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ARTICLE

A mixed antagonistic/synergistic miRNA
repression model enables accurate predictions of
multi-input miRNA sensor activity
Jeremy J. Gam1,2, Jonathan Babb1,2 & Ron Weiss1,2

MicroRNAs (miRNAs) regulate a majority of protein-coding genes, affecting nearly all bio-

logical pathways. However, the quantitative dimensions of miRNA-based regulation are not

fully understood. In particular, the implications of miRNA target site location, composition

rules for multiple target sites, and cooperativity limits for genes regulated by many miRNAs

have not been quantitatively characterized. We explore these aspects of miRNA biology at a

quantitative single-cell level using a library of 620 miRNA sensors and reporters that are

regulated by many miRNA target sites at different positions. Interestingly, we find that

miRNA target site sets within the same untranslated region exhibit combined miRNA activity

described by an antagonistic relationship while those in separate untranslated regions show

synergy. The resulting antagonistic/synergistic computational model enables the high-fidelity

prediction of miRNA sensor activity for sensors containing many miRNA targets. These

findings may help to accelerate the development of sophisticated sensors for clinical and

research applications.
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M icroRNA (miRNA) molecules are short sequences of
non-coding RNA that are important for post-
transcriptional regulation of mRNA. Despite active

study of miRNAs since their discovery, several aspects of miRNA
repression remain unknown or controversial1. For instance, many
of the proteins and mechanisms involved in miRNA repression
and interactions between them have yet to be elucidated2,3. Also,
most studies have focused on miRNA target sites in the 3′ UTR4,
but recent research has shown that targets in the coding sequence
and 5′ UTR can be important for modulating activity, especially
in combination with other target sites5–7. Due to incomplete
study of these interactions between target sites, there has been a
lack of consensus for the importance of target sites outside of the
3′ UTR and also insufficient knowledge to generate design rules
and models for transcripts regulated by many miRNAs simulta-
neously. We anticipate that the ability to explain and predict
effects of simultaneous repression by multiple miRNAs will
become increasingly important for understanding miRNA reg-
ulation, since nature is replete with examples of highly miRNA-
regulated genes. On average 7.3 different miRNAs repress each
miRNA-regulated gene and 47 distinct genes are regulated by >40
miRNAs8, with p21Cip1/Waf1 experimentally verified to be tar-
geted by 28 miRNAs9. Additionally, emerging evidence indicates
a class of transcripts regulated by simultaneous 5′ and 3′ UTR
targets of the same miRNA6.

The ability to predict multi-miRNA repression may also be
applied to create better nucleic acid-based therapeutics (e.g., ones
that are regulated dynamically by complex biomarker profiles).
We are especially interested in using miRNAs as indicators of
cell type and cell state, since there are thousands of distinct
miRNAs which regulate >5300 genes across almost all cellular
pathways10–12. Several studies have used miRNA profiles to
identify diseases including cancer13, Alzheimer’s disease14,
and heart disease15, while we and others have shown that
genetically encoded miRNA sensors can be constructed by pla-
cing miRNA target sites in the UTRs of a reporter16–19. These
genetically encoded miRNA sensors (which sense a single miRNA
input) and cell classifiers (which sense multiple miRNA
inputs simultaneously) can provide information about disease
state, actuate responses in cells specifically expressing either a
diseased or healthy miRNA profile16–18, distinguish between
subtypes of cells in vivo19, and help biologists study complex
processes like stem cell differentiation20. While most efforts
have focused on sensors measuring a single miRNA at a time,
multi-input miRNA classifiers more closely mimic endogenous
biological regulation in that many miRNAs (comprising
a miRNA profile) can regulate a single transcript, improving
specificity and redundancy.

To improve our ability to predict regulation from multiple
miRNAs, we created a large library of reporter constructs with
composable miRNA target sites and used them in various com-
binations to explore the effects of multi-miRNA regulation from
5′ and 3′ targets. We use highly expressed synthetic miRNA
sensors and modeling to probe the limits of miRNA regulation,
since quantitative measurements made at biological extremes can
provide mechanistic insight otherwise difficult to obtain via
conventional knockout or sequencing based techniques1,21. We
found that miRNA target site interactions follow an antagonistic/
synergistic (Ant/Syn) model where sets of miRNA target sites
exhibit antagonistic interactions within the same UTR (i.e., the
amount of knockdown depends strictly on the miRNA target sites
with highest activity), and synergistic interactions across UTRs
(i.e., knockdown is a multiplicative combination of miRNA target
sites). In contrast to previous computational models22,23, our
Ant/Syn model accurately predicts simultaneous repression
effects from many different miRNAs.

