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It is well known that theorems of Lieb-Schultz-Mattis type prohibit the existence of a trivial symmetric gapped
ground state in certain systems possessing a combination of internal and lattice symmetries. In the continuum
description of such systems, the Lieb-Schultz-Mattis theorem is manifested in the form of a quantum anomaly
afflicting the symmetry. We demonstrate this phenomenon in the context of the deconfined critical point between
a Neel state and a valence bond solid in an S = 1/2 square lattice antiferromagnet and compare it to the case
of S = 1/2 honeycomb lattice where no anomaly is present. We also point out that new anomalies, unrelated to
the microscopic Lieb-Schultz-Mattis theorem, can emerge, prohibiting the existence of a trivial gapped state in
the immediate vicinity of critical points or phases. For instance, no translationally invariant weak perturbation of
the S = 1/2 gapless spin chain can open up a trivial gap even if the spin-rotation symmetry is explicitly broken.
The same result holds for the S = 1/2 deconfined critical point on a square lattice.

DOI: 10.1103/PhysRevB.98.085140

I. INTRODUCTION

The Lieb-Schultz-Mattis (LSM) theorem [1] and its gen-
eralization to higher dimensions [2,3] state that an insulator
with half-odd-integer spin per unit cell cannot have a trivial
gapped ground state: In 1+1D, the ground state must either
break the translational symmetry or be gapless, while in
higher dimensions the system may also spontaneously break
the SO(3)s spin-rotation symmetry or support topological
order. In recent years, this result has been generalized to
a variety of cases where one relies on lattice symmetries
other than translation—e.g., rotation, reflection, or glide—in
combination with SO(3)s , or replaces SO(3)s by time-reversal
symmetry, to rule out a trivial gap [4–9]. Furthermore, it was
noted that the impossibility of a trivial gap is very reminiscent
of the situation occurring on the boundary of a topological
insulator, or a more general symmetry-protected topological
(SPT) phase. In fact, one may view a system with S = 1/2 per
unit cell as a boundary of a crystalline SPT phase protected
by a combination of translational symmetry and SO(3)s [10].
Such a crystalline SPT can be constructed as an array of 1+1D
Haldane chains; then the boundary is an array of “dangling”
spin-1/2’s. As we will see, the higher dimensional bulk is
a useful conceptual tool, even in cases when it is physically
absent.

For SPT phases protected just by internal symmetry, the
relationship between the bulk topological invariant and the
nontriviality of the surface is very well understood—the
boundary realizes the symmetry in a nononsite manner. If
one attempts to gauge the symmetry in the boundary theory,
one runs into an inconsistency—an anomaly. This anomaly
is, however, cured by the bulk of the system. This means
that every surface phase, no matter whether it is symmetry
broken, gapless, or topologically ordered, must realize the
same anomaly which matches the bulk—a property that must
be implemented by the low-energy continuum theory describ-
ing each surface phase. What about the the bulk-boundary

relationship for a crystalline SPT protected by a combination
of lattice and internal symmetries or, equivalently, how do
LSM constraints enter in the low-energy continuum theory?
Here, we discuss two examples: (i) the gapless S = 1/2 spin
chain in 1+1D and (ii) the deconfined quantum critical point
(QCP) in 2+1D between an S = 1/2 Neel state and a valence
bond solid (VBS) on square and honeycomb lattices [11,12].
In these examples, we focus on the following symmetries:
SO(3)s , translations, and (in 2+1D) lattice rotations. We find
that the LSM-like anomaly may be determined by treating
the lattice symmetries in the low-energy theory as internal
symmetries. In the case of rotations, this is done by combining
the microscopic rotation symmetry with the emergent Lorentz
symmetry of the continuum field theory. In particular, we
find that for the S = 1/2 square lattice the combination of
SO(3)s and translations is anomalous and also the combination
of SO(3)s and 180-deg rotations is anomalous. This is in
complete agreement with LSM-like theorems [5]. On the other
hand, on the honeycomb lattice, we find no anomalies for
the symmetries listed above. Again, this is consistent since
a trivial symmetric gapped state on the honeycomb lattice
has been recently constructed [13,14]. The treatment of lattice
symmetries as internal symmetries for the purpose of anomaly
computation is consistent with Ref. [15], which argues that
the classification of crystalline SPTs with a symmetry group
G comprising both lattice and internal symmetries is identical
to the classification of SPTs with a purely internal symmetry
group G (see also Ref. [16]). It is also consistent with the results
of Ref. [10] obtained in the context of topologically ordered
2+1D phases with crystalline symmetries.

In addition to the anomalies mandated by LSM-like theo-
rems, we find that new anomalies can emerge in the neigh-
borhood of critical points and phases. This occurs when the
microscopic symmetry group G does not act on the gapless
degrees of freedom in the critical theory in a faithful manner:
G may act as G/H , where H is a normal subgroup. There
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are cases when G/H has an anomaly even though G itself
does not.1 Then no G-symmetric infinitesimal perturbation of
the critical theory can open up a trivial gap.2 Physically, there
are not enough degrees of freedom in the critical theory to
drive the system into a trivial phase. However, if we perturb
the system strongly, states transforming nontrivially under H

may eventually come down in energy and a trivial gapped
ground state may be achieved. An example of this is provided
by the 1+1D S = 1/2 chain. Here the gapless excitations sit
at points k = 0 and k = π in the Brillouin zone. Therefore,
the translational symmetry Z acts as Z2 in the continuum
theory. It has long been known that this Z2 symmetry is
anomalous [18,19]. What this means, however, is that no weak
perturbation can gap out the S = 1/2 chain without breaking
the translational symmetry, even if the perturbation completely
breaks spin rotations (and time reversal). This is consistent
with what we know: For instance, if we start with the isotropic
antiferromagnetic Heisenberg chain and introduce a weak Ising
asymmetry �H = δ

∑
i S

z
i S

z
i+1, δ > 0, this drives the system

into an Ising antiferromagnet, 〈Sz
i 〉 ∼ (−1)i , which sponta-

neously breaks the translation symmetry (the Sz spin-rotation
symmetry and time reversal can be further broken with a small
uniform Zeeman field). Other nearby gapped states, such as
the VBS, also break translations. Of course, if one applies
a sufficiently strong Zeeman field, one completely polarizes
the chain, consistent with the fact that there is no intrinsic
LSM-like anomaly for translational symmetry alone. This,
however, requires a critical strength of the Zeeman field and
does not occur in the immediate vicinity of the gapless state.

We find that similar new anomalies emerge at the deconfined
critical point in an S = 1/2 square lattice magnet. Here, the
translational symmetry Zx × Zy acts in a Zx

2 × Z
y

2 manner on
the gapless decrees of freedom at the QCP. Furthermore, we
find that this Zx

2 × Z
y

2 symmetry is anomalous. Thus, again, no
weak perturbation can drive the system into a translationally
invariant gapped phase (even if it breaks the SO(3)s symmetry).
Another emergent anomaly is present for the combination of
diagonal translations TxTy and SO(3)s . While one might have
naively thought that by staggering the bond strengths as in
Fig. 1 one can immediately trivially gap out the deconfined
critical point, this is not the case; a finite strength of such
staggering is needed for a trivial gap to open. In contrast, we
find no emergent anomalies for the combination of translations,
rotations, and SO(3)s for an S = 1/2 honeycomb lattice (and
as already mentioned, no intrinsic LSM anomalies). This, in
principle, opens the possibility that in the CP1 field theory per-
turbed by triple monopoles governing the deconfined QCP on
the honeycomb lattice an intermediate trivial symmetric phase
may exist between the Neel state and the VBS state. However,
current studies of lattice models on the honeycomb lattice sug-
gest either a continuous direct transition or a weakly first-order
transition [20–23]. References [20,23] also argue based on the

1This situation was recently discussed in Ref. [17], where it was
used to construct symmetric gapped surface states of SPT phases.

2We assume here that no “accidental” strongly first-order transition
to the regime outside of field theory validity occurs upon adding the
infinitesimal perturbation.

FIG. 1. A staggering of bond strengths for an S = 1/2 square
lattice. Weakly perturbing the deconfined critical point with such
a staggering cannot open a trivial gap, while preserving TxTy and
SO(3)s symmetry.

anisotropy of VBS histograms that the triple monopole opera-
tor is nearly marginal at the transition; it may be that the system
sizes probed in Refs. [20–23] were not large enough to study
the true IR effects of this operator. If this operator is slightly
relevant, it is possible that it eventually drives the system to a
trivial gapped state, opening up a narrow region of intermediate
gapped phase near the putative QCP. Of course, a less exciting
scenario where this operator drives a first-order transition or
leads to coexistence of the Neel and VBS phases is also
possible. In any case, these findings motivate further numerical
study of the Neel-VBS transition on the honeycomb lattice.

We would like to point out that the situation of emergent
anomalies described above should not be confused with
the case when the microscopic symmetry G is dynamically
enlarged in the critical state to a larger group G′, i.e.,
when perturbations breaking G′ to G are irrelevant in the
renormalization group (RG) sense. In such cases, the enlarged
symmetry may also be anomalous. An example is provided by
the 1+1D S = 1/2 chain where the microscopic SO(3)s × Zx

2
symmetry is dynamically enlarged to SO(4). Similarly there
is evidence that the SO(3)s × [Zrot

4 � Zx
2 ] symmetry of

the S = 1/2 square lattice deconfined QCP is dynamically
enlarged to an SO(5) symmetry (here Zrot

4 stands for 90-deg
rotations). The anomaly associated with this SO(5) symmetry
has been determined in Ref. [24] and may be used as a starting
point to derive the intrinsic and/or emergent anomalies
associated with the physical symmetries studied here [25].
However, it is not necessary to assume this emergent SO(5)
either to compute the anomaly associated with the physical
symmetry or to study its consequences.

