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Abstract We develop a practical semidefinite programming (SDP) facial reduction procedure that uti-
lizes computationally efficient approximations of the positive semidefinite cone. The proposed method
simplifies SDPs with no strictly feasible solution (a frequent output of parsers) by solving a sequence
of easier optimization problems and could be a useful pre-processing technique for SDP solvers. We
demonstrate effectiveness of the method on SDPs arising in practice, and describe our publicly-available
software implementation. We also show how to find maximum rank matrices in our PSD cone approxi-
mations (which helps us find maximal simplifications), and we give a post-processing procedure for dual
solution recovery that generally applies to facial-reduction-based pre-processing techniques. Finally, we
show how approximations can be chosen to preserve problem sparsity.

1 Introduction

The feasible set of a semidefinite program (SDP) is described by the intersection of an affine subspace
with the cone of matrices that are positive semidefinite (PSD). In practice, this intersection may contain
no matrices that are strictly positive definite, i.e., strict feasibility may fail. This is problematic for two
reasons. One, strong duality is not guaranteed. Two, the SDP (if feasible) is unnecessarily large in the
sense it can be reformulated using a smaller PSD cone and a lower dimensional subspace. To see this
latter point, consider the following motivating example:

Motivating example

Find y1, y2, y3 ∈ R

subject to

A(y) =





y1 0 0
0 −y1 y2

0 y2 y2 + y3



 � 0.

Taking v = (1, 1, 0)T , it is clear that vTA(y)v = 0 independent of (y1, y2, y3). In other words, there is
no (y1, y2, y3) for which A(y) is positive definite. It also holds that (y1, y2, y3) is a feasible point of the
above SDP if and only if it is a feasible point of

Find y1, y2, y3 ∈ R

subject to y1 = y2 = 0, y3 ≥ 0.

In other words, the above 3 × 3 semidefinite constraint is equivalent to linear equations and a linear
inequality (i.e. a 1× 1 semidefinite constraint).
While SDPs of this type may seem rare in practice, they are a frequent output of parsers (e.g. [26], [37])

used, for example, to formulate SDP-based relaxations of algebraic problems. In some cases, these SDPs
arise because the parser does not exploit available problem structure (cf. the SDP relaxations of graph
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partitioning problem [51], where problem structure is carefully exploited to ensure strict feasibility). In
other situations, all relevant structure is not apparent from the problem’s natural high level description
(which motivates the post-processing of solutions in [27]). Thus, based on their prevalence, checking for
and simplifying an SDP of this type is a practically useful pre-processing step, assuming it can be done
efficiently.

To check for (and simplify) such an SDP, one can execute the facial reduction algorithm of Borwein
and Wolkowicz [10], or the simplified versions of Pataki [32] and Waki and Muramatsu [48], to find
a face of the PSD cone containing the feasible set. The desired simplifications are then obtained by
reformulating the SDP as an optimization problem over this face. Unfortunately, the problem of finding
a face is itself an SDP, which may be too expensive to solve in the context of pre-processing. In addition,
reformulating the SDP accurately, in a way that preserves sparsity, can be difficult.

To address these issues, this paper presents a facial reduction algorithm modified in a simple way:
rather than search over all possible faces, our method searches over just a subset defined by a specified
approximation of the PSD cone. As we show, the specified approximation allows one to control pre-
processing effort, preserve sparsity, and accurately reformulate a given SDP. Natural choices for the
approximation are also effective in practice, as we illustrate with examples.

This paper is organized as follows. In Section 2, we give a short derivation of a facial reduction algo-
rithm for general conic optimization problems using basic tools from convex analysis. We then specialize
this algorithm to semidefinite programs. In Section 3, we modify this algorithm to yield our technique and
describe example approximations of the PSD cone. We then show how to find maximum rank solutions
to conic optimization problems formulated over these approximations (which helps us find faces of min-
imal dimension). Section 4 shows how to reformulate a given SDP over an identified face and illustrates
how the chosen approximation affects sparsity. Simple illustrative examples are then given. Section 5
discusses the issue of dual solution recovery and generalizes a recovery procedure described in [33]. The
results of this section are not specific to our modified facial reduction procedure and are relevant to other
pre-processing techniques based on facial reduction. Section 6 describes a freely-available implementation
of our procedure and Section 7 illustrates effectiveness of the method on examples arising in practice.

1.1 Prior work

General algorithms for facial reduction include the original of Borwein and Wolkowicz [10] and the
simplified versions of Pataki [32] and Waki and Muramatsu [48]. Application specific approaches have also
been developed: e.g., for SDPs arising in Euclidean distance matrix completion (Krislock and Wolkowicz
[25]), protein structure identification (Alipanahi et al. [2]; Burkowski et al. [15]), graph partitioning
(Wolkowicz and Zhao [51]), quadratic assignment (Zhao et al. [53]) and max-cut (Anjos and Wolkowicz
[4]). Waki and Muramatsu [49] and the current authors [35] also apply facial reduction to the problem
of basis selection in sums-of-squares optimization.

In addition, facial reduction can be used to ensure that strong duality holds. Indeed, this was the
original motivation of the Borwein and Wolkowicz algorithm [10], which given a feasible optimization
problem outputs one that satisfies Slater’s condition. Facial reduction is also the basis for so-called
extended duals, which are generalized dual programs for which strong duality always holds. Extended
duals are studied by Pataki for optimization problems over nice cones [32] and include Ramana’s dual
for SDP [39] [40].

A dual view of facial reduction was given by Luo, Sturm, and Zhang [29]. There, the authors describe
a so-called conic expansion algorithm that grows the dual cone to include additional linear functionals
non-negative on the feasible set. In [48], Waki and Muramatsu give a facial reduction procedure and
explicitly relate it to conic expansion.

The idea of using facial reduction as a pre-processing step for SDP was described in [24] by Gruber
et al. The authors note the expense of identifying lower dimensional faces as well as issues of numerical
reliability that may arise. In [18], Cheung, Schurr, andWolkowicz address the issue of numerical reliability,
giving a facial reduction algorithm that identifies a nearby problem in a backwards stable manner.

Finally, our technique is consistent with a philosophy of Andersen and Andersen put forth in [3].
There, the authors argue the best strategy for pre-processing LPs is to find simple simplifications quickly.
The method we present is consistent with this philosophy in that the specified approximation defines the
notion of “simple” and its search complexity defines the notion of “quick.”
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1.2 Contributions

Partial facial reduction Our main contribution is a pre-processing technique for semidefinite programs,
based on facial reduction, that allows one to specify pre-processing effort, preserve problem sparsity, and
ensure accuracy of problem reformulations. Given any SDP, the technique searches for an equivalent
reformulation over a lower dimensional face, where a user-specified approximation of the PSD cone
controls the size of this search space. In addition, natural choices for the approximation preserve sparsity,
as we explain in Section 4. Finally, if a polyhedral approximation is specified, our method solves only
linear programs, which are accurately solved both in theory and in practice (and in exact arithmetic, if
desired).

Maximum rank solutions Related to finding a face of minimal dimension is finding a maximum rank
matrix in a subspace intersected with a specified approximation. We show (Corollary 2) how to find
such a matrix when the approximation equals the Minkowski sum of faces of the PSD cone. Approxi-
mations of this type include diagonally-dominant [5], scaled diagonally-dominant, and factor-width-k [9]
approximations.

Dual solution recovery We give and study a simple algorithm for dual solution recovery (Algorithm 3)
that generalizes an approach from [33]. Dual solution recovery is a critical post-processing step for primal-
dual solvers, where are often agnostic to which problem—primal or dual—is of actual interest to a user.
For this reason, recovery has received much attention in linear programming [3]. Our recovery proce-
dure applies generally to conic optimization problems pre-processed using facial reduction techniques; in
other words, it is not specific to SDP and does not depend on the approximations we introduce. Since
pre-processing may remove duality gaps, dual solution recovery is not always possible. Hence, we give
conditions (Conditions 1 and 2) characterizing success of the procedure for SDPs—the class of conic
optimization problem of primary interest.

Software implementation We have implemented our technique in MATLAB in a set of scripts we call
frlib, available at www.mit.edu/~fperment. If interfaced directly, the code takes as input SDPs in
SeDuMi format [42]. It can also be interfaced via the parser YALMIP [26].

2 Background on facial reduction

In this section, we define our notation, collect basic facts and definitions, and describe faces of the PSD
cone. We then review facial reduction, giving a simple, self-contained derivation of the simplified facial
reduction algorithm of Pataki [32]. We then specialize this algorithm to semidefinite programs.

2.1 Notation and preliminaries

Let E denote a finite-dimensional vector space over R with inner product 〈·, ·〉. For a subset S of E , let
linS ⊆ E denote the linear span of elements in S and let S⊥ ⊆ E denote the orthogonal complement of
linS. For y ∈ E , let lin y denote lin{y} and let y⊥ denote {y}⊥. A convex cone K is a convex subset of
E (not necessarily full dimensional) that satisfies

x ∈ K ⇒ αx ∈ K ∀α ≥ 0.

The dual cone of K, denoted K∗, is the set of linear functionals non-negative on K:

K∗ := {y : 〈y, x〉 ≥ 0 ∀x ∈ K} .

A face F of a convex cone K is a convex subset that satisfies
a + b

2
∈ F and a, b ∈ K ⇒ a, b ∈ F .

A face is proper if it is non-empty and not equal to K. Faces of convex cones are also convex cones, and
the relation “is a face of” is transitive; if F2 is a face of F1 and F3 is a face of F2, then F3 is face of F1.
For any s ∈ K∗, the set K∩ s⊥ is a face of K. Further, if K is closed, it holds that (K∩ s⊥)∗ = K∗ + lin s
(where we let S denote the closure of a set S).
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For discussions specific to semidefinite programming, we let Sn denote the vector space of n × n
symmetric matrices and Sn

+ ⊆ Sn denote the convex cone of matrices that are positive semidefinite. We
will use capital letters to denote elements of Sn to emphasize that they are matrices. For A, B ∈ Sn, we
let A ·B denote the trace inner product TrAB. Finally, we let A � 0 (resp. A ≻ 0) denote the condition
that A is positive semidefinite (resp. positive definite).

2.2 Faces of S
n
+

A set is a face of Sn
+ if and only if it equals the set of all n × n PSD matrices with range contained in

a given d-dimensional subspace [5] [31]. Using this fact, one can describe a proper face F (and the dual
cone F∗) using an invertible matrix (U, V ) ∈ Rn×n, where the range of U ∈ Rn×d equals this subspace
and the range of V ∈ Rn×n−d equals (rangeU)⊥. We collect such descriptions in the following.

Lemma 1. A non-zero, proper face of Sn
+ is a set F of the form

F :=

{

(U, V )

(
W 0
0 0

)

(U, V )T : W ∈ S
d
+

}

(1)

=
{
X ∈ S

n : UT XU � 0, UT XV = 0, V T XV = 0
}

, (2)

where (U, V ) ∈ Rn×n is an invertible matrix satisfying UT V = 0 (i.e. rangeV = (rangeU)⊥). Moreover,
the dual cone F∗ satisfies

F∗ =

{

(U, V )

(
W Z
ZT R

)

(U, V )T : W ∈ S
d
+, Z ∈ R

d×n−d, R ∈ S
n−d

}

(3)

=
{
X ∈ S

n : UT XU ∈ S
d
+

}
. (4)

Here, (1) and (3) represent a face F and its dual cone F∗ in terms of generators whereas (2) and (4)
represent these sets in terms of constraints. Either representation can be preferred depending on context.
Based off of (1), we will often refer to a face F using the notation USd

+UT .

2.3 Facial reduction of conic optimization problems

Conic optimization problems The feasible set of a conic optimization problem is described by the in-
tersection of an affine subspace A with a convex cone K, where both A and K are subsets of the inner
product space E . If one defines the affine subspace A in terms of a linear map A : Rm → E and a point
c ∈ E , i.e.

A := {c−Ay : y ∈ R
m},

one can express a conic optimization problem as follows:

maximize bT y subject to c−Ay ∈ K,

where b ∈ Rm defines a linear objective function. This conic optimization problem is feasible if A∩K is
non-empty and strictly feasible if A ∩ relintK is non-empty.

Reformulation over a face If a conic optimization problem is feasible but not strictly feasible, it can be
reformulated as an optimization problem over a lower dimensional face of K. This fact will follow from
the following lemma, which holds for arbitrary convex cones. See also Lemma 1 of [32], Theorem 7.1 of
[10], Lemma 12.6 of [18], and Lemma 3.2 of [48] for related statements.

Lemma 2. Let K ⊆ E be a convex cone and A ⊆ E be an affine subspace for which A∩K is non-empty.
The following statements are equivalent.

1. A∩ relintK is empty.
2. There exists s ∈ K∗ \ K⊥ for which the hyperplane s⊥ contains A.
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Proof. To see (1) implies (2), note the main separation theorem (Theorem 11.3) of Rockafellar [41] states
a hyperplane exists that properly separates the sets A and K if the intersection of their relative interiors
is empty. Using Theorem 11.7 of Rockafellar, we can additionally assume this hyperplane passes through
the origin since K is a cone. In other words, if A∩ relintK is empty, there exists s satisfying

〈s, x〉 ≤ 0 for all x ∈ A
〈s, x〉 ≥ 0 for all x ∈ K
〈s, x〉 6= 0 for some x ∈ A ∪ K.

We will show that 〈s, x〉 = 0 for all x ∈ A, which will establish statement (2). Let x0 denote a point in
A ∩ K and let T be a subspace for which A = x0 + T . Clearly, 〈s, x0〉 = 0. Since 〈s, x0〉 vanishes, we
must have that 〈s, x〉 ≤ 0 for all x ∈ T . But T is a subspace, therefore 〈s,−x〉 ≤ 0 also must hold. Thus,
〈s, x〉 = 0 for all x ∈ T and s⊥ contains A. Since 〈s, x〉 vanishes for all x ∈ A, 〈s, x〉 6= 0 holds for some
x ∈ K. This establishes that s is not in K⊥ and completes the proof.

To see that (2) implies (1), suppose s ∈ K∗ \ K⊥ exists and suppose for contradiction there exists an
x0 ∈ A ∩ relintK. Since K⊥ is the orthogonal complement of linK, we can decompose s as s = s1 + s2,
where s1 ∈ linK and s2 is in K⊥. Note that s1 is also in K∗, s1 is non-zero, and 〈s1, x0〉 = 〈s, x0〉 = 0.
Since the affine hull of K equals the subspace linK, x0, being in the relative interior, is an interior point
relative to linK. Hence, we must have that x0 − ǫs1 is in K for some ǫ > 0. This implies

〈s1, x0 − ǫs1〉 = −ǫ||s1||2 ≥ 0,

which cannot hold for any ǫ > 0. Hence, no x ∈ A ∩ relintK exists.

The vector s given by statement (2) is called a reducing certificate for A∩K. Notice intersection with
s⊥ leaves A ∩ K unchanged. Letting F denote the face K ∩ s⊥ therefore yields the following equivalent
optimization problem:

maximize bT y subject to c−Ay ∈ F .

