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The survival benefit of anti–vascular endothelial growth factor (VEGF) therapy in metastatic 

colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We 

show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent 

alteration of the physical properties of colorectal liver metastases. Preoperative treatment with 

bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) 

deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the 

liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated 

glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of 

these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. 

Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the 

extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially 

rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged 

survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that 

extracellular matrix components such as HA could be a potential therapeutic target for reducing 

physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy.

INTRODUCTION

Systemic chemotherapy is the main treatment option for patients with inoperable metastatic 

colorectal cancer (mCRC). The effectiveness of chemotherapy depends on the delivery of 

the drugs into the tumor, which in turn is dependent on tumor blood perfusion (1–4). There 

is increasing evidence that the solid stress generated by proliferating cells in a growing 

tumor mass can cause compression of blood vessels and reduced perfusion (5). Components 

of the extracellular matrix (ECM) play an important role in the solid stress–induced blood 

vessel collapse because they transmit the mechanical stress created by proliferating cells 

within the confined space of a tumor (6). Targeting the ECM components has therefore been 

suggested as a strategy to improve perfusion, drug delivery, and, ultimately, outcomes in 

patients with solid malignancies (3, 7).

The anti–vascular endothelial growth factor (VEGF) antibody bevacizumab in combination 

with chemotherapy is the current standard of care for mCRC, based on an overall survival 

improvement (8). This survival benefit, however, is modest, and the disease ultimately 

progresses (9). The underlying mechanisms of acquired resistance to antiangiogenic therapy 

remain unclear (7). In part, this is a result of the limited understanding of the effects of anti-

VEGF therapy on the microenvironment of metastatic lesions. Recent preclinical studies 

have shown that antiangiogenic therapy increases collagen expression in primary tumors, as 

a consequence of increasing hypoxia (10, 11). The effect of antiangiogenic therapy on the 

expression of noncollagenous matrix components such as hyaluronic acid [also known as 

hyaluronan (HA)] or sulfated glycosaminoglycans (sGAGs) in metastatic lesions is not well 

studied. As an abundant and highly hydrated matrix molecule with negatively charged chains 

that resist compression, HA has gathered increasing attention as a biologically relevant and 

potentially targetable cause of vessel compression and poor drug delivery in desmoplastic 

tumors (12–15). Recently, liver metastases from pancreatic cancer have been reported to be 

desmoplastic with high concentrations of HA and collagen that correlated with patients’ 

survival (16). Here, we investigated the effects of antiangiogenic therapy on the composition 
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of the ECM, both collagenous and noncollagenous, and blood perfusion as mechanisms of 

acquired resistance to antiangiogenic therapy in liver mCRC.

RESULTS

Bevacizumab increases HA expression in human CRC liver metastases

Given the lack of data on expression of HA in human liver mCRC, we first performed 

immunohistochemical analyses of surgical specimens from mCRC patients who underwent 

metastasectomy. We found higher expression of HA in the metastases compared to that of 

the uninvolved liver parenchyma, where HA expression was restricted to the periportal fields 

(fig. S1). Next, we examined the impact of preoperative treatment on HA deposition in 49 

liver metastases resected from 43 patients (table S1). Although there was no difference in 

HA between patients with and without preoperative chemotherapy, we found significantly 

increased HA expression in liver mCRC tissues from patients treated with preoperative 

bevacizumab and chemotherapy (P < 0.001) (Fig. 1, A and B). To further confirm this 

potential effect of bevacizumab, we analyzed serial samples from patients who underwent 

multiple liver resections for CRC liver metastases and carried out intraindividual 

comparisons of HA expression. These analyses confirmed the significant increase in HA 

expression after preoperative treatment including bevacizumab (P = 0.024, paired t test), 

with relatively low intensity of staining in samples from the same patients who were 

resected at different time points without previous exposure to anti-VEGF therapy (Fig. 1, C 

and D).

Anti-VEGF therapy alters mechanical properties of murine CRC liver metastasis

Next, to investigate the mechanisms and consequences of increased HA expression after 

VEGF-targeted therapy, we used two syngeneic mouse models of liver mCRC (SL4 and 

CT26) (17, 18). The effectiveness of anti-VEGF therapy was different in these models. 

Whereas treatment with B20.4-1.1 [a VEGF-blocking antibody abbreviated as B20 from 

here onward (19)] significantly prolonged survival of mice bearing liver metastatic SL4 

tumors (median survival, 14.25 versus 10.4 days; P < 0.001, log-rank test), the survival 

advantage in the CT26 model did not reach statistical significance (median survival, 13.5 

versus 12 days; P = 0.072, log-rank test) (Fig. 2A). The macroscopic appearance of the 

metastatic lesions in the anti-VEGF treatment groups was different from that seen in the 

control groups and was characterized by a stiff texture, suggesting changes in the amount 

and/or composition of the ECM. We also found that the DNA content, normalized to wet 

weight, was significantly lower in SL4 (P = 0.011) and CT26 (P = 0.023) liver mCRCs of 

mice treated with B20, suggesting a shift in the cell-to-matrix ratio (fig. S2, A and B). To 

quantify the changes in the mechanical properties of liver mCRCs after anti-VEGF therapy, 

we performed stiffness measurements using unconfined compression tests of metastases 

harvested from animals treated with B20. These experiments confirmed a dose-dependent 

increase in tumor stiffness in SL4 (P = 0.002) and CT26 (P < 0.0001) liver mCRC models 