In addition to the above anomaly analysis, we discuss
the dynamics of the Neel-VBS transition of an S = 1/2
rectangular lattice and S = 1 square lattice. Some time ago,
it was suggested that the Neel-VBS transition of an S = 1/2
rectangular lattice may be continuous and may possess an
emergent O(4) symmetry [26]. However, numerical simula-
tions of Ref. [22] have found a first-order transition on a
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rectangular lattice, so this proposal was abandoned. Here, we
would like to revisit this proposal in view of recent theoretical
[24,27,28] and numerical progress [29,30]. We suggest that
this continuous transition may be accessed by starting with the
S = 1/2 square lattice Neel-VBS transition and introducing a
weak rectangular anisotropy (even weaker than considered in
Ref. [22]). We also suggest that the same O(4) symmetric CFT
governs the Neel-VBS transition of the S = 1 square lattice.

We would like to note that some of our results have been re-
cently independently obtained by other groups. Reference [31]
discusses LSM-like anomalies at deconfined critical points
using less formal methods. Reference [32] discusses LSM-like
anomalies in a number of gapless systems, including the
1+1D S = 1/2 chain. Reference [25] provides a field-theoretic
analysis of anomalies of the CP1 model describing deconfined
critical points in 1+1D and 2+1D; we give a slightly different
derivation of these anomalies here and provide a physical
interpretation. While this paper was being completed, Ref. [33]
appeared, which also discusses the implication of anomalies
of 2+1D CP1 model for lattice antiferromagnets.

This paper is organized as follows. In Sec. II, we discuss
the anomalies of the 1+1D S = 1/2 chain: In Sec. II A, we use
the Abelian bosonization description of the chain, and in Sec.
II B, we use the CP1 description. The latter allows for a more
complete formal analysis where the SO(3)s and translational
symmetries are gauged. Section III is devoted to the Neel-VBS
deconfined critical point in 2+1D: The case of the S = 1/2
square lattice is discussed in Sec. III A, and the case of the S =
1/2 honeycomb lattice is in Sec. III B. A physical picture of the
mixed anomaly involving the lattice rotational symmetry and
SO(3)s is given in Sec. III C: Here we clarify the old arguments
of Ref. [34] regarding S = 1/2 moment in the VBS vortex core.
Section III D discusses some issues involving the breaking
of continuous Lorentz (rotation) symmetry of the low-energy
field theory description. Section III D also discusses anomalies
of the S = 1 deconfined critical point on the square lattice.
Section IV has a slightly different focus: It is devoted to the
possibility that S = 1/2 rectangular lattice and S = 1 square
lattice Neel-VBS transitions might be continuous. Concluding
remarks are presented in Sec. V. We also point out Appendixes
A and B, which give a careful definition of the CP1 model
in 1+1D and 2+1D as a boundary of a higher dimensional
SPT phase. Finally, Appendix C discusses VBS vortices in the
context of the nearest neighbor dimer model, supplementing
the discussion in Sec. III C.

II. S = 1/2 SPIN CHAIN IN 1+1D

We begin with the example of the S = 1/2 antiferromag-
netic chain in 1+1D. While anomalies in this example have
been studied at length before [19,32], our interpretation of
the “emergent anomaly” and its consequences is somewhat
different from that in the literature.

A. Bosonized description

We begin with the bosonized description of the chain (we
work in real time here),

L = 1

2π
∂tθ∂xϕ − 1

4π
[(∂xϕ)2 + (∂xθ )2]. (1)

The microscopic operators are expressed as S+
j ∼ A(−1)j eiθ ,

Sz ∼ A(−1)j sin ϕ + 1
2π

∂xϕ, and V ∼ cos ϕ, where Vj ∼
(−1)j �Sj · �Sj+1 is the VBS order parameter. Here, we use
Abelian bosonization, so only the SO(2)z subgroup of SO(3)s
symmetry, corresponding to spin rotations around the z axis, is
manifest. (Below, we will also discuss the CP1 formulation
where the full SO(3)s symmetry is manifest.) The SO(2)z
symmetry acts as

SO(2)z : θ → θ + α, ϕ → ϕ. (2)

The translational symmetry acts as

Tx : θ → θ + π, ϕ → ϕ + π. (3)

Note that the microscopic Z translation symmetry acts in a Z2

manner in the low-energy theory, so we will sometimes refer
to Tx as Zx

2 .
Let us first discuss the manifestation of the LSM anomaly,

which involves the combination of SO(2)z and translation
symmetryTx . First, consider a closed chain with an odd number
of sites. Increasing the number of sites in the chain by one is
tantamount to inserting a flux of the Tx symmetry through
the cycle of the chain. Using the action of Tx (3), a chain
with an odd number of sites corresponds to twisted boundary
conditions, θ (x + L) = θ (x) + 2π (n + 1/2), ϕ(x + L) =
ϕ(x) + 2π (m + 1/2). Now, the total SO(2)z charge of the
chain is Sz = 1

2π

∫ L

0 dx ∂xϕ. So we see that the chain with
an odd number of sites carries Sz, which is half-odd integer.
Of course, this is precisely the correct physics for an S =
1/2 chain. However, if the microscopic symmetry was really
SO(3)s [and its subgroup SO(2)z], then only integer values of
Sz would be allowed, so our theory is anomalous.

Another (more standard) identification of the LSM anomaly
proceed via threading flux of SO(2)z through the chain.
When flux α of SO(2)z is threaded through the chain, the
fields satisfy twisted boundary conditions, θ (x + L) = θ (x) +
2πn + α, ϕ(x + L) = ϕ(x) + 2πm. Thus, as we insert flux
2π of SO(2)z, the winding number of θ increases by 2π ,
while the winding number of ϕ remains unchanged. Now, from
the action of translational symmetry (3), we can identify the
physical momentum

P = 1

2

∫ L

0
dx (∂xϕ − ∂xθ ). (4)

So, after threading flux 2π , the momentum P changes by π .
Of course, this is the result that we expect microscopically
from the S = 1/2 chain [1]. However, if we treated SO(2)z and
translation as onsite internal symmetries, then the momentum
P cannot change after flux threading. So this again is a
signature of the intrinsic LSM anomaly.

Next, we proceed to the emergent anomaly, which is
associated with the translation symmetry and does not require
spin rotations or time reversal. We observe that the action of
translational symmetry (3) coincides precisely with the action
of Z2 symmetry on the edge of a 2+1D Z2-protected SPT
[35–37]. The edge of a Z2-protected SPT cannot be gapped
out without breaking Z2. Now, any translationally invariant
weak perturbation that we add to the theory must respect Zx

2 ,
so such perturbations cannot open a symmetric gap.
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It is instructive to understand how the argument above
breaks down when the perturbation added is not weak. Indeed,
we know that, for instance, a sufficiently large uniform Zeeman
field can fully polarize the spin chain. A weak Zeeman field
corresponds to a perturbation,

δL = δ

2π
∂xϕ (5)

with δ ∼ Bz. This perturbation can be eliminated by redefining
ϕ̃(x) = ϕ(x) − δx. Under translations by a lattice spacing
a, Tx : ϕ̃(x) → ϕ̃(x + a) + π + δa. Thus, translations no
longer act on ϕ̃ in a Z2 manner. As we keep increasing Bz,
eventually we reach a point where Tx : ϕ̃(x) → ϕ̃(x + a) +
2π , so a perturbation

δL ∼ cos ϕ̃ (6)

becomes allowed and can open a gap; this corresponds to
a fully polarized chain. Physically, the momenta at which
gapless degrees of freedom are present evolve as Bz is tuned
until momentum-preserving backscattering terms are allowed.
If we express (6) in terms of the original field ϕ, δS ∼∫

dxdt cos(ϕ + πx/a). Clearly, close to the starting theory
δ = 0, this term vanishes since the momenta carried by the
continuum field eiϕ are assumed to be small (much smaller
than π ).

The example considered here is quite general. Any con-
tinuum field theory where gapless degrees of freedom sit at
isolated points in momentum space will have an emergent
continuum translational symmetry [in our example, ϕ(x) →
ϕ(x + ε), θ (x) → θ (x + ε)]. For “kinematic” reasons out-
lined above, these continuum translations are preserved by any
weak perturbation. By combining these continuum translations
with microscopic translations, we get a purely internal symme-
try. If the underlying gapless excitations sit at commensurate
points in momentum space, this internal symmetry will act as a
finite group G in the field theory (Z2 in our example). G might
be an anomalous symmetry of the theory, in which case weak
translation-preserving perturbations cannot open a gap.

The example with the Zeeman field also illustrates how
to immediately determine whether an anomaly is intrinsic (of
LSM type), i.e., whether it is stable to large perturbations away
from a particular critical state. Again, for this purpose it suffices
to treat translations as a purely internal symmetry, but one
that acts in a Z manner. To compute the anomaly, one can
further restrict consideration to Lorentz invariant theories (such
as one describing the field ϕ̃ in the example above). For a Z

symmetry, the charge of the field can continuously change,
e.g., ϕ̃ → ϕ̃ + α, with α arbitrary, which in the example above
ultimately removes the anomaly for translations.

We leave the discussion of bulk-boundary correspondence
for the anomalies described above to the next section.