Since faces of convex cones are also convex cones, this simplification can be repeated if one can find a
reducing certificate for A ∩ F . Indeed, by taking Fi+1 = Fi ∩ s⊥

i for an si ∈ F∗
i \ F⊥

i orthogonal to A,
one can find a chain of faces Fi

K = F0 ⊃ F1 ⊃ · · · ⊃ Fn−1 ⊃ Fn

that contain A ∩ K. An explicit algorithm for producing this chain is given in [32], which we reproduce
in Algorithm 1.

Algorithm 1: Facial reduction algorithm. Computes a sequences of faces Fi of the cone K con-
taining A ∩K, where A is an affine subspace.
begin

Initialize: F0 ← K, i = 0
repeat

1. Find reducing certificate, i.e. solve the feasibility problem

Find si ∈ F∗
i \ F⊥

i

subject to s⊥
i contains A

(⋆)

2. Compute new face, i.e. set Fi+1 = Fi ∩ s⊥
i

3. Increment counter i

until (⋆) is infeasible;

end

Note since the dimension of Fi drops at each iteration, Algorithm 1 terminates after finitely many steps.
Also note if the algorithm terminates after n iterations, then A∩ relintFn is non-empty by Lemma 2.
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Finding reducing certificates To execute the facial reduction algorithm (Algorithm 1), one must solve a
feasibility problem (⋆) at each iteration to find si ∈ F∗

i \F⊥
i orthogonal to A. It turns out this feasibility

problem is also a conic optimization problem. To see this, recall the definition of A from above (i.e.
A := {c−Ay : y ∈ Rm}), let A∗ : E → Rm denote the adjoint of A and pick x0 in the relative interior of
Fi. The solutions to (⋆) are (up to scaling) the solutions to:

Find si

subject to si ∈ F∗
i , 〈si, x0〉 = 1 (i.e. si ∈ F∗

i \ F⊥
i )

A∗si = 0, 〈c, si〉 = 0 (i.e. s⊥
i contains A ).

(5)

That s⊥
i contains A if and only if the second line of constraints holds can be shown using the standard

identity (rangeA)⊥ = nullA∗. Correctness of the first line of constraints arises from the following corollary
of Lemma 2:

Corollary 1. Let K be a convex cone, let s be an element of K∗, and let x be any element of relintK.
Then, s ∈ K∗ \ K⊥ if and only if 〈s, x〉 > 0.

Proof. The if direction is obvious. To see the other direction, suppose s is in K∗ \ K⊥ and 〈s, x〉 = 0.
Applying Lemma 2, this implies {x} ∩ relintK is empty, a contradiction.

Discussion We make a few concluding remarks about the algorithm. First, it terminates after finitely
many steps, since the dimension of Fi drops at each iteration. Second, if the algorithm terminates after
n iterations, then A ∩ relintFn is non-empty, a simple consequence of Lemma 2. In other words, a
reformulation of the original problem over the face Fn is strictly feasible.

Remark 1. Throughout this section, we have assumed the given problem is feasible. If the facial reduction
algorithm (as presented) is applied to a problem that is infeasible, it will identify faces Fi for which the
sets A∩Fi are also empty, leading to an equivalent problem that is also infeasible. Though it is possible
to modify the algorithm to detect infeasibility (see, e.g., [48]), we forgo this to simplify presentation.

2.4 Facial reduction of semidefinite programs

In this section, we develop a version of the facial reduction algorithm (Algorithm 1) for semidefinite
programs, i.e., we consider the case where the cone K = Sn

+ and the inner product space E = Sn. This

procedure, given explicitly by Algorithm 2, represents each face Fi as a set of the form UiS
di

+ UT
i (with

di ≤ n) for an appropriate rectangular matrix Ui (leveraging the description of faces given by Lemma 1).
It finds reducing certificates Si ∈ Sn by solving a semidefinite program over S

di

+ and it computes a new
face Fi+1 := Fi ∩ S⊥

i by finding a basis for the null space of particular matrix (related to the reducing
certificate).
Algorithm 2 applies to SDPs in the following form:

maximize bT y
subject to C −∑m

j=1 yjAj ∈ Sn
+,

where C and Aj are fixed symmetric matrices defining the following affine subspace A of Sn:

A :=






C −

m∑

j=1

yjAj : y ∈ R
m






.

We now explain the basic steps of Algorithm 2 in more detail.

Step one: find reducing certificate At each iteration i, Algorithm 2 finds a reducing certificate Si ∈
F∗

i \ F⊥
i for A ∩ Fi, where Fi denotes the face UiS

di

+ UT
i . This is done by solving conic optimization

problem (5) specialized to the case K = Sn
+. This specialization appears as SDP (⋆), where we’ve used

(4) of Lemma 1 to describe F∗
i and the point UiU

T
i ∈ relintFi to describe F∗

i \ F⊥
i .
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Algorithm 2: Facial reduction algorithm for an SDP. Computes a sequences of faces Fi := UiS
di

+ UT
i

of Sn
+ containing A∩ Sn

+, where A :=
{

C −∑m

j=1 yjAj : y ∈ Rm
}

.

Initialize: U0 = In×n, d0 = n, i = 0
repeat

1. Find redu
ing 
erti�
ate Si, i.e. solve the SDP

Find Si ∈ Sn

subje
t to UT
i SiUi ∈ Sd

+, UiU
T
i · Si = 1 (i.e. Si ∈ F∗

i \ F⊥
i )

C · Si = 0, Aj · Si = 0 ∀j ∈ {1, . . . , m} (i.e. S⊥
i 
ontains A)

(⋆)

2. Compute new fa
e, i.e. �nd basis B for null UT
i SiUi, set Ui+1 equal to

UiB, and set di+1 equal to dimnull UT
i SiUi.

3. In
rement 
ounter i

until (⋆) is infeasible;

Step two: compute new face The second step of Algorithm 2 computes a new face by intersecting Fi with
the subspace S⊥

i . Computing this intersection can be done using a matrix B ∈ Rd×r with range equal
to nullUT

i SiUi. Explicitly, we have that Fi ∩ S⊥
i = UiBSr

+BT UT
i , as shown in the next lemma.

Lemma 3. For U ∈ Rn×d, let F denote the set USd
+UT and let S ∈ Sn and B ∈ Rd×r satisfy

UT SU � 0, rangeB = nullUT SU.

The following relationship holds:
F ∩ S⊥ = UBS

r
+BT UT .

Proof. The containment ⊇ is obvious. To see the other containment, let UXUT be an element of F ∩S⊥

for some X � 0. Taking inner product with S yields

UXUT · S = X · UT SU = 0.

Since X � 0 and UT SU � 0, the inner product X ·UT SU vanishes if and only if rangeX is contained in
nullUT SU (see, for example, Proposition 2.7.1 of [31]). In other words, X is in the face BSr

+BT of Sd
+,

completing the proof.

Discussion We now make a few comments about Algorithm 2. Variants of this algorithm arise by using
different descriptions of Fi or by using different descriptions of the affine subspace A. If, for instance,
one represents A as the set of X solving the equations Aj ·X = bj for j ∈ {1, . . . , m}, then the set of Si

orthogonal to A equals the set






m∑

j=1

yjAj : y ∈ R
m, bT y = 0






. (6)

Hence, to apply Algorithm 2 to SDPs defined by equations Aj ·X = bj , one simply replaces the constraints
C · Si = 0, Aj · Si = 0 with membership in (6). We also note from Lemma 1 that one can represent Fi

and F∗
i using a sequence of invertible matrices (Ui, Vi), which could be a more convenient description

depending on implementation or the representation of A.

3 Our Approach

3.1 Partial facial reduction

Each iteration of the general facial reduction algorithm (Algorithm 1) finds a reducing certificate by
solving the feasibility problem (⋆). Though the reducing certificate identifies a lower dimensional face,
this benefit must be traded off with the cost of solving (⋆). In this section, we propose a method for
managing this trade-off. Specifically, we describe a method for reducing the complexity of the feasibility
problem (⋆) at the cost of only partially simplifying the given conic optimization problem.
Our method is as follows. Letting Fi denote the current face at iteration i of Algorithm 1, we

approximate Fi with a user-specified convex cone Fi,outer that satisfies:
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1. Fi ⊆ Fi,outer (which implies F∗
i,outer ⊆ F∗

i )

2. linFi = linFi,outer (i.e. F⊥
i,outer = F⊥

i )
3. F∗

i,outer has low search complexity,

where the first two conditions ensure that F∗
i,outer\F⊥

i,outer is a subset of F∗
i \F⊥

i . Using the approximation
Fi,outer, we then modify the feasibility problem (⋆) to search over this subset:

Find si ∈ F∗
i,outer \ F⊥

i,outer ⊆ F∗
i \ F⊥

i

subject to s⊥
i contains A.

(⋆)

By construction, a solution si ∈ F∗
i,outer \F⊥

i,outer to the modified feasibility problem is a solution to the

original; hence, Fi ∩ s⊥
i is a face of Fi (and the cone K) containing A ∩ K. Further, the approximation

Fi,outer can be chosen such that the search complexity of F∗
i,outer matches desired pre-processing effort.

In other words, the algorithm correctly identifies a face at cost specified by the user.

3.1.1 Existence of reducing certificates

Because we have introduced the approximation Fi,outer, the algorithm may not find a reducing certificate
(and hence a lower dimensional face) even if A ∩ relintFi is empty; hence, the algorithm may not find
a face of minimal dimension. This leads to the following question: when will the modified feasibility
problem (⋆) have a solution? Since we have chosen Fi,outer to be a convex cone, we can use Lemma 2 to
answer this question. Under the assumption that A∩Fi,outer is non-empty, this lemma states feasibility
of (⋆) is now equivalent to emptiness of A∩relintFi,outer. In other words, the modified feasibility problem
(⋆) has a solution if and only if a relaxation of the problem of interest is not strictly feasible. Figure 1
illustrates a situation when this condition holds and when it fails for two different subspaces.

3.1.2 Approximating faces of Sn
+

To apply this idea to SDP, and to modify the SDP facial reduction algorithm (Algorithm 2), we need a
way of approximating faces of Sn

+. To see how this can be done, let F denote a face USd
+UT of Sn

+ for

some U ∈ Rn×d. An approximation Fouter can be defined using an approximation Ŝd
+ of Sd

+. Moreover,

the search complexity of F∗
outer depends on the search complexity of Ŝ

d
+. Consider the following (whose

proof is straight-forward and omitted):

Lemma 4. Let Ŝd
+ ⊆ Sd be a convex cone containing Sd

+. For U ∈ Rn×d, let Fouter and F denote the

sets U Ŝd
+UT and USd

+UT , respectively. The following statements are true.

1. F ⊆ Fouter.
2. linF = linFouter

3. F∗
outer =

{

X ∈ Sn : UT XU ∈ (Ŝd
+)∗
}

.

Based on this lemma, we conclude to modify Algorithm 2, it suffices to replace the PSD constraint of SDP
(⋆) with membership in (Ŝd

+)∗, where Ŝd
+ is a cone outer-approximating Sd

+. Example approximations are
explored in the next section.

3.2 Approximations of Sd
+

In this section, we explore an outer approximation C(W) of Sd
+ parametrized by a setW of d×k rectangular

matrices. The parametrization is chosen such that the dual cone C(W)∗ equals the Minkowski sum of
faces WiS

k
+WT

i of Sd
+ for Wi ∈W. It is defined below:

Lemma 5. For a set W :=
{
W1, W2, . . . , W|W|

}
of d× k matrices, let C(W) denote the following convex

cone:

C(W) :=
{
X ∈ S

d : WT
i XWi ∈ S

k
+ i = 1, . . . , |W|

}
.
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Fig. 1: Illustrates when the facial reduction algorithm successfully finds a face when modified to use the
approximation Fi,outer . If the feasible set is contained in A∩Fi, the procedure succeeds: A∩relintFi,outer

is empty. In contrast, if the feasible set is contained in B ∩ Fi, the procedure fails: B ∩ relintFi,outer is
non-empty.

The dual cone C(W)∗ satisfies

C(W)∗ =







|W|
∑

i=1

WiXiW
T
i : Xi ∈ S

k
+






, (7)

and the following inclusions hold:

C(W)∗ ⊆ S
d
+ ⊆ C(W).

Proof. The inclusions are obvious from the definitions of C(W)∗ and C(W) (as is the fact that C(W) is a
convex cone). It remains to show correctness of (7). To show this, let T denote the set on the right-hand
side of (7). It is easy to check that T ∗ = C(W), which implies T ∗∗ = C(W)∗. Since T is a convex cone (as
is easily checked), T ∗∗ equals the closure of T . The result therefore follows by showing T is closed. To
see this, note that T equals the Minkowski sum of closed cones WiS

k
+WT

i . For matrices Zi ∈WiS
k
+WT

i ,

we have that
∑|W|

i=1 Zi = 0 only if Zi = 0 for each i. This shows that
∑|W|

i=1 Zi = 0 only if Zi is in the
lineality space of WiS

k
+WT

i . Direct application of the closedness criteria Corollary 9.1.3 of Rockafellar
[41] shows T is closed.

Since the modification to the SDP facial reduction algorithm (Algorithm 2) will involve searching over
C(W)∗ (as indicated by Lemma 4), we will investigate C(W) by studying the dual cone C(W)∗. We first
make a few comments regarding the search complexity of C(W)∗ for different choices of W. Note when
k = 1, each Wj in W is a vector and C(W)∗ is the conic hull of a finite set of rank one matrices. In other
words, C(W)∗ is polyhedral and can be described by linear programming. When k = 2, the set C(W)∗ is
defined by 2× 2 semidefinite constraints and can hence be described by second-order cone programming
(SOCP). This follows since each Xi ∈ S2

+ can be expressed using scalars a, b, c constrained as follows:

Xi =

(
a + b c

c a− b

)

� 0 ⇔ a ≥ 0 and a2 ≥ b2 + c2. (8)

Example choices for C(W)∗ are now given. As we will see, well-studied approximations of Sd
+ can be

expressed as sets of the form C(W)∗.

3.2.1 Examples

Example choices for C(W)∗ are given in Table 3.2.1 along with the cardinality of the set W that yields
each entry. Included are d × d non-negative diagonal matrices Dd, diagonally-dominant matrices DDd,
scaled diagonally-dominant matrices SDDd as well as matrices FWd

k with factor-width [9] bounded by
k. These sets satisfy

Dd = FWd
1 ⊆ DDd ⊆ SDDd = FWd

2 ⊆ FWd
3 ⊆ · · · ⊆ FWd

d = S
d
+,

and the sets Dd and DDd are polyhedral. Details on each entry follow.
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C(W) C(W)∗
Sear
h |W|

Xii ≥ 0 Non-negative diagonal (Dd) LP O(d)

Xii ≥ 0, Xjj + Xii ± 2Xij ≥ 0 Diagonally-dominant (DDd) LP O(d2)

2 × 2 prin
ipal sub-matri
es psd S
aled diagonally-dominant (SDDd) SOCP O(d2)

k × k prin
ipal sub-matri
es psd Fa
tor width-k (FWd
k) SDP O(

(
d
k

)
)

Table 3.2.1: Example outer and inner approximations of Sd
+, the search algorithm for C(W)∗, and the

cardinality of the set W.

