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Abstract 

Construction procurement often involves negotiations between many parties over multitudes of 
components. The process of allocating contracts to suppliers is generally a complex process 
involving multiple decision makers processing large amounts of information. Minimizing project 
costs while meeting stringent specification and schedule requirements is especially difficult. In 
most cases, procurement processes do not consider combinatorial (or package) bids from 
suppliers. Allowing combinatorial bidding in the procurement process has been shown to reduce 
costs in other industries. It can, therefore, be expected to reduce costs in construction. This 
research proposes the use of combinatorial reverse auctions to minimize construction costs. 
Various models were applied to real data to determine feasibility compared to the baseline of 
allocating all items to the lowest bidder. Data included seven scenarios selected based on the 
number of suppliers and number of items. Each scenario included a subset of bids submitted by 
approved suppliers. A sensitivity analysis was performed on each model-scenario pair to 
consider uncertainty in supplier pricing structures. Results of the analysis provided justification 
for the use of combinatorial reverse auctions in construction procurements. Cumulative cost 
savings across all seven scenarios were 6.4% for unconstrained models and 2.7% for constrained 
models with limits on the number of awarded suppliers. Further analysis on the computation time 
and distribution of solutions across various methods indicated the superiority of the iterative 
approach to solving the winner determination problem in terms speed and optimality. However, 
stochastic and meta-heuristic approaches using a genetic algorithm led to higher variations in 
allocations while maintaining low variations in total cost. This suggests that they can be used to 
provide families of near-optimal solutions.   
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1. Introduction 

Due to ever increasing market competitiveness, construction companies face challenges 

in optimizing their supply chains. Specifically, managing the procurement of materials and 

services from multiple suppliers can be overwhelmingly complex. In other industries such as the 

transportation industry, more sophisticated approaches are used to assign contracts to suppliers. 

Combinatorial reverse auctions where suppliers are invited to bid on groups of items (or 

packages) have been shown to offer significant savings. This project introduces various 

approaches to optimizing procurement using combinatorial reverse auctions. Their performance 

is measured in terms of potential cost savings. Real data, provided by a sponsoring company, is 

used. The following sub-sections summarize the problem statement, the company background 

and the motivation for researching the proposed topic. 

1.1. Problem Statement 

Competitive market conditions have incentivized construction companies to build more 

efficient supply chains. There is a growing focus on improving procurement processes to lower 

construction costs while improving performance. Maintaining competitiveness involves having a 

broader perspective and analyzing the supply chain over a larger space and time horizon while 

planning for a variety of scenarios. It also involves translating the qualitative results into 

quantitative metrics that are descriptive, complete and intelligible across the firm. They should 

be designed to capture various supplier characteristics such as cost, quality, reliability, resilience 

and long-term risk. They should also be represented in common units (such as monetary units) 

for continuity and so that they can then be used in decision support systems to make more 

informed operational and short-term decisions. It is also vital that they be revisited and 

continually adjusted to reflect new data. 
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The procurement process, being a significant part of the operations of the firm, can be 

redesigned to consider market dynamics and supplier metrics to boost the firm’s short-term 

profitability and bolster its long-term growth potential. However, this does come at a complexity 

cost when increasing numbers of inputs and interactions of inputs are expected. The complexity 

issue can be mitigated by employing mathematical models and leveraging the exponentially 

growing computational power and software tools now abundantly available at low cost. If 

supplier metrics are designed correctly, software decision support tools can replace existing 

qualitative decision processes with ease. Procurement optimization using software tools would 

not only offer firms significant short-term and long-term savings, it would give them the 

opportunity to quantitatively define and document its procurement process and allow it to be 

adjusted more easily in the future. 

An important aspect of suppliers’ cost structures, often overlooked by procurement teams 

in construction firms, is the importance of economies of scale and scope. Suppliers’ production 

cost structures often include fixed costs that are independent of the scale of production. This 

translates to lower costs (per item) of supplying larger numbers of items. Additionally, because 

of the inherently large uncertainty in demand within the construction industry, suppliers tend to 

favor larger contracts over smaller ones. This means that they would be in favor of offering 

volume-based discounts to increase their chances of maximizing contract revenue. 

Reverse auctions (also referred to as tendering) are commonly used in construction 

procurement as a matchmaking process to select suppliers that best “fit” certain criteria. This is 

mainly done to minimize costs. The process is preceded by a detailed technical review of 

supplier proposals to ensure all participants in the auctions can deliver the products and services 

while meeting technical requirements. Contracts with suppliers often include multiple line items, 
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where each line item represents a component or group of components in a construction project. 

While a supplier may have the lowest total cost for supplying all items in a given contract, it may 

have overpriced a subset of the items relative to other suppliers. Another approach could involve 

assigning each item to the lowest bidder. This would minimize costs if suppliers’ pricing 

structures were linear with respect to the number of items in a contract. But in most cases, they 

are non-linear. In some cases, suppliers may be willing to share their pricing function, which 

may make solving the supplier assignment problem more tractable. Another approach could 

involve asking suppliers to submit bids for every possible combination of items. This may seem 

reasonable with a small number of items, but the number of combinations grows exponentially 

such that a set of only 30 items would require each supplier to submit over one billion bids and 

300 items would require more bids than there are atoms in the visible universe. Auctions that 

consider combinations of items where sellers are bidders and buyers are the auctioneers are 

defined as combinatorial reverse auctions. They have been used extensively in the transportation 

sector for the procurement of transportation services and have yielded up to 15% reduction in 

costs.  

This capstone seeks to answer the question: Can combinatorial reverse auctions be used 

to reduce construction costs? 

1.2. Company Background 

Shaksy Engineering Services (SES) was established in 2009 and based in Muscat, Oman. 

It is an engineering/construction company that primarily serves as a main contractor in 

construction projects. It has enjoyed steady growth since its inception and currently has over 

1,000 employees and has delivered over US $200 Million in construction projects. At the core of 

the company’s mission is the ability to deliver high-quality work on-schedule. This has allowed 
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SES to position itself favorably in a market where high-profile projects were gaining popularity. 

Although initial projects involved industrial and utility buildings, recent projects include bank 

headquarters, hotels, cinemas and colleges where specifications call for higher build quality and 

demand high quality materials and good workmanship. As the company grows and expands to 

new markets, it seeks to standardize its business processes. It also plans to develop corporate 

strategies to overcome obstacles and threats while ensuring its core values are not compromised.  

1.3. Motivation for Research 

Construction activities make up a significant fraction of the global economy and are 

expected to grow significantly over the next decade. According to data from Trading Economics 

(2017), the construction industry makes up 4.8% of the US gross domestic product (GDP) and 

6.3% of China’s GDP. A report by Global Construction Perspectives and Oxford Economics 

forecasts that the volume of construction output will grow by 85% to US $15.5 trillion 

worldwide by 2030. As emerging market economies such as Oman have been easing regulations 

to attract foreign investment, an influx of new construction companies has been seen throughout 

the country. New companies include locally owned and foreign owned businesses, the latter 

having greater leverage due to existing reputation and greater purchasing power. While projects 

may have been plentiful (to each company) in the past, they have become scarcer due to the 

influx of these newcomers. In addition to this, declining oil prices (Figure 1) have led to an 

economic recession in the region. Following adverse economic conditions, companies in the 

region are adopting leaner business models to cut waste and mitigate losses. Companies are also 

increasingly turning to software solutions to consolidate and analyze data while utilizing decision 

support systems to drive profitability. Procurement software systems coupled with sophisticated 

auction design can lower costs and give companies a competitive advantage. 
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Figure 1: Oil Prices 2013-2017. Source: Infomine.com 
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2. Literature Review 

To cover theoretical models as well as practical approaches, this review includes three 

areas related to the subject as follows; current best practices and market trends in construction 

procurement defined by leading professional industry bodies and international consultant firms; 

applications of reverse auctions and combinatorial reverse auctions in various industries; 

mathematical models and winner-determination algorithms.   