B. CP1 description

We saw in the previous section that the 1+1D S = 1/2 spin
chain possesses anomalies associated with the SO(3)s spin-
rotation symmetry and translational symmetry. In this section,
we discuss an interpretation of these anomalies when the chain
is viewed as a surface of a 2+1D (crystalline) SPT phase. Here
we describe the gapless phase of the chain using the CP1 model

with a θ term at θ = π ,

L = |(∂μ − iaμ)zα|2 + iθ
f

2π
, θ = π. (7)

Here and below, we work in Euclidean time. aμ is a u(1) gauge
field and f = εμν∂μaν is the associated field strength. zα , α =
1, 2, is a complex scalar transforming in the projective S =
1/2 representation of spin-rotation group SO(3)s . The Neel
order parameter is identified with �n ∼ z† �σz, and the VBS order
parameter is identified with V ∼ f . Under translations by one
lattice spacing

Tx : z → iσ yz∗, a → −a, (8)

so that both �n and V are odd under Tx , as necessary. Note that
T 2

x zα = −zα; i.e., T 2
x is a rotation by π in the u(1) gauge group

(i.e., T 2
x acts trivially on all physical observables). This means

that Tx acts as a Z2 symmetry in the field theory (7). In a recent
work [25], it was shown that this Zx

2 symmetry is anomalous.
Moreover, the combination of Zx

2 × SO(3)s is also anomalous
[38]. In fact, as found in Ref. [25], one can think of (7) as living
on the boundary of a 2 + 1D SPT with Zx

2 × SO(3)s symmetry
and bulk action,

Sbulk = πi

∫
X3

(
xws

2 + x3), (9)

where X3 is the bulk three-manifold, x ∈ H 1(X3, Z2) is
the background gauge field corresponding to Zx

2 symmetry,
ws

2 ∈ H 2(X3, Z2) is the second Stiefel-Whitney class of the
background SO(3)s bundle, and the product of cohomology
classes is the cup product. We give a precise definition and a
derivation of the bulk + boundary theory corresponding to (7)
and (9) in Appendix A. Note that our definition and derivation
differ somewhat from the discussion in Ref. [25].

We proceed to discuss the physical interpretation of the bulk
action (9). The first term in this action,

S1,bulk = πi

∫
X3

xws
2, (10)

is precisely the intrinsic LSM anomaly for the combined
SO(3)s and translational symmetry. The second term,

S2,bulk = πi

∫
X3

x3, (11)

is the emergent anomaly for the translational symmetry alone.
Let us begin with the emergent anomaly: We recognize that
S2,bulk is precisely the bulk action of a Z2-protected 2+1D
SPT in the presence of a background Z2 gauge field x [36,39].
It is also immediately clear that this anomaly is not intrinsic
if one remembers that the microscopic translation symmetry
group is Z rather than Z2. The difference between a Z gauge
field and a Z2 gauge field is that for a Z gauge field x

(without vison defects) dx = 0, while for a Z2 gauge field
dx = 0 (mod 2) the condition for a Z gauge field is more
restrictive.3 Now, for a Z2 gauge field x2 = dx

2 (mod 2) (as
cohomology elements). Therefore, if we interpret x as a Z

gauge field, x2 = dx
2 = 0 (mod 2) and S2,bulk vanishes—no

3Here and below, d denotes the coboundary operation on cochains.
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anomaly for translational symmetry alone is present. On the
other hand, if we take x to be a Z2 gauge field, then S2,bulk

is generally nonvanishing.4 As discussed in Sec. II A, no
translationally invariant weak perturbation of the critical chain
breaks the internal Zx

2 symmetry; therefore, to analyze the
stability of the chain to weak perturbation one is allowed
to couple it to a Z2 gauge field, whereby one discovers an
anomaly. To analyze stability to strong perturbations, one must,
however, treat x as a Z gauge field; then no anomaly is found
and a gapped phase exists.

Next, we proceed to show that S1,bulk is the LSM anomaly.
Here we may think of the bulk physically as a crystalline SPT
obtained as a stack of Haldane chains; the surface is then
precisely an S = 1/2 chain. S1,bulk is the “response theory” of
such a crystalline SPT. Let each Haldane chain stretch along
the y direction and the chains be stacked along x. Let the length
along x be Lx and the length along y be Ly . For a moment,
let both x and y be periodic, so that the space-time manifold is
S1

x × S1
y × S1

τ . As noted in Sec. II A, increasing Lx → Lx + 1
corresponds precisely to threading flux of the Tx gauge field
along the x cycle. When

∫
S1

x
x = 1 (and x vanishes along the

other cycles), S1,bulk = πi
∫
S1

y×S1
τ
ws

2—which is precisely the

response of the Haldane phase. Thus, as we increase Lx by
one, the system compactified along the x direction goes from
being a trivial SO(3)s SPT to the Haldane SO(3)s SPT. But
that is precisely a property of a stack of Haldane chains!

Another important manifestation of the LSM anomaly is
obtained by thinking about the magnetic flux of SO(3)s in the
2+1D bulk. Let us compactify the bulk on Y2 × S1

τ , where
we think of Y2 as a spatial manifold. Place flux of SO(3)s
through Y2 (for instance, one can take 2π flux of the SO(2)z
subgroup). The SO(3)s flux is defined only mod 2 and is
measured precisely by

∫
Y2

ws
2. Therefore, in this geometry,

S1,bulk = πi
∫
S1

τ
x. This means that an SO(3)s flux carries

momentum π under x translations. This is precisely right.
Indeed, consider the bulk with a boundary. We may take the
spatial bulk manifold to be a disk, so that the spatial boundary is
a circle. Imagine moving the SO(3)s flux—e.g., 2π flux in the
SO(2)z subgroup—from the trivial vacuum outside to inside
the bulk. Outside the flux carries no momentum, but inside
it carries momentum π . Therefore, in the process, there must
be momentum π left on the boundary. That is precisely right.
Indeed, from the boundary viewpoint, this process corresponds
to threading SO(2)z flux 2π through the chain. We know
microscopically that this changes the momentum by π .

Note that the gauge fields x that we considered in our
discussion of S1,bulk satisfied dx = 0; i.e., the anomaly is
already present when translations are treated as a Z group.
Again, this is what we expect for an intrinsic LSM anomaly.

III. DECONFINED CRITICALITY IN 2+1D

In this section, we discuss the Neel to VBS transition in
2+1D on square and honeycomb lattices. The underlying field
theory believed to control this transition is the 2+1D CP1

4As an example, consider X3 = RP3 and x to be the generator of
H 1(RP3, Z2) = Z2.

model,

L = |(∂μ − iaμ)zα|2, (12)

where we use the same notation as in 1+1D; see Sec. II B.
As written, the action (12) contains no monopole operators.
Depending on the lattice and the value of spin S one is
considering, the action (12) admits various perturbations (par-
ticularly monopole operators) that we will discuss below. The
continuum theory (12) has three internal global symmetries:
(i) SO(3)s rotations under which zα transforms in the spinor
representation. (ii) U (1)� flux symmetry under which the
2π flux monopole of a that we denote by an operator V

transforms as

U (1)� : V → eiαV . (13)

We denote the operator implementing a U (1)� rotation by an
angle α as U�

α . (iii) A unitary “charge conjugation” symmetry:

C : z → iσ yz∗, a → −a, V → V †. (14)

Note that C2 = 1 on gauge-invariant degrees of freedom; i.e.,
C acts as a Z2 symmetry. Combining C with U (1)�, we get
a group O(2)�; therefore, the full internal symmetry group
of (12) is O(2)� × SO(3)s . As we will discuss in the case of
each lattice, the microscopic symmetries are implemented in
the continuum theory as a subgroup of this symmetry group
(in the case of rotations, combined with continuum rotations).

Before we specialize in particular physical symmetries, it is
useful to compute the anomaly associated with the full contin-
uum symmetry O(2)� × SO(3)s . This was done in Ref. [25]
(we give a slightly different derivation in Appendix B). It was
found that (12) is the boundary of a 3+1D O(2)� × SO(3)s
protected SPT with the following bulk response:

Sbulk = πi

∫
X4

w2[ξ�] ∪ (
w2[ξs] + w2

1[ξ�]
)
. (15)

Here, X4 is the bulk four-manifold, ξs is the SO(3)s bundle,
ξ� is the O(2)� bundle, and as before w1,2 denote the first
and second Stiefel-Whitney classes. In particular, w1[ξ�] ∈
H 1(X4, Z2) is just the Z2 gauge field corresponding to the
charge-conjugation symmetry.

While this is not important for the anomaly analysis, let
us say a few words about the order of transition in the
continuum “noncompact” theory (12). Numerical simulations
suggest that it is either continuous or very weakly first order.
Further, if the latter situation is the case, the weakly first-order
behavior is quasiuniversal; the same critical exponents (and
small drifts of these exponents with system size) are seen
in microscopically different models. Reference [40] proposed
that this quasiuniversal behavior may be controlled by a nearby
nonunitary critical point (or equivalently a unitary critical point
appears if the parameters such as spatial dimension and/or
number of flavors are varied slightly). Our discussion below
can also be adapted to the quasiuniversal first-order scenario: In
this case, when we talk of relevancy or irrelevancy of a certain
operator in (12), we define it with respect to this nonunitary
critical point and/or nearby unitary critical point.

We now specialize in the particular lattices.
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FIG. 2. Four domains of S = 1/2 square lattice VBS order with V = 1, i, −1, −i in a Zrot
4 vortex configuration. Domain walls are marked

in dashed orange. Top left and bottom: a Zrot
4 -symmetric vortex traps half-odd-integer spin. Top right: a vortex which does not preserve the Zrot

4

symmetry need not trap a spin (see also Appendix C).

