From Symbol tc Form: A Framework for Design Evolution
by

Sreenivasa Rao Gorti

Bachelor of Technology, 1988
Indian Institute of Technology, Bombay, India.

Master of Science in Civil Engineering, 1990
Johns Hopkins University, Baltimore, Maryland.

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Aided Engineering
at the
Massachusetts Institute of Technology
February 1995

(© Massachusetts Institute of Technology 1995. All rights reserved.

Author.
Department of Civil and Environmental Engineering
November 4, 1994
Certified by
D. Sriram
Principal Research Scientist, Thesis Supervisor
Accepted by : _< Y- A

Joseph-M:-Sussman— -
Chairman, Departmental Committee on Graduate Students

ARCHIVES

MASSACHISZTTS INsTITL:
OF TErungy, OE:?J,TU &

MAR 07 1995

LIBRARIES

From Symbol to Form: A Framework for Design Evolution
by
Sreenivasa Rao Gorti

Submitted to the Department of Civil and Environmental Engineering
on November 4, 1994, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Aided Engineering

Abstract

Engineering design involves a strong notion of the geometric structure of artifacts. Existing methods
for supporting the geometric aspects of design have had limited impact at the conceptual design stage.
This is due to three main reasons: (a) CAD systems have concentrated on the capture and representation
of geometric shape, as opposed to providing support for form conception; (b) Systems which attempt to
provide conceptual design support are based on little explicit relation to function; and (c) CAD systems
require a detail of representation which is too restrictive for conceptual design.

This thesis presents an approach to support and explicitly capture the process by which the form
of artifacts is concesved. It develops a framework to derive a geometric structure of a system from an
evolving symbolic description. The distinct elements of the symbol-form mapping are (a) deriving spatial
relationships between objects as a consequence of the functional relationships; (b) instantiating alternative
feasible solutions subject to these relationships: and {c) presenting the cvolving descriptions of geometry.

Computational support for each of these elements is provided within CONGEN, a conceptual design
agent developed as part of the DICE effort. The key contributions from the research include: (a) Auto-
matic evolution of form from an evolving symbolic representation of design, allowing designers to explore
multiple alternatives. The issues addressed are function-form mapping, instantiation of alternatives subject
to arbitrary constraints, and geometric representation for conceptual design; (b) A representation scheme
for symbolic design knowledge: the design model integrates product and process approaches, allowing the
user to control design flow: and (c) Integration of paradigins for conceptual design: A system architecture
which integrates representation, problem-solving and visualization support for evolution of design.

Thesis Supervisor: D. Sriram
Title: Principal Research Scientist

Acknowledgments

I extend my sincere gratitude to all those who have contributed, in one way or the other,
to make my stay at MIT a truly memorable one:

Firstly, I thank Prof. Sriram, my advisor: for all his support and encouragement through
different stages of my research; for his confidence and trust in me, which allowed me to
mature both as a person and a researcher; and for all those informal discussions and free
lunches at Larry’s.

To Prof. Bob Logcher, I express my appreciation of all his advice and input, especially
in the early stages of my research.

I will always remember Prof. Jerry Connor, for his constant support and goodwill, for
pointing out that “Life is good to us; all our stiffness matrices are symmetrical.”

Prof. John Williams helped make 1ESL a better place to be in, with his infectious
enthusiasm, good cheer, and excellent sense of humor.

I express my gratitude to Prof. Mitchell, who took time off from his incredibly busy
schedule to offer extremely useful suggestions.

I thank Dr. Seshasayee Murthy; he introduced us to ATeams at a time when we were
struggling for ideas on solving the constraint satisfaction problem.

I enjoyed my discussions with Salal Humair; I thank him for all the challenges and
arguments, for his ideas and help with the ATeams implementation.

Georgios Margelis was of invaluable assistance with the geometric representation imple-
mentation. ‘

I owe a great deal to Nabha Rege, for allowing me to put her through the painfully
laborious process of reading drafts of my thesis. She suffered through my frustrations and
excitements during my research; for this, I will be eternally grateful.

Patrick Kinnicutt, always short of plans, yet always ready to “do something”, has been
my good friend through my stay here. So too have Rahul Dighe and Kevin Amaratunga. I
thank them for all the good times I have shared with them.

Members of the DICE group have always stood by me through this research: I wish
to make special mention of Murali Vemulapati, Feniosky Pena Mora and Albert Wong.
Each of them has strongly influenced my research and approach; I cannot do justice to this
influence here.

Rory O’Connor is probably the most helpful person I have seen in my entire life. He
would also probably be embarrassed if I spent too many lines gushing over this.

I thank Jesus Favela (“Don Jesus”), who helped me through my mid-PhD crises with

his philosophical advice.

Joan McCusker deserves special mention, for all her support and concern about the
students.

To all my other friends at MIT: Thank you.

Last, but by no means the least, my deepest affection for my parents and sisters. They
always believed in me (“We have full confidence in you™), and but for their love and support,

I would have never made it this far. I dedicate this thesis to them.

Contents

1 Introduction 12
1.1 Motivation 0 e e e e e e 13
1.1.1 Primary Research Hypothesis 15

1.2 CONGEN: An Integration of Paradigms for Conceptual Design 17
Organization of the Thesis 19

2 Background 22
2.1 Modeling Technologies i i 22
2.1.1 Object-Oriented Database Management Systems (OODBMS) 24

2.1.2 Knowledge-Based Expert Systems 26

2.1.3 Geometric Modeling 27

214 Constraint Theory 31

22 DICE e e e e e 32
2.3 SUmMMATY . . . o vt e e e e e e e e e e e e 34

3 A Model of Integrated Product-Process Representation in Design Syn-

thesis 35
3.1 Imtroduction. e 35
3.2 Object Model e, 37
3.2.1 Definition of Objects 38
3.22 Relationships 39
3.23 Artifact 41
3.3 Product and Process Representation 44
3.3.1 Model Description, 45
332 ProcessEnaction, 52

CONTENTS

3.4 Related Research e 53
3.5 DisCuSSIOnR i it e e e e e e e e e e e e e 55
4 Symbol-Form Mapping: Issues and Approach 58
4.1 Introduction e 56
4.2 Symbol-Form Mapping Framework: Studying the Basis 57
4.2.1 Relating Function and Form. 57
4.2.2 Computability e 59

4.3 An Approach Based On Localized Function Form Mappings 61
4.4 Qualitative Spatial Relationships 63
4.4.1 Motivation e e e 65
4.4.2 Implementation i it i 66

4.5 SUIMINATY . . &t v v et e 70

5 Asynchronous Teams of Agents: An Approach to Constraint Satisfaction 71

5.1 Introduction e e e 71
5.1.1 Motivation e e e e 72
5.2 Asynchronous Teams of Autonomous Agents 73

5.2.1 A Conceptual ATeam for the Constraint Satisfaction Problem 75

5.3 Constraint Evaluation and Improvement 76
5.3.1 Constraint Evaluation for Qualitative Relationships 76
5.3.2 Improvement it 79
5.3.3 Modification Operators for Algebraic Constraints 81

54 Implementation e e 83
5.4.1 Solution Representation and Storage Classes 83
542 Operators v v it e e e e e e e e e e e e e e e e e 83
5.4.3 Overall ATeams Algorithm 85

5.5 Summary and Discussion, 86

6 Geometric Representation for Conceptual Design 87

6.1 Knowledge Representation for Geometry 88
6.1.1 Abstraction as a Representation Mechanism 88
6.1.2 Multiple Levels of Abstraction in a Unified Framework 89
6.1.3 Evolving Geometric Descriptions of Objects 89

CONTENTS

6.1.4 Domain Taxonomyt i it it 91

6.2 Implementation 91
6.2.1 Taxomomy v v v v v it e e e e e e e e e e e e 92

6.2.2 Evolving Description 92

6.2.3 GeometryInterface. oL 95

6.3 SUMIMATY . - . - v v v v v e et e e e e e e e e 96
7 CONGEN Implementation 87
7.1 Overall Implementation Framework 97
T.1.1 COSMOS e e 98

7.1.2 GNOMES e 99

7.2 Modeling Process Information L0000 100
7.3 Modeling Product Information 103
7.3.1 Defining Design Relationships 106

7.4 Modeling Geometric Information 109
7.5 Constraint Representation and Satisfaction 109
7.6 User Interface Components v v it 110
76.1 MainConsole, 110
7.6.2 Synthesizer e 111
7.6.3 GRAPHITI e 112

7.7 SUMMATY . . . ¢ v v e et e e e e e e e e e e e e 113
8 Example and Results 115
8.1 Modeling the Design Products 115
8.2 Modeling the Design Process e e e 116
8.3 Mlustrating the Design Flow 117
83.1 OmePierDesign 121
832 TwoPierDesign 122
8.3.3 Design Refinement 127

8.4 SUmMmary e e e e e e e e e e e e e e e e e e 128
9 Conclusions 136
9.1 SUmMMATY v v vt e ettt et e e e e e e e e e e e 136
9.2 Contributions e e 138

CONTENTS

9.3 Comparison with Related Research

9.4 Future Directions o v v i i i st e e e e e e e e e e e e e e e

A Sample CONGEN class declarations

List of Figures

2-1
2-2
2-3

3-1

4-1
4-2
4-3
4-4

45

7-1
7-2
7-3
7-4

CONGEN: overall architecture, showing interacting modules 18
Organization of thethesis 21
GNOMES system architecture. 30
GNOMES primitive classes i it 31
Cooperative product development 33
CONGEN class abstractions e, .. 49
Task map for symbol-form mapping scheme 60
An illustrative classification of relationships 62
Point-interval algebra formulation 64
Reference frames used forthe QSRs 67
QSR class hierarchy e e 68
A schematic diagram of the ATeam for snlving the conceptual design problem. 77
Evaluation function for point interval relationships 78
Improving numerical constraints 82
Class hierarchy of operators 84
Shape classification e e 93
Communication between modules 95
CONGEN class hierarchy 100
Context tree showing a particular design alternative. 101
Goaleditor e 102
Specification editor e 104

LIST OF FIGURES

7-5 Product knowledge: COSMOS console 105
7-6 Sample generated code from COSMOS L. 106
7-7 COSMOS Instance editor: can be invoked at any time during the design
PTOCESS . . o v v vt ittt e e e e e e e e e e e e e e e e e e e 107
7-8 Palate for choosing spatial relationships 108
7-9 Abuts relationship editor L L Lo o L 108
7-10 CONGEN main console 110
7-11 Synthesizer e e e e 112
7-12 Ateams userinterface Lo oo 113
7-13 GNOMES Userinterface 114
8-1 Design flow for the bridge example 118
8-2—Expanding the bridge -~ 119
8-3 Functional relationship is created between the slabsystem and piersystem. . 120
8-4 Bridge geometry: Only the slab geometry is known at this point. 121
8-5 Constraint violation notification 122
8-6 Results: Alternative 1 (after 3000 iterations) 124
8-7 Results: Alternative 2 (after 3000 iterations) 125
8-8 Results: Alternative 3 (after 3000 iterations) 126
8-9 Results: Alternative 4 (after 3000 iterations, 127
8-10 Results: Alternative 1 (after 6000 iterations) 128
8-11 Results: Alternative 2 (after 6000 ite-ations) 129
8-12 Results: Alternative 3 (after 6000 iterations) 130
8-13 Results: Alternative 4 (after 6000 iterations) 131
8-14 Y shaped emergent alternative 132
8-15 Bridge geometry: Piersystem alternative has been accepted. 133
8-16 Bridge geometry: Each of the piers consists of two columns. 134
8-17 Bridge geometry: Final design at the end of the conceptual design stage. . . 135

10

List of Tables

4.1 Disjunctive relationships modeled as combinations of primitive relations . . 69

4.2 3D relations modeled using lower level relationships 69

11

Chapter 1

Introduction

Engineering design involves a strong notion of the geometric structure of artifacts. At
a conceptual design stage, the focus of design is on identifying and designing the parts
of the system to meet an abstractly specified functionality. These parts must further be
interrelated in useful ways to derive a coherent and functional engineering structure. At a
detailed design stage, the focus shifts from an overall arrangement of components to detail
on individual component shapes. A substantial portion of designer time is thus spent on
deriving the geometric structure of artifacts. There has been a great deal of research on
supporting the geometric aspects of design. Yet, traditional CAD systems have had limited

impact at the conceptual design stage:

e CAD systems are intended for the capture and representation of the geometric shape,

as opposed to providing support for conception;

e CAD systems require a detail of representation which is too restrictive for conceptual

design; and
e The geometric primitives used by these systems have little " 1 to the domain.

Traditional geometric modeling support has focused on representation of form. But how
did this form come about? Traditional CAD systems have delegated this responsibility of
form conception to the designer. The computer is merely the recorder of information. This
is undoubtedly a very important facility. Is it possible to extend this support role of the
computer inio the conception phase? This thesis advances the belief that this is indeed

conceivable.

12

1.1 Motivation

This thesis describes an effort to support an evolution of design at a conceptual design
stage. More specifically, it presents a framework for the support and ezplicit capture of the
process by which design artifact form is conceived. This research on developing a framework
for form conception represents an effort to push computer support upstream in the design
process. It explicitly identifies and decouples the various systematic elements involved in
form conception. Computational support for each of these elements is provided within the
framework of CONGEN, a knowledge-based conceptual design support system implemented

as part of this research. The key contributions from the research include:

e Automatic evolution of form from an evolving symbolic representation of design. This
allows desiguers to explore multiple alternatives. The issues addressed are function-
form mapping, a representation scheme for geometry, and instantiation of alternatives

subject to arbitrary constraints;

o A representation scheme for design knowledge. A design model which integrates

product and process approaches. allowing the user to control design flow; and

o Integration of paradigms for conceptual design. A system architecture which integrates

representation. problem-solving and visualization support for evolution of design.

Section 1.1 outlines the requirements for a conceptual design shell, motivates this re-
search and formulates the primary research hypothesis. Section 1.2 briefly touches on the
requirements for a conceptual design shell. To meet these requirements, an integrated so-
lution architecture is proposed. Section 1.3 outlines the organization of the rest of the

thesis.

1.1 Motivation

The design of an engineering artifact may be perceived as realizing a physical im-
plementation of a solution described in symbolic terms. Engineering design involves an
identification of the needs, formulating the functional requirements, and then through an
evolving series of refinements, presenting a design solution. Engineering systems are often
assemblies of components, possibly related in many different ways. The designer must make
decisions at every step of the process. During the design process, geometry is often an im-

portant determining factor for further design decisions. Deriving the geometric structure

13

1.1 Motivation

of a high-level system is a very important design task. Consequently, there has been a
proliferation of research into modeling the geometry of design artifacts.

Of special interest to this research are three geometry-based approaches: feature-based
design [10], parametric design [17] and shape grammars [56). Feature-based design is an
effort to augment geometric detail with non-geometric information related to the artifact.
The primitive geometric building blocks are replaced with higher-level modeling elements
which are more directly of significance in a given domain. This approach has been embraced
widely in mechanical engineeri:ig, and several useful applications have been demonstrated.
Yet, this approach concentrates on representation of form. It provides no support for con-
ceiving the process by which the form was derived. Feature-based design is often coupled
with parame=tric design. Here, design shape modifications are made in a constraint-directed
manner. This constraint-directed approach allows for studying variations in dimensioning
and other parameters. This is, however, a post-conceptual design stage. where the compo-
nents and their topological connectivities are already known. Shape grammars have become
very popular in architecture. They have been shown to be a highly successful approach
to form automation. Again, this is a purely geometry-directed approach, and useful for a
class of graphical object synthesis problems. There is little explicit relation to the design
intent, though the design relationships are captured implicitly by rules.

While the representation of form is explicit in these systems, function is implicit in
the designers’ manipulations with geometric primitives. An extensive survey of existing
CAD systems underscores the importance of intelligent CAD systems as a basis for design
support for form conception. Traditional approaches to design support have been divided
sharply into geometry-based and AI-based design. Woodbury and Oppenheim [67] present
an excellent discussion on the hitherto disparate fields of artificial intelligence and geometric
modeling. These fields have dealt with the issues of complezity and geometry respectively,
from vastly different computational viewpoints. AI approaches to support design have
dealt with modeling design processes and products. Geometric modeling approaches have
concentrated on the geometric aspects of design. Thus treatment of form in design has
often been viewed independently of a design process model. Approaches which treat form
have evolved independent of a strong representational model. Smithers argues for a tightly
integrated combination of AI techniques and geometric modeling techniques [46]. A com-
parison of Al-based design and geometry-based design [46] clearly supports this argument,

Geometry-based approaches primarily suffer from an ontological impoverishment and from

14

1.1 Motivation

lack of adequate problem solving support. The expressive power of an Al-based framework
can lift the CAD system to the role of an intelligent support system.

The preceding discussion presents a case for a mating of AI and geometry. Indeed some
systems already achieve this in a limited sense by providing geometric modeling facilities
within the broader context of product modeling. Zamanian [73], Wong and Sriram [68],
and others have noted the need for representing evolving geometric forms at different levels
of abstraction. Woodbury and Oppenheim present an integration of Al-based techniques
and geometric modeling approaches as an architecture for geometric reasoning([67].

Still, support for the geometric aspects of design at the conceptual design stage has
been arguably inadequate. An implied notion of geometry and geometric relationships is
ofter extensively used at this stage. Visualization support must provide for explicit repre-
sentation of these implicit notions. These relationships are often only qualitatively stated;
notions of geometry are abstract and subject to change. nevertheless, highly important for
a specification of the product at this stage. Traditional CAD systems are overly restrictive
in the amount of detail they require of the designer. Further, support for form concep-
tion require confrontation of the issue of the relation between function and form, which
has proved an elusive quarry. Finally, the computational complexities associated with au-
tomated approaches present severe challenges to such an effort. The motivation of this
research has been to design and develop a computational framework to solve some of these
problems and finesse some of the others. This thesis proposes an overall approach which
demonstrates the feasibility of an effort to push computer support upstream in the design

process to the conceptual design stage.

1.1.1 Primary Research Hypothesis

This research is predicated on the following hypothesis:

Support for form conception is intimately linked to the symbolic eveclution
of the design.

To clarify this claim further: A symbolic description of artifacts is derived during the
process of mapping the specifications into a rough design. Such a d=scription of design
includes a specification of the components and also the functional relationships which are
developed between design artifacts. The term symbolic description represents the design
of an artifact based on a design process model, guided by design knowledge, resource
constraints and designer input at various stages. Such a notion of the design process

15

1.1 Motivation

incorporates a strong sense of the design intent inherent in the process. This description
could serve as the basis for deriving the geometric shape of the system.
The effort to derive the geometry based on a strong symbolic decomposition support

for design is motivated by the following reasons:

o The derived geometric structure would capture the essential functional ¢ntent of the

design;

e The geometry would serve as a basic template for the designer to interactively modify
and detail;

e At the conceptual design stage, the geometry would serve as visual feedback for the
user in the design process. It may thus further assist in the symbolic aspects of design;

and

e The system would allow the user to consider several alternatives at the conceptual
design stage, both in terms of functional decomposition, and in terms of physical

implementations of these decompositions.

In conceptual design, the focus is on the geometric arrangement of the components to
meet the overall system functionality. The components of the design are a fall-out of the
symbolic evolution of design. This process also allows the specification of the functional rela-
tionships between components. These functional relationships determine the relative sizes,
positions and orientations of components in the design. This thesis proposes an explicit
representation of design relationships between design objects as a basis for function-form
mapping. The scheme for deriving spatial relationships between objects as a consequence of
the fanctional relationships is based on the following observation: In general, it may not be
feasible to find function-form mappings in a given domain at overall system levels. Yet, this
problem can be solved in part by localizing such mappings to primitive relationships at the
component level. Engineering design knowledge about geometry, in fact, to a large degree
consists of these domain mappings of one or more commonly used spatial realizations to
achieve specialized functions. Such mappings allow the capture of the design intent behind
spatial connectivities.

16

1.2 CONGEN: An Integration of Paradigms for Conceptunal Design

1.2 CONGEN: An Integration of Paradigms for Conceptual Design

This section presents the requirements of a design support system, which motivated the
architecture of CONGEN.

o Knowledge Representation. An integrated engineering design and analysis environ-
ment requires a wide variety of knowledge structures and reasoning mechanisms. It
is in fact the knowledge intensive nature of the engineering process, and the engineer-
ing judgment developed based on this knowledge, that distinguish an expert engineer
from the novice. The underlying representation scheme for a design support system
should be structured, localized and flexible. The knowledge about the design domain

may consist of knowledge about:

(a) The design products end processes. This is the domain knowledge about the de-
sign components used and the process followed to put these components together

into a coherent design.

(b) The interrelationships between products and processes. These interrelationships
both increase the complexity of the problem and make it challenging. In many
ways, they may be as important as the design entities themselves. These rela-
tionships may take various forms: functiona! relationships, constraints, analo-

gies, spatial relationships, causal patterns, etc.

o Visualization support. The design process should support an evolution of form of the

designed artifact, and communicate this form effectively to the designer;

e Problem solving support. Problem solving support should provide for a variety of
reasoning approaches: top-down refinement, bottom-up reasoning, constraint prop-
agation, etc. It should also enable the use of various problem-solving techniques:
production systems, constraint management, qualitative and quantitative analysis
and case-based reasoning systems have all been demonstrated to be valuable aids for

design systems; and

e Database Support. The system should provide database support for design. This
allows persistence of design data, maintaining alternatives and design histories, ver-

sioning, etc.

17

1.2 CONGEN: An Integration of Paradigms for Conceptual Design

In response to these requirements, CONGEN is proposed as a solution architecture for

form conception. CONGEN is implemented as an application over a layered architecture

in a highly modular, object-oriented manner. The different base modules are independent

systems developed as part of the DICE (Distributed and Integrated Environment for Com-

puter aided Engineering) project at the Intelligent Engineering Systems Laboratory, M.I.T
(An overview of DICE is provided in section 2.2). These modules provide the basic design

functionalities for CONGEN.

Representation
Product Model
Process Model

CONGEN

User Interfaces
Context Management
Symbol-form mapping

A

Top-down refinement

Bottom-up support

}

cosMOs i,

Forward Chaining

' GNOMES

Geometric Et‘ngine

CBR

Backward Chaining

Object Interfaces ~*+™

COPLAN '

Constraint Management (Asynchronous Teams)

Query Management

Persistency

Object Oriented Database Management System (EXODUS)
Data Model

Figure 1-1: CONGEN: overall architecture, showing interacting modules

The overall architecture is shown in Figure 1-1, and is explained in detail below:

(1) Object Managementis implemented over an object-oriented database (EXODUS) pro-
vided by the University of Wisconsin, Madison [7]. This object management facility

provides persistent support, versioning, dynamic schema evolution, and dynamic com-

position hierarchies;

(2) COSMOS is an object-oriented expert system shell which provides a production sys-
tem facility with both forward chaining and backward chaining abilities [48]. It also

provides a set of generic object interfaces, including class definition tools, a run-time

object management facility, and object browsers;

18

1.3 Organization of the Thesis

(3) GNOMES is a non-manifold geometric modeler. GNOMES provides facilities to rep-
resent evolving design geometries in a uniform framework [52];

(4) COPLAN provides a constraint satisfaction framework based on a concept called

Asynchronous Teams of Agents; and

(5) CONGEN is the design application shell built as a layered application interacting
with these modules. It provides a powerful design knowledge representation scheme,
maintains design alternatives and context information, and allows visualization of
alternatives. CONGEN supports design as a synthesis process, involving an arrange-
ment of pre-defined building blocks to compose the design. While such a synthesis
is primarily an aspect of routine design, the flexibility of representation and a fine
granularity of the building blocks allow for potentially innovative design solutions to
be materialized. The synthesis is based on an integration of three prchlem-solving
approaches: the process-based hierarchical decomposition (or alternately stated, a
functional decomposition) of design, the product-oriented bottom-up models, and

constraint propagation approaches.

Each of these systems is implemented in a modular, independent manner, using C++
and X-Windows/Motif on a UNIX platform to run on SUN-SPARC workstations. Extensive
intercommunication between these modules provides an integrated set of tools for design

support in a collaborative framework.

1.8 Organization of the Thesis

The organization of the thesis is shown in Figure 1-2:

Chapter 2 presents a brief discussion of background material. It discusses relevant mod-
eling technologies, database management, knowledge-based systems, geometric modeling,
and constraint management issues. It also presents an overview of the DICE (Distributed
and Integrated Environment for Computer aided Engineering) project at the Intelligent
Engineering Systems Laboratory, M.I.T.

Chapter 3 presents a discussion of design knowledge representation, and provides an
integrated product-process model which forms the basis for the symbolic design evolution.

Chapter 4 discusses the nature of the symbol-form mapping and describes our approach.

Chapter 5 describes constraint propagation approaches and how they relate to the

19

1.3 Organization of the Thesis

current effort. It identifies requirements for a constraint management scheme and proposes
a solution architecture based on Asynchronous Teams of agents.

Chapter 6 describes the need for evolving form descriptions in conceptual design, and
proposes a representation scheme which allows multiple levels of abstraction and detail of
representation.

Chapter 7 provides details of the CONGEN implementation.

Chapter 8 demonstrates the the feasibility of the approach with a bridge design example.

Chapter 9 presents a summary and discussion of the research presented in the thesis. It
compares the research with other related approaches, and identifies the main contributions.

It also identifies some promising areas for continued research in this effort.

20

1.3

Organization of the Thesis

Geometric Modeling
Modeling Technologies

BACKGROUND

C int Ms
Knowledge-Based Systems Chapter 2

Process Model

SYMBOLIC DESIGN EVOLUTION
| Chapter 3
Product Model

product - Process Interaction

SYMBOL-FORM MAPPING

Basis of framework

— ‘— Constraint satisfaction

c:uptor/sj

xy D ion

Figure 1-2: Organization of the thesis

21

Chapter 2
Background

This chapter presents a broad survey of some of the main themes in this thesis. Section 2.1
provides some background information on relevant modeling technologies, database man-
agement, knowledge-based expert systems, geometric modeling issues and constraint repre-
sentation and management. Section 2.2 presents some contextual background, positioning
this research within a larger framework called DICE (Distributed and Integrated Envi-
ronment for Computer Aided Engineering). Some of the sections are based on the work
presented in [21] and [71].

2.1 Modeling Technologies

A model is an abstraction of a problem as conceived by a human. In general, we are
concerned with two types of models: a conceptual model of the problem domain, and
a software model used to actually represent the problem in the computer. The advent
of object-oriented modeling technologies has enabled us to now think of these models in
a unified fashion. i.e., the conceptual model of the problem domain need no longer be at
variance with the representation of the problem in a computer solution. The object-oriented
methodology is a philosophy and style of modeling and programming that involves the use
of objects and message passing between these objects. As defined by Stefik and Bobrow
in [55]:

Objects are entities that combine the properties of procedures and data since

they perform computation and save local state.

2.1 Modeling Technologies

The object-oriented methodology is centered around data. This data is represented by
objects, which contain attributes and methods (which are procedures that are attached to
the objects). Thus a set of objects captures the state of a system at any point, since the state
parameters are stored in the attributes. The dynamic behavior of the system is governed
by the interactions between the behaviors of the individual objects in the system. The
behavior of each object is represented by its methods. A central concept in object-oriented
methodology is message-passing. All interactions between objects, and hence the overall
behavior of the system, is modeled by passing messages between objects. Each object may
react to a message by invoking one of its methods in appropriate response.

Some of the key characteristics of an object-oriented system are summarized below [41],
[71):

e Identity. All objects have a unique identity. This implies that the data space is

partitioned into discrete distinguishable entities which can be referenced uniquely;

o Encapsulation (Information hiding). Encapsulation is a mechanism to allow the im-
plementation of an object to be separated from its external interface. This separation
permits the actual implementation of the object to be changed without affecting the
applications that interact with this object. From an engineering perspective, we ob-
serve that encapsulation provides an excellent mechanism to localize knowledge in
engineering objects. This approach allows us to cleanly build very general reasoning

mechanisms to manipulate this knowledge;

e Abstraction. Abstraction is an important knowledge structuring mechanism which
allows human beings to efficiently organize information and reduce the complexity
of data. In object oriented systems, classes provide a means of developing user-
defined abstract and logical complex datatypes. An object can then be perceived
as a snapshot of a particular abstraction at any point in time. In our language of

implementation (C++), an object is referred to as an instance;

e Inheritance. Inheritance is a higher-level knowledge structuring concept over and
above abstraction. Inheritance provides reuse of information, and allows an efficient
organization of knowledge. New classes (subclasses) can be derived from existing
classes (superclasses or base classes), inheriting the latter’s attributes and methods.
A subclass specializes its superclass. The superclass is thus a generalization of a

number of its subclasses;

23

2.1 Modeling Technologies

e Polymorphism. Polymorphism allows objects to present uniform public interfaces
while the internal implementation, and thus the response to a message, may be dif-
ferent. Typically, polymorphism is used to retain a uniform message interface across

all objects which are derived a base class;

e Reusability. Reusability is one of the key benefits gained from encapsulation, abstrac-

tion and inheritance; and

o Eztensibility. New classes and new types with specific semantics can always be cre-
ated and added to an object-oriented system without needing to modify the existing

system.

