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We present a new technique that uses active learning to infer models of applications that manipulate relational
databases. This technique comprises a domain-specific language formodeling applications that access databases
(each model is a program in this language) and an associated inference algorithm that infers models of
applications whose behavior can be expressed in this language. The inference algorithm generates test inputs
and database configurations, runs the application, then observes the resulting database traffic and outputs
to progressively refine its current model hypothesis. The end result is a model that completely captures the
behavior of the application. Because the technique works only with the externally observable inputs, outputs,
and databases, it can infer the behavior of applications written in arbitrary languages using arbitrary coding
styles (as long as the behavior of the application is expressible in the domain-specific language).

We also present a technique for automatically regenerating an implementation from the inferred model.
The regenerator can produce a translated implementation in a different language and systematically include
relevant security and error checks.
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1 INTRODUCTION

Applications that access databases are ubiquitous in computing systems. Such applications typically
translate commands from the application domain into operations on the database, with the appli-
cation constructing strings that it then passes to the database to implement the operations. Web
servers, which accept HTTP commands from web browsers and interact with back-end databases
to retrieve or modify relevant data, are one particularly prominent example of such applications.
These applications are written in a range of languages, often quickly become poorly-understood
legacy software, and, because they are typically directly exposed to Internet traffic, have been a
prominent target for security attacks [Bandhakavi et al. 2007; Bisht et al. 2010; Fu et al. 2007; Halder
and Cortesi 2010; Halfond and Orso 2005; Jovanovic et al. 2006; Livshits and Lam 2005; Perkins
et al. 2016].

1.1 Konure

We present Konure, a new system that interacts with the application and its database to infer a
model of the application behavior. The inference algorithm systematically constructs test database
configurations and input commands, runs the application with the test database configurations and
inputs, then observes the resulting outputs and database traffic to iteratively construct the model.
To make the inference problem tractable, Konure works with a domain-specific language that

(1) captures common application behavior and (2) supports a hierarchical inference algorithm that
progressively explores the behavior of the application to infer a model of application behavior.
The inference algorithm operates in a top-down manner. It maintains a current hypothesis as a
sentential form of the grammar that defines the domain-specific language. At each step it selects a
nonterminal in this sentential form, constructs inputs and database configurations that enable it to
determine the one production to apply to this nonterminal that is consistent with the behavior of
the application, configures the database, runs the application on this configured database with the
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constructed inputs, then observes the resulting database traffic and outputs to refine the hypothesis
by applying the inferred production to the nonterminal.

If the application conforms to one of the models defined by the domain-specific language, then
the algorithm is guaranteed to (1) terminate and (2) produce an inferred model that correctly
captures the complete semantics of the application. Because Konure interacts with the application
only via its input, output, and observed interactions with databases that Konure configures, it can
infer and regenerate applications written in any language or in any coding style or methodology.
Because the model captures the complete semantics of the application, it can help developers

explore and better understand the behavior of the application. Konure can also regenerate the
application, translating the application into a potentially different language and systematically
applying coding patterns and additional checks that are known to be safe. Potential benefits include
successfully reverse engineering application functionality, supporting application migration to
different languages or computing platforms, and the elimination of security vulnerabilities.

1.2 Experimental Results

We present case studies applying Konure to three applications: Kandan Chat Room [kan 2018],
Blog [rai 2018], and a student registration application developed by a hostile DARPA Red Team
to test SQL injection attack detection and nullification techniques. Our results show that Konure
is able to successfully infer and regenerate commands that these applications use to retrieve data
from the database.

1.3 Previous Work In Program Synthesis

Program synthesis is currently an active research area [Alur et al. 2013; Beyene et al. 2015; Ellis
et al. 2016; Feng et al. 2018, 2017; Feser et al. 2015; Gulwani et al. 2017; Jeon et al. 2015; Polikarpova
et al. 2016; Wang et al. 2018; Yaghmazadeh et al. 2016]. The vast majority of this research works
with a given set of input/output examples to synthesize a program that satisfies the given examples.
Because the examples typically underspecify the program behavior, there are typically many
programs that satisfy the input/output examples. The synthesized program is therefore typically
selected according either to the choices the solver makes [Jeon et al. 2015] or according to a
heuristic that ranks synthesized programs (for example, ranking shorter programs above longer
programs) [Ellis et al. 2016; Feser et al. 2015; Gulwani et al. 2017].
Konure, in contrast, uses active learning to reverse engineer an existing application (in effect

using the application itself as a specification). Because it is not constrained by a given set of
input/output pairs, it can select the inputs and database configurations to purposefully refine its
current application behavior hypothesis to eliminate uncertainty and synthesize a model that
completely captures the behavior of the application.

1.4 Previous Work In Inferring Models for Programs

We identify oracle-guided synthesis as implemented in Bramha [Jha et al. 2010] as the closest
previous research. Like Konure, Brahma interacts with a program to infer a model that completely
captures the behavior of the program. Konure deploys a top-down, syntax-guided inference
algorithm to infer models within a countably infinite space of models defined by a domain-specific
language. Brahma, on the other hand, finitizes the synthesis problem by working with a finite
set of components, with each component in the set used exactly once in the synthesized model.
Konure maintains a sentential form that captures all remaining possible models and refines the
hypothesis by generating inputs and database configurations that enable Konure to determine
which production to apply to the current nonterminal in the sentential form. Brahma, in contrast,
adopts a flat, solver-based approach that repeatedly 1) generates two programs that both satisfy the
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current set of input/output pairs, 2) generates a new input that distinguishes the two programs, 3)
queries an oracle to find the correct output for the new input, and 4) adds the resulting input/output
pair to the current set of input/output pairs. Brahma terminates when there is only one program
that satisfies the set of input/output pairs. These differences reflect the different characteristics of
the target programs to infer: Konure infers models for an unbounded space of programs that may
contain loops that iterate over the results of database queries; Brahma focuses on loop-free programs
that compute functions of finite-precision bit-vector inputs, with the input-output behavior of the
components defined by logical formulas.

Mimic [Heule et al. 2015] traces the memory accesses of an opaque function to synthesize a model
of the traced function. It uses a random generate-and-test search over a space of programs generated
by code mutation operators, with a carefully designed fitness function measuring the degree to
which the current model matches the observed memory traces. Input generation heuristics are used
to find inputs that work well with the mutation operators and fitness function to find suitable code
models. There is no guarantee that the generated model is correct or that the search will find a
model if one exists. Mimic was applied to infer models for the Java Arrays.prototype computations,
successfully inferring models for 12 of these computations. Konure targets a different class of
computations, which enables it to deploy an algorithm that is guaranteed to infer a model if the
application conforms to one of the models defined by the domain-specific language.

[Gehr et al. 2015] present an active learning technique for learning commutativity specifications
of data structures. [Bastani et al. 2017c] present a technique for learning program input grammars.
[Bastani et al. 2017b] present a technique for learning points-to specifications. [Jeon et al. 2016]
present a technique for learning models of the design patterns that Java computations implement.
Unlike Konure, all of these techniques focus on characterizing specific aspects of program behavior
and do not aspire to capture the complete behavior of the application.

1.5 Contributions

This paper makes the following contributions:

• Inference Algorithm: It presents a new algorithm for inferring the behavior of database-
backed applications. Using active learning, the algorithm repeatedly constructs test database
configurations and input commands, configures the database, runs the application on the
constructed inputs, and observes the resulting outputs and database interactions to build up
a model of the application behavior. The algorithm exploits the formulation of the model
space as a domain-specific language to represent its current hypothesis as a sentential form
in the underlying grammar of the language. It selects database configurations and inputs
to structure the search as the repeated application of productions applied to nonterminals
in the sentential form. This approach enables Konure to work effectively with unbounded
model spaces and infer a model that captures the complete semantics of the application.
• Computational Patterns: It presents a domain-specific language for capturing specific
computational patterns typically implemented by database-backed applications. The inference
algorithm and domain-specific language are designed together to enable an effective active
learning algorithm that leverages the structure of the domain-specific language to learn
models that completely capture application behavior.
• Experimental Results: We present experimental results using Konure to infer and regen-
erate applications written in Ruby on Rails and Java. The results highlight the ability of
our techniques to infer and regenerate robust, safe Python implementations of applications
originally coded in other languages.
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Prog := in
∗ Block

Block := ϵ | Query Block | If | For
If := if Query then Block else Block
For := for Query do Block else Block
Query := d ← select (Col out)∗ where Expr
Expr := True | Col = Col | Col ∈ d Col | Col = in | Expr ∧ Expr
Col := t .c

in,d ∈ Variable, out ∈ {True, False}, t ∈ Table, c ∈ Column

Fig. 1. Abstract syntax for inferrable programs (the Konure DSL)

2 EXAMPLE

We next present an example that illustrates how Konure infers and regenerates database-backed
applications. The example is a student registration system that allows student users to check current
registration. The application was written in Java and interacts with a MySQL database [Widenius
and Axmark 2002] via JDBC [Reese 2000].
Command Interface: The student registration application provides the following command-line
interface: “liststudentcourses -s s -p p,” where the input parameter s denotes student ID and
p denotes password. The application first checks whether the student with ID s has password p in
the database. If so, the application displays the list of courses for which this student has registered,
along with the teacher for each course.
Database Schema: The application interacts with a MySQL database that contains the following
tables and columns. (1) The student table, which contains student ID (primary key), first name, last
name, and password. (2) The teacher table, which contains teacher ID (primary key), first name,
and last name. (3) The course table, which contains course ID (primary key), name, course number,
teacher ID (foreign key referencing the teacher table), etc. (4) The registration table, which contains
student ID (foreign key referencing the student table) and course ID (foreign key referencing the
course table).

2.1 Konure Domain-Specific Language

Konure infers application functionality that can be expressed with the Konure domain-specific
language (DSL).1 This DSL models the computation of the application component that handles the
main logic of data interaction and supports a wide range of applications that mainly display data
according to inputs.

Figure 1 presents the abstract syntax. The data interaction component (Prog) starts with a list of
inputs, in∗, and has a block of code (Block). The block of code contains a list of database queries
along with two types of control logic: conditional statements (If) or loops (For).

Each database query (Query) performs an SQL select operation to retrieve all data that satisfy
an expression (Expr). The query expression (Expr) may contain a conjunction of clauses. Each
clause may specify that (1) a column must have equal value as another column (Col = Col), (2) a
column must have value that belongs to certain results retrieved earlier (Col ∈ d Col), (3) a column
must have equal value as an input parameter (Col = in). Each query may select certain columns
(Col) from the retrieved data and may specify whether the data for each column is included in the
final output (out). The query may also implement an SQL join operation by selecting from multiple
tables. The retrieved data is stored in a variable d for use in later parts of the program.
1The application itself can be implemented in any language.
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Fig. 2. Konure architecture

A conditional statement (If) is performed on the data retrieved from the previous query. When
the query retrieves nonempty data, the program enters the then branch. When the query returns
empty, the program enters the else branch. More sophisticated logical checks, such as conjunctions,
may be implemented in the query expressions (Expr). The code in the two branches (Block) must
begin with different queries.
A loop (For) iterates over data retrieved from the previous query. When the query retrieves

nonempty data, the program enters the do block and repeats this loop body once for each retrieved
row. When the query returns empty, the program enters the else branch. The loop body must not
be empty, and its first query must use the data that this loop iterates over. This computation model
captures a wide range of database-backed applications and allows Konure to infer the program
functionality efficiently.

2.2 Inference

Figure 2 outlines the process when Konure infers an application. Konure works with applications
that process sequences of commands. 2 For each command, the application first enters a command
handler which preprocesses the inputs. The application then enters the main logic that decides
what interactions to execute against the database. After performing SQL queries and retrieving
data, the application uses the data to render an output which is then displayed to the user.
Konure starts with a specification of the application’s input command interface and database

schema. The inference algorithm chooses input values and a database configuration. It then popu-
lates the database with the specified contents and executes the application with the specified input
command and parameters. When the application runs, it interacts with the database, transparently
through the Konure proxy. After several database interactions, the application renders an output
using the retrieved data.