A. S = 1/2 square lattice

The lattice symmetries we focus on are translations Tx , Ty ,
and Z4 rotations about a site. These act in the following way.
The Z4 rotation Rπ/2 is just a π/2 rotation in the U (1)� group
U�

π/2 (together with a π/2 emergent continuum rotation), i.e.,

Rπ/2 : V (x) → iV
(
R−1

π/2x
)
. (16)

The translations act Tx = C, Ty = U�
π C, i.e. (apart from action

on z, a),

Tx : V → V †, Ty : V → −V †. (17)

From these transformations, we can identify V = Vx + iVy

with the VBS order parameter (see Fig. 2). Further, we see
that Tx , Ty , and Zrot

4 act in the field theory as a D4 subgroup
of O(2)�, and the anomaly can be obtained by replacing the
O(2)� bundle ξ� in (15) by the D4 bundle. Let us focus on
two subgroups of this D4.

(1) Imagine restricting the lattice symmetry to Z4 rotations.
Then we are interested in the Z4 subgroup of U (1)�, so there
are no C gauge fields and w1[ξ�] = 0. Further, for a U (1)�
gauge field, w2[ξ�] = F

2π
(mod 2), where F ∈ H 2(X,Z) is the

Chern class of the U (1)� bundle. In our case, if we denote
the Z4 gauge field by γ ∈ H 1(X4, Z4), F

2π
= dγ

4 ∈ Z. The
anomaly (15) then becomes

Sbulk = πi

∫
X4

dγ

4
∪ ws

2. (18)

This is a mixed anomaly involving Z4 rotations and SO(3)s
symmetry. It is generally nonvanishing. Indeed, even if we
restrict discussion to only 180-deg rotations, i.e., take γ = 2γ̃

with γ̃ ∈ H 1(X4, Z2), the action (18) is still nontrivial:

Sbulk = πi

∫
X4

dγ̃

2
∪ ws

2 = πi

∫
X4

γ̃ 2ws
2. (19)

The presence of the anomalies (18) and (19) is in exact
accord with an LSM-like theorem, stating that a trivial gap
is impossible in a system with spin S = 1/2 located at a
180-deg rotation center [5]. Thus, these anomalies are intrinsic
anomalies.

(2) Imagine restricting the lattice symmetry to translations
Tx , Ty . In the field theory, these act as a Zx

2 × Z
y

2 subgroup
of the O(2)� group, corresponding to O(2) transformations
diag(1,−1) and diag(−1, 1). By denoting the Zx

2 and Z
y

2
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gauge fields as x and y, we have ξ� = ξx ⊕ ξy ; i.e., ξ� is
a direct sum of line bundles ξx and ξy . Using the Whit-
ney formula, w1[ξ�] = w1[ξx] + w1[ξy] = x + y, w2[ξ�] =
w1[ξx]w1[ξy] = xy. So the anomaly reduces to

Sbulk = πi

∫
X4

(
xyws

2 + x3y + xy3
)
. (20)

The first term xyws
2 corresponds to the mixed LSM anomaly

for the SO(3)s symmetry and translations. The last two terms
comprise an emergent anomaly for the translation symmetry.

Let us first discuss the LSM anomaly. Again, we can think of
the S = 1/2 square lattice as a boundary of a stack of Haldane
chains. We let the chains run along the z direction and be
stacked in a square lattice along x and y. Let the x, y, and
z directions be periodic. Increasing Ly by 1 corresponds to
threading Ty flux along the y cycle. Then, with such a y flux, the
bulk action becomes Sbulk = πi

∫
S1

x×S1
z ×S1

τ
xws

2. This is exactly
the action (10) that we concluded corresponds to a 1D array
of Haldane chains. This is the correct physics: Fixing Ly to be
large by finite, we can view our bulk as a 2+1D phase protected
by Tx and SO(3)s . At each x “site,” there is a Haldane phase
if Ly is odd and an SO(3)s trivial phase if Ly is even.5 Again,
we note that the action Sbulk = πi

∫
X4

xyws
2 is nontrivial even

if x and y are Z gauge fields rather than Z2 gauge fields, as
befits an intrinsic LSM anomaly.

We next discuss the emergent anomaly Sbulk =
πi

∫
X4

(x3y + xy3). Again, if x and y are Z gauge fields,
then x2 = y2 = 0 (mod 2) so Sbulk vanishes. However, if x

and y are Z2 gauge fields, then Sbulk is nontrivial; in fact, it is
precisely the response of a Z2 × Z2 protected SPT in 3+1D.6

Since translations act in a Z2 manner in the continuum field
theory, we conclude that the Z2 × Z2 anomaly is relevant to
the vicinity of the deconfined critical point. In particular, no
weak translationally invariant perturbation can open a trivial
gap (even if it breaks the spin-rotation symmetry).

Another emergent anomaly is present for the combination
of diagonal translations TxTy and SO(3)s . In the continuum
theory, TxTy acts in the same way as 180-deg rotations, so we
indeed expect such a mixed anomaly. If only the Z2 symmetry
corresponding to TxTy is gauged, we have x = y. Then

Sbulk = πi

∫
X4

x2ws
2, (21)

which is again generally nontrivial for x, a Z2 gauge field, but
vanishes for x, a Z gauge field. From a lattice perspective,

5We could have chosen a more general manifold S1
x × Y3 with odd

x flux along S1
x to recover (9). The choice of a three-torus for Y3 is

made for ease of visualization and physical interpretation.
6Recall that Zx

2 × Z
y

2 protected SPT phases in 3+1D are classified by
H 4(Z2 × Z2 ) = Z

(1)
2 × Z

(2)
2 . The generator Z

(1)
2 has the response S =

πi
∫

X4
x3y, and the generator Z

(2)
2 has S = πi

∫
X4

xy3. Our action
is the sum of the two generators. Focus on one of the generators,
S = πi

∫
X4

x3y. Consider X4 = S1 × Y3. Placing flux of y through
S1 gives S = πi

∫
Y3

x3, the partition function of 2+1D Zx
2 SPT on Y3.

Thus, threading flux of Z
y

2 through S1 toggles between a trivial and
nontrivial 2+1D Zx

2 SPT. This is precisely the property of a Zx
2 × Z

y

2

SPT in 3+1D [41,42].

we know that if we stagger the exchange strength as shown
in Fig. 1, for sufficiently strong staggering we will drive the
system into a trivial gapped phase. However, the anomaly
analysis above indicates that it does not occur for weak
staggering.

B. S = 1/2 honeycomb lattice

We now discuss the case of the honeycomb lattice. The
transition we consider is from a Neel phase to a Kekule-VBS
phase (see Fig. 3). The symmetries we will be interested in are
60-deg rotations about a plaquette center Rπ/3 and translations
T1, T2 along the lattice vectors. These act as T1 = U�

2π/3, T2 =
U�

−2π/3, Rπ/3 = C, i.e.,

T1 : V → e2πi/3V, T2 : V → e−2πi/3V,

Rπ/3 : V (x) → V †(R−1
π/3(x)

)
. (22)

Thus, the monopole V is identified with a Kekule-like VBS
order parameter (see Fig. 3). Further, the lattice symmetries
above act in the continuum theory as a D3 subgroup of O(2)�.
As discussed in Appendix B 1, for a D3 bundle w2[ξ�] = 0,
so Sbulk = 0. Hence, in this case there are neither emergent
nor intrinsic anomalies. The absence of an intrinsic anomaly
is in agreement with the existence of a trivial gapped state
on the honeycomb lattice [13,14]. Let us now discuss possible
consequences of the absence of emergent anomalies. The sym-
metries of the honeycomb lattice (in particular, the symmetries
discussed above) permit a triple monopole perturbation,

δL ∼ V 3 + (V †)3. (23)

It is expected that this is the most relevant perturbation to the
critical theory (12) describing the Neel to VBS transition on

FIG. 3. Three domains of S = 1/2 honeycomb lattice VBS order
with V = 1, e2πi/3, e4πi/3 in a Zrot

3 vortex configuration. Domain walls
are marked in dashed orange. A Zrot

3 symmetric vortex may or may
not trap S = 1/2 depending on the details of the domain walls.
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the honeycomb lattice (besides the perturbation |zα|2 that tunes
between the two phases). If this perturbation is irrelevant, the
transition is described by the “noncompact” theory (12) with an
emergent O(2)� symmetry, whose anomaly prohibits a trivial
gap. On the other hand, if the perturbation is relevant, then the
symmetry of the low-energy theory is really only D3. Since
this symmetry is not anomalous, it is possible that a region of
trivial gapped symmetric phase opens up between the Neel and
VBS phases on the honeycomb lattice.7

Numerically, the Neel-VBS transition on the honeycomb
lattice appears continuous or very weakly first order [20–23].
Further, on finite but large systems the same critical exponents
are observed as on the square lattice. This suggests that the
same “noncompact” theory (12) governs the transition on the
honeycomb lattice as on the square lattice. However, while on
the square lattice nearly U (1) symmetric histograms of the
VBS order parameter are seen, which has been interpreted
as evidence for the irrelevancy of the quadruple monopole
operator V 4, on the honeycomb lattice a clear Z3 anisotropy
of the histogram is observed. Thus, it may be the case that the
V 3 operator is close to marginality. If it is slightly relevant, it
may be that system sizes where its effects start to play a role
have not been reached in Refs. [20–23]. In this light, it would
be interesting to numerically study the Neel-VBS transition
for the S = 1/2 honeycomb lattice in more detail. As already
pointed out in Ref. [23], it would be particularly interesting
to look for new microscopic models realizing this transition
with the hope that some of them have larger values of V 3

perturbation than those studied previously.

