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ARTICLE

Reconstruction of complex single-cell trajectories
using CellRouter
Edroaldo Lummertz da Rocha 1,2,3,4, R. Grant Rowe1,2,3,4, Vanessa Lundin1,2,3,4, Mohan Malleshaiah5,10,

Deepak Kumar Jha1,2,3,4, Carlos R. Rambo6, Hu Li 7, Trista E. North1,3, James J. Collins8,9 &

George Q. Daley1,2,3,4

A better understanding of the cell-fate transitions that occur in complex cellular ecosystems

in normal development and disease could inform cell engineering efforts and lead to

improved therapies. However, a major challenge is to simultaneously identify new cell states,

and their transitions, to elucidate the gene expression dynamics governing cell-type diver-

sification. Here, we present CellRouter, a multifaceted single-cell analysis platform that

identifies complex cell-state transition trajectories by using flow networks to explore the

subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its

versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-

state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differ-

entiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of

cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens

previously undescribed paths for in-depth characterization of complex cellular ecosystems

and establishment of enhanced cell engineering approaches.
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Gene expression profiling has been widely applied to
understand regulation of cellular processes in develop-
ment and disease1. However, micro-environmental

influences, asynchronous cell behaviors, and molecular stochas-
ticity often leads to pronounced heterogeneity in cell populations,
obscuring the dynamic biological principles governing cell-state
transitions. Single-cell, high-throughput technologies present an
opportunity to characterize these states and their transitions by
simultaneously quantifying a large number of parameters at
single-cell resolution. However, as cells are destroyed during
measurement, data-driven approaches are required to illuminate
the dynamics of cellular programs governing fate transitions. To
study gene expression dynamics, several algorithms have been
developed to organize single cells in pseudo-temporal order based
on transcriptomic or proteomic divergence2–6. While current
algorithms best identify trajectories between the most phenoty-
pically distant cell states, which molecularly are very distinct, they
are less robust in reconstructing trajectories from early states
towards intermediate or transitory cell states. Limitations include
reconstructing linear trajectories (Waterfall, Monocle 1), identi-
fying only a single branch point (Wishbone), or requiring a priori
knowledge of the number of branches (Diffusion Pseudotime,
DPT). Monocle 2 addresses many of these challenges but is not
designed to reconstruct trajectories between any two chosen cell
states, which might include transitions from or to rare cell types.
Moreover, as they are designed to identify branching trajectories,
Wishbone, DPT, and Monocle 2 are less suited to detect con-
vergent differentiation paths, such as during plasmacytoid den-
dritic cell development from distinct precursor cells7.

To overcome these challenges, we developed CellRouter
(Supplementary Software 1–4, https://github.com/edroaldo/
cellrouter), a general single-cell trajectory detection algorithm
capable of exploring the subpopulation structure of single-cell
omics data to reconstruct trajectories of complex transitions
between cell states. CellRouter requires no a priori knowledge of
trajectory structure, such as number of cell fates or branches.
CellRouter is a transition-centered trajectory reconstruction
algorithm, distinct from the bifurcation-centered algorithms such
as Wishbone, DPT, and Monocle 2. While bifurcations occur
during lineage diversification, transitions also converge to specific
lineages or occur between cell states within branches. CellRouter
relaxes the requirement of identifying branching points during
cell-fate transitions and implements a flow network algorithm to
flexibly reconstruct multi-state transition trajectories. Moreover,
CellRouter is independent of dimensionality reduction techniques

and can be used, for example, with principal component analysis
(PCA), t-stochastic neighbor embedding (t-SNE) or diffusion
maps.

CellRouter is a flexible single-cell analysis platform designed to
reconstruct single-cell trajectories of complex cell-state transi-
tions. We apply CellRouter to several single-cell RNA-sequencing
data sets to provide insight into multi-lineage differentiation from
hematopoietic stem and progenitor cells (HSPCs) in snapshot
data sets and also during a time-course of mesoderm diversifi-
cation towards the blood lineage, revealing sequential waves of
gene expression changes along differentiation trajectories.
Moreover, we provide insight to guide cellular reprogramming by
exploring stem cell differentiation data sets as a blueprint to
identify reprogramming trajectories and develop new cell engi-
neering strategies. CellRouter integrates subpopulation identifi-
cation, multi-state trajectories, and gene regulatory networks
(GRNs) to provide new insights into cell-state transitions during
lineage diversification, convergence, or cell reprogramming.

Results
Reconstructing complex single-cell trajectories. To identify
multi-state transition trajectories, CellRouter builds a k-nearest
neighbor (kNN) graph from cell−cell relationships in a space of
reduced dimensionality (Fig. 1). CellRouter then transforms the
kNN graph to represent cell−cell similarities by assigning weights
to each edge based on network similarity metrics (e.g., the Jaccard
similarity). This approach weakens connections between unre-
lated cell types and strengthens connections between cells within
the same subpopulation, better representing phenotypic related-
ness8. Next, using community-detection algorithms (e.g., the
Louvain method), subpopulations are defined by identifying
communities of densely inter-connected cells8, 9. Then, Cell-
Router uses a graph theory approach to solve the minimum cost
flow problem and precisely define trajectories between any two
subpopulations (t1, t2,.., t6)10, 11, including transitions to inter-
mediate states (t1, t2) or rare or under-represented cell types or
states (tr) (Fig. 1, Supplementary Note 1, Supplementary
Method). Importantly, CellRouter identifies a subset of repre-
sentative transitioning cells, better accounting for stochastic or
regulated cell-to-cell variation. Finally, to account for drop out
events in single-cell RNA-seq data, CellRouter explores the local
topology of the kNN graph to smoothen the kinetic trends along
each trajectory.
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Fig. 1 Overview of CellRouter. Step (1) Starting from single cells representing multiple cell states, including stable and in transition, a gene regulatory
network was built to identify putative gene regulatory relationships. Step (2) Subpopulations were identified by a combination of learning the structure of
the data and community detection algorithms. Step (3) High-resolution multi-state trajectories are identified from any subpopulation to any other,
including intermediate and mature cell types. Step (4) Multi-state trajectories illustrate the divergence of single-cell transcriptomes along each trajectory
progression. Identification of genes implicated in the dynamic biological process under study, such as differentiation, and identification of regulators driving
or mediating cell-fate transitions at the gene and network level
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CellRouter identifies transition-specific gene dynamics. We
applied CellRouter to a mouse bone marrow single-cell RNA-seq
data set (Supplementary Software 1). This data set contains a
non-random sampling of bone marrow cells isolated by micro-
dissection and also includes a purified Kit+Sca-1+Lin−CD48
−CD150+ population enriched for hematopoietic stem cells
(HSCs)12. We identified 24 subpopulations, corresponding to a
variety of cell types including HSCs, erythroblasts, mega-
karyocytes, neutrophils, basophils, macrophages, B-lymphocytes,
and other intermediate subpopulations (Fig. 2a). Annotation of
cell types was based on the original publication12 and gene sig-
natures identified by CellRouter (Supplementary Data 1).