(Fig. 2B). In addition, a recently developed method tomeasure growth-induced solid stress 

(6) revealed significantly higher solid stress in anti-VEGF–treated mCRCs. The normalized 

mean tumor opening—a measure of solid stress—increased from 0.690 to 1.506 for SL4 

tumors (P = 0.018) and from 1.830 to 5.884 for CT26 tumors (P = 0.019) (Fig. 2C). Anti-
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VEGF therapy caused >80% reduction in tumor perfusion (Fig. 2D). Together, these data 

indicate that anti-VEGF therapy (at 5 mg/kg) alters the mechanical properties of liver 

metastases by inducing tumor desmoplasia.

HA and sGAG in colorectal liver metastases increase after anti-VEGF treatment

To evaluate the effect of anti-VEGF therapy on the ECM, we first measured the relative 

abundance of the major ECM components. In line with the clinical findings of increased HA 

expression in human liver mCRCs after bevacizumab treatment, we found a threefold 

increase of HA in SL4 (0.503 ± 0.035 versus 1.766 ± 0.233 μg HA/mg tissue; P < 0.0001) 

and CT26 (0.055 ± 0.0108 versus 0.143 ± 0.014 μg HA/mg tissue; P < 0.0001) liver mCRCs 

in mice (Fig. 3A). In addition, the expression of CD44, the HA receptor, was increased in 

metastatic lesions of SL4 (P = 0.008) and CT26 (P = 0.005) tumors after anti-VEGF therapy 

(fig. S3, A and B). Moreover, we found a twofold increase in sGAG expression after anti-

VEGF therapy in both mouse models (SL4: 0.231 ± 0.022 versus 0.43 ± 0.044 μg sGAG/mg 

tissue; P = 0.0005; CT26: 0.149 ± 0.021 versus 0.277 ± 0.028 μg sGAG/mg tissue; P = 

0.001) (Fig. 3B). The increased expression of sGAG was then confirmed in liver mCRCs in 

patients treated with preoperative chemotherapy with and without bevacizumab (fig. S4). 

The increase in collagen deposition was less pronounced and reached statistical significance 

only in the SL4 model (P = 0.01) (Fig. 3C), a finding consistent with the data from patients 

with liver mCRCs after preoperative chemotherapy with and without bevacizumab (20). To 

rule out the possibility that the changes in the ECM are off-target effects related to anti-

VEGF therapy, we treated non–tumor-bearing mice with B20 for 3 weeks. Histological 

analysis did not reveal obvious parenchymal changes in the liver (fig. S5A). Moreover, 

biochemical analysis of the liver tissue did not show major differences between the groups 

with respect to HA and sGAG abundance (fig. S5, B and C). We then sought to correlate the 

stiffness of the liver mCRCs with the presence of specific ECM components. We found a 

strong correlation between stiffness and tumor concentration of HA (SL4: r = 0.72; P < 

0.0001; CT26: r = 0.554; P < 0.0001) or sGAG (SL4: r = 0. 665; P < 0.0001; CT26: r = 

0.524; P = 0.0002) but no association with collagen content (Fig. 3D).

Inflammatory cell depletion does not alter HA production after anti-VEGF therapy

Immune cells, specifically CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) 

populations such as Ly6Chi inflammatory monocytes (IMs), play a role in liver fibrosis, 

tumor progression, and resistance to antiangiogenic therapy, including primary liver tumors 

(11, 21–24). To evaluate the potential role of these cell populations in ECM deposition after 

anti-VEGF therapy, we performed flow cytometry analysis of tumor tissues from mice 

treated with B20 or IgG. The results demonstrate a significant influx of Ly6Chi IMs as well 

as metastasis-associated neutrophils (MANs) in SL4 liver mCRCs, at 3 days (Ly6Chi IMs: P 
= 0.016; MANs: P = 0.024, Student’s t test) and 6 days (Ly6Chi IM: P = 0.0001; MAN: P = 

0.005, Student’s t test) after initiation of anti-VEGF therapy (Fig. 4, A and B). These results 

were confirmed in the CT26 liver mCRCs (fig. S6). Flow cytometric analysis of the spleen 

tissue—a “reservoir” for tumor-associated monocytes and neutrophils (25, 26)—and 

peripheral blood cells showed that increased counts of these cells in metastases and in 

peripheral blood associated with lower counts in the spleen. These data suggested a release 

of these cell populations from the spleen into the circulation and the mCRC tissues (Fig. 4, 
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B and C). There were no significant differences in the cell numbers in the bone marrow at 3 

days (Ly6Chi IM: P = 0.85; MAN: P = 0.81, Student’s t test) and 6 days (Ly6Chi IM: P = 

0.68; MAN: P = 0.22) after initiation of anti-VEGF therapy (fig. S7).