C. Vortices and domain walls

In this section, we give a more physical picture of the mixed
anomaly between lattice rotational symmetry and SO(3)s
clarifying the previous discussion in Ref. [34].

It has long been appreciated that the essential feature of the
Neel-VBS transition on the square lattice is that VBS vortices
carry spin S = 1/2 [34]. At the field-theory level, this is seen as
follows [24]. Imagine first that no monopoles of a are present in
the action, so that the Zrot

4 symmetry is dynamically enlarged
to U (1)VBS = U (1)�. To nucleate a vortex of U (1)VBS, one
couples the system to a background U (1)� gauge field A,

L = |(∂μ − iaμ)zα|2 + i

2π
A ∧ da, (24)

and considers a configuration with flux 2π ofA. In order for this
configuration to carry no a charge (i.e., be gauge invariant), we
must additionally nucleate a zα particle, so the vortex carries
S = 1/2. This matches the bulk anomaly (15). Indeed, if we
compactify the bulk theory (15) on S2 × Y2 with flux 2π of
U (1)� through S2, then (15) reduces to S = πi

∫
Y2

ws
2, the

partition function of a Haldane chain. Considering Y2 to be
open, we see that a monopole of U (1)� is just like an end of
a Haldane chain; i.e., it carries S = 1/2. When a monopole of

7Strictly speaking, we also need to demonstrate that when the
reflection and time-reversal symmetries are added to symmetries
considered above, no emergent anomalies are present. We leave this
to future work.

U (1)� sits in the 3+1D bulk, there is flux 2π of A emanating
through the 2+1D surface, so a VBS vortex is present on the
surface and carries spin 1/2.

Now, what happens when the U (1)� symmetry is broken to
Zrot

4 ? If we work in the VBS phase, a VBS vortex will break
up into a junction of four domain walls of Zrot

4 ; see Fig. 2. This
vortex still traps S = 1/2 as is clear from Fig. 2, top left. This is
in agreement with the anomaly surviving when U (1)� → Zrot

4 .
A crucial point is that one must consider a vortex, which is
invariant under Zrot

4 (for an alternative viewpoint appropriate
for the nearest neighbor dimer model, see Appendix C). For
instance, the configuration in Fig. 2, top right, has the same four
domains as in Fig. 2, top left. However, it is not Zrot

4 symmetric;
one of the domain walls differs from the other three. We can
think of this configuration as obtained from Fig. 2, top left, by
dressing one of the domain walls with a Haldane chain. The
Haldane chain contributes an extra S = 1/2 to the vortex, so
that the total spin is an integer. If we, instead, dress all four
domain walls with Haldane chains, so that the configuration
is again Zrot

4 symmetric, Fig. 2, bottom, we again have a half-
odd-integer spin trapped in the vortex core.

What about the S = 1/2 honeycomb lattice? Here, the
rotational symmetry of interest is Zrot

3 , corresponding to 2π/3
rotations about a site.8 In the present case, there exist Zrot

3 -
symmetric Zrot

3 vortices with both half-odd-integer and integer
spins; see Fig. 3. Schematically, one goes from the S = 1/2
vortex to an integer spin vortex by dressing each of the Z3

domain walls with a Haldane chain. Indeed, in Fig. 3, bottom,
there are two S = 0 states that the four “dangling” S = 1/2’s
can be locked into. These two states carry Zrot

3 quantum
numbers of e±2πi/3. This is not a projective representation of
Zrot

3 (in fact, there are no projective representations of Z3);
it may be screened by local degrees of freedom to give a
completely trivial vortex. This is consistent with the absence
of an anomaly on a honeycomb lattice.

D. S = 1 square lattice and breaking of continuous
rotation symmetry

So far, when discussing the anomalies we have treated the
translational symmetry and rotational symmetry as internal
symmetries of the theory. More formally, the low-energy
theory (12) has a full emergent Poincare symmetry and we have
combined elements of this Poincare symmetry with micro-
scopic lattice symmetries to obtain purely internal symmetries.
The anomalies associated with these internal symmetries allow
us to place constraints on the dynamics when the Poincare
symmetry is present. But what if it is broken? By comparing
our anomaly computations so far with the microscopic LSM
theorem, we guess that the anomaly found for the internal
symmetry at the Lorentz invariant point is, in fact, the correct
anomaly.

For instance, consider the case of S = 1/2 square lat-
tice. One allowed perturbation in this case is the quadruple
monopole operator,

δL ∼ V 4 + (V †)4. (25)

8This is a composition ofR2
π/3-2π/3 rotation about a plaquette center

and a translation by one lattice spacing T1.
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FIG. 4. S = 1 square lattice VBS configurations. Red lines correspond to S = 1 spins locked into Haldane chains. Left: Re(V ) > 0, Im(V ) =
0. Right: Re(V ) = 0, Im(V ) > 0. Note that Re(V ) and Im(V ) are not related by any symmetry.

Throughout our discussion above, when we wrote V q we
understood this to be a Lorentz scalar, which creates a flux
2πq. Such perturbations do not break the Lorentz symmetry,
although they do break U (1)� → Z4. However, there also
exist operators which carry quantum numbers under both the
Lorentz symmetry and U (1)�; let us denote these by V

q

� , where
q is still the U (1)� charge and � is the angular momentum, such
that under continuum spatial rotations SO(2)L,

SO(2)L : V
q

� (x) → ei�αV
q

�

(
R−1

α x
)

(26)

(here, the subscript L stands for Lorentz). Consider, for
instance, the perturbation

δL ∼ V
q=1
�=−1 + V

q=−1
�=1 . (27)

While this perturbation breaks U (1)� and SO(2)L individually,
it preserves their combination; i.e., the microscopic lattice
rotation. The microscopic LSM theorem for Zrot

4 × SO(3)s
symmetry [5] tells us that such a perturbation (even if relevant)
cannot open a trivial gap. Note that the perturbation (27) breaks
the lattice translational symmetry. A perturbation consistent
with all the symmetries of the square lattice is

δL ∼ V
q=2
�=2 + V

q=2
�=−2 + V

q=−2
�=2 + V

q=−2
�=−2 . (28)

Again, LSM theorem guarantees that this perturbation cannot
open a trivial gap. In fact, this perturbation is very likely
irrelevant: Unitarity implies that the scaling dimension of
an operator with angular momentum � = 0 satisfies �� �
l + D − 2, where D is the space-time dimension [43], so in
our case, ��=2 � 3.9 It is unlikely that an operator other than
the energy-momentum tensor exactly saturates the unitarity
bound (if it does, it gives rise to a conserved � = 2 current).
The numerically observed emergent U (1)VBS symmetry of the
deconfined critical point [29,44] is also consistent with the
irrelevancy of (28).

With the above remarks in mind, we proceed to the case of
S = 1 Neel-VBS transition on the square lattice (see Fig. 4).

9We thank Adam Nahum for pointing out this fact.

Here the symmetries are implemented in the following way:
Tx = C, Ty = C, Rπ/2 = U�

π , i.e.,

Tx : V → V †, Ty : V → V †,

Rπ/2 : V (x) → −V
(
R−1

π/2x
)
. (29)

Note that when combined with the spacial rotation in the
Lorentz group, the 90-deg rotation symmetry acts in a Z2

manner. So when treated as internal symmetries, Tx, Ty, Rπ/2

act as a Z2 × Z2 subgroup of O(2)�. Since Tx and Ty act in
the same way, let us focus on just one of them, say, Tx . Denote
the Z2 gauge field corresponding to Tx as x, and the Z2 gauge
field corresponding to Rπ/2 as α. The O(2)� bundle ξ� is then
a direct sum of two Z2 bundles: α and x + α, so w1[ξ�] = x,
w2[ξ�] = α(x + α). The bulk action (15) then is

Sbulk = πi

∫
X4

(
(αx + α2)ws

2 + αx3
)
, (30)

which is generally nonvanishing for arbitrary Z2 gauge fields
x, α. This anomaly implies that as long as we allow only
Lorentz invariant (more specifically rotationally invariant)
perturbations to the action (12), no trivial gap is possible.
However, we know from an explicit construction that a trivial
gapped state does exist for an S = 1 square lattice [14], So
there must be no intrinsic anomaly present. To see this, we note
that the microscopic symmetry group generated by Tx, Ty , and
Rπ/2 is actually (Zx × Zy ) � Zrot

4 . As shown in Appendix B 1,
for an O(2)� bundle corresponding to this group, w2[ξ�] = 0,
so Sbulk = 0 in accord with microscopics.

This leaves the question: If we allow for weak Lorentz
breaking perturbations to the CP1 model consistent with S = 1
square lattice symmetry, can a trivial gap be opened?10 For
instance, we can envision a perturbation

δL ∼ V
q=1
�=2 + V

q=1
�=−2 + V

q=−1
�=2 + V

q=−1
�=−2 , (31)

10This question is quite formal since in a microscopic lattice
model there is no way to control the strength of Lorentz breaking
perturbations.
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which preserves both translation and rotation symmetry.
Again, unitarity implies that the scaling dimension of this oper-
ator is greater or equal to 3, so it is likely irrelevant. Suppose we
did not know this fact, or wish to consider the combined effect
of this perturbation and other relevant perturbations. It turns
out that just from anomaly considerations, we can argue that
(31) cannot open a trivial gap. Indeed, Tx and Rπ/2 act in the
continuum theory as a Zx

2 × Zrot
4 symmetry. Note that since

the action no longer possesses Lorentz symmetry, rotations
must be treated as a Z4 group rather than Z2 group. On the
other hand, for weak perturbations, we may still continue to
treat Tx as a Z2 symmetry. Then α2ws

2 = dα
2 ws

2 = 0 (mod 2),
since dα = 0 (mod 4). However, the other two terms in (30)
are generally nontrivial,

Sbulk → πi

∫
X4

(
αxws

2 + αx3
)
, (32)

so a trivial gap cannot be opened.