2.1. Current Best Practices and Market Trends 

This section summarizes the body of knowledge on construction procurement amassed by 

professional industry bodies and industry experts.  

The Chartered Institute of Building’s report (2010) exploring procurement in the 

construction industry surveyed 525 construction industry professionals in the United Kingdom. 

A large majority of the respondents (82%) believed that “suicide bidding” (the practice of 

bidding unusually lower than competitors to obtain work even at a financial loss) exists within 

the industry. The report recommended that procurement teams should not select suppliers purely 

based on cost, unsustainable bids should be identified and rejected. The negative effects of 

suicide bidding were reported to be felt throughout the supply chain, with upstream and 

downstream stakeholders experiencing schedule disruptions and financial losses. The report also 

highlighted the prevalence of cover pricing, which is a form of bid-rigging where suppliers 

submit inflated bids with the aim of not securing the contract. Hughes (2017) reported a trend of 

low-margin pricing among suppliers during periods of adverse economic conditions and scarcely 

available work. Suppliers forwent considering risks in their cost structures and attempted to 

enhance their revenues though variations (changes made to a project post award). This often led 

to conflicts between buyers and suppliers during the delivery of projects.  
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The building and construction procurement guide of Australia (2014) and the 

construction procurement policy framework of Northern Ireland (2017) stressed the importance 

of ensuring suppliers can carry out the required work. Both guides presented a framework for 

prequalification and advised limiting the number of suppliers to those that have met pre-specified 

commercial and technical criteria. An interactive and collaborative process between the client 

and suppliers was recommended for large-scale projects to enhance transparency and exchange 

of information. The process involves interviews and/or workshops to clarify contract scopes and 

required documentation.  

Kent, Van den Berg and Sobolewski (2017) reported an increase in competitiveness 

among construction firms and a shift towards the use of lump-sum, turnkey (LSTK) contracts 

where firms bear the project cost and risk (lump sum) and guarantee operational readiness 

(turnkey). This practice has become commonplace in industrial and utility projects. However, 

some firms were still not effectively factoring contingency costs into their bids. Another trend 

reported by Kent et al. involved clients breaking up larger projects into smaller discrete elements. 

This was done to lower costs but often led to increased project management requirements and 

controls for dealing with a larger set of suppliers.  

2.2. Reverse Auction Applications  

 During the rise in popularity of e-procurement in the 2000s, Wamuziri and Ab-Shaaban 

(2005) studied the advantages and disadvantages of using online reverse auctions in construction 

procurement. Advantages listed included increased efficiency, transparency and reduced costs. 

Disadvantages included awarding contracts to the lowest bid rather than the best value and 

difficulties in exercising control over specification for the goods and services being procured in 

complex projects. In an exploratory study of business to business (B2B) marketplaces, Minier 
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(2003) found that B2B exchanges (including e-auction sites) should be fair and accessible by all 

trading members regardless of size or duration of membership. The importance of transparency 

and integrity in rulesets was stressed, and it was recommended that all transactions made on an 

exchange should be reported promptly with full details on price and volumes.    

Focusing on bidding strategies in online reverse auctions for automotive parts, Lopez 

(2000) found that larger suppliers were often earliest to bid and placed more conservative bids 

during auctions. They also did not engage in price wars with smaller suppliers. Smaller suppliers, 

on the other hand, would bid far more frequently and engaged in “bidding frenzies” (placing 

fractionally lower bids frequently) towards the end of auctions. Results implied larger suppliers 

had an a priori valuation, whereas smaller suppliers were more concerned with having the lowest 

bid. Similar trends were found between incumbent and new suppliers, indicating bidders with 

more experience often perform better when participating in online reverse auctions.  

In the transportation sector, Sheffi (2004) concluded that many large firms used 

combinatorial reverse auctions for the procurement of truckload transportation services achieving 

cost savings between 3% and 15%. Combinatorial bidding on sets of shipping lanes allowed both 

shippers and suppliers to exploit inherent economies of scope. Shippers also enjoyed higher 

service levels by adjusting supplier bids based on various factors, such as on-time performance, 

ease of doing business, familiarity with the shipper’s operations and availability of the right 

equipment. Additional system constraints were often used to reflect business rules specified by 

the shipper. Constraints included lane/facility requirements, supplier volume of business 

requirements, supplier capacity constraints and quota constraints. Noncompeting shippers were 

found to participate in joint procurement, further increasing economies of scope, as their 

shipping lanes were often complementary.   
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Lunander and Lundberg (2012) analyzed the results of public procurement in Sweden 

using first-price sealed bid combinatorial reverse auctions. The procurement of various public 

services was included in the analysis including (but not limited to) road resurfacing, cleaning 

services and domestic flights. Compared to only considering single-item bids, allowing package 

bids reduced costs by up to 5%, with an average cost reduction of 2.4%. Distribution of awarded 

contracts among suppliers was higher when considering package bids, and a positive correlation 

between the number of items and number of bidders was found.   

In terms of practical considerations in auction design, Sheffi (2003) compared the 

advantages and disadvantages of both sealed and open bid auctions. Sealed bid auctions tended 

to attract more bidders and deter predatory behavior (larger suppliers lowering their bids to such 

low levels that smaller supplier cannot compete) and collusion between them. However, the lack 

of transparency allowed the potential for the auctioneer to change rules after bidding or offer 

unfair preferential treatment to certain bidders without other bidders’ knowledge. On the other 

hand, open bid auctions offered more transparency and were less open to manipulation by the 

auctioneer. However, they were more susceptible to collusion and predatory bidding. In multi-

item auctions, open formats had the added disadvantage of allowing bidders to drive down prices 

on specific items that other bidders were most interested in. Sheffi also listed additional 

important criteria to be considered during reverse (procurement) auctions, such as efficiency, 

robustness, simplicity and speed. Because of this, most procurement departments preferred 

sealed bid first price auctions over other types of auctions. Long term relationships between 

buyers and sellers (auctioneers and bidders) were common in reverse auctions in B2B settings. 

This often led to implications such as sequential (repeating) auctions, asymmetric information 

among bidders, and aggregation of information among auctioneers.  
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2.3. Mathematical Models 

 Using simulated bids, Andersson et al. (2000) compared computation times of different 

algorithms for solving the winner-determination problem in simple combinatorial auctions (only 

single units of a commodity are traded, and no supplier constraints are used).  Under most bid 

distributions, integer programming (IP) formulations using IBM’s CPLEX solver performed well 

compared to other algorithms such as the combinatorial auction structured search (CASS) 

algorithm and Sandholm’s algorithm. However, when a binomial distribution was used to 

construct bids, the CASS algorithm outperformed CPLEX by a significant amount. Based on 

these results, a simple enumeration algorithm that outperformed CASS under such bid 

distributions was proposed. It was concluded that CPLEX was the most versatile algorithm and 

had the added benefit of being able to solve more complex combinatorial auctions with multiple 

units per commodity, non-zero reserve prices and additional side constraints.     

Caplice and Sheffi (2005) defined various mixed-integer programming (MIP) 

formulations for the winner determination problem (WDP) in combinatorial reverse auctions for 

the procurement of truckload transportation. The simplest formulation minimizes cost without 

side constraints. Subsequent models add additional constraints to reflect business rules, such as 

business guarantee constraints, supplier base size constraints, soft constraints and “If then” 

constraints. Following a study of bidding behaviors among various suppliers in such auctions, 

Ueasangkomsate and Lohatepanont (2012) proposed a linear programming (LP) model 

formulation for suppliers to determine package bid-to-cost ratios that maximize profit. 