CellRouter ordered single cells along their major branching
differentiation trajectories towards erythroblasts and neutrophils.
Of note, subpopulation 20, which expresses high levels of Eef1a1,
was selected as the starting point for trajectory identification
(Supplementary Fig. 1a). We used known erythroid and
neutrophil genes as positive and negative controls for these
differentiation trajectories, with erythroid genes but not neu-
trophil genes, dynamically regulated during erythroid differentia-
tion. A similar, but opposing pattern, is observed in the
neutrophil trajectory (Supplementary Fig. 1b). CellRouter pre-
dicted the trajectories as a continuum of cell-state transitions by
classifying several subpopulations as the intermediate or transi-
tory states between the HSCs and erythroblasts or neutrophils.

We developed a scoring scheme to identify transcriptional
regulators by their status of activation and by their predicted
target genes, termed GRN score (Methods). In the neutrophil
branch, this analysis identified Cebpe as a central regulator of
neutrophil progenitor GRNs, consistent with its known func-
tional roles in granulopoiesis13. Other top-ranked genes identified
in this analysis are less well characterized (Fig. 2b, top panel). In
mature neutrophils (subpopulation 18), the GRN score for Mxd1
substantially increases (Fig. 2b, bottom panel). To our knowledge,
the role of Mxd1 in neutrophil differentiation remains largely
uncharacterized. In the neutrophil trajectory, Mxd1 is upregu-
lated in later stages of differentiation compared to Cebpe (Fig. 2c,
d). According to GRN analyses, Mxd1 is predicted to regulate
Mmp8, Mmp9, Retnlg, and Cd52 expression, all of which are
known neutrophil markers (Fig. 2e, f). Interestingly, Cebpe is
upregulated early along the trajectory to neutrophils, followed by
Prdx5 and Cebpd and then Junb and Zfp36 (Fig. 2c, g, top panel).
In addition, we observed a sequence of gene activations
characteristic of neutrophil differentiation, which could further
distinguish early transitions (characterized by Elane expression)
from late transitions (Ngp expression), a temporal relationship
not previously reported. Finally, we observed upregulation of
mature makers, such as Mmp8 and Retnlg (Fig. 2h, top panel). To
validate these findings, we re-analyzed bulk RNA-seq data over
time in a model of temporal neutrophil differentiation14. This

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

−20

0

20

40

–20 0 20 40

0.0

0.2

0.4

0.6

Ceb
pe

Prd
x5

Zbtb
7b

Hmgb
2

Ceb
pd

H2a
fz

App

Hist
1h

1e
Uhr

f1
Klf1

3
E2f2

Tmf1
Ets1

Mxd
1

G
R

N
 s

co
re

SP_20.SP_17

0.0

0.1

0.2

0.3

0.4

Prd
x5

Ceb
pd

Zfp3
6

Ceb
pe

Ju
nb

Zbtb
7b Klf2

Ceb
pb Fos

Mxd
1

Ets1 App
Tmf1

Ror
b

G
R

N
 s

co
re

SP_20.SP_18

Time (h)

E
xp

re
ss

io
n

Cebpd

Cebpe

Junb

Prdx5

Zfp36

Elane

Mmp8

Ngp

Retnlg

CellRouter trajectory

E
xp

re
ss

io
n

Cebpd

Cebpe

Junb

Prdx5

Zfp36

SP_20.SP_18

CellRouter trajectory

Elane

Mmp8

Ngp

Retnlg

SP_20.SP_18

b

Erythroblasts

HSC

Megakaryocytes

Eosinophils

B Lymphocytes

Macrophages
Neutrophils

phagocytized 
Erythroblasts

SP_1

SP_2

SP_3

SP_4

SP_5
SP_6

SP_7

SP_8

SP_9

SP_10

SP_11

SP_12

SP_13

SP_14

SP_15 SP_16

SP_17

SP_18

SP_19

SP_20

SP_21
SP_22

SP_23
SP_24

tSNE1

tS
N

E
2

1007 cells
a

Klf2
Junb

Zfp36
Fos

Rorb
Tmf1
App

Mxd1
Zbtb7b
Cebpd
Cebpb
Cebpe

Ets1
Prdx5

−0.004

0.000

0.004

0.008

0.012

Derivative

SP_20.SP_18

Klf2
Junb

Zfp36
Fos

Rorb
Tmf1
App

Mxd1
Zbtb7b
Cebpd
Cebpb
Cebpe

Ets1
Prdx5

CellRouter trajectory

0.00

0.25

0.50

0.75

1.00
Expression

c

g h

0 4 8 12 24 36 48 72 96 120

Time (h)

0 4 8 12 24 36 48 72 96 120

0.00

0.25

0.50

0.75

1.00

0

–20
0

20
40

1

2

Expression
Mmp8

–20
0

20
40

−20

0.5

1.0

1.5

2.0

ExpressionCd52

tSNE1

tSNE1

tS
N

E
2

0.5

1.0

1.5

2.0

Expression

Mxd1

tS
N

E
2

Time (h)

E
xp

re
ss

io
n

Cebpe

Mxd1

d e

f

0.5

1.0

1.5

2.0

2.5
Expression

Mmp9

1

2

3

4
Expression

Retnlg

4 8 12 24 36 48 72 96 120

200 40 −20 200 40

Fig. 2 Gene expression dynamics during neutrophil differentiation. a t-SNE plot using genes reliably expressed as identified in the original study12.
b Predicted transcriptional regulators during cell-fate transitions from hematopoietic stem cells to neutrophil progenitors (subpopulation 17) and mature
neutrophils (subpopulation 18). c Transcriptional dynamics from hematopoietic stem cells (subpopulation 20) to mature neutrophils (subpopulation 18).
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analysis showed that expression changes identified by CellRouter
and the time-course of neutrophil differentiation were highly
consistent, demonstrating accuracy of the predicted trajectory
(Fig. 2g, h, bottom panels). In addition, the relative timing of
changes in gene expression with respect to one another was
highly consistent between the predictions and the time-course
data.

In the erythroblast branch, CellRouter predicted candidate
genes involved in erythroid differentiation, such as Rnf10, as well
as their expression dynamics along the pseudo-time (Fig. 3a, b).
Moreover, CellRouter also identified putative regulators of
transitions to progenitor stages of erythroid differentiation
(Fig. 3c). Next, we validated kinetic patterns for selected erythroid
genes and Rnf10 by differentiating human erythrocytes from
peripheral blood CD34+ cells15, and measuring transcripts by
quantitative polymerase chain reaction (qPCR) at various time
points (Fig. 3d, e). RNF10 interacts with the GATA1-regulated
protein SCNA16, which is highly correlated with the progression
from the HSC subpopulation 20 to the erythroblast subpopula-
tion 10. Moreover, Gata1 is upregulated earlier than Scna,
consistent with activation of Scna downstream of Gata1 both in
the CellRouter trajectory and during in vitro erythroid

differentiation (Fig. 3e and Supplementary Fig. 1c). In addition,
using differential expression analysis, we identified five transcrip-
tion factors—E2f4, H2afx, Klf1, Tal1, and Zfpm1—which were
highly expressed in subpopulation 10 compared to all other
subpopulations. Using qPCR, we validated their dynamics during
in vitro erythroid differentiation. Experimental measurements
confirmed that these genes were activated during terminal
differentiation, which is consistent with the CellRouter trajectory
(Supplementary Fig. 1d, e).

