i,2) = norm(odiff(:,2));
nd(i,3) = norm(odiff(:,3));
i = i+1;

end
end

y = nd - ND;

end

posbasiccalc.m

function [pos] = posbasic calc(ori,accel,time,alignmentoffset, ...
sensitivity,initpos,init-vel)

N = length(time);
tstep = max(time)/N;
gravity = 9.81*[zeros(N,2) -1*ones(N,1)];

alignA = alignment(:,1:3); %% new
sensA = sensitivity(1)*9.81;
offsetA = offset(:,1)/sensA;
offsetA - [offsetA(1)*ones(N,1) ...

offsetA(2)*ones(N,1) offsetA(3)*ones(N,1)];

accel = accel-offsetA;
accel = accel*sensA;
for i = 1:length(time)
accel(i,:) = accel(i,:)*alignA; %% new
end

Oa = ori;

accel - permute(accel,[3 2 1]);
acc = bsxfun(@times,Oa,accel);
acc = permute(sum(acc,2),[3 1 2]); % Nx3

acc = acc-gravity;

vel = cumsum((acc(1:end-1,:)+acc(2:end,:))/2*tstep);
vel = [vel; vel(end,:)];
vel = vel+initvel;
pos = cumsum((vel(1:end-1,:)+vel(2:end,:))/2*tstep);
pos = [pos; pos(end,:)];

pos = pos+initpos;

end
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pos-correct.m

function [pos mod] = poscorrect(posinstrumentxyzimu-pts,...
correctionmethod,ori,accelerometer,time,offset,sensitivity,...
initpos, init-vel)

imunum = length(ori(1,1,1,:));
N = length(time);
tstep = max(time)/N;

if strcmp(correction_method,'averaging')
% calculate acceleration AFTER gravity removed
% average this
% apply to each imu to find position
accelgnd = ones(size(accelerometer));
for i = 1:imunum

accel-gnd(:,:,i) = accelearthframe(ori(:,:,:,i),...
accelerometer(:,:,i),time,offset(:,:,i),sensitivity(:,:,i));

end
accelavg = mean(accelgnd,3);
velmod = ones(size(pos));
pos mod = ones(size(pos));
for i = 1:imu num

vel-mod(1:end-1,:,i) =
cumsum((accel avg(1:end-1,:)+accel avg(2:end,:))/2*tstep);

vel mod(:,:,i) = [vel mod(1:end-1,:,i); velmod(end-1,:,i)];
vel-mod(:,:,i) = velmod(:,:,i)+initvel;
pos-mod(1:end-1,:,i) =

cumsum((vel mod(1:end-1,:,i)+vel mod(2:end,:,i))/2*tstep);
pos-mod(:,:,i) = [pos mod(1:end-1,:,i); pos mod(end-1,:,i)];
pos-mod(:,:,i) = pos-mod(:,:,i)+initpos(:,:,i);

end

elseif strcmp(correctionmethod,'instrument_shape')
% rotate instrument according to orientation (assumed correct)
% known: associated closest point (exact, in simulation) for shape)
% rotated pts to GROUND frame should keep exact distance apart

% (not distance between relative orientations)
% so using same method as above to solve for accelgnd, solve for
% difference in earth frame, and THAT should stay constant

diffinit = ones(nchoosek(imunum,2),3);
i = 1;
for n = 1:(imunum-1)

for m = (n+1):imunum
diffinit(i,:) = initpos(:,:,m)-initpos(:,:,n);
normdiffinit(i,1) = n; normdiff_init(i,2) = m;%%
normdiffinit(i,3) = norm(diff init(:,1));%%
normdiffinit(i,4) = norm(diff init(:,2));%%
normdiffinit(i,5) = norm(diff-init(:,3));%%
i = i+1;

end
end
accelgnd = ones(size(accelerometer));
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for i = 1:imunum
accelgnd(:,:,i) = accelearthframe(ori(:,:,:,i),...

accelerometer(:,:,i),time,offset(:,:,i),sensitivity(:,:,i));
end

vel = ones(size(accelgnd)); posmod = ones(size(accelgnd));
vel(1,:,:) = repmat(init-vel,1,1,imu-num);
pos-mod(1,:,:) = initpos;
for j = 2:length(pos)

vel(j,:,:) = vel(j-1,:,:) + accel_gnd(j,:,:)*tstep;
pos mod(j,:,:) = pos-mod(j-1,:,:) + vel(j,:,:)*tstep;
posmodshift = pos_shiftsolve(normdiffinit(:,3:5),imu-num,...