Results from a comparative study by Hsieh and Huang (2010) indicated that 

combinatorial reverse auctions based on group buying outperform multiple independent 

combinatorial reverse auctions in terms of both cost minimization and computation time. A 
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specialized heuristic algorithm based on Lagrangian relaxation was used in both cases to solve 

the winner determination problem using simulated data.  

In an analysis of iterative combinatorial auctions, Parkes (2006) categorized model 

design in terms of design features such as timing rules, information feedback, bidding rules, 

termination conditions and bidding language. Various models were analyzed, including common 

price-based models where ask prices are provided to bidders before each round as well as less 

common non-price-based models. The study concluded that a tradeoff exists between the cost of 

eliciting information (from bidders) and the value of additional information in terms of 

improving the market allocation.  

Hsieh (2010) proposed a novel approach for giving feedback to bidders participating in 

iterative combinatorial auctions without revealing as much information as revealing winning bids 

or ask prices at each iteration. The model adopts Lagrangian relaxation techniques used in other 

models to reveal Lagrangian multipliers to bidders. Each bidder then solves a profit-maximizing 

LP model to determine whether to submit a new bid. A heuristic algorithm was proposed for 

solving the WDP at the end of the last bidding round.  

  



18 
 

3. Auction Theory 

The following section is a summary of the body of knowledge on auction theory. It is 

intended to give the reader a brief introduction to the subject and offer some insights into auction 

design and common types of auctions used in practice. The section is a summary of existing 

work compiled by Sheffi (2003). 

An auction is a mechanism where an auctioneer is either looking to buy or sell a set of 

goods and/or services. The selection and payment mechanisms are determined based on bids 

received. A simple example is real-estate auctions where auctioneers sell houses or buildings to 

the highest bidders. Reverse auctions are equivalent with the caveat that auctioneers are the 

buyers who seek to minimize cost rather than maximize it. Reverse auctions are commonly used 

in business settings for the procurement of goods and services. Most buying or selling 

transactions where more than two parties are involved can be considered auctions. In fact, 

auctions are often thought to be the most economically efficient way of distributing resources. 

They have been in use for millennia throughout history. For the sake of brevity, this section will 

only consider auctions in which the seller is the auctioneer.  

Auctions are designed to serve three main purposes: 

 Price discovery: Determining the true pricing of a product or service. 

 Winner determination: Determining the winner (usually the highest bidder) of the 

auction. 

 Payment mechanism: Determining the price that should be paid by the winner.  

Common criteria considered in auction design are the following: 
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 Revenue: Maximizing revenue is the primary objective of the auctioneer in most cases. 

However, this is not always the case. Other considerations and constraints, such as risk 

control, may be just as important. 

 Efficiency: A measure of whether bidders with the highest valuation ex post are selected. 

This is especially important when the delivery of the good or service will occur in the 

future.  

 Time and Effort: Auctions should ideally be designed to minimize the effort required by 

the auctioneer and bidders. Complicated auctions involving multiple items and multiple 

rounds of bidding often have a high data, computation and communication complexity. 

 Simplicity: Building off the previous point, overly complicated auctions may deter 

participants who do not fully understand the rules. Keeping the rules simple is an 

important aspect of auction design. 

Bidder valuations can be categorized in to three different categories: 

 Private values (PV): Each bidder only knows its own valuations and they are not affected 

by other bidders’ valuations. 

 Interdependent values: The valuation is partially known by bidders but may change based 

on signals from other bidders.  

 Common values: The valuation is the same for all bidders (ex post). 

3.1. Common Types of Auctions 

3.1.1. Open bid auctions 

Open bid auctions are auctions where all bidding information is accessible by all bidders. 

Therefore, all bidders know what bids were placed. The following are some of the common types 

of such auctions used in practice: 
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 Ascending bid auction (English auction), where the price is raised by bidders continually 

until only one bidder remains. This bidder wins the auction and pays the final price. 

 Descending bid auction (Dutch auction) where the price is lowered by the auctioneer 

starting from a high price. The first bidder that accepts a price wins paying the last price 

quoted. 

 Ascending clock auction (Japanese auction) where the auctioneer continually raises the 

price until only one bidder remains. Once a bidder exits, they are not allowed to re-enter 

and will lose their chance of winning the auction.  

3.1.2. Sealed-bid auctions 

Sealed-bid auctions are auctions where bidding information is not shared with all the 

bidders. A bidder only knows what he/she bid and not what others have bid. The following are 

common sealed-bid auction types: 

 First price sealed bid auction where each bidder submits a confidential bid. The highest 

bidder wins and pays the amount they bid 

 Second price sealed bid auction (Vickery auction), which is identical to the first price 

auction, but the winner pays the amount bid by the second highest bidder. 

The important difference between open bid and sealed-bid auctions is that information 

feedback is not given to bidders in sealed-bid auctions. There are auctions that reveal partial 

information such as bidder rankings so that a bidder can know his current standing (first, second, 

third, etc.) and other bidders’ standings but not bid values.  

There are important game theory-based insights from the auction types listed above. For 

example, a winning bid in a first price sealed-bid auction is equivalent to a winning bid a 
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descending bid (Dutch) auction. This is because none of the bidders in a Dutch auction has any 

information until a winner is selected. But this is only the case if the auction is not repeated or an 

auction with a similar item is not subsequently held.  Table 1 summarizes the equivalencies 

between open and sealed-bid auctions. 

Auction Type Equivalency   

Dutch 1st Price (for common and private valuations) 

English 2nd Price (for only private valuations) 

Table 1: Auction Equivalencies 

3.2. Bidding Strategies and Auction Revenues 

Based on the type of auction, bidders may want to define their strategy before the auction 

to maximize their utility. Conversely, auctioneers may want to design the auction based on the 

outcome that is preferable to them. The following assumptions will be held throughout this 

subsection: 

 All bidders follow the same strategy resulting in Nash equilibrium.  

 Bidders’ (private) valuations are independently and identically distributed (symmetric). 

 Bidders are risk neutral and therefore do not participate in collusion or predatory 

behavior. 

 Bidders have no budget constraints.   

3.2.1. First Price Strategy and Revenue 

A bidder in a first price sealed-bid auction seeks to maximize his/her expected gain. The 

expected gain is the probability of winning 𝑃(𝑏) times the surplus attained given a bid 𝑏 and 

valuation 𝑣 as shown in Equation 1. 
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𝐸[𝐺𝑎𝑖𝑛] = (𝑣 − 𝑏)𝑃(𝑏)  [1] 

It has been shown that for maximizing expected gain given 𝑛 bidders and a uniform 

distribution 𝑈[0,1], the optimal bid is shown in equation 2. 

𝑏∗ =
𝑛 − 1

𝑛
𝑣   [2] 

Given this bid distribution and bidder strategy, the auctioneer can expect a revenue of: 

𝐸[𝑅𝑒𝑣𝑒𝑛𝑢𝑒] =
𝑛 − 1

𝑛 + 1
  [3] 

3.2.2. Second Price Strategy and Revenue 

In a second price auction, the dominant strategy for a bidder is to bid their true valuation. 

This is because there is no additional surplus in bidding higher or lower than the true valuation. 

If all bidders follow this strategy, the expected revenue is equivalent to the first price revenue 

shown in equation 3. The equality is known as the revenue equivalence theorem. In fact, it holds 

true for any bid distribution given the assumptions listed in Section 3.2.  

3.3. Practical Considerations in Procurement  

In the context of procurement (or reverse) auctions, the focus shifts from allocation 

efficiencies mentioned in previous sections to simplicity. Most business to business reverse 

auctions are based on the first price sealed bid format (or a variant of it). The simplicity of the 

auction is attractive to both auctioneers and bidders and often involves a minimal number of 

bidding rounds.  
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4. Methodology 

The methodology section outlines the mathematical and logical framework for 

implementing combinatorial reverse auctions (CRAs) in construction procurement. Figure 2 

depicts the methodology steps that start with leveraging items based on various number of 

suppliers and items, and cost values. After aggregating the line-items into item groups, package 

generation and optimization model are applied. The methodology ends with a sensitivity analysis 

to compare the effects of different scenarios.  

