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Data-driven operator inference for nonintrusive
projection-based model reduction

Benjamin Peherstorfera,∗, Karen Willcoxa

aDepartment of Aeronautics & Astronautics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

This work presents a nonintrusive projection-based model reduction approach for full models based on
time-dependent partial differential equations. Projection-based model reduction constructs the operators
of a reduced model by projecting the equations of the full model onto a reduced space. Traditionally,
this projection is intrusive, which means that the full-model operators are required either explicitly in an
assembled form or implicitly through a routine that returns the action of the operators on a given vector;
however, in many situations the full model is given as a black box that computes trajectories of the full-model
states and outputs for given initial conditions and inputs, but does not provide the full-model operators.
Our nonintrusive operator inference approach infers approximations of the reduced operators from the initial
conditions, inputs, trajectories of the states, and outputs of the full model, without requiring the full-model
operators. Our operator inference is applicable to full models that are linear in the state or have a low-order
polynomial nonlinear term. The inferred operators are the solution of a least-squares problem and converge,
with sufficient state trajectory data, in the Frobenius norm to the reduced operators that would be obtained
via an intrusive projection of the full-model operators. Our numerical results demonstrate operator inference
on a linear climate model and on a tubular reactor model with a polynomial nonlinear term of third order.

Keywords: nonintrusive model reduction, data-driven model reduction, black-box full model, inference

1. Introduction

Model reduction seeks to construct reduced models that provide accurate approximations of the full model
solutions with orders of magnitude reduction in computational complexity. We consider here projection-based
model reduction for full models that are based on parametrized time-dependent partial differential equations
(PDEs). Projection-based model reduction first constructs a basis of a low-dimensional reduced space and
then projects the equations of the full model onto the reduced space to obtain the operators of the reduced
model [1, 2, 3, 4, 5]. The construction of these reduced operators is usually intrusive and requires the full-
model operators, which means that the full-model operators need to be available either in an assembled
form or through a routine that returns the action of the operators on a given vector. This limits the scope
of projection-based model reduction because in many situations the full model is given as a black box,
which allows computing the trajectories of the full-model states and outputs for given initial conditions and
inputs, but does not provide the full-model operators. Note that we also consider full models as black-box
models if the source code of the implementation is available but the complexity of the code renders obtaining
the full-model operators time consuming, see the general circulation model (GCM) [6] in Section 4.4. We
present nonintrusive operator inference that replaces the classical intrusive reduced operator construction
by deriving approximations of the reduced operators directly from data of the full model, without requiring
the full-model operators. The data include initial conditions, inputs, trajectories of the full-model states,
and outputs. The reduced operators are low-dimensional quantities and therefore the inference underlying

∗Corresponding author
Email addresses: pehersto@mit.edu (Benjamin Peherstorfer), +1-617-253-7831 (Benjamin Peherstorfer)

Preprint submitted to CMAME February 2, 2016



full-model
trajectories

reduced space

construct

reduced model

project

classical intrusive
model reduction

full model

full-model
operators

assemble

full-model
trajectories

reduced space

construct

model reduction with
operator inference

infer

Figure 1: The projection step in classical projection-based model reduction is intrusive because the operators of the
full model are required for the construction of the reduced operators. In contrast, our operator inference derives the
approximations of the reduced operators directly from data (initial conditions, inputs, trajectories, outputs) of the
full model. This operator inference is nonintrusive and therefore applicable to black-box full models.

our approach is feasible with respect to computational costs and with respect to required amount of data.
Our operator inference is applicable to nonlinear PDEs with polynomial nonlinear terms of low order. Our
operator inference provides a nonintrusive way to construct a reduced model, see Figure 1.

There are several classical projection-based model reduction methods. Proper orthogonal decomposition
(POD) constructs a reduced basis from states of the full model [1, 2, 7]. The reduced basis method [3, 8]
derives a reduced basis with a greedy approach [9] based on computationally cheap a posteriori error estima-
tors of intermediate reduced models. There are also Krylov subspace methods, including multivariate Padé
approximations and tangential interpolation [4, 5, 10]. Once the reduced basis is generated, all these methods
construct a reduced model and the reduced operators with an intrusive projection step, leading to intrusive
model reduction methods. In [11], the coefficients of a reduced state for a given input are approximately
derived from a computationally cheap coarse-grid full-model state. This avoids the construction of reduced
operators and leads to a nonintrusive approximate reduced basis method; however, the computation of the
coefficients requires solving the equations of the coarse-grid full model at each input for which the reduced
system of the reduced model is solved.

The Loewner framework provides a nonintrusive approach to construct reduced models of linear time-
invariant (LTI) systems. The reduced operators are derived directly from frequency response data, i.e.,
from transfer function evaluations [12, 13, 14], without requiring the operators of the full LTI system. The
Loewner framework has been extended to parametric LTI systems [15] and to LTI systems with multiple
outputs [16]; however, compared to intrusive projection-based model reduction, the scope of the Loewner
framework is still limited. In particular, an extension of the Loewner framework to nonlinear models remains
an open problem. There is also vector fitting [17, 18] that constructs approximate rational interpolants of
LTI systems for given frequency response data. Both the Loewner framework and vector fitting rely on
frequency response data, which are often unavailable for full models that are formulated in the time domain
and marched forward in time with a time stepping scheme.

In contrast to projection-based reduced models, data-fit surrogate models are constructed using in-
terpolation and regression techniques to directly learn the map from inputs to outputs of the full model
[19, 20, 21, 22]. The construction of a reduced model and its operators is therefore circumvented and with
it the intrusive projection step. The approaches in [23, 24, 25, 26, 27, 28, 29, 30] construct a reduced space
and learn a surrogate model that maps inputs to coefficients of the representations of full-model states in
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the reduced space. Typically, data-fit surrogate models target different applications than projection-based
reduced models, e.g., where the notion of state is unimportant and where the interpolation and regression
of the outputs provide sufficiently accurate results, see [31]. We do not consider data-fit surrogate models
here.