The Konure proxy observes the database traffic and collects the SQL queries that the application
sends to the database, along with the data that each query retrieves. We call these SQL queries a
concrete trace (more discussion later in Section 3.1.1). Recall that the Konure DSL (Figure 1) allows
each query to use values copied from results of an earlier query or from inputs. Konure abstracts
away these observed concrete values and replaces them with the source locations of each value

2 Command interfaces include the command-line interface, HTTP requests, and graphical interfaces that allow users to
specify command parameters and execute commands.
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Fig. 3. Konure communicates with the application multiple times to progressively refine the hypothesis

about the application’s functionality

(Section 3.1.2). The source locations describe where a concrete value may be copied from, in terms
of input parameters or columns from results of earlier queries. Konure determines potential source
locations by matching equal values. Konure resolves ambiguity by carefully choosing values for the
inputs and the database. Besides rewriting the queries, Konure also rewrites the application outputs
by replacing concrete values with their source locations. We call this rewritten trace an abstract

trace of the execution (Section 3.1.3). The inference algorithm then analyzes the abstract trace to
update its hypothesis of the application’s functionality. The process repeats until the algorithm has
identified a model of application functionality.

Figure 3 summarizes the communications between Konure and the application. The SQL queries
in this figure are the concrete trace that Konure captures by the proxy. Konure executes the
application multiple times using different inputs and database contents (Section 3.1.4) until Konure
terminates with a hypothesis, in the form of a model in the DSL, that does not have any unexplored
hidden path (Section 3.3). Here each unexplored hidden path corresponds to a nonterminal in the
DSL grammar that Konure will resolve by applying an appropriate production.

A Simple Execution Trace:When inferring the student registration system, Konure first creates
an empty database and executes the application with command “liststudentcourses -s 0 -p 1.”
The input parameters s and p are set to 0 and 1, respectively, and can be arbitrary integers. After
the application executes, it produces an output with general usage information. Konure collects
the concrete trace in Figure 4. This trace contains only one query. The query uses a constant '0',
which comes from the input parameter s . No data was retrieved from the database. The application
outputs did not contain either input parameters. Based on this information, Konure produces the
abstract trace in Figure 5. This abstract trace contains a query q1 that selects all columns from
the student table. The selection criterion is that the student ID must equal the input parameter s ,
referenced by variable in_s.
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1 SELECT * FROM student WHERE id = '0'

Fig. 4. Concrete trace of the application’s first execution. These SQL queries are what the application sent to

the database. Konure captures these SQL queries through its proxy in the execution engine.

1 q1: select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

Fig. 5. Abstract trace of the application’s first execution. This abstract trace is converted from the concrete

trace in Figure 4 by replacing the constant ’0’ with its source location in_s, which denotes the input

parameter s . This abstract trace is the internal representation that Konure inference algorithm uses to model

the application behavior.

1 d1 <- select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

3 if d1 { ?? } else {}

Fig. 6. Konure’s hypothesis of the functionality of the application’s data interaction component, after the

application’s first execution. The question marks “??” represent a hidden path in the application that Konure

needs to explore.

Konure then analyzes this abstract trace and forms a hypothesis for the application in the form
of the Konure DSL, presented in Figure 6. The query result is stored in variable d1. Konure uses
the empty else branch to denote that the application did not issue any other queries when d1 was
empty.

Based on the current hypothesis, Konure asks a question about the hidden path in the if branch:
What will happen if the application enters the if branch? To answer this question, Konure looks
for appropriate values for inputs and database contents so that d1 would contain nonempty data.
Konure provides the following logical formula to an SMT solver:

x1
student, id = x1in

Variable x1
student, id

denotes the value for a student ID. Variable x1in denotes the value for the first input
parameter, s . Unconstrained variables include: x2in (the second input parameter, p), x1

student,firstname

(the value for a student firstname), x1
course,name

(the value for a course name), etc.
The solver returns with the following assignment:

x1
student, id = 5, x1

student,password = 0, . . . , x1in = 5, x2in = 6, . . .

which assigns the same value to student ID and input s . It also assigns values to other columns and
inputs even if their corresponding variables are unconstrained.
An Execution Trace with Two Queries: Konure populates the database with the above values,
inserting a row into the student table where id = 5. Konure runs the application with command
“liststudentcourses -s 5 -p 6.” The application produces the concrete trace in Figure 7. The
first query returns the row that Konure has inserted. The second query returns no data. These
queries contain constant '5', which can come from the input parameter s or from the result of
the first query. The constant '6' comes from the second input parameter, p. The output from
the application is again general usage information that does not contain input parameters or any
retrieved data. Based on this information, Konure produces the abstract trace in Figure 8. In this
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1 SELECT * FROM student WHERE id = '5'

2 SELECT * FROM student WHERE id='5' AND password='6'

Fig. 7. Concrete trace of the application’s second execution. These SQL queries are what the application sent

to the database. Konure captures these SQL queries through its proxy in the execution engine.

1 q1: select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

3 q2: select student.id, student.password , student.firstname , student.lastname

4 where student.id = [in_s , q1.student.id] AND student.password = in_p

Fig. 8. Abstract trace of the application’s second execution. This abstract trace is converted from the concrete

trace in Figure 7. The conversion replaces the constant ’5’ with its two potential source locations in_s
and q1.student.id, which denote the input parameter s and the column id of the result from query q1,
respectively. The conversion also replaces the constant ’6’ with its source location in_p, which denotes the

input parameter p. This abstract trace is the internal representation that Konure inference algorithm uses to

model the application behavior.

1 d1 <- select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

3 if d1 {

4 d2 <- select student.id , student.password , student.firstname , student.

lastname

5 where student.id = [in_s , d1.student.id] AND student.password = in_p

6 if d2 { ?? } else {}

7 } else {}

Fig. 9. Konure’s hypothesis of the functionality of the application’s data interaction component, after the

application’s second execution. The question marks “??” represent a hidden path in the application that

Konure needs to explore.

abstract trace, the first query is the same as in the first execution of the program in Figure 5. The
second query is new. For the student ID, the second query uses either input s or the student ID
returned from the first query, because these two values were equal during execution. For the student
password, the second query uses input p.

To refine the hypothesis, Konure first needs to disambiguate the two potential source locations
that the second query used to check the student ID.Konure asks this question: Is it possible to assign
values to the inputs and the database such that the application still executes these two queries but
values in_s and q1.student.id differ? Konure encodes this question with the following logical
formulas:

x1
student, id = x1in ∧ (x

1
student, id = x1in → x1

student, id , x1in)

The first clause enforces that query q1 returns a row. The second clause enforces that any data
returned by q2 (the first check in the parentheses) must have different values to distinguish in_s
and q1.student.id (the check after implication). The SMT solver returns “unsat” which means it
is impossible to assign inputs and database contents such that values in_s and q1.student.id
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differ, in other words, these two values are equivalent and can be used interchangeably. Konure
concludes that this abstract trace is accurate enough and is ready for further analysis.3
Konure then updates its hypothesis for the application, as in Figure 9. Note that Konure has

filled in the if branch for the case when d1 is nonempty. Konure uses an empty else branch to
denote that the application did not issue more queries when d2 was empty.
To refine the hypothesis further, Konure asks the question about the unexplored, hidden path:

What will happen if the application enters the if branch after d2? To answer this question, Konure
looks for appropriate values for inputs and database contents so that d1 and d2 both contain
nonempty data. Konure provides the following logical formula to the SMT solver:

x1
student, id = x1in ∧ (x

2
student, id = x1in ∧ x

2
student,password = x2in)

∧(x1
student, id = x2

student, id → (x
1
student,password = x2

student,password

∧ x1
student,firstname

= x2
student,firstname

∧ x1
student, lasname

= x2
student, lasname

))

In this formula, Konure uses one variable for each input parameter (x1in and x2in) and uses two
variables for each column of each table (x1student,id ,x

2
student,id ,x

1
student,password ,x

2
student,password ,

etc). The two variables for each column denotes two potential rows that need to be populated into
the database table. The first clause of the formula enforces that d1 is nonempty and returns at least
the row represented by x1

student,∗
. The second clause enforces that d2 is nonempty and returns at

least the row represented by x2
student,∗

. The third clause enforces that table student has primary key,
id. In other words, if any two rows of this table have the same id, they must represent the same
student. The solver returns a satisfying assignment, which has only one unique row in the student
table. Konure then uses these new values to execute the application again.
An Execution Trace with a Loop: After several rounds of application executions, one execution
of the application issued nine SQL queries to the database. Konure converted these SQL queries
into the abstract trace in Figure 10. Query q3 denotes an inner join on tables course and registration
using the course ID as the key. Queries q4 through q9 are produced from a loop in the application.
When Konure analyzes this trace, it detects that queries q4 and q5 were repeated as a group by
three times. Konure also notes that three equals the number of rows retrieved by query q3.4 Based
on the Konure DSL in Figure 1, Konure hypothesizes that queries q4 and q5 are part of a loop.
Konure updates its hypothesis about the application functionality, presented in Figure 11. Note
that Konure has formed a for loop. In the loop, Konure has placeholders for the case where d4
contains nonempty data and for the case where d5 is empty. To explore these hidden paths, Konure
asks these questions: (1) What will happen if the application executes a loop iteration that enters
the if branch after d4? (2) What will happen if the application executes a loop iteration that enters
the else branch after d5? Konure encodes these questions into logical formulas and uses the new
values returned from the SMT solver to execute the application again.

Konure repeatedly asks questions about hidden paths of the application, executes the application
with carefully synthesized values, observes the execution trace, and refines the hypothesis about the
application. The inference algorithm terminates when there are no more hidden paths to explore.
The completed hypothesis for the student registration example is available in Appendix E.1.

3Under a different scenario, if Konure does find out that two ambiguous source locations are not equivalent, Konure will
use carefully chosen values to execute the application again. The new execution trace would allow Konure to eliminate the
incorrect source location.
4 Because Konure controls database contents and observes traffic, Konure knows how many rows are retrieved by each
query.
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1 q1: select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_1

3 q2: select student.id, student.password , student.firstname , student.lastname

4 where student.id = [in_1 , q1.student.id] AND student.password = in_2

5 q3: select course.id (output: True), course.name , course.course_number , course

.size_limit , course.is_offered , course.teacher_id (output: True),

registration.student_id , registration.course_id (output: True)

6 where registration.course_id = course.id AND registration.student_id = [

in_1 , q1.student.id, q2.student.id]

7 q4: select teacher.firstname , teacher.lastname

8 where teacher.id = q3.teacher_id

9 q5: select count(registration)

10 where registration.course_id = [q3.course.id, q3.registratoin.course_id]

11 q6: select teacher.firstname , teacher.lastname

12 where teacher.id = q3.teacher_id

13 q7: select count(registration)

14 where registration.course_id = [q3.course.id, q3.registratoin.course_id]

15 q8: select teacher.firstname , teacher.lastname

16 where teacher.id = q3.teacher_id

17 q9: select count(registration)

18 where registration.course_id = [q3.course.id, q3.registratoin.course_id]

Fig. 10. Abstract trace of an execution of the application. This abstract trace is converted from a con-

crete trace by replacing constants with their source locations in_1, q1.student.id, in_2, q3.teacher_id,
q3.course.id, and so on. This abstract trace is the internal representation that Konure inference algorithm

uses to model the application behavior.

After Konure completes the hypothesis of the application, it regenerates an executable program
that implements this functionality. Our current Konure implementation regenerates Python code
using a standard SQL library to perform the database queries. The regenerated program is available
in Appendix D.1.

As shown in this example, the Konure inference algorithm involves resolving ambiguity in ab-
stract traces, detecting and handling loops, refining hypotheses, identifying hidden paths, encoding
hidden paths into logical formulas, and solving these formulas. We present the inference algorithm
in detail in Section 3.

3 DESIGN

We next present the Konure active learning algorithm.

3.1 Definitions

We first present the definitions of concrete traces, source locations, abstract traces, value assign-
ments, and deduplicated traces.

3.1.1 Concrete Trace. A concrete trace is the list of SQL queries, along with the results retrieved
from the database, that Konure collects from an execution of the application. The application
sends these SQL queries to the database, which responds to the application with data that satisfiy
the queries. These SQL queries may contain concrete values, such as integers and strings, that are
originally copied from the input parameters and the database contents.
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1 d1 <- select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

3 if d1 {

4 d2 <- select student.id , student.password , student.firstname , student.

lastname

5 where student.id = [in_s , d1.student.id] AND student.password = in_p

6 if d2 {

7 d3 <- select course.id (output: True), course.name , course.course_number ,

course.size_limit , course.is_offered , course.teacher_id (output: True)

, registration.student_id , registration.course_id (output: True)

8 where registration.course_id = course.id AND registration.student_id

= [in_1 , d1.student.id, d2.student.id]

9 for each row3 in d3 {

10 d4 <- select teacher.firstname , teacher.lastname

11 where teacher.id = row3.teacher_id

12 if d4 { ?? } else {

13 d5 <- select count(registration)

14 where registration.course_id = [row3.course.id, row3.

registratoin.course_id]

15 if d5 {} else { ?? }

16 }

17 } else {}

18 } else {}

19 } else {}

Fig. 11. Konure’s hypothesis of the functionality of the application’s data interaction component, after

several executions. The question marks “??” represent a hidden path in the application that Konure needs to

explore.