IV. S = 1/2 RECTANGULAR LATTICE AND S = 1 SQUARE
LATTICE: DYNAMICS

The present section has a slightly different emphasis from
the rest of the paper. Here, we discuss a possibility that the
Neel-VBS transition of S = 1/2 rectangular lattice and S = 1
square lattice can be continuous and described by a CFT with
an emergent O(4) symmetry. The same CFT has been proposed
to describe the S = 1/2 easy-plane Neel-VBS transition on a
square lattice (see Ref. [24] and references therein).

Let us begin with the case of S = 1/2 rectangular lattice. To
obtain the critical theory, we may start with the square lattice
and weakly break the 90-deg rotation symmetry to the 180-deg
rotation symmetry. One perturbation to (12) this induces is

δL = −λ2[V 2 + (V †)2]. (33)

Numerical simulations indicate that this operator is relevant
[29]. However, this does not necessarily imply that it drives
the transition first order. Recall that numerics suggests that the
theory (12) possesses an emergent SO(5) symmetry, with the
Neel and VBS order parameters forming an SO(5) vector �X =
(nx, ny, nz, V x, V y ). We can also form a traceless symmetric
SO(5) tensor, Xab, a, b = 1 . . . 5, which is schematically
Xab = XaXb − δab

5
�X2. The operator V 2 is identified with

V 2 ∼ X44 − X55 + 2iX45. On the other hand, the operator
|z|2 which drives the phase transition on the square lattice
is |z|2 ∼ X44 + X55. So, on a rectangular lattice, the SO(5)
invariant CFT is perturbed by

δL = −λ1(X44 + X55) − λ2(X44 − X55). (34)

Crucially, the perturbations λ1 and λ2 are part of the same
SO(5) multiplet [29]. Now, without loss of generality, assume
λ2 > 0. If we tune the system to the point λ1 = −λ2, we have

δL = 2λ2X55; (35)

i.e., the system possesses an emergent SO(4) symmetry at this
point. In fact, this is the same perturbation of the SO(5) in-
variant CFT that describes the easy-plane S = 1/2 deconfined
critical point on the square lattice. In the CP1 language, the

easy-plane deformation is simply an anisotropy,

δL ∼ λ3
[
(|z1|2 − |z2|2)2 − 1

3 |z|4] (36)

with λ3 > 0. In the SO(5) language, this translates to

δL = −λ1(X44 + X55) + λ3X33. (37)

The transition point is now λ1 = 0, which has exactly the same
form as (35) (up to an SO(5) rotation exchanging X3 and X5).

Previously, it was thought that the easy-plane transition is
first order. However, recent simulations [30] suggest that when
the easy-plane anisotropy λ3 is small, the transition is actually
continuous and described by an O(4) invariant CFT where
the O(4) vector is �Y = (nx, ny, V x, V y ).11 The transition on
the rectangular lattice is then described by the same O(4)
invariant CFT with the O(4) vector �Z = (nx, ny, nz, V x ). (As
already noted, this possibility was first raised some time ago
in Ref. [26].) If we form the SO(4) traceless symmetric tensor,
Zab, then the perturbation driving the Neel-VBS transition on
the rectangular lattice is

δL ∼ Z44, (38)

which breaks the emergent O(4) symmetry to SO(3)s × Zrot
2 ×

Zx
2 . This should be compared to the perturbation driving the

easy-plane square lattice transition

δL ∼ Y33 + Y44. (39)

The perturbations driving the transitions in the two cases are
different (albeit in the same multiplet), so the phases are also
different (e.g., the Neel phase in the easy-plane case has only
one Goldstone, while it has two Goldstones in the SO(3)s
case). As for other perturbations on the rectangular lattice
besides (38), we have, e.g., the component of a four-index
traceless symmetric tensor Z4444. This should be compared to a
perturbation of the easy-plane theory

∑2
a=1

∑4
b=3 Yaabb, which

is in the same multiplet. This perturbation must be irrelevant
for the easy-plane transition to be continuous and to possess
SO(4) symmetry (as numerics suggest).

So far, we have only discussed Lorentz invariant pertur-
bations on the rectangular lattice. There are also symmetry-
allowed Lorentz breaking perturbations. The most simple of
these is |Dxz|2 − |Dyz|2, which however, can be eliminated by
a coordinate rescaling. We assume that other Lorentz breaking
perturbations are irrelevant.

For the case of S = 1 magnet on a square lattice, the
double monopole perturbation (33) is again allowed, so we
again conjecture a transition described by the same O(4)
invariant CFT. Note that a set of Lorentz breaking perturbations
distinct from those of a rectangular lattice are allowed here,
e.g., Eq. (31). We again assume that these perturbations are
irrelevant.

11The numerical evidence for the emergent SO(4) symmetry comes
from the fact that the critical exponents of the easy-plane Neel-VBS
transition match with those of a different model with an explicit SO(4)
symmetry. The latter model realizes a transition between a trivial
insulator and a bosonic integer quantum Hall state [30].
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V. FUTURE DIRECTIONS

In this paper, we have focused on the anomalies of lattice
systems associated with the combination of spin-rotation
symmetry and lattice translations and rotations. It will be
interesting to extend this analysis to include time-reversal
and reflection symmetries. In particular, it will be interesting
to see if there are any emergent anomalies associated with
these symmetries in the vicinity of the deconfined QCP on the
honeycomb lattice (we expect that there is no intrinsic anomaly,
since a trivial symmetric gapped state on the honeycomb lattice
exists). If no emergent anomaly is found, then an intermediate
trivial phase whose appearance is driven by the V 3 operator
might, indeed, be possible.

The entire anomaly analysis carried out in this paper has
been performed by tuning the critical theory to a Lorentz
invariant point and treating lattice symmetries as internal
symmetries. While our results agree with LSM-like theorems,
this procedure is still very much a conjecture. A stronger
argument in favor of this conjecture (perhaps, utilizing the
technology of Ref. [15]) is left to future work.

Finally, in this work we have not considered LSM-like
theorems relying on (usually fractional) U (1)-number filling
per unit cell. Additional subtleties arise in the formal treatment
of this situation, so we leave it to future investigation.
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APPENDIX A: CP1 MODEL IN 1 + 1D

In this appendix, we deduce the bulk action (9), which
matches the anomalies of the 1+1D CP1 model at θ = π ,

L = |(∂μ − iaμ)zα|2 + iθ
f

2π
, θ = π. (A1)

Let us begin by considering just the Zx
2 symmetry and ignore

SO(3)s . Let us attempt to gauge the global Zx
2 symmetry

of (A1). Then the scalar z sees a combination of transition
functions in the u(1)g gauge group and in the Zx

2 group. Since
T 2

x = u
g
π , overall z sees transition functions in pin(2)−.

Now, the immediate difficulty that one is faced with when
trying to gauge Zx

2 symmetry is how to define the θ term in
(A1). Indeed, locally f → −f under Zx

2 , so as written, the θ

term is not well defined. Instead, when Zx
2 is gauged, we will

define the theory in the following way. We think of the theory
as living on the surface of a 2+1D SPT for the Zx

2 symmetry.
We call the bulk three-manifold X3 and the surface M = ∂X3.
There is a Zx

2 gauge field x ∈ H 1(X3, Z2) living in the bulk and
on the surface. On the surface, x together with the u(1)g gauge
field a form a pin(2)− gauge field (note a lives only on the
boundary M , not in the bulk X3). Let us call the pin(2)− gauge
bundle ξg . We find a three-manifold Y3 such that ∂Y3 = M and
ξg extends to Y3 as a pin(2)− bundle (therefore, x also extends
to Y3). We define the action of our theory as

Sbulk+bound = Sbound[M] + πi

∫
X3∪Ȳ3

x3 (A2)

with

Sbound[M] =
∫

M

d2x
√

g (∂μ + iaμ)z†(∂μ − iaμ)z. (A3)

Note Y3 is not the “physical” bulk manifold X3 but rather an
auxiliary manifold used to define the action. Further, observe
that the “boundary” action (A3) is purely real and contains no
topological terms. All the topological terms have been shifted
to the second term on the right-hand side (RHS) of (A2). While
it is not immediately obvious, we will shortly show that when
the Zx

2 gauge field on the physical space X3 is absent, (A2)
reduces to our original theory (A1).

In order for (A2) to be a well-defined action on a “physical”
bulk X3 with a boundary M , we have to make sure that it is
independent of the manifold Y3 and the particular extension
of the boundary pin(2)− bundle to Y3 that we have chosen.
To see this, it suffices to show that for a pin(2)− gauge
field on a closed manifold Y3,

∫
Y3

x3 = 0 (mod 2). Indeed,
if we project our pin(2)− bundle ξg to an O(2) bundle ξ̃g ,
x = w1[ξ̃g]. Further, an O(2) bundle has a lift to pin(2)− if and
only if w2[ξ̃g] + w2

1[ξ̃g] = 0 [45]. Thus, w2[ξ̃g] = x2 = dx
2 .