 

Figure 2: Methodology Outline 

Data used in the study was provided by Shaksy Engineering Services LLC (SES). They 

also provided relevant information regarding market dynamics and supplier characteristics. The 

identity of suppliers will remain anonymous and will be referred to categorically (Supplier 1, 

Supplier 2 etc.). All monetary values (costs) are in Omani rials (OMR).  

The simplest form of a CRA can be defined as an auction that allows bidders to submit 

bids on any subset of a list of items. The objective is to minimize the total cost while ensuring all 
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items are purchased. Or, more formally, given a universe of 𝑛 items 𝐼 =  {𝑖 , 𝑖 , ⋯ 𝑖 } and a 

family of 𝑚 subsets of 𝐼, 𝑃 =  {𝑝 , 𝑝 , ⋯ 𝑝 } with costs 𝑐  associated with each set in 𝑆, find the 

minimum cost subset 𝑃′ ⊆ 𝑃 such that the union of all sets in 𝑃′ equals 𝐼. This definition 

assumes free disposal. Without free disposal an extra requirement that all sets in 𝑃′ be disjoint 

would need to be added. Free disposal (the auctioneer can freely dispose of excess production 

factors) was assumed throughout this project. 

The problem is mathematically identical to the weighted set cover problem and is 

therefore considered NP-Hard. Because the weighted set cover problem is well studied in 

computer science spheres, many solver algorithms exist including a variety of potent heuristic 

algorithms that run in polynomial time.  

Given the scale of the data and the complexity of the proposed models, integer 

programming (IP) and non-linear formulations were selected for use on this project due to the 

effectiveness, robustness and popularity of available commercial solvers. IP solvers also add 

more flexibility in adding constraints to the model to reflect business rules. Such constraints are 

not as easily implemented in more specialized algorithms. 

4.1. List of Symbols 

𝑍: Objective function [OMR] 

𝑥: Package selection binary variable 

𝑦: Supplier selection binary variable 

𝑖: Item index 

𝐼: Set of all items in a scenario 

𝑝: Package bid index 



25 
 

𝑃: Set of all packages in a scenario 

𝑃’: Winning set of packages 

𝑆’: Winning set of suppliers  

𝑠: Supplier index 

𝑆: Set of all suppliers within a scenario 

𝑘: Project index 

𝐾: Set of all projects to be analyzed  

𝐶: Bid cost [OMR] 

𝐹: Supplier fixed cost [OMR] 

𝑇: Item/supplier cost matrix [OMR] 

𝑇∗: Normalized item/supplier cost matrix 

𝑄: Item/package binary matrix 

𝑅: Supplier/package binary matrix 

𝑀: Number of items in a scenario 

𝑆 : Maximum allowable number of suppliers selected per section 

𝑆 : Minimum allowable number of suppliers selected per section 

𝐷: Discount value [OMR] 

𝑑: Discount rate based on supplier revenue [%/OMR] 

𝐵: Failure cost [OMR] 

𝑒: Supplier performance rating on a given project and item 

𝐸: Aggregated supplier performance rating  

𝑡: Time from issue of work/purchase order  
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4.2. Segmentation 

Construction project bills of quantities (BOQs) often include multiple bills and multiple 

sections within each bill representing related groups of line items. The BOQ data structure is 

depicted in the entity relationship diagram (ERD) in Figure 3. 

 

Figure 3: Bill of quantities entity relationship diagram 

Suppliers generally submit bids consisting of items contained in one bill (section) without 

overlap into other bills. Because of this, a (CRA) can be held for each bill independently. This 

has the added benefit of reducing the data and computational complexity as it exponentially 

reduces the number of possible packages relative to the number of possible packages over the 

entire BOQ. 

A decision rule was used to select sections of various project BOQs to be used in the 

auctions. The rule required a minimum budgeted cost and minimum number of suppliers for each 

section. This rule reflects the Kraljic segmentation strategy to identify leverage items favorable 

to reverse auctions. Individual line items were aggregated into groups based on item 
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relationships. They were also aggregated based on a minimum (budgeted) cost per group. This is 

done because suppliers will generally not bid on an individual item if the value is too low or if it 

is too closely related to other items in a section.  

4.3. Data Analysis 

The data provided by SES included supplier comparison statements exported from their 

ERP system in Excel format. The statements include the following: 

 Item descriptions and quantities 

 Budgeted unit rates and amounts for each item 

 Adjusted item unit rates and amounts from each supplier  
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Examples of items included in comparison statements include raw materials, 

electrical/mechanical components and labor. The comparison statements were split into groups 

of related items. Data from each statement was used to generate an item/supplier cost matrix 𝑇. 

The cost matrices were modified by aggregating items into groups as described in Section 4.2. 

Each row in a given cost matrix represents an item group. The rows were then normalized 

(subtracted by the mean and divided by the standard deviation) and stored in a normalized matrix 

𝑇∗. An example of such a matrix is shown in Table 2. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 

Item 1 0.898529 -1.15829 0.769127 -0.50937 

Item 2 -0.99601 0.383994 1.220675 -0.60866 

Item 3 -1.13157 0.194901 1.256654 -0.31999 

Item 4 -1.05798 -0.64459 0.940169 0.762403 

Item 5 -0.65672 1.410435 0.007428 -0.76114 

Item 6 -0.1045 0.408446 1.026175 -1.33012 

Item 7 1.405889 0.024413 -0.71515 -0.71515 

Item 8 0.431077 -1.23747 1.09519 -0.2888 

Item 9 1.433955 -0.85728 -0.14244 -0.43424 

Item 10 1.407618 -0.93152 -0.10103 -0.37506 

Item 11 -1.03665 -0.67128 0.944042 0.763889 

Item 12 -1.47423 0.752427 0.360901 0.360901 

Table 2: Normalized cost matrix example 
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4.4. Bid Adjustments 

Bid adjustments were applied in a similar fashion to the adjustments described in Sheffi 

(2004). The bid values which are included in the provided comparison statements are already 

adjusted for cost of capital (due to payment terms), transportation costs, costs due to deviations 

from the technical specifications, installation costs and operations and maintenance costs. The 

following sections will present bid-adjustment methods used by SES as well as additional 

recommended methods. 

4.4.1. Logistics Costs 

The logistical costs can be split into transportation and inventory holding costs. Where 

transportation to site is not included in quotes, transportation costs are estimated based on 

previous rates for similar items and routes. If no data exists on previous routes, a transportation 

cost is applied based on the volume and weight of the item and distance traveled [OMR/kg/m or 

OMR/m3/m]. 

Inventory holding costs are more complex because they depend on when ownership 

transfer occurs, where inventory is physically stored, the storage requirements and the duration 

of storage. Inventory holding costs are currently not considered in bid adjustments. A fixed 

inventory carrying rate [OMR/OMR/week] was recommended for future projects and not 

considered for the purposes of this project as they are not expected to change significantly across 

suppliers.  

4.4.2. Costs Due to Deviations from Specification  

Construction project technical specifications tend to be very detailed and include many 

requirements. Supplier bids that partially match the specifications are sometimes accepted with 

the hope to be approved by the project client (building owner(s) or their representatives). 
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However, deviations from the design due to alternative products/materials are common in such 

cases and the cost of deviation is calculated based on the required modifications. This is also 

sometimes estimated as a percentage of the item cost. Installation costs are estimated in a similar 

manner where applicable. 

4.4.3. Operation and Maintenance Costs 

When procured items include the supply and or installation of machinery, operation and 

maintenance costs are usually included in bids. Where such costs are not included in bids, a cost 

is added based on quotes from other suppliers or estimated based on previous project costs. 