posmod(j,:,:));
pos mod(j,:,:) = pos-mod(j,:,:) + pos mod shift;

end

elseif strcmp(correctionmethod,'none')
pos mod = pos;

end

end

accelearthframe.m

function [accelgnd] = accelearthframe(ori,accel,time,alignment, ...
offset,sensitivity)

N = length(time);
gravity = 9.81*[zeros(N,2) -1*ones(N,1)];

alignA = alignment(:,1:3);
sensA = sensitivity(1)*9.81;
offsetA = offset(:,1)/sensA;
offsetA = [offsetA(1)*ones(N,1)

offsetA(2)*ones(N,1) offsetA(3)*ones(N,1)];

accel = accel-offsetA;
accel = accel*sensA;
for i = 1:length(time)

accel(i,:) = accel(i,:)*alignA; %% new
end

Oa = ori;

accel = permute(accel,[3 2 1]);
acc = bsxfun(@times,Oa,accel);
acc = permute(sum(acc,2),[3 1 2]); % Nx3

accelgnd = acc-gravity;

end
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pos shiftsolve.m

% function [posshift] = pos shiftsolve(diffinit,imunum,pos)
function [posshift] = posshiftsolve(norm_diff,imunumpos)

% global nIMU diff i pl
global nIMU ND pl

n IMU = imu num;
% diffi = diffinit;
ND = norm diff;
p1 = pos;

options = optimset('Display','off','Algorithm','Levenberg-Marquardt');
posshift = fsolve(@shiftcalc,zeros(size(p1)),options);

end

function y = shiftcalc(pshift)

% global nIMU diff i pl
global nIMU ND pl

i = 1;
nd = ones(nchoosek(nIMU,2),3);%%
% pdiff = ones(nchoosek(nIMU,2),3);
for n = 1:(nIMU-1)

for m = (n+1):n_IMU
p_diff = (pl(:,:,m)+p-shift(:,:,m))-(pl(:,:,n)+pshift(:,:,n));
nd(i,1) = norm(pdiff(:,1));%%
nd(i,2) = norm(pdiff(:,2));
nd(i,3) = norm(pdiff(:,3));
i = i+1;

end
end

% y = p diff - diffi;
% y = sqrt(y(:,1).^2+y(:,2).^2+y(:,3).^2)
y = nd - ND;

end

drawplots.m

function [] = drawplots(time,pos,ori,imupos,pos_instr,ori_instr,...
p_path,ori-mod,pos mod,accelerometer,gyroscope)

figure()
subplot(2,1,1)
plot(time,accelerometer(:,1,1));
hold on
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plot(time,accelerometer(:,2,1));
hold on
plot(time,accelerometer(:13,1));
xlabel('Time (seconds)'); ylabel('A
legend('X','Y','Z');
subplot(2,1,2)
plot(time,gyroscope(:,1,1));
hold on
plot(time,gyroscope(:,2,1));
hold on
plot(time,gyroscope(:,3,1));
xlabel('Time (seconds)'); ylabel('G
legend('X','Y','Z');
suptitle('Raw Generated IMU Data');

ccelerometer Raw Data (LSB)');

yroscope Raw Data (LSB)');

figure()
subplot(3,1,1)
plot(time,squeeze(ori(1,3,:,1)-ori(1,3,1,1)));
xlabel('Time (seconds)'); ylabel('X');
subplot(3,1,2)
plot(time,squeeze(ori(2,3,:,1)-ori(2,3,1,1)));
xlabel('Time (seconds)'); ylabel('Y');
subplot(3,1,3)
plot(time,squeeze(ori(3,3,:,1)-ori(3,3,1,1)));
xlabel('Time (seconds)'); ylabel('Z');
suptitle('Basic Orientation Calculation, IMU 1
surface)');

(basis vector orthogonal to

figure()
subplot(3,1,1)
plot(time,pos(:,1,1)); hold on; plot(time,imupos(:,1,1));
xlabel('Time (seconds)'); ylabel('X Position (m)')
legend('Calculated','Actual');
subplot(3,1,2)
plot(time,pos(:,2,1)); hold on; plot(time,imupos(:,2,1));
xlabel('Time (seconds)'); ylabel('Y Position (m)')
legend('Calculated','Actual');
subplot(3,1,3)
plot(time,pos(:,3,1)); hold on; plot(time,imupos(:,3,1));
xlabel('Time (seconds)'); ylabel('Z Position (m)')
legend('Calculated','Actual');
suptitle('Basic Position Calculation, IMU 1');