The desire for sophisticated miRNA classifier designs that
perform increasingly more complex operations necessitates a
deeper understanding of the composition rules that govern reg-
ulation of transcripts by many miRNAs. In this study we intro-
duce a workflow for measuring output of single-input miRNA
sensors in cell lines, characterizing miRNA activity from miRNA
sensor data using a biochemical model, utilizing the measured
miRNA activity to make accurate predictions of multi-input
miRNA classifiers using the Ant/Syn model, and testing the best
classifier candidates in cells. The accurate predictions generated
by the model reduce or eliminate the need for multiple iterations
of physical classifier designs by instead simulating a large range of
classifier designs in silico and testing only the best candidates
experimentally. Interestingly, the use of our Ant/Syn model often
leads to improved classifier designs that are counterintuitive. For
instance, classifiers may perform markedly better with rearranged
target sites or even with fewer target sites, depending on the
application. These and other design rules, both intuitive and
counterintuitive, can help explain aspects of the regulation of
endogenous transcripts and improve the design of miRNA sensor
circuits, illustrating the power of convergence between quantita-
tive biological modeling and analytical synthetic circuit design.

Results
miRNA activity characterization by modeling of miRNA sen-
sors. We designed, constructed, and sequence validated a miRNA
sensor library containing all 620 sequences of mature human
miRNAs designated as high confidence in miRBase 2124. Our
library enables high-information-content screening of miRNA
activity in cells and also serves as a source for sequence-validated
templates of miRNA targets when building multi-input sensors.
We synthesized miRNA target site sets bearing four repeats of the
sequence perfectly complementary to the miRNA and inserted
them into the 3′ UTR of a reporter construct (Fig. 1a).
Throughout this work, a miRNA target site “set” refers to four
repeats of a given miRNA target site. We chose to include four
target sites per set since minimal increase in dynamic range was
obtained with >4 targets (Supplementary Figs. 1 and 2) and used
perfectly complementary target sites to reduce the possibility of
miRNA sponging effects25 while increasing the dynamic range of
repression. The resulting single-input sensors demonstrate up to
several-hundred-fold dynamic range, indicating the utility of
miRNAs as potent biomarkers (Fig. 1b, c). To our knowledge,
ours is the largest miRNA sensor library reported to date (the
previous largest containing target sites for 291 miRNAs26) and
the only one allowing for Golden Gate assembly27 from single-
input sensors into multi-input classifiers in a single assembly step.
The library will be available on Addgene for researchers to use in
advancing the understanding of miRNA biology and the devel-
opment of better DNA and RNA-based therapies.

We implemented a computational miRNA repression model to
better understand and quantify the behavior of our sensors and
classifiers (Supplementary Note 1). The model for single-input
sensors is based on previous deterministic models22,23 for miRNA
activity, which we extended to multi-input sensors using the Ant/
Syn model. At the single-input level, the model comprises the
following reactions: (1) mRNA and protein molecules for two
fluorescent reporters are transcribed and translated at first order
rates and are degraded, (2) mKate2 reporter mRNA may be
reversibly bound by a miRNA-containing complex which may
then catalytically degrade the bound mRNA, (3) parameters
corresponding to miRNA concentration (M, the total effective
number miRNA molecules either free or bound to reporter
mRNA), and Michaelis constant (Km= 〈koff+ kcat〉/kon, a mea-
sure related to the repression strength per miRNA molecule) are
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fit using fluorescence data obtained experimentally from our
sensors and together accurately describe the behavior of a given
miRNA sensor (Fig. 1d). In concordance with previous
models22,23, our model predicts thresholding behavior with three
output regimes when sensing a single miRNA. At low EBFP2
expression (i.e., low transfection efficiency), a repressed regime
exists where mKate2 is significantly repressed relative to EBFP2.
At high EBFP2 expression, an excess of reporter mRNA is present
which saturates the miRNA machinery, resulting in a derepressed
regime. And at intermediate EBFP2 expression, a threshold
regime switches between repressed and derepressed behavior.

We tested the ability of our single-input repression model to
explain changes to experimental perturbations of M and Km. For
decreasing Km, our model predicts no shift in threshold region—

only a decrease of output within the repressed region (Fig. 1e).
We modulated Km experimentally by varying the number of
target sites for miR-21-5p in the sensor. As expected from the
model, we observed that increasing the number of target sites
increased kon, resulting in a decrease in Km and increase in
repression (Fig. 1f). This result was also confirmed for
endogenous high activity miRNA in HEK293FT and HeLa cells
(Supplementary Fig. 1). For increasing total miRNA concentra-
tion (M), the model predicts a shift in threshold region to the
right and a concomitant decrease of output within the repressed
region (Fig. 1g). We modulated M by transfecting various
amounts of miR-21-5p mimic in HEK293FT cells which have low
endogenous miR-21-5p activity. The expected decrease in output
was observed across increasing miR-21-5p amounts (Fig. 1h).
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Fig. 1 A biochemical model explains miRNA repression measured using miRNA sensors. a A schematic of the single-input miRNA low sensors used in this
study. b Fluorescence microscopy in HEK293FT cells for a control sensor with miRNA target sites with no activity (FF4) compared to a sensor with target
sites for a high activity miRNA (miR-106a-3p). Both images are merged blue/red channels and the scale bar indicates 400 μm. c Corresponding flow
cytometry data in HEK293FT cells for no activity (red) and high activity (purple) sensors. Data for a positive control using exogenous siRNA to repress
mKate2 is shown for reference (blue). Light scatter points correspond to data; dark points represent median values for data binned by EBFP2 fluorescence;
lines indicate fits to the data using a biochemical model; dashed line shows modeling results with absolutely zero miRNA activity. Fluorescence is shown in
terms of arbitrary units and with logicle scaling for the axes46. d The single-input repression model annotated with relevant species and rate constants.
Each cell is transfected with some number of plasmids (N) which are transcribed (at rate ktrs) and translated (ktln,EBFP2 and ktln,mKate2) to yield fluorescent
proteins. mKate2 transcripts are reversibly bound by a miRNA-containing complex (miRfree) forming a bound species (mmKate2,miR) which is catalytically
degraded at some rate (kcat). Two parameters, effective miRNA concentration (M) and Michaelis constant (Km) fully characterize miRNA activity. RNA and
protein species are non-specifically degraded at some rate. Fixed rate constants are approximated from literature values (Supplementary Table 3). eModel
predictions for decreasing Km while holding M constant. As Km decreases, repression increases while switching threshold is maintained. f Experimental
perturbation of Km. HEK293FT cells, which exhibit low endogenous miR-21-5p activity, were transfected with sensors containing varying numbers of target
sites for miR-21-5p and varying amounts of exogenous miR-21-5p mimic. As the number of target sites was increased (decreasing Km), repression
increased as predicted. g Model predictions for increasing M while holding Km constant. As M increases, the switching threshold increases and repression
increases as a result. h Experimental perturbation of M. As miR-21-5p mimic concentration is increased, repression increased as predicted
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To experimentally determine the values of M and Km for each
of our miRNA sensors, we used a reverse transfection protocol28