CTrace := (CQuery CRes)∗ CVal∗
CQuery := SELECT CCol∗ FROM CJoin CWhere
CJoin := t | CJoin JOIN t ON CCol = CCol
CWhere := ϵ | WHERE CExpr
CExpr := CCol = CCol | CCol = CVal | CCol IN CVal+ | CExpr AND CExpr
CCol := t .c
CVal := i | s
CRes := CRow∗
CRow := (CCol CVal)+

t ∈ Table, c ∈ Column, i ∈ Int, s ∈ String

Fig. 12. Abstract syntax for concrete traces

The concrete trace is an instance of the syntax in Figure 12. Each “CQuery” in the concrete
trace represents an SQL query that the application sends to the database, collected by Konure as it
intercepts the database traffic. The query may select columns (“CCol∗”) from the join of one or more
tables (“CJoin”). The query may select all the rows (“CWhere := ϵ”) or select the rows that satisfy
certain selection criteria (“CWhere := WHERE CExpr”). The selection criteria may be conjunctions of
expressions that perform equality or membership checks (“CExpr”). Each selection criterion may
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use concrete values (“CVal”) that are provided by the inputs or produced by earlier queries. Each
“CRes” in the concrete trace represents the data that the corresponding query retrieved from the
database. The “CRes” consists of a list of tuples that each represent a row (“CRow”) of data. Each
row contains a list of column-value pairs. The mechanism for abstracting away the concrete values
in “CVal” and “CRes” will be discussed later in Section 3.1.3.

Apart from the list of query-result pairs, the concrete trace also contains a list of values (CVal∗)
collected from the outputs of the application. Konure collects the interesting values in the outputs
that originally came from either the input parameters or the database content.

3.1.2 Source Location. Recall that a Konure DSL program may use the production “Expr :=
Col = in” to refer to the value of an input parameter. The program may also use the production
“Expr := Col ∈ d Col” to refer to a column “Col” in the results retrieved by an earlier query, “d”.
The program will use these referenced concrete values to populate the SQL queries it sends to the
database. These SQL queries will then be captured in the concrete trace.

A source location for a concrete value in the concrete trace is a location from which the original
value can be copied. When the application refers to an input parameter, the database queries during
execution will replace the symbol “in” with the concrete value of the corresponding input parameter
in that execution. In this case, we call the input parameter “in” as a source location for this concrete
value. When the application refers to the data retrieved from an earlier query, the database queries
during execution will replace the the symbols “d Col” with the concrete values of these retrieved
results in that execution. In this case, we call the column “Col” of the query “d” the source location
for these concrete values.

Konure uses the concrete values observed in the database query traffic to reconstruct the source
locations for the values that appear in the database queries. To find the source location for each
concrete value in an observed database query, Konure matches this concrete value with equal
values in the input parameters and results from previously issued database queries. Algorithm 8
(in the Appendix) presents the algorithm that finds the source location for each concrete value.
Informally, the source location for a concrete value “CVal” is the variable in the original application
that produced this value.
One complication is the possibility that two distinct source locations may have the same con-

crete value. When Konure encounters such ambiguities, it generates additional constraints that
force ambiguous source locations to have different values. If the resulting constraints are not
satisfiable, then the source locations must always have the same value. If the resulting constraints
are satisfiable, then Konure uses the resulting value assignment to rerun the application and
observe an unambiguous and accurate source location in the new trace. Konure thus iteratively
learns the relations between various input parameters and various rows/columns of query results.
Konure uses this information throughout the inference algorithm to ensure that only unambiguous
traces are used for analysis. Note that when two source locations are equivalent, they can be used
interchangeably in the program. In this case, Konure uses any one of them when generating the
inferred program.

3.1.3 Abstract Trace. An abstract trace is the list of queries, along with their results, that Konure
generates from a concrete trace after replacing concrete values with their source locations and
replacing SQL syntax with the syntax of abstract traces.

The abstract trace is an instance of the syntax in Figure 13. Each “AQuery” in the abstract trace
is generalized from a “CQuery” in the concrete trace. The main modifications are to replace each
concrete value (“CVal”) by its source locations (“ASrc+”), and to summarize the retrieved data
(“CRes”) with the number of rows (“ARes”). Each source location (“ASrc”) refers to either an input
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ATrace := (AQuery ARes)∗ ASrc∗
AQuery := d ← select ACol∗ where AExpr
AExpr := True | ACol = ACol | ACol ∈ ASrc+ | AExpr ∧ AExpr
ASrc := in | d r ACol
ACol := t .c
ARes := r

in,d ∈ Variable, t ∈ Table, c ∈ Column, r ∈ Int

Fig. 13. Abstract syntax for abstract traces

Algorithm 1

Input: D is a pair of functions that each maps an accessible location (an input parameter or an
earlier query) to the data available at the location. D represents all the data available before the
current query and is constructed by the GeneralizeTrace procedure.

Input: ec is the selection criteria for the current query in the concrete trace and is an instance of
the nonterminal “CExpr” in the syntax for concrete traces.

Output: Abstract expression for ec , as an instance of the nonterminal “AExpr” in the syntax for
abstract traces, where the concrete values are replace with variables that refer to data available
in D.

1: procedure GeneralizeExpr(D, ec )
2: if ec is of the form “CCol = CCol” then
3: return ec
4: else if ec is of the form “CCol = CVal” then
5: “c = vc ”← ec
6: L← SourceLocations(D,vc )
7: return “c ∈ L”
8: else if ec is of the form “CCol IN CVal+” then
9: “c IN vc ”← ec
10: L←

⋂
v ∈vc

SourceLocations(D,v)

11: return “c ∈ L”
12: else if ec is of the form “CExpr AND CExpr” then
13: “ec1 AND ec2”← ec
14: ea1 ← GeneralizeExpr(D, ec1)
15: ea2 ← GeneralizeExpr(D, ec2)
16: return “ea1 ∧ ea2”
17: end if
18: end procedure

parameter (“in”) or an earlier query result. The earlier query is identified by the variable d that the
query assigns to (“AQuery”), a row number, and a column (“d r ACol”).

Apart from rewriting concrete values in the queries, Konure also replaces the concrete values in
the outputs with source locations (“ASrc+”).
Algorithm 9 (in the Appendix) presents the procedure that generalizes a concrete trace to an

abstract trace. This procedure calls the procedures in Algorithms 10 (in the Appendix) and 1. The
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Algorithm 2
Input: A is a value assignment for the input parameters and the database contents.
Output: T is a deduplicated trace collected from an execution of the application. If any loop is

detected during execution, the returned trace contains only one iteration of the loop.
Output: l is a list of locations in T that are originally found to be the starting location of loops in

the abstract trace.

1: procedure DeduplicatedTrace(A)
2: ⟨σi ,σd ⟩ ← A
3: Populate the database with contents as specified in σd
4: Execute the application with input parameters as specified in σi
5: Tc ← The concrete trace collected from the execution
6: Ta ← GeneralizeTrace(Tc ) ▷ Abstract trace
7: la ← DetectLoops(Ta )
8: ⟨T , l⟩ ← KeepOneIteration(Ta , la ) ▷ Deduplicated trace
9: return ⟨T , l⟩
10: end procedure

critical step is performed in the procedure GeneralizeExpr in Algorithm 1, which converts an
expression in the concrete trace into a corresponding expression in the abstract trace.

3.1.4 Value Assignment. A value assignment specifies the values to be assigned to the input
parameters and to the database contents, using the following domain:

Assignment = Input × Database

Input = Variable→ Value

Database = Table→ Int → Column→ Value

Value = Int ∪ Str

A value assignment A = ⟨σi ,σd ⟩ ∈ Assignment contains information about the values to assign
to the inputs (σi ∈ Input) and the database (σd ∈ Database). The input information σi maps an
input parameter in ∈ Variable to a concrete value. The database information σd maps a database
location (identified by a table, a row number, and a column) to a concrete value.

3.1.5 Deduplicated Trace. When the Konure DSL program has a loop that iterates over a set of
data, the application during execution will repeat the loop body once for each row of the data. The
more rows there are during an execution, the longer the concrete/abstract traces will be. To ensure
termination of the inference algorithm, we preprocess each trace so that the trace contains only
one iteration of each loop.

A deduplicated trace is a trace that is an instance of the syntax of abstract traces but contains at
most one iteration of each loop. Algorithm 2 presents how Konure collects a deduplicated trace
from an execution of the application.

The procedure DetectLoops finds loops in the abstract trace as follows. Consider the scenario
when there is a “For” loop in the application and when the data that the loop iterates over indeed
contains multiple rows. This application will execute certain queries multiple times, each time with
different concrete data filled in. Recall that the Konure DSL requires each “For” loop to start with a
query that uses the data that the loop iterates over. This query will appear in the abstract trace
multiple times, each time using a slightly different source location (“ASrc”): Each time the source
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Algorithm 3
Output: The inferred application expressed in the Konure DSL.

1: procedure InferProg
2: A← Value assignment for empty database and distinct input parameters
3: ⟨T , l⟩ ← DeduplicatedTrace(A)
4: return InferBlock(T , l , 1)
5: end procedure

location refers to the same source query (“d”) and the same column (“ACol”) but a different row
(“r”). This query is repeated once for each row of the data that the loop iterates over. The procedure
DetectLoops identifies all groups of repetitive queries that share this pattern. When there are
multiple groups of such queries, the procedure finds the group that starts earliest in the abstract
trace and uses the first query of the group as the start of the first loop iteration. For each iteration
of the loop, the procedure continues recursively to find nested loops in the abstract trace. For each
loop found, DetectLoops returns the starting location of each loop iteration.

The procedure KeepOneIteration takes the abstract trace along with the information of loops
found by DetectLoops. For each loop found, the procedure discards all but one iteration in the
abstract trace, resulting in a deduplicated trace. This procedure also keeps track of the locations in
the deduplicated trace that were originally the starting locations of loops. The KeepOneIteration
returns the deduplicated trace and the corresponding information of loop locations.

3.2 Syntax-guided active learning algorithm

The Konure inference algorithm is constructive [Angluin and Smith 1983], that is, instead of
enumerating candidate solutions in a large search space, the algorithm constructs the solution
progressively every time Konure finds an interesting behavior of the application.
At a high level, the algorithm starts with an initial abstract syntax tree (AST) as the initial

hypothesis and progressively expands the hypothesis until all details are fully inferred. More
concretely, the algorithm maintains an AST, in the Konure DSL, with nonterminals denoting
hidden parts that are left to infer. Konure fills in this tree from top to bottom. The inference
proceeds by expanding nonterminals until the AST is complete, resulting a complete program. Each
time Konure executes the application, Konure chooses values for inputs and database contents to
disambiguate the nonterminals in turn. These values are chosen so that the use of each potential
production would exhibit a different behavior when the application is executed. The algorithm
eventually visits all the hidden parts of the tree to terminate with a correctly inferred model.
The entry point of the inference algorithm is the procedure InferProg in Algorithm 3. This

procedure first executes the application with an initial value assignment, which produces a dedu-
plicated trace. This trace serves as an initial observation for Konure to start constructing the
hypothesis program. This trace is passed into the procedure InferBlock in Algorithm 4.
The InferBlock procedure recursively constructs deeper parts of the hypothesis program.

Intuitively, the algorithm tries to flip the result for each query in the deduplicated trace, each time
forcing the application to reveal a hidden path in the next execution if such a hidden path exists.
To flip a query’s result, the algorithm calls FlipTrace in Algorithm 5. This procedure first

alternates the given trace to produce a desired trace. The desired trace is obtained by first truncating
the given trace up to the specified location and then forcing the last query to return a specified
result. The procedure then asks the solver whether this desired trace is possible for a program to
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Algorithm 4
Input: T is a trace collected from the DeduplicatedTrace procedure, which contains a list of

query-result pairs (⟨q, r ⟩) collected from an execution of the application. In each query-result
pair, the query (q) is an instance of the nonterminal symbol “AQuery” in the syntax for abstract
traces that represents an SQL query that the application sent to the database. The result (r ) is
an integer representing the number of rows retrieved by the corresponding query.