Next we used genes with increasing expression during
differentiation towards erythroblasts (subpopulation 10, marked
by highest Klf1 levels, Supplementary Fig. 1a, Supplementary
Data 1) and mature neutrophils to visualize how these genes
change along the opposite trajectory. While a clear pattern was
observed for transition-specific genes in their respective trajec-
tories, no pattern was observed in the unrelated trajectory
(Fig. 3f). Gene Ontology analysis of transition-specific genes
towards erythroblast progenitors and more mature cell states
(subpopulations 19 and 10, respectively) and towards neutrophil
progenitors and mature neutrophils (subpopulations 17 and 18,
respectively) showed that genes enriched in the mature cell states
are consistent with the predicted cell identity (Fig. 3g,
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Supplementary Data 2). These results demonstrate that CellRou-
ter identifies transition-specific gene expression dynamics and
regulatory nodes during lineage diversification from HSPCs in the
mouse bone marrow.

CellRouter identifies multi-lineage single-cell trajectories. We
next tested CellRouter on the BloodNet data set, which contains a
spectrum of stem, progenitor, and differentiated cells17 (Supple-
mentary Software 2). This analysis highlighted the flexibility of
CellRouter to identify differentiation trajectories from any
dimensionality reduction technique and find a refined cell-state
transition structure. By building a kNN graph from three-
dimensional diffusion components from the original publication,
CellRouter identified 15 subpopulations (Fig. 4a). Subpopulation
2 was enriched for long-term HSCs and it was used as the starting
population for the identification of developmental trajectories

toward hematopoietic ontogeny. Subpopulations 8, 11, and 4 were
enriched for erythrocytes, granulocyte-macrophages (GM), and
lymphoid multipotent progenitors (LMPP), respectively (Fig. 4b,
Supplementary Data 3). We used erythroid, GM, and LMPP
genes as positive and negative controls of these differentiation
trajectories, with erythroid genes (Klf1, Gata1, Gfi1b) but not GM
(Ctsg, Gfi1) or LMPP (Ccl3) genes dynamically regulated during
erythroid differentiation. Ccl3 correlated with transitions to
LMPPs but not with the GM or erythrocyte fates. Finally, GM
genes were expressed during GM differentiation but not erythroid
or LMPP differentiation, suggesting that CellRouter correctly
identified multi-lineage differentiation trajectories (Supplemen-
tary Fig. 2a). Gene expression along each trajectory was highly
enriched for lineage-specific biological processes such as “phor-
phyrin metabolic processes”, “granulocyte migration”, and “T-cell
activation”, demonstrating that CellRouter can capture transition-
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specific gene expression dynamics during HSC differentiation to
multiple lineages (Fig. 4c, Supplementary Data 4).

Next we used CellRouter to understand two potential
regulatory mechanisms: (1) upregulation of transcription factors
and their predicted target genes to capture direct induction of
lineage-specific transcriptional programs; and (2) downregulation
of transcription factors leading to increased expression of target
genes, to capture de-repression of lineage specifying genes during
differentiation. In both models, target genes were upregulated
during differentiation, but their regulators could be upregulated
(in red) or downregulated (in blue) (Fig. 4d, e). Consistently, Klf1,
Gata1, Gfi1b, and Nfia were among the top genes driving the
erythroid fate (subpopulations 2 to 8 transition). In LMPPs
(subpopulations 2 to 4 transition), Satb1, Irf8, Notch1, and Esr1
were among the top predicted genes, confirming previous
reports18–20 (Fig. 4e, left panel). Temporally, Satb1 was
upregulated early and its expression peaked in an intermediate
position along the trajectory, consistent with its role during
commitment of lymphoid progenitor cells19. Irf8 and Esr1 were
transiently downregulated, with more pronounced changes in Irf8
expression occurring later along the lymphoid progenitor
trajectory (Fig. 4e, right panel).

It has been reported that Notch1 promotes self-renewal over
differentiation in stem cells, and lymphoid over myeloid lineage
fates, consistent with our analysis20. Transition-specific regulators
of intermediate subpopulations for each lineage suggested the
existence of mixed states primed to GMs and lymphoid
progenitors, as indicated by shared regulatory genes such as
Satb1, Arid5a, Lmo4, and Elf1 (Supplementary Fig. 2b–d). Finally,
we clustered gene expression dynamics from long-term HSCs to
LMPPs to characterize waves of transcriptional changes along this
trajectory (subpopulations 2 to 4) (Fig. 4f, Supplementary Fig. 2e,
Supplementary Data 5). Representative genes in each cluster are
shown in Fig. 4g. This temporal information is crucial to
understand the dynamics of regulatory interactions underlying
cell-state transitions: genes activated earlier along differentiation
trajectories are potential regulators of this dynamic biological
process, while genes activated late are likely involved in cell-fate
commitment.

Insights for reprogramming blood cell types to HSPCs. Cell-
Router’s ability to reconstruct cell-state transition trajectories by
exploring subpopulation structure provides flexibility to identify
not only differentiation trajectories, but also predict cell repro-
gramming trajectories. To demonstrate this, we applied Cell-
Router to human single-cell RNA-seq profiling HSPCs
differentiating to six different lineages21 (Fig. 5a). We used
STEMNET for dimensionality reduction21 and applied CellRou-
ter to first identify lineage-specific differentiation trajectories
(Supplementary Software 3). We annotated subpopulations as
“Endpoint” or “Stem Cell” based on the original study21 and
selected subpopulation 12, which contains stem cells, as the
starting point for trajectory reconstruction (Supplementary
Fig. 3a). Also based on the original study21, we used genes
important for each transition as positive controls. As negative
controls, we used genes implicated in unrelated differentiation
trajectories. GATA1/KLF1 were used as erythrocyte (Ery) pro-
genitor markers, GP1BB/PBX1 as megakaryocyte (Mk) progenitor
genes, HDC/LMO4 as eosino/basophil/mast (Eo/Baso/Mast) cell
progenitor markers, CEBPA/CEBPD as neutrophil (Neutro)
progenitor genes, IRF7/IRF8 as monocyte/dendritic cell (mono/
DCs) progenitor genes, and EBF1/ID3 as pre-B-cell genes (B)
(Fig. 5b, Supplementary Fig. 3b). These analyses confirmed that

CellRouter identifies lineage-specific transition trajectories to six
different lineages.