To further evaluate the biological relevance of these immune cell populations in liver mCRC 

response to anti-VEGF therapy, we selectively depleted these cells by using a genetically 

engineered mouse model (Ccr2−/− mice) for depletion of Ly6Chi IM and a monoclonal 

antibody against Ly6G for depletion of MANs. Liver metastases from Ccr2−/− mice had an 

83% reduction in Ly6Chi IM compared to WT mice receiving VEGF-targeted therapy (P = 

0.009, Student’s t test), whereas combined treatment with B20 and the anti-Ly6G antibody 

reduced MAN by 85% compared to B20 alone (P = 0.002, Student’s t test). Furthermore, 

depletion of one MDSC population did not result in compensatory recruitment of the other 

cell type (Fig. 4D). Biochemical analysis of liver mCRCs collected from these mice showed 

persistent enrichment of HA in mice treated with B20 despite depletion of Ly6Chi IMs 

(0.731 ± 0.132 versus 1.941 ± 0.347 μg HA/mg tissue; P = 0.004, Student’s t test) or MANs 

(0.592 ± 0.099 versus 2.445 ± 0.432 μg HA/mg tissue; P = 0.002, Student’s t test) (Fig. 4E). 

Similarly, depletion of Ly6Chi IMs (0.192 ± 0.022 versus 0.384 ± 0.042 μg sGAG/mg tissue; 

P = 0.001, Student’s t test) or MANs (0.176 ± 0.018 versus 0.393 ± 0.049 μg sGAG/mg 

tissue; P = 0.002, Student’s t test) did not abrogate the increased deposition of sGAG after 

anti-VEGF therapy (Fig. 4F). We did observe a decrease in collagen in Ccr2−/− mice (Fig. 

4G), a finding consistent with the role of Ly6Chi IMs in the pathogenesis of liver fibrosis 

(24). Collectively, our results show that the accumulation of HA or sGAG in liver mCRCs 

after anti-VEGF therapy is independent of the increased tumor infiltration by MDSC 

populations.

Angiotensin II receptor 1 deletion does not affect HA expression in mCRC after anti-VEGF 
therapy

The angiotensin II receptor 1 (AT1) signaling pathway is a relevant mediator of ECM 

deposition through transforming growth factor–β (TGF-β) activation and a potential target 

to decrease tumor desmoplasia (27, 28). Thus, we next investigated the role of AT1 in tumor 

stiffness and increased deposition of noncollagenous matrix after anti-VEGF therapy of liver 

mCRCs. To this end, we generated SL4 liver metastases in angiotensin II type 1a receptor 

knockout (Agtr1a−/−) mice, measured tumor stiffness, and analyzed the ECM composition 

after treatment with B20 or IgG. We found a significant increase in tumor stiffness after anti-

VEGF therapy in liver mCRCs in Agtr1a−/− mice (1.11 ± 0.23 versus 5.93 ± 0.93 kPa; P = 

0.0002, Student’s t test) (fig. S8A). Similarly, we observed a significant increase in HA 

(0.49 ± 0.036 versus 2.14 ± 0.57 μg HA/mg tissue; P = 0.008, Student’s t test) and sGAG 

(0.23 ± 0.018 versus 0.402 ± 0.044 μg sGAG/mg tissue; P = 0.005, Student’s t test) (fig. S8, 

B and C) and no significant change in collagen expression (fig. S8D). In line with these data, 

the concentration of TGF-β was either decreased (in SL4 tumors, P = 0.028, Student’s t test) 

or not changed (in CT26 tumors, P = 0.15, Student’s t test) after anti-VEGF therapy (fig. S9, 

A and B). Collectively, these data indicate that the abnormal deposition of HA and GAGs 

after anti-VEGF therapy in liver mCRCs is independent of the AT1 pathway.
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Hypoxia drives HA expression in colorectal liver metastases after anti-VEGF therapy

Previous studies have shown that increased collagen deposition after anti-VEGF therapy is 

related to tumor hypoxia (10, 11). To explore the mechanisms by which HA accumulates in 

liver mCRCs after anti-VEGF therapy and to understand the temporal relationship between 

the treatment-induced increase in hypoxia and the abnormal ECM deposition, we performed 

time course experiments. These studies revealed a significant decrease of microvessel 

density after 3 days of anti-VEGF therapy (SL4: 66% reduction; P < 0.0001; CT26: 83% 

reduction; P = 0.01, Student’s t test; n = 4 to 6 per group). This effect persisted after 6 days 

in both mCRC models (SL4: 77% reduction; P = 0.0001; CT26: 93% reduction; P < 0.0001, 

Student’s t test; n = 4 to 6 per group) (Fig. 5, A and B, and fig. S10A) and was accompanied 

by an increased hypoxic area fraction in both models (Fig. 5, C and D, and fig. S10B). We 

then measured the ECM components and found only modest changes after 3 days of therapy 

in both models. However, analyses of samples obtained 6 days after initiation of B20 therapy 

showed a marked increase of HA deposition (SL4: 0.537 ± 0.088 versus 1.04 ± 0.143 μg 

HA/mg tissue; P = 0.009; CT26: 0.025 ± 0.01 versus 0.102 ± 0.021 μg HA/mg tissue; P = 

0.006, Student’s t test; n = 6 to 8 per group) and sGAG (SL4: 0.283 ± 0.031 versus 0.597 

± 0.108 μg sGAG/mg tissue; P = 0.014; CT26: 0.197 ± 0.029 versus 0.402 ± 0.054 μg 

sGAG/mg tissue; P = 0.008, Student’s t test; n = 5 to 8 per group) in liver mCRCs (Fig. 5E). 