This thesis demonstrates that the object-oriented methodology is a powerful modeling
tool for modeling complex engineering information. The object-oriented methodology is
used to represent design artifacts. design processes and design relationships. Inheritance is
used to be used to build a layered approach to organizing an engineering knowledge base.
In this work, encapsulation is used as a very powerful knowledge structuring mechanism.
Encapsulation permits very general reasoning mechanisms to operate on objects, indepen-
dent of the internals of these objects. Moreover, the software architecture of the overall
computer framework follows the object-oriented methodology, demonstrating reusability of

code and extensibility of the system.

2.1.1 Object-Oriented Database Management Systems (OODBMS)

An object-oriented database management system combines database facilities with an
object-oriented data model for the definition and manipulation of data in a persistent store.
One of the main advantages of object-oriented database systems is the lack of impedance
mismatch: the underlying database schema, the programming model used by the applica-
tion and the database management system, and the data itself, all follow the object-oriented
paradigm. This eliminates the need for tedious conversions from one model to the other.
OODBMS also permit handling of arbitrarily complex user-defined types in an elegant
manner. Some key features of an object-oriented database include [2]:

o Persistence. The data resides in persistent storage and can be used across data

sessions;

e Concurrency. Multiple users can access and use the database simultaneously;

24

2.1 Modeling Technologies

e Transaction management. This process monitors user interactions and ensures con-

sistency and stability of data;

e Recovery. OODBMS have the ability to recover from a crash to some defined stable

state;

e Query language. A high-level, easy-to-use language for accessing information system-

atically;

& Performance. Efficient data structures and algorithms for retrieving large amounts

of persistent data from secondary storage; and
e Security. This allows protection of data from unauthorized access.

OODBMS provide a powerful mediuia for representation, storage and management of
complex engineering information. The reader is referred to [2] for a detailed description
of the advantages of OODBMS over traditional relational database management systems
for capturing engineering information. Some of these are: (1) a more realistic and pow-
erful data model; (2) an environment which allows easier schema development; (3) lack of
impedance mismatch between the database manipulation language and the general-purpose
programming language in which the rest of the application is written; (4) object identity;
and (5) a more unified framework for knowledge representation [2].

OODBMS support for an engineering design system addresses the important issues of
persistence and scalability. Persistence provides a mechanism to store not only knowledge,
“but also information generated during the design process (specifications, constraints, ratio-
nale, etc). The information is stored on the persistent database as opposed to the main
memory of the computer. This allows designers to pursue a large number of alternatives,
and yet manage the massive amounts of data that may typically be generated during the
design.

This research uses an object-oriented database management system (EXODUS) devel-
oped at the University of Wisconsin. EXODUS is based on a client-server architecture. It
provides a programmatic interface to the database for client applications to directly com-
municate with objects on the database. This programmatic interface is a language called
E, which is built on top of C++.

25

2.1 Modeling Technologies

2.1.2 Knowledge-Based Expert Systems

Knowledge-based systems provide a higher level programming technology as compared

to conventional programming environments. A KBES can be defined as [47):

A cowmputer program which incorporates knowledge and reasoning in solving

difficult tasks usually performed by an expert.
A KBES consists of three basic components:
o Knowledge Base is a collection of general facts and rules about the problem domain;

e Inference Mechanism combines the facts and rules to deduce new facts. Different
types of inference mechanisms are available. Typical types are forward chaining,

backward chaining, hierarchical refinement, etc. [47]; and

e Contezt is the workspace for the solution constructed by the inference mechanism

from the information provided by the user and knowledge base.

The key concept in knowledge-based system technology is the separation of the data
(knowledge) from the controlling mechanisms needed to reason about this data (inference
mechanisms). This separation of data and control is definitional to the field [67]. It allows
a declarative mechanism for knowledge representation, where bits of knowledge can be
represented ir.dependent of the potential ways in which this knowledge may be used. This
is very important from a design perspective. It enables designers to just state chunks of
knowledge and leave the system to reason with this knowledge and propagate the effects
through the set of facts in the context.

In an object-oriented framework, both the knowledge and the inference mechanisms can
be treated as objects. In such a framework, methods of objects can be fired conditional
upon certain facts being satisfied. These methods may perform various actions. e.g., setting
links, triggering daemons which compute other object attributes, distributed constraint
checking [71], etc. This permits a seamless integration of the paradigms of procedural
programming and heuristic programming.

An Overview of COSMOS

The framework presented in this thesis (CONGEN) is built over a knowledge-based sys-
tem building tool called COSMOS(C++ Object-oriented System Made fOr erpert System

26

2.1 Modeling Technologies

development). COSMOS was developed as part of the DICE effort and is a result of several
man-years of effort. The system is implemented in C++, over an object-oriented database
(EXODUS). It provides the following functionalities:

It extends C++ to provide a runtime environment for class evolution. COSMOS
provides a high-level interface to support incremental product model development. It
has an extensive set of user interfaces to allow the user to enter C++ classes and rules,
instantiate and browse C++ objects, etc. The system generates code corresponding
to user-defined classes, and incrementally loads these classes to link with the rest of

the program;

It provide; a persistent object store. COSMOS provides a persistent repository for
user-defined classes and rulebases by communicating with the EXODUS storage man-
ager server. The object management provides a transparent interface to the database.
The persistent store also allows programs to share data. This ability is significant for

engineering applications.

It provides problem solving support. The inference mechanisms of COSMOS (forward
and backward chaining) are developed as independent modules which are tightly

integrated;

Parts of COSMOS can be integrated into engineering software. Each of the COSMOS
modules is implemented independently in C++, and they can be easily plugged into
existing software. The interfaces between these modules are clearly defined. This
provides problem solving capabilities to conventional applications;

It supports links to ezternal programs; and

It runs on Uniz workstations supporting X Window/Motif toolkits.

A detailed description of COSMOS is given in [48].

2.1.3 Geometric Modeling

A geometric model is one of the most common forms of communicating design informa-

tion. Geometric modeling deals with the representation and manipulation of the geometric

properties of a physical object. Typical geometric modeling systems use certain base prim-

itives which are then used to build up more complex models. The classification of these

27

2.1 Modeling Technologies

systems may be based on the nature of these primitives. Computer-based representation

of geometric objects can then be grouped into the following categories [28, 65):

o Wireframe modeling. Wireframe models represent objects by edges and points on the
surface of the object. Wireframe models allow the generation of 2D drawings from
any view (hence preventing consistency problems). However, they do not contain
enough information to capture shape. As a result, some wireframe models of solids

cannot be interpreted unambiguously (for examples, see [28]);

o Surface modeling. Surface modeling extends the wireframe models by providing math-
ematical descriptions of the shapes of surfaces of objects. Surface models use surfaces
as the basic representation primitive. However, they still do not always give sufficient
information for determining all geometric properties and usually offer few integrity

checks (e.g., detection of illegal intersection of surfaces);

e Solid modeling. Solid models deal with “complete” representation of solid objects.
The connectivity between surfaces of objects is either explicitly or implicitly captured.
Volumetric information is represented and mass properties such as volume, center of
gravity, etc. can be deduced algorithmically. Besides, the integrity of solid models is
usually checked such that any model created is guaranteed to be a valid solid (i.e., it is
bounded, closed, and has no self intersections). Two-manifold representation schemes
are usually used in traditional solid modeling systems.! This implies that every point
on the surface of the model has a neighborhood which is topologically isomorphic to
a two-dimensional open disk. Objects with non-two-manifold conditions (e.g., a cube
with dangling edges or faces or an object with interior structures) cannot be modeled
in such systems; and

e Non-manifold modeling. Non-manifold modeling provides a unified representation
that encompasses the capabilities of all the three modeling schemes described above.?
Non-manifold models remove the restriction of closed, bounded solids made by solid
modelers. They are thus able to represent incomplete and evolving geometries within
a unified framework. The development of non-manifold modeling schemes has been
driven by design applications which need to represent evolving concepts.

' Cell decomposition models might allow some form of non-two-manifold conditions.
2Strictly speaking these systems are “non-two-manifold.” However, in the literature the term “non-
manifold” is widely used to connote “non-two-manifold.” This thesis follows the same terminology.

28

2.1 Modeling Technologies

GNOMES Geometric Modeler

GNOMES is a non-manifold geometric modeler is based on the Selective Geometric
Complexes (SGC) model [38]. The SGC model provides a unified representation and ma-
nipulation of models of different dimensionality. It has a larger representation domain than
other geometric models including non-manifold modelers [4, 39]. It allows representation of
non-manifold and inhomogeneous point sets, non-closed point sets (with incomplete bound-
aries), point sets with missing points or cracks, and disjoint regions. For example, systems
with interior boundaries, finite element models, open spaces with incomplete boundaries,
and point sets with cracks can be modeled in a single framework. Such flexibility is needed
in design applications to model the evolution of design concepts and operations on these
concepts. The SGC model supports the development of a number of useful operations
(e.g., boolean operations and topological operations) based on only three basic operators
(subdivision, selection, and simplification) [38].

The basic entities in SGC are known as cells. Cells are open connected subdivisions of
n-dimensional manifolds (i.e., their boundaries are not included in their point sets). Cells
generalize the concepts of topological elements (face, edge, vertex) in current modelers
and also encompass higher dimensional elements (e.g., volume). Associated with each cell
is an extent, which represents the geometry of the cell, and boundaries which are lower
dimensional cells that bound it or are embedded in it (interior boundaries). A boolean
“active” attribute is associated with each cell. A selective geometric complez (SGC) or
model which defiues a point set occupied by an object is then represented by a set of these
cells. The point set of the complex is defined by the union of the point set of all its “active”
cells (i.e., cells whose active attributes are TRUE). Hence, by setting the “active” attribute
to either TRUFE or FALSE, one can associate various point sets with a single collection of
cells. Non-closed point sets such as those with cracks and incomplete boundaries can be
also represented by making corresponding cells inactive (setting its “active” attribute to
false).

Based on this SGC model, GNOMES was implemented as a part of the DICE project
to provide geometric support to design applications at various levels. The system architec-
ture for the GNOMES geometric engine is shown in Figure 2-1. GNOMES was originally
developed using a commercial object-oriented database management system (OODBMS),
ObjectStoreT™. It has since been ported to EXODUS. The base layer in the GNOMES
architecture is the client library of the GODBMS. Above this layer, a number of utility

29

2.1 Madeling Technologies

classes (e.g., vector and matrix classes) were implemented. The geometric modeling ob-
jects were implemented using the previous two layers. Client applications (e.g., graphical
user interfaces or specific CAD programs) are implemented as another layer above the ge-
ometric modeling layer. A high-level object hierarchy representing the GNOMES design is
shown in Figure 2-2. The class GNmanager is the interface for application programs to
access the geometric engine functionalities. GNmodelis a geometric model which may be
an SGC complex (GNcomplex) or an assembly of complexes (GNassembly). Each GN-
complex consists of GNcells which represent the topological information, as described
above. The GNcells have links with GNextents which represent the geometry. GNcells
have boundary and star links (to other cells of which they form boundaries). Details of the

GNOMES design, its classes and method implementations can be found in [24, 69)].

GNOMES's Client Applications
(e.g., graphical interface)

GNOMES's SGC Model Classes

GNOMES's Utility Class Library

OODBMS Client Library

I Network

OODBMS Server(s)

Figure 2-1: GNOMES system architecture.

Features

Features represent a geometric structuring scheme above a geometric model. Many
different definitions have been presented for the concept of features. Some of these are
summarized in [45): “A feature is an entity used in reasoning about the design, engineering,
or manufacturing of a product,” “A feature is a region of interest,” “A feature is a collection

(set) of faces of a boundary model”.

30

2.1 Modeling Technologies

GNassembly [——<| GNcomplex

. Glcell —"t—.-'L{ GNextent

spatial constraint

Legerd

- grouped based om di T O sub-part
~——— directed 1link ——< gub-class
—® zero or more

Figure 2-2: GNOMES primitive classes

Features are essentially a representation mechanism within design systems to allow a
computer to reason more intelligently about geometry. They are higher level modeling
elements which relate more directly to the engineering domain. Extensive work on features
and feature recognition has been reported in literature [28, 44]; we limit our description of

features to these passing comments.

2.1.4 Constraint Theory

Constraints present another powerful declarative mechanism for knowledge representa-
tion during design. Constraints arise naturally during design. They may be a statement
of resource restrictions; they may represent relationships between design objects; they may
represent restrictions arising due to the design context conditions [60]. Constraint decla-
ration during design is rarely a one-time process; constraints are incrementally generated

during the evolution of the design.

31

2.2 DICE

Constraint satisfaction problems (CSPs) involve the assignment of values to variables
which are subject to a set of constraints. The representation of these constraints has
traditionally been algebraic or some form of logic statement. Recent approaches have dealt
with qualitative constraint formulations based on interval algebra. These typically require
a less rigid statement of the constraints. The main elements of a constraint management
framework are (a) a representation language for constraints; (b) an approach to verify
consistency of the constraints; (c) a technique to solve these constraints to instantiate a
feasible solution; (d) handling incrementally added constraints; and (e) studying parametric
modifications for values of the variables.

CSPs have been widely studied in the Artificial Intelligence community. Constraint
propagation approaches attempt to derive a solution sequence for the determination of
a consistent set of assignments to the variables involved in the constraints. Propagation
approaches have been used with the algebraic or the qualitative formulations. Albeit the-
oretically elegant, implementations of these approaches have had computational problems.
Constraint management techniques centered around numerical, iterative techniques have
been reported by researchers in the design community [25], [43]. These techniques however
suffer from considerable computational and robustness problems. Iterative solution tech-
niques are sensitive to the starting point chosen and may accumulate considerable numerical
error. These techniques are designed around algebraic specification of equality constraints
and are not able to cope with inequalities very well.

This thesis presents a constraint satisfaction architecture which overcomes some of the

problems cited above.

2.2 DICE

The research presented in this thesis is supported within the framework of the DICE
(Distributed and Integrated Environment for Computer aided Engineering) project at the
Intelligent Engineering Systems Laboratory, M.I.T. DICE was originally developed to ad-
dress the following objectives [51):

o Facilitate effective coordination and communication in various disciplines involved in

engineering;

e Capture the process by which individual designers make decisions, that is, what in-

{formation was used, how it was used, and what did it create;

32

2.2 DICE

e Forecast the impact of design decisions on manufacturing or construction;

o Provide designers interactively with detailed manufacturing process or construction

planning; and
e Develop a few design agents for illustrating the approach.

Essentially, DICE can be envisioned as a network of collaborating design agents where
the communication and coordination is achieved through a global database and a control
mechanism [51]. In this view, an agent is a human being working in tandem with an intel-

ligent design support system. Figure 2-3 shows our view of co-operative product develop-

- Structural analysis Engmeers
- Structural design

- Mechanical service design
- Electrical service design

- Needs and
cost ceiling
input

- Visualization

anager
- Functional
requirement analysis
= - Schematic design
\ - Space planing
- Interior Design
- Facade design
. / \Visualization
- Project management
- Scheduling
/ Shared Workspace i

|. —l

= pry;
“— | - Shop drawings
- Quantity survey .
— m - Manpower planning Architect
- Scheduling
Fabricator

Figure 2-3: Cooperative product development

ment based on this philosophy. The architecture of DICE is based on a Blackboard (global
database), several Knowledge Modules and a Control Mechanism. The global database
stores the design information, negotiation traces and coordination information. The design
information is generated by the various agents taking part in the design process. CON-
GEN is a domain-independent knowledge-based design support framework which is used to

33

2.3 Summary

build each of these design agents. Control is achieved by the object-oriented nature of the
Blackboard, with the database being populated by “intelligent” objects [51].

CONGEN is implemented as an application over a layered architecture in a highly
modular, object-oriented manner. Some of the base modules are independent systems
developed as part of the DICE project. These have been tightly integrated with CONGEN
and they provide the basic design functionalities for CONGEN. The representation model
for CONGEN is based on the DICE philosophy of objects residing on a shared database.

2.3 Summary

In this chapter, some background information on various modeling techniques was pre-
sented. The focus of this discussion has been on object-oriented systems coupled with
declarative schemes like knowledge-based and constraint-based methodologies. We have
also discussed some aspects of geometric modeling relevant to the fundamental goal of this
thesis: form conception in engineering design. The following chapters describe in detail how
we have used each of these basic methodologies in an integrated environment for design.

34

Chapter 3

A Model of Integrated
Product-Process Representation

in Design Synthesis

This chapter introduces an approach to symbolic evolution in design. There are two main
components to the approach: a structured model which defines some primitive constructs
and their interactions; and a reasoning approach which operates on this representation.
The chapter is organized as follows. Section 3.1 provides an introduction to repre-
sentation in engineering design and the underlying philosophy of the model. Section 3.2
presents a formal object model which forms the basis of the representation. It is based
on the SHARED object model, defined in [71]. It is extended to design knowledge repre-
sentation in Section 3.3. The main elements of this representation are: product, process,
and the interactions between product and prbcess (Section 3.3.1). Section 3.3.2 presents
the different reasoning strategies that the model permits. Related research is presented in
Section 3.4. Section 3.5 concludes the chapter with a discussion of the model and how it

relates to support for design concept evolution.

8.1 Introduction

The need for a model of a problem arises from an effort to have a computer reason
about the problem. Early design research concentrated on the problem-solving techniques

needed to provide this reasoning support for engineering design. These techniques are rel-

35

3.1 Introduction

atively mature now; yet there is a clear realization that techniques operating on a weak
representational foundation must necessarily be inadequate to support engineering design.
Consequently, recent trends have seen a shift in paradigm to a concentration on represen-
tation issues.

What knowledge elements need to be represented? Engineering design involves mapping
a specified function into a description of a realizable physical structure — the designed
product or artifact [60]. Unfortunately, this is a non-trivial process. Engineering artifacts
are typically assemblies of components. These components can be put together in various
ways. The effectiveness of the design is determined by what components are chosen, and
how well they are put together. Some elements of the knowledge constructs required for
a model of engineering design now start to fall into place. We need a model of the design
product; we need a model of the design process. We also need to represent external factors.
Design is not merely a technical problem, it is a socio-economic problem. We need to
model in some way the effect of contert conditions: designer intent, decisions, objectives,
constraints, etc.

The representation problem presented above poses a formidable challenge for researchers.
Particular approaches taken by researchers typically limit the scope of the overall problem
in some way. Usually, these approaches also adopt particular models of the reasoning pro-
cess: e.g., rule-based systems, model-based systems, constraint-based systems, qualitative
reasoning, etc. Tong and Sriram [60] present an excellent review of the various approaches
in design and various representation models. The current research attempts to address the
issue of developing a flexible knowledge representation scheme structured to support the
development of engineering knowledge bases. The primary focus of such a representation is
on modeling the design products (Artifact). Nevertheless, modeling the design process is
an important aspect. We present an integrated approach to modeling the design enterprise
as a whole.

The work presented here reflects two objectives:

e To support conceptual design, using a representation which allows considerable lati-
tude in the innovativeness of design alternatives generated. Here, routine design refers
to a routine combination of primitives and innovative design refers to a non-standard,
novel combination of primitives from the knowledge base. In our representation, the
primitives are organized in a layered hierarchy in the knowledge base. The granular-

ity of description of the components governs the innovativeness of the design. The

36

3.2 Object Model

object model allows both coarse-grained system level descriptions and fine-grained

component descriptions to co-exist in the knowledge base; and

e To allow eventually for support for a collaborative model of the design enterprise.
A note on this collaboration process: any model of coordination must account for
commaunication and for conflict. That agents working on a project have an overlap-
ping vocabulary allows for communication; yet these vocabularies model essentially
different views, and this causes conflict. This argues that comprehensive engineering
knowledge bases should be developed within the limitations imposed by this model
of communication. i.e., the representation scheme must exploit this commonality of
vocabulary in the form of primitives for product (and process) representation. For
engineered artifacts, a fundamental common element is the actual physical realiza-
tion of the artifact. Wong and Sriram [71] have shown that this fact can be exploited
with a model of collaboration based on the notion of shared workspaces. The model

presented in this thesis is designed to be consistent with this philosophy.

3.2 Object Model

This section presents the object model! which forms the basis for the design knowledge
representation. The discussion is based on the SHARED object model, defined in [71].
The SHARED model essentially extends the object-oriented methodology in the following

manner [71]:

1. It provides ezplicit relationship entities with associated semantics and constraints,
instead of just using attribute references to objects. These relationships are associated

with relationship classes and can be arranged in inheritance hierarchies;

2. It associates constraints with objects and relationships. Constraints are used to main-

tain the consistency and integrity of a product model; and

3. It provides a mechanism for handling the concept of “similar objects”. Objects may
be similar in that they represent alternative concepts which may be used to satisfy
a design intent. An object may also be similar to another object by virtue of being
a version of the other. Here, a version corresponds to an incremental refinement of

detail in the object.

!Parts of this section are directly reproduced from [71], with permission from the authors.

37

3.2 Object Model

The next section provides a brief overview of the SHARED object model to serve as the
basis for further discussion.

38.2.1 Definition of Objects

A SHARED object, o, is defined as a unique, identifiable entity in the following form:

Definition:

o = (uid.oid.A,M,R,C) (3.1)

o uid is the unique identifier of an object. The set of all unique object
identifiers is UID;

e oid is a non-unique similar object identifier. It is used to refer to one of a
set of similar objects which can be used to replace each other in relation-
ships. Typically, this concept is used to model alternatives or versions of
objects. Note that all versions of an object must be instantiations of the
same class, whereas alternatives could represent any class. The set of all
oids is OID.

e A = {(ti,a;,v;)}. Each a, is called an attribute of o and is represented
by a symbol which is unique in A. Associated with each attribute is its
type, t;. Each t; has an associated domain, domain(t;) = {v;}. Then,
for (t;,ai,v;), v; is called the value of a; and v; € (domain(t;) U nil).
If v; = nil, (t;,a;,v;) can be written as (t;,8;). A can also have meta-
attributes, which have a similar connotation to the attributes. i.e., each
a; = {(t;,ma;,v;)}, where ma; is a meta-attribute. The meta-attributes
have additional information about the attributes: ranges, defaults, etc.

e M = {(mj, tey, teg,...te,, te)}
Each element of M is a method signature which uniquely identifies a method.
m; is the method name represented by a symbol and tc; is a type. The
returned type of the method is specified by the last element in the tuple
and the other elements define the types of the arguments of the method.
Methods define operations on objects and have associated code. A method
is defined as (method signature, code).

38

3.2 Object Model

e .. = {rid}, where rid is an identifier for a relationship. Section 3.2.2

discusses these relationships.

e C = {cname}. Each cname is a unique identifier for a constraint, c
defined as (cname, code). A constraint can be viewed as cname()— >
TRUE|FALSE, that is a function which returns either TRUE or FALSE.

Constraints may be used to restrict ranges of attributes, to define complex

expressions on object attributes through rules, etc.

For example, an object is defined as follows: 2

(uid1,0id1, {(int,a,10),(String, b,“abc”)}, {(get-a,int,int)}, {rl1, r2},{ (c1, a < 20)})
where uid1 is the unique identifier, oid1 is a non-unique object identifier, int and String
are primitive data types, rl and r2 are relationship identifiers. c1 is a constraint on the

value of the attribute a.

3.2.2 Relationships

The SHARED model represents relationships between objects as objects themselves,
thus making their semantics explicit. In particular, the relationships defined include com-
position, functional and spatial relationships, version-of, alternative, sub-function,
satisfied-by and requires [71]. A generic SHARED relationship may be defined as follows:

. Definition:

r = (rid, RO,A.M, C) (3.2)
where

e rid is a unique identifier of the relationship r. The set of all unique rela-
tionship identifiers is RID;

e RO = {(t,ro,v)}
Each ro € RO is called a role of a relationship. ro is the role name of a role
and v is the value of a role: a wellformedness condition is that v € {OID U
UID} or v C {OID U UID}, and v € domain(t) where OID is the set of
all object identifiers and UID, the set of all unique object identifiers, and t

20bject, relationships, method names, types are denoted by boldface fonts.

39

3.2 Object Model

is a type. Furthermore, there must be at least two objects partaking in the
roles of a relationship. For a relationship among a particular set of objects
to be valid, each of the objects must be identified by some role in the
relationship. Each of the objects must include the particular relationship
in the relationship set R of the object’s definition;

e A is a set of attributes of a relationship, defined in a manner similar to A
of an nbjzct;

e M is a set of methods, defined in a manner similar to M of an object. The
methods define operations on the roles and attributes of the relationships;

and

e Cis a set of constraints on objects associated with the roles of the relation-
ship and its attributes (interaction constraints). It includes constraints on

cardinality of roles. It is defined in the same way as C of an object.

For example, a relationship could be defined as follows:

(r1, {(System, composite, s1), (Set_System, subsystems, {s11, s12, s13}), (String,
description, “a part of rel”)},{(gct-subsystems, Set_System)}, {c1})

where System is a class, Set_System denotes a set of Systems, sl11, s12, and s13
are identifiers of objects which constitute this set and ¢l is a constraint. The method
get_subsystems is the access function to return the subsystems, and does not take any
arguments.

Classes are defined on the objects and relationships defined above, as abstraction
mechanisms to make the common properties and semantics explicit. For formal definitions
of these mechanisms, the reader is referred to [71].

Moving on to the object and relationship classifications: A SHARED object, o, is

classified as an instance of a class, c, if

e Vac € c.A, 3 ain o.A such that a = ac or a is the same as ac except a is bounded

to a value in o while value of ac is nil;
e Vr € o.R, 3 cr € c.R such that r € domain(cr);
e Vmin c.M, 3 me € 0.M such that m = mec; and

e V con in ¢.C, 3 ccon € 0.C such that con = ccon.

40

3.2 Object Model

Furthermore, since an object o must be in one of the roles of all its relationships, the type
(class) of the role in which o is in must be one of the class in which o is an instance of.

Generalization and specialization are also defined in terms of the class abstractions.
These are relationships between classes which define a partial order on the set of all classes
(i.e., they are reflerive, antisymmetric, and transitive). Generalization is also used as an
implementation mechanism for sharing code among more specialized classes. That is, a
specialized class can inherit properties of a number of more general classes, in a process
known as multiple inheritance.

We do not go into further specifics of the formal SHARED model, but proceed now
to the definition of an Artifact, which is the fundamental element representing a design

object.

3.2.3 Artifact

An Artifact is defined to consist of function, form and behavior. An artifact is recur-
sively defined: i.e. an artifact may further consist of components. Moreover, an artifact
is based on the SHARED model and hence includes the notions of relationships and con-
straints. In terms of the SHARED definition, Artifact is based on the System abstraction

[70]:

Definition:
An artifact is defined as a tuple:

(Artifact, uid, oid, {Fn,Fm,B}, M, R, C) (3.3)

where Fn is a set of functions, Fm is the form, B is a set of physical behaviors,
M is a set of methods (in an object-oriented sense), R is a set of the various

functional, spatial and composition relationships, and C is the set of constraints.

In terms of the SHARED object model, the attribute set of an Artifact comprises of
function, form, and behavior. Each of these is further an object at a lower level in the

layered knowledge hierarchy:

1. The function of a physical system is an abstraction of the required behavior of the
system as abstracted by the designers [61]. A function inherently encapsulates some

intent. Thus, each design view has its own set of functional abstractions of product

41

3.2 Object Model

information [70]. Function objects are used to capture the functional requirements
of a design problem. A Function object specifies a requirement which is satisfied by

an artifact (which may be regarded in this sense as a functional abstraction).

Definition:

(Function, {(String, description)}, M, R, C)

description = character string representation of the Function object, of
type String. (Note that the tuple notation (type, attribute_name) is used
consistently throughout this thesis to denote such attributes).

M = various methods, which may include consistency checks on pre-conditions
for the function to be satisfied.

R = {Satisfied_by. Requires, Sub_function}. These relations refer to
the artifacts that satisfy these functions. They are set on instantiation of
the objects. Thus these relations define an object set associated with this
function. akin to that defined in [63]. In case of function refinement, the
function shares the Sub_function relationship with other Function ob-
jects.

C = {(rel, must have satisfied_by relationship), (rell, if satisfied by a com-
ponent then there are no sub-functions)}.

2. Form represents the physical properties and structure as well as geometric shape and
structure of an artifact. The definition of Geometry encompasses the Space object
in the SHARED primitive classes.

Definition:

(Form, {(Geometry, geom), (Material, material), (Attr, Set_attr)},
M, R, C)

geom is an object attribute whose class is Geometry (representing geo-
metric abstractions and spatial relationships).

material represents the material and related properties.

Set_attr is a set of attributes describing the non-geometric structure of the
object (physical attributes are represented by the geom object).

M = access methods, dimension independent spatial queries, queries on
physical properties, geometric transformation, display_selection operators,

an accumulation method which accumulates properties of objects related

42

3.2 Object Model

through composition relationships, a top-level method for propagating op-
erations through relationships.

R = {Spatial_rel}. These spatial relationships may be qualitatively or
quantitatively stated.

C = {(check-spatial_consistency, 3D abstraction should enclose lower
level abstractions)}.

3. The behavior of a product specifies the response of an object to the context condi-
tions, not how it is used in a given context. The behavior object has an erternalbehav-
ior description, as also an internal description covering assumptions, pre-conditions

and other constraints.

Definition:

(Behavior, {(String, description)}, M, R, C)

description = external behavior description.