figure()
subplot(3,1,1)
% plot(time,squeeze(oriinstr(1,3,:)-ori-instr(1,3,1)));
plot(time,squeeze(ori_instr(1,3,:)));
xlabel('Time (seconds)'); ylabel('X');
subplot(3,1,2)
% plot(time,squeeze(oriinstr(2,3,:)-ori-instr(2,3,1)));
plot(time,squeeze(ori_instr(2,3,:)));
xlabel('Time (seconds)'); ylabel('Y');
subplot(3,1,3)
% plot(time,squeeze(oriinstr(3,3,:)-ori-instr(3,3,1)));
plot(timesqueeze(ori_instr(3,3,:)));
xlabel('Time (seconds)'); ylabel('Z');
suptitle('Instrument Orientation (basis vector orthogonal to surface)');
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figure()
subplot(3,1,1)
plot(time,posinstr(:,1)); hold on; plot(time,ppath(:,1));
xlabel('Time (seconds)'); ylabel('X Position (m)');
legend('Calculated','Actual');
subplot(3,1,2)
plot(time,posinstr(:,2)); hold on; plot(time,ppath(:,2));
xlabel('Time (seconds)'); ylabel('Y Position (m)');
legend('Calculated','Actual');
subplot(3,1,3)
plot(time,posinstr(:,3)); hold on; plot(time,ppath(:,3));
xlabel('Time (seconds)'); ylabel('Z Position (m)');
legend('Calculated','Actual');
suptitle('Instrument Position');

figure('Units','inches','Position',[4 4 66]);
subplot(3,1,1)
plot(time,squeeze(ori-mod(1,3,:,1)-ori-mod(1,3,1,1)));
hold on
plot(time,squeeze(ori(1,3,:,1)-ori(1,3,1,1)));
xlabel('Time (seconds)'); ylabel('X');
legend('Corrected','Basic','Location','northwest');
subplot(3,1,2)
plot(timesqueeze(ori-mod(2,3,:,1)-ori-mod(2,3,1,1)));
hold on
plot(timesqueeze(ori(2,3,:,1)-ori(2,3,1,1)));
xlabel('Time (seconds)'); ylabel('Y');
legend('Corrected','Basic','Location','northwest');
subplot(3,1,3)
plot(timesqueeze(ori-mod(3,3,:,1)-ori mod(3,3,1,1)));
hold on
plot(timesqueeze(ori(3,3,:,1)-ori(3,3,1,1)));
xlabel('Time (seconds)'); ylabel('Z');
legend('Corrected','Basic','Location','northwest');
suptitle('Corrected Orientation, IMU 1 (basis vector orthogonal to
surface)');

figure('Units','inches','Position',[4 4 6 6]);
subplot(3,1,1)
plot(time,pos-mod(:,1,1));
hold on
plot(timepos(:,1,1));
hold on
plot(time,imupos(:,1,1));
xlabel('Time (seconds)'); ylabel('X Position (m)');
legend('Corrected','Basic','Actual','Location','northwest');
subplot(3,1,2)
plot(time,pos-mod(:,2,1));
hold on
plot(timepos(:,2,1));
hold on
plot(time,imupos(:,2,1));
xlabel('Time (seconds)'); ylabel('Y Position (m)');
legend('Corrected','Basic','Actual','Location','northwest');
subplot(3,1,3)
plot(timepos-mod(:,3,1));
hold on
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plot(time,pos(:,3,1));
hold on
plot(time,imupos(:,3,1));
xlabel('Time (seconds)'); ylabel('Z Position (m)');
legend('Corrected','Basic','Actual','Location','northwest');
suptitle('Corrected Position, IMU 1');

figure()
plot3(posinstr(:,1),pos instr(:,2),pos_instr(:,3),'.')
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
axis equal

% comment out if using circlepath.m
Tri = delaunay(posinstr(:,1),posinstr(:,2),posinstr(:,3));
figure()
trisurf(Tri,posinstr(:,1),posinstr(:,2),posinstr(:,3),'FaceColor',..