3.2.2 Non-negative diagonal matrices (Dd)

A simple choice for C(W)∗ ⊆ Sd
+ is the set of non-negative diagonal matrices:

Dd :=
{
X ∈ S

d : Xii ≥ 0, Xij = 0 ∀i 6= j
}

.

The setDd contains non-negative combinations of matriceswiw
T
i , wherewi is a permutation of (1, 0, . . . , 0, 0)T .

In other words, the set Dd corresponds to the set C(W)∗ if we take

W =
{
(1, 0, . . . , 0, 0)T , (0, 1, . . . , 0, 0)T , . . . , (0, 0, . . . , 0, 1)T

}
.

3.2.3 Diagonally-dominant matrices (DDd)

Another well studied choice for C(W)∗ is cone of symmetric diagonally-dominant matrices with non-
negative diagonal entries [5]:

DDd :=






X ∈ S

d : Xii ≥
∑

j 6=i

|Xij |






.

This set is polyhedral. The extreme rays of DDd are matrices of the form wiw
T
i , where wi is any

permutation of
(1, 0, 0, . . . , 0)T , (1, 1, 0, . . . , 0)T , or (1,−1, 0, . . . , 0)T .

Taking W equal to the set of all such permutations gives C(W)∗ = DDd. This representation makes the
inclusion DDd ⊆ Sd

+ obvious. We also see that DDd contains Dd.

3.2.4 Scaled diagonally-dominant matrices (SDDd)

A non-polyhedral generalization of DDd is the set of scaled diagonally-dominant matrices SDDd. This
set equals all matrices obtained by pre- and post-multiplying diagonally-dominant matrices by diagonal
matrices with strictly positive diagonal entries:

SDDd :=
{

DTD : D ∈ Dd, Dii > 0, T ∈ DDd
}

.

The set SDDd can be equivalently defined as the set of matrices that equal the sum of PSD matrices
non-zero only on a 2× 2 principal sub-matrix (Theorem 9 of [9]). As an explicit example, we have that
SDD3 are all matrices X of the form

X =





a11 a12 0
a12 a22 0
0 0 0





︸ ︷︷ ︸

X1

+





b11 0 b13

0 0 0
b13 0 b33





︸ ︷︷ ︸

X2

+





0 0 0
0 c22 c23

0 c23 c33





︸ ︷︷ ︸

X3

,

where aij , bij , and cij are scalars chosen such that X1, X2 and X3 are PSD. In general, SDDd equals
C(W)∗ when W equals the set of d×2 matricesW for which WT XW returns a 2×2 principal sub-matrix
of X . For SDD3, we have

SDD3 = C({W1, W2, W3})∗ =

{
3∑

i=1

WiXiW
T
i : Xi ∈ S

2
+

}

,
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where

W1 =





1 0
0 1
0 0



 W2 =





1 0
0 0
0 1



 W3 =





0 0
1 0
0 1



 .

Also note from (8) that SDDd can be represented using second-order cone constraints. This latter fact is
used in recent work of Ahmadi and Majumdar [1] to define an SOCP-based method for testing polynomial
non-negativity. (A similar LP-based method is also presented in [1] that incorporates DDd.)

The kernels of SDD matrices The kernel of a scaled diagonally-dominant matrix has a structured basis
of vectors with disjoint support, where the support of a vector u ∈ Rn is the set of indices i for which
ui 6= 0. This follows because, up-to permutation, a scaled diagonally-dominant is block-diagonal, where
each block is either positive definite, equals the zero matrix, or has co-rank one (i.e., has a one dimensional
kernel), as shown in [17]. In Section 4, we use this result to show that reduced SDPs can be formulated
without damaging sparsity if SDD-approximations are used (which, since Dd ⊆ DDd ⊆ SDDd, shows
sparsity is not damaged when diagonally-dominant or diagonal approximations are used). The follow-
ing proposition summarizes relevant results of Chen and Toledo [17]. We include an elementary—and
different—proof for completeness.

Proposition 1. Suppose X ∈ Sd
+ is scaled-diagonally dominant. Then, there is a permutation matrix

P ∈ Rd×d for which

PXP T =









X1 0 · · · 0

0 X2 · · ·
...

...
...
. . . 0

0 0 0 XM









, (9)

where, for all m ∈ {1, . . . , M}, the matrix Xm ∈ S
dm

+ is either positive definite, a matrix of all zeros,
or has co-rank one. Moreover, when X has co-rank r, there is a matrix U ∈ Rd×r whose columns have
disjoint support and span the nullspace of X.

Proof. For X ∈ Sd, let GX := ([d], E) denote the graph with node set [d] := {1, . . . , d}, where {i, j} is in
the edge set E if and only if Xij 6= 0. Clearly there is a permutation matrix P that block-diagonalizes
X as in (9), defined in the obvious way by the connected-components of GX .
Now suppose P in (9) equals this permutation. That Xm has the claimed properties is immediate

when dm ≤ 2. Now suppose dm > 2 and that Xm is non-zero and not positive definite. Also, define the
graph GXm

= ([dm], Em), where {i, j} is in the edge set Em if and only if [Xm]ij 6= 0 and observe GXm

is connected (and, indeed, isomorphic to a connected component of GX defined above.)
We first claim all components of v ∈ nullXm \ {0} are non-zero. To begin, pick i ∈ [dm] such that vi

is non-zero. For arbitrary t ∈ [dm] \ i, there is a path T ⊆ Em from i to t for which

Xm = X̄ +
∑

{r,s}∈T

(er, es)Xrs(er, es)
T ,

where all entries of Xrs ∈ S2
+ are non-zero and X̄ is positive semidefinite. Picking the first edge {i, j} ∈ T ,

we conclude that Xij(ei, ej)
T v = Xij(vi, vj)

T = 0. For the sake of contradiction, suppose vj = eT
j v = 0.

Then, (vi, 0)T is in the kernel of Xij , showing a diagonal entry of Xij is zero (since vi 6= 0), contradicting
the fact all entries of Xij are non-zero. Hence, vj 6= 0. Repeating this argument using the next edge {j, k}
in T shows vk 6= 0. Repeating for all edges in T shows vt 6= 0. Since t was arbitrary, all components of v
are non-zero.
Now pick another non-zero w ∈ nullXm and consider the consecutive edges {i, j} and {j, k} in the

path T . Then, for scalars λ and γ,

(ei, ej)
T w = λ(ei, ej)

T v, (ej, ek)T w = γ(ej, ek)T v,

otherwise the non-zero matrices Xij ∈ S
2
+ and Xjk ∈ S

2
+ have two-dimensional kernels, and are therefore

the zero matrix, a contradiction. But since vj and wj are non-zero, we also have λ = γ. Since any
s, t ∈ [dm] are connected by a path, we conclude w = λv.
Existence of U is immediate, given that the kernel of Xm has a basis of the form {e1, . . . , edm

}, {0},
or {v}.
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3.2.5 Factor-width-k matrices

A generalization of SDDd (and diagonal matrices Dd) arises from notion of factor-width [9]. The factor-
width of a matrix X is the smallest integer k for which X can be written as the sum of PSD matrices
that are non-zero only on a single k × k principal sub-matrix.
Letting FWd

k denote the set of d × d matrices of factor-width no greater than k, we have that
SDDd = FWd

2 and Dd = FWd
1. To represent FWd

k as a cone of the form C(W)∗, we set W to be the set
of d×k matricesWj for whichWT

j XWj returns a k×k principal sub-matrix of X . Note that there are
(

d

k

)

such matrices, so a complete parametrization of FWd
k is not always practical using this representation.

Also note FWd
k equals Sd

+ when k = d.

3.2.6 Corresponding outer approximations

We briefly discuss the outer approximation C(W) corresponding to the discussed examples for C(W)∗.
To summarize, if C(W)∗ is the cone of non-negative diagonal matrices Dd, then C(W) is the cone of ma-
trices whose diagonal entries are non-negative. If C(W)∗ is the cone of non-negative diagonally-dominant
matrices DDd, then C(W) is the set of matrices X for which wT

i Xwi ≥ 0, where wiw
T
i is an extreme

ray of DDd (given in Section 3.2.3). If C(W)∗ is the set of scaled diagonally-dominant matrices SDDd,
then C(W) is the set of matrices with positive semidefinite 2×2 principal sub-matrices. Finally, if C(W)∗

equals FWd
k, the set of matrices with factor-width bounded by k, then C(W) is the set of matrices with

positive semidefinite k×k principal sub-matrices. We see as C(W)∗ grows larger, the constraints defining
C(W) become more restrictive, equaling a positive semidefinite constraint when d = k.

3.3 Finding faces of minimal dimension/rank maximizing reducing certificates

Suppose Fi := UiS
di

+ UT
i is the current face at iteration i of the SDP facial reduction algorithm (Algo-

rithm 2). Further suppose Fi,outer := UiC(Wi)U
T
i approximates Fi per the discussion in Section 3.1 (for

some specified set of rectangular matrices Wi). The following question is natural: how can one find a
reducing certificate Si that minimizes the dimension of the face Fi+1 := Fi ∩ S⊥

i when Si is constrained
to F∗

i,outer \ F⊥
i,outer? Using Lemma 3, it is easy to see this problem is solved by finding a solution to

Find Si ∈ Sn

subject to UT
i SiUi ∈ C(Wi)

∗ (i.e. Si ∈ F∗
i,outer)

C · Si = 0, Aj · Si = 0 ∀j ∈ {1, . . . , m} (i.e. S⊥
i contains A)

that maximizes the rank of UT
i SiUi. In this section, we give a method for finding solutions of this type.

To ease notation, we drop the subscript i and also consider a more general question: how does one
find maximum rank matrices in the set M∩ C(W)∗, when M is an arbitrary linear subspace? (In the
above,M is the subspace

{
UT

i SiUi : C · Si = 0, Aj · Si = 0
}
.) An answer to this question arises from the

next two lemmas.

Lemma 6. Let M be a subspace of S
d. If X⋆ :=

∑|W|
i=1 WiX

⋆
i WT

i maximizes
∑|W|

i=1 rankXi over M∩
C(W)∗, then X⋆ maximizes rankX over M∩ C(W)∗.

Proof. We will argue the kernel ofX⋆ is contained in the kernel of anyX ∈M∩C(W)∗, which immediately
implies rankX⋆ ≥ rankX .

To begin, we first argue for any X =
∑|W|

i=1 WiXiW
T
i ∈ M ∩ C(W)∗ that nullX⋆

i ⊆ nullXi for all
i ∈ {1, . . . , |W|}. To see this, first note that for any X ∈M∩ C(W)∗ the matrix

X⋆ + X =

|W|
∑

i=1

Wi(X
⋆
i + Xi)W

T
i

is also in M∩ C(W)∗ and satisfies rank(X⋆
i + Xi) ≥ rankX⋆

i . Now suppose for some d ∈ {1, . . . , |W|}
that nullX⋆

d 6⊆ nullXd. This implies that null(X⋆
d + Xd) = nullX⋆

d ∩ nullXd ⊂ nullX⋆
d which in turn

implies rank(X⋆
d + Xd) > rankX⋆

d . But this contradicts our assumption that X⋆ maximizes
∑

i rankXi.
Hence, nullX⋆

i ⊆ nullXi for all i ∈ {1, . . . , |W|}.
Now suppose an X ∈ M∩ C(W)∗ exists for which X⋆w = 0 but Xw 6= 0 for some w. Since Xw = 0

if and only if XiW
T
i w = 0 for all i, we must have for some d that WT

d w is in the kernel of X⋆
d but not

in the kernel of Xd. But we have already established that nullX⋆
d ⊆ nullXd. Hence, w cannot exist. We

therefore have that nullX⋆ ⊆ nullX for any X ∈M∩ C(W)∗, which completes the proof.
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We can use this condition to formulate an SDP whose optimal solutions yield maximum rank matrices

ofM∩ C(W)∗. To maximize
∑|W|

i=1 rankXi, we introduce matrices Ti constrained such that their traces
TrTi lower bound rankXi. We then optimize the sum of their traces.

Lemma 7. LetM be a subspace of Sd. A matrix X maximizing
∑|W|

i=1 rankXi overM∩C(W)∗ is given
by any optimal solution (X, Xi, Ti) to the following SDP:

maximize
∑|W|

i=1 TrTi

subject to X ∈M,

X =
∑|W|

i=1 WiXiW
T
i i.e. X ∈ C(W)∗

Xi � Ti ∀i ∈ {1, . . . , |W|}
I � Ti � 0 ∀i ∈ {1, . . . , |W|}.

(10)

Proof. Let rmax equal the maximum of
∑|W|

i=1 rankXi over the set of feasible Xi. We will show at opti-

mality
∑|W|

i=1 rankXi = rmax.
To begin, the constraint I � Ti � 0 implies the eigenvalues of Ti are less than one. Hence, rankTi ≥

TrTi. Since Xi � Ti , we also have rankXi ≥ rankTi. Thus, any feasible (Xi, Ti) pair satisfies

rmax ≥
|W|
∑

i=1

rankXi ≥
|W|
∑

i=1

rankTi ≥
|W|
∑

i=1

TrTi. (11)

Now note for any feasible (X, Xi) we can pick α > 0 and construct a feasible point (αX, αXi, T̂i) that

satisfies
∑|W|

i=1 Tr T̂i =
∑|W|

i=1 rankXi; if Xi has eigen-decomposition
∑

j λjuju
T
j for λj > 0, simply take

T̂i =
∑

j uju
T
j and α equal to

max
⋃

i

{
1

λ
: λ is a positive eigenvalue of Xi

}

.

Hence, some feasible point (X̂, X̂i, T̂i) satisfies
∑|W|

i=1 Tr T̂i = rmax. Therefore, the optimal (X, Xi, Ti)
satisfies

|W|
∑

i=1

Tr Ti ≥ rmax.

Combining this inequality with (11) yields that at optimality

|W|
∑

i=1

Tr Ti =

|W|
∑

i=1

rankXi = rmax,

which completes the proof.

Combining the previous two lemmas shows how to maximize rank overM∩ C(W)∗:

Corollary 2. A matrix X ∈M∩ C(W)∗ of maximum rank is given by any optimal solution (X, Xi, Ti)
to the SDP (10).

Maximum rank solutions for polyhedral approximations We next illustrate how the search for maximum
rank solutions simplifies when C(W)∗ is polyhedral. Recall if W is a set of vectors, i.e. if k = 1, then
C(W)∗ is the conic hull of a finite set of rank one matrices. In other words, C(W)∗ is the set of matrices

of the form
∑|W|

i=1 λiwiw
T
i for λi ≥ 0 and wi ∈ W. In this case, SDP (10) simplifies into the following

linear program.