Dynamic mode decomposition (DMD) is a method to analyze the behavior of dynamical systems [32, 33,
34, 35, 36]. DMD derives an approximation of the operator of the full model (dynamical system) directly
from full-model trajectories. The obtained approximate operator corresponds to the linear approximation
of the full model that best fits the trajectories in the L2 norm. The approximate operator is then used
to approximate the eigenvectors and eigenvalues of the (unknown) system matrix of the full model [32].
One then uses these approximate eigenvectors and eigenvalues to analyze the behavior of the full model.
Our operator inference follows a similar approach to DMD. We also optimize for operators that best fit
the trajectories in the L2 norm. In the case of a linear full model and inputs that are constant over time,
our inferred operator is the same operator as the one obtained via DMD [35, Algorithm 1]; however, DMD
derives a linear approximation of the full model, whereas our approach can handle full models that have
polynomial nonlinear terms. Note that a first approach exists to extend DMD to nonlinear full models via
the Koopman operator that transforms a finite-dimensional nonlinear system into an infinite-dimensional
linear system [37], see also [38, 39]. In contrast to DMD, our approach explicitly takes into account the
output of the full model and derives an approximate output operator that describes the map from states to
outputs. Furthermore, we consider full models with operators that dependent on parameters. This means
that we compute multiple inferred operators and then interpolate between them, whereas DMD is typically
applied to full models with parameter-independent operators only [35].

The aim of our operator inference approach is the construction of a projection-based reduced model in a
nonintrusive way. We first construct a reduced space from trajectories of the full-model states as in classical
projection-based model reduction and then replace the intrusive construction of the reduced operators by our
operator inference. The operator inference is based on a least-squares problem that infers the operators from
initial conditions, inputs, trajectories, and outputs of the full model. These data are typically available when
marching forward a black-box full model in time, in contrast to frequency response data. For sufficient and
accurate data, the inferred operators converge in the Frobenius norm to the reduced operators that would be
obtained via an intrusive construction. We rely on a similar least-squares problem as [40], where updates to
reduced operators are computed without recourse to the full model; however, our approach infers directly the
reduced operators, whereas [40] provides only updates to operators of an initial intrusive reduced model. We
develop our operator inference for full models with polynomial nonlinear terms in the state, and therefore the
scope of our approach goes beyond LTI systems. We note, however, that our approach is limited in practice
to polynomial nonlinear terms of low order because the computational costs of the operator inference grow
exponentially in the order of the polynomial nonlinear term, see Section 3.5.

The following Section 2 introduces systems of parametrized equations and describes classical intrusive
projection-based model reduction based on POD. Section 3 introduces model reduction with operator infer-
ence. Section 4 presents numerical experiments, where reduced models are inferred from data of linear and
nonlinear models. In particular, we infer a reduced model of a nonlinear tubular reactor model [41] and of
a climate model [6]. Section 5 concludes the discussion.

2. Problem setup

Section 2.1 and Section 2.2 introduce systems of parametrized nonlinear ordinary differential equations
(ODEs). Of particular interest are high-dimensional systems of ODEs that arise from spatial discretizations
of time-dependent PDEs. Section 2.3 briefly discusses intrusive projection-based model reduction for systems
of ODEs.

2.1. Systems of parametrized nonlinear ODEs

Consider a parameter µ ∈ D in the domain D ⊂ Rd of dimension d ∈ N and consider time t ∈ [0, T ] ⊂ R
with 0 < T . Let u : [0, T ] × D → Rp be the input with p ∈ N, x : [0, T ] × D → RN the state vector
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with N ∈ N, and y : [0, T ] × D → Rq the output with q ∈ N. Define with the state vector x(t;µ) =
[x1(t;µ), . . . , xN (t;µ)]T ∈ RN the vector

x(t;µ)2 =

x
(1)(t;µ)

...
x(N)(t;µ)

 ∈ RS , (1)

where

x(i)(t;µ) = xi(t;µ)

x1(t;µ)
...

xi(t;µ)

 ∈ Ri , (2)

for i = 1, . . . , N . The vector x(t;µ)2 contains as components all products of two components of the state
vector x(t;µ) and thus S =

(
N+1
2

)
= N(N+1)/2 ∈ N. Note that the definition of x(t;µ)2 in (1) accounts for

the commutativity of multiplication, i.e., there is only one entry in x(t;µ)2 for the product x1(t;µ)x2(t;µ)
and not a second entry with x2(t;µ)x1(t;µ). Analogously, for a higher order 2 < α ∈ N, the vector
x(t;µ)α ∈ RS can be constructed, where S =

(
N+α−1

α

)
∈ O(Nα). Note that S grows exponentially in the

order α. Note further that the components of x(t;µ)α correspond to the multisets of size α with N symbols.
This means that computing the components of x(t;µ)α is a standard combinatorics problem, see, e.g., [42].

The system of parametrized ODEs with a nonlinear term of second order in the state x is

d

dt
x(t;µ) = A(µ)x(t;µ) + F (µ)x(t;µ)2 +B(µ)u(t;µ) ,

y(t;µ) = C(µ)x(t;µ) .
(3)

The operator A(µ) ∈ RN×N corresponds to the linear terms of the system of ODEs and the matrix
F (µ) ∈ RN×S to the nonlinear term. The matrices B(µ) ∈ RN×p and C(µ) ∈ Rq×N are the input
and output matrices, respectively. We further have the initial condition x(0;µ) = x0(µ) ∈ RN . The opera-
tors A(µ),B(µ),C(µ) and F (µ) depend on the parameter µ. Note that the operator F (µ) corresponding
to the nonlinear term in (3) can be reformulated with the Kronecker product x(t;µ)⊗x(t;µ) instead of the
vector x(t;µ)2. Many reformulations exist because the Kronecker product does not account for the commu-
tativity of the multiplication as discussed in the previous paragraph. Our operator inference will consider
the formulation (i.e., the operators of the system (3)) as unknown and will use only the state vectors of (3),
which are independent of the formulation of the system (3).

We restrict the following exposition to systems of ODEs with a nonlinear term of second order; however,
the methodology is also applicable to systems of ODEs with nonlinear terms of higher order, see the numerical
results in Section 4.3.

2.2. Time discretization

Let 0 = t0 < t1 < · · · < tK = T be the discretization of the time domain [0, T ] into K ∈ N equidistant
time steps with time step size 0 < δt ∈ R. Let further x1(µ), . . . ,xK(µ) ∈ RN be the discrete states
of the system of ODEs (3) at the time steps t1, . . . , tK computed with a time stepping scheme, and let
y1(µ), . . . ,yK(µ) ∈ Rq be the corresponding outputs. We define the trajectory

X(µ) = [x1(µ), . . . ,xK(µ)]T ∈ RK×N (4)

with the corresponding output matrix

Y (µ) = [y1(µ), . . . ,yK(µ)]T ∈ RK×q (5)

and input matrix
U(µ) = [u(t1;µ), . . . ,u(tK ;µ)]T ∈ RK×p .
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Note that the trajectoryX(µ) and the output matrix Y (µ) contain the discrete states and the corresponding
outputs derived with a time stepping scheme, whereas the input matrix U(µ) contains the same inputs that
are used in the continuous full model (3) at the discrete time steps t1, . . . , tK .