Input: l is a list of loop information collected from the DeduplicatedTrace procedure.
Input: i is a positive integer.
Output: The fragment of the inferred application, expressed in the Konure DSL, that produces

the tail of trace T starting from the i-th query.

1: procedure InferBlock(T , l , i)
2: if T is Nil or i > length of T then
3: For each output value in T , mark the source query that generated it
4: return “Nil” ▷ Production “Block := ϵ”
5: end if
6: ⟨A0,T0, l0⟩ ← FlipTrace(T , i, “= 0”)
7: ⟨A1,T1, l1⟩ ← FlipTrace(T , i, “≥ 1”)
8: ⟨A2,T2, l2⟩ ← FlipTrace(T , i, “≥ 2”)
9: if A0 satisfiable then
10: ⟨⟨q1, r

0
1 ⟩, . . . , ⟨qi , r

0
i ⟩, ⟨q

0
i+1, r

0
i+1⟩, . . . , ⟨q

0
k0
, r 0k0⟩⟩ ← T0

11: end if
12: if A1 satisfiable then
13: ⟨⟨q1, r

1
1 ⟩, . . . , ⟨qi , r

1
i ⟩, ⟨q

1
i+1, r

1
i+1⟩, . . . , ⟨q

1
k1
, r 1k1⟩⟩ ← T1

14: end if
15: if A2 satisfiable and l2 says T2 has loop starting at (i + 1) then ▷ Production “Block := For”
16: bt ← InferBlock(T2, l2, i + 1)
17: bf ← InferBlock(T0, l0, i + 1)
18: return “for qi do bt else bf ”
19: else if A0 satisfiable and A1 satisfiable and q0i+1 , q

1
i+1 then ▷ Production “Block := If”

20: bt ← InferBlock(T1, l1, i + 1)
21: bf ← InferBlock(T0, l0, i + 1)
22: return “if qi then bt else bf ”
23: else ▷ Production “Block := Query Block”
24: b ← InferBlock(T , l , i + 1)
25: return “qi b”
26: end if
27: end procedure

produce. If this desired trace is possible to produce, the solver returns a satisfying value assignment,
which is then used by the inference algorithm to execute the given application again and observe
more information. If the desired trace is impossible to produce, the solver returns “Unsat”, which is
then used by the inference algorithm to learn that the specified hidden path does not exist.
To ask the solver whether a desired trace is satisfiable, the algorithm calls EncodePathCon-

straints in Algorithm 6 to generate a logical formula from the desired trace. The logical formula

Publication date: August 2018.



Using Active Learning to Synthesize Models of Applications That Access Databases 1:17

Algorithm 5
Input: T is a trace collected from the DeduplicatedTrace procedure, which contains a list of

query-result pairs (⟨q, r ⟩) collected from an execution of the application.
Input: i is a positive integer.
Input: m describes the desired result for the i-th query.
Output: When it is possible to reproduce trace T up to the i-th query with only the i-th result

changed tom, return a satisfying value assignment and a new trace (along with loop informa-
tion) collected from using this assignment to execute the application. When it is not possible,
return Unsat.

1: procedure FlipTrace(T , i,m)
2: ⟨⟨q1, r1⟩, . . . , ⟨qi , ri ⟩, . . . , ⟨qk , rk ⟩⟩ ← T
3: f ← “Result for qi should havem rows”
4: F ← ⟨⟨q1, r1⟩, . . . , ⟨qi−1, ri−1⟩, ⟨qi , f ⟩⟩
5: C ← EncodePathConstraints(F )
6: Ask solver to find a value assignment that satisfies constraint C
7: if satisfiable then
8: A← The satisfying assignment
9: ⟨T ′, l ′⟩ ← DeduplicatedTrace(A)
10: while T ′ has unresolved ambiguity do
11: Ask solver for a value assignment that satisfies C but with less ambiguity
12: A← Satisfying assignment with less ambiguity
13: ⟨T ′, l ′⟩ ← DeduplicatedTrace(A)
14: end while
15: return ⟨A,T ′, l ′⟩
16: else
17: return ⟨Unsat, Nil, Nil⟩
18: end if
19: end procedure

E := True | False | x = x | ¬ E | E ∧ E | E ∨ E

x ∈ Variable

Fig. 14. Syntax for the constraint language

uses the constraint language presented in Figure 14. The procedure first handles the trivial con-
tradiction when certain tables are required to be empty and nonempty at the same time. The
procedure then handles the main case as follows. It first declares variables for all input parameters
and nonempty tables. These variables are then used to describe the desired path with a logical
formula. The logical formula contains two parts: Cp enforces the database restriction that the
primary key of a table must be unique. Cq enfoces the restrictions from the desired path F by
forcing the results for each query.
When constructing Cq , the algorithm encodes each query one at a time, by calling procedure

EncodeQueryConstraints. We present a simplified version of this procedure in Algorithm 7,
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Algorithm 6
Input: F is a desired trace constructed by the FlipTrace procedure, which contains a list of query-

result pairs (⟨q, r ⟩). In each query-result pair, the query (q) is an instance of the nonterminal
symbol “Query” in the Konure DSl that represents an SQL query that the application sent to
the database. The result (r ) describes the desired number of rows that should be retrieved by
the corresponding query. Each query has the following attributes: The q.expr attribute is an
instance of the nonterminal symbol “AExpr” in the sytnax for abstract traces that represents
the criteria for selecting rows. The q.tables attribute is the set of tables that are used by the
query. Each table t has the following attributes: The t .columns attribute is the set of all columns
of table t . The t .key attribute is t ’s primary key column if defined in the database schema, or
Nil if t does not have a primary key.

Output: A logical formula using the constraint language in Figure 14. This formula specifies the
constraints that need to be satisfied by the input parameters and the database contents such
that executing the queries in F will retrieve the desired results.

1: procedure EncodePathConstraints(F )
2: ⟨⟨q1, r1⟩, . . . , ⟨qk , rk ⟩⟩ ← F
3: Ie ← {i ∈ {1, . . . ,k} | ri = 0 ∧ qi .expr is “True”}
4: E ←

⋃
i ∈Ie

qi .tables ▷ Tables that must be empty

5: In ← {i ∈ {1, . . . ,k} | ri > 0}
6: N ←

⋃
i ∈In
((

⋃
s ∈SourceQueries(F , i )

qs .tables) ∪ qi .tables) ▷ Tables that must be nonempty

7: if N ∩ E , ∅ then
8: return “False” ▷ Trivially unsatisfiable
9: else
10: T ← All tables
11: for table t ∈ T − E, column c ∈ t .columns, j ∈ {1, . . . ,k} do
12: Declare variables x jt,c and x

2j
t,c ▷ Declare 2k variables for each column

13: end for
14: for the j-th input parameter of the application do
15: Declare variable x jin ▷ Declare a variable for each input
16: end for
17: Tk ← {t ∈ T − E | t .key is not Nil}
18: Cp ←

∧
t ∈Tk

∧
i1,i2∈{1, ...,k }

((¬(x i1t,t .key = x i2t,t .key)) ∨ (
∧

c ∈t .columns
x i1t,c = x i2t,c )) ▷ Primary keys

19: Int ← {i ∈ {1, . . . ,k} | qi .expr is not “True”}
20: Cq ←

∧
i ∈Int

EncodeQueryConstraints(F , i) ▷ Queries

21: return “Cp ∧Cq”
22: end if
23: end procedure

which works for queries that are not in a loop.5 This procedure first collects all the source queries
that are referred to, directly or indirectly, by the current query (procedure SourceQueries). The
procedure then uses all the source queries to encode a formula that enforces the desired result. If
the current query is desired to return nonempty data, the procedure enforces this result by adding
5Our full implementation encodes constraints appropriately for queries in loops.
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Algorithm 7
Input: F is a desired trace constructed by the FlipTrace procedure, which contains a list of query-

result pairs (⟨q, r ⟩). In each query-result pair, the query (q) is an instance of the nonterminal
symbol “Query” in the Konure DSl that represents an SQL query that the application sent to
the database. The result (r ) describes the desired number of rows that should be retrieved by
the corresponding query.

Input: i is a positive integer.
Output: A logical formula using the constraint language in Figure 14. This formula specifies the

constraints that need to be satisfied by the input parameters and the database contents such
that executing the i-th query in F will retrieve the desired results.

1: procedure EncodeQueryConstraints(F , i)
2: ⟨⟨q1, r1⟩, . . . , ⟨qk , rk ⟩⟩ ← F
3: S ← SourceQueries(F , i)
4: T ← (

⋃
s ∈S

qs .tables) ∪ qi .tables

5: if ri is not “= 0” then
6: J1 ← {⟨t , i⟩ | t ∈ T } ▷ J1 is a function that maps a table t to integer i
7: J2 ← {⟨t , (k + i)⟩ | t ∈ T } ▷ J2 is a function that maps a table t to integer (k + i)
8: C1 ← EncodeExpr((

∧
s ∈S

qs .expr) ∧ qi .expr, J1) ▷ Query qi returns at least the row i

9: if ri is “≥ 1” then
10: return C1
11: else ▷ ri is “≥ 2”
12: C2 ← EncodeExpr((

∧
s ∈S

qs .expr) ∧ qi .expr, J2)

▷ Query qi returns at least the row (k + i)
13: Cd ←

∨
t ∈qi .tables

(
∨

c ∈t .columns
¬(x it,c = xk+it,c )) ▷ Row i and row (k + i) differ

14: return C1 ∧C2 ∧Cd
15: end if
16: else ▷ ri is “= 0”
17: R ← {J : T → {1, . . . , 2k}} ▷ R is the set of functions that map tables to integers
18: if S = ∅ then
19: return

∧
J ∈R
¬ EncodeExpr(qi .expr, J )

▷ No combination of tables/rows may satisfy qi
20: else
21: return

∧
J ∈R
¬EncodeExpr((

∧
s ∈S

qs .expr) ∧ qi .expr, J )

▷ If source queries are satisfied, no combination of tables/rows may satisfy qi
22: end if
23: end if
24: end procedure

a qualifying row. If the current query is desired to return empty data, the procedure enforces this
result by requiring that no row satisfy the selection criteria.
To encode the selection criteria for each query, the algorithm calls procedure EncodeExpr in

Algorithm 11 (in the Appendix). This procedure transforms each nonterminal symbol “AExpr” from

Publication date: August 2018.



1:20 Jiasi Shen and Martin Rinard

the deduplicated trace into a logical formula using the variables declared earlier in EncodePath-
Constraints and using the constraint language in Figure 14.

3.3 Correctness

We present proof outlines for the termination, the complexity, and the completeness of the Konure
inference algorithm. A precondition for all of these propositions is that there exists a model P
expressed in the Konure DSL that completely captures the semantics of the application.
Notation: Let P be a model of the application in the Konure DSL. Let P ′ be a Konure DSL
program that is equivalent to P but omits unreachable branches. Specifically, it (1) uses straight-line
sequential code to replace any unreachable conditional branches in P and (2) uses an if statement
to replace any for loop that can be repeated at most once in P .

Let Q be the inferred program produced by procedure InferProg. Let N be the number of times
that the AST of program P ′ expands a production for the “Block” nonterminal symbol. Let Bp be
the program that corresponds to the nonterminal “Block” in P ′. Let Bq be the outcome of procedure
InferBlock when inferring P .

Lemma 1. For any deduplicated traceT produced by executing program P , there exists a path in the

AST of program P ′ from root to leaf where each “Query” nonterminal symbol corresponds to a query

in T in the same order.