Corollary 3. A matrix X ∈M∩ C(W)∗ of maximum rank is given by any optimal solution (X, λ, t) to
the following LP:

maximize
∑|W|

i=1 ti
subject to X ∈ M

X =
∑|W|

i=1 λiwiw
T
i , i.e. X ∈ C(W)∗

λi ≥ ti ∀i ∈ {1, . . . , |W|}
1 ≥ ti ≥ 0 ∀i ∈ {1, . . . , |W|}.

(12)
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An alternative approach We mention an alternative to SDP (10) for maximizing
∑|W|

i=1 rankXi. Notice
that membership in C(W)∗ can be expressed using a semidefinite constraint on a block-diagonal ma-

trix, where maximizing the rank of this matrix is equivalent to maximizing
∑|W|

i=1 rankXi. We conclude
∑|W|

i=1 rankXi is maximized by finding a maximum rank solution to a particular block-diagonal SDP,
which can be done using interior point methods (since solutions in the relative interior of the feasible set
are solutions of maximum rank). Note, however, that this alternative approach does not permit use of the
simplex method when C(W)∗ is polyhedral, since the simplex method produces solutions on the boundary
of the feasible set. In contrast, the simplex method can be used to solve LP (12), the specialization of
SDP (10) to polyhedral C(W)∗.

3.4 Strictly feasible formulations

It is well-known the problem (⋆) of Algorithm 2 is not strictly feasible. While this does not preclude
solution of (⋆) via the self-dual embedding technique (e.g., [20],[52]), it does preclude solution via standard
barrier methods and may cause numerical difficulties. It is therefore natural to ask if our formulation
for maximum rank reducing certificates is always strictly feasible. Unfortunately, a feasible point that
satisfies Ti � 0 strictly may not exist. Hence, if strict feasibility is a concern, one must use an alternative
approach to find reducing certificates in C(W)∗, and potentially give up on maximum rank certificates.
We propose two alternatives. One, modify the strictly feasible variant of (⋆) proposed by Lemma 10 of
Lourenço et al. [28] to use C(W)∗. Two, use a heuristic big-M formulation. That is, for a large number
M , solve

maximize
∑|W|

i=1 TrTi + Mα
subject to X ∈M,

X =
∑|W|

i=1 WiXiW
T
i i.e. X ∈ C(W)∗

Xi � Ti ∀i ∈ {1, . . . , |W|}
I � Ti � (α− 1)I ∀i ∈ {1, . . . , |W|},

(13)

which has a strictly feasible point (X, Xi, Ti, α) = (0, 0,−I,−1). IfM is sufficiently large such that α = 1
and hence Ti � 0 holds at optimality, then a solution (X, Xi, Ti, α) of (13) yields a solution (X, Xi, Ti)
of (10).
Finally, we mention that strict feasibility of the LP (12) is not a concern since exact solutions of

LPs can be found efficiently even if strict feasibility fails. That is, finding maximum rank solutions for
polyhedral C(W)∗ can be done accurately and efficiently, both in theory and practice, even if strict
feasibility of (12) does not hold. We illustrate this with examples in Section 7.

3.5 Explicit modifications of the SDP facial reduction algorithm (Algorithm 2)

The results of this section are now combined to modify Algorithm 2. Specifically, we introduce an approxi-
mation Fi,outer := UiC(Wi)U

T
i of the face Fi := UiS

di

+ UT
i at each iteration i, whereWi :=

{
W1, . . . W|Wi|

}

is some specified set of rectangular matrices. A reducing certificate Si ∈ F∗
i,outer is then found that max-

imizes the rank of UT
i SiUi ∈ C(Wi)

∗ by replacing SDP (⋆) of Algorithm 2 with the following:

maximize
∑|Wi|

k=1 Tr Tk

subject to UiU
T
i · Si > 0

UT
i SiUi =

∑|Wi|
k=1 WkS̄kWT

k , i.e., UT
i SiUi ∈ C(Wi)

∗

S̄k � Tk ∀k ∈ {1, . . . , |Wi|}
I � Tk � 0 ∀k ∈ {1, . . . , |Wi|}
C · Si = 0, Aj · Si = 0 ∀j ∈ {1, . . . , m}.

(⋆)

Here, the decision variables are Si and Tk, S̄k (for k ∈ {1, . . . , |Wi|}) and the first two constraints are
equivalent to the condition that Si ∈ F∗

i,outer \ F⊥
i,outer (since UiU

T
i ∈ relintFi,outer). To maximize the

rank of UT
i SiUi, we have applied Corollary 2, takingM equal to the subspace

{
UT

i SUi : C · S = 0, Aj · S = 0
}
.

Note the strict inequality UiU
T
i ·Si = TrUT

i SiUi > 0 is satisfied by any non-zero matrix inM∩C(Wi)
∗;
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hence, in practice one can remove this inequality and instead verify that UT
i SiUi 6= 0 holds at optimality,

i.e. one can verifyM∩ C(Wi)
∗ contains a non-zero matrix.

Again note the complexity of solving this modified problem is controlled by Wi. When Wi contains
di × 1 rectangular matrices (e.g. C(Wi)

∗ equals Ddi or DDdi), the modified problem is a linear program.
When Wi contains di × 2 rectangular matrices (e.g. C(Wi)

∗ equals SDDdi), it is an SOCP.

4 Formulation of reduced problems and illustrative examples

The facial reduction algorithm for SDP (Algorithm 2) identifies a face of Sn
+ that can be used to formulate

an equivalent SDP. In this section, we give simple examples illustrating the basic steps of Algorithm 2
when modified to use approximations as described in Section 3. We also prove sparsity can be preserved
when certain approximations are used (Proposition 2).

4.1 Formulation of reduced problems

Algorithm 2 identifies a face F := USd
+UT (where U ∈ Rn×d is a fixed matrix with linearly independent

columns and d ≤ n) containing the intersection of Sn
+ with an affine subspace A := {C−∑m

i=1 yiAi : y ∈
Rm}. Letting V ∈ Rn×n−d denote a matrix whose columns form a basis for nullUT , we can reformulate
the original SDP (reproduced below):

maximize bT y
subject to C −∑m

i=1 yiAi ∈ Sn
+

explicitly over F as follows:

maximize bT y
subject to UT (C −∑m

i=1 yiAi)U ∈ Sd
+

UT (C −∑m

i=1 yiAi)V = 0
V T (C −∑m

i=1 yiAi)V = 0,

where we have used a representation of F given by Lemma 1. Here, we see the reduced program is a
semidefinite program over Sd

+ described by linear equations and d× d matrices UT CU and UT AiU .

4.2 Sparsity of reduced problems

Depending on U , the matrices UT CU and UT AiU , though of lower order, may be dense even if C and Ai

are sparse. It is therefore natural to ask how the choice of approximation, discussed in Section 3, affects
the structure of U and hence the sparsity of UT CU and UT AiU . It turns out a strong statement can be
made when scaled diagonally-dominant approximations (SDDd) are used. This statement also applies to
diagonal (Dd) and diagonally-dominant (DDd) approximations, since both Dd and DDd are subsets of
SDDd. Indeed, a stronger statement can be made for diagonal approximations. Formally:

Proposition 2. Let F denote the face identified by the SDP facial reduction algorithm (Algorithm 2).
The following statements hold.

1. If at each iteration UT
i SiUi is diagonal, i.e., is in Ddi , then there exists U ∈ Rn×d such that F =

USd
+UT , where UT XU is a principal sub-matrix of X ∈ Sn for all X ∈ Sn.

2. If at each iteration UT
i SiUi is scaled diagonally-dominant, i.e., is in SDDdi , then there exists U ∈

Rn×d such that F = USd
+UT , where the columns of U have disjoint support. In addition, nnz(UT XU) ≤

nnz(X) for all X ∈ Sn, where nnz(·) returns the number of non-zero entries of its argument.

The first statement is trivial to verify. The next statement is a consequence of Proposition 1, which im-
plies existence of a matrix U whose columns have disjoint support. Using disjoint support, the inequality
nnz(UT XU) ≤ nnz(X) easily follows. Also note for diagonal approximations, we can say more about the
equations V TA(y)U = 0 and V TA(y)V = 0. In particular, nnz(V T XV )+nnz(UT XV )+nnz(UT XU) ≤
nnz(X) for all X ∈ Sn since (U, V ) can be chosen equal to a permutation matrix.
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4.3 Illustrative Examples

4.3.1 Example with diagonal approximations (Dd)

In this example, we modify Algorithm 2 to use diagonal approximations; i.e. at iteration i, the face
Fi := UiS

di

+ UT
i is approximated by the set Fi,outer = UiC(Wi)U

T
i , where C(Wi)

∗ equals Ddi , the set of
di×di matrices that are non-negative and diagonal. A reducing certificate Si is found in F∗

i,outer, the set

of matrices X for which UT
i XUi is in Ddi . We apply the algorithm to the following SDP:

Find y ∈ R4

subject to

A(y) =









y1 0 0 0 0
0 −y1 y2 0 0
0 y2 y2 − y3 0 0
0 0 0 y3 0
0 0 0 0 y4









∈ S5
+.

Taking U0 equal to the identity matrix and the initial face equal to F0 = U0S
5
+U0, we seek a matrix

S0 orthogonal to A(y) (for all y) for which UT
0 S0U0 is non-negative and diagonal. An S0 satisfying this

constraint and a basis B for nullUT
0 S0U0 is given by:

S0 =









1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









B =









0 0 0
0 0 0
1 0 0
0 1 0
0 0 1









.

Taking U1 = U0B = B, yields the face F1 = U1S
3
+UT

1 , i.e. the set of PSD matrices in S5
+ with vanishing

first and second rows/cols.
Continuing to the next iteration, we seek a matrix S1 orthogonal to A(y) for which UT

1 S1U1 is
non-negative and diagonal. An S1 satisfying this constraint and a basis B for nullUT

1 S1U1 is given by:

S1 =









0 0 0 0 0
0 0 − 1

2 0 0
0 − 1

2 1 0 0
0 0 0 1 0
0 0 0 0 0









B =





0
0
1



 .

Setting U2 = U1B gives the face F2 = U2S1
+UT

2 , where U2 = (0, 0, 0, 0, 1)T .
Terminating the algorithm, we now formulate a reduced SDP over F2. Letting V denote a basis for

nullUT
2 yields:

Find y ∈ R4

subject to UT
2 A(y)U2 ∈ S1

+

UT
2 A(y)V = 0

V TA(y)V = 0,

which simplifies to

Find y ∈ R4

subject to y4 ≥ 0
y1 = y2 = y3 = 0.

Existence of reducing certificates Lemma 2 states that existence of Si ∈ F∗
i,outer \F⊥

i,outer implies A(y)∩
relintFi,outer is empty. We now verify this fact. Clearly, A(y) is contained in relintF0,outer only if the
inequalities

y1 ≥ 0 − y1 ≥ 0

are strictly satisfied, which cannot hold. Similarly, A(y) is contained in relintF1,outer only if y1 = y2 = 0
and the inequalities

y3 ≥ 0 y2 − y3 ≥ 0

are strictly satisfied, which again cannot hold.
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4.3.2 Example with diagonally-dominant approximations (DDd)

In this next example, we modify Algorithm 2 to use diagonally-dominant approximations; i.e. at iteration
i, the face Fi := UiS

di

+ UT
i is approximated by the set Fi,outer = UiC(Wi)U

T
i , where C(Wi)

∗ equals DDdi ,
the set of di × di matrices that are diagonally-dominant. A reducing certificate Si is found in F∗

i,outer ,

the set of matrices X for which UT
i XUi is in DDdi . We apply the algorithm to the SDP

Find y ∈ R3

subject to

A(y) =







1 −y1 0 −y3

−y1 2y2 − 1 y3 0
0 y3 2y1 − 1 −y2

−y3 0 −y2 1






∈ S4

+,

and execute just a single iteration of facial reduction. Taking U0 equal to the identity, a matrix S0

orthogonal to A for which UT
0 S0U0 is diagonally-dominant and a basis B for nullUT

0 S0U0 is given by

S0 =







1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1







B =
1√
2







1 0
−1 0

0 1
0 −1







.

Taking U1 = U0B = B, yields the face F1 = U1S2
+UT

1 . (Note the columns of U have disjoint support, a
reflection of Proposition 2.)
Terminating the algorithm and constructing the reduced SDP using a matrix V satisfying rangeV =

nullUT
1 imposes the linear constraints that y1 = y2 = 1, y3 = 0; i.e. the reduced SDP has a feasible set

consisting of a single point.

Existence of reducing certificates As was the case in the previous example, existence of a reducing
certificate in F∗

i,outer \F⊥
i,outer implies emptiness of A(y)∩ relintFi,outer. We now verify this fact. At the

first (and only) iteration, membership of A(y) in F0,outer implies wT
kA(y)wk ≥ 0, where wkwT

k is any
extreme ray of DD4. Taking w1 = (1, 1, 0, 0)T and w2 = (0, 0, 1, 1)T , we have that A(y) is contained in
relintF0,outer only if the inequalities

wT
1 A(y)w1 = 2y2 − 2y1 ≥ 0

wT
2 A(y)w2 = 2y1 − 2y2 ≥ 0

are strictly satisfied, which cannot hold.

5 Recovery of dual solutions

In this section we address a question that is relevant to any pre-processing technique based on facial
reduction, i.e. it does not depend in any way on the approximations introduced in Section 3. Specifically,
how (and when) can one recover solutions to the original dual problem? To elaborate, consider the
following primal-dual pair1 for a general conic optimization problem over a closed, convex cone K:

(P ) : (D) :
maximize bT y
subject to c−Ay ∈ K

minimize 〈c, x〉
subject to A∗x = b

x ∈ K∗,

and suppose the general facial reduction algorithm (Algorithm 1) is applied to the primal problem (P ).
The reduced primal-dual pair is written over the identified face F and its dual cone F∗ as follows:

1

This designation of primal (P ) and dual (D), while standard in fa
ial redu
tion literature, is opposite the 
onvention

used by semide�nite solvers su
h as SeDuMi. We will swit
h to the 
onvention favored by solvers when we dis
uss our

software implementation in Se
tion 6.
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(R/P ) : (R/D) :
maximize bT y
subject to c−Ay ∈ F

minimize 〈c, x〉
subject to A∗x = b

x ∈ F∗.

Since (by construction) F contains c − Ay for any feasible point y of (P ), any solution to (R/P )
solves (P ). On the other hand, a solution x to (R/D) is not necessarily even a feasible point of (D) since
K∗ ⊆ F∗. While recovering a solution to (D) from a solution to (R/D) may seem in general hopeless,
the facial reduction algorithm produces reducing certificates si ∈ F∗

i , where

K∗ = F∗
0 ⊂ F∗

1 ⊂ · · · ⊂ F∗
N = F∗,

that can be leveraged to make recovery possible. This leads to the following problem statement:

Problem 1 (Recovery of dual solutions). Given a solution x to (R/D), reducing certificates s0, . . . , sN−1,
i.e. given si for which

〈c, si〉 = 0
A∗si = 0

si ∈ F∗
i \ F⊥

i

Fi+1 := Fi ∩ s⊥
i (which implies F∗

i+1 = F∗
i + lin si)

F0 := K, F := FN ,

find a solution to (D).