4.4.4. Fixed Costs 

High value bids will sometimes include a fixed cost (often called a preliminary cost). 

This cost is incurred by the company if the supplier is selected (regardless of the number items 

included in the contract). Additional indirect fixed costs were added to reflect the cost of doing 

business with each supplier.  

4.4.5. Cost of Capital 

The costs were adjusted for the cost of capital. This is done using the internal monthly 

discount rate 𝑟 usually specified by the accounting/finance department and supplier payment 

term duration 𝑡 expressed in months after the expected issue of the purchase/work order as 

shown in Equation 4. 

𝐶∗ =
𝑐

(1 + 𝑟)
   [4] 

4.4.6. Selection of Items & Scenarios 

The selection process involved selecting scenarios that contain more than two suppliers 

and more than five aggregated items. The item supplier matrices were further analyzed to select 
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the scenarios that would benefit most from CRAs. This was achieved by filtering out scenarios 

where one supplier has the lowest bid across more than 80% of the items in a scenario.  

4.5. Mathematical Model Formulations 

The following sections describe the model formulations used in this project. The four 

models cover applications of CRAs under different scenarios.  

4.5.1. Model 1 – Baseline  

Model 1 is the integer programming (IP) formulation with minimal constraints. It is 

equivalent to the model described in Andersson, Tenhunen, & Ygge (2000). The model does not 

distinguish between bidders (suppliers) and is designed to benchmark various solvers and 

provide fast insights into the feasibility of CRAs. The model takes adjusted supplier bid costs 𝑐  

and included items in each bid as inputs. The included items in each bid were converted into 

binary vectors (packages) and combined into an item/package binary matrix 𝑄. As the data is 

expected to include only a handful of package bids with more than 1 item, pricing was estimated 

based on applying a revenue-based discount 𝑑. Package bid values were calculated based on the 

single item bids. For a given subset of items 𝐼′ ⊆ 𝐼 with single item bid values 𝑐 , ∀𝑝 ∈ 𝑃  

where 𝑃  is the set of single item bids, a package bid cost was calculated as shown in Equation 5. 

𝑐 = 𝑐
∈

 1 − 𝑑 𝑐
∈

   [5] 

A subset of bid package vectors 𝑄′ were generated stochastically using the normalized 

item/supplier cost matrix (Equation 6). 

𝑄 , = −𝑁 𝑇 ,
∗ + ℛ + 1 , ∀𝑖 ∈ 𝐼  [6] 

𝑁 is the standard normal cumulative distribution function and ℛ is a randomly generated 

number (between -0.5 and 0.5). The set of packages were concatenated onto the item/package 
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matrix 𝑄. This process was repeated while pruning duplicate vectors until a reasonable number 

of packages was achieved or a pre-set computation time limit was reached. Each package was 

then duplicated for each supplier. The IP formulation is shown in Equations 7.1 and 7.2. 

argmin 𝑍(𝑥) = 𝑐 𝑥      [7.1]           

𝑠. 𝑡 𝑄 , 𝑥 = 1, ∀𝑖 ∈ 𝐼    [7.2]  

4.5.2. Model 2 – CRA with Supplier Constraints 

Model 2 builds on Model 1 and includes supplier-wise constraints as described in Caplice 

& Sheffi (2005). The model captures complexity costs associated with interacting with multiple 

suppliers and corporate strategies in supplier selection. The model used the same data as Model 1 

and included the same generated packages. To capture the direct and indirect costs of managing 

suppliers, a fixed cost for each supplier was included in the formulation. Minimum and 

maximum numbers of suppliers were added as hard constraints to reflect the corporate strategy. 

The IP formulation for Model 2 is shown in Equations 8.1–8.6. 

argmin 𝑍(𝑥, 𝑦) = 𝑐 𝑥 + 𝑓 𝑦      [8.1]           

𝑠. 𝑡 𝑄 , 𝑥 = 1, ∀𝑖 ∈ 𝐼                            [8.2] 

        𝑅 , 𝑥 − 𝑀𝑦 ≤ 0, ∀𝑠 ∈ 𝑆             [8.3]              

        𝑆 ≤ 𝑦 ≤ 𝑆                            [8.4] 

        𝑥 ∈ {0,1}, ∀𝑝 ∈ 𝑃                                   [8.5]  

        𝑦 ∈ {0,1}, ∀𝑠 ∈ 𝑆                                    [8.6]  
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4.5.3. Model 3 – Iterative CRA  

Model 3 is a simulation of an iterative auction process Parkes (2006) which begins with 

suppliers submitting single item bids. The auctioneer then analyzes the bids and proposes 

packages to suppliers. Package bids that are received from suppliers are then analyzed to produce 

new package recommendations. This process is repeated for a pre-defined number of iterations 

or until the solution converges. 

The IP formulation is identical to Model 2 and used the winning set of packages 𝑃  on a 

given iteration as package proposals for the next iteration. The discount function defined in 

Equation 4 was used on proposed packages to simulate supplier discounts. The model was 

initialized by solving the IP with single item bids only.  

4.5.4. Model 4 – CRA with Non-linear Formulation 

In this model, the discount function is included in the objective function. This drastically 

reduces the number of decision variables as only single-item bids are considered. However, since 

the objective function involves quadratic terms in 𝑥 and 𝑦, the problem is no longer linear and 

was solved using a genetic algorithm solver. The formulation is shown in Equations 9.1–9.6. 

argmin 𝑍(𝒙, 𝒚) = 𝑐 , 𝑥 , − 𝑑 𝑐 , 𝑥 , + 𝑓 𝑦     [9.1] 

𝑠. 𝑡 𝑥 , = 1, ∀𝑖 ∈ 𝐼                                [9.2] 

        𝑥 , − 𝑀𝑦 ≤ 0, ∀𝑠 ∈ 𝑆                 [9.3]              

        𝑆 ≤ 𝑦 ≤ 𝑆                          [9.4] 

        𝑥 , ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆                  [9.5]  

        𝑦 ∈ {0,1}, ∀𝑠 ∈ 𝑆                                  [9.6]  
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4.5.5. Summary of Models 

Table 3 summarizes the four models proposed in this project. 

Model Description Reason for use Expected Pros Expected Cons 

1 Baseline 
CRA 

Test various solvers 
and benchmark 
performance of other 
models 

Easiest to solve and 
can be solved using a 
variety of solvers 

Doesn’t differentiate 
between suppliers and 
doesn’t model fixed 
costs  
 

2 CRA with 
supplier 
constraints 

Model supplier fixed 
costs and constraints  

Faster to solve than 
subsequent models if a 
limited number of 
packages are used 

Will usually not find a 
better solution than 
subsequent models if 
packages are sparse   
 

3 Iterative CRA Better simulate real 
auctions where 
bidding is limited 
and doesn’t take 
place simultaneously   

More realistic and has 
the potential to 
converge to a better 
solution than previous 
models on auctions 
with many items and 
suppliers 
 

May take longer to solve 
since the IP solver will 
be run on every iteration 

4 Non-linear 
Model 

Including the pricing 
function in the 
objective function 
allows the solver to 
search over the entire 
allocation space  
  

Reduction in number 
of decision variables 
and does not require 
package bids as inputs 

Involves solving a non-
linear objective function 
and may not be feasible 
for larger auctions  

Table 3: Summary of Models 

4.5.6. Software Selection 

Given the selection of IP formulations, a multitude of software solutions were available 

for selection (for Models 1-3). Google Ortools was chosen because of its good performance, its 

availability as a free software and its ability to run as a package within Python. For Model 4, a 

genetic algorithm written in Python was used. The genetic algorithm was chosen over more 

specialized quadratic programming solvers because of its ability to consider any cost or discount 
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function. It also has the ability of producing a family of solutions whereas other solvers only 

provide one.      