M = Methods to combine behaviors of componeuts, to assert causal effects.
R = Relationships with the artifacts on which this behavior is binding.

C = {(pre-cond, set of preconditions)}.

Each of these objects may be a composite object. at various levels of abstraction relevant
to the granularity of the system description, e.g., Behavior objects may be represented
at various levels by qualitative descriptions, by approximate models or by exact equations.
Iwasaki and Chandrasekharan [22] describe the representation of behavior following qualita-
tive process theory. This representation includes a description of the pre-conditions, causal
effects asserted by the behavior, and the set of objects on which this behavior is valid.
An extension to function representation, presented in [63], enables a clear interpretation
of function in terms of behavior. The current model and implementation do not address
such causality, but these representations are essentially consistent with the object model.
We believe they can be eventually used to support the model; a rough idea of how this
might occur is now sketched out. Representations of the functions as text strings serve as
references to the Function objects described above., The text strings in this case refer to
the description of the Function objects. In a similar manner, the behavior attributes of
an object refer to Behavior objects. Relationships between the relevant artifact objects
and their function and behavior objects are set on instantiation and retrieval. Retrieval

of artifacts to satisfy a set of functions is based on matching of the function description.

43

3.3 Product and Process Representation

The behavior verification phase proceeds on identifying the causal process chain expected
for successful delivery of the function [63], to match the behavior delivered by the artifact
description. Thus we hope to eventually leverage the results from the research in functional
reasoning.

The model is designed to support layered development. In addition to artifact descrip-
tions, functions and behaviors are also represented in the appropriate layers of knowledge-
use. The next section describes a particular design representation, following the basic model

described above.

3.3 Product and Process Representation

The search for a representation is inherently related to the view of design that we seek
to model. An abundance of definitions may be found in literature (see [60]). For example,
design has been defined by Tomiyama and Yoshikawa [59] as the “mapping of a point in the
function space onto a point in the attribute space”. Traditional approaches which stress a
functional hierarchy deal with a top-down functional decomposition of design, organizing
the design product elements as functional primitives. An alternate view has held design to
be a bottom-up synthesis of component elements to constitute the whole. In either case,
the complex interplay and interconnections among the components serve to provide the
overall system function.

Our representation consists of modeling two stages: model description (where the ba-
sic constructs to model the problem are defined), and subsequent design process enaction
(which is the actual reasoning process to operate on these constructs). The process enaction
stage must follow from the model description stage. To a large extent, flexibility afforded
by the model description governs the innovation in the process. The approach to model
description aims to encapsulate domain concepts through a structured approach to knowl-
edge encoding. Such an approach would structure the design knowledge at various levels,
from knowledge of physical principles common to engineering problems through to the very
domain-specific heuristic knowledge. The subsequent sections detail our representations for

design products, processes and their interactions.

44

3.3 Product and Process Representation

3.3.1 Model Description

Much of the design research reported in literature exhibits a clear dichotomy in the
representation of design processes and the products that they operate on. Process-based
design approaches usually deal with a functional decomposition of design. More generally,
the process may be viewed as encompassing not only the functions, but also as a vehicle for
expressing design constraints, objectives and specifications. Capturing the design process
also involves capture of design rationale and intent within such a framework. The interested
reader is referred to related work within the DICE project [35].

Product representation presents several additional well-documented research issues.
Object-oriented approaches to design have enabled a natural decomposition and hierar-
chical structuring of design product knowledge. The dynamically evolving nature of the
composition hierarchies, evolving form descriptions, multiple functional and geometric ab-
stractions and multiple levels of constraints have all been identified as crucial issues for
product representation [70]. The representation must thus provide for the evolutionary
nature of design process enaction. It must also account for the fact that the domain de-
scription in the database may be evolving (e.g., during the development of comprehensive
knowledge bases).

We hold that design representation should include the function-driven approach of pro-
cess models and yet retain the expressive power of product models. CONGEN provides
support for both process and product hierarchies in engineering design. The following

sections discuss each of these models, as well as an integration approach.

Product Description

Deasign products are the ultimate tangibles in any real design process, a mapping from
the abstract functional description to real world eutities. Such an abstract functional
description may be decomposed hierarchically. Decisions are involved at various points,
making for the open-ended nature of design. For function often implies physical behavior,
and decisions on sub-systems directly impact the mechanisms chosen for achieving the
behavior to realize a given function. The fact that the form relationships between the sub-
systems affect the behavior of the overall system further complicates the problem. Thus, a
robust, flexible representation must necessarily view function, form and behavior from an

integrated viewpoint.

45

3.3 Product and Process Representation

In general, a desired function of an artifact encapsulates some design intent. Hence,
it can be usually specified only as relevant to a context. Behavior is dependent on form
relationships. For primitive components, it is possible to specify the essential behavioral
properties of an object independent of context. The actual behavior exhibited, of course, de-
pends on the context conditions. Context encompasses viewpoint in this case, and contains
design-specific information. The model presented in this thesis exploits this separation of
context-dependent and context-independent representational elements to support the goal
of comprehensive knowledge bases. Thus the context-independent knowledge is comprised
of artifacts (akin to the concepts represented by generic componentsin [3]). The context in-
formation provides the knowledge required to combine these concepts in functionally useful
ways.

The observant reader may spot a curious contradiction in the definition of an artifact
presented earlier, in particular with regard to the argument presented in the preceding
paragraph. We speak of function being view-dependent, and make a case for a separation
of context-dependent and context-independent information. This means that the artifact
representations in the database should be truly generic, as argued by Alberts et al. [3].
Determining function is legitimately a part of the design process. Thus function-form map-
ping is generally through a set of expected behaviors. In principle, such a representation
would be more flexible and supportive of innovation. However, routine design incorporates
the notion of a direct function-form mapping. In the conceptual model, each artifact de-
scription introduced into the knowledge base encapsulates the originally intended functions
of the artifact. This function representation is a compromise for allowing evolution of the
comprehensive knowledge bases. Routine design can thus be facilitated without an exten-
sive re-haul of existing process knowledge. This compromise comes from a realization that
a representation tailored to be flexible must yet not be cumbersome from a routine design

standpoint.

Process Description

Process descriptions concern the knowledge about synthesis of generic artifacts to pro-
vide a combined system functionality. This synthesis knowledge further involves relation-
ships between various design entities within the design context and constraints on form
attributes of artifacts. The process also captures the decision making and rationale in-

volved in the design process.

46

3.3 Product and Process Representation

The following discussion describes a few important primitive constructs relevant to

process representation:

(a) Goal constitutes a decision point for a task in the process hierarchy. The goal may be

(b)

to achieve a function in the functional hierarchy. Function thus serves as a referent into
the product world descriptions, which are in the form of abstractions (Artifact) in
the domain knowledge database. More generally, the goal may introduce a constraint,
modify an artifact, introduce a new artifact, or have further sub-goals. Thus a goal
may link into the product hierarchy, or alternately, we may pursue the sub-goals,
which constitutes a move in the process hierarchy. These moves are further dictated
by two considerations: a testing of alternatives specified for the goal, and decisions
made by the user to pick from a set of valid alternatives. Following the basic model,

a goal may be defined as follows:

Definition:

(Goal, {(String, name)}, M, R, C)

M = Methods which attempt to achieve this goal: these methods relate
to the retrieval and matching procedures discussed in Section 3.3.2. Also
included are methods to assert the consequences of asserting a decision for
this goal.

I = Relationships associate this goal to a parent Plan in the process hi-
erarchy and also to the asserted effect conditions of achieving this goal.

C = The constraints contrel the interactions between conflicting goals

which drive the design process.

Plan represents a sequential ordering of goals as a task plan. Plans are also associated
with artifacts and comprise the link from the product into the process hierarchy (The
reverse link, from the process to the product is through Goal). Plans may have a set
of planning rules associated with them. These rules allow re-ordering of goals and set
priorities on the sub-goals.

Definition:
(Plan, {(String, name)}, M, R, C)
M = Methods which set the schedule for task achievement as an ordering

on the goals.

47

3.3 Product and Process Representation

R = Relationships associate this plan to a parent Goal or Artifact in
the process hierarchy, depending on whether the move being pursued is a

refinement of the function or a product decomposition.

(c) Specification represents user input and may be of various forms. The specifications
involve some of the important bottom-up elements of the design process: the user
may choose to add a new product concept, add relationships between artifacts, specify

values of artifact attributes, modify geometry, introduce a constraint, etc.

(d) Decision refers to all user decisions which govern choices for further expansion of a
goal. The decisions record the alternatives chosen for a goal within a given design
context. Each new Decision spurs a new design context (potentially an entirely
different design alternative!). The system allows the designer to pursue multiple
design alternatives simultaneously. Decision objects capture the justifications for
validity of each alternative as generated by the system. They may also capture the

rationale for the choice by the user.

Product-Process Interaction

Figﬁre 3-1 describes the object-oriented model used in the CONGEN framework, using
standard object notation [41]. Describing the interactions depicted in this figure, a Context
describes the design context which represents a particular design alternative. A Context
thus consists of the design tasks (Goal) relevant to the current design alternative, the user
specifications, the decisions that have been made, and the artifacts which are created as part
of the design process. The Decision objects refer to choices made for a Goal. The Artifact
is comprised of Function, Form and Behavior. The product-process interactions are
shown in the form of links between the goals, plans and artifacts. Artifacts further have
sub-components, which are themselves modeled by the class Artifact. Similarly, goals can
have an ordered Hsting of subgoals. This is modeled by the class Plan.

Formalizing the design process as a mapping from functional specification to a descrip-
tion of one or more alternative artifacts [72], we write

D(G,Set.C)- > S (3.4)

where D is the design process, G is the design goal which specifies the desired functionalities,

48

3.3 Product and Process Representation

[eoeen]

has
=) -
Context
has
4 l has-child
- 8-c!
Ilpceitle-tlenl lml-lul Goal -&u l‘_‘ Artifact
l t forrad: ""‘"—b . | Ordered-1ist
has
Creates/modifies
I Iaput , I;’W“'J l:mtntnl,
‘l\mer.toul ‘ Form J lohnvlo:l
Lagend
sub-part ———® zerc or more
——<] sub-class " directed link

Figure 3-1: CONGEN class abstractions

Set_C is a set of constraints on the design, and S is one or more possible design solutions.
The design process consists of operations on the different kinds of objects defined above,

Using the notations:

Set_Cont is the set of all contexts, C; is the current context of design.
Set_G is the set of all goals in the current context, G; is a particular goal.
Set_Art is the set of all Artifacts in the current context (including all compo-
nents of the high-level system to be designed), Art;, is a particular artifact at
time state t.

Set_P is the set of all plans in the current context, P; is a particular plan.
Set_R is the set of all the design relationships currently asserted.

Set_C is the set of all the constraints currently asserted.

Set.S is the set of design specifications in the current context, which includes
constraints, input and objectives.

Set_F is the set of functions that the system, sys, needs to satisfy.

49

3.3 Product and Process Representation

Formally defining some of the permissible operations:

ezpand_goal(G;,sys) — > (modify(Art;) | find_artifact(G;) |
erpand-plan(P;) | add_spec(Specification)) (3.5)

This operator represents a pursuit of a design task which may lead to a set of potential
alternatives. The task may be to modify an artifact Art;, to find an artifact to match
the function modeled by G;, or to further refine the function by expanding the goal into a
series of tasks modeled by the plan P;.

modify(Art;)— > ((Art; 41) & update_contezt(C;)) (3.6)

This operator represents changes on an artifact. Such changes may involve changing at-
tribute values, setting components, etc. The effect of these changes in the current context

is asserted by firing the operator update-contezt.?

find_artifact(G;)— > (req(f.sys) & retrieve.match(req,C;)) (3.7)
retrieve_match(req, C;)— > (Alt;,i = 1...n) (3.8)
pursue_alternative(Alt)— > (sys&Arty, (Cr&update_contezt(Cy)) (3.9)

where req denotes that the function f is required by the overall system sys. Setting the
relation req is the task of model formulation. It is used as the first phase in retrieving a
match to a given functionality. Alt; are the alternative artifact candidates to provide the
function in the context conditions C;. Arty is a new Artifact, Cy is a new design Context
added to the context set. This new context is necessitated by a user decision to pursue the
alternative Alt. Updating the new context involves setting the new relationships with the

newly created artifact, and updating the constraint set.

ezpand_plan(P;,Set_G;)— > (Set_G 4+ &update_contezt(C;)) (3.10)

where expanding a plan adds introduces a new ordered set of goals into the already existing
goal set.

3The & symbol denotes a conjunction and | symbol denotes a disjunction.

50

3.3 Product and Process Representation

update_contezt(C;)— > (update_relationships(Set R) |

verify_constraints(Set_C, Set_Art) (3.11)
update_relationships(Set_R;)— > (Set Ry4;) (3.12)
verify-constraints(Set_C,, Set_Art;)— > (Set_C41,Set_Art;;,) (3.13)

Updating a context is an opérator which is applied to assert consistency of changes in
the current design context. Updating design relationships may include setting component
relationships, spatial relationships and various functional relationships between artifacts in
the current design context. Any assignment of attributes or asserting relationships may
involve propagation of constraints to update values of related attributes. In the above
equations, such updates are reflected by the change in the time state of the sets Set_Art,,
Set_C,.

Each of the above operations has been implemented in CONGEN. The user may also

directly affect the design at any point:

add_spec(Specification, Set_Art, | Set_R,| Set_C;) - > ((Set_Art;;; |
Set_R,+1 |
Set_C,4)& update_contezt(C;)) (3.14)

where the subscript ¢ denotes a time state for each of the sets Set_R, Set_C and Set_A.rt.
This operétor allows the user to directly affect the state of design, and also the further
design flow.

The flow of design is from a functional description into a description of the product,
including the selection of form for the product. Note that the model neither requires the
functional hierarchy to be fully pre-specified, nor the product hierarchy to be pre-specified.
i.e., neither entry nor exit points into the respective hierarchies are pre-specified. This
implies that the further decomposition of a chosen artifact determines the further functional
or product hierarchy. Form determination at any stage includes specifying the topological
connectivity of the components and their structural relationships. Details of geometry of
the components are relegated to the next stage. As mentioned earlier, behavior cannot be

51

8.3 Product and Process Representation

examined in isolation of the structural configurations. But the determination of the form
at this stage allows us to analyze the behavior. It also enables us to examine the feasibility
of the form chosen to satisfy a given function.

Such behavior verification and the representation of function which enables behavior
verification has received considerable attention in literature (e.g., [22]). Vescovi et. al [63]
argue that causality is an essential element of description of function. They develop a
representation formalism for functions which provides a means of expressing causal process
chains, as a step to function/behavior verification. These approaches develop on research
reported in qualitative physics and process theory which address the problem of model
formulation. While this thesis does not explicitly address these issues, we still work within
the function-form-behavior cycle as part of an iterative design process.

The expected behaviors are used to identify all the possible artifacts which could be
used in the given context. The model allows for an external description of artifact behavior,
including assumptions and conditions governing this behavior, to be used in matching
the artifact to deliver the function requirements at this stage. The internals of how this
behavior is to be achieved is a consequence of the component behaviors and their structural
relationships. This behavior of the artifact governs further decomposition in the design
process. In this case, design as a synthesis process involves top-down refinement of this
artifact. Some aspect of this decomposition must address the issue of providing the high-
level behavior that the artifact has been advertised to possess. Behavior verification is a
function of the components and their structural configurations. The appropriate behavior
verification procedures may be built in as knowledge at the respective levels of abstraction.
These may include idealized models at the conceptual design level (following the work

reported above), or invoke analysis packages at more detailed levels.

3.83.2 Process Enaction

The process enaction stage is the actual process of design. This stage encompasses the
inference task of operating on the representation model within a particular context. It also
includes well-defined user interactions with a set of inference tools in a design environment.
The Context represents an explicit mechanism for capturing the user interaction: in terms
of decisions, specifications and design rationale. The inferencing approaches are primarily
based on retrieval and matching operations, guided by user interactions and decisions.

52

3.4 Related Research

Retrieval and Matching

The design process primarily follows a top-down functional decomposition approach
with the system generating alternative solution paths at various stages of the process. It
also provides support for a bottom-uj: approach. The following discussion illustrates this
idea through examples of retrieval and matching:

e Retrieval through direct function-form mapping. An aspect of routine design, this is
- possible when the process hierarchies directly have feasible artifact alternatives en-
coded. In the context of an evolving comprehensive knowledge base, newly developed
artifact concepts can be retrieved through a match on the function. Feasibility is how-
ever, conditional on the coutext. Context information is used by a rule-mechanism

and constraint propagation to prune the search.

e Retrieval through function-behavior mappings. This can be used in cases where it
is possible to formulate a set of behaviors expected by a function (It is outside the
scope of this thesis to formally address the issue of model formulation to obtain this
set of expected behaviors). Behavior matching is then done by an external symbolic
representation of behavior within the artifacts. The assumptions and conditional re-
quirements are consequently introduced by the internal representation of the behavior

objects. These are an integral part of the behavior verification mechanism.

o Case-based reasoning techniques. Each artifact could be considered to represent a case,
and indexing techniques used in case based reasoning may be applied here. Since the
artifacts (including abstract descriptions of classes) are stored in an object-oriented
database, the designer could conceivably perform generalized database queries on the
object base directly. This idea could be extended to automate the case retrieval

procedure.

The current implementation is limited to the first of the above retrieval approaches. We
have spent considerable effort on the conceptual model, so as not to preclude extension.

We hope to explore these extensions eventually.

3.4 Related Research

Design as a synthesis procedure from elementary building blocks has been dealt with at
considerable length in literature ([37], [31], etc.). Representation studies from an analysis

53

3.4 Related Researcn

viewpoint have focussed attention on reasoning from first principles [9], [33].

Most of the current engineering systems are very problem-specific in nature. Falken-
heimer and Forbus[11] advocate the more robust approach of attempting to develop a
general-purpose domain theory. They present Compositional modeling as a strategy for
organizing and reasoning about models of physical phenomena that address a general class
of related problems. The explicit representation of modeling assumptions and behavior
of physical systems is of particular interest to engineering design. Bylander and Chan-
drasekharan [6] present the deficiencies of qualitative simulation from the viewpoints of
complexity, causality and representation. They argue for consolidation as a more general
technique for representing behavior. This paper makes an important conceptual distinc-
tion between representation of structure and structural relationships, and behavior and
behavioral relationships. However the behavior of a device cannot be examined in isolation
to its structural configuration. The causal patterns encode this knowledge. The external
behavior description of a device states only what the device does, not how it is achieved.
This is consistent with recent object-oriented design approaches. Causality is thus linked
directly to the components of the device. From a design synthesis point of view, these pre-
liminary investigations are of significant importance. Any representation model of design
must eventually tie in with representations of causal knowledge.

Design prototypes [15] have been presented as an integrated knowledge structuring
scheme for engineering design. A prototype in this context is defined as a conceptual
schema for bringing design knowledge appropriate to a typical design situation within a
single schema. This knowledge includes function, behavior and form within a single situ-
ational synthesis framework. Implementations based on prototypes have been limited to
routine design. Alberts et al. [3] argue that this limitation is due to the fact that prototypes
represent specific, situational and experience-based knowledge about design. To extend this
approach to innovative design, they propose that generic components could serve as the ba-
sis for construction of these design prototypes. These generic components represent the
bottom-up element of design. They are based on physical theory, and represent combina-
tions of basic components that implement commonly used behaviors.

The generic components are similar to the definition of Artifact. They are comple-
mentary to the design prototypes in a manner similar to our design processes and products
being complementary. The approach presented in this thesis differs in allowing an evolv-

ing representation of an artifact. This obviates the need for translations hetween so-called

54

3.5 Discussion

“technology-based” layers. These layers represent levels of abstraction in the design pro-
cess [3]. The artifacts are recursively defined to consist of further artifacts. We place no
pre-defined granularity limits on this recursive decomposition. Lastly, we present our own

representation within a unified product-process framework for conceptual design.

3.5 Discussion

This chapter has presented a conceptual approach to structuring design knowledge.
The design concepts are clearly separated into context-dependent and context-independent
parts, representing the top-down and bottom-up knowledge respectively. Artifact knowl-
edge is identified as being essentially context-independent. The design process imposes
context assumptions and conditions on the selection process for products to deliver overall
system functionality. The granularity of the artifact descriptions governs, in part, the in-
novativeness of the design. The model formulation and behavior verification phases allow
for physical principles to drive the process of retrieval.

The implementation of the model attempts to be consistent with the philosophy out-
lined in this chapter. It is described in detail in Chapter 7. The basic primitives are all
classes in C++. The form of each primitive has been implemented as defined. The be-
havior of the base primitives is implemented as C++ methods. The Artifact class builds
upon the basic C++ class evolution facilities provided by COSMOS. The structure of each
user-defined domain concept may be defined directly as attributes. The behavior of each
user-defined Artifact concept may described in methods. Rulebases and constraints may
also be associated with each user-defined class. This provides a more realistic, high-level
mechanism for a declarative specification of behavior. COSMOS allows a seamless integra-
tion of procedural and rule-based programming approaches. The rules may thus introduce
constraints into the context, set various relationships between artifacts, check the cousis-
tency of constraints and fire general procedural code. These declaratively specified rules
and constraints provide a partial mechanism to specify behavior. The user may also di-
rectly affect the state of the design flow. We have thus chosen to build a semi-automated
design environment as opposed to a fully automated design system. The issue of behavior
representation, is howeve"r, by no means complete. It is outside the scope of this thesis to

pursue the matter further than presented here.

55

Chapter 4

Symbol-Form Mapping: Issues
and Approach

This chapter describes the issues involved in mapping a symbolic description of an arti-
fact into a geometric structure. Section 4.1 defines form conception. Section 4.2 presents
the basis for the generalized symbol-form mapping framework. Section 4.3 idenrtifies the
distinct elements which define the symbol-form mapping, and discusses the transformation
from functional relationships to spatial relationships. Section 4.4 presents a specification
framework for spatial relationships based upon qualitative interval algebra.

4.1 Introduction

This thesis is largely concerned with developing an approach for conception of design

form. The objectives are two-fold:

(1) To provide support for form conception: to help a designer experiment with alterna-

tive geometries for the design; and
(2) To explicitly capture the functional intent behind the design.

The term form conception refers to the very initial phase of design, when some broad
functional description of the design is somehow mapped into geometry. This mapping may
not be unique. Design is often an underconstrained problem: the constraints may not be
adequately specified to limit the feasible space to one solution. Support for form conception
involves helping a designer to constrain this space. This can be done by helping the designer

b6

4.2 Symbol-Form Mapping Framework: Studying the Basis

identify multiple alternative candidates for the design. A designer choice to further develop
one or more of the designs thus implicitly constrains the space of all designs. The resulting

geometric structure serves several purposes. e.g.,

(a) It captures the essential functional intent of the design;
(b) It serves as a template for interactive modification and refinement; and

(c) It provides visual feedback to a designer, and may assist in the further symbolic

aspects of design.
Two important questions are left implicit in the above discussion:

(1) What are the issues which constitute form conception?

(2) How is the functional description mapped into the geometric alternatives?

The first of these questions is easier to answer. The fundamental issues which constitute
form conception are: to decide on the components of a design; to decide on an approximate
sizing of the components; and, to determine the relative positioning and orientaticn of the
components.

The second question is more difficult. Many researchers have addressed this issue:
approaches have tended to concentrate on the details of the computational problems pre-
sented by different aspects of the overall problem. This thesis takes a top-down approach
to solving the problem. It explicitly identifies and decouples the elements of form con-
ception. It defines the requirements and presents an approach to solve each aspect. The
overall framework is developed by defining the interactions between the various solution
components.

The following section presents the basis for the overall framework. It examines the
symbol-form mapping from two aspects. The first of these addresses the logical character
of the relation between function and form, following an analysis by Mitchell [30]. The second
aspect is concerned with the computability of the framework. This issue is addressed in
light of a computability theory for design developed by Fitzhorn [12].

4.2 Symbol-Form Mapping Framework: Studying the Basis

4.2.1 Relating Function and Form

Quoting Mitchell [30],

4.2 Symbol-Form Mapping Framework: Studying the Basis

To claim that “form follows function” in some given physical system is to claim,
at the very least, that the system’s significant geometric and material properties
can be shown to have some utility; they are not merely irrelevant accidents. A
stronger claim that can be made is that they have greater utility than the other

obvious possibilities.

Mitchell presents an analysis of the above idea, and the conditions under which it might
be valid. The framework presented in this thesis closely reflects this idea. Hence, it would
be a useful exercise to subject it now to a similar kind of analysis.

The analysis draws from an observation by Mitchell [30] that designers establish a rela-
tion between function and form based on a notion of functional adequacy. The conditions
necessary for functional adequacy zre satisfied by existence of certain physical properties.
All viable designs are observed to possess these properties. Mitchell formally states this

argument [30]:

(1) At a certain time t. a system s functions adequately in a context of kind
C;
(2) System s performs adequately in a context of kind c only if certain neces-

sary condition(s) n is satisfied;

(3) P is the class of properties that empirically satisfy condition(s) n under

the specified circumstances; and

(4) Some one of the present individual items p, which is included in the class

P, is present in system s at time t.

Each of these propositions is now informally discussed within the context of an effort to
support form conception. The objective of the design is to satisfy premise 4. In general,
choosing p from the functional equivalence class [30) P, is a task which needs evaluation
of the relative merits of the alternatives considered within P. For the form conception case
then, the goal is to satisfy premise 3. i.e., find a set of alternative physical implementations
(in terms of positions, orientations and sizes) of the components of the design, so as to
satisfy a set of design constraints. The task then becomes one of specifying the necessary
conditions n: assuming that the symbolic evolution of the design has tentatively accepted
1 as holding true.
Mitchell states this elegantly [30]:

58

4.2 Symbol-Form Mapping Framework: Studying the Basis

Clearly then, any satisfactory account of relations between form and function

must be based upon:

(1) Specification of the system in question’s functions - that is, the behaviors

that are of value to us;

(2) Specification of the relevant universe U of geometric and material possi-

bilities - the possible alternative forms of the system; and

(3) Specification of the relevant conditions of functional adequacy - the pred-
icates which apply to U to establish a subset P of functionally adequate

possibilities.

These considerations define the approach presented in this thesis. The model of symbolic
evolution presented in the previous chapter derives a functional decomposition of a design
in an abstract sense. Also derived are some of the conditions of functional adequacy: these
may be the various physical relationships between the artifacts which constitute the overall
system, or numerical constraints on properties of the artifacts. The final task then remains
of applying these conditions to the universe of geometric possibilities to derive a set of
geometric alternatives.

The central idea of the function-form mapping framework is as follows:

It is usually not possible to derive a direct function-form mapping for a system composed
of many artifacts. But, it is possible to specify domain-dependent spatial equivalents for
functional relationships at a localized level. i.e., In general, it is possible to define spatial
mechanisms which are commonly used within the domain as implementations for achieving
different functions. It is thus conceivable that a set of spatial relationships between the
chosen design components can then be used to instantiate various feastble alternatives.

Figure 4-1 illustrates the tasks defining the overall framework for form conception. This
chapter focuses on representation of design relationships, both functional and physical. It
explains an approach which allows derivation of spatial equivalents from the functional re-
lationships. Subsequent chapters focus on deriving the geometric alternatives which satisfy
the constraints, and the representation of the geometry.

4.2.2 Computability

This section presents an analysis of the computability of the symbol-form framework,

based on the ideas presented by Fitzhorn [12]. Fitzhorn describes a computational theory for

59

4.2 Symbol-Form Mapping Framework: Studying the Basis

Presentation of geometry
spatial queries
focus mechanisms
abstraction levels
geomelry editing tool

4

Instantiation of geometry

Constraint propagation.
heuristics
User interaction

Model Description

B ——
Shape definition| —e— Spatial relationships hl

1
L

Geometric Constraints

pesscscnry
H

semantics definitions

Functional relationships

Geometrlf: c-lass primitives Symbolic evolution
abstractions

idealizations . of design
minimal representations

Figure 4-1: Task map for symbol-form mapping scheme

design which argues that design is a computable function. The argument presented therein
is about the holistic design process, as a procedure with functional input and spatial output.
This section draws on some of these ideas. It presents a restricted form of the argument
presented by Fitzhorn. In particular, the analysis is restricted to the spatial aspects of
design and the symbol-form mapping process.

Fitzhorn’s analysis identifies the characteristics of a domain that allow design to be

computable within this domain. Quoting his definition of computability [12];

Let 3 be an alphabet, and let f map }_" to ¥.". Then f is grammatically
computable if and only if there exists a grammar G defined on ¥ such that for

any sin) 7, f(s) — sp if s is derivable from sg in the grammar G.

From a design perspective,)° represents the language alphabet defining an artifact in the

60

4.3 An Approach Based On Localized Function Form Mappings

design, " represents a design combining many artifacts (* denotes an arbitrary number
of artifacts), and f is a function mapping an initial state so of the design to another state
s.

Then to show that f is computable, one must [12]

(1) choose a sufficiently restricted design domain, all of whose designs are in

a language L defined over an alphabet };
(2) show that a grammar G exists that enumerates L; and

(3) choose a start string so in L and show that any design s in L can be derived

from sg using G.