to introduce our library of sensor plasmids into common cell
lines HEK293FT and HeLa. We then used computational
methods to generate fits of M and Km for each miRNA sensor
in both cell lines, generating a list of miRNA activities. Fits based
on the model captured the effects of miRNA-mediated repression
well as indicated by low and normally distributed errors
(Supplementary Fig. 3). Most miRNA sensors exhibited low or
no miRNA activity (396 of 620 sensors or 64%), consistent with
previous reports of miRNA sensor measurements in several cell
lines (Supplementary Fig. 4)26. To compare miRNA activity to
miRNA expression in our cell lines, we submitted HEK293FT and
HeLa for small RNA sequencing and estimated miRNA
expression levels using existing computational tools29. miRNA
activity was weakly correlated with miRNA expression (Supple-
mentary Fig. 4), again consistent with observations in other cell
lines26. We also show that miRNA activities measured using the
sensor library are reproducible, with two biological replicates
showing good correlation of a M/Km metric which describes the
maximal fold repression of a sensor due to miRNA activity
(Supplementary Fig. 4). Analysis of miRNA activities in
HEK293FT, HeLa, and HepG2 helped reveal miRNAs specific
to each cell line relative to the others, which we later used to
construct a HEK293FT cell classifier (Supplementary Table 1).

Synergistic and antagonistic miRNA target set interactions.
Following the characterization of single-input miRNA sensors, we

sought to use the obtained parameters to make predictions for
more complicated multi-input cell classifiers. Because our initial
purely synergistic model did not provide accurate predictions for
multi-input sensor function, we evaluated models that include
additive, antagonistic, or synergistic interactions (Fig. 2). These
three types of interactions were implemented as in the
Chou–Talalay method30, which comprises a standard set of
equations used to determine whether inhibitors interact with each
other. Additive predictions were made assuming mutually
exclusive inhibitors, antagonistic predictions were made using
similar assumptions but with a Hill coefficient value near zero,
and synergistic predictions were made by multiplying contribu-
tions from each target site set (Fig. 2b, c and Supplementary
Note 1). Here additive interactions indicate that combined
repression from multiple inhibitors is equal to the ‘sum’ of their
separate effects. For example, with two miRNAs giving 50%
knockdown at a given plasmid concentration, additive interaction
would give a final knockdown of 67%. Note that final knockdown
is not 75% since that would indicate independent contributions to
knockdown, which is a synergistic interaction. By definition
synergistic and antagonistic interactions mark a deviation from
the additive case. For the Ant/Syn model and taking the previous
example of two miRNAs with 50% knockdown, independent (i.e.,
synergistic) contributions result in the intuitive 75% knockdown,
while for the antagonistic case knockdown would be 50% since
only the highest activity miRNA contributes to repression.

We then tested 3-input sensors (Fig. 3a) encoding several
combinations of representative low and high activity miRNA
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target site sets in the 3′ UTR of the output and compared
obtained data to the predictions (Fig. 3b, c). Antagonistic
interactions best predicted the multi-input data as indicated by
lower maximal fold error and mean squared error, while additive
and synergistic predictions consistently overestimated miRNA
activity (Fig. 3d). Interestingly, inclusion of up to three high
activity target sets (12 target sites) had minimal effect on
increasing repression further than the single highest activity
target set, i.e., the 3-input sensor exhibits activity reflective of only
the highest activity target set.

To fully explore the general composition rules for miRNA
target sets, we tried spacing target sets further apart or placed
them in separate UTRs and investigated whether interactions
were antagonistic, additive, or synergistic. We first tested
separating target sets withing the 3′ UTR with spacers up to
600 bp but still observed antagonistic interactions even with the
longest spacers (Supplementary Fig. 2). In contrast, we found that
miRNA target sets in the 5′ UTR exhibited synergistic miRNA
repression when combined with target sets in the 3′ UTR (Fig. 4).
Based on these results we hypothesized that models for predicting
miRNA activity would need to consider miRNA target set
position in addition to M and Km.