Next, we used CellRouter to reconstruct reprogramming
trajectories from B-cells and mono/DCs toward HSPCs (Supple-
mentary Software 4). We incorporated GRN analysis to define
two regulatory mechanisms: (1) upregulation of transcriptional
regulators and their predicted target genes, to capture direct
induction of HSPC-specific transcriptional programs; and (2)
downregulation of transcription factors leading to increased
expression of target genes (i.e., de-repression), to identify genes
that must be knocked down in the starting population to induce
the HSPC fate. In both models, target genes were upregulated
during reprogramming, while their regulators were upregulated
or downregulated (Fig. 5c, d). Interestingly, many genes
important for HSPC identity were identified, including several
described as mediating cell-fate conversions within the hemato-
poietic system. For example, CellRouter identified Hlf, Pbx1, and
Meis1, previously used in combination with other genes to
convert mouse B-cells to HSC-like cells22; and Gata2 and Gfi1b,
previously used in combination with cFos and Etv6 to reprogram
murine fibroblasts to blood progenitors23. Genes predicted by
CellRouter and validated in published reprogramming strate-
gies22–25 to generate blood progenitors or HSPCs are highlighted
in Fig. 5c, d.

In our previous work, we used libraries of transcription factors
to convert human induced pluripotent stem cell (iPSC)-derived
blood progenitors to HSPCs24, 25. In one study, in vitro screening
of a library of nine transcription factors identified five transcrip-
tional regulators that conferred bipotent lineage potential and
engraftment in immunodeficient mice24. More recently, we used a
library of 26 transcription factors to generate engraftable
multipotent HSC-like cells from human pluripotent stem cells25.
Among these transcription factor libraries, including the ones
used to respecify murine cells22, 23 (67 genes in total,
Supplementary Data 6), CellRouter identified 11 of these factors
and predicted additional candidates, some of which have known
roles in HSC biology (for example, MECOM). These engineered
HSPCs are still transcriptionally distinct from cord-blood
HSPCs25. As the libraries of genes used for reprogramming were
identified mostly using bulk transcriptomics and literature
mining, which might not be the most critical factors to establish
bona-fide HSC GRNs in the starting cell population, our
methodology provides opportunities to develop new cell engi-
neering strategies by first identifying better gene sets for
reprogramming. Similarly, by identifying epigenetic barriers that
might be impairing the reprogramming genes to induce HSC
gene expression programs, or by exploring time-dependent
expression of reprogramming genes and the kinetic patterns of
gene expression changes along the reprogramming trajectory, we
may better drive the production of functional HSCs.

Interestingly, we observed distinct sets of candidate genes for
knockdown in mono/DCs or B-cells. Specifically, we observed
that for converting B-cells to HSPCs, our candidate gene list
includes chromatin regulators such as DNMT1, H3F3A, JARID2,
and KMT2D (Fig. 5c), while to convert Mono/DCs into HSPCs,
knockdown of DNMT1, H2AFZ, TRIM28, KMT2D, and H2AFV
would be required (Fig. 5d). Regulator-centered subnetworks for
selected genes previously used to engineer HSC-like cells showed
that these transcriptional regulators form an interconnected
regulatory circuitry (Fig. 5e).

Barring DNMT1, all other chromatin modifiers that we
identified are non-redundant, consistent with a specific epigenetic
state in each of the starting cell populations; therefore, depending
on the starting epigenetic state, we predict that each starting cell
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type would require knockdown of a unique set of chromatin
modifiers26. CellRouter predicts that during these cell-state
transitions, these chromatin modulators suppress expression of
HSPC genes (Supplementary Fig. 3c). In addition, previous
attempts to generate HSC-like cells did not explore the kinetic
component of gene expression during the cell engineering, and
instead relied on simultaneously inducing the expression of a
library of transcription factors. CellRouter provides a rational
strategy to identify the (pseudo)timing at which combinations of
genes should be overexpressed or downregulated to potentially
enhance cell-fate conversions. For example, to convert B-cells to
HSPCs, NFE2 and FLI1 could be overexpressed early, followed by
NRIP1, ERG and HLF and then GATA2 and MEIS1, as these
genes present distinct kinetic patterns along the reprogramming
trajectory from B-cells to HSPCs (Fig. 5c). This information is
crucial to understand the dynamics of regulatory interactions
underlying cell-fate reprogramming: genes activated earlier along
reprogramming trajectories are initial mediators of this dynamic

biological process, while genes activated late are likely involved in
establishing or reinforcing the identity of the target cell type.
Overall, CellRouter allows for identifying candidate genes in an
unbiased but rational manner for cell-engineering purposes.

Comparison of CellRouter to other algorithms. Finally, we
compared CellRouter to the established algorithms Monocle 2,
DPT, Wishbone, and Waterfall using mouse myeloid progenitor
transcriptomes from the data sets generated by Paul et al.27 and
Olsson et. al.13 (Fig. 6, Supplementary Fig. 4a–c, Supplementary
Note 2). Unlike CellRouter, previously published methods do not
construct an explicit differentiation path to/from multiple cell
states (which may also converge to a particular cell type). Instead,
Wishbone and DPT identify branches by analyzing patterns that
diverge from a linear trajectory, and Monocle 2 constructs an
explicit tree28. A common feature of most or all of the existing
methods, thus far, is that they assign a pseudotime to each cell,
“compressing” cells into a single branch-specific trajectory,
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introducing “noise” to the analysis. In contrast, CellRouter
implements an optimization algorithm, based on flow networks,
to identify a subset of cells connecting a starting cell to another
cell in the target population, which leads to high resolution tra-
jectories, with smoother gene expression dynamics (Figs. 1 and
6a). Therefore, we hypothesized that when we choose a subset of
cells connecting any initial subpopulation to a target sub-
population, CellRouter would identify differentiation trajectories
with smoother gene expression dynamics compared to other
algorithms, potentially uncovering additional genes involved in
the transition that are undetectable by previous methods (Fig. 6a).
To test this, we used two metrics to compare CellRouter to pre-
viously described algorithms. First, the number of genes sig-
nificantly correlated to each transition or branch-specific
trajectory and second, the lag-1 autocorrelation of selected mar-
ker genes. Higher numbers of correlated genes and higher lag-1
autocorrelations imply smoother gene expression dynamics,

reflecting the quality of the trajectory reconstructed by each
algorithm (Fig. 6a). We applied CellRouter to identify differ-
entiation trajectories from common myeloid progenitors (CMPs,
subpopulation 20) to intermediate and mature cell states in the
megakaryocyte/erythrocyte progenitor (MEPs) and granulocyte/
monocyte progenitor (GMPs) branches in the data set generated
by Paul et al.27 (Fig. 6b). We used genes known to be important in
specifying the MEP and GMP branches as positive and negative
controls for the two selected differentiation trajectories to these
branches27 (Fig. 6c), confirming that CellRouter reconstructs
transition-specific trajectories.