The discrete states in X(µ) are taken at equidistant time steps but the time stepping scheme may vary
the time step size during the computation; however, we assume that the time stepping scheme is convergent
for the full model (3) in the sense that, for δt→ 0, the discrete states xj(µ) converge in the L2 norm to the
states x(tj ;µ) of the system of ODEs (3) for j = 1, . . . ,K. No further assumptions are made on the time
stepping scheme.

2.3. Classical intrusive projection-based model reduction for systems of ODEs

Let µ1, . . . ,µM ∈ D beM ∈ N parameters and letU(µ1), . . . ,U(µM ) ∈ RK×p and x0(µ1), . . . ,x0(µM ) ∈
RN be the corresponding input matrices and initial conditions, respectively. Let furtherX(µ1), . . . ,X(µM ) ∈
RK×N be the trajectories and Y (µ1), . . . ,Y (µM ) ∈ RK×q the output matrices.

Let v1, . . . ,vn ∈ RN be the (global) POD basis [1, 2] derived from the matrix of the concatenated initial
conditions and trajectories[

x0(µ1) X(µ1)T . . . x0(µM ) X(µM )T
]
∈ RN×(KM+M) ,

where n ∈ N is the number of POD basis vectors. The POD basis vectors are the columns of the POD basis
matrix

Vn = [v1, . . . ,vn] ∈ RN×n . (6)

Note that the POD basis v1, . . . ,vn is independent of the parameter µ ∈ D.
In classical projection-based model reduction, the reduced operators are obtained by projecting the ODEs

onto the space spanned by the POD basis vectors via, e.g., Galerkin projection. Thus, the reduced operator
Ã(µi) ∈ Rn×n is constructed as

Ã(µi) = V T
n A(µi)Vn ∈ Rn×n , (7)

for i = 1, . . . ,M . Note that computing Ã(µi) as in (7) requires the full-model operator A(µi) or a method
that provides the matrix-vector product with A(µi). Analogously, the respective full-model operators are
required to construct the reduced input operator as B̃(µi) = V T

n B(µi) ∈ Rn×p and the reduced output
operator as C̃(µi) = C(µi)Vn ∈ Rq×n for i = 1, . . . ,M . With s =

(
n+1
2

)
= n(n + 1)/2 ∈ N, the reduced

operator F̃ (µi) ∈ Rn×s of F (µi) ∈ RN×S is obtained by first transforming F (µi) into a tensor of size
N × N × N and then performing Galerkin projection in each dimension separately. For each parameter
µ1, . . . ,µM , the reduced model

d

dt
x̃(t;µi) = Ã(µi)x̃(t;µi) + F̃ (µi)x̃(t;µi)

2 + B̃(µi)u(t;µi)

ỹ(t;µi) = C̃(µi)x̃(t;µi)

(8)

is derived, with the reduced initial condition x̃0(µi) = V T
n x0(µi) ∈ Rn, the reduced state vector x̃(t;µi) ∈

Rn, the reduced output ỹ(t;µi) ∈ Rq, and the vector x̃(t;µi)
2 ∈ Rs defined analogously as in (1). There are

several ways to construct the reduced operators of the reduced model for a parameter µ ∈ D that does not
coincide with any of the parameters µ1, . . . ,µM [43]. Typically, the operators for µ are constructed from
the operators for µ1, . . . ,µM via elementwise interpolation [44, 45, 46, 47].

3. Operator inference

Our goal is to derive the reduced model (8) for a black-box full model, where the trajectories and
outputs can be computed, but where the full-model operators are unavailable. We consider the situation
where, for parameters µ1, . . . ,µM ∈ D, the initial conditions x0(µ1), . . . ,x0(µM ) ∈ RN , the trajectories
X(µ1), . . . ,X(µM ) ∈ RK×N , the input matrices U(µ1), . . . ,U(µM ) ∈ RK×p, and the output matrices
Y (µ1), . . . ,Y (µM ) ∈ RK×q are available, but where the corresponding operators A(µi),B(µi),C(µi), and
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F (µi) for i = 1, . . . ,M are unavailable. Our inference-based approach approximates the reduced opera-

tors Ã(µi), B̃(µi), C̃(µi), and F̃ (µi) by the operators Â(µi) ∈ Rn×n, B̂(µi) ∈ Rn×p, Ĉ(µi) ∈ Rq×n, and

F̂ (µi) ∈ Rn×s, which are inferred from the available initial conditions, inputs, trajectories, and outputs. A
reduced model is then constructed with these inferred operators for the parameters µ1, . . . ,µM as in (8)
and for parameters µ ∈ D with elementwise interpolation as discussed in Section 2.3. Note that we consider
the output operators C(µ1), . . . ,C(µM ) as unknown. In situations where the relationship of the states and
the outputs is known, and thus where the output operators C(µ1), . . . ,C(µM ) are available, the operator
inference for the output operators can be skipped, see Section 3.3.

The same operator inference is performed for each parameter µ1, . . . ,µM , and therefore, and to ease the
exposition, we simplify the notation in this section. The discrete state xj(µi) at time tj and parameter µi is
denoted as xj , and analogously the input u(tj ;µ) and output yj(µ) are denoted as uj and yj , respectively.
The notation is also simplified for the trajectory X = X(µi), the input matrix U = U(µi) and the output
matrix Y = Y (µi). Also the full operator A(µi), the reduced operator Ã(µi), and the inferred operator

Â(µi) are denoted as A, Ã, and Â, respectively. Similarly, we have B, B̃, B̂, C, C̃, Ĉ, as well as F , F̃ , F̂
for parameter µi.

Section 3.1 describes the projection of the trajectories onto the reduced space spanned by the POD basis
vectors. Sections 3.2 and 3.3 derive optimization problems to infer operators. Algorithm 1 in Section 3.4
summarizes the computational procedure, and Section 3.5 provides a detailed cost analysis of the construction
of a reduced model with operator inference. Section 3.6 summarizes practical considerations.