To solve this problem, we generalize a recovery procedure described in [33] for so-called well-behaved
SDPs. (See the discussion following [33, Theorem 5].) First, we observe that each si is a feasible direction
for (R/D) that does not increase the dual objective 〈c, x〉. We also observe that F∗

i+1 = F∗
i + lin si (since

K, and hence Fi, is closed). This implies if F∗
i + lin si is closed, one could, for any x ∈ F∗

i+1, find an
α such that x + αsi is in F∗

i . We conclude if F∗
i + lin si were closed for each i, then a solution to (D)

could be constructed using a sequence of line searches. In other words, the following algorithm would
successfully recover a solution to (D).

Algorithm 3: Recovery of dual solutions

Input: A solution x ∈ F∗ to the reduced dual (R/D) and reducing certificates s0, . . . , sN−1

Output: A solution x to the original dual (D) or flag indicating failure.
for i← N − 1 down to 0 do

1. Using a line search, find α s.t. x + αsi ∈ F∗
i .

2. If no α exists, return FAIL. Else, set x← x + αsi.

end

The following properties of this algorithm can be stated immediately:

Lemma 8. Algorithm 3 has the following properties:

1. Sufficient condition for recovery. Algorithm 3 succeeds if F∗
i + lin si is closed for all i.

2. Necessary condition for recovery. Suppose (x, y) are optimal solutions to (R/P) and (R/D) with zero
duality gap, i.e. 〈c, x〉 = bT y. Then, Algorithm 3 succeeds only if (P) and (D) have solutions with
zero duality gap.

We note the sufficient condition above always holds when K is polyhedral since F +M is closed for any
subspaceM and face F of a polyhedral cone. On the other hand, Sn

+ + linS is closed only if S is zero
or positive definite. (To show this, one can use essentially the same argument that proves Lemma 2.2 of
[40]. This lemma shows that for a face F of Sn

+, the set Sn
+ + linF is closed only if F = {0} or F = Sn

+.)
Hence, a better sufficient condition for SDP is desired.
In the next section, we give a sufficient condition that is also necessary. This condition is specialized to

the case K = S
n
+ when one iteration of facial reduction is performed. The restriction to the single iteration

case is imposed so that the condition is easy to state, but it can be extended to the multi-iteration case.
We also give a second sufficient condition that is independent of the solution x (Condition 2).

Remark 2. Closure of K∗ + lin s for s ∈ K∗ has been studied in other contexts. Borwein and Wolkowicz
use this condition to simplify their generalized optimality conditions for convex programs (see Remark
6.2 of [10]). Failure of a related condition, namely closure of K∗ + linF for a face F of K∗, is used to
construct primal-dual pairs with infinite duality gaps in [45].
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5.1 A necessary and sufficient condition for dual recovery

In this section, we give a necessary and sufficient condition (Condition 1) for dual solution recovery that
applies when K = Sn

+ and a single iteration of facial reduction is performed. In this case, the primal-dual
pair is given by

(P − SDP ) : (D − SDP ) :

maximize bT y
subject to C −∑m

i=1 yiAi � 0
minimize C ·X
subject to Ai ·X = bi ∀i ∈ {1, . . . , m}

X � 0,

where the primal problem is reproduced from Section 2.4. The reduced primal-dual pair is over a face
F := Sn

+ ∩ S⊥ and its dual cone F∗ = Sn
+ + linS,

(R/P − SDP ) : (R/D − SDP ) :

maximize bT y
subject to A(y) = C −∑m

i=1 yiAi

UTA(y)U ∈ Sd
+

UTA(y)V = 0
V TA(y)V = 0

minimize C ·X
subject to Ai ·X = bi ∀i ∈ {1, . . . , m}

X = (U, V )

(
W Z
ZT R

)

(U, V )T

W ∈ Sd
+, R ∈ Sn−d, Z ∈ Rd×(n−d),

where S ∈ Sn
+ is a reducing certificate and (U, V ) is an invertible matrix satisfying S = V V T and

rangeU = nullS. Here, the primal problem is reproduced from Section 4.1, and the dual problem arises
from a description of F∗ given by Lemma 1.
Algorithm 3 constructs a solution to (D − SDP ) from a solution X to (R/D − SDP ) if and only if

X is in Sn
+ + linS. The following shows this is equivalent to the condition that nullW ⊆ nullZT . We

give a direct proof of this fact, but note it also follows (essentially) by combining [33, Lemma 3] with
[31, Lemma 3.2.1].

Lemma 9. Let (U, V ) be an invertible matrix for which F := Sn
+ ∩ S⊥ = USd

+UT and S = V V T . A

matrix in the dual cone F∗ = Sn
+ + linS, i.e., a matrix X of the form

X = (U, V )

(
W Z
ZT R

)

(U, V )T for some W ∈ Sd
+, R ∈ Sn−d, Z ∈ Rd×n−d, (14)

is in Sn
+ + linS if and only if nullW ⊆ nullZT .

Proof. For the “only if” direction, suppose X is in Sn
+ + linS, i.e. for an α ∈ R suppose

X + αV V T = (U, V )

(
W Z
ZT R + αI

)

(U, V )T ∈ S
n
+.

Here, membership in S
n
+ holds only if ZT (I −WW †) = 0, where (I −WW †) is the orthogonal projector

onto nullW (see, e.g. A.5 of [11]). But this implies that nullW ⊆ nullZT , as desired.
To see the converse direction, suppose X is such that Z and W satisfy nullW ⊆ nullZT . The result

follows by finding α for which X + αS � 0. We do this by finding an α1 and α2 for which

X − V RV T + α1S � 0 and V RV T + α2S � 0.

Adding these two inequalities then demonstrates that X + (α1 + α2)S � 0. To find α1, we note that

X − V RV T + α1S = (U, V )

(
W Z
ZT α1I

)

(U, V )T .

Taking a Schur complement, the above is PSD if and only if

W − 1

α1
ZZT � 0.
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But since nullW ⊆ nullZT , the matrix ZZT is contained in the face G =
{
T ∈ Sd

+ : rangeT ⊆ rangeW
}

whereW is in the relative interior of G. This implies existence of α1 > 0 for whichW− 1
α1

ZZT ∈ G ⊆ Sd
+,

as desired. To find α2, we note that

V RV T + α2S = V (R + α2I)V T ,

where existence of α2 for which R + α2I � 0 is obvious, completing the proof.

The above characterization of Sn
+ + linS yields a necessary and sufficient condition for success of Algo-

rithm 3 under the assumption that one iteration of facial reduction was performed:

Condition 1. The solution X to the reduced dual (R/D − SDP ) satisfies nullW ⊆ nullZT .

The following example illustrates success and failure of Condition 1.

Example 1. Consider the following primal-dual pair:

maximize y3 + 2y2

subject to

A(y) =





y1 y2 0
y2 −y3 y2

0 y2 y3



 � 0

minimize 0
subject to x33 − x22 = −1

x12 + x21 + x23 + x32 = −2
x11 = 0
X � 0

and let S = V V T , with V = (e2, e3). Clearly, S is a reducing certificate defining a face F := Sn
+ ∩ S⊥ =

US1
+UT for U = e1 = (1, 0, 0)T . Rewriting the primal-dual pair over F and F∗ gives:

maximize y3 + 2y2

subject to
V TA(y)V = 0
UTA(y)V = 0
UTA(y)U � 0

A(y) =





y1 y2 0
y2 −y3 y2

0 y2 y3





minimize 0
subject to x33 − x22 = −1

x12 + x21 + x23 + x32 = −2
x11 = 0
X ∈ S3, UT XU = x11 ≥ 0

A solution to the dual problem that satisfies Condition 1 is given by:

X =





0 0 0
0 0 −1
0 −1 −1



 .

To see the condition is satisfied, note Z = (x12, x13) = (0, 0) and W = x11 = 0. Hence, nullZT contains
(indeed, equals) nullW . We therefore see that solution recovery succeeds, i.e. for (say) α = 2:

X + αS =





0 0 0
0 α −1
0 −1 α− 1



 � 0.

Conversely, the following solution fails Condition 1:

X =





0 −1 0
−1 0 0
0 0 −1



 . (15)

Here, Z = (−1, 0) and W = 0. Hence, nullZT = {0} does not contain nullW = R and recovery must
fail. In other words, there is no α for which

X + αS =





0 −1 0
−1 α 0
0 0 α− 1



 � 0,

which is easily seen.
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5.1.1 Strong duality is not sufficient for dual recovery

An additional observation can be made about Example 1. As we observed in Lemma 8, zero duality
gap between the original primal-dual pair (P ) and (D) is a necessary condition for recovery to succeed
when the reduced primal-dual pair (R/D) and (R/D) has zero duality gap. Example 1 shows this is
not a sufficient condition when K = Sn

+. Here, both the original and the reduced primal-dual pairs have
zero duality gap yet successful recovery depends on the specific solution found for the reduced dual
(R/D − SDP ). This is summarized below:

Corollary 4. The dual solution recovery procedure of Algorithm 3 can fail even if both the original
primal-dual pair (P ) and (D) and the reduced primal-dual pair (R/P ) and (R/D) have zero duality gap.

5.1.2 Ensuring successful dual recovery

Condition 1 lets one determine if recovery is possible by a simple null space computation. Unfortunately,
this check must be done after the dual problem (R/D − SDP ) has been solved as it depends on the
specific solution that is obtained. In this section, we give a simple sufficient condition that can be checked
prior to solving (R/D−SDP ). If this condition is satisfied, a modification of the reduced primal-dual pair
can be performed to guarantee successful recovery, independent of the solution found for (R/D−SDP );
the explicit modification is given by (R/P − SDP − 2) and (R/D − SDP − 2).
The idea is simple: when can one assume Z = 0 and hence ensure Condition 1 holds without loss of

generality? By [33, Theorem 5], this assumption can be made if (R/P −SDP ) satisfies Slater’s condition
and (P − SDP ) is well-behaved—where (P − SDP ) is well-behaved if, for all cost vectors b, the SDPs
(P − SDP ) and (D − SDP ) have no duality gap and (D − SDP ) attains it optimal value when it is
finite. It turns out we can assume Z = 0 under a related but purely linear-algebraic condition inspired
by a characterization of well-behaved SDPs [33, Theorem 3]. The condition and statement follow.

Condition 2. The equations of (R/P − SDP ) have the following property:

{
y ∈ R

m : V TA(y)V = 0
}

=
{
y ∈ R

m : V TA(y)V = 0, V TA(y)U = 0
}

,

that is, V TA(y)V = 0 implies V TA(y)U = 0.

Proposition 3. Suppose Condition 2 holds. If (R/D − SDP ) has an optimal solution, then it has an
optimal solution with Z = 0.

Proof. Let X be an optimal solution to (R/D − SDP ), which, for some W ∈ Sd
+, Z ∈ Rd×(n−d), and

R ∈ Sn−d satisfies

X = (U, V )

(
W Z
ZT R

)

(U, V )T . (16)

We will construct a new solution X̂ by setting Z to zero and replacing R with R + R̂ for a particular R̂.
Towards this, we first show existence of X implies the set

{
y ∈ Rm : V TA(y)V = 0

}
is non-empty. If

it were empty, then, by Farka’s lemma, there exists R̃ satisfying R̃ · (V T AiV ) = 0 and R̃ · (V T CV ) < 0,
which implies

X̃ = X + (U, V )

(
0 0

0 R̃

)

(U, V )T

is a feasible point of (R/D−SDP ) with strictly better cost, contradicting optimality of X . Hence, there
exists y0 ∈

{
y ∈ R

m : V TA(y)V = 0
}
.

Now, consider the linear maps L1 : Rm → Sn−d and L2 : Rm → Rd×(n−d) and corresponding adjoint
maps L∗

1 : Sn−d → Rm and L∗
2 : Rd×(n−d) → Rm defined via

L1(y) =

m∑

i=1

yi(V
T AiV ), L∗

1(R) =
(
(V T A1V ) · R, · · · , (V T AmV ) ·R

)T

L2(y) =
m∑

i=1

yi(U
T AiV ) L∗

2(Z) =
(
(UT A1V ) · Z, · · · , (UT AmV ) · Z

)T
,
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where Rd×(n−d) and Sn−d are equipped with trace inner-product P ·Q := Tr PT Q. With these definitions,
L1(y) = V T CV iff V TA(y)V = 0 and L2(y) = UT CV iff V TA(y)U = 0. Further, X of form (16) satisfies
the equations Ai ·X = bi for (R/D − SDP ) iff

L∗
1(R) + 2L∗

2(Z) = b−
(
(UT A1U) ·W, . . . , (UT AmU) ·W

)T
.

Now suppose Condition 2 holds. Given existence of y0, it follows that nullL1 ⊆ nullL2—otherwise,
we could construct solutions to L1(y) = V T CV that do not solve L2(y) = UT CV , a contradiction of
Condition 2. But nullL1 ⊆ nullL2 holds if and only if rangeL∗

1 ⊇ rangeL∗
2. Hence, we can find a R̂

satisfying

L∗
1(R̂) = 2L∗

2(Z), (17)

which implies the matrix

X̂ = (U, V )

(
W 0

0 R + R̂

)

(U, V )T

satisfies Ai · X̂ = bi. Since W ∈ S
d
+, it follows X̂ is feasible for (R/D − SDP ).

We now show C · X = C · X̂, proving X̂ is also optimal. For this, it suffices to show V R̂V T · C =
2UZV T · C. Since L1(y0) = V T CV and, by Condition 2, L2(y0) = UT CV , we conclude

〈L∗
1(R̂), y0〉 = 〈R̂, L1(y0)〉 = 〈R̂, V T CV 〉 = V R̂V T · C,

〈L∗
2(Z), y0〉 = 〈Z, L2(y0)〉 = 〈Z, UT CV 〉 = UZV T · C,

which, by (17), shows V R̂V T · C = 2UZV T · C, as desired.

We conclude one can fix Z to zero in (R/D − SDP ) and omit the equations V TA(y)U = 0 from
(R/P − SDP ) under Condition 2. This leads to a modified primal-dual pair:

(R/P − SDP − 2) : (R/D − SDP − 2) :

maximize bT y
subject to A(y) = C −∑m

i=1 yiAi

UTA(y)U ∈ Sd
+

V TA(y)V = 0

minimize C ·X
subject to Ai ·X = bi ∀i ∈ {1, . . . , m}

X = (U, V )

(
W 0
0 R

)

(U, V )T

W ∈ Sd
+, R ∈ Sn−d,

where any solution to (R/P − SDP − 2) solves the original primal (P − SDP ) and any solution to
(R/D − SDP − 2) satisfies Condition 1 (by construction). Note given a solution of (R/D − SDP − 2),
Algorithm 3 recovers a solution to (D − SDP ) that is block-diagonal (i.e., satisfies Z = 0); identical
block-diagonal structure was established for well-behaved SDPs by [33, Theorem 5].

Comparison with well-behavedness We now illustrate differences between Condition 2 and well-behavedness
of (P − SDP ). Suppose (R/P − SDP ) is constructed using one iteration of facial reduction. From [33,
Theorem 3], it follows Condition 2 and well-behavedness of (P − SDP ) are equivalent if (R/P − SDP )
satisfies Slater’s condition. The following examples show this equivalence can fail if Slater’s condition
does not hold.