4.5.7. Sensitivity Analysis 

To measure the robustness of each model, a sensitivity analysis was conducted on all 

models. The analysis involves running Monte Carlo simulations by repeatedly picking discounts 

rates from a triangle distribution and solving the models to generate a distribution of solutions. 

The distribution of the allocation matrices and total costs were analyzed. The coefficient of 

variance (CV) of the total cost and average CV of the allocation matrices was reported to 

indicate the sensitivity of the models to uncertainty in discount rates. The methodology flowchart 

is shown in Figure 4. 

 

Figure 4: Methodology Flowchart 
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5. Results 

5.1. Scenario 1  

Scenario 1 included bids from three suppliers. The scenario includes material and labor 

costs and originally consisted of 40 line-items. The scenario was aggregated into seven items. 

The cost matrix is shown in Table 4. 

 Supplier 1 Supplier 2 Supplier 3 

Item 1 20608.5 23428 20453 

Item 2 1377 855 1294 

Item 3 88569 89400 106478.2 

Item 4 3000 589 1700 

Item 5 3559 5142 2965.9 

Item 6 6750 4904 7200 

Item 7 9550 NA NA 

Table 4: Scenario 1 cost matrix 

Fixed costs were determined based on indirect costs associated with coordinating with 

suppliers and are shown in Table 5.  

 Fixed Cost 

Supplier 1 2000 

Supplier 2 2000 

Supplier 3 2000 

Table 5: Scenario 1 fixed costs 
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The normalized cost matrix is shown in Table 6 (for Items 1–6): 

 Supplier 1 Supplier 2 Supplier 3 

Item 1 -0.5303 1.153455 -0.62316 

Item 2 0.719172 -1.14195 0.422778 

Item 3 -0.61799 -0.53573 1.153724 

Item 4 1.025155 -0.97279 -0.05237 

Item 5 -0.29338 1.113874 -0.8205 

Item 6 0.382406 -1.13477 0.752367 

Table 6: Scenario 1 normalized cost matrix 

The data shows significant variations in costs between suppliers despite their total costs 

being similar. This would indicate that optimization could yield a better allocation than the 

baseline. 

Discounts rates applied to each supplier were sampled from a triangular distribution and 

are shown in Table 7 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 2.46% 4.92% 

2 0 0.82% 1.64% 

3 0 0.82% 1.64% 

Table 7: Scenario 1 discount rates 
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The results of the optimization runs (including sensitivity analysis) are shown in Table 8. 

Model 

Supplier 

Limit 

Average Total 

Cost 

Average Cost 

Savings 

CV of 

Cost 

CV of 

Allocation 

Average 

Computation Time 

[ms/run] 

1 NA 124,628 3.47% 1.13% 3.61% 101.27 

2 2 129,015 1.60% 1.16% 0.00% 204.11 

3 2 129,015 1.60% 1.16% 0.00% 27.06 

4 2 129,170 1.48% 1.31% 34% 92.25 

Table 8: Optimization and sensitivity analysis results of Scenario 1 

5.2. Scenario 2 

Scenario 2 included bids submitted from three. The scenario included 10 items 

aggregated from 265 line-items. The cost matrix is shown in Table 9 (lowest bids are in bold). 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1 51449 35453 18134 

Item 2 145210 161410 131625 

Item 3 183645 181950 174669 

Item 4 313966 188248 169605 

Item 5 518961 538967 534460 

Item 6 217598 170095 170129 

Item 7 3136 1356 2806 

Item 8 4063 1551 2753 

Item 9 59566 73033 30501 

Item 10 50295 33813 147057 

Table 9: Scenario 2 cost matrix 
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Fixed costs were provided by suppliers based on their preliminary costs (setup costs) and 

are shown in Table 10. 

 
Fixed Cost 

Supplier 1 22200 

Supplier 2 124496 

Supplier 3 146738 

Table 10: Scenario 2 fixed costs 

The normalized cost matrix is shown in Table 11. 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1 0.987 0.026 -1.013 

Item 2 -0.058 1.028 -0.969 

Item 3 0.746 0.390 -1.136 

Item 4 1.147 -0.455 -0.692 

Item 5 -1.128 0.779 0.349 

Item 6 1.155 -0.578 -0.577 

Item 7 0.743 -1.137 0.394 

Item 8 1.014 -0.985 -0.029 

Item 9 0.239 0.859 -1.098 

Item 10 -0.437 -0.707 1.144 

Table 11: Scenario 2 normalized cost matrix 

The data indicates that Supplier 1 is significantly lower on most items except Item 5. 

Supplier 2 has a competitive advantage on Items 7 and 8. Supplier 3 is dominant (significantly 

lower) across most items.  
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Discounts applied to each supplier were sampled from a triangular distribution and are 

shown in Table 12 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 0.2% 0.4% 

2 0 0.2% 0.4% 

3 0 0.2% 0.4% 

Table 12: Scenario 2 discount rates 

The results of the optimization runs (including sensitivity analyses) are shown in Table 13. 

Model 

Supplier 

Limit 

Average 

Total Cost 

Average Cost 

Savings 

CV of 

Cost 

CV of 

Allocation 

Average Computation 

Time [ms/run] 

1 NA 1,232,886 7.80% 0.71% 14.05% 128.42 

2 2 1,419,306 3.40% 0.59% 9.87% 312.82 

3 2 1,422,302 3.20% 0.33% 0.00% 32.47 

4 2 1,436,742 2.22% 1.62% 115.46% 222.18 

Table 13: Optimization and sensitivity analysis results of scenario 2 

5.3. Scenario 3 

Scenario 3 includes bids submitted from 3 suppliers. The scenario included seven items 

aggregated from 57 line-items. The cost matrix is shown in Table 14. 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1 3,753 3,553 3,708 

Item 2 78,176 85,994 85,994 

Item 3 119,185 116,917 121,570 

Item 4 1,350 1,363 1,504 

Item 5 42,121 42,453 43,930 

Item 6 16,809 11,206 16,809 

Item 7 16,809 8,965 16,809 

Table 14: Scenario 3 cost matrix 
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Fixed costs were determined based on indirect coordination costs and shown in Table 15. 

 Fixed Costs 

Supplier 1 2000 

Supplier 2 2000 

Supplier 3 2000 

Table 15: Scenario 3 fixed costs 

The normalized cost matrix is shown in table 16. 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1 0.7759 -1.1286 0.3527 

Item 2 -1.1547 0.5774 0.5774 

Item 3 -0.0167 -0.9916 1.0082 

Item 4 -0.6508 -0.5006 1.1514 

Item 5 -0.7412 -0.3962 1.1374 

Item 6 0.5774 -1.1547 0.5774 

Item 7 0.5774 -1.1547 0.5774 

Table 16: Scenario 3 normalized cost matrix 

The data shows that Supplier 1’s cost is significantly lower than competitors on Item 2. 

Supplier 2 is dominant across most items and very dominant on items 6 and 7. An interesting 

note is the identical prices of items 6 and 7 for both Supplier 1 and Supplier 3. This is an 

example of both price matching as well as cost redistributing and may be an indication of 

collusion between the two suppliers.  

  



42 
 

Discounts applied to each supplier were sampled from a triangular distribution with 

parameters shown in Table 17 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 0.5% 1% 

2 0 0.5% 1% 

3 0 0.5% 1% 

Table 17: Scenario 3 discount rates 

The results of the optimization runs (including sensitivity analyses) are shown in Table 18. 