Ant/Syn model predicts multi-input miRNA classifier output.
Next we tested whether we could generate more accurate pre-
dictions than previous repression models by taking into account
antagonistic interactions of miRNA target sets within UTRs and
synergistic interactions across UTRs. This model, which we term
an Ant/Syn model, first calculates (on a per transfection marker
basis) the antagonistic interactions within each of the UTRs

(approximated as the minimum reporter expression observed for
any single-input sensor within one UTR) and then calculates the
synergistic interactions between the UTRs by multiplying the
contributions of each UTR to obtain the final output (Supple-
mentary Fig. 5). This is in contrast to the antagonistic-only model
where only maximal repression for any single miRNA is taken, or
the synergistic-only model where all contributions for each
miRNA target site are multiplied, regardless of UTR position.

To test the Ant/Syn model experimentally, we built several
variants of 4-input miRNA sensors (i.e., classifiers) bearing two
miRNA target site sets in the 5′ UTR and two miRNA target sets
in the 3′ UTR (Fig. 5a). We selected twelve miRNA target sites for
study based on their miRNA activity measured from single-input
sensors—four each of high, medium, and low activity miRNAs.
We assembled and assayed reporter expression of 36 different 4-
input sensors in HEK293FT cells representing a diverse panel of
activities (Supplementary Table 2), one example of which is
shown in Fig. 5b. Across 36 tested cases, the Ant/Syn model
predicted final output similarly or better than the antagonistic-
only or synergistic-only models (Fig. 5c). For all classifiers with
behavior accurately predicted by the synergistic-only model, the
antagonistic-only model underestimated activity, while classifiers
with behavior accurately predicted by the antagonistic-only
model had activity overestimated by the synergistic model.

Ant/Syn-informed classifiers better distinguish cell types. We
next investigated whether the Ant/Syn model could be used to
design better single-input sensors and multi-input cell classifiers
containing miRNA targets in both 5′ and 3′ UTRs which would
allow sensors and cell classifiers to leverage antagonistic and
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synergistic interactions to obtain better sensitivity or specificity
in classifying different cell types. Such multi-input constructs
also inform principles by which endogenous miRNAs could
utilize 5′ UTR target sites to enhance conventional activity
from the 3′ UTR6. We built two versions of a sensor containing
multiple target sets for miR-21-5p, which shows high activity
in HeLa and HepG2 cells but low activity in HEK293FT cells.
In one variant, target site sets were placed in only the 3′ UTR,
while in another variant, sets were placed in both the 5′ and 3′
UTRs. We also constructed a 3-input cell classifier containing
target sites for miR-21-5p, miR-23a-3p, miR-106b-3p where
targets were either all in the 3′ UTR or separated into different
UTRs (Fig. 6a).

When separately transfected into HEK293FT, HeLa, and
HepG2 cells, all sensors and classifiers showed reporter knock-
down in HeLa and HepG2 cells and retained high reporter
expression in HEK293FT cells as expected (Fig. 6b). The
classifiers with targets in separate UTRs showed a marked
reduction in reporter expression for off-target cells at high
transfection levels resulting in greater on/off ratio (280-fold on/
off for miR-21-5p, 210-fold for 3-input), in contrast to classifiers
with targets only in the 3′ UTR (14-fold on/off for miR-21-5p, 29-
fold for 3-input). Thus our new constructs with target sets in both
UTRs achieved ~20-fold (miR-21-5p sensor) and 7-fold (3-input
classifier) improved on/off ratio, compared to constructs with
target sets in only the 3′ UTR. The reduction in false positive
output is consistent with the synergistic interactions anticipated
for miRNA target sets placed in separate UTRs. We then tested
whether we could enhance classification in a mixture of cell types.
We chose to test in a co-culture of HEK293FT, HeLa, and HepG2
cells where HEK293FT cells expressed genomically integrated
EYFP in order to provide an independent measure of whether
cells classified as HEK293FT by our classifiers were indeed
HEK293FT in origin (Supplementary Fig. 6). Reporter expression
in co-culture was similar to that in separate transfections, with
classifiers designed to utilize synergistic interactions exhibiting
reduced false positive rate at high transfection levels (Fig. 6c).
Quantification of sensitivity and specificity showed that
while sensitivity was high (>95%) for all designs, specificity was
improved (>85%) only in the new designs based on the Ant/Syn
model (Fig. 6c). We chose to place only miR-21-5p target sets
into the 5′ UTR of these classifiers to minimize the length of

the 5′ UTR—reducing the potential for 5′ UTR structure effects
on reporter expression—while still utilizing synergism across
UTRs.