We first calculated the number of significantly up- or
downregulated genes along differentiation trajectories identified
by CellRouter, Monocle 2, DPT, Wishbone, and Waterfall
(Fig. 6d). Next, based on the prior study by Paul et al.27, we
selected known markers of each branch, such as Klf1, Car2, and
Cited4 in the erythroid branch, and Mpo, Prtn3, and Ctsg in the
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GMP branch, and calculated the lag-1 autocorrelation of these
markers along the respective trajectories, from subpopulation 20
(CMP) to subpopulation 13 (erythroid branch) or to subpopula-
tion 9 (GMP branch) (Fig. 6e). We also applied CellRouter either
using the subpopulation structure determined by CellRouter in
Fig. 6b or clusters identified by Paul et al.27 to evaluate the effect
of varying subpopulation structure (Supplementary Fig. 4d).
These analyses showed that trajectories identified by CellRouter
are smoother compared to other algorithms, reflecting the quality
of CellRouter’s trajectories (Fig. 6e, right panel). We also
evaluated the effect of changes in subpopulation structure (Fig. 6e,
Supplementary Fig. 4d–f), performed a comparison to other
methods in two synthetic data sets generated by Splatter29

(Supplementary Fig. 4g,h) and assessed the robustness of
CellRouter’s trajectories to subsampling (Supplementary Fig. 4i).
Together these analyses showed that trajectories identified by
CellRouter are robust to subpopulation structure and subsam-
pling, and also outperform the previously described algorithms by
all of these metrics.

Moreover, we performed a side-by-side comparison of
CellRouter to Monocle 2 using the Olsson data set13, which
contains an underrepresented bifurcation of the megakaryocyte/
erythrocyte lineages (Supplementary Fig. 5). While CellRouter
identified differentiation trajectories from HSPCs to megakar-
yocytes or erythrocytes (subpopulations 19 and 5, respectively),
Monocle 2 did not distinguish the megakaryocyte/erythrocyte
lineages, and assigned them to the same branch (Supplementary
Fig. 5a–e, Supplementary Figs. 7 and 8, Supplementary Data 7, 8
in Supplementary Note 3). Finally, we assessed how the choice of
dimensionality reduction technique affects trajectories recon-
structed by CellRouter, and analyzed the feasibility of applying
CellRouter to convergent differentiation paths (Supplementary
Note 4). These analyses demonstrated that trajectories identified
by CellRouter are robust to the choice of dimensionality
reduction technique and also capable of analyzing cell popula-
tions undergoing convergent differentiation processes. The ability
of CellRouter to explore subpopulation structure to identify
multi-state transition trajectories provides enhanced resolution to
study the dynamics of cell-fate transitions. Application of
CellRouter to other studies demonstrates its versatility in
analyzing both snapshot and time-course single-cell transcrip-
tomics data sets (Supplementary Figs. 9 and 10, Supplementary
Data 9–11, Supplementary Note 3).

Discussion
CellRouter introduces the concept of subpopulation-awareness to
identify cellular trajectories and gene expression dynamics
between any subpopulations using a network representation of
cell−cell relationships learned from a low-dimensional embed-
ding. This network and the underlying subpopulation structure
are used as a map of cell-fate transitions. Utilizing concepts
from flow networks and solving the multi-source/multi-target
minimum cost flow problem to optimally connect cells in dif-
ferent locations of this map (subpopulations), CellRouter
allows the study of expression dynamics in bifurcating or con-
vergent differentiation paths, as well as during cell-fate engi-
neering, in many different branches or within the same branch.
Integration with GRNs enhances trajectory analysis by allowing
identification of putative regulators for cell-state specification
during lineage differentiation or reprogramming. Moreover, cell-
state transition trajectories involving multiple branches present in
the subpopulation structure can be analyzed, simultaneously,
without any assumptions related to the structure of the

trajectories such as the number of branches, or removal of
unrelated cell types.

CellRouter allowed us to accurately reconstruct multi-lineage
differentiation dynamics during erythroid, myeloid, and lym-
phoid differentiation from HSPCs. Specifically, it allowed us to
study neutrophil differentiation dynamics and implicate addi-
tional genes in erythroid differentiation. Existing attempts to
convert or reprogram one cell type into another have been largely
focused on the simultaneous overexpression of a defined set of
transcription factors in the starting cell population. However, in
the case of HSPCs, epigenetic barriers may limit the efficiency of
cell-fate conversion and potentially impair the acquisition of
multi-lineage differentiation potential. In addition to identifying
and removing the epigenetic barriers, exploring the kinetic
component of gene expression during cell-state transitions by
mimicking, in vitro, the sequence of gene activation and repres-
sion events along the reprogramming trajectory could further
enhance cell-fate engineering. CellRouter achieves both of the
above and thus provides a rational strategy to develop optimized
cell engineering protocols, which may require the time-sensitive
addition and/or inhibition of morphogens, small molecules,
cytokines, and transcription factor overexpression. While thor-
ough characterization of the potential for each of the genes
identified by CellRouter to lead to the generation of engraftable
HSC-like cells with long-term, multilineage potential extends
beyond the scope of this manuscript, it warrants future
investigations.

Finally, characterization of complex cellular ecosystems from
single-cell omics data will require integrated computational
platforms to discover both rare cell types as well as multi-state
transition trajectories. These are essential to uncover the
dynamics of cell-fate transitions conferring cellular diversity to a
tissue ecosystem. CellRouter addresses many of these challenges
by integrating GRNs with multi-state transition trajectories and
scoring schemes to capture transition-specific gene expression
and putative regulatory interactions. Moving beyond single-cell
transcriptomics, we envision future application of CellRouter to
single-cell chromatin accessibility, DNA methylation, and mass
cytometry data, thereby providing a valuable multifaceted single-
cell analysis platform to the research community for use in a
broad array of cell and tissue analyses.

Methods
CellRouter algorithm. To identify multi-state trajectories, CellRouter makes the
following assumptions: first, as cells evolve asynchronously, a single-cell-based
snapshot of a primary tissue captures the entire process of cell-fate diversification
within that tissue, such as stem/progenitor cell differentiation, oncogenic trans-
formation or tumor progression; second, within a population, a continuum
of phenotypically distinct subpopulations exists; and third, state transitions are
continuous with molecular hallmarks activated or silenced in a progressive
manner. CellRouter functions in three steps. First, is the reconstruction of
GRNs using a modified version of our previously developed algorithm, the context
likelihood of relatedness (CLR)9, 30, and subpopulation identification; second, is
the reconstruction of multi-state trajectories between subpopulations and third, is
the downstream analysis based on an integration of GRNs with multi-state
trajectories.

As cells progress through a dynamic process, such as differentiation,
oncogenic transformation or response to drugs, changes in cellular states occur that
are reflected by molecular changes generating both phenotypically stable cell
types as well as a continuum of cell states transitioning between phenotypic
landscapes. Major challenges involve identifying rare and abundant cell types and
their transcriptional dynamics during cell-fate transitions towards multiple cell
states, including progenitor and mature cell types, in many distinct lineages or
branches.