To further investigate the link between hypoxia and HA synthesis, we then performed a 

detailed image analysis of the localization of HA expression. HA expression was 

significantly colocalized in hypoxic regions (81.54 ± 9.23% versus 18.46 ± 9.232%; P = 

0.0003, Student’s t test; n = 8 per group) (Fig. 5F), indicating that hypoxia is associated with 

HA up-regulation after anti-VEGF therapy.

Hepatic stellate cells (HSCs) are the primary source of matrix synthesis in the liver (29). 

However, the impact of anti-VEGF therapy on HSC activation in liver mCRCs remains 

unclear. Also, the role of hypoxia in HA synthesis by HSCs is unknown. We found an 

increased amount of α-smooth muscle actin (α-SMA)+/collagen-I+–activated, matrix-

producing HSCs in SL4 liver mCRCs after treatment with B20 (P = 0.043, Student’s t test) 

(Fig. 5G). To confirm that hypoxia mediates HA synthesis in HSC, we carried out in vitro 

studies using human HSCs cultured in normoxic versus hypoxic conditions for 48 hours. 

Hypoxia caused a 4.5-fold increase in HA expression in human HSCs (P = 0.003, Student’s t 
test) (Fig. 5H). Collectively, these results indicate that increased hypoxia is the likely driving 

stimulus for HA production by activated HSCs after anti-VEGF therapy. On the basis of the 

spatiotemporal analyses, hypoxia induced by anti-VEGF therapy appears to be the initiating 

event in this context. Then, resultant aggravation of desmoplasia compromises tumor 

perfusion further and induces a vicious cycle of hypoxia, desmoplasia, and 

immunosuppression.

Targeting HA increases perfusion and improves efficacy of chemotherapy in liver 
metastases after anti-VEGF therapy

Enzymatic targeting of HA improves vascular function and perfusion in pancreatic cancer 

(12). To investigate whether depletion of HA can prevent the changes induced by anti-VEGF 

therapy, we treated mice with B20 with or without intravenous administration of a 

polyethylene glycol conjugated (PEGylated) hyaluronidase (PEG-HAse). Treatment with 
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PEG-HAse in combination with B20 resulted in a 74% reduction of HA in SL4 liver mCRCs 

compared to B20 alone (P < 0.0001) (Fig. 6A), which is consistent with previous 

observations in preclinical tumor models (30). To investigate the effects of HA depletion on 

blood perfusion of liver mCRCs after anti-VEGF therapy, we measured tissue distribution of 

Hoechst 33342 dye as a blood perfusion marker (31). Combined treatment of B20 with 

PEG-HAse significantly increased tumor perfusion compared to B20 monotherapy (perfused 

area fraction, 0.211 ± 0.044 versus 0.436 ± 0.0915; P = 0.036) (Fig. 6B). Because anti-

VEGF therapy is commonly administered together with systemic chemotherapy in mCRC 

patients (32), and given the effects of HA depletion on perfusion of liver mCRCs treated 

with anti-VEGF therapy in mice, we next examined the effect of adding chemotherapy to 

anti-VEGF therapy and PEG-HAse. As expected, PEG-HAse treatment significantly 

lowered HA concentrations in SL4 liver mCRCs (P = 0.001, Student’s t test) (fig. S11). 

Furthermore, combination of PEG-HAse with B20 and chemotherapy significantly 

prolonged survival compared to B20 and chemotherapy only (median survival, 19.06 versus 

17.13 days; P = 0.008, log-rank test) (Fig. 6C). Thus, enzymatic targeting of HA could 

potentiate the efficacy of anti-VEGF therapy with chemotherapy in liver mCRC.

DISCUSSION

We report a mechanism of acquired resistance to anti-VEGF therapy in liver mCRC. As 

shown in patient samples and orthotopic mouse models of liver mCRC, anti-VEGF therapy 

results in abnormal deposition of ECM components and, in particular, HA and sGAG. Our 

data suggest that increased HA expression after anti-VEGF therapy is a consequence of 

treatment-induced hypoxia and increases solid stress in liver mCRCs. Finally, we show that 

depleting HA can result in improved tumor perfusion and treatment efficacy in mouse 

models of liver mCRC.

Several mechanisms of resistance to antiangiogenic therapy have been proposed thus far (9, 

33). In particular, treatment-induced hypoxia and acidosis have multiple adverse effects on 

tumor cells and the tumor microenvironment that fuel progression and mediate treatment 

resistance (7). Besides induction of the epithelial-to-mesenchymal program that favors an 

invasive and metastatic tumor cell phenotype (34), hypoxia is thought to select for tumor 

cells with cancer stem cell properties that might further mediate resistance to cytotoxics, as 

well as favoring an immunosuppressive microenvironment by reducing the activity of 

cytotoxic T cells and antigen-presenting cells and by skewing the polarization of tumor-

associated macrophages toward the protumorigenic and immunosuppressive M2 phenotype 

(35–39). Increased fibrosis is another effect of hypoxia on the microenvironment of tissues 

and is dependent on hypoxia-inducible factor 1α (40). In line with these data, we also found 

an increased recruitment of immunosuppressive MDSCs after anti-VEGF therapy (41, 42). 

Although the increased infiltration of MDSCs and HA production are both driven by 

hypoxia in liver mCRC, these mechanisms appear to be independent.