While it is possible to duplicate all miRNA target sites across
both UTRs, this may not be desirable in cases where there is a size
constraint, where target sites bear an ‘ATG’ (which can initiate
translation of an upstream ORF), or when it is important to have
synergistic interactions for different miRNA species (with
duplicated target sets only the single miRNA species with highest
activity would show synergism). Moreover, target site duplication
can be adjusted to optimize the trade-off between sensitivity and
specificity according to whichever is more important for the given
application. For example, high sensitivity may be more important
for cell classifiers designed to specifically kill cancer cells to reduce
the chance of cancer cells escaping, while high specificity may be
more important for classifiers designed to induce differentiation
of a particular cell type at a particular differentiation stage (e.g.,
driving liver differentiation in a subset of cells in the endoderm
but absolutely not elsewhere). We tested several variants of cell
classifiers with and without target site duplication and examined
the effects of duplication on classifier sensitivity and specificity.
The Ant/Syn model predicts that high sensitivity and lower
specificity will be obtained by removing target set duplication
from both UTRs, which we observed in the data (Fig. 7). The
effects of miRNA target location and duplication were further
analyzed using receiver operator characteristic (ROC) curves
(Fig. 8). Again, classifiers with targets in both UTRs demonstrated
improved accuracy and area under the curve (AUC) compared to
those with targets in only the 3′ UTR (Fig. 8a, b), while those with
target set duplication showed trade-offs between specificity and
sensitivity (Fig. 8c) and in certain cases improved performance
without target duplication (Fig. 8d).

Discussion
We report a framework for making accurate predictions of multi-
input miRNA sensors using parts level characterization. Several
aspects of miRNA target regulation comprise our current design
framework. First, concatenation of miRNA target sites in a UTR
increases repression of a target reporter up to approximately 4
repeats (Supplementary Figs. 1 and 7). 1–2 repeats are often
insufficient to obtain significant repression and 3–4 repeats may
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be required even with high activity miRNAs, suggesting possible
roles of cooperativity on miRNA repression. Second, con-
catenating target ‘sets’ of different miRNAs within the 3′ UTR
does not result in increased repression, indicating an antagonistic
interaction where the combined activity reflects only the miRNA
target set with the greatest activity. Third, target sets in both 5′
and 3′ UTRs exhibit synergistic interactions which can be
approximated as the multiplication of fold repression contribu-
tion from the 3′ UTR with that from the 5′ UTR. Finally,
antagonistic and synergistic interactions are combined into our
proposed Ant/Syn model. Based on our observations, the Ant/Syn
model is better able to explain data from a panel of 4-input
classifiers than either the antagonistic-only or synergistic-only
models. Our model represents a considerable advance compared
to previous computational models of miRNA activity22,23 in that
it accurately models circuits that respond to multiple different
miRNAs. We note that while our multi-input sensors and Ant/
Syn model are most relevant for sensing applications, the data
may also be useful for probing the limits of miRNA biology since
our sensors are designed for maximal repression.

We examined the potential for cooperative effects when con-
catenating multiple target sites into sets31. Interestingly, we
observed apparent cooperativity across target sites for miRNAs

even when different target sites are interleaved to make new
mixed target sets. In other words, a set of interleaved target sites
for four different high activity miRNAs represses similarly to a set
of four targets of the same high activity miRNA (Supplementary
Fig. 7). This effect suggests that cooperativity could be mediated
by Ago–Ago or Ago–protein–Ago interactions. One proposed
protein mediator is GW182 which can interact with multiple Ago
molecules simultaneously, forming a complex containing many
Ago molecules32–35. When one miRNA target site-containing
transcript is bound by Ago, other Ago molecules within the
complex are more likely to bind the transcript, enabling coop-
erative repression (Supplementary Fig. 8). One potential com-
plication for this model is that cleavage-independent repression
mechanisms (e.g., mRNA deadenylation, target sequestration)
should dominate over cleavage-dependent mechanisms. Other-
wise each target site could be independently cleaved when bound
by Ago2, leading to synergistic repression contributions for each
target site. Since addition of exogenous siRNA along with com-
plementary target sites was able to enhance repression of tran-
scripts already containing three high activity target sets (i.e.,
siRNA targets act independently of miRNA targets), our data
suggest that there could be two different repression mechanisms
for siRNA and miRNA even when all target sites are perfectly
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only, synergistic-only, and Ant/Syn model predictions for 36 different classifiers. Errors calculated as mean squared error between prediction and obtained
data are plotted for each of the three possible comparisons. Additionally, points are colored by the degree of miRNA activity underestimation or
overestimation according to the model plotted along the x axis (i.e., top row colored by antagonistic-only model errors, middle row by synergistic-only
model error, bottom row by Ant/Syn model errors), resulting in six total graphs. For all 36 tested combinations of miRNAs, errors from the Ant/Syn model
were similar or better than those from the other two models, as shown by most points falling within upper-left triangle. In comparison, the antagonistic-
only model tended to underestimate repression and the synergistic-only model tended to overestimate repression
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complementary, with siRNA utilizing cleavage and miRNA using
cleavage-independent mechanisms (Supplementary Fig. 9). While
siRNA and miRNA are known to repress via different mechan-
isms for endogenous transcripts36, mechanisms for synthetic
sensors with perfectly complementary target sites have been less
studied. Other relevant evidence in plant biology suggests that
cleavage-independent mechanisms like translational inhibition
are important even though most miRNA target sites in plants are
perfectly complementary37 and it has been suggested that non-
cleaving repression may be the default mechanism for miRNA
repression in both mammals and plants, despite near-perfect
complementarity for the latter38. Additionally, examples of
miRNA–RISC complexes lacking cleavage capability have been
described previously39.