CellRouter takes a distinct approach compared to previously published
algorithms by introducing the concept of subpopulation-aware trajectory
identification where transitions between any subpopulations can be studied,
regardless of how complex or how many branches might exist in the data set.
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The advantage of this strategy is twofold. This is first, for the characterization of
subpopulation structure and identification of cell types or states and second,
identification of multi-state trajectories without any assumptions about branching
processes in the same computational platform. To achieve these goals, CellRouter is
formulated based on a graph-based clustering algorithm, for subpopulation
identification, and a graph theory framework known as flow network, where the
identification of multi-state trajectories is formulated as an optimization problem.

kNN graph construction and subpopulation identification. As the flow network
approach requires a graph, the very first step in CellRouter is to carefully build a
graph from the single-cell data. This task is performed in three steps. The first step
is dimensionality reduction; the second, construction of a kNN graph in the space
of reduced dimensions, and the third, is transforming the kNN graph to encode cell
−cell similarities. CellRouter takes as input a matrix M representing cell−cell
relationships in an embedding space and therefore, any dimensionality reduction
technique can be used, such as PCA, t-SNE, diffusion maps or others. Indeed, we
tested CellRouter with t-SNE and diffusion components. Dimensionality reduction
helps to remove short-circuits from the graph, which are edges connecting cells not
developmentally related but are connected likely due to measurement noise. The
kNN graph is then built from cell−cell relationships in the embedding space, where
a cell is connected to their k most similar neighbors using Euclidean distance.
Given this graph, we transform cell−cell distances into cell−cell similarities using
network similarity metrics such as the Jaccard similarity. For example, the Jaccard
similarity will strengthen connections between phenotypically related cells and
weaken connections between cells belonging to another subpopulation or due to
noise, and therefore, better encoding subpopulation structure and transitional cell
states in the graph. The advantage of this transformation is twofold: first, as the
graph encodes cell−cell similarities, methods to find community structure in
networks can be used to identify subpopulations and second, trajectory detection
can be formulated as an optimization procedure to maximize similarity. By doing
this, CellRouter can explore the underlying subpopulation structure of the data to
find multi-state trajectories with subpopulation resolution.

Flow network. Mathematically a network is a finite collection of nodes, connected
by a finite collection of edges. By convention, a node cannot be connected to itself
but many edges can connect a given pair of nodes. We will be working mostly with
connected networks, but disconnected networks are also possible. The underlying
structure of a flow network is a directed graph where vertices are network nodes
and edges represent connections between nodes. Formally, a flow network is
defined by the quadruple N= (G, s, t, c), where G(V, E) is a directed graph of v
vertices in V and e edges in E, with E � V � V , s and t are auxiliary nodes
representing the source and sink of the network, respectively, and c is a positive
capacity associated to each edge in the graph. Given these basic definitions, we
generalize the one-source one-sink framework to solve a multiple-source, multiple-
sink problem by introducing the following transformations, which are widely used
in optimization theory. Given a collection of nodes to be used as sources S and
sinks T, the previous definitions can be updated as:

V′ ¼ V ∪ s; tf g, where s and t are auxiliary nodes used to transform a single-
source, single-sink problem into a multiple-source, multiple-sink problem.

E′ ¼ E∪ s; ið Þ8i2S ∪ t; ið Þ8i2T , connecting sources and sinks to the auxiliary
nodes s and t.

The following optimization problem is solved:

minf
X

i2V′;j2V′
�log ci;j

� � � fi;j
 !

A function f=E → R+ is a flow over the network if the following requirements
are fulfilled:

0 � f ij � cij; 8 i; jð Þ 2 E′

X

j2V′
fij �

X

j2V′
fji ¼ 0; 8i 2 V ′� s; tf g

X

i2S
fsi �

X

i2T
fit ¼ 0

where fij is the flow from node i to node j. The minimum cost flow problem is to
find the flow f with maximum value at the lowest cost. To that end, the cost
associated to each edge is defined by

costs ¼ �log ci;j
� �

Therefore, minimizing the costs will give preference to high-capacity paths
through the graph. Now, if we imagine a graph where each node represents a
single-cell and each edge connects cells phenotypically similar, whose weights
quantify such similarities, the entire graph will encode cell−cell similarities and

heterogeneities. In this scenario, the minimum cost flow problem will find
paths connecting source(s) to sink(s) that maximize cell−cell similarities. We call
these paths trajectories, where sources(s) are starting cell subpopulations, such as
stem cells, and sinks or targets, are their differentiated progeny or progenitor-like
states.

CellRouter trajectories. As briefly described in the previous section, and explained
in more detail in this section, the flow network algorithm finds several paths
connecting sources to sinks in a kNN graph encoding cell−cell similarities. The
flow in the resulting flow network is the maximum achievable with the lowest
possible cost, meaning that similarity was maximized. Each path has three prop-
erties: a total cost, which is the sum of the cost of each edge; a total flow, which is
the sum of the flow of each edge; and a length, which is the number of edges in a
path. After the algorithm has finished, each path has a total flow, that it is sum of
the flow in each component edge of the path. We then rank paths by normalizing
the path total flow by the path length and select the top scoring path as a repre-
sentative trajectory.

By user choice, paths can be ranked by cost, total flow or length, and the top
ranked path will be considered as representative of the trajectory associated with a
particular transition.

Analysis of gene expression dynamics. Once trajectories are identified, Cell-
Router rank genes for each trajectory according to their correlation (such as
Pearson or Spearman, user defined) with the trajectory progression to find genes
directly regulated during the biological processes taking place, such as differ-
entiation. In addition, to find more complex gene expression kinetics, CellRouter
smooths the actual transcriptional profiles by fitting a smooth spline curve for each
gene, for each trajectory. Standardizing these curves allows for efficient K-medoid
clustering for all genes regulated along each trajectory. Pairwise distances between
genes x and y are calculated as2:

dðx; yÞ ¼ 1� cx;y
2

where cx,y is the Pearson correlation coefficient of the smooth curves representing
the expression dynamics of genes x and y. Clusters correspond to genes with
similar gene expression dynamics. Clustering based on smooth curves produce
more coherent clusters with refined kinetics and then allowing the identification of
more complex gene expression patterns. K-medoid clustering was performed on
the smoothed curves after log-transformation and standardization using the PAM
package in R. Gene expression dynamics along each CellRouter trajectory were
clustered using N clusters that are user-defined, to capture high-resolution changes
in expression kinetics. Moreover, these fitted kinetic trends are used to investigate
the relative timing of gene expression changes along each differentiation trajectory.
To make these patterns more evident, curves corresponding to kinetic profiles of
each gene are rescaled between 0 and 1.

GRN score. As the intrinsic heterogeneity (both stochastic and regulated cell-to-cell
variation) of single-cell expression profiles can be understood as perturbations, pre-
dictions of regulator−target relationships directly from single-cell data are possible31.
We developed a scoring scheme to rank transcriptional regulators based on
their correlation with the trajectory progression, the correlation of their predicted
targets, and the extent to which target genes are regulated during a particular tra-
jectory:

GRNi;j ¼ ci;j �mt;j � nj

where GRNi,j is the GRN score for regulator i along trajectory j, ci,j is the
Spearman’s rank correlation of transcriptional regulator i with the trajectory j, mt,j

is the mean correlation of predicted targets of gene i regulated along trajectory j
and nj is the number of predicted targets regulated along trajectory j. Formally, the
Spearman’s rank correlation of the gene expression dynamics X along pseudo-time
Y of regulator i and trajectory j, respectively, is defined by:

rs ¼ ρrgX ;rgY ¼ cov rgX; rgYð Þ
σrgX σrgY

X and Y are converted to the rank variables rgX and rgY, ρ is the Pearson
correlation coefficient of the ranked variables, cov denotes the covariance, and σ is
the standard deviation of the respective variables. This equation is calculated by the
R function cor.test().