Furthermore, w3 = w1w2 + dw2
2 . For an O(2) bundle, w3 = 0,

so w1w2 = dw2
2 = 0, i.e., x3 = 0 and

∫
Y3

x3 = 0 for Y3 closed.
(Note x3 = 0 and prior relations hold only in the sense of Z2

cocycles, so it is important for Y3 to be closed. In particular,
we cannot just drop the Y3 part of (A7); in fact, the resulting
expression will not be gauge invariant.)

We note that while (A2) does not depend on Y3, it clearly de-
pends on the gauge field x on the “physical” three-dimensional
manifold X3. Crucially, the boundary pin(2)− bundle need not
extend to the “physical” bulk X3, so in general

∫
X∪Ȳ

x3 = 0.
Indeed, when X3 has no boundary, (A2) reduces to (9), which
is the topological response of a Z2-protected SPT. This tells us
that the surface theory has a Zx

2 anomaly.
It remains to show that (A2) coincides with (A1) when the

Zx
2 symmetry on X3 is not gauged, i.e., when x = 0 on X3. The

boundary M of X3 is an oriented surface with a u(1) gauge field
a. When the flux m = ∫

M

f

2π
∈ Z is not zero, we cannot extend

a from M to some Y3 as a u(1) gauge field. However, as we
will now show, we can extend a from M to Y3 as a pin(2)−
gauge field. First, it suffices to consider the case when M is a
two-sphere S2 with flux 2π . Indeed, M is always bordant to m

such spheres. So specializing to M , a two-sphere S2 with flux
2π , we must show that

∫
X3∪Ȳ3

x3 = 1, so that the topological
part of the action is given by πi, in accord with (A1). We take
Y3 to be RP3 \ D3, where D3 is a three-dimensional ball. It is
convenient to think of RP3 as a three-dimensional ball of radius
R with antipodal points on the boundary identified. We obtain
Y3 by cutting out a ball of radius 1 centered at the origin from
this realization of RP3 (we take R > 1). The boundary M of
Y3 is a sphere S2 of radius 1. We place flux 2π on this sphere.
In polar coordinates, we choose

aϕ (r, θ, ϕ) = 1
2 (1 − cos θ ), aθ = 0, ar = 0. (A4)

Now, we must glue the fields at r = R. Clearly, we need to use
the Zx

2 symmetry to do so. We impose at r = R,

z(x) = eiα(x)iσ yz∗(ι(x)), a(x) = −(ι∗a)(x) + dα(x),
(A5)
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where ι : θ → π − θ, ϕ → ϕ + π is the antipodal map and
eiα(x) is a u(1) gauge rotation. Choosing eiα(x) = eiϕ does
the job, leading to a consistent gluing condition. Thus, we
have succeeded in extending the pin(2)− bundle to Y3. The
corresponding Zx

2 gauge field x on Y3 integrates to 1 along
any loop connecting the antipodal points of the sphere r = R.
It remains to evaluate the topological action

∫
X3∪Ȳ3

x3. Since
x = 0 on X3 we might as well replace X3 by a ball of radius
1 so that X3 ∪ Y3 is RP3. Clearly, x is just the generator of
H 1(RP3, Z2) so

∫
X3∪Ȳ3

x3 = 1. QED.
So far, we have only attempted to gauge the Zx

2 symmetry.
Now, we will in addition gauge the SO(3)s symmetry. Again,
we think of the system as living on the boundary of a 3D SPT
with both Zx

2 and SO(3)s symmetry. So there is now both a Zx
2

bundle and an SO(3)s bundle on the “physical” bulk manifold
X3. On the boundary M , zα sees a combination of transition
functions from pin(2)− and SU(2)s . In fact, the transition
functions for zα live in [pin(2)− × SU(2)s]/Z2. Thus, the
pin(2)− transition functions and the SU(2)s transition func-
tions may not individually satisfy the cocycle condition, but
the combination does. If we project our pin(2)− bundle ξg to
an O(2)g bundle ξ̃g , and SU(2)s to an SO(3)s bundle ξs then
the resulting bundles satisfy

w2[ξ̃g] + w2
1[ξ̃g] = w2[ξs]. (A6)

Indeed, the left- and right-hand sides are precisely the obstruc-
tions to lifting ξ̃g and ξs to pin(2)− and SU(2)s , respectively.
Now, we extend the [pin(2)− × SU(2)s]/Z2 bundle from the
surface M to some Y3; the condition (A6) continues to be
satisfied on Y3. This also automatically extends the Zx

2 gauge
field x = w1[ξ̃g] to Y3. Now, we want to check if (A2) is still
independent of the extension to Y3. It suffices to compute

∫
Y3

x3

for Y3 closed. We have x3 = x(w2[ξ̃g] + w2[ξs]) = dw2[ξ̃g]
2 +

xw2[ξs], so
∫
Y3

x3 = ∫
Y3

xw2[ξs], which generally does not
vanish. However, there is an easy fix: We modify the action
to be

Sbulk+bound = Sbound[M] + πi

∫
X3∪Ȳ3

(x3 + xw2[ξs]), (A7)

which now does not depend on the extension to Y3 chosen. For
X3 closed, we recover (9). The first term is a pure Zx

2 anomaly,
while the second term is a mixed Zx

2 , SO(3)s anomaly.

APPENDIX B: CP1 MODEL IN 2 + 1D

In this appendix, we deduce the bulk action (15), which
matches the anomalies of 2+1D CP1 model,

L = |Dazα|2 + i

2π
A ∧ da (B1)

with a being the dynamical gauge field and A being a gauge
field coupling to the flux current 1

2π
db. The symmetries of the

CP1 model we consider are O(2)� = U (1)� � C and SO(3)s
(see Sec. III).

We denote the associated bundles by ξ� and ξs . Now,
SO(3)s and C act on the spinons z in a projective manner
(the U (1)� group does not act on the spinons). Indeed, C2 :
z → −z. So, C combines with the gauge group u(1)g to a
group pin(2)−. The overall transition functions seen by z

live in [SU(2)s × pin(2)−]/Z2. The transition functions of

SU(2)s generally will satisfy the cocycle condition only up
to a factor of −1, and so will the transition functions of
pin(2)−. Let us project pin(2)− down to an O(2) group that
we call O(2)g , and let the associated bundle be labeled by
ξ̃g . Then the obstruction to lifting O(2)g to pin(2)− must
be exactly equal to w2(ξs ). But the obstruction to lifting an
O(n) bundle to a pin(n)− bundle is w2 + w2

1 [45]. So, we
must have w2(ξ̃g ) + w2

1 (ξ̃g ) = w2(ξs ). We now extend the full
O(2)� × [SU(2)s × pin(2)−]/Z2 bundle from our original
three-manifold M to a four-manifold Y4, such that ∂Y4 = M ,
and define

i

2π

∫
M

A ∧ da ≡ 2πi

∫
Y4

dA

2π
∧ da

2π
, (B2)

where dA is the field strength of the O(2)� bundle and da is
the field strength of the pin(2)− bundle. Equivalently, 2da is
the field strength of the O(2)g bundle. We want to see if (B2)
is independent of the extension to Y4; i.e., we want to find what
values it takes for Y4 closed. Since w1(ξ�) = w1(ξ̃g ), we may
combine the O(2)� and O(2)g bundles into an SO(4) bundle
ξ� ⊕ ξ̃g . We claim, for closed Y4,

2πi

∫
Y4

dA

2π
∧ da

2π
= πiw4(ξ� ⊕ ξ̃g, Y4). (B3)

Indeed, let us project SO(4) to SO(4)/Z2 = SO(3)L ×
SO(3)R . SO(2) rotations by angles α, β in O(2)�, O(2)g
become rotations by α − β and α + β around (say) the z axis
in SO(3)L and SO(3)R respectively. The reflection diag(1,−1)
performed simultaneously in O(2)� and O(2)g becomes a
simultaneous π rotation around y axis in SO(3)L and SO(3)R .
Therefore, the SO(3)L and SO(3)R connections are (locally)

AL = (A − 2a)(
0 −i 0
i 0 0
0 0 0

) and AR = (A + 2a)(
0 −i 0
i 0 0
0 0 0

).

Now, for an SO(4) bundle,

w4 = 1
4 (p1[SO(3)L] − p1[SO(3)R]) (mod 2) (B4)

[see Ref. [24], Eq. (141)]. Here, p1 is the Pontryagin number
of an SO(n) bundle, which has an integral formula:

p1[SO(n)] = 1

2(2π )2

∫
Y4

trSO(n)F ∧ F. (B5)

So,

w4[ξ� ⊕ ξ̃g, Y4] = 1

4(2π )2

∫
Y4

[(dA − 2da) ∧ (dA − 2da)

− (dA + 2da) ∧ (dA + 2da)]

= − 2

(2π )2

∫
Y4

dA ∧ da

which proves (B3). Next, let us use the Whitney sum formula,

w4[ξ� ⊕ ξg] = w2[ξ�] ∪ w2[ξ̃g]; (B6)

all the other terms vanish, since ξ� and ξ̃g are O(2) bundles.
Recalling w2(ξ̃g ) + w2

1 (ξ̃g ) = w2(ξs ) and w1(ξ̃g ) = w1(ξ�),
we have

w4[ξ� ⊕ ξ̃g] = w2[ξ�] ∪ (
w2[ξs] + w2

1[ξ�]
)
. (B7)

Notice that any dependence on the gauge bundle ξ̃g has
disappeared—the above expression only depends on the back-
ground gauge bundles of the global symmetries O(2)� and
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SO(3)s . This means that although (B3) is dependent on the
extension to Y4, this dependence can be canceled by thinking
of the theory as living on the surface of a 3 + 1D SPT. The
bulk partition function of this SPT on a closed manifold X4 is
just

Sbulk = πi

∫
X4

w2[ξ�] ∪ (
w2[ξs] + w2

1[ξ�]
)
. (B8)

If X4 has a boundary M , then we define

Sbulk+bound =
∫

M

|Dazα|2 + 2πi

∫
Y4

dA

2π
∧ da

2π

+πi

∫
X4∪Ȳ4

w2[ξ�] ∪ (
w2[ξs] + w2

1[ξ�]
)
.