3.1. Data projection

Let Vn ∈ RN×n be the POD basis matrix containing as columns the first n ∈ N POD basis vectors. The
projected state x̂(t) ∈ Rn of the full-model state x(t) ∈ RN is x̂(t) = V T

n x(t). We have

x̂j = V T
n xj , j = 0, . . . ,K , (9)

for the discrete states x1, . . . ,xK , which we assemble into the projected trajectory

X̂ = [x̂1, . . . , x̂K ]T ∈ RK×n . (10)

We also define
X̂(i) = [x̂

(i)
1 , . . . , x̂

(i)
K ]T ∈ RK×i (11)

for i = 1, . . . , n, where the vectors x̂
(i)
1 , . . . , x̂

(i)
K ∈ Ri are derived from the projected states x̂1, . . . , x̂K

analogously as in (2).

3.2. Inference-based reduced operators

Consider the time steps t1, . . . , tK with time step size δt, see Section 2.2. For j = 1, . . . ,K, let ˙̂xj ∈ Rn
be an approximation of the derivative d

dt x̂(tj) of the projected state x̂(tj) at time tj that converges with

δt→ 0 to d
dt x̂(tj) in the L2 norm. A concrete example of such an approximation will follow in Section 3.4.

We define the inferred operators Â ∈ Rn×n, B̂ ∈ Rn×p, and F̂ ∈ Rn×s to be a solution of the optimization
problem

minimize
Â∈Rn×n,B̂∈Rn×p,F̂∈Rn×s

K∑
j=1

∥∥∥ ˙̂xj − Âx̂j − F̂ x̂2
j − B̂uj

∥∥∥2
2
, (12)

which means that the inferred operators satisfy the equations

˙̂xj = Âx̂j + F̂ x̂2
j + B̂uj , j = 1, . . . ,K , (13)

if the objective of (12) is zero at the optimum.
Let

D = [X̂,U , X̂(1), . . . , X̂(n)] ∈ RK×(n+p+s) (14)
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be the data matrix, where X̂ is the projected trajectory, U the input matrix, and X̂(1), . . . , X̂(n) the matrices
as defined in equation (11). We also define the right-hand side matrix

R = [ ˙̂x1, . . . , ˙̂xK ]T ∈ RK×n . (15)

We now show that the optimization problem (12) is a linear least-squares problem with the system matrix
D and the right-hand side matrix R. We therefore first transpose the terms in the norm in the objective of
(12) and obtain ∥∥∥ ˙̂xTj − x̂Tj ÂT − (x̂2

j )
T F̂ T − uTj B̂T

∥∥∥2
2
. (16)

Consider now F̂ in block form as
F̂ = [F̂ (1), . . . , F̂ (n)] ∈ Rn×s , (17)

with the blocks F̂ (i) ∈ Rn×i of size n× i for i = 1, . . . , n, respectively. Because the squared Frobenius norm
of a matrix is the sum of the squares of all entries of the matrix, the sum over the K time steps in (12) can
be written as a Frobenius norm such that the optimization problem (12) becomes

minimize
Â∈Rn×n,B̂∈Rn×p,F̂∈Rn×nk

∥∥∥∥∥R− X̂ÂT −UB̂T −
n∑
i=1

X̂(i)F̂ (i)T

∥∥∥∥∥
2

F

.

We obtain with the data matrix D and the matrix O the least-squares problem

minimize
O∈Rn×(n+p+s)

‖DOT −R‖2F , (18)

where O ∈ Rn×(n+p+s) and
O = [Â, B̂, F̂ (1), . . . , F̂ (n)] ∈ Rn×(n+p+s) . (19)

The least-squares problem (18) can be transformed into n independent least-squares problems in the
‖ · ‖2 norm, see, e.g., [40, Lemma 1]. Consider the columns of R = [r1, . . . , rn] ∈ RK×n. We obtain the n
least-squares problems

minimize
oi∈Rn+p+s

‖Doi − ri‖22 , i = 1, . . . , n (20)

that are solved by the columns o1, . . . ,on ∈ Rn+p+s of OT ∈ R(n+p+s)×n. Therefore, from each of the n
independent least-squares problems, one column of OT is obtained.

Theorem 1. Consider the reduced model (8) and let x̃(t1), . . . , x̃K(tK) ∈ Rn be the reduced states at time
steps t1, . . . , tK that satisfy

d

dt
x̃(tj) = Ãx̃(tj) + F̃ x̃(tj)

2 + B̃u(tj) , j = 1, . . . ,K . (21)

Define the reduced trajectory as X̃ = [x̃(t1), . . . , x̃(tK)]T ∈ RK×n and the vectors X̃(1), . . . , X̃(n) analogously
as for the projected trajectory in (11). Let D̃ ∈ RK×(n+p+s) be the data matrix assembled from the reduced
trajectory

D̃ = [X̃,U , X̃(1), . . . , X̃(n)] ∈ RK×(n+p+s) ,

and R̃ ∈ RK×n the corresponding right-hand side matrix

R̃ =

[
d

dt
x̃(t1), . . . ,

d

dt
x̃(tK)

]T
.

If the time stepping scheme used in the full model is convergent for δt→ 0 (see Section 2.2), if ˙̂xj converges

in the L2 norm to d
dt x̂(tj) for δt→ 0 and j = 1, . . . ,K, and if the data matrices D̃ and D have full column

rank n+p+s for all 0 < δt ∈ R and for all n ≤ N , then there exists for 0 < ε ∈ R an n ≤ N and a time step
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size δt such that the Frobenius norm of the difference of the inferred Â and the (intrusive) reduced operator
Ã is below the threshold ε

‖Â− Ã‖F < ε .

The same holds for the operators B̂ and F̂ .

Proof. Consider (12) and the corresponding optimization problem (18) with the data matrix D̃ and the right-
hand side matrix R̃ that are assembled from the reduced trajectory X̃. The reduced operators Ã, B̃, and
F̃ are a solution of the optimization problem because the reduced states x̃(t1), . . . , x̃(tK) satisfy equations
(21). Furthermore, the reduced operators are the unique solution because the data matrix D̃ has full column
rank n+ p+ s.

The projected trajectory X̂ can be interpreted as a perturbed matrix of the reduced trajectory X̃, i.e.,
X̂ = X̃ + δX̃ with the perturbation δX̃ ∈ RK×n. For δt → 0 and n → N , the norm of the perturbation
converges to zero ‖δX̃‖F → 0 because the time stepping scheme of the full model is convergent and the
reduced model (8) becomes a reformulation of the full model (3) in the POD basis Vn = [v1, . . . ,vn] for
n = N . Note that the data matrix has full column rank for all n ≤ N and therefore the POD space of
dimension N exists and is RN . This means that ˙̂xj converges in the L2 norm to d

dt x̃(tj) for δt → 0 and
n → N , for j = 1, . . . ,K. Therefore, there exists for all 0 < ε1 ∈ R a time step size δt and a dimension
n ≤ N such that ‖D̃ −D‖F < ε1 and ‖R̃−R‖F < ε1. The perturbation analysis of full-rank least-squares

problems [48, 49] shows ‖Â− Ã‖F < cε1 for a constant c ∈ R. The constant c is independent of ε1. Setting

ε1 = ε/c leads to ‖Â− Ã‖F < ε.