Example 2 (A well-behaved SDP and failure of Condition 2). Consider the following SDP:

maximize bT y
subject to

A(y) =







y1 0 y2 0
0 −y1 0 0
y2 0 y2 0
0 0 0 −y2






∈ S4

+.

The feasible set is given by y1 = y2 = 0, and a dual optimal solution by a non-negative diagonal matrix X
satisfying b1 = x22−x11 and b2 = x44−x33, which clearly exists for all b. Hence, this SDP is well-behaved.
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For the rank two reducing certificate S = e1e1 + e2e
T
2 , we have that (R/P − SDP ) takes the form:

maximize bT y
subject to

UTA(y)U =

(
y2 0
0 −y2

)

∈ S2
+, V TA(y)U =

(
y2 0
0 0

)

= 02×2,

V TA(y)V =

(
y1 0
0 −y1

)

= 02×2

where V = (e1, e2), U = (e3, e4) and S = V V T . Clearly UTA(y)U � 0 cannot be strictly satisfied, hence
(R/P − SDP ) fails Slater’s condition. In addition, Condition 2 fails, i.e.,

{
y ∈ R

m : V TA(y)V = 0
}
6=
{
y ∈ R

m : V TA(y)V = 0, V TA(y)U = 0
}

.

Note failure of Slater’s condition occurs because we did not use the full rank reducing certificate S = I.

Example 3 (An SDP not well-behaved and success of Condition 2). The following SDP, based on
Example 1 of Pataki [33], has a dual optimal value that is unattained when b = (1, 0, 0)T and is hence
not well-behaved:

maximize bT y
subject to

A(y) =







1 −y1 0 0
−y1 y3 0 0
0 0 y2 y3

0 0 y3 −y2






∈ S4

+.

For the rank two reducing certificate S = e3e3 + e4e
T
4 , we have that (R/P − SDP ) takes the form:

maximize bT y
subject to

UTA(y)U =

(
1 −y1

−y1 y3

)

∈ S2
+, V TA(y)U =

(
0 0
0 0

)

= 02×2,

V TA(y)V =

(
y2 y3

y3 −y2

)

= 02×2,

where V = (e3, e4) and U = (e1, e2). Since y3 = 0 if y is feasible, Slater’s condition fails. Condition 2,
on the other hand, holds given that V TA(y)U = 0 imposes no constraints on y. This is despite the fact
the SDP is not well-behaved. Also note (R/P −SDP ) fails Slater’s condition even though S is a reducing
certificate of maximum rank.

5.2 Recovering solutions to an extended dual

We close this section by discussing recovery for an alternative dual program intimately related to facial
reduction—a so-called extended dual [32]. For SDP, this dual is a slight variant of the Ramana dual [39],
which was related to facial reduction in [40].
A solution to an extended dual carries the same information as a solution to the reduced dual (R/D)

and a sequence of reducing certificates used to identify a face. However, such a solution allows one to
certify optimality of the primal problem (P ) without retracing the steps of the facial reduction algorithm
(to verify validity of each reducing certificate)—one simply checks that a solution to an extended dual
and a candidate solution to (P ) have zero duality gap.
Extended duals can be defined for cones K that are nice [32], but we will limit discussion to the case

when K = Sn
+. The extended dual considered is based on three key facts.

Lemma 10. The following statements are true:

1. For any face F of Sn
+, F∗ = Sn

+ + F⊥.
2. If F = S

n
+ ∩ S⊥ for S ∈ S

n
+, then

F⊥ =

{

W + WT :

(
S W

WT αI

)

� 0 for some α ∈ R

}

.
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3. Let F0 := Sn
+ and consider the chain of faces defined by matrices Si

Fi+1 := Fi ∩ S⊥
i ,

where Si is in F∗
i , i.e. Si = S̄i + Vi for S̄i ∈ Sn

+ and Vi ∈ F⊥
i . The following relationship holds:

Fi+1 = S
n
+ ∩ (

i∑

j=0

S̄j)
⊥.

Proof. The first statement holds because Sn
+ is a nice cone [32]. The other statements are shown by

Proposition 1 and Theorem 3 of [32].

Using these facts, the extended dual considered simultaneously identifies a chain of faces F1, . . . ,FN

(where N can be chosen to equal the length of the longest chain of faces of Sn
+) and a solution X ∈ F∗

N

to the reduced dual (R/D − SDP ) formulated over F∗
N . It is given below as an optimization problem

over X, X̄, WN , Si, S̄i, Wi, αi:

(EXT/D − SDP )
minimize C ·X
subject to Aj ·X = bj

C · Si = 0, Aj · Si = 0 (i.e. S⊥
i contains A)

X = X̄ + WN + WT
N (i.e. X ∈ Sn

+ + F⊥
N = F∗

N )
Si = S̄i + Wi + WT

i (i.e. Si ∈ Sn
+ + F⊥

i = F∗
i )

(∑i

j=0 S̄j Wi+1

WT
i+1 αiI

)

� 0 (i.e. Wi+1 + WT
i+1 ∈ F⊥

i+1)

S̄i � 0, X̄ � 0, W0 = 0,

where i ranges from 0 to N − 1 and j ranges from 1 to m (indexing m linear equations Aj ·X = bj).

Recovering a solution Suppose Fi = UiS
di

+ UT
i for i = 0, . . . , N is a sequence of faces identified by an SDP

facial reduction procedure (e.g. Algorithm 2, with or without the modifications of Section 3) suitably
padded so that the length of the sequence is N , i.e. F0, . . . ,FM = Sn

+ for some M < N . Let Si ∈ F∗
i be

the corresponding sequence of reducing certificates (similarly padded with zeros) and let X be a solution
to (R/D − SDP ). One can construct a feasible point to (EXT/D − SDP ) by decomposing Si (and
similarly X) into the form Si = S̄i + Wi + WT

i , for S̄i ∈ Sn
+ and Wi + WT

i ∈ F⊥
i . Supposing Ui has

orthonormal columns, this can be done by taking:

S̄i = UiU
T
i SiUiU

T
i Wi = 1

2 (S − S̄i) ∀i ∈ {0, . . . , N − 1}
X̄ = UNUT

NXUNUT
N WN = 1

2 (X − X̄).

One can then pick αi (individually) until the relevant semidefinite constraint is satisfied. The feasible
point produced by this procedure is optimal if the reduced primal-dual pair over FN and F∗

N has no
duality gap. This of course occurs if the reduced primal problem over FN is strictly feasible (i.e. the
unmodified version of Algorithm 2 is run to completion).

6 Implementation

The discussed techniques have been implemented as a suite of MATLAB scripts we dub frlib, available
at at www.mit.edu/~fperment. The basic work flow is depicted in Figure 2. The implemented code takes
as input a primal-dual SDP pair and can reduce (using suitable variants of Algorithm 2) either the
primal problem or the dual. This is an important feature since either the primal or the dual may model
the problem of interest.

6.1 Input formats

The implementation takes in SeDuMi-formatted inputs A,b,c,K, where A,b,c, define the subspace con-
straint and objective function and K specifies the sizes of the semidefinite constraints [42]. Conventionally,
the primal problem described by A,b,c,K refers to an SDP defined by equations Ai ·X = bi. Similarly,
the dual problem described by A,b,c,K refers to an SDP defined by generators C −∑i yiAi. While our
implementation and the following discussion follow this convention, the opposite convention was used in
previous sections (e.g. (SDP − P ) and (SDP −D) in Section 5.1).
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Inputs: primal-dual pair,  

approximation type 

   (1) Identify sequence of faces

containing primal (dual) feasible 

set using approximations

(2) Construct reduced 

primal (dual) problem

(3) Solve reduced  

primal-dual pair.

(4) Recover solution to 

 primal (dual). Attempt recovery of 

 dual (primal) solution. 

Pre-processing

Outputs: recovered solutions 

to input primal-dual pair

Post-processing

Fig. 2: Flow of MATLAB implementation

6.2 Reduction of the primal problem

Given A,b,c,K; the following syntax is used to reduce the primal problem, solve the reduced primal-dual
pair, and recover solutions to the original primal-dual pair via our implementation:

prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal(‘d’);
[x_reduced,y_reduced] = sedumi(prgR.A, prgR.b, prgR.c, prgR.K);
[x,y,dual_recov_success] = prgR.Recover(x_reduced,y_reduced);

The call to prg.ReducePrimal reduces the primal problem using diagonal ( ‘d’ ) approximations by
executing a variant of Algorithm 1. To find reducing certificates, it solves a series of LPs (defined by the
diagonal approximation) that can be solved using a handful of supported solvers. The returned object
prgR has member variables

prgR.A, prgR.b, prgR.c, prgR.K,

which describe the reduced primal-dual pair. For a single semidefinite constraint, this reduced primal-dual
pair is given by:

minimize C · UX̂UT

subject to Ai · UX̂UT = bi ∀i ∈ {1, . . . , m}
X̂ ∈ S

d
+

maximize bT y
subject to UT (C −∑m

i=1 yiAi)U ∈ Sd
+,

where US
d
+UT is a face identified by prg.ReducePrimal. The reduced primal and its dual are solved by

calling SeDuMi.
The primal solution x_reduced returned by SeDuMi represents an optimal X̂. The function prgR.Recover

computes from X̂ a solution UX̂UT to the original primal problem. It then attempts to find a solution
to the original dual using a variant of the recovery procedure described in Section 5 (Algorithm 3). The
flag dual_recov_success indicates success of this recovery procedure.

6.3 Reduction of the dual problem

The above syntax can be modified to reduce the dual problem described by A,b,c,K. This is done
replacing the relevant line above with:
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prgR = prg.ReduceDual(‘d’);

As above, the object prgR contains a description of the primal-dual pair which, for a single semidefinite
constraint, is given by the SDPs (R/P − SDP ) and (R/D − SDP ) in Section 5.1 (where, recalling our
earlier convention, the label of “primal” and “dual” is reversed). With prgR created in this manner, a
call to prgR.Recover (though syntactically identical) now returns a solution to the original dual and
attempts to recover a solution to the original primal using Algorithm 3. In other words, a call of the
form

[x,y,prim_recov_success] = prgR.Recover(x_reduced,y_reduced);

returns a solution y to the original dual problem and attempts to recover a solution x to the original
primal problem. The flag prim_recov_success indicates successful recovery of x.

6.4 Solution recovery

As suggested by the flags prim_recov_success and dual_recov_success in the preceding examples,
solution recovery is only guaranteed for the problem that is reduced, i.e. if the primal (resp. dual) is
reduced, recovery of the original dual (resp. primal) may fail for reasons discussed in Section 5.1. Thus,
it is important to reduce the primal only if it is the problem of interest, and similarly for the dual.

7 Examples

This section gives larger examples that illustrate effectiveness of our method. For each example, the same
type of approximation (e.g. diagonal or diagonally-dominant) is used at each facial reduction iteration.
Many examples are also over products of cones, e.g. K = Sn1 × Sn2 × · · · × Snk . In these cases, we
use the same type of approximation for each cone Sni . For some examples, the feasible set is defined
by equations Ai · X = bi; for these examples, reduced SDPs are formulated using obvious variants of
our method. Also, for a reduced SDP of the form (R/P − SDP ), the equations V TA(y)U = 0 and
V TA(y)V = 0 are eliminated before solving the SDP. For each example, we report one or more of the
following items (1− 4):

1) Complexity parameters and sparsity For each example, we report a list of numbers describing the size
and sparsity of the problem, denoted

n; r; nnz .

Here, n gives the size(s) of the psd cone(s) and r the dimension of the affine subspace that together define
the feasible set. The number nnz is the total number of non-zero entries of the matrix A and cost vector
c used to describe the problem in SeDuMi format. These results show problem size is often significantly
reduced and sparsity enhanced by our method.

2) DIMACS errors and distance to face We report a tuple (e1, . . . , e6) of DIMACS errors [30] for the
original problem and reduced problem. For instance, if the original problem has the form (P −SDP ), we
solve it and report errors for (P −SDP ) and its dual (D−SDP ). We then formulate a reduced problem
(R/P − SDP ) and report errors for (R/P − SDP ) and its dual (R/D − SDP ). Finally, we report the
distance dface (in norm induced by the trace inner-product) of the solution to the subspace spanned by
the identified face. For instance, for an original SDP of the form (P − SDP ) with solution y, we report

dface = ‖Φ (A(y))−A(y)‖F ,

where Φ : Sn → Sn is the orthogonal projection map onto the mentioned subspace and ‖ · ‖F denotes the
Frobenius norm. Note if the face equals USd

+UT for U with orthonormal columns, then

Φ(X) = UUT XUUT .

For original SDPs of the form P − SDP , the distance dface measures how well a solution y satisfies
the equations V TA(y)U = 0 and V TA(y)V = 0. Note dface should be zero for exact solutions of both
(P − SDP ) and (R/P − SDP ).
The reported errors show the reduced SDP can be solved just as accurately as the original in terms of

DIMACS error. They also show that by the measure dface, solutions to the reduced SDP are significantly
more accurate. That dface is larger for the original SDP reflects the fact DIMACS error (a measure of
backwards-error) can be a poor measure of forwards-error when strict feasibility fails. (A phenomena
observed in [43].)
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3) Reducing certificate error When one iteration of facial reduction is performed, we report the minimum
eigenvalue of the reducing certificate S and a measure of the containment A ⊆ S⊥, where A is the affine
set of the SDP. (We restrict to one iteration to keep notation simple.) Specifically, for SDPs of the
form (P − SDP ), we report a tuple (|C · S|, maxi |Ai · S|, λmin(S)) where the first two numbers measure
containment of {C −∑m

i=1 yiAi : y ∈ R
m} in S⊥ and the last denotes the minimum eigenvalue of S. For

SDPs with feasible set defined by equations Ai ·X = bi, we report (|bT y|, ‖S−∑i yiAi‖F , λmin(S)), where
(S, y) solves the appropriate variant of (⋆) described by equation (6) and the discussion in Section 2.4.
The reported errors show reducing certificates can be found with exceptional accuracy when polyhedral
approximations are used.

4) Solve times For larger instances, we give solve times before and after reductions and report the total
time tLPs spent solving LPs for reducing certificates. These solve times are reported for an Intel(R)
Core(TM) i7-2600K CPU @ 3.40GHz machine with 16 gigabytes of RAM using the LP solver of MOSEK
and the SDP solver SeDuMi called from MATLAB 2014a running Ubuntu. For these instances, solve
time is significantly reduced and the cost of solving LPs is negligible.