Proof outline. We perform an induction on the length of T and the structure of Bp .
(1) If Bp is of the form “ϵ”: Program P ′ is an empty program has no “Query” symbol in Bp . Any

trace produced by executing P is empty. Hence, T contains no query, which consistent with Bp .
(2) If Bp is of the form “Query Block”: We denote these two nonterminals as “Qp Bp1”. Any trace

produced by executing P starts with an instance of Qp as the first query. Thus, the first query in
T corresponds to the first “Query” nonterminal symbol in Bp . By the inductive hypothesis, the
remainder of T corresponds to the “Query” nonterminals in Bp1.
(3) If Bp is of the form “If”: Bp expands to “if Query then Block else Block”, denoted by

“if Qp then Bp1 else Bp2”. Any trace produced by executing P starts with an instance of Qp as
the first query. Thus, the first query in T corresponds to the first “Query” nonterminal symbol in
Bp . Depending on the result for Qp , the execution continues into either Bp1 or Bp2. If execution
continues into Bp1, by the deductive hypothesis, the remainder of T corresponds to the “Query”
nonterminals in Bp1. If execution continues into Bp2, by the deductive hypothesis, the remainder of
T corresponds to the “Query” nonterminals in Bp2. Either case, the original trace T corresponds to
the “Query” nonterminals in Bp .
(4) If Bp is of the form “For”: Bp expands to “for Query do Block else Block”, denoted by

“for Qp do Bp1 else Bp2”. Any trace produced by executing P starts with an instance of Qp as
the first query. Thus, the first query in T corresponds to the first “Query” nonterminal symbol in
Bp . Depending on the result for Qp , the execution continues into either Bp1 or Bp2. If execution
continues into Bp1, the loop body may be executed multiple times, but the deduplicated trace T
contains only one iteration. By the deductive hypothesis, the remainder of T corresponds to the
“Query” nonterminals in Bp1. If execution continues into Bp2, by the deductive hypothesis, the
remainder of T corresponds to the “Query” nonterminals in Bp2. Either case, the original trace T
corresponds to the “Query” nonterminals in Bp .

□

Lemma 2. Bp and Bq use the same productions.

Proof outline. We perform a structural induction on Bp .
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(1) If Bp is of the form “ϵ”: Program P ′ is an empty program. Any trace produced by executing P
is empty. Hence, the trace T collected by InferProg on line 3 is empty. This empty trace is passed
to procedure InferBlock, which on line 4 directly returns an empty program as the inference
result Bq . In this case, both Bp and Bq use the production “Block := ϵ”.
(2) If Bp is of the form “Query Block”: We denote these two nonterminals as “Qp Bp1”. The

inference in procedure InferBlock will enter the branch on line 23 for the following reasons: (a)
No matter how many rows query Qp returns (after flipping results on lines 6–8), the new trace will
always contain query Qp followed by the same first query in Bp1. (b) The new trace will not have a
loop following immediately after Qp .
Let Bq1 be outcome of the recursive call to InferBlock on line 24. Because the recursive call

increments the argument i by 1, the callee uses the fragment of the input trace excluding the
first query. According to Lemma 1, this fragment corresponds to the subtree of Bp excluding the
root, which is Bp1. By the inductive hypothesis, Bp1 and Bq1 use the same productions. Because
InferBlock then returns Bq = “Qp Bq1” as the inference result, it uses the production “Block :=
Query Block”. This production is same as the production used by Bp .

(3) If Bp is of the form “If”: Bp expands to “if Query then Block else Block”, denoted by “if
Qp then Bp1 else Bp2”. The inference in procedure InferBlock will enter the branch on line 19,
for the following reasons: (a) Both the if and the else branches are reachable (as P ′ does not have
unreachable branches). Thus, both A0 and A1 are satisfiable. (b) As required by the Konure DSL,
Bp1 and Bp2 must have different queries as their first queries. Thus, the condition q0i+1 , q

1
i+1 holds.

(c) No matter how many rows query Qp returns (after flipping results on lines 6–8), the new trace
from executing P does not have a loop that immediately follows Qp .
After entering the branch on line 19, the inference recursively calls InferBlock twice to infer

the two different branches Bp1 and Bp2, respectively. The input traces to these two recursive calls
are as follows. The first call receives trace T1, which was forced to return at least one row from
query Qp . Hence, the query that follows Qp in T1 will be the first query in the if branch, Bp1. The
second call receives trace T0, which was forced to return empty from query Qp . Hence, the query
that follows Qp in T0 will be the first query in the else branch, Bp2.
Let Bq1 and Bq2 be the outcomes of these two recursive calls. Because each recursive call

increments the argument i by 1, each callee uses the fragment of the input trace excluding the first
query. According to Lemma 1, these fragments correspond to the subtrees Bp1 and Bp2, respectively.
By the inductive hypothesis, Bp1 and Bq1 use the same productions and Bp2 and Bq2 use the same
productions. Because InferBlock then returns Bq = “if Qp then Bq1 else Bq2” as the inference
result, it uses the production “Block := If”. This production is same as the production used by Bp .
(4) If Bp is of the form “For”: Bp expands to “for Query do Block else Block”, denoted by

“for Qp do Bp1 else Bp2”. The inference in procedure InferBlock will enter the branch on line
15, for the following reasons: (1) The for is possible to execute more than one iteration (as P ′ does
not have unreachable branches). Thus, both A2 is satisfiable. (2) The trace produced by executing P
with A2 results in a trace with at least two repetitions of the loop body Bp1. Thus, this loop will be
detected by DeduplicatedTrace.
After entering the branch on line 15, the inference recursively calls InferBlock twice to infer

the two different branches Bp1 and Bp2, respectively. The input traces to these two recursive calls
are as follows. The first call receives trace T2, which was forced to return at least two rows from
query Qp . Hence, the query that follows Qp in T2 will be the first query in the for branch, Bp1.
Furthermore, the loop body will appear exactly once in T2, as the loop will be successfully detected
and deduplicated. The second call receives trace T0, which was forced to return empty from query
Qp . Hence, the query that follows Qp in T0 will be the first query in the else branch, Bp2.
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Let Bq1 and Bq2 be the outcomes of these two recursive calls. Because each recursive call
increments the argument i by 1, each callee uses the fragment of the input trace excluding the first
query. According to Lemma 1, these fragments correspond to the subtrees Bp1 and Bp2, respectively.
By the inductive hypothesis, Bp1 and Bq1 use the same productions and Bp2 and Bq2 use the same
productions. Because InferBlock then returns Bq = “for Qp do Bq1 else Bq2” as the inference
result, it uses the production “Block := For”. This production is same as the production used by Bp .

□

Proposition 1 (Complexity). The number of times that procedure InferBlock is called is at most

N .

Proof outline. This result follows directly from Lemma 2. Note that this number of executions
is not affected by the number of times that any loop executed. □

Proposition 2 (Termination). Assuming that the given application terminates, the Konure

inference algorithm will terminate.

Proof outline. Assuming that the given application terminates, each call to Deduplicated-
Trace will terminate. The rest of the proof follows directly from Proposition 1. □

Lemma 3. Bq is equivalent to Bp .

Proof outline. By Lemma 2, these two “Block” nonterminal symbols use the same productions
of the Konure DSL syntax. The remaining part of the proof needs to show that these two programs
use equivalent value references for the queries (“Expr := Col ∈ d Col”) and the outputs (“Col out”).
Because Konure disambiguates all semantically different source locations in each deduplicated
trace (see Section 3.1.2 and Algorithm 5), the inferred program always uses the correct source
locations or their equivalences. □

Proposition 3 (Completeness). Q is equivalent to P .

Proof outline. This result follows directly from Lemma 3. □

4 EXPERIMENTAL RESULTS

We obtained three applications that work with an external relational database. Each application
takes commands as input, translates the commands into SQL queries against the relational database,
and returns results extracted from the results of the queries.

4.1 Applications and Commands

Our applications include:
• Kandan Chat Room: Kandan [kan 2018] is an open source chat room application, built
with Ruby on Rails (RoR), with over 2700 stars on GitHub. The Kandan server receives
HTTP requests, interacts with the database accordingly, and responds with JSON objects
that contain data retrieved from the database and HTML templates to display the JSON data.
• Blog: The Blog application is an example obtained from the Ruby on Rails website [rai
2018]. The Blog server receives HTTP requests, interacts with the database accordingly, and
responds the client with an HTML page that contains the data retrieved from the database.
• StudentRegistration:The student registration application is a Java application developed by
a hostile DARPA Red Team to test SQL injection attack detection and nullification techniques.
It implements a command-line interface that receives text commands, interacts with the
database accordingly, and responds with text output.
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Table 1. Application detail

App Command Parameters Tabs Cols PL

Kandan get_channels username 4 50 RoR
Kandan get_channels_id_activities username, channel_id 4 50 RoR
Kandan get_channels_id_activities_id username, channel_id, activity_id 4 50 RoR
Kandan get_channels_id_attachments username, channel_id 4 50 RoR
Kandan get_me username 4 50 RoR
Kandan get_users username 4 50 RoR
Kandan get_users_id username, user_id 4 50 RoR
Blog get_articles None 2 13 RoR
Blog get_article_id article_id 2 13 RoR
Student reg liststudentcourses id, password 5 20 Java

Table 2. Inference effort

Command Runs Solves Time

get_channels 21 133 130 mins
get_channels_id_activities 25 193 42 mins
get_channels_id_activities_id 14 18 6 mins
get_channels_id_attachments 18 62 9 mins
get_me 12 162 6 mins
get_users 15 312 8 mins
get_users_id 12 162 6 mins
get_articles 2 11 15 secs
get_article_id 6 29 45 secs
liststudentcourses 6 20 40 secs

Table 1 presents the applications and commands (along with command parameters) that we
infer. The first column (App) presents the name of the application. The second column (Command)
presents the name of the inferred command. The third column (Parameters) presents the parameters
that the command takes. The next two columns (Tabs and Cols) present the number of tables and
total number of columns for the database schema. The last column (PL) presents the language in
which the application is implemented.

Table 2 presents statistics from the Konure command inference algorithm on the different
commands. The first column (Command) presents the name of the command. The second column
(Runs) presents the number of application executions that Konure required to derive the model (in
the domain-specific language) of the command. Each execution involves a chosen input presented
to the application working with chosen database contents. All commands require fewer than
30 executions to obtain the representation for that command functionality as expressed in the
domain-specific language.

The third column (Solves) presents the number of invocations of the Z3 SMT solver that Konure
executed to derive the model for the command. Note that because Konure may invoke the SMT
solver multiple times (depending on the structure of the application) for each step in the inference,
the number of Z3 invocations is larger than the number of application executions.
The fourth column (Time) presents the wall-clock time required to infer the model for each

command. We measured the Ubuntu 16.04 virtual machine that uses 2 cores and has 2 GB memory.
The host machine uses a processor with 4 cores (2.6 GHz Intel Core i5) and has 8 GB 1600 MHz
DDR3 memory. The times vary from less than a minute to about two hours. In general, the times
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Table 3. Regenerated code size

Command Regeneration LOC SQL If For Output

get_channels Appendix B.1 69 16 4 2 34
get_channels_id_activities Appendix B.2 52 16 6 0 17
get_channels_id_activities_id Appendix B.3 24 11 3 0 3
get_channels_id_attachments Appendix B.4 43 13 5 0 14
get_me Appendix B.5 49 8 3 0 31
get_users Appendix B.6 76 11 3 0 55
get_users_id Appendix B.7 49 8 3 0 31
get_articles Appendix C.1 11 2 0 0 6
get_article_id Appendix C.2 15 3 1 0 6
liststudentcourses Appendix D.1 23 5 3 1 3

are positively correlated with the number of solves, the length of the programs, and the number of
potentially ambiguous data fields. Most of the inference time was spent on solving for alternative
database contents to satisfy various constraints. The inference time also includes the time to
set database contents, time to set up the proxy, and time to launch, execute, and tear down the
applications (and their web servers).

Table 3 presents statistics summarizing aspects of the regenerated Python code. The first column
(Command) presents the name of the command. The second column (Regeneration) presents the
Appendix that contains the regenerated Python implementation. The next column (LOC) presents
the number of lines of code in the regenerated Python implementation. The next columns (SQL,
If, For, and Output) present the number of SQL statements, if statements, for statements, and the
number of statements that return database fields that appear in the command output.

We next discuss aspects of each application in turn.
Kandan: Kandan maintains multiple chat rooms (so-called channels) that users can access. It
implements commands that enable users to navigate the chat rooms and retrieve chat messages
(so-called activities) from different channels. Kandan also maintains information about individuals
who use the chat rooms and provides commands that retrieve this information. In general, the
commands step through the tables, typically using results returned from earlier look-ups to access
the correct data in the current table. As it traverses the tables, it collects information to return to
the user.
Blog: The Blog application maintains information about blog articles and blog comments. It
implements a command that retrieves all of the articles and another command that retrieves a
specific article and its associated comments. In comparison with the regenerated Kandan commands,
the regenerated Blog commands are relatively simple - the first command simply accesses the
table that contains article information; the second accesses the specific row in the article table that
contains the desired article, then looks up the comments for that article in the comments table.
Student Registration: We discuss this application in Section 2. We note that the regenerated
student registration application is free of SQL injection attack vulnerabilities present in the original
application from the DARPA Red Team.