Fitzhorn argues that shape representations of abstract artifacts can be equivalently
specified as a finite string in a formal language [12]. He further mentions that while these
strings are described in finite lengths. an infinite set of attribute values may exist. For the
form conception problem, an artifact alphabet is defined to comprise of the nine parameters
which completely define an object in space. These nine parameters are the three parameters
defining location of an object in space, the three orientation parameters, and the three
parameters which define a box enclosure for the object. A complete description of the
design is defined in terms of these nine parameters for each of the design components. It
is straightforward to see that there exists a grammar which enumerates the language and
that a mapping exists from any design s in L to any other design s.

We have not yet expanded on the exact nature of this mapping f from so to s. f
defines a state transition function which permits design computation, the translation of an
initial shape into an output shape. Following the theory, the design methodology should
derive shape from an initial state so subject to the evaluation of sets of constraints or
specifications [12]. In this case, the mapping f is the constraint satisfaction process. The
form conception methodology presented in Figure 4-1 is thus broadly consistent with this

theory.

4.3 An Approach Based On Localized Function Form Mappings

Representing design relationships is an important element of the proposed scheme for
form conception. Design relationships provide the overall functional and spatial coherence
for the design. The previous chapter has hinted at the four broad classes of relationships

that we are primarily concerned with: functional relationships, composition, aggregation,

61

4.3 An Approach Based On Localized Function Form Mappings

and spatial relationships. It also discussed the basic object model, and how it provides for
an ezplicit representation of design relationships.

The classification of functional relationships pertains to the representation of function in
a specific domain. Figure 4-2 shows an illustrative classification in a structural engineering
context, drawn from [42). This is not a complete classification, but it is used here for
illustrative purposes. The figure also shows a tentative, conceptual classification of spatial
relationships. The idea here is to demonstrate the kinds of spatial relationships that might
conceivably be needed to support such a function-form mapping at the level of relationships.
The figure shows three distinct classes of these spatial relationships: Spat_constraint
are spatial constraints and restrictions on individual objects; QuantRel are more general
numerical constraints; and QSR represents spatial relationships which are merely specified
qualitatively. The qualitative relationships shown here are intuitively convenient; they
permit us to conceive of abstract physical interfaces between design objects.

Relationship

L= =

A
T

Irruut.it 1oad] l Sumrtl lulilt lcad] lnat_conltrlintl I QsR I
| I] A
'ltuco”mﬂ'-_ll EQIMI |] | l I | | I

I ozhnnuon”rrm.g"nuul”mu”r t *4'_8 t !ICOncuinlI bOm‘G‘

lllo contlct”'rwch contnct”Ovorl.g contlcl:|

Figure 4-2: An illustrative classification of relationships

The question then remains of obtaining the spatial equivalents of various functional rela-
tionships. This is in general defined by the semantics of the functional relationships within
the domain. For example, the Supportg relationship is a binary relationship between two

62

4.4 Qualitative Spatial Relationships

objects, implving support in the Z direction, against gravity. Hence we can define:
Supportz :=> Abutsgz (Overlapx, Overlapy, Touchg)
Similarly, Connect is a ternary relationship, where one object connects two others.

Connect : ObjectB connects Object A and Object C.
= A < Overlap > B
= B < Overlap > C

When an object has to directly resist a load, that functional constraint usually translates
to a spatial constraint on its size.

This thesis reflects a belief that this localized domain knowledge presents an opportunity
to build a generalized symbol-form mapping framework. In cases where the system is unable
to access such knowledge. the designer may directly specify these spatial equivalents of
the corresponding functional constraints. The following section presents a framework for
specifying the qualitative relationships at the intuitive, qualitative level used above. This
modeling approach for relationships is well-suited to conceptual design, as discussed in the

next section.

4.4 Qualitative Spatial Relationships

The previous cection mentioned that spatial relationships are in general imposed by
the design realities of composition, support, spatial exclusivity, etc. It also introduced the
idea of specifying, spatial relationships at an intuitive level, allowing them to relate more
directly to function. This section presents the specification framework in detail. It discusses
the qualitative interval-algebra [32] which forms the basis for the specification framework
developed in this thesis.

Qualitative modeling approaches differ from quantitative approaches in allowing ab-
straction of detail. Usually this abstraction is based on identifying qualitative changes of
state. This central idea has been used in qualitative physics, temporal algebra and the
spatial algebra we present below. The qualitative spatial relationships (QSRs) are based
on three qualitativelv different spatial states: no-contact, tangency and overlap-contact.

Mukerjee presents a point-interval algebraic formulation [32] based on these states.

63

4.4 Qualitative Spatial Relationships

L A A after B (++)
B
3 A met-by (f+)
— — A verlap-by (i+)
B finishes (if)
A
B . d . .o
— A contained-in (ii)
B
B_- A P starts (bi)
L)
A equal (bf)
B started-by (b+) o>
—A
B
—_— A contains (-+)
B finished-by (-f)
A
B — y
A overlaps (-i)
Be— -
A meets (-b)
> before (--)
E— < before (--
A —P x ©

Figure 4-3: Point-interval algebra formulation

A study of the possible relationships between a point a and an interval B leads to five
positions of interest: 1) a is ahead of B; 2) a is at the front of B; 3) a is inside B; 4) a is at
the backof B; and 5) a is behind B. These relations are denoted by (+, f, i, b, -) respectively.
These relationships could be extended to the two-interval case as shown in Figure 4-3. In
the figure, each algebraic relationship expresses the relation between the positions of the
end points of the two intervals. For example, A after B or A (++) B denotes that both
end points of A are ahead of both end points of B. Intermediate relationships as A and B
move toward, and then away, from each other are shown in Figure 4-3. These relationships

capture both the relative positions and the relative sizes of the intervals.

64

4.4 Qualitative Spatial Relationships

The primitive relations described in Figure 4-3 can also be grouped into higher order
relation classes and associated with spatial relation abstractions which are commonly used
in engineering (e.g., overlap, inside-of, next-to). For example, a generalized Overlap rela-
tionship (<>) can be specified as consisting of any one of the following relations (-i, bi,
ii,-f, bf, if, -+, b+, i+). Similarly, No-touch (i.e., two intervals do not touch each other)
can be specified with (++, - -) and Nezt-to (i.e., two intervals only touch at their end
points) with (-b, +f). For higher dimensional cases, the problem may be reduced to one
dimensional cases by projection onto each of the linearly independent axes. The relation-
ships between the objects are thus represented as vectors whose elements correspond to
QSRs in the different axes.

4.4.1 Motivation

This research adopts the point-interval algebra approach presented above for several

important reasons:

(1) QSRs are based on a qualitatively complete, domain-independent categorization of
space using interval algebra. The algebra is independent of the application domain
and is related only to space. This retains the flexibility to model diverse spatial
design tasks. This model of space is complete in the sense that it can identify all
qualitatively distinct configurations [32]. The model does not, and cannot, distinguish
between other concepts like near and far, since these concepts are more dependent

on contexzt;

(2) It is possible to verify the consistency of relationships specified in the algebra. This
relates directly to the first point. Since the QSRs are based on a complete algebra,
transitive relations can be built algorithmically. Mukerjee gives examples cf such

transitive inferences [32];

(3) QSRs allow abstraction of detail, and are amenable to hierarchical relationships. Sec-
tion 4.4.2 describes some of these hierarchical relationships as implemented in this

work;

(4) QSRs allow spatial relationships between design objects to be specified at a semantic
meaningful level. This flexibility to specify relationships at a level compatible with

the intuitive notions in a designer’s mind is important from a conceptual design

65

4.4 Qualitative Spatial Relationships

perspective. Human language terms like “top.” “between,” “right.” etc. can directly
be mapped to QSRs between objects in the sense that they provide an ordering
of objects along a chosen direction. This is as opposed to traditional constraint
frameworks which require design relationships to be specified as algebraic constraints

relating object parameters at a very low level;

(5) QSRs can also easily model disjunctions. For example, touch-contact {-b,+f}, no-
contact {- -,++} , front-overlap {f+,i+, if}, etc. are disjunctions formed by cluster-
ing lower-level relationships. Disjunctions stipulate that at least one of the element
relationships in the cluster be satisfied. It is also possible to conceive of disjunctions
of the form (Pier < Abuts > (Bank1 or Bank2 or Bank3)); and

(6) The hierarchical abstractions developed based on QSRs can be more easily related to

function, as discussed earlier on.

4.4.2 Implementation

This section explains how higher level relationships between objects can be modeled
using primitive relationships. It defines three levels in the relationship hierarchy. The lowest
level primitive relationships are available directly from the point interval algebra. The next
level consists of relationships modeled as disjunctions. The last level uses combinations of
the primitive relationships and disjunctions along each of the axes of a reference frame to
model 3D relationships. In the current research, a limited number of 3D relationships have
been modeled; yet the idea that this relationship set is easily extensible is to be emphasized.

Axis System

This section details the approach to defining the axes for the QSRs. Relationships
in 3D need to be defined relative to a reference axis system. The implementation allows
relationships relative to three basic types of reference frames: a global frame, along an
arbitrarily specified axis system, or with reference to another object’s local coordinate
system (Figure 4-4). Note that in the third case, the reference frame may be changing,
depending on the object it belongs to. Interval relationships between objects are specified
in terms of the projections on the axes of the reference frame. Thus A (++) B along z
implies that the projection of A on the z axis of the chosen frame is ahead of the projection

of B.

66

4.4 Qualitative Spatial Relationships

> z-axis

arbitrary frame
>
,5'6" y
The frames used ir modeling qualitative spatial relationships

Figure 4-4: Reference frames used for the QSRs

QSR Hierarchy

Overall, the hierarchical scheme lends itself very naturally to an object-oriented imple-
mentation. The class hierarchy for the QSRs is shown in Figure 4-5. The base class Srel
contains the defining axis for a one-dimensional relationship. It forms the base class for
all spatial relationships. It also contains a method to evaluate whether the relationship
is satisfied given a configuration for two objects, and a method to suggest improvements
to a given configuration of two objects such that the relationship can be satisfied. These
two methods reflect a modeling perspective derived from the use of these constraints in
randomized evaluation-based search algorithms. The next chapter explains this in detail.
Note further that the class Srel merely provides a uniform polymorphic interface for the
constraint hierarchy. Each of these methods is redefined in the subclasses as appropriate.
These refinements are also discussed inu the next chapter. The class QSR is the base
class for relationships formulated in the point-interval algebra. The lowest building blocks
of the system are the point-interval classes, derived from PY_base. The interval-interval
relationships are derived from II_base. Each of these internally encapsulates two point-

4.4 Qualitative Spatial Relationships

A
[l

QSR_3D

1 1 |
[rmes | [rocecusces] | conmeces |

lOv.tllD Ilrouch_contnc4 I ﬂo_contnecl

II_base

I | [1 | | I | |
In_w” n:_zp”n_ip] ln_t4 In_ul Ixx_bil In,,btl ,I_Il_q E,_q 1I_me Ill_li”u_-q In-"'l

PI_base

l?:_plunl IP!_!rontl Irt_in I lf!_b.qEJ |Px_p1nu-|

Figure 4-5: QSR class hierarchy

interval relationships. For example, an IL_ii representing an interval containment contains
two PI_in relationships. The class QSR _disjunc is the base class for all disjunctions. It
contains an array of objects of type QSR which form the components of the disjunction.
The class QSR _3D forms the base class for all 3D relationships. It contains an array of
three QSR objects, one along each direction of a reference frame.

The size and orientation relationships specify relative sizes and orientations of two
objects. We have further modeled some disjunctions and 3D relationships, which are by no

means a complete set. Table 4.1 and Table 4.2 show these relationships.

Numerical Constraints
In addition to the QSRs, a specification mechanism for algebraic constraints is also

needed. This recognizes the fact that certain important constraints, even at the conceptual

68

4.4 Qualitative Spatial Relationships

Interval Relationship | Components
A overlaps B A(i+)B
A(if)B
A (i) B
A (b)) B
A(bf) B
A(b+)B
A(-+)B
A(-f)B
A(-i)B
A overlaps — front B A(f+)B
A(i+)B
A (if) B
A overlaps — back B A(-f)B
A(-i)B
A(-b)B
A inside B A(if)B
A@G)B
A (bi) B
A touch — contact B A(f+)B
A(-b)B
A no - contact B A{(++)B
A(--)B

Table 4.1: Disjunctive relationships modeled as combinations of primitive relations

Relationship Along Defining Axis | Along Other Axes
A abuts B A touch — contact B A overlap B
A overlap B
A intersects B A overlaps B A overlap B
A overlap B
A contains B A (i) B A(ii)B
A (i) B
C between B and A C abuts B
C abuts A

Table 4.2: 3D relations modeled using lower level relationships

4.5 Summary

design stage, may be numerical in nature. The specification framework allows arbitrary
algebraic constraints defined on real-valued variables, both discrete and continuous. Any
arbitrary algebraic expression for a constraint is parsed into a standard expression tree. An
expression is a string of symbols where any string representing an algebraic expression is
valid. During the parsing phase, an expression is recursively decomposed into operators,
variables and constants.

This specification framework has only been partially implemented. Currently, the imple-
mentation allows restrictions on parameter variables only (e.g., Less-than and Greater-than
constraints). But the overall framework is extensible. A parser to handle arbitrary numer-

ical constraints should eventually be built.

4.5 Summary

This chapter has presented the symbol-form mapping framework and the specification
of spntial relationships. It presented a basis for the overall framework, discussed the need
for qualitative specification, and proposed a solution to the specification problem. Unfor-
tunately, the arbitrary specification poses computational problems in terms of obtaining
feasible solutions. The next chapter explains these problems, and also proposes a solution

algorithm to tackle them.

70

Chapter 5

Asynchronous Teams of Agents:
An Approach to Constraint

Satisfaction

5.1 Introduction

The previous chapter presented a general approach to constraint specification. The re-
sulting generality of the constraints, however, poses severe computational problems. This
chapter presents an approach to deal with some of the problems associated with constraint
satisfaction. The approach is an effort to reconcile the issues of representational flexibility
for constraints and the computational tractability of the resultant framework. This ap-
proach for instantiating solutions, based on CMU’s Asynchronous Teams of autonomous
agents (ATeams), is very general and can handle arbitrary constraint formulations.

The rest of the chapter is organized as follows: Section 5.1.1 presents the motivation for
the approach adopted. Section 5.2 presents Asynchronous Teams of autonomous agents,
developed by Talukdar et al. [58]. This section also presents a conceptual ATeam for the
constraint satisfaction problem. Section 5.3 presents the various agents which form the
ATeam for the constraint satisfaction problem. Section 5.4 gives details of the implemen-

tation. Section 5.5 presents a discussion of the approach and some of its advantages.

71

5.1 Introduction

5.1.1 Motivation

The advantages of allowing qualitative specification of relationships have been discussed
in the previous chapter. It also discussed the need for handling numerical constraints in
the specification framework. The goal of this chapter is to present an approach to solve
the instantiation problem: i.e., infer a family of feasible solutions. Each solution is a
configuration of design objects in space which satisfies the relationships and constraints.
Thus each solution is consistent with the essential functional intent of the design.

The overall objective to support conceptual design places some requirements on the

constraint satisfaction framework:

e The constraint satisfaction algorithm should be able to handle mixed formulations:

qualitative relations and arbitrary numerical constraints;

o Families of feasible solutions should be generated to allow exploration of the design

space;

o The framework should be computationally efficient in a dynamic constraint environ-
ment, recognizing the fact that constraints are incrementally generated in an evolu-

tionary design process; and

e The framework should be able to report on any subsets of the constraint set that are

conflicting and render the problem infeasible.

Several existing constraint satisfaction approaches tackle the instantiation problem.
Freidman and Leondes present the mathematical basis of constraint theory and the formu-
lation of the general CSP [13]. Sutherland’s SKETCHPAD was a pioneering constraint-
driven graphics system [57]. SKETCHPAD solves numerical constraints using propagation
combined with relaxation techniques. It deals only with systems of equalities. Steele and
Sussman used local propagation for the solution of hierarchical constraint networks [53].
Steele presented a language for the construction of constraint networks[54]. Approaches to
deal with constraints which originate in the design community mostly deal with numerical
methods, the most significant of these being Variational Geometry [25], [26]. Variational
geometry approaches use some form of the Newton-Raphson method to solve systems of
non-linear equations. Serrano [43] presents a graph-based constraint management system
which allows detection of inconsistencies in a system of equality constraints. Buchanan and

Pennington report on a computer algebra-based approach to solving geometric constraint

72

5.2 Asynchronous Teams of Autonomous Agents

problems. implemented as CDS [5]. The system is able to handle redundancies and incon-
sistencies in an elegant fashion. It is also reported to be very slow, and unable to handle
incremental definitions of constraints[5]. AI planning techniques were used by Fromont and
Sriram [14]. Although very general, the method was computationally very expensive.

Many of the problems in propagation and numerical iterative approaches stem from
the fact that the algorithms perform the assignments sequentially. For example, special
steps have to be taken when constraint loops are encountered (as in solving simultaneous
equations). Further, most of the above-mentioned approaches have concentrated on ob-
taining a single consistent instantiation. In order to develop multiple feasible solutions, we
have experimented with population-based techniques (genetic algorithms and the ATeams
approach). Both these techniques are implicitly paraliel in nature: they operate on popu-
lations of solutions generated randomly. These techniques avoid the computational prob-
lems associated with sequential algorithms reported above. Both these techniques are
evaluation-driven and independent of the nature of the constraini space. Thus, they offer
the robustness across a wide range of constraints, allowing representational flexibility.

The constraint satisfaction approach presented here addresses most of the problems
above. The specification framework handles qualitative constraints, disjunctions of con-
straints, and arbitrary numerical constraint expressions. The instantiation generates fam-
ilies of feasible solutions. This thesis does not completely address the issue of constraint

consistency; Section 5.5 discusses the problems associated with this issue.

5.2 Asynchronous Teams of Autonomous Agents

ATeams are a relatively new organization architecture of problem-solving agents for
solving computationally complex problems. ATeams were developed by Talukdar et al. [58].
As defined by Murthy in his PhD thesis [34]:

An ATeam can be described as an organization of autonomous problem-solving

agents, operating asynchronously and cyclically on shared memories.
The essential elements of an ATeam are:
o A shared memory of candidate solutions to a problem;

e A set of operators or agents which operate on these solutions. The operators may be:

73

5.2 Asynchronous Teams of Autonomous Agents

— Improvement operators. These suggest local improvements to a randomly picked
solution and return a new solution to the store. Note that tle original solution

is also retained without change;

— Ewvaluation operators. They evaluate a design solution with respect to some
objective; and

— Destruction operators. They keep the size of the store in check and ensure that
the efforts of the improvement operators are not wasted on “relatively poor”

solutions.

Note that there is no control or flow to the overall solution scheme. A random store
of design solutions is initialized. Each solution is evaluated according to the criteria for
a design and the evaluation is tagged along with the design. In an implementation on
a serial computer, operators are randomly picked and they are fired on random designs.
The operators may be any known solution techniques to the problem being considered. The
solution architecture affords the flexibility to allow integration of very well-tested techniques
for subsets of the problem, with purely heuristic. localized operations on other regions of
the problem space. This flexibility cannot be over-emphasized. Further, the absence of any
control implies that changes made by operators are purely localized. Thus improvements
made by operators may be at odds with each other over regions of the problem space! Hence,
the destructors are extremely important operators, since they help herd the population of
solutions towards improvement by weeding out bad solutions.

Talukdar and Souza (58], and Murthy [34] have demonstrated that the ATeams archi-
tecture can efficiently find solutions for very hard problems (Traveling Salesman Problem,
Robot Manipulator design). We decided to use the ATeams architecture for the constraint

satisfaction problem for the following additional reasons:
e It is an inherently parallel technique: it yields families of feasible solutions;

e It is possible to construct an ATeam with extremely simple and localized modification

operators, as shown in the following section;

e The resulting framework is extremely general. The only requirements are that the
constraints can be evaluated, and that qualitative knowledge about localized improve-

ments can be built in. It can thus handle mixed constraint formulations: qualitative

74

5.2 Asynchronous Teams of Autonomous Agents

constraints and arbitrary numerical constraints; and in fact, any constraint which can

be captured in a programming language;

e The solution architecture is inherently object-oriented. encapsulation of localized
evaluation and improvement knowledge, message-passing and polymorphism are con-
cepts easily supported by C++, the language of implementation for this research;

and

e ATeams support modularity. Agents can be added or removed at any point. This
is particularly useful in a dynamic constraint environment, when constraints zie re-

garded as agents.

5.2.1 A Conceptual ATeam for the Constraint Satisfaction Problem

The various components of a conceptual ATeam for the constraint satisfaction problem

are:

e Memory. The shared memory containing the candidate solutions may be seeded
with randomly initialized solutions, or with solutions obtained in any other manner.

The size of this memory is implementation dependent; and
e Agents.

— FEvaluation. For the constraint satisfaction problem, the objective is to satisfy
each of the constraints. Hence the evaluation criteria is merely an evaluation
of the constraints. The evaluation of a design solution is a combination of the
evaluations returned by each constraint. Each constraint encapsulates knowledge
about evaluating a given design with respect to itself. The implementation of

this evaluation knowledge is discussed in the following sections;

— Modification. Each modification operator corresponds to a constraint and seeks
to modify a solution chosen from the design store to reduce the violation of this
particular constraint only. Thus each of these modification operators produces
local improvements using only a subset of the design criteria. The modifica-
tion operators encapsulate improvement knowledge specific to the nature of the

constraint. The constraints could thus be regarded as agents themselves. We

75

5.3 Constraint Evaluation and Improvement

have chosen to implement extremely simple operators; a set which could poten-
tially be extended to include more sophisticated techniques. These improvement

operators are described in section 5.3;

— Crossover and Mutation. These are operators which are derived from the con-
cepts of crossover and mutation in Genetic Algorithms. They evaluate random
recombinations of solutions. These operators serve the same purpose as in a GA.
They preserve the diversity of the solution store, and help propagate good traits

across solutions; and

— Destroyers. These agents selectively delete solutions from the memory based
on their evaluations. The primary purpose is to control the size of the store
and to concentrate the efforts of the modification operators on more promising

solutions.

A schematic diagram (Figure 5-1) illustrates the ATeam for the conceptual design

problem.

5.3 Constraint Evaluation and Improvement

The conceptual description of the ATeam has emphasized the importance of the evalua-
tion and improvement operations for a design solution. These operations are encapsulated
within each constraint. Thus as each constraint is entered in a dynamic design environ-
ment, it enters the design world with knowledge about evaluating and improving a potential
solution with respect to itself. Each constraint can thus be treated as not only as further
defining the problem space, but also as actively driving the design solutions towards the

feasible region.

5.3.1 Constraint Evaluation for Qualitative Relationships

The constraint evaluation for the qualitative relationships is now discussed.

Evaluating Primitive Relaticnships

To evaluate whether a particular primitive relationship is satisfied, the two intervals in
space must be specified in terms of their starting and end points (minimum and maximum)

along the vector defining the relationship. With each relationship, the source is identified as

76

5.3 Constraint Evaluation and Improvement

Modification operators

Move right
Move left
Rotate clockwise

Rotate anticlockwise
Mutation Crossover
:;':::::Ssiiz; Operator Operator

Change other parameter

Evaluation
Agents

Conceptual organization of Ateams architecture

Figure 5-1: A schematic diagram of the ATeam for solving the conceptual design problem.

the first interval in the relationship and the target is the second interval. In a relationship
such as A abuts B, the projection of A4 is taken to be the source interval and the projection
of B as the target interval.

Given a point and an interval, the algorithm checks to see if the relationship is satisfied;
the violation of the relationship is quantified by a penalty between 0 and 1. For each
relationship, this scheme is illustrated in the figure 5-2. If the relationship is satisfied,
the evaluation is 1. Note that the choice of penalty function is somewhat ad-hoc; any
other penalty function could be equally used. The only requirement is that the function
provide an unambiguous, ordinate measure of violation. For a qualitative relationship, this

penalty function could be viewed akin to a set membership function in a fuzzy set. Each

77

5.3 Constraint Evaluation and Improvement

+ ssssesssssssescsssssRRRsene sssssnsssssernsenseesenn

f asscsscsassesaee sessssssssssesnanneat

T~

i intervallength { interval length i interval length |

Evaluation functions for point interval relationships

Evaluation is 1.0 when a point satisfies a relationship
with an interval, otherwise the violatior. is scaled to a
number between 0-1.

Figure 5-2: Evaluation function for point interval relationships

78

5.3 Constraint Evaluation and Improvement

interval interval relationship is a combination of two point interval relationships between
the endpoints of the source, and the target treated as an interval. Each one of these is
evaluated separately. The degree of satisfaction of the two point interval relationships is
multiplied to give a composite measure of the degree of satisfaction of the interval interval

relationship. Again, this is a aumber between 0 and 1.

Evaluating Higher Level Relationships

A representative degree of satisfaction for the disjunctive class of relationships is ob-
tained by evaluating each component of the disjunction and taking the degree of satisfaction
of the best component - closest to 1 - to be its evaluation measure. 3D relationships are
evaluated by taking the product of the evaluations of their components. The composite
evaluation structures are then tagged along with the design solution and the design is
returned to the store.

The evaluation criteria chosen above for the qualitative constraints give a quantification
as well as a feel for the degree of satisfaction of the constraints. While they give an
unambiguous, ordinal measure, they are yet highly subjective. It is difficult to get a feel
of how the composite measure of evaluation of an interval interval relationship relates to
its degree of violation. For instance, given a measure of violation of 0.5 for a point interval
relationship, it is easy to visualize how the relation is violated. On the other hand, given
the same measure for an interval interval relationship, it is difficult to visualize all possible
combinations of point interval violations that can result in a composite violation of 0.5.
The difficulty is compounded in higher order relationships as the combinations get more
complex. However, the ATeam uses the evaluations only to give an indication for the
direction of improvement sought in a particular solution. This simple evaluation scheme
presented above was found to be quite sufficient.

Evaluating numerical constraints given values for the variables is a simple inorder traver-

sal of the expression tree and deserves no further mention.

5.3.2 Improvement

We now turn to another important aspect of the solution scheme: improvement sug-
gested by the modification operators. Recall the claim that the modification operators
required by the ATeam could be built in into the constraints. When a design is sent to a

constraint to be evaluated, the constraint returns an evaluation structure which is tagged

79

5.3 Constraint Evaluation and Improvement

along with the design. The evaluation structure contains some additional information: a set
of possible modification operators which might potentially improve the design. Note that
we are deliberately reserved about the improvement potential of a modification operator.
This is because the modification operators operate independent of cach other, and they
might well have deleterious effects on some other aspect of the design. The destroyers weed
out solutions resulting from poor interactions. Thus the operators can be restricted to a

very simple set. For the qualitative spatial algebra, these are:
{ LEFT, RIGHT, SMALLER, BIGGER, CLOCKWISE, ANTICLOCKWISE }

Each of these objects specifies a change in an object participating in the relationship along
a direction which is stored in the evaluation structure. e.g., LEFT means a negative
movement along a particular direction specified as a vector in space. This vector is the

defining direction of a relationship or its components.

Improving Primitive Relationships

Upon evaluation of a relationship, a modification operator is associated with each of the
objects involved in the relation. For instance, if the interval interval relationship A (++)
B is violated, improvement is possible by either of two modification operators A-RIGHT

or B-LEFT. If a rel tionship is satisfied. no operators are specified.

Improving Disjunctions

For disjunctions. each component interval interval relationship is evalnated and some
modification operators are associated with it. The algorithm compares the evaluation of
all comnponents and retains only the modification operators and evaluation associated with
the least violated constraint (which can be looked on as the constraint with the best hope

for satisfaction).

Improving 3D Relationships

A set of modification operators for 3D relationships is obtained as a union of all modifi-
cation operators associated with each of its component relationships. No operators can be
discarded since each 3D relationship is a conjunction of relationships. In order to improve

a 3D relationship, any member of the operator set can be applied.

80

5.3 Constraint Evaluation and Improvement

Relationships such as is — perpendicular, if violated, can only be improved by rotat-
ing the objects. For these, the operators CLOCKWISE and ANTICLOCKWISE are
specified. These operators refer to the objects as a whole and do not have any natural cor-
respondence to the modification operators for interval interval relationships. The rotation
is assumed to be about the centroid of the object.

Although the modification operator set suggested by each relationship may not cover
all possible ways in which a relationship may be improved, it is not necessary to always
have a complete set of operators. This fact is borne out empirically in our examples as
even incomplete operator sets do not exceptionally hinder the search process. However, the
more complete the set, and the more sophisticated the improvements suggested, the faster

the algorithm converges to a solution.

5.3.3 Modification Operators for Algebraic Constraints

This section proposes a scheme to handle improvements for arbitrary algebraic con-
straints.

Each algebraic constraint is parsed into an expression tree involving operators, constants
and variables. Suggesting modification operators for the solution being evaluated is a two-
pass process. At each operator node in the tree. the values of the expressions to the left and
right node children expression are stored when the tree is first evaluated. For modification,
note that the root of a parse tree will always contain an expression as the left child and
a constant as the right child. If a constraint is found violated at the root operator, the
amount of increase or decrease to be made to the left expression is known. This message is
propagated to every node in the tree such that the actual modification made to the variables
results in an increase or decrease in the net value of the left-hand-side of the constraint.