7.1 Lower bounds for optimal multi-period investment

Our first example arises from SDP-based lower bounds of optimal multi-period investment strategies. The
strategies and specific SDP formulations are given in [13]. For each strategy, an SDP produces a quadratic
lower bound on the value function arising in the dynamic programming solution to the underlying
optimization problem. These bounds are produced using the S-procedure, an SDP-based method for
showing emptiness of sets defined by quadratic polynomials (see, e.g., [12]). We report reductions using
diagonal (Dd) approximations, DIMACs error, reducing certificate error, and solve time in Tables 7.1.1-
7.1.4. Scripts that generate the SDPs are found here (and require the package CVX [23]):

www.stanford.edu/~boyd/papers/matlab/port_opt_bound/port_opt_code.tgz

7.2 Copositivity of quadratic forms

Our next example pertains to SDPs that demonstrate copositivity of certain quadratic forms. A quadratic
form xT Jx is copositive if and only if xT Jx ≥ 0 for all x in the non-negative orthant. Deciding copositivity
is NP-hard, but a sufficient condition can be checked using sum-of-squares techniques and semidefinite
programming, as we now illustrate.

The Horn form An example of a copositive polynomial is the Horn form f(x) := xT Jx, where

J =









1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1









, x =
(
x1 x2 x3 x4 x5

)T
.

This polynomial, originally introduced by A. Horn, appeared previously in [21] [38]. To see how copositiv-
ity can be demonstrated using SDP, first note copositivity of f(x) is equivalent to global non-negativity
of f(z2

1 , z2
2 , z

2
3 , z

2
4 , z2

5), where we have substituted each variable xi with the square of a new indeterminate
z2

i . Next, note global non-negativity of the latter polynomial can be demonstrated by showing

g(z) =

(
5∑

i=1

z2
i

)

f(z2
1 , z

2
2 , z2

3 , z
2
4 , z2

5) (18)

is a sum-of-squares, which is equivalent to feasibility of a particular SDP over Sn
+ where n =

(
5+2
3

)
, the

number of degree-three monomials in 5 variables (see Chapter 3 of [8] for details on constructing this
SDP).
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Example n r nnz
long_only (91 × 100, 30 × 100) 59095 853011

un
onstrained (121 × 100, 30 × 100) 62095 874011

se
tor_neutral (121 × 100, 30 × 100) 62392 1373000

leverage_limit (151 × 100, 30 × 100) 68195 915993

(a) Original

Example n r nnz
long_only (61 × 100, 30 × 100) 56095 832011

un
onstrained (61 × 100, 30 × 100) 56095 840891

se
tor_neutral (61 × 100, 30 × 100) 56392 1342880

leverage_limit (61 × 100, 30 × 100) 59195 873873

(b) Redu
ed

Table 7.1.1: Dimension r of subspace and order (n1, . . . , n200) of cone S
n1

+ ×· · ·×S
n200

+ describing feasible
set. The column ‘nnz’ shows number of non-zero entries of SDP data matrices.

Example e1 e2 e3 e4 e5 e6 dface

long_only 4.3e-08 0 0 4.4e-11 -4.0e-05 -3.9e-05 2.3e-06

un
onstrained 7.1e-08 0 0 1.1e-11 -2.5e-06 -1.6e-06 2.1e-05

se
tor_neutral 4.2e-07 0 0 1.1e-10 -1.4e-08 3.1e-05 1.6e-04

leverage_limit 7.3e-08 0 0 1.0e-11 -1.6e-06 -6.4e-07 1.2e-05

(a) Original

Example e1 e2 e3 e4 e5 e6 dface

long_only 3.7e-08 0 0 1.5e-11 -6.8e-06 -5.8e-06 2.9e-17

un
onstrained 4.9e-08 0 0 1.2e-11 -4.9e-07 3.9e-07 3.1e-17

se
tor_neutral 3.5e-07 0 0 1.0e-10 -3.5e-08 3.0e-05 3.5e-17

leverage_limit 4.8e-08 0 0 9.7e-12 -1.1e-06 -2.9e-07 4.3e-14

(b) Redu
ed

Table 7.1.2: DIMACS errors ei and distance dface to linear span of identified face.

Example |C · S| maxi |Ai · S| λmin(S)
long_only 0 0 0

un
onstrained 0 0 0

se
tor_neutral 0 0 0

leverage_limit 0 0 0

Table 7.1.3: Reducing certificate error. The first two columns measure containment of the SDP’s affine
subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the reducing certificate S.

Example Original Redu
ed tLPs

long_only 651 613 0.33

un
onstrained 800 574 0.71

se
tor_neutral 760 496 0.70

leverage_limit 976 617 1.2

Table 7.1.4: Solve times (sec) for original and reduced SDPs. The reduced SDP was formulated by solving
LPs over diagonal approximations, i.e., by taking C(W) = Dd. These LPs took tLPs seconds to solve.

Generalized Horn forms The Horn form f(x) generalizes to a family of copositive forms in n = 3m + 2
variables (m ≥ 1):

B(x; m) =

(
3m+2∑

i=1

xi

)2

− 2

3m+2∑

i=1

xi

m∑

j=0

xi+3j+1,

where we let the subscript for the indeterminate x wrap cyclically, i.e. xr+n = xr. This family was
studied in [6], and the Horn form corresponds to the case m = 1. As with the Horn form, we can show
copositivity of B(x; m) by showing a polynomial analogous to (18) is a sum-of-squares. We formulate
SDPs that demonstrate copositivity of B(x; m) in this way for each m ∈ {1, . . . , 5}. We report reductions
using diagonally-dominant (DDd) approximations, DIMACs error, reducing certificate error, and solve
time in Tables 7.2.1-7.2.4. (Errors and solve time are omitted for m > 3 since the SDPs are too large to
solve.)
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Example n r nnz
m = 1 35 420 1225

m = 2 120 5544 14400

m = 3 286 33033 81796

m = 4 560 129948 313600

m = 5 969 395352 938961

(a) Original

Example n r nnz
m = 1 25 165 1200

m = 2 96 3132 14312

m = 3 242 21879 81554

m = 4 490 494143 313040

m = 5 867 303399 937822

(b) Redu
ed

Table 7.2.1: Dimension r of subspace and order n of cone Sn describing feasible set. The column ‘nnz’
shows number of non-zero entries of SDP data matrices.

Example e1 e2 e3 e4 e5 e6 dface

m = 1 8.63e-10 0 0 9.99e-11 1.99e-10 3.14e-08 8.47e-06

m = 2 9.34e-09 0 0 3.68e-10 8.12e-10 6.05e-07 3.96e-05

m = 3 1.87e-09 0 0 1.01e-10 1.97e-10 4.16e-07 3.83e-05

(a) Original

Example e1 e2 e3 e4 e5 e6 dface

m = 1 7.82e-10 0 0 2.42e-11 7.64e-11 2.04e-08 9.27e-16

m = 2 1.23e-09 0 0 1.59e-10 3.82e-10 5.84e-08 3.26e-16

m = 3 4.00e-10 0 0 7.08e-11 2.25e-10 7.93e-08 7.48e-16

(b) Redu
ed

Table 7.2.2: DIMACs errors ei and distance dface to linear span of identified face.

Example |bT y| ‖S −
∑

i yiAi‖F λmin(S)
m = 1 0 3.33e-16 0

m = 2 0 1.67e-16 0

m = 3 0 -1.28e-15 0

Table 7.2.3: Reducing certificate error. The first two columns measure containment of the SDP’s affine
subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the reducing certificate S.

Example Original Redu
ed tLPs

m = 1 .81 .23 .047

m = 2 11 9.2 .58

m = 3 3900 3200 4.3

Table 7.2.4: Solve times (sec) for original and reduced SDPs. The reduced SDP was formulated by solving
LPs over diagonal approximations, i.e., by taking C(W) = DDd. These LPs took tLPs seconds to solve.

7.3 Lower bounds on completely positive rank

A matrix A ∈ Sn is completely positive (CP) if there exist r non-negative vectors vi ∈ Rn for which

A =

r∑

i=1

viv
T
i . (19)

The completely positive rank of A, denoted rankcp A, is the smallest r for which A admits the decom-
position (19). It follows trivially that

rankA ≤ rankcp A.

In [22], Fawzi and the second author give an SDP formulation that improves this lower bound for a fixed
matrix A. This bound, denoted τsos

cp (A) in [22], equals the optimal value of the following semidefinite
program:

minimize t
subject to

(
t vectAT

vectA X

)

� 0

Xij,ij ≤ A2
ij ∀i, j ∈ {1, . . . , n}

X � A⊗A
Xij,kl = Xil,jk ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n),
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Example n r nnz
Z (9, 10, 9) 37 260

Z ⊗ Z (81, 82, 81) 2026 18344
Z ⊗ Z ⊗ Z (729, 730, 729) 142885 1428692

(a) Complexity parameters - original

Example n r nnz
Z (7, 8, 9) 20 187

Z ⊗ Z (49, 50, 81) 464 8336
Z ⊗ Z ⊗ Z (343, 344, 729) 13262 408403

(b) Complexity parameters - redu
ed

Table 7.3.1: Dimension r of subspace and order n of cone R
n1

+ × S
n1

+ × S
n2

+ describing feasible set. The
column ‘nnz’ shows number of non-zero entries of SDP data matrices.

Example e1 e2 e3 e4 e5 e6 dface

Z 2.08e-11 0 0 1.09e-10 -1.36e-09 -1.44e-09 1.02e-05

Z ⊗ Z 6.58e-09 0 0 1.72e-10 2.82e-06 2.68e-06 2.42e-03

(a) Original

Example e1 e2 e3 e4 e5 e6 dface

Z 1.27e-11 0 0 7.87e-11 -1.54e-09 -1.59e-09 0

Z ⊗ Z 3.91e-08 0 0 0 8.50e-06 7.56e-06 0

(b) Redu
ed

Table 7.3.2: DIMACs errors ei and distance dface to linear span of identified face.

Example |C · S| maxi |Ai · S| λmin(S)
Z 0 0 0

Z ⊗ Z 0 0 0

Table 7.3.3: Reducing certificate error. The first two columns measure containment of the SDP’s affine
subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the reducing certificate S.

Example Original Redu
ed tLPs

Z .4 .7 .0084

Z ⊗ Z 131 10.5 .016

Table 7.3.4: Solve times (sec) for original and reduced SDPs. The reduced SDP was formulated by solving
LPs over diagonal approximations, i.e., by taking C(W) = Dd. These LPs took tLPs seconds to solve.

where A⊗A denotes the Kronecker product and vectA denotes the n2×1 vector obtained by stacking the
columns of A. Here, the double subscript ij indexes the n2 rows (or columns) of X and the inequalities
on (i, j) hold iff they hold element-wise (see [22] for further clarification on this notation).
In this example, we formulate SDPs as above for computing τsos

cp (Z), τsos
cp (Z⊗Z), and τsos

cp (Z⊗Z⊗Z),
where Z is the completely positive matrix:

Z =





4 0 1
0 4 1
1 1 3



 .

Notice that since Z is CP, the Kronecker products Z⊗Z and Z⊗Z⊗Z are CP (using the fact that A⊗B
is CP when A and B are CP [7]). Also notice that since Z contains zeros, the constraint Xij,ij ≤ Z2

ij

implies that X has rows and columns identically zero; in other words, because Z has elements equal to
zero, the SDP for computing τsos

cp (Z) cannot have a strictly feasible solution.
To reduce the formulated SDPs, we first observe that each is actually a cone program over R

n1

+ ×S
n2

+ ×
S

n3

+ , i.e., each SDP has a mix of linear inequalities and semidefinite constraints. To find reductions, we first
treat the linear equalities as a semidefinite constraint on a diagonal matrix. We report reductions using
diagonal (Dd) approximations, DIMACs error, reducing certificate error, and solve time in Tables 7.3.1-
7.3.4. (Solve times and errors are omitted for Z ⊗ Z ⊗ Z since the SDP is too large to solve.)

7.4 Lyapunov Analysis of a Hybrid Dynamical System

The next example arises from SDP-based stability analysis of a rimless wheel, a hybrid dynamical system
and simple model for walking robots studied in [36] by Posa, Tobenkin, and Tedrake. The SDP includes
several coupled semidefinite constraints that impose Lyapunov-like stability conditions accounting for
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Problem n r nnz
Original (6, 108, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11) 4334 16864

Redu
ed, C(W) = Dd (6, 56, 11, 1, 1, 0, 11, 1, 1, 0, 11, 11) 1138 6661

Redu
ed, C(W) = DDd (6, 34, 8, 1, 1, 0, 8, 1, 1, 0, 9, 7) 452 4007

Table 7.4.1: The feasible set is an r-dimensional subspace intersected with the cone S
n1

+ × S
n2

+ · · · × S
n12

+ .

Problem e1 e2 e3 e4 e5 e6 dface

Original 2.56e-07 0 0 2.48e-10 9.78e-08 1.70e-05 8.99e-02

Redu
ed, C(W) = Dd
2.77e-08 0 0 0 1.76e-08 8.29e-06 0

Redu
ed, C(W) = DDd
6.65e-08 0 0 0 4.29e-08 1.20e-05 3.82e-15

Table 7.4.2: DIMACS error bounds ei and distance dface to the linear span of identified face.

Problem Solve time tLPs

Original 111 �

Redu
ed, C(W) = Dd
5 .05

Redu
ed, C(W) = DDd
1.8 0.82

Table 7.4.3: Solve times (sec) for original and reduced SDPs. The reduced SDP was formulated by solving
LPs over the indicated approximation (C(W) = Dd or C(W) = DDd) which took tLPs seconds to solve.

Coulomb friction and the contact dynamics of the rimless wheel. We report reductions using diagonally-
dominant (DDd) and diagonal (Dd) approximations, DIMACs error, and solve time in Tables 7.4.1-7.4.3.
(Reducing certificate error is omitted since multiple facial reduction iterations were performed.)

7.5 Multi-affine polynomials, matroids, and the half-plane property

A multivariate polynomial f(z) : Cn → C has the half-plane property if it is non-zero when each variable
zi has positive real part. A polynomial is multi-affine if each indeterminate is raised to at most the first
power. As proven in [19], if a multi-affine, homogeneous polynomial with unit coefficients has the half-
plane property, it is the basis generating polynomial of a matroid. In this section, we reduce SDPs that
arise in the study of the converse question: given a matroid, does its basis generating polynomial have
the half-plane property? Or more precisely, given a rank-r matroid M (over the ground-set {1, . . . , n})
with set of bases B(M), does the multi-affine, degree-r polynomial

fM (z1, . . . , zn) :=
∑

{i1,i2,...,ir}
∈B(M)

zi1zi2 · · · zir
(20)

have the half-plane property?

The role of polynomial non-negativity This converse question is related to global non-negativity of so-
called Rayleigh differences of fM (z), which are polynomials over Rn defined for each {i, j} ⊂ {1, . . . , n}
as follows:

∆ijfM (x) :=
∂fM

∂zi

(x)
∂fM

∂zj

(x) − ∂2fM

∂zi∂zj

(x) · fM (x).

A theorem of Brändén [14] states fM (z) has the half-plane property if and only if all of
(
n

2

)
Rayleigh

differences are globally non-negative, i.e., ∆ijfM (x) ≥ 0 for all x ∈ Rn. An equivalent criterion, stated
in terms of global non-negativity of a single Rayleigh difference (and so-called contractions and deletions
of M), appears in [46].