4.2 Discussion

The ability of Konure to infer and regenerate the commands from these applications reflects
the ability of the domain-specific language to represent the kinds of computations that these
applications implement. We note that the generated code involves the heavy use of strings and
string formatting operations. Because Konure systematically generates these strings from a single
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algorithm, it is able to include correct formatting and implement correct usage patterns. Konure
is also able to recognize and infer loops that iterate over rows returned from previous database
queries.

5 RELATEDWORK

State Machine Model Learning: State machine learning algorithms [Aarts and Vaandrager 2010;
Angluin 1987; Cassel et al. 2016; Chow 1978; Fiterău-Broştean et al. 2016; Grinchtein et al. 2010;
Isberner et al. 2014; Moore 1956; Raffelt et al. 2005; Vaandrager 2017; Volpato and Tretmans 2015]
construct partial representations of program functionality in the form of finite automata with states
and transition rules. State fuzzing tools [Aarts et al. 2013; De Ruiter and Poll 2015] hypothesize
state machines for given program implementations. One goal is to aid developers in discovering
bugs such as spurious state transitions. Network function state model extraction [Wu et al. 2016]
performs program slicing and models the sliced partial programs as packet-processing automata.
Konure, in contrast, models application behavior with a domain-specific language whose structure
supports an effective active inference algorithm that infers complete application functionality (as
opposed to a partial model of the application). Because Konure is designed to infer the complete
application functionality, it also supports application regeneration.
Syntax-Guided Synthesis: [Alur et al. 2013] identifies a range of program synthesis problems
for which it is productive structure the search space as a domain-specific language and presents a
framework for this approach. Konure similarly uses a domain-specific language to structure the
search space. Unlike the examples presented in [Alur et al. 2013], Konure exploits the structure of
the domain-specific language to obtain a top-down inference algorithm that uses active learning
to progressively select productions that refine a working hypothesis represented as a sentential
form of the grammar of the domain-specific language. Unlike the vast majority of solver-driven
synthesis algorithms (which require finite search spaces), this approach enables Konure to work
effectively with an unbounded space of models.
Model Extraction For Machine Learning Models:Model extraction algorithms use queries to
construct representations for given programs, where the representations are stateless functions
such as decision trees [Bastani et al. 2017a; Craven and Shavlik 1995; Tramèr et al. 2016] or symbolic
rules [Towell and Shavlik 1993]. Model compression algorithms [Buciluǎ et al. 2006; Hinton et al.
2015] use machine learning models, such as neural networks, to mimic a given machine learning
model, typically by generating inputs (training data) and observing the outputs from the given
model. In contrast to inferring machine learning models, Konure targets program components
that interact with a database.
Dynamic Analysis for ProgramComprehension: There is a large body of research on dynamic
analysis for program comprehension, but (because of the complicated logic of Web technologies)
relatively little of this research targets Web application servers [Cornelissen et al. 2009]. WAFA
[Alalfi et al. 2009] analyzes Web applications, focusing on the interactions between Web compo-
nents, using source code annotations. In contrast, Konure infers applications without analyzing,
modifying, or requiring access to the source code. Konure therefore works for applications written
in any language and can infer both Web and non-Web applications that interact with an external
relational database.
DAViS [Noughi et al. 2014] visualizes the data-manipulation behavior of an execution of a

data-intensive program. DiscoTect [Yan et al. 2004] summarizes the software architecture of a
running object-oriented system as a state machine. These techniques analyze program behavior
when processing certain user-specified inputs. In contrast, Konure actively explores the execution
paths of the program by solving for inputs and database configurations that enable it to infer the
full application behavior.
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Database reverse engineering involves analyzing the program’s data access patterns, often for
reconstructing implicit assumptions of the database schema [Cleve et al. 2013; Davis and Aiken
2000]. Konure infers programs that interact with databases (and not the structure of the database
that the program interacts with).
Database Program Reengineering: Reengineering database-backed programs often involves
extracting data-access patterns from the source code and transforming these access patterns into
more efficient database queries [Cheung et al. 2013; Cohen and Feldman 2003]. In contrast, Konure
(1) does not require dynamic program instrumentation or static analysis, (2) does not require the
program to be written in specific languages or patterns, and (3) regenerates a new executable
program, rather than only transforming database queries, in potentially different languages and
platforms. Note that while Konure works with applications whose behavior can be expressed in
the domain-specific language, the application can implement this behavior using any language or
coding patterns.
Concolic testing: Concolic testing [Cadar et al. 2006; Godefroid et al. 2005, 2012; Sen et al. 2005]
generates inputs that systematically explore all execution paths in the program. The goal is to find
inputs that expose software defects. BuzzFuzz [Ganesh et al. 2009] generates inputs that target
defects that occur because of coding oversights at the boundary between application and library
code. DIODE [Sidiroglou-Douskos et al. 2015] generates inputs that target integer overflow errors.
All of these techniques target with programs written in general-purpose languages such as C,
dynamically analyze the execution of the program, and use the resulting information to guide the
input generation. Given the complexity and generality of computations as expressed in this form,
completely exploring and characterizing application behavior is infeasible in this context. Our
approach, in contrast, (1) works with applications whose behavior can be productively modeled
with programs in our domain-specific language, (2) interacts with the application by constructing
inputs and database configurations, then observing the resulting database interactions and resulting
outputs (as opposed to observing the internal operation of the running program), (3) infers a model
that captures the complete functionality of the program, and (4) makes it possible to regenerate a
new program in a different language or for a different computation platform.

6 CONCLUSION

Applications that translate commands into database operations are pervasive in modern computing
environments. We present new active learning techniques that automatically infer and regenerate
these applications. Key aspects of these techniques include 1) the formulation of an inferrable
domain-specific language that supports the range of computational patterns that these applications
exhibit and 2) the inference algorithm itself, which progressively synthesizes inputs and database
configurations that productively resolve uncertainty in the current working application behavior
hypothesis. Results from our implementation highlight the ability of this approach to reverse
engineer and regenerate our benchmark applications.
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A APPENDIX: MORE ALGORITHMS FOR KONURE

Algorithm 8

Input: D is a pair of functions, ⟨Di ,Dq⟩, that each maps an accessible location to the data available
at the location. Function Di maps an input variable to its value. Function Dq maps a query
variable to the data retrieved by this query.

Input: v is a concrete value collected from an execution of the application and is an instance of
the nonterminal “CVal” in the syntax for concrete traces.

Output: The set of source locations for v .

1: procedure SourceLocations(D,v)
2: ⟨Di ,Dq⟩ ← D
3: Li ← {“in” | v = Di (in), in ∈ Variable} ▷ Input parameters with value v
4: Lq ← {“d r t .c” | v = Dq(d)(r )(t .c), d ∈ Variable, r ∈ Int, t ∈ Table, c ∈ t .columns}

▷ Query result rows/columns with value v
5: return Li ∪ Lq
6: end procedure

Algorithm 9

Input: Tc is a concrete trace, which contains a list of query-result pairs (⟨q, r ⟩) collected from an
execution of the application. Each query q is an instance of the nonterminal symbol “CQuery”
in the sytnax for concrete traces. Each result r is an instance of the nonterminal “CRes”.

Output: Abstract trace forTc , which contains a list of query-result pairs (⟨q′, r ′⟩). Each query q′ is
an instance of the nonterminal symbol “AQuery” in the syntax for abstract traces. Each result
r ′ is an integer and is an instance of the nonterminal “ARes”.

1: procedure GeneralizeTrace(Tc )
2: ⟨⟨q1, r1⟩, . . . , ⟨qk , rk ⟩⟩ ← Tc
3: Ta ← Empty list
4: for i = 1, . . . ,k do
5: Di ← {⟨variable “in”,v⟩ | input parameter in has value v} ▷ Data from inputs
6: Dq ← {⟨variable “dj ”, r j ⟩ | j = 1, . . . , (i − 1)} ▷ Data retrieved from earlier queries
7: D ← ⟨Di ,Dq⟩ ▷ All data available before i-th query
8: q′← GeneralizeQuery(D, i,qi )
9: r ′← The number of rows in ri
10: Append ⟨q′, r ′⟩ to Ta
11: end for
12: return Ta
13: end procedure
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Algorithm 10

Input: D is a pair of functions that each maps an accessible location (an input parameter or an
earlier query) to the data available at the location. D represents all the data available before the
current query and is constructed by the GeneralizeTrace procedure.

Input: i is a positive integer that represents the location of a query in the concrete trace.
Input: qc is the i-th query in the concrete trace and is an instance of the nonterminal “CQuery” in

the syntax for concrete traces.
Output: Abstract query forqc , as an instance of the nonterminal “AQuery” in the syntax for abstract

traces, where the concrete values are replaced with variables that refer to data available in D.

1: procedure GeneralizeQuery(D, i,qc )
2: da ← Variable named “di ”, where “d” denotes a variable and i is the given integer
3: “SELECT c FROM jc wc ”← qc
4: oc ← Set of checks “CCol = CCol” after each keyword “ON” in jc
5: if oc = ∅ and wc = ϵ then ▷ No selection criterion (retrieve all rows)
6: return “da ← select c where True”
7: end if
8: if oc = ∅ and wc , ϵ then
9: ec ← The check “CExpr” after the keyword “WHERE” inwc
10: else if oc , ∅ and wc = ϵ then
11: ec ← Connect the elements in oc with “AND”
12: else
13: w ′c ← The check “CExpr” after the keyword “WHERE” inwc
14: o′c ← Connect the elements in oc with “AND”
15: ec ← “w ′c AND o′c ”
16: end if
17: ea ← GeneralizeExpr(D, ec )
18: return “da ← select c where ea”
19: end procedure
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Algorithm 11

Input: e is an instance of the nonterminal symbol “AExpr” in the sytnax for abstract traces.
Input: J is a function that maps each table to an integer.
Output: A logical formula using the constraint language in Figure 14 that uses variables declared

in the EncodePathConstraints procedure.

1: procedure EncodeExpr(e, J )
2: for nonterminal symbol “Col” in e do
3: This nonterminal symbol is of the form “t .c” where t is a table and c is a column of t
4: Replace symbol “Col” with variable x J (t )t,c
5: end for
6: for terminal symbol “in” in e do
7: j ← the index of this input argument as declared in the application interface
8: Replace symbol “in” with variable x jin
9: end for
10: Replace each terminal symbol “∈” with the equal sign “=”
11: Remove each terminal symbol “d” and “r”
12: return the converted expression
13: end procedure
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B APPENDIX: REGENERATED CODE FOR KANDAN CHAT ROOM

B.1 Kandan Chat Room Command get_channels

1 def get_channels (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 if util.has_rows(s0):

5 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

6 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

7 outputs.extend(util.get_data(s3, 'channels ', 'id'))

8 outputs.extend(util.get_data(s3, 'channels ', 'name'))

9 outputs.extend(util.get_data(s3, 'channels ', 'user_id '))

10 if util.has_rows(s3):

11 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

12 outputs.extend(util.get_data(s4, 'activities ', 'id'))

13 outputs.extend(util.get_data(s4, 'activities ', 'content '))

14 outputs.extend(util.get_data(s4, 'activities ', 'channel_id '))

15 outputs.extend(util.get_data(s4, 'activities ', 'user_id '))

16 outputs.extend(util.get_data(s4, 'activities ', 'action '))

17 if util.has_rows(s4):

18 s83 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})

19 outputs.extend(util.get_data(s83 , 'users ', 'id'))

20 outputs.extend(util.get_data(s83 , 'users ', 'email '))

21 outputs.extend(util.get_data(s83 , 'users ', 'first_name '))

22 outputs.extend(util.get_data(s83 , 'users ', 'last_name '))

23 outputs.extend(util.get_data(s83 , 'users ', 'gravatar_hash '))

24 outputs.extend(util.get_data(s83 , 'users ', 'username '))

25 outputs.extend(util.get_data(s83 , 'users ', '

registration_status '))

26 s84 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

27 outputs.extend(util.get_data(s84 , 'users ', '

registration_status '))