We have previously demonstrated that desmoplasia affects tumor perfusion and effectiveness 

of chemotherapy by impairing vascular function (6, 27). We have also shown that ECM, 

specifically HA, in primary tumors contributes to growth-induced solid stress, and thus, 

reducing solid stress may reduce compression of tumor vessels (5, 6). Our recent studies 
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showed that HA impairs vascular function and drug delivery into the tumor in animal models 

of pancreatic and prostate cancers (12, 15, 43, 44). Here, we show that increased HA 

deposition in liver metastatic lesions is an important mechanism of acquired resistance to 

systemic treatment in this setting.

Because of the uniformly elevated interstitial fluid pressure, diffusion represents the primary 

mechanism of transport within tumors, which in turn depends on the size, charge, and 

configuration of the substance being transported. In addition, the physicochemical properties 

of the ECM—a complex network built up by collagenous and noncollagenous components

—are critical determinants of interstitial transport (45, 46). Apart from their role in creation 

of intratumor solid stress, HA and sGAGs, with their negative charge and high hydration, 

function as interstitial barriers to the delivery of cancer therapeutics by forming aggregates 

and increasing viscoelasticity of the interstitial matrix (2, 47–49).

Moreover, HA and sGAG affect various intracellular signaling pathways that can promote 

tumor cell proliferation, motility, and invasiveness as well as angiogenesis and stromal cell 

recruitment (50–53). In a recent study, Ropponen et al. reported the expression of HA in the 

CRC stroma as well as in the cytoplasm and/or pericellular region of cancer cells, which 

carried a poor prognosis (54). These authors confirmed these findings in other cancer types 

(55–58). There are several mechanisms of how HA can directly affect tumor cell viability 

and/or phenotype that ultimately promote disease progression and resistance to therapy. 

Interaction of HA with its specific cell surface receptors CD44 and RHAMM (receptor for 

HA-mediated motility) mediates evasion of apoptosis, particularly in anchorage-independent 

conditions (59–61), which might be explained by activation of several signaling cascades 

such as the phosphatidylinositol 3-kinase (PI3K)/AKT and focal adhesion kinase (FAK) 

pathways (62, 63). In addition, HA promotes a migratory and invasive tumor phenotype, in 

part, through the production and cell surface presentation of matrix metalloproteinases and 

cytoskeletal rearrangement (64–66). These effects may collectively explain the more 

aggressive phenotype associated with increased HA in our preclinical and clinical studies of 

liver mCRC (54–56, 67–69).

Our study has several limitations. Depletion of HA in addition to chemotherapy and anti-

VEGF therapy modestly prolonged survival. Although this confirmed this study’s 

hypothesis, the results of this animal experiment should be validated in a controlled clinical 

trial designed to evaluate whether HA depletion can translate into a survival benefit in liver 

mCRC patients when using clinically relevant doses from phase 1b trials (70). On the basis 

of recent reports, HA depletion appeared more effective in patients with tumors with high 

baseline amounts of HA (70). We found a substantial variability in the increase in HA 

expression in human liver mCRC samples after anti-VEGF therapy. Although our study 

serves as a proof of principle that preventing anti-VEGF treatment–induced HA deposition 

could improve the efficacy of systemic therapy, the importance of this mechanism versus 

other mechanisms of acquired resistance remains to be determined in patients. It also 

remains to be seen whether alternative targets within the ECM can further improve the 

effects of systemic therapy in these patients. For example, direct targeting of HSCs (or 

metastasis-associated fibroblasts), the main source of ECM components within liver 

mCRCs, may offer a therapeutic strategy. Treatment with vitamin D receptor ligands might 
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be another strategy to reduce or prevent the activation of HSCs (71, 72). Finally, as shown in 

Fig. 2B, the increase in stiffness and hence mechanical forces could be abrogated by using a 

lower dose of anti-VEGF antibody. This lower “vascular normalizing” dose may actually 

increase oxygenation, as demonstrated in preclinical models of breast cancer (7, 31).

In conclusion, our results show that anti-VEGF therapy at the dose used here and in the 

clinic up-regulates the expression of HA in liver mCRC both in mouse models and in patient 

samples. This may be a mechanism of acquired resistance in this setting because depletion 

of HA improved perfusion of liver mCRC in mice and their response to systemic 

chemotherapy. Thus, targeting the noncollagenous ECM is a potential strategy to enhance 

the efficacy of systemic treatments for mCRC patients.

MATERIALS AND METHODS

Study design

The objective of the present study was to evaluate the remodeling of the ECM and its 

clinical relevance in colorectal liver metastases after a VEGF-targeted therapy. The sample 

sizes of the experiments were selected on the basis of previous experience. Data collection 

was stopped at a priori defined time points. Animal experiments were performed in a 

confirmatory fashion with an a priori hypothesis without repetition. In vitro experiments 

were carried out in triplicate. Experiments were carried out in an unblinded fashion except 

for analyses of immunohistochemistry images.

Patient samples

Patient samples were obtained from the Heidelberg University Hospital. Surgical specimens 

of patients who underwent liver resection for colorectal liver metastases without 

preoperative chemotherapy, after preoperative chemotherapy without bevacizumab, or after 

preoperative chemotherapy with bevacizumab were analyzed. Analysis of human samples 

was in line with the Declaration of Helsinki. Collection of patient samples for scientific 

purposes was approved by the local ethics committee (323/2004), and written informed 

consent was obtained.