In general we and others40 have observed that miRNA target
site sets placed in the 5′ UTR showed similar repression levels to
those in the 3′ UTR. However, the role of 5′ UTR miRNA target
sites in endogenous transcripts has not been studied extensively.
Since there appears to be ample potential for effective miRNA
regulation at the 5′ UTR, it appears likely that endogenous
miRNA-mRNA targets within the 5′ UTR should be more
abundant than the six validated examples currently described in

the literature41. Several studies have shown miRNA repression in
5′ UTRs could be important in some transcripts, even though
such repression is less-studied than that in the 3′ UTR despite
hundreds of possible 5′ target sites revealed by computational
predictions6,40. For comparison, the number of predicted target
sites in the 3′ UTR is on the same order of magnitude (though
several fold greater) when the same computational approach is
used6. Analysis of CLIP-seq data has also identified hundreds of
thousands of target sites in the CDS and 5′ UTR regions in
mammals42. Thus, miRNA regulation of 5′ UTRs is an important
but understudied aspect of miRNA biology.

Our observation of synergistic interactions across UTRs sup-
ports the notion that endogenous transcripts bearing miRNA
targets in both UTRs, termed miBridges, would have enhanced
repression6. Moreover, it may be possible that miBridges are not
limited to transcripts bearing target sites for the same miRNA
molecule in both UTRs, since we observed that different miRNA
targets still exhibit synergistic interactions when placed in
opposite UTRs (Figs. 4 and 5) and that combinations of different
miRNAs act similarly to combinations with the same miRNA
(Supplementary Fig. 7). In this case miBridges could be a more
general and common motif in biology, where miRNA targets in
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Fig. 6 miRNA target site position affects cell classifier performance substantially. a Circuit diagrams for miRNA classifiers to distinguish HEK293FT cells
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the 5′ UTR enhance regulation in the 3′ UTR, similarly
to measured effects from targets in the CDS to those in the
3′ UTR5.

There are several possible explanations for the mechanistic
basis for the Ant/Syn behavior we observed. We tested whether
steric effects (Supplementary Fig. 2), inherent biological repres-
sion limits (Supplementary Fig. 9), and miRNA sponging (Sup-
plementary Fig. 10) could explain the antagonistic interactions,
though none were able to. The observation of distinct synergistic
and antagonistic behavior based on whether target sites are on
separate or the same UTRs suggests that distinct mechanisms for
miRNA repression may exist for targets in the 5′ UTR compared
to the 3′ UTR, otherwise we would expect to observe only

antagonistic effects even with target sets in separate UTRs. The
repression effects we observed could be explained if target sites in
separate UTRs separately saturate distinct repression machinery
(e.g., different subunits of the CCR4-NOT complex mediating
deadenylation or translational repression). Indeed, numerical
simulation of models incorporating shared or separate repression
machinery were able to recapitulate the antagonistic and syner-
gistic interactions, respectively (Supplementary Fig. 11). Since
targets in the 3′ UTR are generally considered to mediate mostly
mRNA destabilization43, it is possible that targets in the 5′ UTR
act mostly to translationally repress the targeted transcript
(Supplementary Fig. 8). Due to the proximity of 5′ UTR targets to
translational machinery, it may be possible that a majority of
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Fig. 7 Ant/Syn model predicts the effects of target site position and number on the trade-off between sensitivity and specificity. Several classifiers were
tested to further explore the effect of target set position and duplication on classifier sensitivity, specificity, and accuracy. We chose to sense three different
miRNAs: miR-21-5p and let-7a-5p have high activity in HeLa and slight activity in HEK293FT, miR-25-3p has medium activity in HeLa and HEK293FT. In
this example, miR-25-3p would be important for classifying against a third cell type not shown here (e.g., glioma47). a, b To test the effects of miRNA target
set duplication on classification, versions of 2-input classifiers were built containing two target sets for let-7a-5p and miR-21-5p in both UTRs (a), or single
sets in separate UTRs (b). Output in the classifier with four total target sets was dominated by synergy between miR-21-5p activity from both UTRs,
resulting in very low output in HeLa and high specificity (97%) but with a slight trade-off in sensitivity (91%) since output in HEK293FT (where miR-21-5p
activity is greater than let-7a-5p) was reduced with target site duplication. In contrast, high sensitivity (99%) but lower specificity (79%) was obtained
with the classifier with only a single set of each miRNA target (b) since output in HEK293FT cells was attenuated by only one miR-21-5p target set. c, d
Classifiers similar to a and b were built containing sets of target sites for miR-21-5p and miR-25-3p with duplication (c) and without (d). Again duplication
resulted in high specificity (100%) but with a significant trade-off in sensitivity (44%) due to synergistic effects from both sets of miR-25-3p targets, which
allows two medium activity target sets to exhibit high activity when combined in HEK293FT cells. Also, miR-25-3p targets contain an ATG sequence
resulting in further reduction in output. In contrast, the classifier with only two target sets avoided multiplicative effects from miR-25-3p and introduction of
uORFs. These effects result in greatly improved sensitivity (82%) at a cost of slightly reduced specificity (87%). The latter classifier also showed higher
overall accuracy (84% compared to 72%)
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repression there is due to translational repression. Interestingly,
for the RNA binding protein LIN41 in C. elegans, different
modes of repression have been observed depending on UTR
location (i.e., translational repression in the 5′ UTR and mRNA
destabilization in the 3′ UTR)44. Results for LIN41 combined