We reasoned that if a regulator is well correlated with a differentiation
trajectory, it is potentially involved in differentiation (parameter ci,j). Moreover, if
its predicted target genes are also well correlated with the differentiation trajectory,
it is more likely that the regulator is important (parameter mi,j). However, it may
happen that the regulator only regulates a few genes that are well correlated to the
trajectory and the mean correlation of its targets is high. On the other hand, a
regulator that has several target genes dynamically regulated during differentiation
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should score higher than a regulator that has only a few genes well correlated with
the trajectory. This is the motivation to include the term nj in the equation.

Selecting sources and targets. CellRouter selects one source and one target cell
for each pairwise cell-state transition, which are not randomly selected. CellRouter
selects as source and target cells the cells that are more distant in the kNN graph by
computing all shortest paths connecting each cell in the source population to the
target population. Cells at the beginning and ending of the longest path are selected
as source or target cells, such that CellRouter can reconstruct a trajectory between
the potentially extreme points of each transition.

Assessing accuracy of trajectories. We reasoned that a properly reconstructed
differentiation trajectory would generate smooth gene expression dynamics, as the
ordering reflects developmental divergence from early to late stages of differ-
entiation. This is reflected in how well a gene correlates with the progression along
differentiation (as determined by the trajectory) and also the autocorrelation of a
gene dynamics with lagged values of its transcriptional kinetics. CellRouter iden-
tifies genes correlated with each transition-specific trajectory using the Spearman
rank correlation and the lag-1 autocorrelation to quantify how smooth gene
expression dynamics is along differentiation trajectories. A time series shows
autocorrelation if there is a correlation between the lagged values of the time series.
Suppose we have a time-series x1,x2…xn, where xt denotes an observation at time t.
The lag-1 autocorrelation measures the linear relationship between xt and xt−1 for
all time t, which is defined as:

ct ¼ 1
n

Xmin n�t;nð Þ

s¼max 1;�tð Þ
Xsþt � X
� �

Xs � X
� �

rt ¼ ct
c0

where ct is the autocovariance and rt is the autocorrelation. As gene expression
along each trajectory/pseudotime can be seen as a time series, we used this metric
to estimate the quality of CellRouter's trajectories and compare it to previously
reported algorithms. The higher the autocorrelation, smoother gene expression
dynamics based on the ordering of single-cells identified by the trajectory detection
algorithm. To test this, based on the original study by Paul et al., we selected three
GMP markers (Mpo, Ctsg, and Prtn3) and three erythroid markers (Klf1, Car2, and
Cited4) and computed the autocorrelation coefficient of these genes in the GMP
and erythroid trajectories identified by CellRouter, Monocle 2, DPT, Wishbone,
and Waterfall. Moreover, for each trajectory detection algorithm, we calculated
the number of significantly correlated genes along trajectories identified by each
method.

Data sets analyzed. Processed data sets were downloaded from each original
publication and used as provided by the authors to increase comparability with
previous analysis12, 21. These data sets have already excluded low-quality cells and
filtered out not-informative genes. The following sections provide details about the
analysis of each data set. For each data set, genes with zero variance were removed.
For dimensionality reduction, we used the same gene sets identified by the authors
of the original publications in their analyses.

Analysis of bone marrow cells. We downloaded bone marrow single-cell RNA-
seq data from the accession number GSE76983. We then performed t-SNE
analysis using StemID to increase comparability with the original publication
(using 2416 genes reliably expressed). These t-SNE coordinates were used as input
to CellRouter to build a kNN graph. We set k= 5 for subpopulation identification
and k= 10 for trajectory analysis. In this data set, gene symbols contained the
chromosome name appended to the gene id. Therefore, after dimensionality
reduction, we averaged the expression of genes with the same gene symbols but in
different chromosomes to facilitate GO analysis. To identify potentially meaningful
genes for trajectory analysis, we performed a PCA using 13,673 genes and selected
genes with absolute loadings higher than a quantile of 0.975 in the first five
principal components, resulting in 2550 genes to be analyzed regarding their
regulation along multi-state trajectories. Cell cycle genes (GO:0007049) were
removed prior to Gene Ontology analysis of cell-state transition-specific genes.
Subpopulation 20 was selected as the starting population for trajectory identifica-
tion because it is the most distant HSC subpopulation relative to all other
subpopulations.

Analysis of the BloodNet data set. We downloaded processed data from http://
blood.stemcells.cam.ac.uk/single_cell_atlas.html (accession number: GSE81682).
The data set made available by the authors was previously filtered to include only
the most variable genes. To increase comparability with the previous study, we used
the diffusion map coordinates generated by the authors in the original publication
as a space of reduced dimensionality and built a kNN graph from the three-

dimensional diffusion components available. We used k= 20 for subpopulation
identification, to capture major subpopulations, and k= 10 for trajectory detection,
as the kNN graph generated by k= 10 was already fully connected. This allowed
the study of differentiation trajectories from HSPCs into three major lineages:
erythroid, granulocyte-macrophage, and lymphoid. Cell cycle genes (GO:0007049)
were removed prior to Gene Ontology analysis.

Analysis of the human hematopoietic stem cell data set. We followed the
procedure described in https://git.embl.de/velten/STEMNET/tree/master/vignettes
to reproduce the analyses reported in Velten et al.21 (accession number:
GSE75478). We used 12,281 genes for trajectory analysis and GRN reconstruction.
We built a kNN graph from the low-dimensional embedding identified by
STEMNET and set k= 13 for subpopulation identification, to capture major
subpopulations, and k= 10 for trajectory detection, as the kNN graph generated by
k= 10 was already fully connected.

Analysis of myeloid progenitor data. We followed the procedure described in
http://cole-trapnell-lab.github.io/monocle-release/Paul_dataset_analysis_final.html
to apply Monocle 2 to analyze the data generated by Paul et al. and generated a
processed data set that was used to compare CellRouter to Monocle 2, DPT,
Wishbone, and Waterfall. Briefly, we downloaded scripts to reproduce the analysis
in Paul et al. from http://compgenomics.weizmann.ac.il/tanay/?page_id=649. UMI
counts were downloaded from GEO accession number GSE72857. A final data set
of 3004 informative genes and 2699 cells (lymphoid cells were excluded) was used
to compare these five algorithms. We applied Monocle 2 to this data set as
described in the Monocle 2 tutorial and DPT as described in https://github.com/
theislab/scAnalysisTutorial/blob/master/MARSseq_analysis_tutorial.ipynb. To
run Wishbone, we used the top five principal components as input to perform
the t-SNE analysis required by Wishbone and selected the diffusion components 1
and 3 as input. We used 150 waypoints. To run CellRouter in this data set, we
selected k= 10 to build the kNN graph. Root cells were properly selected for each
software (a cell in the common myeloid progenitors population), except for
Waterfall, that does not have an option to define the starting point of the trajectory.
In CellRouter, we selected the starting subpopulation 20 and a cell within this
population is properly selected (as described in the section “Selecting sources and
targets”).