Theorem 1 shows that the inferred operators converge with δt→ 0 to the reduced operators that would
be obtained via intrusive Galerkin projection. Our inferred operators therefore will eventually inherit the
properties of the reduced operators. In particular, if the reduced model based on the (intrusive) reduced
operators is asymptotically stable, the inferred operators will eventually also lead to an asymptotically stable
reduced model.

3.3. Inference-based reduced output operators

For the inference of the output operator Ĉ ∈ Rq×n, we consider the least-squares problem

minimize
Ĉ∈Rq×n

K∑
i=1

∥∥∥yi − Ĉx̂i∥∥∥2
2
. (22)

Optimization problem (22) is cast into a least-squares problem

minimize
Ĉ∈Rq×n

‖X̂ĈT − Y T ‖2F , (23)

where the operator ĈT is obtained columnwise as in (20).

Corollary 1. Consider the same setting as in Theorem 1. If X̂ has full column rank n for all 0 < δt ∈ R
and for all n ≤ N , then there exists for 0 < ε ∈ R an n ≤ N and a time step size δt such that

‖Ĉ − C̃‖F < ε .

Proof. The same arguments as in Theorem 1 apply.
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Algorithm 1 Operator inference for models with second-order nonlinear terms

1: procedure inferOp(x0,X,U ,Y ,Vn)

2: Project x̂0 = V T
n x0 and X̂ = XVn

3: Assemble matrices X̂(1), . . . , X̂(n) following (11)
4: Assemble data matrix D following (14) as

D = [X̂,U , X̂(1), . . . , X̂(n)] ∈ RK×(n+p+s)

5: Assemble right-hand side matrix R using the approximation (24)

R =

[
x̂1 − x̂0

δt
, . . . ,

x̂K − x̂K−1
δt

]T
∈ RK×n

6: Extract columns R = [r1, . . . , rn] and solve for OT = [o1, . . . ,on] in

‖Doi − ri‖22 , i = 1, . . . , n

7: Extract operators Â, B̂, F̂ (1), . . . , F̂ (n) from O as in (19)
8: Assemble

F̂ = [F̂ (1), ..., F̂ (n)]

9: Solve least-squares problem (23) to construct matrix Ĉ

10: return Â, B̂, Ĉ, F̂
11: end procedure

3.4. Computational procedure

In the following, we use the finite difference

˙̂xj =
x̂j − x̂j−1

δt
, j = 1, . . . ,K , (24)

where X̂ = [x̂1, . . . , x̂K ]T ∈ RK×n is the projected trajectory. Note that the finite difference (24) converges
to d

dt x̂(tj) for δt→ 0 and j = 1, . . . ,K. Note further that once the operators are inferred, any time stepping
scheme (any time discretization) can be used to march forward in time the reduced model with the inferred
operators, because we are inferring the operators of the system of ODEs and not the operators of the time-
discretized system. Also recall that the trajectory X of the full model can be computed with any time
stepping scheme, see Section 2.2.

Algorithm 1 summarizes the inference of the operators from initial conditions, inputs, trajectories, and
outputs as discussed in Sections 3.2 and 3.3. Inputs to Algorithm 1 are the initial condition x0, the trajectory
X ∈ RK×N , the input matrix U ∈ RK×p, the output matrix Y ∈ RK×q, and the POD basis matrix
Vn ∈ RN×n. The first step of Algorithm 1 is to project the trajectories onto the POD space spanned
by the POD basis vectors in the matrix Vn. Note that the trajectory X contains the transposed discrete
state vectors as rows and therefore the projection is a right multiplication of X with Vn. The data matrix
D ∈ RK×(n+p+s) and the right-hand side matrix R ∈ RK×n are assembled as defined in (14) and (15),
respectively. The columns of the matrix OT are computed with the n independent least-squares problems
as in (20), and the inferred operators Â, B̂, F̂ (1), . . . , F̂ (n) are extracted from OT as in (19), from which the

operator F̂ is assembled. The output operator Ĉ is inferred by solving the least-squares problem (23).

3.5. Computational costs

The following cost analysis ignores the costs of the data generation and the construction of the POD basis
because these steps are the same as in classical intrusive projection-based model reduction. We therefore
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consider the costs of Algorithm 1 and compare it to the costs of the classical intrusive construction of the
reduced operators as presented in Section 2.3.

Let us first consider the costs of Algorithm 1. Note that Algorithm 1 is applicable in case of a second-
order nonlinear term; we present a separate cost analysis for higher-order nonlinear terms below. The costs
of the projection of the trajectory onto the POD space are in O(nNK) and thus are bounded linearly in the
dimension N of the full model and the number of time steps K. Note that sometimes K > N , i.e., the number
of time steps is larger than the dimension of the full model. Assembling the matrices X̂(1), . . . , X̂(n) induces
costs that are bounded by O(Kn2). The data matrix D and the right-hand side matrix R are assembled
with costs in O(K(n + p + s)) and O(Kn), respectively. A crude upper bound of the costs of solving one
of the n independent least-squares problems is O(K(n + p + s)3), see, e.g., [50, Sec. 5.3.3]. Therefore, the
costs for solving the least-squares problem (18), and thus the optimization problem (12), are bounded by

O(nK(n+ p+ s)3). Similarly, the least-squares problem (22) to derive the output matrix Ĉ is constructed
with costs in O(Kq) and solved in O(qn3K).

Overall, the costs of Algorithm 1 are bounded linearly in the dimension N of the full model and linearly
in the number of time steps K. Only the projection of the trajectories onto the POD space incurs costs that
scale with the dimension N of the full model. All other computations in Algorithm 1 have costs independent
of the dimension N of the full model. The costs of the classical construction of the reduced operators depend
on the sparsity of the full-model operators. If the full-model operators are sparse, then the costs of the
classical construction scale linearly in the dimension N . If the full-model operators are dense or sparsity is
not exploited, then the costs are quadratic in the dimension N of the full model. Furthermore, the costs
of the classical construction of the reduced operators are independent of the number of time steps K. The
costs of computing a reduced state with a reduced model are independent of whether the reduced model is
constructed with operator inference or classical intrusive projection-based model reduction.