The role of semidefinite programming Since semidefinite programming can demonstrate a given polyno-
mial is a sum-of-squares, it is a natural tool for proving a given Rayleigh difference ∆ijfM (x) is globally
non-negative. In this section, we formulate and then apply our reduction technique to SDPs that test
the sum-of-squares condition for various ∆ijfM (x) and various matroids M . As is standard, the SDPs
are formulated using the set of monomial exponents in 1

2N (∆ijfM ) ∩Nn, where N (∆ijfM ) denotes the
Newton polytope of ∆ijfM (see Chapter 3 of [8] for details on this formulation).

We report reductions using diagonally-dominant DDd approximations, DIMACs error, and reducing
certificate error in Tables 7.5.1-7.5.3. (Solve time is omitted since the original SDPs are small.) We now
elaborate on each matroid in these tables.
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Matroid {i, j} n r nnz

F−4
7 {1, 2} 8 5 64

W3+ {1, 2} 8 5 64

W3 + e {1, 2} 9 7 81

P
′

7 {1, 2} 8 4 64

nP \ 1 {2, 4} 12 14 144

nP \ 9 {1, 2} 12 14 144

V8 {1, 2} 16 33 256

V10 {3, 4} 52 657 2704

(a) Original

Matroid {i, j} n r nnz

F−4
7 {1, 2} 5 1 25

W3+ {1, 2} 3 0 9

W3 + e {1, 2} 5 0 27

P
′

7 {1, 2} 4 0 16

nP \ 1 {2, 4} 6 0 40

nP \ 9 {1, 2} 5 0 27

V8 {1, 2} 13 17 185

V10 {3, 4} 41 327 2087

(b) Redu
ed

Table 7.5.1: Dimension r of subspace and order n of cone Sn
+ describing feasible set. The column ‘nnz’

shows number of non-zero entries of SDP data matrices.

Matroid {i, j} e1 e2 e3 e4 e5 e6 dface

F−4
7 {1, 2} 2.10e-12 0 0 9.32e-13 7.50e-12 2.06e-11 3.25e-12

W3+ {1, 2} 7.57e-11 0 0 3.52e-11 6.47e-11 7.29e-10 4.41e-06

W3 + e {1, 2} 8.14e-09 0 0 1.05e-11 2.21e-11 4.04e-10 1.74e-06

P
′

7 {1, 2} 2.31e-10 0 0 8.55e-10 1.39e-09 2.19e-09 6.54e-06

nP \ 1 {2, 4} 9.04e-10 0 0 1.29e-10 2.40e-10 9.31e-09 4.51e-06

nP \ 9 {1, 2} 2.45e-09 0 0 3.54e-10 7.07e-10 1.87e-08 4.15e-08

V8 {1, 2} 5.29e-11 0 0 8.32e-11 1.78e-10 6.49e-10 4.19e-06

V10 {3, 4} 3.64e-11 0 0 1.40e-09 2.73e-09 9.78e-09 5.37e-06

(a) Original

Matroid {i, j} e1 e2 e3 e4 e5 e6 dface

F−4
7 {1, 2} 4.65e-10 0 0 2.16e-08 6.61e-08 6.86e-08 0

W3+ {1, 2} 1.35e-15 0 0 2.91e-12 5.55e-12 5.55e-12 4.57e-16

W3 + e {1, 2} 8.86e-15 0 0 1.27e-11 2.03e-11 2.03e-11 4.62e-16

P
′

7 {1, 2} 6.91e-16 0 0 1.13e-11 1.62e-11 1.62e-11 4.73e-16

nP \ 1 {2, 4} 5.27e-11 0 0 1.89e-08 3.67e-08 3.75e-08 3.46e-16

nP \ 9 {1, 2} 1.18e-10 0 0 3.18e-08 4.29e-08 4.35e-08 3.44e-16

V8 {1, 2} 1.43e-11 0 0 4.35e-11 7.77e-11 1.97e-10 0

V10 {3, 4} 2.90e-11 0 0 1.11e-09 2.09e-09 3.15e-09 5.15e-17

(b) Redu
ed

Table 7.5.2: DIMACs errors ei and distance dface to linear span of identified face.

Matroid {i, j} |bT y| ‖S −
∑

i yiAi‖F λmin(S)

F−4
7 {1, 2} 0 0 0

W3+ {1, 2} 2.22e-16 0 0

W3 + e {1, 2} 0 0 0

P
′

7 {1, 2} 0 0 0

nP \ 1 {2, 4} 6.66e-16 0 0

nP \ 9 {1, 2} 0 0 0

V8 {1, 2} 0 0 0

V10 {3, 4} 1.78e-15 0 0

Table 7.5.3: Reducing certificate error. The first two columns measure containment of the SDP’s affine
subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the reducing certificate S.

7.5.1 Various matroids with the half-plane property

The first set of matroids were studied by Wagner and Wei [46]. Specifically, Wagner and Wei [46] demon-
strate that ∆ijfM (for specific {i, j}) is a sum-of-squares for matroidsM they denote F−4

7 ,W3+,W3+e,

P ′

7, nP \ 1, nP \ 9, and V8. (We refer the reader to [46] for definitions of these matroids and the ex-
plicit polynomials ∆ijfM .) Note Wagner and Wei demonstrate each sum-of-squares condition via ad-hoc
construction, instead of by solving an SDP.

Notice from Table 7.5.1 that for matroids W3+, W3 + e, P ′

7, nP \ 1 and nP \ 9, the reduced SDP
is described by a zero-dimensional affine subspace. In other words, the SDP demonstrating the sum-of-
squares condition has a feasible set containing a single point.
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Example

Original

Primal

n; r

Redu
ed

Primal

n; r

Original

Dual

n; r

Redu
ed

Dual

n; r
Example1 3; 4 2; 2 3; 2 1; 1
Example2 3; 4 2; 2 3; 2 2; 1
Example3 3; 2 2; 2 3; 4 2; 2
Example4 3; 3 1; 0 3; 3 1; 1
Example5 10; 50 10; 50 10; 5 10; 5
Example6 8; 28 5; 11 8; 8 4; 4
Example7 5; 12 4; 8 5; 3 1; 1
Example9a 100; 4950 1; 0 100; 100 1; 1
Example9b 20; 190 1; 0 20; 20 1; 1

Table 7.6.1: Complexity parameters for the primal-dual SDP pairs given in [18]. The feasible set of each
SDP is an r-dimensional subspace intersected with the cone S

n
+. To formulate each reduced SDP, a face

was identified by solving LPs over diagonally-dominant approximations (DDd). These LPs took (in total)
tLPs seconds to solve.

7.5.2 Extended Vámos matroid

The other matroid considered was studied by Burton, Vinzant, and Youm in [16]. There, the authors use
semidefinite programming to show ∆ijfV10

is a sum-of-squares for a specific {i, j}, where V10 denotes the
extended Vámos matroid defined over the ground set {1, . . . , 10}. The bases of V10 are all cardinality-four
subsets of {1, . . . , 10} excluding

{1, 2, 6, 7}, {1, 3, 6, 8}, {1, 4, 6, 9}, {1, 5, 6, 10}, {2, 3, 7, 8}, {3, 4, 8, 9}, and {4, 5, 9, 10}.

From these bases, we construct fV10
via (20) and formulate an SDP demonstrating ∆34fV10

is a sum-of-
squares (as was done in [16]).

7.6 Facial Reduction Benchmark Problems

In [18], Cheung, Schurr, and Wolkowicz developed a facial reduction procedure for identifying faces in
a numerically stable manner. They also created a set of benchmark problems for testing their method.
These problem instances are available at the URL below:

http://www.math.uwaterloo.ca/~hwolkowi/henry/reports/SDPinstances.tar.

Each problem is a primal-dual pair hand-crafted so that both the primal and dual have no strictly
feasible solution. We apply our technique to each primal problem and each dual problem individually,
using diagonally-dominant (DDd) approximations. Results are shown in Table 7.6.1. Since some of the
examples have duality gaps, we do not show DIMACs errors nor we do show solve time given the small
sizes. We also omit reducing certificate error since multiple facial reduction iterations were performed.

7.7 Difficult SDPs arising in polynomial non-negativity

In [47] and [50], Waki et al. study two sets of SDPs that are difficult to solve. For one set of SDPs, SeDuMi
fails to find certificates of infeasibility [47]. For the other set, SeDuMi reports an incorrect optimal value
[50]. The sets of SDPs are available at:

https://sites.google.com/site/hayatowaki/Home/difficult-sdp-problems.

It turns out for each primal-dual pair in these sets, the problem defined by equations Ai ·X = bi is not
strictly feasible. We apply our technique to both sets of SDPs using diagonal approximations Dd and
arrive at SDPs that are more easily solved. In particular, certificates of infeasibility are found for the
SDPs in [47] and correct optimal values are found for the SDPs in [50] by solving the reduced SDPs
with SeDuMi. Problem size reductions are shown in Table 7.7.1 and Table 7.7.2. We omit solve time
comparisons and DIMACs errors since the reduced problem is a trivial SDP in each case. We omit
reducing certificate error since multiple facial reduction iterations were performed.
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Example

n; r
Original

n; r
Redu
ed

Compa
tDim2R1 3;4 1;1

Compa
tDim2R2 (6,3,3,3); 25 (1,0,1,1); 1

Compa
tDim2R3 (10,6,6,6); 91 (1,0,1,1); 1

Compa
tDim2R4 (15,10,10,10); 241 (1,0,1,1); 1

Compa
tDim2R5 (21,15,15,15); 526 (1,0,1,1); 1

Compa
tDim2R6 (28,21,21,21); 1009 (1,0,1,1); 1

Compa
tDim2R7 (36,28,28,28); 1765 (1,0,1,1); 1

Compa
tDim2R8 (45,36,36,36); 2881 (1,0,1,1); 1

Compa
tDim2R9 (55,45,45,45); 4456 (1,0,1,1); 1

Compa
tDim2R10 (66,55,55,55); 6601 (1,0,1,1); 1

Table 7.7.1: Complexity parameters for weakly-infeasible SDPs studied in [47]. The feasible set of each
SDP is an r-dimensional subspace intersected with the cone Sn

+. To formulate each reduced SDP, a face
was identified by solving LPs defined by diagonal approximations (Dd). These LPs took (in total) tLPs

seconds to solve.

Example

n; r
Original

n; r
Redu
ed

Optimal Value

Redu
ed

unboundDim1R2 (3,2,2); 8 (1,1,0); 1 1.080478e-13

unboundDim1R3 (4,3,3); 16 (1,1,0); 1 1.080478e-13

unboundDim1R4 (5,4,4); 27 (1,1,0); 1 1.080478e-13

unboundDim1R5 (6,5,5); 41 (1,1,0); 1 1.080478e-13

unboundDim1R6 (7,6,6); 58 (1,1,0); 1 1.080478e-13

unboundDim1R7 (8,7,7); 78 (1,1,0); 1 1.080478e-13

unboundDim1R8 (9,8,8); 101 (1,1,0); 1 1.080478e-13

unboundDim1R9 (10,9,9); 127 (1,1,0); 1 1.080478e-13

unboundDim1R10 (11,11,10); 156 (1,1,0); 1 1.080478e-13

Table 7.7.2: Complexity parameters for the SDPs in [50]. The feasible set of each SDP is an r-dimensional
subspace intersected with the cone Sn

+. To formulate each reduced SDP, a face was identified by solving
LPs defined by diagonal approximations (Dd). These LPs took (in total) tLPs seconds to solve. For these
examples, SeDuMi incorrectly returns an optimal value of one for the original problem. The optimal
value returned for the reduced problem is very near the correct optimal value of zero.

7.8 DIMACS Controller Design Problems

Our final examples are the controller design problems hinf12 and hinf13 of the DIMACS library [34]—
which evidently are SDPs in the library with no strictly feasible solution. Results are shown in Ta-
bles 7.8.1-7.8.3, where we apply facial reduction to the primal problem of both SDPs (using DDd for
hinf12 and SDDd for hinf13). As observed in [30], these problem instances are extremely difficult for
SDP solvers. For purposes of comparison, we therefore report DIMACS errors for both SeDuMi and
SDPT3 [44]. Solution times are omitted given the small sizes of these SDPs.

8 Conclusion

We presented a general technique for facial reduction that utilizes approximations of the positive semidef-
inite cone. The technique is effective on examples arising in practice and for simple approximation is
a practical pre-processing routine for SDP solvers. An implementation has been made available. We
also gave a post-processing procedure for dual solution recovery that applies generally to cone programs
pre-processed using facial reduction. This recovery procedure always succeeds when the cone is poly-
hedral, but may fail otherwise, illustrating an interesting difference between linear programming and
optimization over non-polyhedral cones.

Acknowledgments The authors thanks Mark Tobenkin for many helpful discussions, and Michael Posa
and Anirudha Majumdar for testing early versions of the implemented algorithms. Michael Posa also
provided the original (i.e. unreduced) SDP for Example 7.4. The authors thank Cynthia Vinzant for
providing the Vámos matroid example V10 and reference [14]. We thank Gábor Pataki and Johan Löfberg
for helpful comments.
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Matroid n r nnz
hinf12 (6, 6, 12) 77 990

hinf13 (7, 9, 14) 121 2559

(a) Original

Problem n r nnz
hinf12 (6, 2, 6) 23 583

hinf13 (1, 9, 7) 45 1465

(b) Redu
ed

Table 7.8.1: Dimension r of subspace and order n of cone Sn
+ describing feasible set. The column ‘nnz’

shows number of non-zero entries of SDP data matrices. For hinf12, we used DDd. For hinf13, we used
SDDd.

Problem e1 e2 e3 e4 e5 e6 dface

hinf12/sedumi 5.04e-09 0 0 0 -1.55e-02 2.23e-01 1.17e-08

hinf13/sedumi 6.21e-05 0 0 2.63e-06 -3.68e-03 2.30e-02 1.00e+00

†

hinf12/sdpt3 1.67e-11 0 1.72e-05 0 -1.72e-06 2.36e-05 3.81e-12

hinf13/sdpt3 9.97e-06 0 5.73e-07 0 -2.35e-04 1.94e-04 1.43e-02

(a) Original

Problem e1 e2 e3 e4 e5 e6 dface

hinf12/sedumi 4.99e-09 0 0 0 -5.62e-02 2.82e-01 0

hinf13/sedumi 6.39e-05 0 0 1.51e-06 -2.76e-04 1.93e-03 0

hinf12/sdpt3 1.58e-11 0 3.18e-06 0 -2.06e-06 3.33e-05 0

hinf13/sdpt3 3.84e-05 0 7.09e-08 0 -6.61e-04 1.07e-05 0

(b) Redu
ed

Table 7.8.2: DIMACs errors ei and distance dface to linear span of identified face. Normalized by solution
norm, the outlier, marked †, equals 2.53e− 04.

Example |bT y| ‖S −
∑

i yiAi‖F λmin(S)
hinf12 0 0 0

hinf13 0 8.31e-10 0

Table 7.8.3: Reducing certificate error. The first two columns measure containment of the SDP’s affine
subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the reducing certificate S.
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