Re-analysis of time-course neutrophil differentiation. Bulk RNA-seq data pro-
filing a time-course of neutrophil differentiation were downloaded from the GEO
accession number GSE84874. Processed counts were publicly available. Then, we
used the DESeq2 package to normalize counts by library size. Next, we averaged the
normalized counts for each replicate (two per time point)) along the time-course of
neutrophil differentiation. This data set was then used to validate dynamic expression
patterns from the CellRouter trajectory from HSCs to neutrophils.

Analysis of granulocyte and monocyte differentiation. We downloaded
expression data, meta-data information, and a list of “guide genes” used in the
original publication from https://www.synapse.org/#!Synapse:syn4975057/files/. In
total, 382 wild-type cells were analyzed. We built a t-SNE map using 532 guide
genes identified by iterative clustering in the original publication13. Then, we
performed a PCA using all genes remaining after filtering out zero-variance genes
(using 15,602 genes) and selected genes with absolute loadings higher than a
quantile of 0.975 in the first five principal components, resulting in 3813 genes to
be analyzed regarding their regulation along multi-state trajectories. We set k= 4
for subpopulation identification. Using a small k allows identification of a larger
number of subpopulations, providing a refined subpopulation structure. However,
this usually generates an unconnected graph. For trajectory identification, the
graph needs to be connected or only transitions between subpopulations in the
same connected component will be identified. Therefore, we set k= 15 to build a
connected graph and identify multi-state differentiation trajectories, using the
subpopulation structure identified using k= 4. Cell cycle genes (GO:0007049) were
removed prior Gene Ontology analysis of cell-state transition-specific genes.
Accession number: GSE70245.

Analysis of mesoderm diversification. We downloaded processed data from
http://gastrulation.stemcells.cam.ac.uk/scialdone2016. We used a list of the most
variable genes across all single-cells for t-SNE analysis (list provided by the authors
of the original publication32). To identify genes to be used for trajectory analysis,
we combined genes with high absolute loadings from a PCA analysis with a list of
about 1900 most variable genes identified by the authors of the original publication.
We set k= 5 to identify subpopulations and k=15 to identify single-cell trajec-
tories. Accession number: E-MTAB-4079.

Detection of subpopulation-specific gene signatures. We identified
subpopulation-specific gene signatures by comparing each subpopulation to all
other subpopulations and computing a pvalue for the difference in mean
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expression between the subpopulation and cells in other subpopulations based on a
binomial counting statistics12.

Identification of genes regulated during differentiation. For each gene in each
trajectory, we detect genes likely directly implicated in differentiation by ranking
them by their correlation with the trajectory progression. For all data sets, we use
the Spearman rank correlation coefficient to identify genes correlated or anti-
correlated with the trajectory progression. Then, we consider genes above the 85%
quantile as positively correlated with the trajectory progression (increasing
expression during differentiation) and genes below the 15% quantile as anti-
correlated with the trajectory progression (decreasing expression during differ-
entiation). We identify more complex gene expression patterns by clustering
expression trends into a user-defined number of clusters. Additional details are
provided in the section “Analysis of gene expression dynamics”.

Gene regulatory network reconstruction. We reconstructed GRN from single-
cell transcriptomes for each data set. We used our previously developed algorithm,
the CLR, especially the modified version published with CellNet to reconstruct
GRNs for each data set. We hypothesize that the large-scale nature of single-cell
data sets and the intrinsic population heterogeneity (including the presence of
multiple cell types and states) would act as perturbations that could be explored by
CLR to identify putative regulatory relationships.

In vitro erythroid differentiation. Mobilized peripheral blood CD34+ stem/
progenitor cells (AllCells) were obtained from three independent donors. Cells
were expanded at 37 °C and 5% CO2 in StemSpan™ SFEM (StemCell Technologies)
supplemented with the human recombinant cytokines 50 ng/ml SCF, 50 ng/ml
Flt3L, 50 ng/ml TPO, 50 ng/ml IL-6, 10 ng/ml IL-3 (PeproTech) and 1% penicillin/
streptomycin. Following 8 days of expansion, referred herein to as day 0 of dif-
ferentiation, cells were moved to an erythroid differentiation medium based on Lee
et al.15, consisting of Iscove’s modified Dulbecco’s medium with 2 mM glutamine,
15% FBS, 1% BSA, 500 μg/ml holo-Transferrin, 10 μg/ml insulin, 1% penicillin/
streptomycin and the following stage-specific additions: 1 μM dexamethasone, 1
μM β-estradiol, 5 ng/ml IL-3, 100 ng/ml SCF and 6 U/ml EPO (days 0–4); 50 ng/ml
SCF and 6 U/ml EPO (days 5–8); and 2 U/ml EPO (days 9–17).

Cell staining. For flow cytometry, cells were stained with human CD71-PE (Clone-
M-A712; BD Biosciences), human CD235a/Glycophorin A (11E4B-7–6; Beckman
Coulter) and DAPI, and analyzed on a BD Fortessa cytometer. For histologic
staining, cells were spun onto glass slides at 1000 rpm for 10 min and stained with
May Grünewald for 12 min and Giemsa for 2 min. Images were acquired on Nikon
Eclipse 90i with a Nikon Digital Imaging head.

Gene expression analysis. Total RNA was extracted using the RNeasy Micro Kit
and contaminating DNA was removed with the RNase free DNase kit (Qiagen).
cDNA was synthesized from 200 ng of RNA using Maxima™ First Strand cDNA
Synthesis Kit for RT-qPCR (Thermo Fisher Scientific). Real-time qPCR was per-
formed using TaqMan Gene Expression Assays on QuantStudio 7 Flex. Each gene
was run in triplicates and normalized to the housekeeping gene GAPDH.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon reasonable request. No new data have been
generated in this study. Data sets used in this study have already been deposited
under accession codes: GSE76983 (for the mouse erythroblast/neutrophil differ-
entiation data12), GSE84874 (for the bulk RNA-seq of mouse neutrophil differ-
entiation data14), GSE81682 (for the BloodNet data17), GSE75478 (for the human
HSPC data21), GSE72857 (for the mouse myeloid progenitors data27), GSE70245
(for the mixed-lineage states data, where only wild-type cells were analyzed13), and
E-MTAB-4079 (for the mesoderm data, where only wild-type cells were ana-
lyzed32). Scripts to reproduce results in this paper (Supplementary Software 1–4)
and the CellRouter source code (Supplementary Software 5) are available as Sup-
plementary Software as well as through GitHub (https://github.com/edroaldo/
cellrouter). Processed data are available through the CellRouter GitHub webpage.
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