Consider now a full model (3) with a nonlinear term of order greater than 2, i.e., α > 2. The vector
x̂αj ∈ Rs at a time step j ∈ {1, . . . ,K} has dimension s =

(
n+α−1

α

)
, see Section 2.1. The dimension s is

bounded by O(nα) and can grow exponentially in the order α. This means that the costs of assembling the

data matrix D ∈ RK×(n+p+s), including the assembly of the matrices X̂(i), grow exponentially in the order
α. Additionally, the costs of solving the least-squares problem (18) grow exponentially in α. Our approach
is therefore limited to polynomial nonlinear terms of low order.

3.6. Practical considerations

A data matrix D ∈ RK×(n+p+s) with a large condition number can introduce significant numerical errors
into the solutions of the n least-squares problems (20), and thus into the inferred operators. Monitoring the
singular values of the data matrix helps detecting such a situation. In our case, a large condition number
typically arises if the states at different time steps are almost linearly dependent. This can happen either
because the time step size δt is small, and therefore the states of two successive time steps are similar, or
because the states converge quickly to a steady state. One remedy that empirically is found to reduce the
condition number of the data matrix D in case the states converge quickly to a steady state is combining
trajectories of different inputs and initial conditions. The data matrix derived from the combined trajectories
contains more states in the transient regime than a data matrix derived from a single trajectory only. For
combining trajectories of different inputs and initial conditions, let X1, . . . ,XM ′ ∈ RK×N be M ′ ∈ N
trajectories corresponding to the input matrices U1, . . . ,UM ′ ∈ RK×p and M ′ initial conditions. Note that
the trajectories X1, . . . ,XM ′ correspond to a single parameter µi, see the notation defined at the beginning
of Section 3. The matrices

X =

 X1

...
XM ′

 ∈ RM
′K×N , U =

 U1

...
UM ′

 ∈ RM
′K×p (25)

and the corresponding initial conditions are then passed to Algorithm 1 such that the data matrix D and
the right-hand side matrix R are assembled from (25) and the M ′ initial conditions. We emphasize that this
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is a heuristic strategy and that many other strategies exist that might help to reduce the condition number
of the data matrix. For example, if a small time step size leads to a large condition number (see above) then
neglecting states to remove linear dependency might reduce the condition number.

The eigenvalues of the inferred operator Â ∈ Rn×n serve as an indicator for the stability of the reduced
model in the following. A linear reduced model is asymptotically stable if the eigenvalues λ1, . . . , λn ∈ C of
Â have negative real parts [51, Section 5.8]. In case of a nonlinear reduced model, the eigenvalues λ1, . . . , λn
become stability indicators.

4. Numerical experiments

We first demonstrate operator inference on two synthetic examples. Section 4.1 discusses the heat equa-
tion and Section 4.2 the Burgers’ equation. We then consider in Section 4.3 a tubular reactor with a limit
cycle oscillation (LCO) [52]. The governing equations of the tubular reactor include a nonlinear term of
third order. Section 4.4 infers a reduced model of the GCM, which we use for an ocean gyre circulation
experiment [6].

4.1. Heat equation: linear problem

Let Ω = [0, 1] ⊂ R be the spatial domain and [0, T ] ⊂ R the time domain with T = 1. The parameter
domain is D = [0.1, 10] ⊂ R. We consider the parametrized heat equation

∂

∂t
x(ω, t;µ)− µ ∂2

∂ω2
x(ω, t;µ) = 0 , (26)

with the state x(ω, t;µ) at the spatial coordinate ω ∈ Ω, time t ∈ [0, T ], and the parameter µ ∈ D. Dirichlet
boundary conditions x(0, t;µ) = x(1, t;µ) = 1 for t ∈ [0, T ] and µ ∈ D are imposed. Discretization of the
spatial domain Ω on an equidistant grid with mesh width 2−7 with the finite difference method leads to the
system of N = 127 parametrized linear ODEs

d

dt
x(t;µ) = A(µ)x(t;µ) +B(µ)u(t) , (27)

with the state vector x(t;µ) ∈ RN and the linear operator A(µ) ∈ RN×N . The input matrix B(µ) ∈ RN×1
imposes the Dirichlet boundary conditions with the constant input u(t) = 1 for all t ∈ [0, T ], and thus we
set p = 1. The initial condition is x0(µ) = 0 ∈ RN . The output y(t;µ) ∈ R is defined as the average of the
components of x(t;µ) ∈ RN , which leads to

C =

[
1

N
, . . . ,

1

N

]
∈ R1×N , (28)

and thus q = 1. The operators A(µ) and B(µ) depend on the parameter µ ∈ D. The system of ODEs (27)
is marched forward in time with the implicit Euler scheme with time step size δt = 10−3 and K = 103 time
steps.

Let µ1, . . . , µM ∈ D be M = 10 parameters equidistantly distributed in D, and let X(µ1), . . . ,X(µM ) ∈
RK×N , U = [1, . . . , 1]T ∈ RK×1, and Y (µ1), . . . ,Y (µM ) ∈ RK×1 be the corresponding trajectories, input,
and output matrices of the system of ODEs (27). Note that the input matrix U ∈ RK×1 and the initial
condition are independent of the parameter µ ∈ D in this example. We construct a POD basis and put the
first w = 8 POD basis vectors into the POD basis matrix Vw ∈ RN×w such that the projection error

1

M

M∑
i=1

‖X(µi)−X(µi)VwV
T
w ‖2F

‖X(µi)‖2F
(29)

is about 10−5. The operators Â(µi) ∈ Rw×w, B̂(µi) ∈ Rw×1, and Ĉ(µi) ∈ R1×w are inferred with Algo-
rithm 1 for i = 1, . . . ,M and used to derive inference-based reduced models of dimension w corresponding

11



to the parameters µ1, . . . , µM . An inference-based reduced model of dimension n < w is constructed by
extracting the submatrix of size n × n from Â(µi) ∈ Rw×w that corresponds to the first n POD basis vec-

tors, and analogously for the operators B̂(µi) and Ĉ(µi). Note that this requires performing the operator
inference with Algorithm 1 only once. Our approach is equivalent to DMD (see Section 1) in this example
(linear full model and input constant over time) and therefore the inferred operators are the same operators
that would be obtained via DMD as given in [35, Algorithm 1]. The operators for a parameter µ ∈ D are
derived via elementwise spline interpolation, see [46, Section 3.1]. For comparison, we also construct the
intrusive reduced models as discussed in Section 2.3. The stability check described in Section 3.6 indicates
stability for the intrusive and the inference-based reduced models in this example.