with our data, provide the attractive hypothesis that other RNA
binding proteins like Ago may use a similar mechanism to
mediate different modes of repression depending on location
within the UTRs. Our results highlight the need for further
studies on elucidating differences between repression from the
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Fig. 8 ROC curves for classifiers illustrate specificity and sensitivity tuning by miRNA target set location and number. Receiver operator characteristic
(ROC) curves derived from data in Figs. 6 and 7 were generated by calculating sensitivity and specificity at varying the mKate2 thresholds (previously fixed
at 102). For reference, circles along the curves show sensitivity and specificity at the fixed threshold used for Figs. 6 and 7. a Circuit diagrams and ROC
curves for miRNA classifiers with varying target site position as tested in Fig. 6. Circuit shading color corresponds to ROC curve color. The classifier with
miR-21-5p target sets in different UTRs (red) shows greater maximal accuracy compared to that with target sites in only the 3′ UTR (blue) as indicated by
nearer approach towards the upper left and greater area under the curve (AUC= 0.9947 vs 0.9895). b Similarly, the 3-input classifier with miR-21-5p in
the 5′ UTR and miR-23a-3p and miR-106b-3p in the 3′ UTR (purple) exhibits better overall classification than the variant with target sets in only the 3′ UTR
(yellow), with AUCs of 0.9952 and 0.9881, respectively. c Circuit diagrams and ROC curves for miRNA classifiers with or without target site duplication
across UTRs for let-7a-5p and miR-21-5p. Data for c and d correspond to that from Fig. 7. Both classifier variants show similar maximum accuracy when
classifying between HEK293FT and HeLa cells, though at the example threshold of 102 the variant without duplication (red, AUC= 0.9833) prioritizes
sensitivity while the variant with target set duplication (blue, AUC= 0.9750) prioritizes specificity (see inset for magnified view). d For classifiers with
target sites for miR-25-3p and miR-21-5p, the circuit without duplication (purple, AUC= 0.9235) exhibits better classification compared to that with
duplication (yellow, AUC= 0.7018), since repression was determined by both miR-25-3p and miR-21-5p rather than being dominated by miR-21-5p and
also since potential uORFs are avoided by removing miR-25-3p targets from the 5′ UTR (both effects enhance sensitivity). Error bars indicated s.d.
calculated by threshold averaging from three technical triplicates
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5′ UTR, 3′ UTR, and coding region for both synthetic miRNA
sensors and endogenous transcripts1.

In summary, we describe the development of a workflow that
uses an Ant/Syn model, which takes into account miRNA target
set number, location, and interactions, in order to accurately
predict the behavior of multi-input miRNA sensors from well-
characterized single-input sensors. In contrast to previous
methods yielding fold enrichment metrics26, our characterization
provides highly detailed information of miRNA activity across a
wide spectrum of transduction efficiencies and output levels,
allowing accurate predictions of multi-input miRNA classifier
function using our Ant/Syn miRNA repression model. This
model contributes to synthetic biology by enabling predictable
responses to miRNA inputs, and to biology by showing that
miRNA repression must take into account location and number
of target sites.

Methods
Construction of miRNA sensor library. A common low sensor backbone (LSB)
plasmid was constructed using a Gateway-Gibson strategy45 to enable assembly of
miRNA low sensor libraries in a single Golden Gate27 step. Long DNA oligonu-
cleotides encoding miRNA target site repeats were synthesized as ultramers by
IDT, annealed and restriction-ligated via BbsI-mediated Golden Gate. White/blue
screening enabled selection of mostly correct clones which were further verified by
Sanger sequencing. Relevant plasmid and oligonucleotide sequences are given in
Supplementary Datas 1–3. Overhangs for Golden Gate steps are listed in Supple-
mentary Table 4.

Construction of miRNA classifiers. Several plasmid backbones were constructed
to expedite assembly of miRNA classifiers. JG107 and JG108 plasmids were
assembled similarly to LSB and contain a LacZ cassette into which miRNA target
sites were cloned using BbsI-mediated Golden Gate. An important feature for these
plasmids is that their miRNA target sites possess distinct overhangs when digested
with BsaI. The low sensor backbone reverse (LSBr) plasmid retains the same design
of LSB but with BsaI and BbsI recognition sites reversed. The LSBr-5 and 3UTR
construct introduces a further addition of a BsaI/BbsI-flanked mCherry selection
cassette in the 5′ UTR of the mKate2 transcription unit. miRNA target sites present
in LSB, JG108, and JG107 were then used as inputs to clone 3-input classifiers into
LSBr using BsaI-mediated Golden Gate. 4-input classfiers were cloned into LSBr-
5and3UTR using a similar strategy, with target sites for the 3′ UTR originating
from LSB and JG108 plasmids while JG107 encoded an inert sequence. Target sites
were cloned into the 5′ UTR from annealed oligonucleotides flanked by BsaI sites.
White colonies were selected and verified by Sanger sequencing

Cell culture. HEK293FT were purchased from Thermo Fisher, HeLa and HepG2
cells were obtained from ATCC. HEK293FT and HeLa cells were grown in DMEM
with 4.5 g/L glucose, L-glutamine, and sodium pyruvate (Cellgro) supplemented
with 10% characterized FBS (HyClone). HepG2 cells were grown in DMEM with
high glucose, 2 mM L-glutamine, without sodium pyruvate (HyClone) supple-
mented with 10% characterized FBS (HyClone). All cell lines were grown at 37 °C
and 5% CO2. All cell lines tested negative for mycoplasma.