Any increase or decrease with reference to an operator means increasing or decreasing
the net value of the expression formed by concatenating the children and the operator itself:
binary operators in the middle of the two children and unary operators before the child.
Therefore to increase the net value of such an expression, it is necessary to know how to
change the values of the child sub-expressions.

Such qualitative knowledge can be built into each mathematical operator. For exam-
ple, consider the operator +. The only way to increase an arbitrary expression such as
exrpressionl + expression?2 is to send the message increase to either (or both) of the ex-

pressions expressionl and expression2. With a * operator, it might be more complicatad.

81

5.3 Constraint Evaluation and Improvement

A message such as increase sent to * must be interpreted according to the most recent
evaluations of its child expressions. For instance, if both children evaluated positive, the
message increase must be sent to any one or both children to guarantee an increase in
expressionl x expression2. On the other hand, if one child evaluated positive and the
other negative, the message sent down to the positive child will be decrease, and the mes-
sage sent to the negative child will be 7ncrease. The example in Figure 5-3 illustrates this

idea. The current implementation includes a limited number of such mathematical opera-

Arbitrary numerical equations:
e.g sq(x)- y*z + 100*cos(theta) > 20
Parse into expression.

&Y

(x) (y) (2) (theta)

If constraint is not satisfied:
Propagate message to retrieve l
appropriate improvement operator

Figure 5-3: Improving numerical constraints

tors. We believe that this scheme is extensible to arbitrary mathematical functions; testing
on this issue is pending.

A final note on the modification operators: They merely suggest a direction of change
and the parameter to change. When the modification is actually invoked, the message is
sent to the object that represents the variable that needs to be changed. The actual amount

of change is left to this object to decide.

82

5.4 Implementation

5.4 Implementation

This section presents details of the implementation of the ATeams algorithm and also the
overall structure of the algorithm. The nature of the scheme is inherently object-oriented,
and the implementation is fairly simple and elegant. Modeling the system in an object-
oriented fashion provides flexibility by allowing the various operators to be incorporated
independently into the system when desired.

The object-oriented ATeams implementation reported in this section is credited to
Humair[21]. Humair also reports on the relative merits of ATeams vs Genetic algorithms

as general search techniques.

5.4.1 Solution Representation and Storage Classes

Dobj class represents a bounding box for a design object. Each object has a string
identifier and an array of nine values containing the configuration variables of the box. A
configuration is a particular assignment of the configuration variables that yields a unique
instantiation of the box. These variables are the position of the centroid (z,y.z), the
sizes along each of the axes (size,,size,.size:), and the rotations about the global axes
(0r,8y.0.). This real-valued variable space is discretized according to a user-defined mesh
size. When a Dobj is initialized, these parameter values may be randomly created or copied
over from another object. Each Dobj stores the information about the local reference axis
system of the object relative to the global frame. The message interface includes a method
which returns the starting and end points of the projection of an object along an arbitrary
vector. This is useful in the evaluation of point interval relationships as discussed earlier.
A second method allows improvement in the values of the configuration variables along «
~ert i direction,

Design class is the representation of a candidate design solution. Each Design object
stores an array of Dobjs. It has information about the number of objects in each design,

the number of constraints, and an array of Evaluation objects, one for each constraint.

5.4.2 Operators

The operators represent agents in ATeams. An operator requests a design from the
store of designs and modifies or destroys it accordingly. The class hierarchy of operators is

shown in figure 5-4. Operator class is an abstract class from which all other operators are

83

5.4 Implementation

Operator

1 1 | 1
Constraint Crossover !_Mulate Destroyer

[1
Limit_Memory_Destroyer | | Design_Destroyer

Figure 5-4: Class hierarchy of operators

derived. It is convenient for providing a uniform interface for all operators. Constraint
class represents the design constraints input to the ATeams. Member methods include
evaluating a particular design and improving it. The method fire encompasses the entire
operation of getting a random design from memory, copying it, improving the copy and
evaluating it before adding it in the store.

Crossover class is the analogue of the crossover operator used in genetic algorithms.
Its interface includes methods to get two random designs from memory and mate them.
Mating takes place by picking a random object and swapping all objects after and including
this one with the other design. The mated designs are evaluated before putting in the store.

Mutate class is the analogue of the mutation operator in genetic algorithms. The
relevant method gets a design from memory, copies it, and randomly assigns a value to a
configuration variable for a randomly picked object in the design. The design is evaluated
before inserting in the store.

Destroyers are used to destroy bad designs with a given probability. They are necessary
for controlling the size of the population and to make sure that the effects of the other oper-
ators are concentrated on the most promising designs. Design_Destroyer probabilistically
deletes bad designs from memory based on their overall evaluation. Limit_Memory Destroyer
is used to keep the size of store within reasonable limit. Duplicate_Destroyer is used to

destroy duplicates from the store.

84

5.4 Implementation

5.4.3 Overall ATeams Algorithm

The algorithm operates on a discretized space for each of the configuration variables in-
volved in the design. The choice of the number of discretizations is arbitrary, but important
since it determines the size of the search space.

The overall algorithm proceeds in a randomized manner. At many places in the al-
gorithm, probabilistic steps are taken depending upon certain criteria. The probability of
picking up any design frcm the memory is independent of the evaluation of the design. This
probability is given by 1/n, where n is the number of designs in memory at that particular
time. The Design_-Destroyer retains all designs with an overall evaluation greater than
0.75, but probabilistically destroys all other designs with a probability of 0.8. The proba-
bility that a design destrover is fired is variable. We have found 0.4 to be a stable value for
this probability. After every 1000 iterations, the limiting memory destroyer goes through
every design in the memory, and destroys it with the probability 1 — evaluation®. The
choice of this probability was based on the observation that it provides a sharp discrimi-
nation between the probability of destruction of good and bad designs owing to the sharp
slope of the cubic function near 1 as contrasted to its behavior near . When a duplicate
destroyer is fired, duplicates are destroyed with probability 1. All through the algorithm,
the elitist strategy is maintained, i.e., the designs with the best evaluation in the store is
never destroyed.

The Limit_Memory Destroyer maintains the integrity of the store by probabilisti-
cally destroying the poor solutions after every 1000 iterations. This periodic expansion
and contraction to original size of the store is very effective. It helps to concentrate the
efforts of the modification operators on the good designs, while guarding against premature
convergence.

The overall algorithm can then be described as:

1. Create initial store (randomly or seed with erternal solutions).
2. Fuvaluate all solutions and place in memory.
3. While termination condition is not met

If necessary fire destroyer to limit memory

Pick operator randomly (modification / destroyer)

If operator is a modification operator,

make change, evaluate new design, place in store

85

5.5 Summary and Discussion

If operator is a destroyer,

destroy probabilistically based on evaluation.

5.5 Summary and Discussion

With respect to a design environment, this research has not properly addressed one of
the important issues of constraint management. i.e., constraint consistency. Unfortunately,
one of the very strengths of the architecture is also a limitation. This chapter elaborated
on being able to handle mixed formulations of constraints. But the traditional consistency
detection algorithms (usually involving graph closure of some kind) may not be applicable
over the mixed formulation. One potential approach is to have a pre-processing stage, when
consistency detection is applied over subsets of the constraint formulation, treating them
independently. Another approach is to follow a more heuristic-based route, and identify
the subset of inconsistent constraints by examining the results at the termination of the
algorithm. This thesis does not presert answers to this question.

Another interesting issue is termination of the algorithm. It is very difficult to a priori
determine termination of the algorithm. In the general case when it is not possible to
specify the goal design state, it may be necessary to preset the execution time or number
of iterations or number of feasible solutions desired. In this respect, the algorithm shares
the limitations of the genetic algorithm. Arguably, this may not really be a limitation
in a design environment, since it allows the flexibility to terminate the algorithm at any
point, and use the best approximation to a solution found thus far. Chapter 8 presents a
discussion of how this iterative approach may be turned into a strength.

The algorithm is easily able to handle a dynamic design environment in which con-
straints (or objects) are incrementally added. A reasonable computation strategy at this
point is to simply continue the search with the results of the last run being used as a seed
population. In fact, this is an approach similar to the one used by iterative numerical solver
based constraint management techniques.

Concluding the chapter. the solution architectire implemented here is quite promising.

Chapter 8 presents some interesting results on a test design example.

86

Chapter 6

Geometric Representation for

Conceptual Design

This chapter addresses the issue of knowledge representation for geometry. The overall
objective of this thesis is to automate the generation of form alternatives for design arti-
facts. This implies that the computer has at least an abstract notion of the geometry of
primitive components. In traditional CAD systems, this knowledge has been in the form
of generic methods and procedures concerning the basic building blocks. In a CSG-based
solid modeler, these building blocks might be cubes, cylinders, spheres, etc. These primitive
blocks permit the synthesis of a wide variety of objects. Yet, they have little direct relation
to any engineering domain. This chapter discusses abstraction as a complexity-reducing
mechanism to represent geometry of engineering artifacts, with a specific focus on civil en-
gineering. This abstraction may be of various types: parameterized shapes, generalization,
composition, idealizations, etc. The idea of the form definition scheme discussed in this
chapter is to use some or all of these concepts to represent geometric shapes of engineering
objects in a higher-level domain representation. The focus of representation is conceptual
design, with its requirements for abstract and incomplete descriptions of geometry.

The chapter is organized as follows: Section 6.1 briefly describes the problem of knowl-
edge representation for geometry. It further describes the need for multiple levels of ab-
straction at various levels of detail, and presents a solution to the problem. Section 6.2
presents the form definition scheme and some interesting implementation issues related to

form definition.

87

6.1 Knowledge Representation for Geometry

6.1 Knowledge Representation for Geometry

If a computer is to reason intelligently about geometry, it must have a representation
scheme for the objects it reasons about. Researchers in mechanical engineering have termed
these representations as features. Features are an attempt to replace simple geometric
elements as the primary building blocks with higher-level modeling elements that more
directly relate to engineering domains. Many successful applications of feature-bz<ed design
have been demonstrated ([8], [10], [45]). In the words of Mantyla [28],

The success of feature based modeling techniques is largely determined by
whether a useful taxonomy of feature types can be identified and organized
in a modeling system, and whether application-oriented data and knowledge

bases can be conveniently organized on the basis of this taxonomy.

This chapter demonstrates such a taxonomy in a civil engineering context. Representations
of primitive components are used as features which form the basic building blocks in the
design. In addition, the chapter addresses several important issues relating to knowledge

representation geared towards conceptual design. Some of these issues are now presented.

6.1.1 Abstraction as a Representation Mechanism

The previous discussion highlighted the need for a modeling scheme which relates CAD
primitives directly to the domain they seek to model. Al-based techniques could be used
to structure geometric information in the desired manner. But how can the underlying
differences between Al-based and geometry-based representations be reconciled? The un-
derlying computational paradigm for traditional geometric modeling techniques has been
procedural. Existing computational theory on geometry is expressed strictly in algorithmic
terms. Information required for the algorithms to operate is implicitly held within the struc-
ture of the program. Al-based representation schemes, on the other hand, have a distinct
separation between the knowledge and the algorithms used to process the knowledge. Re-
cently, researchers in design have recognized the need to develop declarative representation
schemes for geometry ([67], [46]).

The object-oriented representation paradigm provides a solution which allows integra-
tion of a natural hierarchical decomposition of a problem domain with the procedural
computations necessitated by geometric algorithms. The knowledge-based system build-

ing shell COSMOS enables association of declarative knowledge with the abstractions in

88

6.1 Knowledge Representation for Geometry

the geometric hierarchy. The scheme proposed in this chapter exploits this integration of

procedural and heuristic programming provided by COSMOS.

6.1.2 Multiple Levels of Abstraction in a Unified Framework

Observations of human designers at work indicate that they typically use multiple modes
of graphical representation for an object. These modes may depend on various factors: the
stage of the design, the amount of detail available, the current focus of attention for the
design, etc. These modes of representation may be non-uniform, e.g., a slab supported at
its edges by four beams might have the slab shown as a surface representation, and use solid
representations for the beams. To handle such situations in current CAD programs. special
purpose mappings would have to be implemented between various modes of representation
and display.

To solve this problem, this research uses a representation of geometry based on a
non-manifold geometric engine (GNOMES). The non-manifold model used by GNOMES
(SGC model, [38]) provides a larger representation domain as opposed to conventional two-
manifold geometric models. Current CAD systems utilize the concepts of two-manifold solid
modeling, which make the assumption of closed point-sets. The SGC non-manifold model
enables representation of mixed dimensional collections of pointsets. Thus the system can
model wireframe, surface, and solid models, along with non-manifold conditions in a uni-
fied framework of data structures. The representation is structured into a set of geometric
abstractions that can be interrogated and managed directly by application programs; these
abstractions are borrowed as-is from [71]. Such a representation allows a unified framework

for multiple levels of abstraction.

6.1.3 Evolving Geometric Descriptions of Objects

Design is an evolving process. The modeling requirements of applications at the con-
ceptual design stages are different from the requirements at the detailed design stage. For
example, a beam at various stages of the design may be modeled as a straight-line, an
enclosing box with overall dimensions, an I-beam in wireframe mode, or a solid I-beam.
Traditional models invariably require the user to prescribe fully defined constructions from
a set of available primitives and operators. If we are to break free from the shackles imposed

by such restrictions, we must address the following problems:

89

6.1 Knowledge Representation for Geometry

(1)

(3)

How do we allow a concept representation to evolve as detail accumulates in the
design process 7 One way to solve this problem is to use the lowest-level primitives
available to the solid modeler, i.e., points, lines, etc. If the user were to directly
interact with the solid modeler, we would then just update the model. But if the
computer is to reason at a higher level about the shape, the representation must be
more intelligent. Consequently, if we do not wish the computer reasoning process
to commit prematurely to a particular class of shape, we must allow for some form
of migration for the shape definition through various abstract levels. Consider the
example of a beam being designed. Initially all we may know about the beam is
the length. At this point we cannot say whether the beam is an I-beam or a C-
beam, neither would we expect the computer reasoning framework to commit to any
description so specific at such an early stage. As designer decisions influence the
design process, we might be able to confidently assert a decision at some point duriug
the process. In terms of knowledge representation, this poses a problem. We have
embarked on a quest for a higher-level domain representation. Yet the incremental
definition of an object would seem to necessitate some kind of a classification scheme
to identify the current shape from a predefined knowledge hierarchy. We address this

problem in section 6.2.

Even if we were able to commit early on to a certain abstract shape, complete infor-
mation needed to display the object may be absent. To deal with this problem, we use
the concept of a ‘minimal representation’ at various levels in the domain-dependent
abstraction hierarchy. At each level, we identify the minimum information required
to display the object. For gxample, the minimal information to evoke the image of a

beam is a length. For a slab, this information would be the planar dimensions.

How do we manage the communication between the geometry of the object and an
intelligent design agent? We describe a geometric abstraction class called Geometry
which serves the purpose by providing a uniform interface with the spatial reasoning
component of the design agent. We further describe the additional intelligent behavior

that we can embed inside this class.

90

6.2 Implementation

6.1.4 Domain Taxonomy

We have discussed the need for a domain taxonomy which enables us to relate the
primitives directly to the domain they seek to model. In particular, this thesis focuses on
civil engineering shapes at a conceptual design stage. There are three main issues in such

a classification:
(a) To study the kinds of shapes commonly used.
(b) To decide on a basis for taxonomy of these shapes.

(c) Having decided on a classification, we must decide on how we can impart intelli-
gence to these abstract classes. Here, we use intelligence in the narrow sense to
mean information that can be embedded inside the classes representing these shapes:
for example, construction procedures, parameters, how each object should respond
to display messages, whether an object has enough information to display itself, or
whether it should defer the display to a mcre abstract class, responses to generalized

spatial queries regarding position, orientation, surface area, volume, etc.

Section 6.2 presents our approach to the taxonomy problem.

6.2 Implementation

The implementation addresses each of the issues raised in the previous section. The
domain taxonomy is based on standard civil engineering knowledge, as presented in [42].
We define spatial classes corresponding to commonly used domain objects. These spatial
classes form a layer of abstraction over the actual geometry representation, which is based
on the GNOMES model. The classes present a uniform interface to communicate with the
application which drives the design process. The facility for incremental specification is
primarily provided by the C++ feature of inheritance. We describe an implementation to
deal with the classification problem presented by an evolving geometry description. We
further discuss the behavior encapsulated within each of the classes in the toolkit. The
implementation discussed in the rest of this chapter was done by Georgios Margelis as part
of his Master's thesis [29].

91

6.2 Implementation

6.2.1 Taxonomy

In this work, objects are classified into line-forming elements and surface-forming ele-
ments, following Schodek [42]. Line-forming elements are further classified into straight and
carved and surface-forming elements into planar or curved. The curved-surface elements
may be of single or double curvature. This particular hierarchical representation identifies
shape information of primary and secondary importance in the design. This is shown in
Figure 6-1. Implementationally, each of the classes presents a polymorphic interface for
response to messages. Thus the classes have a similar architecture, and redefine the generic
interface provided by the root class Engineering_object.

Each of the classes has a set of constructors which allow creation of objects under
various circumstances: we discuss some of these in the next section. Each class further pos-
sesses methods to propagate and compute attribute values based on internally encapsulated
knowledge. The display method encapsulates knowledge about the minimal information re-
quired to display an object.

The class Engineering_object is the top level class. It provides the generic virtual
interface for all classes. In addition. it contains information about a bounding box, which
fully contains each engineering object. Further it provides operators for the union, difference
and intersection of engineering objects. These operators perform the Boolean operations
between the geometric models that represent each engineering object. These may yield
arbitrary geometric models, which are stored in the class Engineering_object under the
attribute GNmodel* model (The type GNmodel is a type from the GNOMES non-
manifold geometric engine and represents a geometric model, see Figure 2-2).

The classes Straight_line, Line_rect_cross_section, Line_circ_cross_section and
the associated solid and hollow section representations allow a progression of shape de-
scriptions for linear elements: beams. columns, pipes, etc. The family of shapes related to
the surface elements are used to represent slabs, plates, and shells. Most civil engineering

objects can be constructed through some combination of these basic primitives.

6.2.2 Evolving Description

The classification described in the previous section allows for an evolving shape descrip-
tion through erternal and internal modes of abstraction. The external abstraction refers

to the migration of an instance down the class hierarchy as detail is accumulated. The

92

6.2 Implementation

Bo:o:u-uo.-lu:_\—_ _ e__emn-uo._so..s;

NOILOVILSEY
40 TIAZT

sofjoy-aup aur]

PYOS 11> UL

QYIHL

_ 3e__o__|2a=_|.uﬁ|8at=m__ E_omlu.a_a...uw._luuat:w_

_fio__c._..o.«_nnu.__u..uu&.:.m_ _ pios~a18id >IR338}INg _ JWeix) |Ssoaf
= ﬂ _Jl.l_

NOILOWVHLSEY

_ :e:uumlw.we..ulu.__usu:_‘—_ \

40 T3N3

aN0J3s

_ A[quiasse”3uuauduy ~ [uondasTssosa"10a17sur]
]
ﬁ u.a.._d.__uuoua._.:.mp_ _ aje[d)01 3dRpNg _ [weaq-| |
[wsaq 5 |
_ruu&.:..muvot._una_n_.cn__ 29BJINSpaaana afdulg _ \ i

NOILOWVILSEY
40 T3N3
LSYId

]

adepIns"paaIn)

\ E

i ydieng

azaydg

ploquy

SSYTO T3AdT d0L

<\ , _ \
l//— 19200 Jurisaurduy] “\\\\\\\!

Figure 6-1: Shape classification

93

6.2 Implementation

implementation mechanism in C++ to achieve this is quite simple: we merely define copy
constructors for each class which copy attributes from the immediate parent class. Note
that “migration of an instance” is a misnomer; in reality each upgrade replaces the instance

with a new one. A sample fragment of code illustrates this procedure for a beam.

Geometry* beam = new Geometry(“beaml’?’); // create Geometry called ‘beamn1’.
beam—>create_object(Geometry::STRAIGHTLINE); // created as a straight line
.. set attributes ..
beam—>display(); // beam is now displayed as a straight line
beam—>upgrade(Geometry::LINERECTCROSSSECTIONY): // set to a beam of
// rectangular section

.. set attributes ..
beam—>display(): // beam is now displayed to have a rect. section
beam—>upgrade(Geometry:LINERECTSOLID) ; // upgrading the geometry to

// a solid section now. 10
. set attributes ..
beam—>dispiay(): // solid rect. beam is displayed now
beam—>upgrade(Geometry::1) : // set to an I beamn
beam—>display(): // display shows an I-beam

This solution is admittedly simple, vet partially achieves the need for gradual definition.
It is conceptually possible to move across the hierarchy. rather than the strictly up-and-
down process that we have laid out. Semantically, this will still translate to a move up
the hierarchy till a common parent is reached (losing some detail in the process) and
then moving down a new branch in the hierarchy. This would entail some redefinition of
geometry.

The display methods further encapsulate some knowledge. which might be considered
an internal abstraction. We use the concept of a minimal representation to decide whether
the object can be displayed or if the display must be deferred to the parent. For example,
the display of an I-beam in its entirety will involve the length, width, height, thickness of
flange and thickness of web. Yet, if only the length is known, display can be deferred to the
Straight_line class. As bounding box dimensions become knownu, it is possible to compute
the parameters defining the I-section. except for thicknesses. Similariyv, display modes for
Line_rect _hollow and Line_rect_solid objects are wireframe and solid respectively. It is
thus possible using the GNOMES geometric model to describe multipl» levels of abstraction

and multiple modes of display.

94

6.2 Implementation

6.2.3 Geometry Interface

We have described the geometric abstractions module which allows the evolution of
geometry. But we have not yet discussed the control of flow which allows the geometry
updates to be performed.

The class Geometry is an abstract geometric class (not necessarily corresponding to
any particular geometric model) provided to serve this purpose and to act as the link
with the client applications. Figure 6-2 represents the possible ways of communication
between the Geometry class and the two modules: CONGEN and the constraint manager.
CONGEN represents the functional modeler which models the symbolic evolution of the
design. The constraint manager determines the alternate geometric configurations which

are functionally viable. The Geometry class provides a unique identity for the geometry

2
——= = | CONSTRAINT
CONGEN | MANAGER
6
GEOMETRY

(1) CONGEN sends messages to the geometric abstraction (GAB)
module for the creation or evolving shape descriptions of objects.

(2) CONGEN sends messages to the constraint manager for the calcluation
of configuration attribute values.

(3) The Constraint Manager sends messages to the GAB module through the
GEOMETRY class in order to assign values computed, or to request
information for attributes already set.

“) 'l'lhe GAB modaule replies to the Constraint Manager via the GEOMETRY
class.

(5) Returns a reference to the geometry.
{6) Returns a consistent assignment for the configuration variables.

Figure 6-2: Communication between modules

of an object, allowing for referential integrity as different programs access an evolving

Db

6.3 Summary

geometry. In essence, it serves as a wrapper which forms the communication interface for
the evolving geometry of the object. Further. the shape knowledge representation discussed
so far only allows the generic shape classification in a domain. The Geometry class is a
convenient mechanism to further augment this knowledge with project-specific and context-
specific knowledge regarding default sizes and orientations. We could also set dependencies
for geometric attribute values. Presently. we use rule-based and constraint mechanisms to
represent this knowledge.

Currently. our implementation defers the decisions for shape evolution to the user, i.e.,
the user explicitly identifies an upgrade to switch from a class in the domain hierarchy
to a more detailed description. These decisions are often a fallout of the design process.
However, the Geometry class provides an interface to isolate these upgrade procedures. It
is conceivable that an automatic classification procedure could be used to direct this control.
Some work on this has been reported in literature [18]; but there are a lot of unresolved
issues in implementing such schemes in a statically typed language such as C++. We
have finessed this problem in a sense by providing a partial solution and implementation
mechanism.

In addition, the Geometry class provides mechanisms for dimension-independent spa-
tial queries (adjacency checks, intersections. enclosures), generalized transformations (trans-
lations, rotations) and representing spatial relationships. In this respect, the Geometry
class is similar to the Space class described in [71], and incorporates some of the ideas

therein.

6.3 Summary

In this chapter, we have defined the requirements for geometric representation for con-
ceptual design. We have also addressed some of the implementation issues involved in
representing incomplete and evolving geometries. The GNOMES geometric modeler also
provides a complete set of geometric editing tools. which allow the user to directly modify

geometry.

96

Chapter 7

CONGEN Implementation

This chapter describes the implementation of the CONGEN system. Some aspects of this
implementation have already been preserted previously, whenever such presentation was
necessary to explain the concepts involved. This chapter provides greater detail on the
elemerts of the overall framework. Each of the sections also shows screendumps of the user
interface, as necessary. Section 7.1 gives an introduction to the implementation framework
and some of the base tools involved. Section 7.2 explains details of the process elements.
Section 7.3 refers to the C+4 classes involved in modeling product information within
the CONGEN framework. Section 7.4 deals with geometry representation. Section 7.5
deals with aspects of the constraint management framework. Section 7.6 shows important
modules of the user interface, and gives an idea of the overall system functionality from a

user perspective.

7.1 Overall Implementation Framework

CONGEN :s implemented as a layered application over an underlying object-oriented
database, EXODUS [7]). EXODUS provides a programmatic interface to client applications.
This interface is a language called E, which is an extension of C++ to provide database
types, and persistence [36]. E further provides iterators, collections and transaction sup-
port, The E counterpart of a C++ class, dbclass, is the equivalent persistent type for any
class. In CONGEN, all classes which may potentially have persistent objects residing on
the database are declared to be dbclasses.

The database allows the creation of persistent objects on a persistent heap. In CON-

97

7.1 Overall Implementation Framework

GEN, these persistent objects are grouped together into applications. An application rep-
resents all knowledge and user-generated information relevant to a particular project. All
application data is handled by a special class called Data_manager (see Figure 7-1). Either
the user or the progran: may instantiate any one of the primitive constructs provided by
CONGEN. The Data_manager handles all further interactions with these objects within
the application. The user may also define additional classes relevant to the domain. These
classes are maintained by the COSMOS object management. COSMOS is one of the under-
lying tools which is tightly integrated with CONGEN. The following subsections provide
an overview of the two main tools used by CONGEN: COSMOS and GNOMES. The focus
of discussion is limited to the main classes which provide the interfaces to the underlying

functionality provided by these tools.

7.1.1 COSMOS

The design document of COSMOS [48] describes the implementation details of COS-
MOS. COSMOS is a C++ (rather, E) environment for building knowledge-based systems.
COSMOS provides a powerful object management system. The object management system
allows end-users to define arbitrary data types. The system generates C++ code for all
user-defined types. compiles and dynamically links this incremental code with the running
system. All class information is stored on the object-oriented database. Subsequently. the
object management provides various functionalities to operate on these user defined classes:
the user may instantiate any of the classes, access objects by name, access and modify any
of the attributes by name, and invoke methods associated with these objects. This is a
complete run-time environment built over C++. The functionalities of the object man-
agement may be accessed by two main classes. Class_Manager and Instance_Manager,
which handle the class information and the instances respectively.

Each of the classes generated also has an interface to the inference engines. COS-
MOS provides both a forward chainer Ie and a backward chainer BC. The rule format
followed by both these inference classes is very similar. The COSMOS inferencing oper-
ates on C++ objects by firing member methods of the object generated. For example
get_value(attrname,attrtype) is a message sent to an object to retrieve a string repre-
sentation of the attribute specified. The returned type of the attribute is then used by the
inference engines to perform appropriate pattern matches. This utilizes two C++ concepts:

encapsulation and polymorphism. Only individual objects know about the value and type of

298

7.1 Overall Implementation Framework

their attributes, and convert them to a standard representation. The inference engines thus
have a uniform interface to the individual objects. The interface to the inference engines is
a set of simple methods which instruct the inference engines to parse rule files, construct
inference nets, load objects and run to perform the inferencing. The COSMOS rule format
allows arbitrary expressions in the conditions, and allows any of several consequent actions:
make an instance, modify an instance, execute a method, fire another chainer (backward
or forward), print, display images, etc.

CONGEN retains most of the user interfaces and functionality of COSMOS. This in-
cludes the various high-level user facilities: to create, browse and edit classes, to examine

generated code, to create and directly edit instances, and to create and edit rules.

7.1.2 GNOMES

GNCMES is a non-manifold geometric modeler which has also been integrated with
CONGEN. The main classes involved in the interactions of any application program with
GNOMES are shown in Figure 2-2. The facilities to directly create/modify geometric
models are accessed through the GNmanager class. The GNmodel class represents a
general geometric model, which may further be a GNcomplex or a GNassembly. The
application program which interacts with GNOMES may directly create a general model,
and add vertices. edges, faces or volumes to the model. GNOMES also provides a set of
basic solid modeling primitives: arcs and lines, rectangles and circles, cuboid, sphere, cone
and cylinder. Arbitrary geometric models may be created by Boolean operations performed
using combinations of these primitives. These Boolean operators include union, intersection
and difference.

The GNOMES user interface(GRAPHITI) also provides a complete set of editing facili-
ties: these include viewing transformations (zoom, rotate and translate camera, set mode of
display (wireframe, solid, etc.}), select and pick objects, edit objects, translations, rotations,
Boolean operations and geometric queries (distance,volume, area).