Cell and animal models

The SL4 mouse CRC cells were a gift from T. Irimura (17). The mouse CRC cell line CT26 

was purchased from the American Type Culture Collection (catalog #CRL-2638). HSCs 

were purchased from ScienCell (catalog #5300). To model liver metastasis, the spleen was 

split into two sectors, and 1 × 105 cells were injected into the distal caudal sector, which was 

then resected. The other hemispleen remained in place. Tumor burden was assessed by 

measuring blood concentration of Gaussia luciferase (Gluc) from Gluc-transduced tumors 

(73, 74) or using a high-frequency ultrasound imaging system (VisualSonics). Mice were 

randomly assigned to the treatment groups, and treatments were initiated after the 

development of macroscopic liver metastases (~8 to 12 days after injection). See the 

Supplementary Materials and Methods for more details.
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Treatments

The anti-VEGF monoclonal antibody B20.4-1.1 (Genentech) was administered by 

intraperitoneal injection twice a week at 5 or 1 mg/kg. For neutrophil depletion, an anti-

Ly6G antibody (clone RB6-8C5) was administered intraperitoneally every 2 days at a dose 

of 5 mg/kg. PEG-HAse (see the Supplementary Materials and Methods) was administered 

intravenously twice a week or 24 hours before administration of chemotherapy at a dose of 

4.5 mg/kg (43). 5-FU chemotherapy was administered intravenously twice a week at a dose 

of 50 mg/kg.

Histochemistry

Frozen blocks were cut at a thickness of 20 μm for immunofluorescence staining for α-

SMA, collagen-I, HA, and hypoxia. Whole-tumor mosaic images were obtained from each 

sample with an Olympus (FV1000) confocal laser-scanning microscope. Paraffin blocks 

were cut at a thickness of 5 μm and stained with hematoxylin and eosin, CD34, CD44, and 

HA. For hypoxia staining, pimonidazole hydrochloride (60 mg/kg) (Hypoxyprobe) was 

injected intraperitoneally 60 min before tissue collection. For perfusion measurement, 

Hoechst 33342 (Sigma) was administered by portal infusion 5 min before tumor tissue 

collection (31). Image analyses were carried out in an automated fashion using a custom 

algorithm in MATLAB (MathWorks). See the Supplementary Materials and Methods for 

more details.

Cytometry

Tissue samples from tumors, spleen, and bone marrow were digested and filtered through 

70- and 40-μm cell strainers. Single cells were stained with CD45, CD11b, Ly6G, and Ly6C 

and analyzed using an LSR II flow cytometer (Becton Dickinson). See the Supplementary 

Materials and Methods for more details.

Biochemical assays

sGAG content in finely dispersed tissues was determined by the Di-methylmethylene Blue 

Assay (DMMB) (75). Total collagen content was determined by measuring hydroxyproline 

content of the hydrolysate samples (76). Mouse HA and TGF-β1 were quantified using 

ELISA kits (R&D Systems). See the Supplementary Materials and Methods for more 

details.

Physical parameters

The stiffness (Young’s modulus) of tumors was determined by unconfined compression tests 

(77). Solid stress was determined using a recently proposed method (6). In line with this 

method, the normalized tumor opening was used as a readout for growth-induced stress. See 

the Supplementary Materials and Methods for more details.

Statistical analysis

Data are presented as means ± SEM and compared using Student’s t test, one-way ANOVA, 

or two-way ANOVA when appropriate. Survival was estimated by Kaplan-Meier curves and 

compared using the log-rank test. All tests were two-sided. Statistical analyses were carried 
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out using GraphPad Prism software. A P value of less than 0.05 was considered statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Treatment with bevacizumab increases HA expression in human CRC liver metastases
(A) Representative images showing HA expression in liver metastases from CRC patients: 

left, no treatment; middle, preoperative chemotherapy alone; right, preoperative 

chemotherapy in combination with the anti-VEGF antibody bevacizumab. Scale bar, 200 

μm. (B) Immunohistochemical analysis of HA concentration in human CRC liver metastases 

[***P < 0.001, analysis of variance (ANOVA); n = 8 per group; mean ± SEM]. (C) 

Intraindividual comparisons of HA expression in paired samples from patients who 

underwent repeated resections for CRC liver metastases with and without preoperative 

bevacizumab treatment (*P = 0.024, paired t test; n = 4 per group; mean ± SEM). (D) 
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Intraindividual comparison of HA expression in colorectal liver metastases of patients who 

underwent repeated liver resections after different preoperative treatments or no treatment. 

FOLFOX, folinic acid, 5-fluorouracil (5-FU), and oxaliplatin; FOLFIRI, folinic acid, 5-FU, 

and irinotecan. Scale bar, 200 μm. *P < 0.05 and ***P < 0.001 as compared to 

corresponding controls.
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Fig. 2. Anti-VEGF therapy increases tumor desmoplasia, stiffness, and solid stress in colorectal 
liver metastases
(A) Survival of C57BL/6 wild-type (WT) mice bearing SL4 liver metastases (***P < 0.001, 

log-rank test) and BALB/c WT mice bearing CT26 liver metastases (P = 0.072, log-rank 

test) treated with either B20 or control immunoglobulin G (IgG) (n = 10 to 12 per group). 