Figure 2 compares the errors of the inference-based and the intrusive reduced models. Figure 2a reports
the average error of the states

1

M

M∑
j=1

‖X(µj)− X̄(µj)V
T
n ‖2F

‖X(µj)‖2F
, (30)

where X̄(µj) is the trajectory obtained with either the inference-based or the intrusive reduced model and
Vn ∈ RN×n the POD basis matrix with the first n POD basis vectors. Figure 2b shows the average error of the
states for Mtest = 5 test parameters µM+1, . . . , µM+Mtest ∈ D. The test parameters are drawn randomly from
a uniform distribution in D and are different from the training parameters µ1, . . . , µM for which operators
were inferred with Algorithm 1. For both the training and the test parameters, the inference-based and the
intrusive reduced model achieve a similar error (30). A similar result is obtained for the average output error

1

M

M∑
j=1

‖Y (µj)− Ȳ (µj)‖2F
‖Y (µj)‖2F

, (31)

where Ȳ (µj) is the output matrix obtained with either the inference-based or the intrusive reduced model.
The average output error is shown in Figures 2c and 2d for the training and the test parameters, respectively.

4.2. Burgers’ equation: nonlinear term of second order

Let Ω = [0, 1] ⊂ R be the spatial domain and [0, T ] ⊂ R the time domain with T = 1. Let further
D = [0.1, 1] ⊂ R be the parameter domain. The viscous Burgers’ equation is

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2
x(ω, t;µ) = 0 , (32)

where x(ω, t;µ) is the state at spatial coordinate ω ∈ Ω, time t ∈ [0, T ], and parameter µ ∈ D. We impose
Dirichlet boundary conditions on x(0, t;µ) = u(t) and x(1, t;µ) = −u(t) with the input u : [0, T ] → R.
Discretization with the finite difference method on an equidistant grid with mesh width 2−7 leads to the
system of parametrized nonlinear ODEs

d

dt
x(t;µ) = A(µ)x(t;µ) + Fx(t;µ)2 +B(µ)u(t) , (33)

where x(t;µ) ∈ RN is the state vector, A(µ) ∈ RN×N the operator corresponding to the linear terms
of the Burgers’ equation, and F ∈ RN×S the operator corresponding to the nonlinear term. Note that
F is independent of the parameter µ in this example. The input matrix B(µ) with input u(t) at time t
imposes the Dirichlet boundary conditions x(0, t;µ) = u(t) and x(1, t;µ) = −u(t). The initial condition is
x0(µ) = 0 ∈ RN . We do not consider an output in this example. The system of ODEs (33) is solved for a
parameter µ ∈ D with the semi-implicit Euler scheme and time step size δt = 10−4 and K = 104.

Let µ1, . . . , µM ∈ D be M = 10 parameters equidistantly distributed in D. We generate M ′ = 10 input
matrices U1(µi), . . . ,UM ′(µi) for each parameter µi, i = 1, . . . ,M , where each component of the input matri-
ces is drawn randomly from a uniform distribution in [0, 1] ⊂ R. The M ′ trajectories X1(µi), . . . ,XM ′(µi) ∈
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Figure 2: Heat equation: The intrusive reduced model is derived with the classical intrusive construction of the
reduced operators and the nonintrusive, inference-based reduced model with the operator inference summarized in
Algorithm 1; thus, the construction of the inference-based reduced model does not require the full-model operators.
The plots show that the inferred operators lead to a reduced model with a similar behavior to the intrusive reduced
model.
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Figure 3: Burgers’ equation: The inference-based reduced model shows a similar behavior to the intrusive reduced
model. For dimensions larger than 10, our stability check detects that the inference-based reduced models become
asymptotically unstable for a few parameters and decrements the dimension until an asymptotically stable inference-
based reduced model is recovered, which leads to a leveling off of the error.

RK×N corresponding to the M ′ input matrices are computed with the full model for each parameter µi. We
then define the trajectory and the input matrix

X(µi) =

 X1(µi)
...

XM ′(µi)

 ∈ RM
′K×N , U(µi) =

 U1(µi)
...

UM ′(µi)

 ∈ RM
′K×p (34)

for parameter µi and i = 1, . . . ,M following Section 3.6. Combining trajectories as in (34) is necessary
because the data matrix corresponding to a single input matrix Uj(µi) ∈ RK×1 for i = 1, . . . ,M and
j = 1, . . . ,M ′ has a large condition number in this example. Note that the number M ′ = 10 was determined
empirically by monitoring the condition number of the data matrix as described in Section 3.6.

A POD basis with w = 15 POD basis vectors is constructed, which leads to a projection error (29) of about
10−5. The trajectories and input matrices (34) are used to infer the operators for parameters µ1, . . . , µM
with Algorithm 1. The inference-based reduced models of dimension n < w are obtained by extracting the
submatrices of respective size from the inferred operators, see Section 4.1. For comparison, the intrusive
reduced operators are computed, and the corresponding intrusive reduced models are constructed. The
operators for a parameter µ ∈ D unequal to µ1, . . . , µM are obtained via elementwise spline interpolation.

The average error of the states (30) of the inference-based and the intrusive reduced model is shown
in Figure 3a for the training parameters µ1, . . . , µM and for Mtest = 5 randomly drawn test parameters
µM+1, . . . , µM+Mtest

∈ D from a uniform distribution in D in Figure 3b. The inputs impose the Dirichlet
boundary conditions x(0, t;µ) = 1 and x(1, t;µ) = −1 for t ∈ [0, T ], i.e., input u(t) = 1 for t ∈ [0, T ]. The
inference-based reduced model shows a similar behavior to the intrusive reduced model for this nonlinear
example. For a few parameters, the inference-based reduced models become asymptotically unstable for
dimensions n > 10 in this example, because the condition number of the data matrix is large and therefore
introduces numerical errors at components corresponding to the less important POD basis vectors. Such a
situation can be detected with the stability check discussed in Section 3.6. If we encounter an asymptotically
unstable inference-based reduced model of dimension n for a parameter µ, the dimension n is decremented
until an asymptotically stable model is obtained, i.e., until components corresponding to only the important
POD basis vectors remain. This leads to the leveling off of the error as seen in Figure 3.
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Figure 4: Tubular reactor: For parameters µ < µ∗ below the critical parameter µ∗ ∈ D, the tubular reactor converges
to a steady-state solution as shown in (a). For parameters µ > µ∗, the tubular reactor enters an LCO as in (b).