28 s85 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE (1=1)", {})

29 outputs.extend(util.get_data(s85 , 'channels ', 'id'))

30 outputs.extend(util.get_data(s85 , 'channels ', 'name'))

31 outputs.extend(util.get_data(s85 , 'channels ', 'user_id '))

32 s85_all = s85

33 for s85 in s85_all:

34 s86 = util.do_sql(conn , "SELECT COUNT (*) FROM `activities `

WHERE `activities `.`channel_id ` = :x0", {'x0': util.

get_one_data(s85 , 'channels ', 'id')})
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35 s87 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id DESC LIMIT 30 OFFSET 0", {'x0': util.

get_one_data(s85 , 'channels ', 'id')})

36 outputs.extend(util.get_data(s87 , 'activities ', 'id'))

37 outputs.extend(util.get_data(s87 , 'activities ', 'content ')

)

38 outputs.extend(util.get_data(s87 , 'activities ', '

channel_id '))

39 outputs.extend(util.get_data(s87 , 'activities ', 'user_id ')

)

40 outputs.extend(util.get_data(s87 , 'activities ', 'action '))

41 if util.has_rows(s87):

42 s88 = util.do_sql(conn , "SELECT `users `.* FROM `users `

WHERE `users `.`id` IN (:x0)", {'x0': util.

get_one_data(s87 , 'activities ', 'user_id ')})

43 outputs.extend(util.get_data(s88 , 'users ', 'id'))

44 outputs.extend(util.get_data(s88 , 'users ', 'email '))

45 outputs.extend(util.get_data(s88 , 'users ', 'first_name

'))

46 outputs.extend(util.get_data(s88 , 'users ', 'last_name '

))

47 outputs.extend(util.get_data(s88 , 'users ', '

gravatar_hash '))

48 outputs.extend(util.get_data(s88 , 'users ', 'username ')

)

49 outputs.extend(util.get_data(s88 , 'users ', '

registration_status '))

50 else:

51 pass

52 s85 = s85_all

53 else:

54 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

55 s6 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE (1=1)", {})

56 outputs.extend(util.get_data(s6, 'channels ', 'id'))

57 outputs.extend(util.get_data(s6, 'channels ', 'name'))

58 outputs.extend(util.get_data(s6, 'channels ', 'user_id '))

59 s6_all = s6

60 for s6 in s6_all:

61 s7 = util.do_sql(conn , "SELECT COUNT (*) FROM `activities `

WHERE `activities `.`channel_id ` = :x0", {'x0': util.

get_one_data(s6, 'channels ', 'id')})

62 s8 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id DESC LIMIT 30 OFFSET 0", {'x0': util.

get_one_data(s6, 'channels ', 'id')})

63 s6 = s6_all

64 else:

Publication date: August 2018.



Using Active Learning to Synthesize Models of Applications That Access Databases 1:35

65 s36 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

66 s37 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE (1=1)", {})

67 else:

68 pass

69 return outputs

B.2 Kandan Chat Room Command get_channels_id_activities

1 def get_channels_id_activities (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 if util.has_rows(s0):

5 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

6 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

7 if util.has_rows(s3):

8 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

9 if util.has_rows(s4):

10 s40 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id ` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})

11 s41 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

12 s42 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id` = :x0 LIMIT 1", {'x0': inputs [1]})

13 if util.has_rows(s42):

14 s138 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id LIMIT 1", {'x0': util.get_one_data(s42 , '

channels ', 'id')})

15 outputs.extend(util.get_data(s138 , 'activities ', 'id'))

16 outputs.extend(util.get_data(s138 , 'activities ', 'content '

))

17 outputs.extend(util.get_data(s138 , 'activities ', '

channel_id '))

18 outputs.extend(util.get_data(s138 , 'activities ', 'user_id '

))

19 outputs.extend(util.get_data(s138 , 'activities ', 'action ')

)

20 s139 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id DESC LIMIT 30", {'x0': util.get_one_data(

s42 , 'channels ', 'id')})

21 outputs.extend(util.get_data(s139 , 'activities ', 'id'))
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22 outputs.extend(util.get_data(s139 , 'activities ', 'content '

))

23 outputs.extend(util.get_data(s139 , 'activities ', '

channel_id '))

24 outputs.extend(util.get_data(s139 , 'activities ', 'user_id '

))

25 outputs.extend(util.get_data(s139 , 'activities ', 'action ')

)

26 if util.has_rows(s139):

27 s173 = util.do_sql(conn , "SELECT `users `.* FROM `users

` WHERE `users `.`id` IN :x0", {'x0': util.

get_data(s139 , 'activities ', 'user_id ')})

28 outputs.extend(util.get_data(s173 , 'users ', 'id'))

29 outputs.extend(util.get_data(s173 , 'users ', 'email '))

30 outputs.extend(util.get_data(s173 , 'users ', '

first_name '))

31 outputs.extend(util.get_data(s173 , 'users ', 'last_name

'))

32 outputs.extend(util.get_data(s173 , 'users ', '

gravatar_hash '))

33 outputs.extend(util.get_data(s173 , 'users ', 'username '

))

34 outputs.extend(util.get_data(s173 , 'users ', '

registration_status '))

35 else:

36 pass

37 else:

38 pass

39 else:

40 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id ` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

41 s6 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id ` = :x0 LIMIT 1", {'x0': inputs [1]})

42 if util.has_rows(s6):

43 s69 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id LIMIT 1", {'x0': util.get_one_data(s6, '

channels ', 'id')})

44 s70 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`channel_id ` = :x0

ORDER BY id DESC LIMIT 30", {'x0': util.get_one_data(

s6, 'channels ', 'id')})

45 else:

46 pass

47 else:

48 s25 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

49 s26 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id` = :x0 LIMIT 1", {'x0': inputs [1]})

50 else:
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51 pass

52 return outputs

B.3 Kandan Chat Room Command get_channels_id_activities_id

1 def get_channels_id_activities_id (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 if util.has_rows(s0):

5 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

6 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

7 if util.has_rows(s3):

8 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

9 if util.has_rows(s4):

10 s47 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})

11 s48 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

12 s49 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`id` = :x0 LIMIT 1", {'x0'

: inputs [2]})

13 outputs.extend(util.get_data(s49 , 'activities ', 'content '))

14 else:

15 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

16 s6 = util.do_sql(conn , "SELECT `activities `.* FROM `

activities ` WHERE `activities `.`id` = :x0 LIMIT 1", {'x0'

: inputs [2]})

17 outputs.extend(util.get_data(s6, 'activities ', 'content '))

18 else:

19 s25 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id ` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

20 s26 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`id` = :x0 LIMIT 1", {'x0': inputs [2]})

21 outputs.extend(util.get_data(s26 , 'activities ', 'content '))

22 else:

23 pass

24 return outputs

B.4 Kandan Chat Room Command get_channels_id_attachments

1 def get_channels_id_attachments (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})
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4 if util.has_rows(s0):

5 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

6 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

7 if util.has_rows(s3):

8 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

9 if util.has_rows(s4):

10 s40 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})

11 s41 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

12 s42 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id ` = :x0 LIMIT 1", {'x0': inputs [1]})

13 if util.has_rows(s42):

14 s126 = util.do_sql(conn , "SELECT `attachments `.* FROM `

attachments ` WHERE `attachments `.`channel_id ` = :x0

ORDER BY created_at DESC", {'x0': util.get_one_data(

s42 , 'channels ', 'id')})

15 outputs.extend(util.get_data(s126 , 'attachments ', 'id'))

16 outputs.extend(util.get_data(s126 , 'attachments ', 'user_id

'))

17 outputs.extend(util.get_data(s126 , 'attachments ', '

channel_id '))

18 outputs.extend(util.get_data(s126 , 'attachments ', '

message_id '))

19 outputs.extend(util.get_data(s126 , 'attachments ', '

file_file_name '))

20 outputs.extend(util.get_data(s126 , 'attachments ', '

file_content_type '))

21 outputs.extend(util.get_data(s126 , 'attachments ', '

file_file_size '))

22 else:

23 pass

24 else:

25 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

26 s6 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id ` = :x0 LIMIT 1", {'x0': inputs [1]})

27 if util.has_rows(s6):

28 s68 = util.do_sql(conn , "SELECT `attachments `.* FROM `

attachments ` WHERE `attachments `.`channel_id ` = :x0

ORDER BY created_at DESC", {'x0': util.get_one_data(s6

, 'channels ', 'id')})

29 outputs.extend(util.get_data(s68 , 'attachments ', 'id'))

30 outputs.extend(util.get_data(s68 , 'attachments ', 'user_id '

))
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31 outputs.extend(util.get_data(s68 , 'attachments ', '

channel_id '))

32 outputs.extend(util.get_data(s68 , 'attachments ', '

message_id '))

33 outputs.extend(util.get_data(s68 , 'attachments ', '

file_file_name '))

34 outputs.extend(util.get_data(s68 , 'attachments ', '

file_content_type '))

35 outputs.extend(util.get_data(s68 , 'attachments ', '

file_file_size '))

36 else:

37 pass

38 else:

39 s25 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

40 s26 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `

WHERE `channels `.`id` = :x0 LIMIT 1", {'x0': inputs [1]})

41 else:

42 pass

43 return outputs

B.5 Kandan Chat Room Command get_me

1 def get_me (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 outputs.extend(util.get_data(s0, 'users ', 'id'))

5 outputs.extend(util.get_data(s0, 'users ', 'email '))

6 outputs.extend(util.get_data(s0, 'users ', 'first_name '))

7 outputs.extend(util.get_data(s0, 'users ', 'last_name '))

8 outputs.extend(util.get_data(s0, 'users ', 'username '))

9 outputs.extend(util.get_data(s0, 'users ', 'registration_status '))

10 if util.has_rows(s0):

11 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id ` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

12 outputs.extend(util.get_data(s2, 'users ', 'id'))

13 outputs.extend(util.get_data(s2, 'users ', 'email '))

14 outputs.extend(util.get_data(s2, 'users ', 'first_name '))

15 outputs.extend(util.get_data(s2, 'users ', 'last_name '))

16 outputs.extend(util.get_data(s2, 'users ', 'username '))

17 outputs.extend(util.get_data(s2, 'users ', 'registration_status '))

18 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

19 if util.has_rows(s3):

20 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

21 if util.has_rows(s4):

22 s35 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id ` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})
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23 outputs.extend(util.get_data(s35 , 'users ', '

registration_status '))

24 s36 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

25 outputs.extend(util.get_data(s36 , 'users ', 'id'))

26 outputs.extend(util.get_data(s36 , 'users ', 'email '))

27 outputs.extend(util.get_data(s36 , 'users ', 'first_name '))

28 outputs.extend(util.get_data(s36 , 'users ', 'last_name '))

29 outputs.extend(util.get_data(s36 , 'users ', 'username '))

30 outputs.extend(util.get_data(s36 , 'users ', '

registration_status '))

31 else:

32 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id ` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

33 outputs.extend(util.get_data(s5, 'users ', 'id'))

34 outputs.extend(util.get_data(s5, 'users ', 'email '))

35 outputs.extend(util.get_data(s5, 'users ', 'first_name '))

36 outputs.extend(util.get_data(s5, 'users ', 'last_name '))

37 outputs.extend(util.get_data(s5, 'users ', 'username '))

38 outputs.extend(util.get_data(s5, 'users ', 'registration_status

'))

39 else:

40 s22 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

41 outputs.extend(util.get_data(s22 , 'users ', 'id'))

42 outputs.extend(util.get_data(s22 , 'users ', 'email '))

43 outputs.extend(util.get_data(s22 , 'users ', 'first_name '))

44 outputs.extend(util.get_data(s22 , 'users ', 'last_name '))

45 outputs.extend(util.get_data(s22 , 'users ', 'username '))

46 outputs.extend(util.get_data(s22 , 'users ', 'registration_status '))

47 else:

48 pass

49 return outputs

B.6 Kandan Chat Room Command get_users

1 def get_users (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 outputs.extend(util.get_data(s0, 'users ', 'id'))

5 outputs.extend(util.get_data(s0, 'users ', 'email '))

6 outputs.extend(util.get_data(s0, 'users ', 'first_name '))

7 outputs.extend(util.get_data(s0, 'users ', 'last_name '))

8 outputs.extend(util.get_data(s0, 'users ', 'username '))

9 outputs.extend(util.get_data(s0, 'users ', 'registration_status '))