Model 

Supplier 

Limit 

Average 

Total Cost 

Average Cost 

Savings 

CV of 

Cost 

CV of 

Allocation 

Average Computation 

Time [ms/run] 

1 NA 260,475 2.38% 0.25% 40.32% 92.47 

2 2 264,475 1.62% 0.25% 40.32% 190.23 

3 2 264,564 1.59% 0.19% 0.19% 23.06 

4 2 264,403 1.64% 0.23% 37.86% 184.70 

Table 18: Optimization and sensitivity analysis results of Scenario 3 
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5.4. Scenario 4 

Scenario 4 includes bids were submitted from four suppliers. The scenario included 16 

items aggregated from 198 line-items. The cost matrix is shown in table 19. 

 
 Supplier 1   Supplier 2   Supplier 3   Supplier 4  

 Item 1      3,607        534        662      2,982  

 Item 2      1,407      2,450      1,684      1,268  

 Item 3      8,017    13,370      3,580      5,537  

 Item 4      4,025      7,454      2,929      4,196  

 Item 5      3,625      6,575      2,594      3,767  

 Item 6      3,625      6,575      2,594      3,767  

 Item 7      3,431      6,198      2,444      3,545  

 Item 8      2,946      5,486      2,135      3,150  

 Item 9          69        157          44          63  

 Item 10      3,030      2,094      1,600      8,994  

 Item 11      1,880      2,094      1,600      2,177  

 Item 12      2,677      2,617      1,600      3,503  

 Item 13      3,761      3,141      1,800      3,435  

 Item 14      6,805      2,513      3,700      6,721  

 Item 15   NA   NA      4,250   NA  

 Item 16      2,597   NA      2,597    10,219  

Table 19: Scenario 4 cost matrix 

Fixed costs were based on contractual fixed (preliminary) costs quoted by suppliers. They 

are shown in Table 20. 

 Fixed Costs 

Supplier 1 12278 

Supplier 2 20416 

Supplier 3 0 

Supplier 4 6325 

Table 20: Scenario 5 fixed costs 
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The normalized cost matrix is shown in Table 21. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 

 Item 1  1.052 -0.895 -0.814 0.656 

 Item 2  -0.560 1.417 -0.035 -0.823 

 Item 3  0.092 1.355 -0.955 -0.493 

 Item 4  -0.321 1.437 -0.883 -0.233 

 Item 5  -0.302 1.428 -0.907 -0.219 

 Item 6  -0.302 1.428 -0.907 -0.219 

 Item 7  -0.295 1.427 -0.909 -0.224 

 Item 8  -0.336 1.429 -0.899 -0.194 

 Item 9  -0.283 1.466 -0.780 -0.403 

 Item 10  -0.262 -0.535 -0.680 1.477 

 Item 11  -0.224 0.606 -1.311 0.929 

 Item 12  0.100 0.023 -1.282 1.160 

 Item 13  0.844 0.124 -1.434 0.466 

 Item 14  0.863 -1.118 -0.570 0.825 

Table 21: Scenario 4 normalized cost matrix 

In this scenario, Supplier 3 is significantly lower than other suppliers for almost all items. 

It also has the lowest associated fixed cost. Only items 1, 2 and 14 had lower costs from other 

suppliers.  

Discounts applied to each supplier were sampled from a triangular distribution with 

parameters shown in Table 22 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 23% 46% 

2 0 0 0 

3 0 0 0 

4 0 46% 92% 

Table 22: Scenario 4 discount rates 

The results of the optimization runs (including sensitivity analyses) are shown in Table 23. 
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Model 

Supplier 

Limit 

Average 

Total Cost 

Average  Cost 

Savings 

CV of 

Cost 

CV of 

Allocation 

Average Computation 

Time [ms/run] 

1 NA 34,059 4.91% 0.50% 26.86% 366.35 

2 2 35,813 0.00% 0.00% 0.00% 685.55 

3 2 35,813 0.00% 0.00% 0.00% 44.41 

4 2 35,804 0.03% 0.29% 19.90% 206.76 

Table 23: Optimization and sensitivity analysis results of Scenario 4 

5.5. Scenario 5 

Scenario 5 bids submitted from seven suppliers for the supply and installation of various 

components. The scenario included 4 items aggregated from 28 line-items. The cost matrix is 

shown in Table 24. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 Supplier 7 

Item 1 11,612 12,818 13,750 14,189 18,071 12,805 12,677 

Item 2 5,589 NA NA 5,557 6,072 6,100 6,086 

Item 3 29,952 NA NA 31,928 34,382 32,884 32,947 

Item 4 847 973 1,699 1,481 1,654 1,069 934 

Table 24: Scenario 5 cost matrix 

Fixed costs were determined based on indirect costs associated with coordinating with 

multiple suppliers and are shown in Table 25. 

 Fixed Costs 

Supplier 1 2,000 

Supplier 2 2,000 

Supplier 3 2,000 

Supplier 4 2,000 

Supplier 5 2,000 

Supplier 6 2,000 

Supplier 7 2,000 

Table 25: Scenario 5 fixed costs 
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The normalized cost matrix is shown in Table 26. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 Supplier 7 

Item 1 -0.998 -0.422 0.022 0.232 2.085 -0.429 -0.490 

Item 2 -1.036 NA NA -1.151 0.679 0.778 0.731 

Item 3 -1.510 NA NA -0.300 1.201 0.285 0.323 

Item 4 -1.075 -0.727 1.275 0.674 1.1506 -0.463 -0.835 

Table 26: Scenario 5 normalized cost matrix 

Supplier 1 is the lowest supplier across items 1,3 and 4. Supplier 2 is lowest on Item 3 

only. The structure of the cost matrix and the dominance of Supplier 1 makes allocating for this 

scenario almost trivial.  

Discounts applied to each supplier were sampled from a triangular distribution with 

parameters shown in Table 27 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 2% 4% 

2 0 2% 4% 

3 0 2% 4% 

4 0 2% 4% 

5 0 2% 4% 

6 0 2% 4% 

7 0 2% 4% 

Table 27: Scenario 5 discount rates 
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The results of the optimization runs (including sensitivity analyses) are shown in Table 28. 

Model 

Supplier 

Limit 

Average 

Total Cost 

Average   

Cost Savings 

CV of 

Cost 

CV of 

Allocation 

Average Computation 

Time [ms/run] 

1 NA 47,599 0.00% 0.31% 11.87% 130.46 

2 2 49,540 0.00% 0.37% 0.00% 258.11 

3 2 49,540 0.00% 0.37% 0.00% 26.21 

4 2 49,540 0.00% 0.37% 0.00% 183.59 

Table 28: Optimization and sensitivity analysis results of Scenario 5 

 

5.6. Scenario 6 

Scenario 6 involves bids submitted from four suppliers. The scenario included 12 items 

aggregated from 81 line-items. The cost matrix is shown in Table 29. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 

Item 1     29,440      24,354      29,120      25,958  

Item 2      1,964       2,150       2,263       2,016  

Item 3      3,997       4,433       4,783       4,264  

Item 4      3,914       4,156       5,083       4,979  

Item 5      2,880       3,688       3,140       2,839  

Item 6     29,440      30,201      31,117      27,622  

Item 7     11,880      10,345       9,524       9,524  

Item 8      1,610       1,380       1,702       1,511  

Item 9      6,640       2,996       4,133       3,669  

Item 10      1,900          790       1,184       1,054  

Item 11      3,820       4,041       5,021       4,911  

Item 12      1,160       1,734       1,633       1,633  

Table 29: Scenario 6 cost matrix 

Fixed costs were determined based on indirect costs associated with coordinating with 

multiple suppliers and are shown in Table 30. 
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 Fixed Costs 

Supplier 1 2,000 

Supplier 2 2,000 

Supplier 3 2,000 

Supplier 4 2,000 

Table 30: Scenario 6 fixed costs 

The normalized cost matrix is shown in Table 31. 