(B) Stiffness of SL4 (**P = 0.002, ANOVA) and CT26 (***P < 0.0001, ANOVA) liver 

metastases treated with IgG, a low dose of B20 (1 mg/kg; twice a week), or a high dose of 

B20 (5 mg/kg; twice a week) and harvested at the end of the survival study (n = 9 to 12 per 

group). (C) Solid stress measured as normalized tumor opening in SL4 (*P = 0.018, 

Student’s t test) and CT26 (*P = 0.01, Student’s t test) liver metastases treated with IgG or 

high dose of B20 (5 mg/kg; twice a week) and harvested at the terminal endpoint (n = 3 to 5 
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per group). (D) Effects of B20 therapy on perfusion of SL4 liver metastases in C57BL/6 WT 

mice after injection of Hoechst 33342 (***P = 0.0001, Student’s t test) (n = 4 to 7 per 

group). Data presented as percent change compared to controls. Scale bar, 200 μm. Data are 

shown as means ± SEM; *P <0.05, **P < 0.01, and ***P < 0.001 as compared to 

corresponding controls.
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Fig. 3. Anti-VEGF treatment increases noncollagenous ECM in CRC liver metastases
(A to C) Quantification of HA concentration by enzyme-linked immunosorbent assay 

(ELISA) (SL4, ***P < 0.0001; CT26, ***P < 0.0001, Student’s t test) (A), sGAG 

concentration by dimethylmethylene blue (DMMB) assay (SL4, ***P = 0.0005; CT26, **P 
= 0.001, Student’s t test) (B), and collagen by hydroxyproline assay (SL4, *P = 0.01; CT26, 

P = 0.69, Student’s t test) (C) in SL4 and CT26 liver metastases after treatment with IgG or 

B20 (5 mg/kg; twice a week) until moribund (n = 6 to 15 per group). (D) Correlation of 

matrix components versus stiffness of SL4 (HA, P < 0.0001; sGAG, P < 0.0001; collagen, P 
= 0.98, Pearson’s correlation) and CT26 (HA, P < 0.0001; sGAG, P = 0.0002; collagen, P = 

0.88, Pearson’s correlation) liver metastases grown in C57BL/6 WT and BALB/c WT mice, 

respectively, and treated with IgG or B20 (5 mg/kg; twice a week) until moribund. Black 

dots indicate controls and red dots indicate animals treated with B20. Data are shown as 

means ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 as compared to corresponding 

controls.
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Fig. 4. MDSCs do not increase noncollagenous matrix deposition after anti-VEGF therapy
(A) Representative flow cytometry plot presenting the influx of CD45+CD11b+Ly6Chi 

monocytes and CD45+CD11b+Ly6G+ neutrophils into SL4 liver metastases after anti-VEGF 

therapy. FITC, fluorescein isothiocyanate. (B) Fluorescence-activated cell sorting (FACS) 

analysis of Ly6Chi IMs and MANs in SL4 liver metastases grown in C57BL/6 WT mice 

after 3 days (Ly6Chi IMs, *P = 0.016; neutrophils, *P = 0.024, Student’s t test) and 6 days 

(Ly6Chi IMs, *P = 0.0001; neutrophils, *P = 0.005, Student’s t test) of treatment with IgG or 

B20 (n = 7 to 10 per group). (C) FACS analyses of the blood (day 3: Ly6Chi IMs, *P = 

0.017; neutrophils, *P = 0.03; day 6: Ly6Chi IMs, *P = 0.018; neutrophils, *P = 0.045, 

Student’s t test) and spleen (day 3: Ly6Chi IMs, *P = 0.037; neutrophils, P = 0.03; day 6: 

Ly6Chi IMs, P = 0.025; neutrophils, P = 0.21, Student’s t test) compartments of C57BL/6 

WT mice bearing SL4 liver metastases after 3 and 6 days of treatment with IgG or B20 (n = 

5 to 9 per group). (D) FACS analysis of Ly6Chi IMs and neutrophils in SL4 liver metastases 

grown in C57BL/6 WT mice after 7 days of treatment with IgG or B20 with or without anti-

Ly6G therapy (5 mg/kg every 2 days), in Ccr2−/− mice after 7 days of treatment with IgG or 
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B20 (Ly6Chi IMs, *P = 0.015; neutrophils, *P = 0.013, one-way ANOVA) with or without 

anti-Ly6G therapy (5 mg/kg every 2 days) (Ly6Chi IMs, *P = 0.014; neutrophils, *P = 0.98, 

one-way ANOVA), or in Ccr2−/− mice after 7 days of treatment with IgG or B20 (Ly6Chi 

IMs, *P = 0.93; neutrophils, *P < 0.0001, one-way ANOVA) (n = 4 to 9 per group). The 

number of Ly6Chi IMs in liver mCRCs was significantly decreased in Ccr2−/− mice as 

compared with WT mice under IgG (*P = 0.016) or B20 treatment (**P = 0.009). On the 

other hand, anti-Ly6G antibody significantly decreased MANs under IgG (*P = 0.016) or 