10 if util.has_rows(s0):

11 s8 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})
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12 outputs.extend(util.get_data(s8, 'users ', 'id'))

13 outputs.extend(util.get_data(s8, 'users ', 'email '))

14 outputs.extend(util.get_data(s8, 'users ', 'first_name '))

15 outputs.extend(util.get_data(s8, 'users ', 'last_name '))

16 outputs.extend(util.get_data(s8, 'users ', 'username '))

17 outputs.extend(util.get_data(s8, 'users ', 'registration_status '))

18 s9 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

19 if util.has_rows(s9):

20 s10 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s9, 'channels ', 'id')})

21 if util.has_rows(s10):

22 s63 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` IN (:x0)", {'x0': util.get_one_data(s10 , '

activities ', 'user_id ')})

23 outputs.extend(util.get_data(s63 , 'users ', 'id'))

24 outputs.extend(util.get_data(s63 , 'users ', 'email '))

25 outputs.extend(util.get_data(s63 , 'users ', 'first_name '))

26 outputs.extend(util.get_data(s63 , 'users ', 'last_name '))

27 outputs.extend(util.get_data(s63 , 'users ', 'gravatar_hash '))

28 outputs.extend(util.get_data(s63 , 'users ', 'username '))

29 outputs.extend(util.get_data(s63 , 'users ', '

registration_status '))

30 s64 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s8,

'users ', 'id')})

31 outputs.extend(util.get_data(s64 , 'users ', 'id'))

32 outputs.extend(util.get_data(s64 , 'users ', 'email '))

33 outputs.extend(util.get_data(s64 , 'users ', 'first_name '))

34 outputs.extend(util.get_data(s64 , 'users ', 'last_name '))

35 outputs.extend(util.get_data(s64 , 'users ', 'username '))

36 outputs.extend(util.get_data(s64 , 'users ', '

registration_status '))

37 s65 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

(1=1)", {})

38 outputs.extend(util.get_data(s65 , 'users ', 'id'))

39 outputs.extend(util.get_data(s65 , 'users ', 'email '))

40 outputs.extend(util.get_data(s65 , 'users ', 'first_name '))

41 outputs.extend(util.get_data(s65 , 'users ', 'last_name '))

42 outputs.extend(util.get_data(s65 , 'users ', 'username '))

43 outputs.extend(util.get_data(s65 , 'users ', '

registration_status '))

44 else:

45 s11 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s8,

'users ', 'id')})

46 outputs.extend(util.get_data(s11 , 'users ', 'id'))

47 outputs.extend(util.get_data(s11 , 'users ', 'email '))

48 outputs.extend(util.get_data(s11 , 'users ', 'first_name '))

49 outputs.extend(util.get_data(s11 , 'users ', 'last_name '))

50 outputs.extend(util.get_data(s11 , 'users ', 'username '))
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51 outputs.extend(util.get_data(s11 , 'users ', '

registration_status '))

52 s12 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

(1=1)", {})

53 outputs.extend(util.get_data(s12 , 'users ', 'id'))

54 outputs.extend(util.get_data(s12 , 'users ', 'email '))

55 outputs.extend(util.get_data(s12 , 'users ', 'first_name '))

56 outputs.extend(util.get_data(s12 , 'users ', 'last_name '))

57 outputs.extend(util.get_data(s12 , 'users ', 'username '))

58 outputs.extend(util.get_data(s12 , 'users ', '

registration_status '))

59 else:

60 s36 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s8, '

users ', 'id')})

61 outputs.extend(util.get_data(s36 , 'users ', 'id'))

62 outputs.extend(util.get_data(s36 , 'users ', 'email '))

63 outputs.extend(util.get_data(s36 , 'users ', 'first_name '))

64 outputs.extend(util.get_data(s36 , 'users ', 'last_name '))

65 outputs.extend(util.get_data(s36 , 'users ', 'username '))

66 outputs.extend(util.get_data(s36 , 'users ', 'registration_status '))

67 s37 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

(1=1)", {})

68 outputs.extend(util.get_data(s37 , 'users ', 'id'))

69 outputs.extend(util.get_data(s37 , 'users ', 'email '))

70 outputs.extend(util.get_data(s37 , 'users ', 'first_name '))

71 outputs.extend(util.get_data(s37 , 'users ', 'last_name '))

72 outputs.extend(util.get_data(s37 , 'users ', 'username '))

73 outputs.extend(util.get_data(s37 , 'users ', 'registration_status '))

74 else:

75 pass

76 return outputs

B.7 Kandan Chat Room Command get_users_id

1 def get_users_id (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users `.`

username ` = :x0 LIMIT 1", {'x0': inputs [0]})

4 outputs.extend(util.get_data(s0, 'users ', 'id'))

5 outputs.extend(util.get_data(s0, 'users ', 'email '))

6 outputs.extend(util.get_data(s0, 'users ', 'first_name '))

7 outputs.extend(util.get_data(s0, 'users ', 'last_name '))

8 outputs.extend(util.get_data(s0, 'users ', 'username '))

9 outputs.extend(util.get_data(s0, 'users ', 'registration_status '))

10 if util.has_rows(s0):

11 s2 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `users

`.`id ` = :x0 LIMIT 1", {'x0': util.get_one_data(s0, 'users ', 'id')

})

12 outputs.extend(util.get_data(s2, 'users ', 'id'))

13 outputs.extend(util.get_data(s2, 'users ', 'email '))

14 outputs.extend(util.get_data(s2, 'users ', 'first_name '))

15 outputs.extend(util.get_data(s2, 'users ', 'last_name '))
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16 outputs.extend(util.get_data(s2, 'users ', 'username '))

17 outputs.extend(util.get_data(s2, 'users ', 'registration_status '))

18 s3 = util.do_sql(conn , "SELECT `channels `.* FROM `channels `", {})

19 if util.has_rows(s3):

20 s4 = util.do_sql(conn , "SELECT `activities `.* FROM `activities `

WHERE `activities `.`channel_id ` IN :x0", {'x0': util.get_data(

s3, 'channels ', 'id')})

21 if util.has_rows(s4):

22 s35 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id ` IN :x0", {'x0': util.get_data(s4, 'activities

', 'user_id ')})

23 outputs.extend(util.get_data(s35 , 'users ', '

registration_status '))

24 s36 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

25 outputs.extend(util.get_data(s36 , 'users ', 'id'))

26 outputs.extend(util.get_data(s36 , 'users ', 'email '))

27 outputs.extend(util.get_data(s36 , 'users ', 'first_name '))

28 outputs.extend(util.get_data(s36 , 'users ', 'last_name '))

29 outputs.extend(util.get_data(s36 , 'users ', 'username '))

30 outputs.extend(util.get_data(s36 , 'users ', '

registration_status '))

31 else:

32 s5 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE

`users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2,

'users ', 'id')})

33 outputs.extend(util.get_data(s5, 'users ', 'id'))

34 outputs.extend(util.get_data(s5, 'users ', 'email '))

35 outputs.extend(util.get_data(s5, 'users ', 'first_name '))

36 outputs.extend(util.get_data(s5, 'users ', 'last_name '))

37 outputs.extend(util.get_data(s5, 'users ', 'username '))

38 outputs.extend(util.get_data(s5, 'users ', 'registration_status

'))

39 else:

40 s22 = util.do_sql(conn , "SELECT `users `.* FROM `users ` WHERE `

users `.`id` = :x0 LIMIT 1", {'x0': util.get_one_data(s2, '

users ', 'id')})

41 outputs.extend(util.get_data(s22 , 'users ', 'id'))

42 outputs.extend(util.get_data(s22 , 'users ', 'email '))

43 outputs.extend(util.get_data(s22 , 'users ', 'first_name '))

44 outputs.extend(util.get_data(s22 , 'users ', 'last_name '))

45 outputs.extend(util.get_data(s22 , 'users ', 'username '))

46 outputs.extend(util.get_data(s22 , 'users ', 'registration_status '))

47 else:

48 pass

49 return outputs

C APPENDIX: REGENERATED CODE FOR BLOG APPLICATION

C.1 Blog Application Command get_articles

1 def get_articles (conn , inputs):
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2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `articles `.* FROM `articles `", {})

4 outputs.extend(util.get_data(s0, 'articles ', 'id'))

5 outputs.extend(util.get_data(s0, 'articles ', 'title '))

6 outputs.extend(util.get_data(s0, 'articles ', 'text'))

7 s1 = util.do_sql(conn , "SELECT `articles `.* FROM `articles `", {})

8 outputs.extend(util.get_data(s1, 'articles ', 'id'))

9 outputs.extend(util.get_data(s1, 'articles ', 'title '))

10 outputs.extend(util.get_data(s1, 'articles ', 'text'))

11 return outputs

C.2 Blog Application Command get_article_id

1 def get_article_id (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT `articles `.* FROM `articles `", {})

4 s1 = util.do_sql(conn , "SELECT `articles `.* FROM `articles ` WHERE `

articles `.`id` = :x0 LIMIT 1", {'x0': inputs [0]})

5 outputs.extend(util.get_data(s1, 'articles ', 'id'))

6 outputs.extend(util.get_data(s1, 'articles ', 'title '))

7 outputs.extend(util.get_data(s1, 'articles ', 'text'))

8 if util.has_rows(s1):

9 s9 = util.do_sql(conn , "SELECT `comments `.* FROM `comments ` WHERE `

comments `.`article_id ` = :x0", {'x0': util.get_one_data(s1, '

articles ', 'id')})

10 outputs.extend(util.get_data(s9, 'comments ', 'commenter '))

11 outputs.extend(util.get_data(s9, 'comments ', 'body'))

12 outputs.extend(util.get_data(s9, 'comments ', 'article_id '))

13 else:

14 pass

15 return outputs

D APPENDIX: REGENERATED CODE FOR STUDENT REGISTRATION SYSTEM

D.1 Student Registration System Command liststudentcourses

1 def liststudentcourses (conn , inputs):

2 outputs = []

3 s0 = util.do_sql(conn , "SELECT * FROM student WHERE id = :x0", {'x0':

inputs [0]})

4 if util.has_rows(s0):

5 s2 = util.do_sql(conn , "SELECT * FROM student WHERE id=:x0 AND

password =:x1", {'x0': util.get_one_data(s0, 'student ', 'id'), 'x1'

: inputs [1]})

6 if util.has_rows(s2):

7 s6 = util.do_sql(conn , "SELECT * FROM course c JOIN registration r

on r.course_id = c.id WHERE r.student_id = :x0", {'x0': util.

get_one_data(s2, 'student ', 'id')})

8 outputs.extend(util.get_data(s6, 'course ', 'id'))

9 outputs.extend(util.get_data(s6, 'course ', 'teacher_id '))

10 outputs.extend(util.get_data(s6, 'registration ', 'course_id '))

11 if util.has_rows(s6):

12 s6_all = s6

13 for s6 in s6_all:
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14 s19 = util.do_sql(conn , "Select firstname , lastname from

teacher where id = :x0", {'x0': util.get_one_data(s6,

'course ', 'teacher_id ')})

15 s20 = util.do_sql(conn , "SELECT count (*) FROM registration

WHERE course_id = :x0", {'x0': util.get_one_data(s6,

'registration ', 'course_id ')})

16 s6 = s6_all

17 else:

18 pass

19 else:

20 pass

21 else:

22 pass

23 return outputs

E APPENDIX: INFERRED DSL FOR STUDENT REGISTRATION SYSTEM

E.1 Student Registration System Command liststudentcourses

1 d1 <- select student.id, student.password , student.firstname , student.lastname

2 where student.id = in_s

3 if d1 {

4 d2 <- select student.id, student.password , student.firstname , student.

lastname

5 where student.id = [in_s , d1.student.id] AND student.password = in_p

6 if d2 {

7 d3 <- select course.id (output: True), course.name , course.course_number ,

course.size_limit , course.is_offered , course.teacher_id (output: True)

, registration.student_id , registration.course_id (output: True)

8 where registration.course_id = course.id AND registration.student_id

= [in_1 , d1.student.id, d2.student.id]

9 if d3 {

10 for each row3 in d3 {

11 d4 <- select teacher.firstname , teacher.lastname

12 where teacher.id = row3.teacher_id

13 d5 <- select count(registration)

14 where registration.course_id = [row3.course.id, row3.

registratoin.course_id]

15 }

16 } else {}

17 } else {}

18 } else {}

Publication date: August 2018.
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