(B9)

Now, any dependence on the extension to Y4 is canceled
between the second and third terms above. However, the action
does depend on the values of the background O(2)� × SO(3)s
gauge fields on the “physical” four-manifold X4.

Note that we may also rewrite w2[ξs] + w2
1[ξ�] = w2[ξ̃s],

where ξ̃s = ξs ⊗ det(ξ�) is an O(3)s bundle derived from
the original SO(3)s bundle ξs by multiplying the transition
functions by −1 whenever the rotation in O(2)� is improper.

Further note that as shown in Ref. [25], we obtain the same
anomaly by working with a different proposed formulation
of the deconfined critical point—the Nf = 2 QCD3 theory
[24]. Recall that the QCD3 formulation has an anomalous
global SO(5) symmetry, and the anomaly is given by Sbulk =
πiw4[ξ 5, X4], where ξ 5 is an SO(5) bundle. For the symme-
tries explicit in the CP1 model, we ξ 5 = ξ� ⊕ ξ̃s is a direct
sum of O(2)� bundle and O(3)s bundle. Using the Whitney
formula,

w4[ξ 5] = w1[ξ�]w3[ξ̃s] + w2[ξ�]w2[ξ̃s]. (B10)

But w1[ξ�] = w1[ξ̃s] and w1w3 = dw3
2 , so the first term is a

total derivative and does not contribute to the bulk action. We
then recover, w4[ξ 5] → w2[ξ�]w2[ξ̃s], in agreement with the
computation in the CP1 model.

1. Vanishing of anomaly

We now show that the anomaly (B8) vanishes for the
symmetry appropriate to the honeycomb lattice and for the
intrinsic symmetry appropriate to the S = 1 square lattice.

We begin with the honeycomb lattice. Here, the relevant
subgroup of O(2)� is D3. We want to show that w2[ξ�] = 0.
Recall that w2 is the obstruction to lifting an O(n) bundle to a
pin(n)+ bundle [45]. Let, π : pin(2)+ → O(2) be the projec-
tion map. Now, pin(2)+ = O(2). Write O(2) = U (1) � Z2

with Z2 generated by C. Then π (uα ) = u2α and π (C) = C,
where uα is a rotation by α in U (1). Furthermore, if we restrict
O(2) to a D3 subgroup, π : D3 → D3 is an isomorphism.
In fact, π2 = 1. Thus, for any D3 bundle we obtain a lift
to pin(2)+ simply by applying π to the transition functions.
Therefore, w2[D3] = 0.

Next, we proceed to the S = 1 square lattice. Here, we
want to show that the intrinsic anomaly vanishes. For this,
we have to consider bundles associated with the microscopic
symmetry group (Zx × Zy ) � Zrot

4 . Let x be the generator of

Zx , y be the generator of Zy , and r be the generator of Zrot
4 . The

associated O(2)� bundle is a Z2 × Z2 bundle obtained via the
projection p : (Zx × Zy ) � Zrot

4 → Z2 × Z2, with p(x) = C,
p(y) = C, p(r ) = uπ . We can also form a D4 representation
s : (Zx × Zy ) � Zrot

4 → D4, with s(x) = C, s(y) = uπC, and

s(r ) = uπ/2. We then have the sequence (Zx × Zy ) � Zrot
4

s→
D4

π→ Z2 × Z2, with π : pin(2)+ → O(2) as before. Further,
π ◦ s = p. So to obtain a lift ofZ2 × Z2 toD4, we simply apply
s to the parent (Zx × Zy ) � Zrot

4 . Therefore, w2[ξ�] = 0.

APPENDIX C: ASYMMETRIC VORTICES

In Sec. III C, we revisited the well-known fact that Zrot
4 VBS

vortices on the square lattice carry S = 1/2 in their core. We
emphasized that in general one needs to consider Zrot

4 sym-
metric VBS vortices in order to reach this conclusion. In our
analysis, we defined a vortex as having four macroscopic VBS
domains in a clock configuration. The details of the domain
walls separating the domains did not affect the counting of
the vortex winding. In this appendix, we show that for the
nearest neighbor dimer model there is an alternative way to
define the vorticity by a closed line integral around a contour
enclosing the vortex core, so that the vorticity does depend on
the microscopic details of the domain walls. Further, with this
definition, the vorticity is always equal to NA − NB , where
NA/B is the number of “dangling spins” on A/B sites in the
vortex core. This holds even when the vortex is not rotationally
symmetric. Further, we use this definition of vorticity to make
contact with the anomaly formula (18): S = πi

∫
X4

dγ

4 ∪ ws
2.

For a dimer configuration on the square lattice, we want to
compute the “vortex charge” Q(U ) of a region U . We assume
that if any “dangling” spins are present, they are away from
the boundary ∂U . We define Q(U ) = 1

4

∫
∂U

γ , where γ is a
1-cochain living on the links of the square lattice. This
cochain is defined by counting VBS domain walls crossing the
(oriented) contour ∂U in the following way. First, we assign
numbers 1, i,−1,−i to the links of the square lattice using
a 2 × 2 unit cell as shown in Fig. 5 (1 is represented by a
right arrow, i by an up arrow, −1 by a left arrow, and −i

by a down arrow). For each site j , we define the VBS order
parameter Vj by the number on the dimer covering j ; this is
the standard definition of the columnar dimer order parameter.
Now, to define γ on a link jμ, μ = x̂, ŷ, we consider Vj+μ

Vj
. If

Vj+μ

Vj
= 1, we set γjμ = 0. If Vj+μ

Vj
= 1, the link crosses a VBS

FIG. 5. A unit cell for the branching structure of the usual VBS
convention. Edges occupied with a dimer are considered part of a
domain associated with the direction labeling that edge.
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+2 +1 +1

FIG. 6. A domain wall across which the direction of the VBS
order (arrows highlighted by dimers) rotates by π (left). This domain
wall may be resolved as two π/2 domain walls (right), revealing that
it is a counterclockwise (positive) π rotation.

domain wall. For Vj+μ

Vj
= ±i, this is a “single” domain wall,

and we assign γjμ = ±1. For Vj+μ

Vj
= −1, we have a double

domain wall and assign γjμ = ±2. The sign can be determined
by breaking up the double domain wall into two single domain
walls, as demonstrated in Fig. 6. Another example of this
procedure is shown in Fig. 7. Using this procedure, we obtain
the following general expression for the sign of γjμ. Let
λjx = (−1)jx , λjy = i(−1)jy (so that λiμ coincides with the
number we assigned to the corresponding link in Fig. 5). If
Vj+μ

Vj
= −1, − λjμ

Vj
= ±i and we define γjμ = ±2.

A direct computation shows that away from “dangling”
spins dγ = 0. Therefore, Q(U ) is invariant under deforming
the boundary of U (as long as we do not push the boundary
through sites with dangling spins). One can also show that in
terms of the two sublattices A (those vertices with all arrows
incoming or all arrows outgoing) and B (those vertices with
two incoming arrows and two outgoing arrows), Q(U ) with a
counterclockwise contour counts the number of unoccupied A

sites minus the number of unoccupied B sites in U . Modulo
2, this just counts the number of unoccupied sites. Note
that this identification works independent of the details of
domain walls. For instance, in Fig. 2, top left Q = 1, top right
Q = 0, and bottom Q = −3, in agreement with NA − NB

+2 +2 +2 -2

FIG. 7. On the left, a Q = −1 VBS vortex (as measured by a
counterclockwise integration contour around the edge of the figure);
note that the missing spin sits on the B site, in agreement with Q =
NA − NB . On the right, a VBS vortex and VBS antivortex sit side by
side and their cores dimerize. The total winding number Q = 0.

(we take the unoccupied site in Fig. 2, top left, to be an A

site). Note, however, that there is no obvious way to extend
this formula to more general dimer configurations (not just
nearest neighbor). In particular, the integer nature of the
invariant Q is an artifact of only bipartite configurations being
considered. Nevertheless, the formula forQ is very reminiscent
of the anomaly formula (18): S = πi

∫
X4

dγ

4 ∪ ws
2. Indeed, this

formula indicates that in a spatial boundary slice�,
∫
�

dγ

4 (mod
2), tells us whether we have a projective SO(3) representation
or not. Identifying the cochain γ extracted from the domain
walls with the background Zrot

4 gauge field γ in the spirit of
[15], we see a geometric confirmation of the anomaly formula.

We can also extend the definition of the vortex charge Q to
the honeycomb lattice. Here, we have three different Kekule
VBS domains with V = 1, e2πi/3, e4πi/3. For a given link (ij ),
we compute Vj

Vi
. If Vj

Vi
= 1, we assign γij = 0 to the link. If

Vj

Vi
= e±2πi/3, we assign γij = ±1. Note that in this case there

are no double domain walls. It is again true that Q = NA − NB .
For instance, the vortex in Fig. 3, left, has Q = 1 and the vortex
in figure Fig. 3, right, has Q = −2, as required.
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