 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 

Item 1 0.899 -1.158 0.769 -0.509 

Item 2 -0.996 0.384 1.221 -0.609 

Item 3 -1.132 0.195 1.257 -0.320 

Item 4 -1.058 -0.645 0.940 0.762 

Item 5 -0.657 1.410 0.007 -0.761 

Item 6 -0.105 0.408 1.026 -1.330 

Item 7 1.406 0.024 -0.715 -0.715 

Item 8 0.431 -1.237 1.095 -0.289 

Item 9 1.434 -0.857 -0.142 -0.434 

Item 10 1.408 -0.932 -0.101 -0.375 

Item 11 -1.037 -0.671 0.944 0.764 

Item 12 -1.474 0.752 0.361 0.361 

Table 31: Scenario 6 normalized cost matrix 

There is a significant diversity in lowest costs in this scenario. Each supplier is lowest on 

at least one item. 
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Discounts applied to each supplier were sampled from a triangular distribution with 

parameters shown in table 32 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 2% 4% 

2 0 2% 4% 

3 0 2% 4% 

4 0 2% 4% 

Table 32: Scenario 6 discount rates 

The results of the optimization runs (including sensitivity analyses) are shown in Table 33. 

Model 

Supplier 

Limit 

Average 

Total Cost 

Average    

Cost Savings 

CV of 

Cost 

CV of 

Allocation 

Average Computation 

Time [ms/run] 

1 NA 83,874 4.79% 0.18% 23.73% 245.53 

2 2 88,906 1.29% 0.25% 36.78% 590.13 

3 2 88,859 1.35% 0.25% 0.00% 50.26 

4 2 89,559 0.57% 0.64% 98.13% 278.18 

Table 33: Optimization and sensitivity analysis results of Scenario 6 
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5.7. Scenario 7 

Scenario 7 involves bids submitted from three suppliers. The scenario included eight 

items aggregated from 163 line-items. The cost matrix is shown in Table 34. 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1    15,720     13,650     24,502  

Item 2      2,476       2,150       3,858  

Item 3      3,945       3,525       6,148  

Item 4    11,025       9,800     19,747  

Item 5      7,936       6,200     12,524  

Item 6    16,150     41,570     22,351  

Item 7      5,152     13,705       7,948  

Item 8    16,890     16,890     16,890  

Table 34: Scenario 7 cost matrix 

Fixed costs were determined based on indirect costs associated with coordinating with 

multiple suppliers and are shown in Table 35. 

 Fixed Costs 

Supplier 1 2,000 

Supplier 2 2,000 

Supplier 3 2,000 

Table 35: Scenario 7 fixed costs 
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The normalized cost matrix is shown in Table 36. 

 
Supplier 1 Supplier 2 Supplier 3 

Item 1 -0.38832 -0.7476 1.135917 

Item 2 -0.38819 -0.7477 1.135892 

Item 3 -0.42185 -0.71995 1.141801 

Item 4 -0.46073 -0.68658 1.147315 

Item 5 -0.29095 -0.82226 1.113211 

Item 6 -0.79526 1.122661 -0.3274 

Item 7 -0.86744 1.093764 -0.22632 

Table 36: Scenario 7 normalized cost matrix 

In this scenario, suppliers 1 and 2 are lowest across all items. Item 8 has the same value 

across all suppliers and may be an indication of collusion between them. 

Discounts applied to each supplier were sampled from a triangular distribution with 

parameters shown in Table 37 (all values are in %/100k OMR). 

Supplier Min Mode Max 

1 0 1% 2% 

2 0 1% 2% 

3 0 1% 2% 

Table 37: Scenario 7 discount rates 

The results of the optimization runs (including sensitivity analysis) are shown in Table 38. 

Model 

Supplier 

Limit 

Average 

Total Cost 

Average  Cost 

Savings 

CV of 

Cost 

CV of 

Allocation 

Average 

Computation 

Time [ms/run] 

1 NA 73,316 6.80% 0.08% 0.00% 107.62 

2 2 77,193 4.30% 0.15% 0.00% 213.42 

3 2 77,193 4.30% 0.15% 0.00% 25.74 

4 2 77,183 4.32% 0.13% 10.85% 210.63 

Table 38: Optimization and sensitivity analysis results of Scenario 7  
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6. Discussion 

This project presents the application of four models with different scenarios that vary the 

number of suppliers and items. Over all scenarios, the process achieved cumulative estimated 

savings between 58k OMR and 126k OMR or 2.7% and 6.4% (depending on supplier 

constraints). Scenario 7 had the highest savings across all models. This is probably due to the 

favorable bid distribution. The advantage, in this case, of selecting multiple suppliers over just 

one was significant. Scenario 5 had the lowest savings (0%). This was due to Supplier 1’s 

dominance, rendering the optimization process redundant.  

As expected, Model 1 attained larger savings than the other more constrained models as it 

did not consider supplier constraints and fixed costs. It also had the computational advantage 

over models 2 and 4 and converged to solutions faster. These two advantages can be leveraged 

well in larger auctions with larger numbers of suppliers and items. Model 1’s higher savings 

were most pronounced in scenario 4 where certain suppliers had significant fixed costs. In 

practice, Model 1 is recommended as a baseline and should not be used directly to make 

decisions. Rather, it should be used to gain insights into suppliers’ cost structures. The model 

does not consider the cost of coordinating multiple suppliers (fixed costs). Disregarding the 

coordination hurdles of managing multiple suppliers on a project can lead to poor project 

performance.   

Results of the sensitivity analysis highlighted low variance in total costs with coefficients 

of variations under 1% across all scenarios. This indicates that, in terms of total cost, the models 

are not significantly sensitive to variations in discount rates. However, supplier allocations had 

higher levels of sensitivity to the discount rates. This phenomenon was especially prevalent in 

Model 4 which used a genetic algorithm solver. This suggests an advantage of using non-
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deterministic methods. They can often generate a family of “good” solutions to choose from 

rather than providing only one “best” solution. Model 3 does not provide this advantage due to 

its inherently deterministic nature. 

In terms of computational performance, Model 3 achieved the fastest solve times on all 

scenarios. This is an interesting phenomenon since Model 3 requires solving the CRA winner 

determination problem multiple times. However, since the input of the problem is generally 

small in each iteration, the solve time is low. Model 3 also lends itself well to the structure of 

iterative auctions where multiple rounds are held. This is a significant advantage in practice 

because model 3 does not make any prior assumptions about the distribution of bids. 

The savings from deploying optimization-based procurement methods go beyond the 

quantitative findings of this project. In practice, allowing combinatorial bidding will generally 

increase the competitiveness of incumbent suppliers. In parallel, they also incentivize smaller 

suppliers with capacity limits to bid on subsets of scenarios. These non-tangible advantages may 

even outweigh the short-term cost savings associated with CRAs.    
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7. Conclusion 

This research was aimed at determining the efficacy of combinatorial reverse auctions 

(CRAs) in the domain of construction procurement. A quantitative framework was established 

utilizing segmentation, optimization and simulation strategies built off prior research in other 

domains. Various business rules were incorporated into the processes to simulate real-world 

scenarios utilizing actual bid data.    

The methodology used the Kraljic segmentation strategy to identify leverage items. Items 

were then aggregated into item groups. The aggregated data (including seven scenarios) was then 

used as an input to various optimization models that determined supplier allocations. Sensitivity 

analysis was used on each scenario-model pair to determine the effects of uncertain pricing 

structures on optimal costs and allocations.  Results of this research justify the use of CRAs to 

reduce costs and incentivize supplier participation. In addition to cost reductions, models 

proposed in this research can be used to determine families of near-optimal solutions rather than 

just single best solutions. Having multiple solutions can often help management make more 

informed decisions when allocating contracts to suppliers. 

Areas for future research include applying the framework real-time during bidding phases 

of projects to determine their practical significance. Studies on bid distributions and the 

relationships between cost savings and item aggregation would help better refine the 

segmentation and aggregation stages of this framework.    
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