GNOMES is completely integrated with CONGEN. All geometric objects are created on
the database along with the other application data. This integration allows the GNOMES
objects to be directly manipulated by different modules, and also by the user.

99

7.2 Modeling Process Information

7.2 Modeling Process Information

A high-level class diagram for the overall CONGEN implementation is shown in Fig-

ure 7-1; class declarations for some of the important classes are listed in A. One of the

——
Data_manage:

has
| Context | |
root
has]
CONGEN_classobj
Ordered-list
Spec Dacision Composite
Iggtorl-tol
Antroducas
has-parent has-child
Plan Artifact
has
T
Behavior
[actoons |[otsonr || smgont | [runcont |
Geometxy
runc_rel Srel
GAB_object refers to the geometric abstraction classes. GAB_object

Legend

sub-part ———@® :erc or more
—<1 sub-class - > dir 4 link [Gunuunu){ Ieﬂcn-phxl

Figure 7-1: CONGEN class hierarchy

important classes representing the information generated during the course of the design
process is the class Context. A new design Context corresponding to a new alternative
is created at each decision point during design. Each Context consists of all the product
information (artifacts, design relationships, decisions, specifications) generated during the
design. All retrieval for specifications. artifacts and relationships must be done through the
Context: some of this information may be duplicated across contexts. The context browser
allows the user to examine the design being currently pursued: all decisions, artifacts, etc.

are shown in the context tree (Figure 7-2). Clicking on any one of the buttons shown in

100

7.2 Modeling Process Information

Figure 7-2: Context trec showing a particular design alternative.

the tree brings up the corresponding editor. At any point in the design, the designer may
switch from one alternative to another by choosing from a list of contexts.

The class Goal represents a design task. which may also be a decision point. When
a goal is ezpanded. the choices associated with the goal are checked for validity. This
check is conducted by firing a backward chainer on each of the choices listed in the goal.
The current context conditions are used to prune the choice. All the valid choices are
presented to the user. When the user picks a particular alternative, a new Context is
created. The effects of the decision are also then asserted by (a) setting the choice for
the goal; and (b) firing a forward-chainer on the rulebase defining the Consequences of
asserting a decision for the goal. Four subclasses have been defined for Goal: AbsGoal,
ModGoal, ArfGoal. and FunGoal. as shown in Figure 7-1. These four subclasses refer
to the important types of tasks that a Goal may represent: expand the process, modify an

artifact (setting an attribute of a particular class). create a new artifact. or invoke a sub-

101

7.2 Modeling Process Information

function. The pursue_choice method in the Goal class is refined by each of the subclasses.

The editor for the Goal class is shown in Figure 7-3. The class Plan represents an

Rulehase |
Consequences . br'ldge;r-,"p,e.enect-s.n;

[N

PatentPlan ,:.br'id\ge_d

0

+

dﬂal intended to: ¢ l brODIFY--A}l FACT 7
) : “) : :

! Choice List

Figure 7-3: Goal editor

ordered sequence of design tasks as a list of Goals. Rulebases may be associated with
Plan to reorder the sequence of tasks. When a plan is associated with an Artifact. it
constitutes the link from the product to rhe process hierarchy.

The class Decision refers ro the decision made for a goal. Each Decision object not

only stores the choice made at a point in the design process. but also all the alternatives

102

7.3 Modeling Product infermation

which were available at the time. Each new decision spurs a rew Context. The class
SpecFrame contains all the specifications (represented by class Spec) for a particular
design alternative. The specifications are values for attributes of objects, as shown in
Figure 7-4. The specification may be either instance-level: refer to a specific instance,
or class-level: refer to all instances of the class. New instances of Spec are also created
whenever the user modifies an object directly by opening an instance editor. This allows

the system to record all the direct design decisions and input made by the user.

7.3 Modeling Product Information

The main class representing product information is the class Artifact. The inheritance
hierarchy for Artifact is shown in Figure 7-1 The class Knowledge is the base class for all
knowledge defined in CONGEN (including the product and process knowledge). It merely
provides a polymorphic interface for all the subclasses. It defines a method to ezpand
the object. This refers to the disaggregation followed during the design process: each
Goal, Plan and Artifact refines this method further. The Knowledge class also declares
methods to display the object in various widget trees used in the user interface.

The class root is the base class defined in COSMOS. It provides the COSMOS inter-
face: get_value and put_value methods allow attributes to be accessed by name. root stores
the user-defined attributes in a list. It also defines an invoke_method which allows member
methods to be invoked by name. The class Composite provides composite functionalities
for a design object. The Composite class stores a list of composite relationship objects,
which may he relationships with the parts, or with parents in the composite hierarchy. The
Comp.rel object defines the semantics of the composition relationship (e.g., whether an
object is to be deleted if the parent is deleted, etc.).

Artifact is the base class ior all user-defined classes. An Artifact object has a reference
to the geometry of the object, and also has a link (a Plan) to the process hierarchy. An
Artifact may be designated as shared across design alternatives (i.e., All design Contexts
refer to the same Artifact object.). Any Artifact which is not shared is duplicated every
time a new Context is created. This allows Context consistency to be maintained durirg
a potentially iterative design process. The methods defined in the Artifact class define
behavior which is common to all product elements: maintaining spatial and functional
relationships, communicating with the geometry, and various display methods.

All user defined classes in CONGEN are derived from the class Artifact. The user

103

7.3 Modeling Product Information

e

a ‘ClassName .-ObjectNamvev

A

>

sollecks rive

Y

. !' "u '

L

depth -

span

terrdin

| :3ite '

loading’

. bridge

loc aI;A_lal’J_or-l. |

~concrete_mi: |

- construction

live_foad -

Figure 7-4. Specificotion editor

P

rugged

. .'SlOi-Na;tle‘ " SlotValue

.- unavailable =
unavailable

unavailable -

104

7.3 Modeling Product Information

needs to merely specify the attribute names and types for a class. To associate behavior
with the class, the user may associate rulebases and constraints with the defined class. The
user may also associate a design Plan with subtasks for the design of an artifact. The
parts of an object may be pre-specified for any user-defined class, if they are known at
the time of class definition. These parts are treated exactly like other attributes, except
that the corresponding objects are created and part links are set when the parent object
is created. In the more general case when the parts are not known before-hand, they may
be added through rules or directly by the user during the design process using the method
make_part associated with the class Artifact. Figure 7-5 shows the user interface console

for creating new classes and associating rulefiles with these classes. Sample generated

Figure 7-5: Preduct knowledge: COSMOS console

code for a class bridge is shown in Figure 7-6. The instance editor for this class is shown
in Figure 7-7.

In CONGEN, all class-related information is stored inside a special class object CON-
GEN _classobj. Each user-defined class has an instance of CONGEN_classobj created
to represent it. This class serves several purposes: it maintains all information about this
class, it stores the eztent of this class (all instances), it also stores all the specifications
related to this class. It also serves as a placeholder for all information: specifications and
constraints about instances which have not yet been created. e.g., The user may state as
input the fact that the bridge width inust be 17 feet. This may be done before any instance

106

7.3 Modeling Product Information

Figure 7-6: Sample generared code from COSMOS

of the bridge is created. The information is then stoved in the placeliolder and set when the
instance of the class bridge i~ created. This class may also be nsed for reasoning by the
different inference modules. when an instance is absent. The CONGEN _classob) class
serves one last purpose: it has convenience methods to allow attribute defanlts to be set

for all instances of a clas~. withont having ro nawe cach of these separately,

7.3.1 Defining Design Relationships

In addition to defining the Artifact and it: subelasses. the product knowledge consists

of the varions relationship classes, These classes are also derived from Knowledge. The

106

7.3 Modeling Product Information

Figure 7-7: COSMOS Instance editor: can be invoked at any time during the design process

class Relationship is the base relationship class: it defines a Role for each of the objects
involved in the relationship. The class Func_rel defines a functional relationship. It refers
to the function. the object which needs this function. and the objeet which provides it. The
user may associate a Plan with the funcrional relationship. This allows the choosing of
various spatial implementations of the functional relationship. The class Srel defines the
base spatial relatiouship. and all associated classes are already explained in Chapter 5.
All functional and spatial relationships may be created through rules. or directly by
the user. The corresponding functions invoked are make_func.rel and make.QSR. Both
these functions are invoked as strings: this implies that the argnments to the functions are
also sent as strings. Type-checking for the arguments is currently guite primitive: a more
robust technique which directly uses the C++ compiler facilities should he implemented
eventually. The relationship palate which allows a user to choose spatial relationships is

shown in Figure 7-8. On choosiug one of these relationships. the corresponding editor is

107

7.3 Modeling Product Information

popped up: Figure 7-9 shows such an editor for the Abuts relationship. The palate does

not represent a complete set of relationships; but it is easily extensible to define additional

relationships.

Object]l <Abuts> Oi)jectz along <axis>: reference frame defined w.r_.‘t ~Ohjm‘t<r'ef’>)

Objectl :classname Object2:instancename

“Obhject2: dassname

- - I

Figure 7-9: Abuts relationship editor

108

7.4 Modeling Geometric Information

7.4 Modeling Geometric Information

Every design artifact has a reference to its Geometry. The Geometry class is also
derived from the COSMOS root class. This allows the inference engines to access and
modify the geometry. The attributes stored in the Geometry class are the positions,
orientations and bounding box dimensions for each design object. The class Geometry
is a wrapper around the geometric abstractions, which may be evolving. All access to
geometric information is through the Geometry of each artifact. This allows the actual
geometric representation to evolve, while not disturbing any other module which might
access the geometry. It is possible to set the geometric information through rules. This
allows domain-specific defaults to be set for geometric information.

Also associated with Geometry are flags indicating whether a geometric attribute can
subsequently be changed during constraint propagation. The Geometry class contains
methods to create actual geometric models, update these geometric models (as discussed
in the previous chapter), and to display the object.

The class Engineering_object is the base class for all the shape abstractions in the
geometric definition module (see Figure 6-1). It defines the virtual interface to access
geometric attributes of objects by name. For example, an inference engine might set the
flange thickness of a T-beam: by sending a message set-value(“flangethickness”,“7.0").
The Engineering-object class also defines a virtual method display which displays the
object. This method is redefined for each subclass. This method (a) checks to see if the
object attributes necessary for the display are set; (b) attempts to compute these attributes
if necessary; and (c) if they cannot be computed, defers the display to the parent in the

hierarchy.

7.5 Constraint Representation and Satisfaction

Chapter 5 has already dealt with various im] ation aspects of constraints, as ne-
cessitated by the discussion therein. All constraints within CONGEN are derived from the
base class Srel(see Figure 7-1, Figure 4-5). Its subclasses include QSR and its derived
classes (representing qualitative spatial relationships), LT and GT constraints (numerical
restrictions). The current user interface implementation is limited in its ability to handle
numerical constraints: a generalized parser will have to be eventually built. But the under-

lying constraint computation framework has the complete functionality required to handle

109

7.6 User Interface Components

arbitrary numerical constraints.

When the ATeams module is invoked, all the QSRs and numerical constraints relevant
to the current context are sent in as constraints to the ATeams constraint satisfaction
module. All the objects and variables referred to by these constraints are also retrieved.
The constraint satisfaction module first creates a population of designs. To initialize a
randomly generated design, the module first checks all vhe Geometry objects for each of
the Artifacts involved in the constraints and QSRs. The Geometry object contains the
defaults for the configuration variables for each object (sizes, positions and orientations).
If these attributes have been denoted as fixed, all designs use the same values for these
variables. The Geometry object may also specify ranges for the attributes. For any
attributes which are not fixed, a random value in the range is then generated. When the
entire population has been initialized, and the number of iterations has been chosen, the

algorithm proceeds as described in Chapter 5.

7.6 User Interface Components

7.6.1 Main Console

The main CONGEN console is shown in Figure 7-10. The Console presents function-

\\'ofking directory:’ I

rnp_mntih!

Figure 7-10: CONGEN main console

alities to create/open new applications, edit knowledge, enter specifications, execute the
application, and browse the design at any point.

Editing the knowledge consists of entering/modifying process and product knowledge.
The process knowledge consists of defining a design process in terms of Goals and Plans.

110

7.6 User Interface Components

.\‘
The product knowledge is defined by creating new classes to f‘epresent elements in the
domain. The user interfaces and functionalities for each of these ¢omponents have already
been explained.
There are two main components to execute the application: the symbulic design is
driven from the Synthesizer and the resulting geometry is displayed on the GNOMES
graphical user interface, GRAPHITI. Each of these components is now discussed.

7.6.2 Synthesizer

The Synthesizer is the main execution module for the CONGEN system. This user
interface is designed to provide the complete set of functionalities required to run an appli-
cation. The system follows the step-wise hierarchical decomposition process defined by the
Goal - Plan - Artifact constructs: the user begins the process by clicking on the root
Goal:: Ezpand. The corresponding method of the Goal class is then invoked. Subsequent
decisions dictate the decomposition of the design. At any stage in the design process, the
user may override the suggestions provided by the system, and directly provide input. This
input may be in the form of a decision for a Goal. create an artifact, open up various
editors (Goal, Plan, Artifact, Specification), create and add new relationships, or in-
voke the constraint propagation engine. Some aspects of this input constitute bottom-up
knowledge: the user may even define new knowledge concepts (Goal, Plan, Artifact) and
operate on this new knowledge. The user interface for the Synthesizer module is shown in
Figure 7-11. When the user decides to run the constraint propagation, the ATeamUI

console is invoked.

AteamUl

The ATeamUI console user interface is a two-dimensional display, which displays the
projection of the design on one of the display planes. This user interface is shown in
Figure 7-12. It first asks the user for the number of iterations that the algorithm needs
to be run before interruption, and also the display plane. After each set of iterations, the
user may (a) examine the current best designs (ranked in order) and their evaluations with
respéct to each constraint; (b) decide to concentraie the effort on one or more of these
designs; (c) continue the algorithm for another set of iterations; or (d) accept a design.

When the user accepts a design, the message is communicated to the the class Geome-

try described ir section 7.4. The geometric model for the design objects is then computed

111

7.6 User Interface Components

Figure 7-11: Synthesizer

and displayed on GRAPHITI.

7.6.3 GRAPHITI

The geometric modeler interface (GRAPHITI) may also be invoked from the main
console at any point. The geometry of the evolving design is updated on the geometric
modeler display as the design proceeds. Sometimes. displaying the geometry may need the
constraint propagation to be run so that the alternative geometric configurations can be
computed. The Synthesizer has an option: display-geometry which displays the geometry
of the current design context.

GRAPHITI provides a complete set of geometric editing tools, which may be directly
used by the user at any point in the design process. This user interface is shown in Figure 7-
13.

112

7.7 Sumiunary

Figure 7-12: Ateams user interface

7.7 Summary

This chapter has given a brief description of the implementation and functionalities of
CONGEN. These functionalities include knowledge editing and definition facilities (both
process and product), various modes of specification, facilities to handle user decisions, and

geometric modeling facilities.
The following chapter describes an example which is used to demonstrate these func-

tionalities.

113

7.7 Summary

Figure 7-13: GNOMES User interface

114

Chapter 8
Example and Results

This chapter describes a study of the overall framework, developed through a bridge design
example. The steps in modeling the design products and the design process are introduced
in sections 8.1 and 8.2 respectively. Section 8.3 runs through the design process, explaining
various design decisions, user interactions with CONGEN, and the system behavior. It also
provides a discussion of some of the results obtained during the example run-through.
The example is modeled after an actual bridge designed to span the 150 feet deep
Sollecks river canyon in the Olympic Peninsula in northwest Washington [66]. The purpose
of the bridge is to provide an access road across a river for logging operations in state-
owned forests. The bridge is located about 85 miles from the city of Aberdeen, and the
bridge site is accessible only by road. The terrain is extremely rugged and remote: neither
construction facilities nor local labor are readily available. The bridge span is 200 feet, and
the bridge width is specified to be 17 feet.
All the knowledge involved in modeling the design of this bridge is extracted from White
et al.[66]. The focus of this chapter is to explain the functionality of CONGEN, using this
real-world illustrative example. The following sections describe various elements of the

implementation.

8.1 Modeling the Design Products

The first step in modeling the bridge design example is to create a new application:
Sollecks_River Bridge. Once the application is created, all the knowledge modules are
activated: i.e., the user is allowed to start defining the product and process elements.

115

8.2 Modeling the Design Process

The following classes are developed for this example:

(1) loading. This class models the loading conditions at the site: attributes are live_load,
wind_load, earthquake_load, etc..

(2) site. The site conditions of interest are local_labor, concrete_mizing, construction_aids,

and terrain_conditions.

(3) bank. The river bed is modeled by a series of banks. The attributes defining a bank

are rock_conditions, slope, length.

(4) river. This class defines the river bed (limited in this example definition to being
piece-wise linear and having five banks as parts), depth and span of the river.

(5) bridge. This is the top-level system and has attributes span, width, material, type.
The parts of the bridge cannot be pre-defined unless the bridge type is known. It has
an associated design plan bridge_design.

(6) piersystem defines a system of piers for the bridge, the no of piers determines
the constituents of the piersystem. The piersystem also has a design plan pier-

system _design: to choose the number of piers and assert the effects.

(7) slabsystem must at least consist of slab. Other components may be set during the
design. It also has a design plan (slabsystem _design) which consists of designing

the slab, and setting support elements for the slab, if necessary.

Other classes modeled include some standard domain structural elements: beam, column
and slab. These classes are just a representative sample: CONGEN provides the facility
to model the domain elements in any other equally appropriate manner.

All the code generated for these classes is compiled into an application library, which is
then dynamically linked with the rest of the system. In addition to the symbolic attributes,
the example also models the geometry of the river canyon.

8.2 Modeling the Design Process

A few of the important elements of the process associated with the conceptual design

are now presented.

116

8.3 Illustrating the Design Flow

(1) The top level (root) goal is build_access_road.

(2) The plan bridge_design is associated with the class Bridge. This plan consists
of two subgoals: choose_bridge_type and choose_bridge_material. Both of these
goals define choices for attributes of the class bridge and validity conditions for these

choices.

(3) choose_bridge_type is a ModGoal whose purpose is to modify the type attribute
of the bridge. Rulebases are defined both to prune the set of all choices listed, and to

assert the effects of the decisicn made.

(4) choose_bridge_material is a ModGoal whose purpose is to modify the attribute
material of the bridge. Again, both the validity conditions and consequences are listed

as rulebases.

(5) slabsystem _design and piersystem_design are design plans which are used to

design the slabsystem and piersystem respectively.

(6) choose_number_piers is a subgoal in the piersystem design plan. The number of
piers chosen has an enormous effect not only on the geometric configuration, but also
on the behavioral properties of the slab and piersystem. We will demonstrate this

during the example.

The root goal for the application is first specified. This creates the initial context in
which all the input is created. The root goal may be specified by opening the process
knowledge editor. The process also includes the initial designer input and specifications. In
this example, an instance of river is first created to represent the Sollecks_river. Depth
and span attributes of this river are specified to be 155 and 206 feet respectively. Site
conditions are also specified as input. This includes: rugged terrain, concrete.mixing and
construction_aids unavailable. The desired width of the bridge is entered as 17 feet. The
geometry of the river bed is also recorded as input, this determines important configuration

properties of the bridge.

8.3 Illustrating the Design Flow

The design flow for the example is shown in Figure 8-1. The designer first invokes the

Synthesizer module. On choosing to expand the goal build_access_road, the system

117

8.3 Illustrating the Design Flow

Product
Process Context
river.span = 206
river.span = 155 INPUT-SPECS
site.terrain = "rugged*
site.local_labor = “unavailable"
site.construction_facilities = "umvailnblo'J
loading.live_load = 75
bridge_width = 17
I G:: build_access_road J I defaults set
Sl
| : | bridge I
: |
. te parts, set link
type = | create parts, se)
I P:ibridge_design |""_ I l
Create
1 Functional) I slabsystem I I piersystam
| G::choose_bridge_type | nclucionsliip
Supports
IG: xchoo-o_bridg.__mtoria]l— Decision point Part link
_E. ‘ Userxr set on
E m creation
.r prefab || timber | I of parts
l Length restriction
(pier.length <LT> 90) create piers "
I G: xcboon._-p.eial_oquivnlcncl er
n create QS8R
create QSR | (pier <Abuts> Bank)
(piexr <Abuts> slab)
Alternative
iersystem
I’ t1piersystem_design I gontzzutntlonl
Decision point
User run Ateams
|o: schoose_number _piorli__'—"
Lo dlafl21la |
* b are created as comgonents

]
l P: uhb.y.g.n_a..“nl of the slabasystem
——h

Figure 8-1: Design flow for the bridge example

instantiates the class bridge. At this point, all the specifications for the class bridge are
set by the system. These include setting the span and the width of the bridge. Expanding
this artifact brings into the design context all the design knowledge associated with the
bridge: the components and the design plan. In this case, the design plan expands to two
major tasks: choosing the type of bridge and choosing a material for the bridge.

Any of the design tasks and the knowledge associated with them can be examined at any
point by directly clicking on the widget to bring up an editor. Expanding choose_bridge_type
first, the only available choice at this stage is slab_piersystem, as shown in Figure 8-2. The
consequences rulebase associated with this goal defines the knowledge needed to create a

118

8.3 Illustrating the Design Flow

Figure 8-2: Expanding the bridge

119

8.3 Illustrating the Design Flow

slab_piersystem. Choosing this option leads to invoking of this knowledge module. Thus the
slabsystem and piersystem instances are first created. Also created by this knowledge
is a functional relationship between the slabsystem and piersystem, as shown in Figure 8-3.
The functional relationship knowledge, in turn, has a plan associated with it: to choose a

spatial equivalent. This is shown in Figure 8-1. The geometry of the design alternative is

Figure 8-3: Functional relationship is created between the slabsystem and piersystem.

now reflected in the geometric modeler, shown in Figure 8-4. The bridge at this stage is
very incompletely defined: the only known component is the slab. The length and width
of the slab have been computed during the design expansion and are the only attributes
known at this point, but this information is enough for a minimal display of the slab as
shown in Figure 8-4.

Choosing a material has important implications for the structural configuration of the
bridge. As already noted, the terrain is rugged and construction facilities are not available.
The only materials which are found as feasible choices are timber and prefabricated pre-
stressed concrete. But the terrain conditions place important restrictions on the length of
the prefabricated structural elements that can be transported to site: the roads to the site
are heavily winding, and elements longer than 90 feet cannot be transported to the site by

truck. The effects of choosing a decision for material are thus to introduce this constraint

120

8.3 Illustrating the Design Flow

% Ve ﬁ?x‘v
1 e by o ey sgn

ke e e

Figure $-4: Bridge geometry: Ouly the slab geomerry is known at this poiut,
ou the lengths of the piers. as shown in Figure S-1,

8.3.1 One Pier Design

Continning with the design. the spatial equivalent of the supports relationship is chosen
as the Abuts QSR. When the piersystem i~ now expaunded. the svstem prompts the
user to choose the number of piers for the piersyvstem. If the designer chooses one pier,
the system propagates the effects of this decision. This propagation includes creating an
instance of class pier and setting it to be a part of the piersystem. An additional effect

that is now asserted is a warning that the resulting spau length of the ¢lab may be too high

121

8.3 Illustrating the Design Flow

(Figure 8-5). Thus constraint checking may be handled either through a distributed rule

Figure 8-5: Constraint violation notification

mechanism, or by checking the list of constraints currently maintained in the system. An
additional constraint violation that would result from deciding to continue with this choice
would be due to the resulting length of the pier. This is detected only when the geometric

attributes are computed, however.

8.3.2 Two Pier Design

Assuming the designer heeds the warning and decides to choose a two pier design instead.
the system would then create a new design alternative corresponding to this choice. At
this point, the piers are created and part links are set. Also instantiated are the length
restrictions on the piers, and the < Abuts > relationship between the piers and the slab.
Further. the function of the pier is to transfer load to the bank. Hence the relationship
pier < Abuts > Bank is also created. Note that this last relationship is a disjunction. since
the bank it refers to depends on where the pier is placed. All these effects are shown in
Figure 8-1.

Deciding on the configuration for the two-pier system is another major structural and
form decision. To proceed with the design. the designer may now choose to compute
different alternatives. This is done by invoking the ATeams module. This performs the

following actions:
o Loads the constraints. The constraints involved at this stage are the following:

(1) Pierl Abuts Slabl. This constraint is due to the supports relationships between

the pier and the slab.

(2) Pier2 Abuts Slab1. This coustraint also arises from the supports relationships

between the pier and the slab.

122

8.8 Illustrating the Design Flow

(3) Pierl Abuts (Bankl or Bank2 or Bank3). This constraint arises from the

function of the piersystem, to transfer load to the foundation.

(4) Pier2 Abuts (Bankl or Bank2 or Bank3). This constraint arises from the

need to transfer load to the foundation.

(5) Pierl.length LT 90.0. This constraint arises from the choice of material and
the resulting transportation problems.

(6) Pier2.length LT 90.0. Similarly, this constraint results from transportation

considerations.

Also modeled as a constraint is Symmetry of the piers about the center of the river
bed. In general, symmetry is a design objective. This constraint need not really be
enforced very strictly. The search for the algorithm is conducted with both the pier

configurations treated as independent variables.

o Load the design objects. This step retrieves all the design objects involved in the
relationships, and initializes all configuration parameters which are designated as
variable. The population of designs for the ATeams algorithm is then created. In the
example, all the Bank instances. and also the slab are treated as fixed. The variable
parameters for the piers are the lengths of the piers, the X and Z positions of the
piers, and the orientations of the two piers in the XZ plane. The system discretizes
the parameter space for the configuration variables: 0 to 285 (285 discrete units) for
the X positions, 0 to 155 (155 discrete units) for the Z positions, 0 to 142 (142 discrete
units) for the lengths, and 18 possible values for each of the orientation parameters.
Thus, the search space for the overall system is a total of 1.28 x 106 possible spatial

configurations.

The algorithm is run in sets of 3000 iterations. Each such set of iterations for this exam-
ple takes about 1 minute (though improvement would certainly result from optimization of
the code). At the end of the 3000 iterations, the user may examine the best designs which
are currently in the design population. Note that these are not the “optimal” designs.
Indeed, at this stage no design can confidently be asserted to be an “optimum”. Rather,
the goal is to present alternative configurations which satisfy the constraints to varying
degrees. Four of the principal variants found for the example are shown in Figures 8-6 to
Figures 8-9. (Note that the actual search is conducted in three dimensions, the display only

shows a cross-section in the XZ plane).

123

8.3 Illustrating the Design Flow

Figure 8-6: Results: Alternative 1 (after 3000 iterations)

Each of the four variants shown “approximately™ satisfies all the constraints (The user
may examine the evaluations at this point). Thus each alternative represents an “apvrox-
imate” design. This is an important facility from a conceptual design staudpcivt: the
design is at too premature a stage to seek exactly “optimal” solutions. Yet, given this set
of approximate solutions. the user may directly operate on any one of these alternatives to
improve them. The user can directly iustruct the program to apply improvement operators
on a single design, instead of the more diffused process of the general algorithm (which
operates on a population). Thus an approximate design can be very quickly improved to
the desired level of accuracy.

Another interesting approach is to monitor the user interactions with the system at
the end of each set of iterations. Thus. it is conceivable that the user could identify
potentially interesting alternatives, and choose to concentrate the effort of the algorithm

on these alternatives. In the same vein. apparently nonintuitive results (from a physical

124

8.3 Illustrating the Design Flow

Figure 8-7: Results: Alternative 2 (after 3000 iterations)

perspective) could be put into a delete list, and all strains of such variants are wiped out from
the population. Thus the user has direct control on the design population and the solutions
that the algorithm is currently experimenting with. In the current implementation, when
the user attempts to directly improve a particular design. this design is marked as being of
apparent interest. To propagate these apparently interesting traits, a duplicate is thrown
into the population for every set of improvements performed on the design (each set is 20
improvements). This has proved to be a very effective strategy which allows the designer
to monitor and control the flow of the algorithm.

The algorithm is now run for another set of 3000 iterations. Again, the four main
variants from above have been carried through for this set, and each of these designs now
almost completely satisfies all the constraints. These are shown in Figures 8-10 to 8-13.
The first design, shown in Figure 8-10. is the design which is actually carried through for

the rest of the example described in this chapter.

125

8.3 Illustrating the Design Flow

Figure 8-8: Results: Alrernative 3 (after 3000 iterations)

Three pier design

Figure 8-13 shows a design which is definitely nonintuitive, and might certainly have
already provoked the reader’s interest. In the example, this design was retained for the
following reason: While it may not be immediately obvious that it satisfies the constraints,
careful examination reveals that the piers do indeed almost abut both the slab and one of
the banks, albeit from the same end ! This reveals an interesting insight: the definition of
the Abuts relationship merely specified the touch — contact in terms of the projections of
the two objects. One way to improve this might be to redefine the Abuts relationship to
also include the plane of contact.

An alternative way of perceiving the situation might be that such unexpected situations
occasionally spark off creative thought in a designer. For example, observing that the two

piers have a Y-shaped appearance, the designer may at this point thrown in a third pier.