Transfection of miRNA sensors and classifiers. miRNA low sensor libraries
were transfected into cells using a reverse transfection method28. Example volumes
are provided for a 100 μL mix which was sufficient for roughly 25 wells in 96-well
plate format. 2 or 0.2% gelatin (Sigma-Aldrich) was diluted to 0.05% in sterile
water. 1 volume of 2M sucrose was added to 9 volumes of buffer EC from an
Effectene transfection kit (Qiagen) to make a master mix with total volumes
depending on how much DNA was transfected. A total of 37.5 μL Buffer EC
mixture was added to 2 μg of DNA sample for a final DNA concentration of 20 ng/
μL after addition of all components (DNA, buffer EC, enhancer, Effectene, gelatin).
Overall, 3.75 μL of enhancer solution was added to the DNA/EC mixture, mixed
gently, and incubated at room temperature for 5 min. A total of 12.5 μL of Effectene
was added and mixed followed by incubation for 10 min at room temperature.
53.75 μL of 0.05% gelatin was added and mixed gently to obtain the final trans-
fection mix. A total of 4 μL of the mixture was added to each well in a 96-well plate,
wells were covered with sterile adhesive aluminum covers, and stored at -80 °C
without dessication. Cells were reverse transfected by dissociating and counting
cells as normal, followed by seeding of cells at usual concentration for forward
transfection in 100 μL of cell media.

miRNA classifiers were transfected using forward transfection methods with
lipofectamine 3000 (Thermo Fisher) according to the manufacturer’s protocols. All
transfections were conducted with 400 ng of DNA, 1 μL of P3000 reagent, 1 μL of
lipofectamine 3000 in Opti-MEM (Thermo Fisher). HEK293FT cells were seeded
in 24-well plates at various densities in 0.5 mL volume of media (HEK293FT= 2 ×

105 cells/well, HeLa= 1 × 105 cells/well, HepG2= 1.5 × 105 cells/well). For cell
mixtures, 5 × 104 of each cell type was seeded per well and a 1:3 ratio of DMEM
high glucose:DMEM was used. miR-21-5p mimic was obtained from Sigma-
Aldrich and cotransfected using the same method as for DNA. Target site
combinations for 4-input sensors are listed in Supplementary Table 2.

Flow cytometry. Flow cytometry was conducted using an LSR Fortessa cytometer
with 405, 488, and 561 nm lasers (BD Biosciences). Reverse transfected cells in 96-
well plate format were analyzed using the high throughput sampler option to
collect >10,000 cells as quickly possible. Forward transfected cells in 24-well plate
format were analyzed in tube format with >50,000 events collected per sample.
mKate2 was detected using a 561 nm laser with 610/20 filter and 235 PMT voltage,
EBFP2 was detected using a 405 nm laser with 450/50 nm filter and 240 PMT
voltage, and EYFP was detected using a 488 nm laser with 530/30 nm filter and 200
PMT voltage.

Model-based fitting and prediction of miRNA activities. Models and predictions
were implemented in MATLAB with steady-state assumptions. Briefly, cytometry
files for single-input sensors were read in, gated using forward and side scatter,
binned by EBFP2 fluorescence, and parameters fit to the model using lsqcurvefit.
Parameter fits were used to generate predictions either by multiplication of fold
repression (synergistic-only model) or taking the minimization of mKate2
expression (antagonistic-only model) or a combination of the two (Ant/Syn
model). MATLAB scripts for analysis are provided in Supplementary Data 4 and
rate constants used are listed in Supplementary Table 3.

Statistical analysis. Statistics are based on a log-normal distribution in fluores-
cence with a geometric standard deviation of approximately 2.8, an assumption
supported by all samples in the flow cytometry data we collected. Greater than
50,000 events were chosen to allow at least 100 data points per fluorescent bin, and
binned data are presented as medians. Unless otherwise indicated, bar plots
indicate means from the three technical triplicates overlayed on the same graph.
For ROC curves, error bars were calculated using threshold averaging and again
indicate standard deviations from technical triplicates.

Code availability. MATLAB scripts/functions are provided as Supplementary
Data 4 and are also available from Github at the following link https://github.com/
jeremygam/multi-input_miRNA_sensor_prediction.

Data availability. All data files supporting this study are available on request
from the corresponding author. DNA sequences are provided in Supplementary
Datas 1–3 and GenBank accession number MH210859 while physical plasmids will
be available from Addgene (#103144-103770).
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