B20 (**P = 0.002) treatment. (E to G) Quantification of HA concentration by ELISA (IgG 

versus B20, **P = 0.003; IgG versus B20 in Ccr2−/− mice, **P = 0.005; IgG versus B20/

anti-Ly6G, ***P < 0.0001, one-way ANOVA) (E), sGAG concentration by DMMB assay 

(IgG versus B20, **P = 0.005; IgG versus B20 in Ccr2−/− mice, *P = 0.015; IgG versus 

B20/anti-Ly6G, *P = 0.013, one-way ANOVA) (F), and collagen concentration by 

hydroxyproline assay (IgG versus B20, P = 0.67; IgG versus B20 in Ccr2−/− mice, P = 0.68; 

IgG versus B20/nti-Ly6G, P = 0.97; one-way ANOVA) (G) in SL4 liver metastases treated 

with IgG or B20 after depletion of Ly6Chi IMs (Ccr2−/− mice) or MANs (anti-Ly6G 

antibody) (n = 7 to 10 per group). B20 treatments (5 mg/kg): on day 0 for 3-day experiments 

and on day 0 and day 3 for 6- and 7-day experiments. Data are shown as means ± SEM; *P 
< 0.05, **P < 0.01, and ***P < 0.001 as compared to corresponding controls.
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Fig. 5. Increased HA deposition after anti-VEGF therapy in colorectal liver metastases is 
mediated by hypoxia
(A and B) Representative immunohistochemistry images of SL4 liver metastases (A) and 

quantification (B) of microvessel density (CD34 staining) in SL4 and CT26 liver metastases 

grown in C57BL/6 and BALB/c WT mice after 3 days (SL4, ***P < 0.0001; CT26, *P = 

0.01, Student’s t test) and 6 days (SL4, ***P = 0.0001; CT26, ***P < 0.0001, Student’s t 
test) of treatment with IgG or B20. Scale bar, 100 μm (n = 6 to 8 per group). (C and D) 

Representative immunohistochemistry images of hypoxic area (staining for pimonidazole 

adducts) of SL4 liver metastases (C) and quantification of hypoxic area fraction in SL4 and 
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CT26 liver metastases grown in C57BL/6 and BALB/c WT mice after 3 days (SL4, **P = 

0.009; CT26, *P = 0.026, Student’s t test) and 6 days (SL4, **P = 0.005; CT26, *P = 0.037, 

Student’s t test) (n = 6 to 8 per group) (D). (E) Quantification of HA concentration by 

ELISA after 3 days (SL4, P = 0.153; CT26, P = 0.542, Student’s t test) and 6 days (SL4, **P 
= 0.009; CT26, **P = 0.006, Student’s t test) of treatment (top), sGAG concentration by 

DMMB assay after 3 days (SL4, *P = 0.011; CT26, P = 0.984, Student’s t test) and 6 days 

(SL4, *P = 0.014; CT26, **P = 0.008, Student’s t test) of treatment (middle), and collagen 

concentration by hydroxyproline assay after 3 days (SL4, P = 0.069; CT26, P = 0.412) and 6 

days (SL4, *P = 0.028; CT26, P = 0.575, Student’s t test) of treatment (bottom) with IgG or 

B20 in SL4 and CT26 liver metastases. (F) Immunofluorescence staining demonstrating 

colocalization of HA expression with hypoxic areas in SL4 liver metastases treated with B20 

for 7 days (***P = 0.0003, Student’s t test) (n = 8 per group). Scale bar, 100 μm. (G) 

Immunofluorescence staining demonstrating an increase in matrix-producing α-SMA+/

collagen-I+ cells in SL4 liver metastases after anti-VEGF therapy (*P = 0.043, Student’s t 
test) (n = 6 to 8 per group). Scale bar, 100 μm. (H) Hypoxia increases HA expression in 

human HSCs. Cells were cultured in normoxic (21% O2) versus hypoxic conditions (1% O2) 

for 48 hours (**P = 0.003, Student’s t test). Scale bar, 100 μm. B20 treatments (5 mg/kg): on 

day 0 for 3-day experiments and on day 0 and day 3 for 6- and 7-day experiments. All data 

are shown as means ± SEM; *P < 0.05, **P < 0.01, and ***P < 0.001 as compared to 

corresponding controls. DAPI, 4′,6-diamidino-2-phenylindole.
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Fig. 6. Targeting HA in liver metastases increases tumor perfusion after anti-VEGF therapy
(A) Quantification of HA concentration in SL4 liver metastases after treatment with B20 (5 

mg/kg; twice a week for 7 days) with and without PEG-HAse (4.5 mg/kg) (***P < 0.0001, 

Student’s t test). (B) Effects of PEG-HAse on perfusion of SL4 liver metastases treated with 

B20 (5 mg/kg; twice a week for 7 days) after intraportal injection of Hoechst 33342 (*P = 

0.036, Student’s t test). Scale bar, 200 μm. (C) Survival of C57BL/6 WT mice bearing SL4 

liver metastases treated with either B20 (5 mg/kg) and 5-FU (50 mg/kg) or B20 (5 mg/kg), 

5-FU (50 mg/kg), and PEG-HAse (4.5 mg/kg) (**P = 0.008, log-rank test) (n = 15 to 16 per 

group). All data are shown as means ± SEM; *P < 0.05 and ***P < 0.001 as compared to 

corresponding controls.
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