126

8.3 Illustrating the Design Flow

Figure 8-9: Results: Alternative 4 (after 3000 iterations)

Adding a new artifact to the population is simply a matter of adding a randomly initialized
object to each design in the population. The designer may add new constraints as well: for
example, Pierl Abuts Pier3 and Pier2 Abuts Pier3. All designs are re-evaluated with
respect to this constraint. One of the configurations resulting from running the algorithm
again is shown in Figure 8-14. The Y-shaped design implicitly relaxes two of the constraints

(Pier Abuts Bank). Instead, this transfer of load now takes place onto the third pier.

8.3.3 Design Refinement

This section presents the detailing of the alternative represented by Figure 8-10. The
overall bridge system is now shown in Figure 8-15. Pursuing the design further, each of
the piers is designed by firing its subplan. The span of the slab supported on each pier
determines the number of columns in each pier: Figure 8-16 shows two columns for each of

the piers. The geometry of the piers is propagated to the columns. This design process

127

8.4 Summary

Figure 8-10: Results: Alternative 1 (after 6000 iterations)

moves on to design the slabsystem to also consist of two beams supporting the slab. and
further determines the slab thickness. The resulting conceptual design, shown in Figure 8-
17. is now ready for the detailed analysis and design stages; We are currently integrating
an analysis package - GROWLTIGER - which was developed at MIT.

8.4 Summary

This chapter presented an example of bridge design, which demonstrated the overall
functionality of CONGEN. The example illustrates the systematic symbolic decomposition
process, and the generation of geometric alternatives at each stage in the design. The
experiment demonstrates the main advantages of the approach presented in this thesis. The
central idea is to allow the designer to explore with various form alternatives. The symbolic

design affects the geometric configuration, and as shown, emergent geometric shapes may

128

8.4 Summary

Figure 8-11: Results: Alternative 2 (after 6000 iterations)

be recoguized by the user and sometimes effect the further symbolic evolution (In this
example. the third pier is added). The system provides support for bottom-up design: new
elements and relationships can be added at any point. The systematic decomposition of
the form conception into the various elements captures the essential functional intent of the
design. Importantly, it also encourages the innovative/creative design process, in terms of

experimenting with design alternatives.

129

8.4 Summary

Figure 8-12: Results: Alternative 3 (after 6000 iterations)

130

8.4 Summary

Figure 8-13: Results: Alternative 4 (after 6000 iterations)

131

8.4 Summary

Figure 8-14: Y shaped emergent alternative

132

8.4 Summary

Figure 8-15: Bridge geometry: Piersystem alternative has been accepted.

133

8.4 Summary

Figure 8-16: Bridge geometry: Each of the piers consists of two columns.

134

8.4 Summary

Figure 8-17: Bridge geometry: Final design at the end of the conceptual design stage.

135

Chapter 9
Conclusions

This thesis has presented a systematic framework for form conception in engineering design.
The central idea is an evolution of form based on a symbolic decomposition of design. The
approach is based on a structured representation model for sy:abolic design and explicitly
identifying and decoupling the various elements which constitute form conception. An
example demonstrated the feasibility of the approach, and hinted at some of the advantages.
This chapter presents some conclusions drawn from the effort to support form conceptioxi.
Section 9.1 summarizes the overall approach. Section 9.2 identifies the main contributions of
this research. Section 9.3 positions the research with respect to various related approaches.

Section 9.4 concludes the thesis with some recommendations on future research.

9.1 Summary

- The requirements of a conceptual design agent are identified in Chapter 1. Support for
conceptual design must include not only assisting in the symbolic and functional aspects of
design, but also help to translate a broad symbolic description of a high level system into a
physically realizable artifact. In terms of system support for conceptual design, the design
agent needs to provide representation support and problem-solving facilities to operate on
the representation; This representation needs to include various aspects of design: product,
process, relationships, design context information, and geometry.

The CONGEN framework was developed in response to these requirements. CONGEN
provides an information model to represent the symbolic aspects of design. An artifact is
the basic product eiement, which consists of function, form and behavior. Artifacts may

136

9.1 Summary

have various relationships: composition, functional, spatial, etc. One of the important pro-
cess elements is Goal, which is a task which may present a decision point during the design
process. Design contezts are created corresponding to each design alternative, These encap-
sulate all information relevant to particular alternatives. The user may affect the state/flow
of the design at any point by directly modifying attributes, adding elements/relationships,
making decisions, etc.

The form conception framework consists of three distinct aspects: generating spatial
constraints, instantiating feasible solutions to satisfy these constraints, and presentation of
geometry. It is based on the observation that many of the important spatial relationships
and constraints in the design process are derived from the functional aspects of design. This
thesis has presented a mapping framework based on localized knowledge mappings from
functional to spatial relationships. It also developed a very general specification framework
for constraints. This specification is based on a qualitative interval algebra approach which
provides an intuitive, high levei scheme for specifying relationships in conceptual design.
The specification also enables relating functional relationship to spatial relationships at a
local level.

To solve the instantiation problem, an approach using Asynchronous Teams of Agents
is proposed. The approach is conceptually simple, yet shown to be highly effective. The
algorithm operates on a population of solutions using localized improvement knowledge,
which is embedded within the constraints themselves. A generalized spatial reasoning effort
is thus enabled by very simple local spatial knowledge. The Ateams approach is inherently
modular and extensible to include more sophisticated constraint satisfaction techniques
over specific constraint subsets.

The requirements for the geometry definition from a conceptual design perspective are
also presented. The geometric abstractions for primitive components permit description of
evolving and incomplete geometries. The underlying geometric representation is based on
a non-manifold geometric model which supports such descriptions.

The implementation of CONGEN is an integrated system development effort. It has
extensive knowledge representation and inferencing ability drawn from COSMOS, and also a
complete geometric environment provided by GNOMES, a non-manifold geometric modeler.
The CONGEN model and implementation provide extensive support facilities: the user may
interact with the system at any point to control the design flow.

137

9.2 Contributions

9.2 Contributions

This thesis has addressed the issue of form conception in engineering design. The overall
design support framework also addresses many of the requirements for conceptual design

presented in Chapter 1. Some of the research contributions are now identified:

e An approach to form conception. The primary goal of this thesis was to identify a
systematic approach which permits computer support for the process by which the
form of design artifacts is conceived. The symbol-form mapping is identified as the
crucial issue to be addressed in developing such a support system. Related to this
goal, the thesis explicitly identified and decoupled the issues which constitute the

problem. Solutions to each of the three issues is presented:

(a) Generating spatial constraints. Spatial relationships and constraints related to
spatial attributes of design objects are identified as a course of the symbolic
evolution process. The concept emphasized is a localized mapping from function
to form based on an explicit representation of functional and spatial relation-
ships. A high-level specification framework based on qualitative interval algebra
presented by Mukerjee, is used to meet the representation requirements for the

spatial relationships.

(b) Instantiating feasible solutions. A novel approach to constraint satisfaction based
on Asynchronous Teams of Agents is developed. The key advantages of the
approach are its ability to: (1) handle arbitrary constraint formulations in a
unified framework; (2) use very simple localized knowledge to build a general
reasoning mechanism; (3) retain the flexibility to exploit sophisticated techniques
over constraint subsets; (4) generate families of solutions; (5) allow the user to
directly influence the nature of the solutions gererated by the algorithm; and

(6) handle dynamic constraint environments in design.

(c) Geometry representation for conceptual design: The thesis has presented a scheme
to enable representation of evolving, incomplete geometries during conceptual

design.

o Integrated product and process representation. The model allows considerable flex-
ibility in knowledge representation. It accounts for representation of artifact and
relationships, modeling the design process, and lays out a set of well-defined interac-

138

9.8 Comparison with Related Research

9.3

tions with the primitives provided by the model. The model allows the exploration
of multiple conceptual design alternatives. It provides a top-down hierarchical de-
composition approach with support for bottom-up aspects of design. The model is

validated by an extensive implementation.

Disaggregation and localization of knowledge is a key concept advocated in each ele-

ment of the overall framework, in keeping with the object oriented philosophy.

Problem solving support includes rule-based inferencing (both forward and backward
chaining), procedural knowledge representation (as methods of objects) and constraint

satisfaction,

Geometric modeling facilities. GNOMES has been completely integrated with CON-
GEN to provide the basic geometric modeling facilities needed in design. The GNOMES
non-manifold geometric engine can be directly controlled by the functional modelers.
GNOMES provides a complete set of editing facilities for geometry. An abstraction
layer corresponding to domain shapes is built over the basic geometric model.

Database support. CONGEN is built over an object-oriented database, EXODUS.
This provides persistence for complex engineering data. The data management also
permits scalability of the system: the large amount of data generated in pursuing

multiple alternatives is stored on the database, and is available for ready retrieval.

An integrated architecture for design. The interfaces between the various support
modules have been designed from an overall system perspective. CONGEN thus

provides a powerful set of functionalities in an integrated design environment.

Comparison with Related Research

This thesis has presented an overall system approach to developing a support framework

for form conception. Little has been reported in literature by way of directly related

research; however, many efforts exist which relate to aspects of this work. This section

discusses the overall framework, and presents comparative analysis with several related

efforts over specific aspects of the work.

This thesis has identified and discussed elements of form conception. This explicit de-

coupling now permits comparison with some other geometry-related design support tech-

niques available currently. Henderson [19] reports an effort to represent functionality in

139

9.3 Comparison with Related Research

product models. It does not attempt to help the support of form conception. Rather it
allows the user to identify features on a physical model and records the intent based on a
process model. In the absence of any support for symbolic design evolution, the CONGEN
framework reduces roughly to the “design-with-features” approach [10, 45]: the design may
still be carried out by the user directly instantiating the geometric representation primitives
provided. This approach is purely geometry-based, albeit the primitives have some domain
significance. Efforts to couple the feature-based design with constraint management tech-
niques also have been reported [27, 28], etc. Many of these approaches are paremetric.
They provide support at a post-conceptual design stage, when the overall components are
specified, and the overall topological connectivities are often encoded directly by the user
in the form of an instantiation. The focus of these approaches is on optimizing the resultant
shape. The parametric approaches allow for variational studies in preliminary design, but
their success in defining assemblies of objects has been limited. As compared to parametric
approaches, this thesis tackles the design problem at an earlier stage, vhen the components
are as yet unspecified, and the connectivities are unknown.

The problem stage prior to the instantiation of a feasible solution is similar to the
problem tackled by shape grammars: the design components and the spatial relationships
that must be satisfied between them are known at this point. The Qualitative Spatial
Relationships are conceptually akin to the rewrite rules in the shape grammars. However,
knowledge representation in shape grammar consists of directly encoding the rewrite rules
which represent relationships between objects. The research presented in this thesis makes
the basis of these relationships more explicit. This permits more flexibility for conceptual
design. Moreover, the representation of the spatial relationships is decoupled from the
generative capability of the system. This thesis reflects the belief that this is a more robust
and general approach.

The instantiation approach presented in this thesis is derived from a specific focus on
conceptual design: the need to specify relationships between objects instead of low-level
parametric constraints, the need for multiple feasible solutions, and being able to handle
arbitrary constraint formulations are all important requirements which are supported by the
technique developed. The generality of the technique far surpasses any existing algorithm
for constraint satisfaction.

Overall, the work adds value to the current state of research primarily from a notion of

automation of form alternative generation in an interactive design paradigm. This extends

140

9.4 Future Directions

the capabilities of geometry-based approaches in which the designer instantiates prototypes
at different stages and specifies geometric constraints. The automation of prototype instan-
tiation is consistent with the notion of design evolution in a human-computer interactive
environment. In such an environment, the system enumerates the alternatives, performs
consistency checking, and propagates the decisions made by the designer. This thesis treats
generation of form alternatives analogously to generation of symbolic alternatives (depicting
the logical structure of the design artifacts), as a natural part of the design evolution. The
form evolution is based on a strong model of the symbolic design evolution. This enables
the capture of design intent, as well as maintaining consistency and providing visualization
support. A functional basis for form has been identified as Functional Modeling [23]. The
research presented in this thesis is an attempt to capture such a notion within a coherent
framework. Evolution of the form implies capturing the qualitative spatial descriptions at
the abstract conceptual design stage and yet providing for support through to the more
detailed design stages. The approach differs from other approaches [28] in allowing a uni-
form framework for dealing with spatial abstractions, be it conceptual design or detailed
design. Work done by Mukerjee [32] on qualitative spatial relationships is a step in this
direction, enabling the capture of functional intent behind spatial connectivities. The cur-
rent research further augments this approach with an automation of the generation of these
relationships, a very general instantiation mechanism and powerful non-manifold geometric

modeling support.

9.4 Future Directions

The research is neither without limitations nor complete. This section proposes some

further directions of inquiry that might prove fruitful.

o Constraint consistency is a problem rather inadequately addressed by this research.
Unfortunately, the very generalized approach to constraint satisfaction developed in
this thesis presents problems for the traditional constraint consistency algorithms
(which typically involve propagation and transitivity information). A potential ap-
proach might be to integrate the well-developed algorithms (e.g., COPLAN) with a

more heuristic approach in some coherent manner.

o Efficiency of the ATeams search. The ATeams architecture was motivated by the
requirement of a general constraint satisfaction algorithm for conceptual design. The

141

9.4 Future Directions

development was guided largely by intuition, yet the approach proved surprisingly ef-
fective. A comparison of the ATeams search technique against a comparable approach,
genetic algorithms, is reported by Humair [21]. A more theoretical investigation into
the nature of the search and its potential convergence behavior needs to be conducted

in order to gain additional insight into the constraint satisfaction architecture.

o Theoretical analysis of the symbol-form mapping. The symbol-form mapping frame-
work developed in this work needs to be explored from a theoretical knowledge-use-

analysis perspective.

e Belavior representation. The model of symbolic evolution presented in the thesis is
designed to be flexible, but limited to an extent by the inadequate representation of
behavior and causal processes. True innovation in the symbolic aspects of design is
closely tied in with causal analysis, both for choosing new components in the design,
and for evaluating alternative structural configurations generated during the design

process. Unfortunately, research in this area is still in a rather premature state.

e A more thorough integration of rule-based and procedural programming. This thesis
has presented a seamless integration of heuristic and procedural code (provided by
COSMOS), as a powerful mechanism for distributed knowledge representation. The
current implementation of method invocation from the rules is rather limited. From
a C++ programming viewpoint, type-checking for these methods need to be tack-
led more thoroughly. Solution to this problem would possibly involve accessing the
C++ compiler implementations. The current implementation can only fire a set of
predefined methods. Extending the method invocation to arbitrary methods needs to
be explored in greater detail. For COSMOS, the ability to enter generalized object

queries in the conditional expressions would greatly enhance the scope of the system.

e Stronger domain analysis. The feasibility of the proposed approach has been demon-
strated by running the bridge design example on the prototype system. Testing the
example on a larger scale system would require a stronger analysis of domain shapes,
and also more extensive function-form knowledge mappings.

e Testing in a collaborative framework. The model of design reported in this thesis is
designed to be consistent with the SHARED model [71]. Testing of this model in such

a distributed product development framework is pending.

142

Bibliography

{1] Dixon, J.R., “Research in Designing With Features,” Design Theory 88, Proceedings of
the NSF Grantees Workshop in Engineering Design, RPI, Troy, New York, June, 1988.

[2] Ahmed, S., Wong, A., Sriram, D., and Logcher, R., “Object-Oriented Database Man-
agement Systems for Engineering: A comparison,” Journal of Object-Oriented Program-

ming, June, 1992.

[3] Alberts, L, K., Wognum, P.M., and Mars, N. J. I., “Structuring Design Knowledge on
the Basis of Generic Components,” AI in Design, Editor: Gero, J. S., 1992.

[4] Bazdis, L. and Patrikalakis, N., Topological Structures for Generalized Boundary Repre-
sentations, Design Laboratory Memorandum 91-18, Department of Ocean Engineering,
M.LT., 1991.

[5] Buchanan, S. A. and de Pennington, A., “Computer Definition System: A Computer-
‘Algebra Based Approach to Solving Geometric-Constraint Problems,” CAD journal,
1993.

[6] Bylander, T. and Chandrasekharan, B., “Understanding Behavior using Consolidation,”
in Proceedings of IJCAI-85, pp. 23-34., 1985.

[7] Carey, M.J., DeWitt, D.J., Graefe, G., Haight, D.M., Richardson, J.E., Schuh, D.T.,
Shekita, E.J., and Vandenberg, S.L., “The EXODUS Extensible DBMS Project: An
Overview,” Readings in Object-Oriented Databases, Zdonik, S., and Maier, D., eds.,
Morgan-Kaufman, 1990.

[8] Cutkosky, M., Tenebaum, J., and Miller, D., “Features in Process-Based Design,” ASME
Computers in Engineering Conference, San Francisco, Aug. 1988.

143

BIBLIOGRAPHY

[9] Davis,R., “Reasoning from First Principles in Eiectronic Trouble-shooting,” Int. Jnl
Man-Machine Studies, 19, pp. 403-423.

[10] Dixon, J.R., “Research in Designing With Features,” Design Theory 88, Proceedings of
the NSF Grantees Workshop in Engineering Design, RPI, Troy, New York, June, 1988.

[11] Falkenheimer, B. and Forbus, K. D., “Compositional Modeling: Finding the Right
Model for the Job,” in Artificial Intelligence 51, , Kluever Publishers, 1991.

[12] Fitzhorn, P. A., “Engineering design is a computable function,” AIEDAM, Vol. 8, pp.
35-44, Feb 1994.

[13] Leoudes, C. T. and Freidman, G. J., “Constraint Theory, Part I, Fundamentals,” IEEE
Transactions on Systems Science and Cybernetics, Vol. SSC-5, No.1, pp. 48-56, 1969.

[14] Fromont, B., and Sriram, D., “Constraint Satisfaction as a Planning Process,” Al in
Design, Editor: Gero, J. S., 1992.

[15] Gero, J.S., “Design Prototypes: a Knowledge Representation Schema for Design,” AT
Magazine, pp. 26-36, 1990.

[16] Goldberg, R., A Gentle Introduction to Genetic Algorithms: Optimization, Search and
Learning, 1989.

[17] Gossard, D.C, Zuffante, R.P., Sakurai, H., “Representing Dimensions, Tolerances and
Features in MCAE Systems,” IEEE Computer Graphics and Applications, pp 51-59,
Mar. 1988.

[18] Hakim, M., “A Representation for Evolving Engineering Design Product Models,”
Technical Report, Dept. of Civil Engg., CMU, 1992.

[19] Henderson, M., “Representing Functionality and Design Intent in Product Models,”
2nd ACM Solid Mcdeling Conference, Montreal, 1993.

[20] Holland, J. H., Adaptation in Natural and Artificial Systems, Univ. Michigan Press,
Ann Arbor, 1975.

[21) Humair, S., An Approach to Solving Constraint Satisfaction Problems Using Asyn-
chronous Teams of Autonomous Agents, S.M Thesis, Department of Civil Engineering,
M.LT., Aug. 1994.

144

BIBLIOGRAPHY

[22] Iwasaki, Y., and Chandrasekharan, C., “Design Verification through Function and
Behavior-Oriented Representations: Bridging the Gap between Function and Behavior,”
Proceedings of the Thirteenth International Joint Conference in Design, Pittsburgh.,
1992

[23] Johnson, A.L., “Functional Modelling: A New Development in Computer-Aided De-
sign,” Intelligent CAD, II, Yoshikawa, H. and Holden, T. (Editors), IFIP, 1990.

[24] He, L., A Non-Manifold Geometry Modeler: An Object Oriented Approach, S.M Thesis,
Department of Civil Engineering, M.I.T ., Feb. 1993.

[25] Light, R. A., Symbolic Dimensioning in Computer Aided Design, S.M Thesis, MIT,
Feb. 1980.

[26] Light, R. A. and Gossard, D.C.,“Variational Geometry: A New Method for Modifying
Part Geometry for Finite Element Analysis,” Computei's and Structures, Vol. 17, no. 5,
pp 903-909, 1983.

[27] Lin,W., and Myklebust, A., “A Constraint Driven Solid Modeling Environment,” 2nd
ACM Solid Modeling Conference, Montreal, 1993.

[28] Mantyla,M., “A Modeling Systeni“ for Top-down Design of Assembled products,” IBM
Journal of Research and Development, Volume 34, Number 5, Sept. 1990

[29] Margelis, G., Geometric Abstractions for Conceptual Design, S.M. thesis, Intelligent
Systems Laboratory, Dept. of Civil and Environmental Engg., MIT, 1994.

[30] Mitchell, W. J., “Reasoning about Form and Function,” Computability of Design, Ed.
Yehuda. E. Kalay, John Wiley, 1987.

[31] Mittal, S., Dym, C.L., and Morjaria, M., “PRIDE: An Expert System for the Design
of Paper Handling Systems,” IEEE Computer, July 1986, pp. 102-114.

(32] Mukerjee,A., “Qualitative Geometric Design,” Symposium on Solid Modeling Founda-
tions and CAD/CAM Applications, Editors: Rossignac,J. and Turner,J., ACM Press,
1991.

[33] Murthi, S.S. , and Addanki, S., “PROMPT: An Innovative Design Tool,” AAAI-87,
pPp. 637-642.

145

BIBLIOGRAPHY

[34] Murthy, S., Synergy in Cooperating Agents: Designing Manipulators from Task Speci-
fications, PhD Thesis, CMU, Sept. 1992.

[35] Peiia-Mora, F., Sriram, D., and Logcher, R., “SHARED-DRIMS: SHARED Design
Recommendation-Intent Management System,” 2nd IEEE Workshop on Enabling Tech-
nologies Infrastructure for Collaborative Enterprises (WET ICE), 1993.

[36) Richardson, J.E., Carey, M.J., and Schuh, D.T., “The Design of E Programming
Language,” ACM Transactions of Programming Languages and Systems, Vol. 15, No.
3, 1993.

[37] Rodenacker, W., “Methodisches Konstruieren,” Springer, Berlin, Heidelberg, New
York, 1971.

[38] Rossignac, J. and O’Connor, M.. “Selective Geometry Complex: A Dimension-
Independent Model for Pointsets with Internal Structures and Incomplete Boundaries,”

Geometric Modeling for Product Engineering, Ed: Wozny, M., J.

[39] Rossignac, J. and Requicha, A. A. G., “Constructive Non-Regularized Geometry,”
Computer-Aided Design, v. 23, n. 1, 1991.

[40] Rossignac, J., Advanced Representations for Geometric Structures, Seminar given at
IESL, Department of Civil Engineering. M.I.T., December 10, 1992.

[41] Rumbaugh, J., Blaha, M., Premerlani,W., Eddy.F., and Lorensen,W., Object-Oriented
Modeling and Design, Prentice Hall, 1991.

[42]) Schodek, D. L., Structures, Englewood Cliffs, N.J. : Prentice-Hall, 1980.

[43] Serrano, D., Constraint Management in Conceptual Design, PhD Thesis, MIT, Oct
1987.

[44] Shah, J.J. and Rogers, M.T., “Feature Based Modeling Shell: Design and Implemen-
tation,” Design Theory 88, Proceedings of the NSF Grantees Workshop in Engineering
Design, RPI, Troy, New York, June 1988.

[45]) Shah, J.J., “ Conceptual Development of Form Features and Feature Modelers,” Re-
search in Engineering Design, Vol 2, pp.93-108, 1991.

146

BIBLIOGRAPHY

[46] Smithers,T., “AI-Based Design versus Geometry-Based Design,” Computer Aided De-
sign 21(3): 141-150., 1989. ’

[47] Sriram, D., Intelligent Systems for Engineering: Knowledge-based and Neural Net-
works, Technical report, IESL, MIT, 1988.

[48] Sriram, D., et al.,, “An Object-Oriented Knowledge Based Building Tool for Engi-
neering Applications,” IESL Research Report R91-16, Intelligent Engineering Systems
Laberatory, M.I.T, 1991.

[49] Sriram, D., Cheong, K., and Kumar, L., “Engineering Design Cycle: A Case Study
and Implications for CAE,” Knowledge Aided Design, Editor: Green, M., Academic
Press, 1991.

[50] Sriram, D. and Logcher, R., “The MIT DICE Project,” IEEE Computer, Special Issue
on Concurrent Engineering, pp. 64-65, January 1993.

(51] Sriram, D., Logcher, R., Groleau. N., and Cherneff, J., “DICE: An Object-Oriented
Programming Environment for Cooperative Engineering Design,” AI in Engineering
Design, Vol. I1I, Editors: Tong, C. and Sriram, D., Academic Press, 1992.

[52] Sriram, D., Wong, A., and He, L.. “An Object-Oriented Non-manifold Geometric
Engine,” CAD Journal, to be published.

[63] Steele, G. J., “Constraints,” AI Memo no. 50, MIT AI lab., Nov. 1980.

[54] Steele, G. J., The Definition and Implementation Of a Computer Programming Lan-
guage Based on Constraints, PhD Thesis, MIT, Aug 1980.

[55]) Stefik, M. and Bobrow, D.G., “Object-Oriented programming: Themes and Varia-
tions,” AI Magazine, 1986.

[56] Stiny,G., “Introduction to Shape and Shape Grammars,” Environment and Planning
B: Planning and Design, 7:343-351.

[57] Sutherland, I., Sketchpad-A Man Machine Graphical Interface, PhD Thesis, MIT, 1963.

[58] Talukdar, S. T. and Desouza, P. S., “Scale Efficient Organizations,” Proceedings of the
IEEE International Conference on Systems Science and Cybernetics, 1992,

147

BIBLIOGRAPHY

[59] Tomiyama, T. and Yoshikawa, H., “Extended General Design Theory,” in Design
Theory for CAD, Proceedings of the IFIP WG5.2 Working Conference 1985, Tokyo,
Yoshikawa, H. and Warman, E.A (eds.), pp. 95-130., North-Holland, Amsterdam, 1986.

[60] Tong, C. and Sriram, R. D., Introduction to Artificial Intelligence in Engineering
Design, Vol. 1, Academic Press Incorporated., 1992.

[61] Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H., “Function, Behavior and
Structure,” Applications of Artificial Intelligence in Engineering V, Vol. 1, Design, pp.
177-193, 1990.

[62] Van Beek, P., “Approximation Algorithms for Temporal Reasoning,” In Proceedings
of the Tenth IJCAI Detroit, 1989.

[63] Vescovi, M., Iwasaki, Y., Fikes, R., and Chandrasekharan, B., “CFRL: A Language for
Specifying the Causal Functionality of Engineered Devices.” Proceedings of the Eleventh

National Conference on Artificial Intelligence, 1993.

[64) Vilain, M., Kautz, H., and van Beek, P., * Constraint Propagation Algorithms for
Temporal Reasoning: A Revised Report,” Proceedings of AAAI 377-382, 1986.

[65] Weiler, K.. Topological Structures for Geometric Modeling, Phd. Thesis, Rensselaer
Polytechnic Institute, Aug. 1986.

[66] White, R., Gergely. P. and Sexsmith, R., Structural Engineering, John Wiley & Sons,
Inc., NY, 1972.

[67) Woodbury, R.F., and Oppenheim, LJ., “An Approach to Geometric Reasoning,” In-
telligent CAD, I, Proceedings of the IFIP TC 5/WG 5.2 Workshop on Intelligent CAD,
North-Holland, 1987.

(68] Wong, A. and Sriram, D., “Geometric Modeling Facilities for Product Modeling,”
Intelligent Engineering Systems Laboratory, M.I.T, 1993.

[69]) Wong, A., Sriram, D., et. al., Design Document for the GNOMES Geometric Modeler,
IESL Technical Report, Intelligent Engineering Systems Laboratory, M.L.T. December
1991.

148

BIBLIOGRAPHY

[70] Wong, A. and Sriram, D., “SHARED: An Information Model for Coooperative Product
Development,” Research in Engineering Design, Fall 1993.

[71] Wong, A. and Sriram, D., Shared Workspaces for Computer-aided Collaborative Engi-
neering, Intelligent Engineering Systems Laboratory, Dept. of Civil and Environmental
Ergineering, Technical Report No: IESL 93-06, March 1993.

[72] Wong, A. and Sriram, D. “An Extended Object Model for Design Representation,”
submitted to IEEFE Transactions on Knowledge and Data Engineering.

[73] Zamanian K., Modeling and Communicating Spatial and Functional Information About
Constructed Facilities, PhD Thesis, Department of Civil Engineering, CMU, Dec 1991.