[0.6875 0.8750 0.8984],'FaceAlpha',0.3)
xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');
axis equal

figure('Units','inches','Position',[4 4 6 6]);
subplot(3,1,1)
plot(time, (pos mod( :,1, 1)-imupos( :,1,1) )*1e3);
hold on
plot(time,(pos(:,1,1)-imupos(:,1,1))*1e3);
xlabel('Time (seconds)'); ylabel('X Position (mm)');
legend('Corrected','Basic','Location','northwest');
subplot(3,1,2)
plot(time, (pos mod( : ,2,1)-imupos( : ,2,1) )*1e3);
hold on
plot(time,(pos(:,2,1)-imupos(:,2,1))*1e3);
xlabel('Time (seconds)'); ylabel('Y Position (mm)');
legend('Corrected','Basic','Actual','Location','northwest');
subplot(3,1,3)
plot(time,(pos mod(:,3,1)-imupos(:,3,1))*1e3);
hold on
plot(time, (pos( : ,3, 1)-imupos( :,3, 1) )*1e3);
xlabel('Time (seconds)'); ylabel('Z Position (mm)');
legend('Corrected','Basic','Actual','Location','northwest');
suptitle('Position Error, IMU 1');

end
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QUATERNION METHODS

Q_rotate.m

function [vrotate] = Qrotate(v,q)
% Rotates v (3x1) about q (1x4)

vquatern = [0 v'];
qconj = Qconjugate(q);

temp = Qcrossproduct(q,vquatern);
vtemp = Qcrossproduct(temp,qconj);
v_rotate = vtemp(:,2:4);
v_rotate = vrotate';

end

Q_rotateN.m

function [Vrotate] = Q_rotateN(v,q)
% Rotates Nx3 matrix iteratively using Nx4 matrix of quaternions

N = length(v);

v_quatern = [zeros(N,1) v];
qconj = QconjugateN(q);

Vtemp = Q_multiplyN(Q_multiplyN(q,v quatern) ,qconj);
v_rotate = vtemp(:,2:4);

end

Q_crossproduct.m

function [q_cross] = Q_crossproduct(q,p)
% Calculates quaternion cross product, q x p (both Nx4)

q_cross = [-q(:,3).*p(:,3)-q(:,2).*p(:,2)-q(:,4).*p(:,4)+q(:,1).*p(:,1) ...q(:,2).*p(:,1)+q(:,3).*p(:,4)+q(:,1).*p(:,2)-q(:,4).*p(:,3) ...
q(:,4).*p(:,2)+q(:,1).*p(:,3)+q(:,3).*p(:, 1)-q(:,2).*p(:, 4) ...
q(:,1).*p(:,4)+q(:,4).*p(:,1)+q(:,2).*p(:,3)-q(:,3).*p(:,2)];

end
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QmultiplyN.m

function [qC] = QmultiplyN(qA,qB)
% INPUTS: Nx4 quaternion arrays qA, qB

a = permute(qA,[2 3 1]);
b = permute(qB,[3 2 1]);

c = bsxfun(@timesa,b);

% c = 4x4xN, where a = rows, b = columns -- > c(a,b)

C = [c(1,1,:)-c(2,2,:)-c(3,3,:)-c(4,4,:);
c(1,2,:)+c(2,1,:)+c(3,4,:)-c(4,3,:);
c(1,3,:)-c(2,4,:)+c(3,1,:)+c(4,2,:);
c(1,4,:)+c(2,3,:)-c(3,2,:)+c(4,1,:)];

qC = permute(C,[3 1 2]);

end

Q_conjugate.m

function [qconj] = Qconjugate(q)
% Calculates conjugate of quaternion q (1x4)

qconj = [q(1) -q(2:4)];

end

Q_conjugateN.m

function [qconj] = QconjugateN(q)
% Quaternion conjugate of Nx4 quaternion array

qconj = [q(:,1) -q(:,2:4)];

end

Q~backsolve.m

function [q] = QCbacksolve(ab)
% Given two 3x1 unit vectors A and B, solve for quaternion q to describe

% rotation from A to B
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global A B

A = a; B = b;

options = optimset('Display','off');
q = fsolve(@qbacksolve,[1 0 0 0],options);

end

function y = qbacksolve(Q)

global A B

Q_cross = @(pq) ...
[-q(3).*p(3)-q(2).*p(2)-q(4).*p(4)+q(1).*p(1) ...
q(2).*p(1)+q(3).*p(4)+q(1).*p(2)-q(4).*p(3) ...
q(4).*p(2)+q(1).*p(3)+q(3).*p(1)-q(2).*p(4) ...
q(1).*p(4)+q(4).*p(1)+q(2).*p(3)-q(3).*p(2)];

Qconj = @(q) [q(1) -q(2) -q(3) -q(4)];

temp = Q_cross(Q,[0 B]);
Qc = Qconj(Q);

y = Qcross(temp,Qc) - [0 A];

end
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