149

Appendix A

Sample CONGEN class

declarations

I
/ Y Lt T T P PR T T T T R P PR I T P Y

* data_manager.h: Definition of class data_manager.
>
* Author: Gorti Sreenivasa Rao
* Intelligent Engineering Systems Laboratory
* Massachusetts Institute of Technology
* Date: June 28, 1993
i L]
Jtifndef data_manager_h
#tdefine data_manager_h 10

l/ Class to define the data managers (goal, plan, artifact) hashtables
/] for a particular application. Defines lookup functions, creates instances,
]/ serves as the in—memory manager for persistent data, reads in application

// data as necessary

]/ Tasks to be performed in this classs:
]/ Lookup: contezt,goal, plan, artifact.
]/ Create artifact, set default values.
. 20
#include "congen_classnames.h"
##include “GPHash.h"
#tinclude "ccString.h"

150

declare(PHashTable,Plan);
declare(PHashTable,Goal);
declare(PHashTable,Context);

dbclass Data_manager{
30
private:
PHashTable(Plan) *ThePlanHashTable;
PHashTable(Goal) *TheGoalHashTable;
PHashTable(Context) *TheContextHashTable;
collection<Plan> * all_plans;
collection<Goal> * all_goals;
collection<Context> * all_contexts;
// Note that we have a redundant storage mechanism above, but while the
]/ collections store all the objects, the hashtables store the pointers for
// quick retrieval by name. 40
Context * curr_context ;
/] the function create_Goal will have to be overloaded for creation of
// ArfGoal, and the rest of them...
Goal* create_ArfGoal(char*,GoalEditor* = NULL):
Goal* create_ ModGoal(char*, char* = NULL, char* = NULL, GoalEditor* = NULL);
Goal* create_AbsGoal(char* ,GoalEditor* = NULL);
Goal* create_FunGoal(char*,GoalEditor* = NULL);
Plan* create_Plan(char*, PlanEditor* = NULL);
void remove_Plan{char*);
void remove_Goal(char*); 50
Context* create_root_Context(Goal*);
void remove_Context(char*, char* = NULL);
dbint no_goals, no_plans, no_contexts ;

public:
ccString application_name;
Data_manager(char* str);
“Data_manager();
void print();
60
inline int get_no_of_goals(){return no_goals;}
inline int get_no_of_plans(){return no_plans;}
inline int get_no_of_contexts(){return no_contexts;}
inline int get_no_of artifacts();

151

void register_Artifact(Artifact*);
void unregister_Artifact(char* ,char*);

// public, since these functions interface with the c functions of

]/ Collmanager.e (src/ COSMOS/obm directory) 70
Goal* lookup_Goal(char*); // direct lookup

Plan* lookup_Plan(char*); // direct lookup

Context* lookup_Context(char*, char* = NULL); // direct lookup

root* lookup_Artifact(ccString,char* = NULL, Context* = NULL);

Context* create_Context(Context*, char* = NULL);
void set_curr_context(Context*);
inline Context* get_curr_context(){return curr_context;}
void set_alias_for_context{Context* char*);
80
Goal* get_rtgoal();
const collection<Goal>* get_all_goals(){return all_goals;}
const collection<Plan>* get_all_plans(){return all_plans;}
const collection<Context>* get_all_contexts(){return all_contexts;}

friend class Congen;

friend class PlanEditor;

friend class GoalEditor;

h

#endif 90

152

/ttt##t###t#!t*##ttt#t#t.ttt&tt*#tt*t#vtctt#tt##t#ttttttt*ﬁttt#tt&

* contezt.h: Definition of class Context.

*

* Author: Gorli Sreenivasa Rao

* Intelligent Engineering Systems Laboratory

* Massachusetts Institute of Technology

* Date: Feb 25, 1992

*##‘#****##**#**#***##*'&##t#***#i*#l*##*##*##*###tt####&####***#/
#tifndef context_h
#define context_h

#include "congen_classnames.h"
#include "E/collection.h"
#include "ccString.h"
#tinclude "GPHash.h"

#include “GPList.h"

declare (PHashTable,Artifact);
dbclass QSR;
declare(PList, QSR);
class AteamUl;
/* Declaration of class Context */
dbclass Context
{
private:
Goal * root_goal ;
Goal * curr_goal ;
Artifact * curr_artifact;
/] convenience mechanism for allowing us to place a new artifact in the

// component hierarchy, as a component of curr_artifact

SpecFrame* specs ;

PHashTable(Artifact)* TheArtifactHashTable ; //nnote that the classobjects
]/ in SpecFrame also keep the list of all the objects, the hashtable

// is only for quick access..

Declist * declist ;

collection<Prule>* plans; /* Keeps track of goal ordering for various

plans, as per this design contezt */

PList(QSR)* all_gsrs ; // ALL the spatial relationships in this context.

10

20

30

40

153

// Maybe these should be stored with the artifacts themselves ¢

void set_rtgoal(Goal* gl){root_goal = gl ;}
public:
dbenum { UNEXPANDED, EXPANDED, INPROCESS, COMPLETED, FAILED };
dbint status;
dbint id ;
ccString id_name ;

Context(Goal* head = NULL , int s = UNEXPANDED);
Context(const Context*, ccString);

“Context();

void copy_artifacts(const Context* ctx);

void set_curr_goal(Goal* gl){curr_goal = gl;}

inline Goal * get_curr_goal(){return curr_goal;}

inline Goal * get_root_goal(){return root_goal;}

void set_curr_artifact(Artifact* art){curr_artifact = art;}
inline Artifact * get_curr_artifact(){return curr_artifact;}
Decision* get_decision(Goal*);

void add_decision(Goal*, ccString) ;

inline Declist* get_declist(){return declist ;}

Prule* get_prule(Plan*);

inline SpecFrame * get_specs(){return specs ; }

void add_gsr(QSR*);

PList(QSR)* get_gsrs(){return all_gsrs;}

int expand() ;

void display();

void print();

inline root* lookup_Artifact(ccString,char* = NULL);
void register_Artifact{ Artifact*);

void unregister_Artifact(char*, char*);

/] Functions to get the input and output from the Ateams algorithm
void setup_Ateams(AteamUI*);
void cleanup_Ateams();

friend class Congen;
friend dbclass Data_manager;

h

50

60

70

80

154

/ * extern Contezt* lookup_contezt(ccString, ccString); ¥/

#tendif context_h

155

/ RN R E RN AR TR R R IR AR SRS BN R AR RN TR AR R VRS RN RRRA RN R IR

* artifact.h: Definition of class Artifact, used to represent the

* artifacts (design products).

*

* Author: Gorti Sreenivasa Rao

¥ Intelligent Engineering Systems Laboratory

* Massachusetts Institute of Technology

* Date: Feb 25, 1993

#t###t&#&##t*t#t###r#tt#*#i*###**#**#*t##t&*****#*#**t****#***#t**/

FFifndef artifact_h 10
F#define artifact_h

#tinclude "xheaders.h"
F#include "congen_classnames.h"
#include “GPList.h"

#include "knowledg.h"
##include "ccString.h"
#include "composite.h"

dbclass MetaClass; 20
dbclass Geometry ;
dbclass Func_rel;

declare(PList,Func_rel);
dbclass Artifact:public Composite
{
private:
int shared_mode ; // if it makes no sense to copy the artifact over
]/ contexts, the shared mode is set to one at time of creation
protected: 30
Geometry *geom;
ccString parent ; /* name of the parent Goal object */
ceString subplan ; /* name of the sub— Plan object */
ccString rulebase;

void set_parent(ccString gl){parent = gl ;}
void set_subplan(ccString pl){ subplan = pl ;}

PList(Func_rel) * part_rels; // all the part relationships are stored here
40

156

public:

enum { UNEXPANDED, EXPANDED, INPROCESS, COMPLETED, FAILED };
dbint status;

Artifact(char®, char”®, ArtifactEditor * = NULL);

" Artifact();

void duplicate(Artifact*);

inline void set_geometry(Geometry* gl) {geom = gl;}

void set_id(int);

char®* get_classname(); 50
char* get_instancename();

inline Geometry* get_geometry(){return geom;}

inline char* get_id(){return id_name;}

inline int is_shared(){return shared_mode; }

inline void set_shared_mode(int val){shared_mode = val;}

Goal* get_parent() ;

Plan * get_subplan():

void expand(Widget,Widget) ;

void place_in_component_hierarchy(Artifact*);

void make_functional_relationship(char*, Artifact*, Artifact*, char*); 60

void show_geometry();
Widget display(Widget, Widget);
void display_in_synthesizer(Widget, Widget) ;
void display_hierarchy(Widget, Widget });
virtual Val direct_get_value(dbchar*);
virtual int direct_put_value(dbchar*,char*);
friend class ArtifactEditor;
friend dbclass MetaClass ;
friend dbclass Goal; 70
ki
F#endif

167

/"'t‘lt&tt‘I"'il'*#’tt##’#'ll&#"t#“#t&‘l"‘tt*t‘t’ll#l

* goal.h: Definition of class Goal.

*

* Author: Gorti Sreenivasa Rao

* original code by: Kevin K. W. Cheong

* Intelligent Engineering Systems Laboratory

* Massachusetts Institute of Technology

* Date: Nov 10, 1992

tttott’#tttttt*&*#t:t#*tt*tr#ttt*tttttt***tvtt*&*##ttt/
#ifndef goal_h 10
#tdefine goal_h

#include “knowledg.h"

/ *
* Declaration of class Goal
*
/
dbclass Goal : public Knowledge {

protected: 20
ccString rulebase ;
ccString effects_rulebase ; // asserting consequences of a decision

ccString parent ; /* Name of a Plan object */

void set_parent(char*);
void se;_rulebase(éhar * rules){rulebase = rules ;}
void set_effects_rulebase(char * rules){effects_rulebase = rules ;}
Goal(char *, GoalEditor * = NULL);
ccString purpose ; // To indicate which subclass of the goal it is
virtual char* get_art_class(){return NULL;} 30
virtual char* get_art_slot(){return NULL;}
virtual void set_choice(char*){}
virtual void clear_choices()}{}
virtual void assert_effects();
public:
Plan *get_parent() ;
int check_truth(char* char*,char*);
Widget display(Widget, Widget);
virtual void place_in_component_hierarchy(Artifact*){}
virtual ~Goal(); 40

158

virtual PList(ccStzing)* get_choices(){return NULL;}
virtual Knowledge* get_child(){return NULL;}
virtual void clear_knowledge();
virtual void expand(Widget,Widget){}
virtual void display_in_synthesizer(Widget,Widget){}
virtual void display_hierarchy(Widget, Widget){}
virtual void fire_forward_chainer(char*){}
virtual void pursue_choice(ccString, Widget){}
friend class GoalEditor;
friend dbclass Plan; 50
friend class Congen;
//friendfriend int read_goal(ifstreamé) ;

15

| * Interfacing functions to the Goal instance manager */
/ * extern Goal *lookup_Goal(char *); */

/ P Ll Ty R 2 2 R R *ur/

/¥ Goal associated with creating components */
[HEEEE R R RS R R R AR R R R RO R AR R RO AAAANNN | 60

dbclass ArfGoal : public Goal
{
private:
PList(ccString) *choices; /* ALL possible choices defined by ezpert */
void set_choice(char* possible);
void clear_choices();
public:
ArfGoal(char*, GoalEditor* = NULL) ;
“ ArfGoal(){clear_knowledge(); } 70
virtual void clear_knowledge() ;
PList(ccString)* get_choices(){return choices ;}
void expand(Widget,Widget);
void display_in_synthesizer(Widget, Widget);
void display_hierarchy(Widget, Widget);
Knowledge* get_child();
void pursue_choice(ccString, Widget);
void fire_forward_chainer(char*){};
friend class GoalEditor;
friend class Congen?‘ 80

|5

159

/ FREEP IR E R R IR TG AR F IR RS EF T AR IR R R T T RE RS F t-ttt*&##&tttr:t/

| * Goal associated with slot of a particular class */

/ * Does not extend to components, though */
[REEEEERR RS R R SSRE AR R SRR RS R AR SRR R RS SRR RS A RRRA LRI RSN AR

dbclass ModGoal : public Goal
{
private:
ccString Art_class; 90
ccString Art slot ;
PList(ccString) *choices; /* ALL possible choices defined by expert ¥/
void set_choice(char* possible);
void clear_choices();
char* get_art_class(){return Art_class;}
char* get_art_slot(){return Art_slot;}
public:
ModGoal(char*, char* = NULL, char* = NULL, GoalEditor* = NULL) ;
“ModGoal(){clear_knowledge(); }
virtual void clear_knowledge() ; 100
PList(ccString)* get_choices(){return choices ;}
void expand(Widget,Widget);
void display_in_synthesizer(Widget,Widget);
void display_hierarchy(Widget, Widget);
Knowledge* get_child(){return NULL:}
void pursue_choice(ccString, Widget);
void fire_forward_chainer(char*){};
friend class GoalEditor;

friend class Congen;
k 110

F R R L]

/* Goal associated with jurther process hierarchy steps */
YR et

dbclass AbsGoal : public Goal

{

private:
PList(ccString) *choices; /* ALL possible choices defined by ezpert */
void set_choice(char* possible); 120
void clear_choices();

public:

160

AbsGoal(char* , GoalEditor* =MULL) ;
“AbsGoal(){clear_knowledge();}
PList(ccString)* get_choices(){return choices ;}
virtual void clear_knowledge() ;
void expand(Widget,Widget) ;
void display_in_synthesizer(Widget,Widget};
void display_hierarchy(Widget, Widget);
Knowledge* get_child();
void pursue_choice(ccString, Widget);
void fire_forward_chainer(char*){};

friend class GoalEditor;

friend class Congen;

5

/ EE R IR R 222 S22 22 2222 22222 222222222222 222 *****#ttt#**##***#***t**#*****#***/

/* Ezecutes an ezternal function */
[R AR E LR RO R AR AR R AR RAAAIEE ORI AR]

dbclass FunGoal : public Goal
{
private:
ccString func_name;
void set_function(char* nam){ func_name = nam ; }
public: ‘
FunGoal(char* nam, char * func, GealEditor *ed = NULL): Goal(nam,ed)
{func_name = func ; purpose = "EXTERNAL_FUNCTION";}
“FunGoal(){}
char *get_function() { return func_name; }
void expand(Widget,Widget){}
void display_in_synthesizer(Widget, Widget){}
void display_hierarchy(Widget, Widget);
void clear_knowledge(){}
void fire_forward_chainer(char*){}
veoid pursue_choice(ccString, Widget){}
friend class GoalEditor;
friend class Congen;

b

#endif goal_h

130

140

150

160

161

#tifndef FUNC_REL
#tdefine FUNC_REL

#include "relationship.h"
#include <E/dbStrings.h>

/!
//
/1
//
/1
/1
/1

class which models a functional relationship in CONGEN

Note that representation of function is simple—minded
here, we just use the "reln_type” attribute in class
Relationship as a descriptor for the function.

More work needs to be done on representing function,
and managing creation of required_by, satisfied by links,
through the design process somehow.

dbclass Func_rel : public Relationship{

protected:
Role* needed_by;
Role* satisfied_by;
dbchar spatial_map[30]; // name of a subplan
]/ to choose the spatial equivalents for the function

public:
Func_rel(char*, Artifact*, Artifact*);

Func_rel(Func_rel&:);

virtual “Func_rel();

virtual char* get_classname(){return “Func_rel";}
inline Role* get_source(){return satisfied_by;}
inline Role* get_target(){return needed_by;}

void set_subplan(char*);

inline char* get_subplan();

virtual void display_in_synthesizer(Widget,Widget) ;
virtual void display_hierarchy(Widget, Widget) ;
virtual Widget display(Widget,Widget) ;

virtual void expand(Widget, Widget) ;

|5

##endif FUNC_REL

10

20

30

162

/ LA L2222 2222 P22 22 R 222 2 222 22 2222 22 22 222 R 222 222 22 2 2 22

* decision.h: Definition of class Decision.

*

* Author: Gorti Sreenivasa Rao

d Intelligent Engineering Systems Laboratory

* Massachusetts Institute of Technology

* Date: March 22, 1993

R]
#tifndef decision_h
#tdefine decision_h

#tinclude “xheaders.h"
#include “ccString.h"
#include "congen_classnames.h"
#include “root.h"

/ *
¥ Declaration of class Decision
*
* The list of decisions is maintained in the context, and they
* bind a choice to a goal. Note that while each artifact
¥ stores ils parent goal, the only reverse link between a goal and
¥ the corresponding artifact chosen in the current contert is

. ¥ provided by the decision. The name artifact choice, perhaps
* is a misnomer, since the choice may be the name of a plan.
* as in the case of an AbsGoal..
*/

dbclass Decision {

private:
Goal *goal;
ccString choice ;
Widget walt[10] ; /* Widget for each valid alternative */

int which_decision(ccString);
static int NOT_VALID ; /* class variable */

pubiic;
Decision(Goal*, ccString) ;
Decision(const Decision &d)
“Decision();

10

20

30

40

163

ccString valid_alternatives[10] ; /* Run time alternatives*/
void set_valid_alternative(char*) ;

Goal* get_goal();

void set_choice(char* str){choice = str;}

char* get_choice() { return (char*)choice; }

Widget display(Widget, Widget,ccString);

friend dbclass Context ;

h

//

dbclass Declist: public root{
private:
collection<Decision>* decisions ;
int no_decisions ;
public:
Declist():
“Declist();
Declist(const Declisté&);
void add_decision(Goal*, ccString);
void remove_decision(Goal*);
Decision* get_decision(Goal*);
int direct_put_value(char* , char* , char* = NULL);
char* direct_get_value(char*, char* , char* = NULL);

h

Ftendif decision_h

50

60

70

164

#ifndef spatial
#define spatial

#Finclude “GNvector.h"
#tinclude "relationship.h"
#include "artifact.h"
class Ref_frame;

class Evaluation;

class Srel: public ATconst 10
{
// This ABSTRACT class defines the
// essential spatial relationship
// Defines the axis for the relationship and a
// reference frame wkich defines this axis
// Note that this forms the base class for
// all primitive
// relationships, actual 3—D relationships
// would be represented by the composite
// classes 20
protected:
enum{X,Y,Z};
int axis; // 0for X, 1for Y, 2 for Z
Ref_frame* ref ;
public:
Srel(int, Ref frame* = NULL);
virtual char* get_classname() = 0 ;
virtual Role* get_source(){return NULL;}
virtual Role* get_target(){return NULL;}
virtual Evaluation* evaluate(Design*){return NULL ;} 30

virtual void improve(Design*){}

virtual ~Srel(){}

b

#endif

165

#ifndef PRIM_QSR
#define PRIM_QSR

#include <iostream.h>
#include "gsr.h"

class Evaluation ;
// Subtypes of the QSR class define the
// many kinds of primitive relationships
// that can occur. These types are follows: 10
// Point—Interval types (PI_base forms the
// base class) p, f,i, b, m (point—interval
// types: p is plus) interval—interval types
// (I1_.base forms the base class) pp, fp, ip,
// if, ii, bi, bf, bp, mp. mf, mi, mb, mm.
// These are pretty horrible classes, we do
// not expect the user to deal with them at
// this level of abstraction. Higher level
/[operators can be built up from this

// primitives 20
class PI_base: public QSR
{
public:
Pl_base(int, Ref_frame*, Role* = NULL, Role* = NULL);

“PI_base(){}
inline virtual Evaluation* check_rel{double,Dobj*, Dobj*, Design*){return 0;}
inline virtual char* get_classname() {return "PI_base";}
inline virtual Evaluation* evaluate(Design*){return NULL;}
ki 30

class PI_plus: public PI_base
{
public:
PI_plus(int, Ref_frame*, Role* = NULL, Role* = NULL);
"PLplus(){}
Evaluation* check_rel(double,Dobj*, Dobj* Design*);
inline virtual char* get_classname() {return “PI_plus";}
}: 40

166

class PI_front: public PI_base

{

public:
PI front(int, Ref_frame*, Role* = NULL, Role* = NULL);
“PLfront(){}
Evaluation* check_rel{(double,Dobj*, Dobj* ,Design*);
inline virtual char* get_classname() {return “PI_front";}

b

class PLin: public PI_base

{

public:
PLin(int, Ref_frame*, Role* = NULL, Role* = NULL);
“PLin(){}
Evaluation* check_rel(double,Dobj*, Dobj* ,Design*);
inline virtual char* get_classname() {return "PI_in";}

b

class PI_back: public PI_base

{
public:
PI_back(int, Ref_frame*, Role¥* = NULL, Role* = NULL);
“PI back(){}
Evaluation* check_rel(double,Dobj*, Dobj* Design*);
inline virtual char* get_classname() {return "PI_back";}

b

class PI_minus: public Pi_base

{

public:
PI_minus(int, Ref_frame*, Role* = NULL, Role* = NULL);
“PLninus(){}
Evaluation* check_rel(double,Dobj*, Dobj* Design*);
inline virtual char* get_classname() {return "PI_minus";}

b

50

60

70

80

167

class II_base:public QSR
{
//base class for the interval—interval
// relationships
protected:
PI_base * rell;
PI_base * rel2;
// rell represents the relationship of min of
// source w.r.t the interval represented by
/[target rel2 represents the relationship of
// max of source w.r.t target
public:
II_base(Role*, Role* int, Ref_frame*);
“I1_base();
inline virtual char* get_classname() {return "II_base";}
virtual Evaluation* evaluate(Design*);

}:

class II_pp: public I _base
{
public:
II_pp(Role*, Role*,int, Ref_frame*);
“1Lpp(){}
inline virtual char* get_classname() {return "II_pp";}

virtual Evaluation* evaluate(Design*);

b

class II_fp: public II_base

{
public:
II_fp(Role*, Role*,int, Ref_frame*);
ILfp()!}
irline viriual char* get_classname() {return "IX_¢p";}
virtual Evaluation* evaluate{Design*);

h

class ILLip: public II_base

90

100

110

120

168

{
public:
ILip(Role*, Role* int, Ref_frame*);
“ILip(){}
inline virtual char* get_classname() {return "II_ip";}
virtual Evaluation* evaluate(Design*);

b

class ILif: public II_base
{
public:
ILif(Role*, Role*,int, Ref_frame*);
“ILif(){}
inline virtual char* get_classname() {return “II_if";}
virtual Evaluation* evaluate(Design*);

|5

class I1ii: public II_base
{
public:
ILii(Role*, Role*,int, Ref_frame¥);
“ILii(){}
inline virtual char* get_classname() {return “II_ii";}
virtual Evaluation* evaluate(Design*);

h

class I bi: public II_base

{
public:
II_bi(Role*, Role*,int, Ref frame*);
“ILbi(){}
inline virtual char* get_classname() {return "II_bi";}
virtual Evaluation* evaluate(Design*);

h

class II_bf: public II_base
{

130

140

150

160

169

public:
II_bf(Role*, Role*,int, Ref_frame*);
“ILb())
inline virtual char* get_classname() {return "II_bf";}
virtual Evaluation* evaluate(Design*);

}

class II_bp: public II_base
{
public:
II_bp(Role*, Role*,int, Ref_frame*);
“ILbp(){)
inline virtual char* get_classname() {return "II_bp";}
virtual Evaluation* evaluate(Design*);

%

class II_mp: public II_base
{
public:
ILLmp(Role*, Role*,int, Ref_frame*);
“ILmp(){}
inline virtual char* get_classname() {return “II_mp";}

virtual Evaluation* evaluate(Design*);

}

class 1I_mf: public II_base
{
public:
I_mf(Role*, Role*,int, Ref frame*);
“ILmf(){}
inline virtual char* get_classname() {return "II_mf";}
virtual Evaluation* evaluate(Design*);

|5

class II_mi: public II_base

{
public:

170

180

190

200

170

II_mi(Role*, Role*,int, Ref_frame*);

“ILmi(){}

inline virtuel char* get_classname() {return "II_mi";}
virtual Evaluation* evaluate(Design*);

h

210

class II_mb: public II_base

{

public:
II_mb(Role*, Role*,int, Ref_frame*);
“1L.mb(){}

inline virtual char* get_classname() {return “II_mb";}
virtual Evaluation* evaluate(Design*);

b

220

class II_.mm: public II_base
{
public:
ILLmm(Role*, Role* int, Ref_frame*);
“ILmm(){}
inline virtual char* get_classname() {return "II_mm";}
virtual Evaluation* evaluate(Design*);
|8

230

Ftendif

171

#ifndef QSR
#define QSR

##include <iostream.h>
#include "spatial.h"

class Dobj;

class Evaluation;

class QSR:public Srel
{
protected:

Role* source;

Role* target;
public:

// the class Dobj refers to a spatial

// design object corresponding to an artifact
// (the spatial component of an artifact,

// separated for practical purposes of

// efficiency)

// This file defines the basic QSR class,
// and the composite QSR base classes.

/ The base classes are instantiable directly:
// we can thus allow the user to create
// arbiirary combinations, as opposed to
// using the predefined combinations.

QSR(Role* = NULL, Role* = NULL, int = Srel::X,

Ref_frame* = NULL);

virtual “QSR(){}

inline virtual char* get_classname() {return "QSR";}

inline Role* get_source(){return source;}

inline Role* get_target(){return target;}

virtual void improve(Design*);

inline virtual Evaluation* evaluate(Design*){return NULL;}

b

// We now define the two kinds of composite
// QSR classes. The disjunctions and the
// composite three—D classes

10

20

30

40

172

class QSR _disjunc : public QSR

{
// Still along only one axis, as in
// the primitive QSRs
protected:
QSR ** comp ; // components of the disjunction, stored
// as an array
int comp_num ; // no of elements in the disjunction
public:

QSR_disjunc(Role*, Role*, int, Ref frame*);

virtual “QSR_disjunc() ;

inline virtual char* get_classname() {return “QSR_disjunc";}
virtual Evaluation* evaluate(Design*);

h

class QSR_3D : public QSR
{

protected:
QSR * comp[3]; // one in each of the three directions

public:
QSR_3D(Role*, Role*, int, Ref_frame*);
virtual "QSR_3D(){}
inline virtual char* get_classname() {return "QSR_3D";}
virtual Evaluation* evaluate(Design*);

h

F#endif

50

60

1738

#ifndef COMP_QSR
Ftdefine COMP_QSR

F#include <iostream.h>
#include “qsr.h"

class Y1 i;
// this file defines some sample higher level
// QSRs which use disjunctions and the
// three—D relations 10

// First the one—D relationships
class Centered: public QSR{

// Relationship to specify symmetry of one
// object w.r.t another

I1ii* rel; // source must be <in> target
public:
Centered(Role*, Role*, int, Ref_frame*);
virtual ~Centered(); 20

virtual Evaluation* evaluate(Design*) ;

)

class Overlap: public QSR _disjunc{
public:
Overlap(Role*, Role*, int, Ref_frame*);
virtual ~Overlap(){}

k
‘ 30
class Overlap_front: public QSR _disjunc{
public:
// This class covers the case of overlap
// from the front,
// NOTE: it includes the flush—contact
// case as well
Overlap_front(Role*, Role*, int, Ref_frame*);
virtual “Overlap_front(){}
b 40

174

class Overlap_back: public QSR_disjunc{
public:
// This class covers the case of overlap
// from the back,
// NOTE: it includes the flush—contact
// case as well
Overlap_back(Role*, Role*, int, Ref frame*);
virtual ~Overlap_back(){}

b

class Inside: public QSR_disjunc{
public:
// what we actually mean when we say inside,
// if, ii, bi
Inside(Role*, Role*, int, Ref_frame*);
virtual “Inside(){}
b

class Touch_contact: public QSR _disjunc{
public:
Touch_contact(Role*, Role*, int, Ref_frame*);
virtual ~Touch_contact(){}

b

class No_contact: public QSR _disjunc{
public:
No_contact(Role*, Role*, int, Ref frame*);
virtual “No_contact(){}

1}
// Now the Three D relationships
class Abuts: public QSR_3D{

public:
Abuts(Role*, Role*, int, Ref frame*);

50

60

70

80

175

virtual ~Abuts(){}
}:

class Intersects: public QSR_3D{
public:
Intersects(Role*, Role*, int, Ref_frame*);
virtual “Intersects(){}
b 90

class Contains: public QSR_3D{

public: ?
Contains(Role*, Role*, int, Ref_frame*);
virtual ~Contains(){}

}

// Ternary relationships 100
class Between: public QSR {
Role* center_obj ; // is between source and target
QSR_3D* comp|2);
public:

Between(Role*, Role*, Role*, int, Ref_frame*);
virtual ~Between() ;
virtual Evaluation* evaluate(Design*) ;

I

110

class Connects: public QSR{
Role* connector;
QSR* compl6]; // cannot directly use any of the threeD
// relationships, unless we define new ones..

public:
Connects(Role*, Role*, Role*, int, Ref_frame*);
virtual ~Connects() ;
virtual Evaluation* evaluate(Design*) ; 120

)i

1786

F#endif

177

#ifndef EVAL
#tdefine EVAL
#tinclude "GNvector.h"

clzss Dobj ;

class mod_operator

{

public:

// This simple "class" stores the modification

// operators suggested by the evaluation of a

// design. Move the Dobj indicated by obj LEFT
// or RIGHT along axis, rotate it clockwise or

// anticlockwise, make the object SMALLER

// or BIGGER

enum{LEFT, RIGHT, CLOCK, ANTICLOCK, SMALLER, BIGGER,
UNDEFINED, INCREASE, DECREASE};

int op;
Dobj* obj ;
GNvector axis_vec ;

char var[50];
double change;

// axis along which the modification
// is defined, it is defined here for
// convenience, especially useful for 3D QSRs

//defining the exact amount of change for
// numerical constraints, the name of
// the variable and the change requested

mod_operator(int, Dobj*, GNvector&);
mod_operator(int, Dobj*, char*, double = NULL);

mod_operator(mod_operator&);

“mod_operator(}{obj=NULL;op=0;change=0;}

|

class Evaluation

{

int count ;
public:

// This simple “class" stores an evaluation
// as recorded by a QSR object.
// Number of elements in the array

10

20

30

40

178

double eval;
mod_operator** mod_op_arr; // array of possible modifications,
// recorded during the evaluation
Evaluation();
“Evaluation();
Evaluation(Evaluation&);
void delete_ops();
inline int get_no_ops(){return count ;}
void add_op(mod_operator*) ;
inline mod_operator* get_random_op(); 50

b

#endif

179