4.3. Limit cycle oscillations in a tubular reactor

In [41] a model of a one-dimensional non-adiabatic tubular reactor with a single reaction and axial mixing
is introduced. Let Ω = [0, 1] ⊂ R be the spatial domain of the tubular reactor, [0, T ] with 0 < T the time
domain, and D = [0.163, 0.1655] ⊂ R the parameter domain. The governing equations of the tubular reactor
are coupled nonlinear time-dependent convection-diffusion-reaction equations

∂

∂t
xc(ω, t;µ) =

1

Pe

∂2

∂ω2
xc(ω, t;µ)− ∂

∂ω
xc(ω, t;µ)− µf(xc, xθ)

∂

∂t
xθ(ω, t;µ) =

1

Pe

∂2

∂ω2
xθ(ω, t;µ)− ∂

∂ω
xθ(ω, t;µ)− β(xθ(ω, t;µ)− θ0) + εµf(xc, xθ) ,

with the concentration xc : Ω× [0, T ]×D → R, the temperature xθ : Ω× [0, T ]×D → R, and the nonlinear
function

f(xc, xθ) = xc exp
(
γ − γ

xθ

)
. (35)

The Péclet number is Pe = 5 and γ = 25, β = 2.5, ε = 0.5, and θ0 = 1 are known constants. The
parameter µ ∈ D is the Damköhler number. Robin boundary conditions are imposed at 0 = ω ∈ Ω and
Neumann boundary conditions at ω = 1. The model does not have an output. The same initial condition
xc0 : Ω × D → R and xθ0 : Ω × D → R as in [41, 52] is used in the following. We approximate the nonlinear
function f by its Taylor expansion of second order at the initial condition xθ0, i.e., we replace f by

f̂(xc, xθ) = xc exp

(
γ − γ

xθ0

)(
1− γ

xθ0
+
γ
(
γ − 2xθ0

)
2(xθ0)2

+

(
γ

(xθ0)2
− γ(γ − 2xθ0)

(xθ0)3

)
xθ +

1

2

γ(γ − 2xθ0)

(xθ0)2
(xθ)2

)
.

(36)
As investigated in [41], the tubular reactor exhibits two different regimes, depending on the Damköhler

number µ ∈ D. There exists a critical Damköhler number µ∗ ∈ D such that for all µ < µ∗ the concentration
xc and the temperature xθ converge to steady-state solutions, see Figure 4a. For all µ > µ∗, the tubular
reactor enters an LCO as shown in Figure 4b. We define the LCO amplitude ϑ ∈ R as the amplitude
of the temperature oscillation around an equilibrium position. Thus, in the steady-state regime, the LCO
amplitude is zero ϑ = 0 but for µ > µ∗, the LCO amplitude is larger than zero ϑ > 0. The goal is to find
the critical parameter µ∗ that separates the two regimes.

A full model of the tubular reactor model is derived in [52],

d

dt
x(t;µ) = A(µ)x(t;µ) + F (µ)x(t;µ)2 +G(µ)x(t;µ)3 +B(µ)u(t) ,
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where G(µ) and x(t;µ)3 correspond to the nonlinear term of third order and are derived similarly as for
the second-order nonlinear term, see Section 2.1. A third-order nonlinear term is obtained because of the
Taylor expansion (36) of the nonlinear function f . The input is constant u(t) = 1. The dimension of the full
model is N = 51. We set δt = 10−4, T = 50, and use the implicit Euler scheme with the Newton method to
compute the trajectories

X1(µ1), . . . ,X1(µM ) ∈ RK×N (37)

corresponding to the M = 15 parameters µ1, . . . , µM that are equidistantly distributed in the parameter
domain D.

We follow Section 3.6 and combine trajectories corresponding to different initial conditions and constant
input 1. Let therefore Vn ∈ RN×n be the POD basis matrix derived with n = 5, define M ′ = 3000, and let
z2(µi), . . . ,zM ′(µi) ∈ Rn be n-dimensional vectors with components drawn independently from a uniform
distribution in [0, 1] ⊂ R. The initial conditions xc0 and xθ0 given above are in the range of about [0, 1]
and therefore the range of the random initial conditions is chosen as [0, 1] as well. We then compute the
trajectories Xj(µi) ∈ R1×N with the initial condition Vnzj(µi) for j = 2, . . . ,M ′ and i = 1, . . . ,M .

In contrast to the initial conditions xc0 and xθ0 given above, these random initial conditions Vnzj(µi) do
not necessarily have a physical interpretation. The aim is to obtain trajectories that reflect the behavior of
the full model over many different initial conditions, and therefore provide more complete information about
the full model. We use the obtained trajectories only for the operator inference. We perform only a single
time step. In our experiments, this is sufficient because we are only interested in the transient solution that
covers the behavior of the full model near the random initial conditions, whereas steady-state solutions are
independent of the initial condition and therefore would not provide additional information about the full
model, see Section 3.6. Note that we keep the input constant over time, cf. Section 4.2. Varying the input
and the initial conditions might further reduce the condition number of the data matrix. Note further that
we can afford a large number M ′ = 3000 of different initial conditions because we perform only a single time
step. The number M ′ = 3000 was determined empirically by monitoring the condition number of the data
matrix, see Section 3.6.

The trajectories X1(µi), . . . ,XM ′(µi) are combined into X as in (25) and passed to Algorithm 1 to
infer the operators. Note that the matrices defined in (25) are generalized here to contain trajectories with
different numbers of time steps. The dimension is set to n = 5. For comparison, we also construct the
intrusive reduced model. The stability check of Section 3.6 indicates that the reduced models for n = 5 are
asymptotically stable in this example. Operators for parameters µ ∈ D are derived via elementwise spline
interpolation. Note that the LCO behavior of the full model is not captured by reduced models with n < 5
dimensions.

Figure 5a shows the LCO amplitude obtained with the inference-based and the intrusive reduced model.
Both reduced models predict a similar critical parameter. Figure 5b plots the LCO amplitude corresponding
to Mtest = 8 test parameters µM+1, . . . , µM+Mtest

∈ D that are equidistantly distributed in D. The inference-
based and the intrusive reduced models predict a similar LCO amplitude. Figure 6a reports the absolute
errors

|ϑi − ϑ̄i| , i = 1, . . . ,M , (38)

where ϑi ∈ R is the LCO amplitude computed with the full model for the training parameter µi and ϑ̄i the
corresponding LCO amplitude computed with the inference-based and intrusive reduced model, respectively.
The inference-based and the intrusive reduced model lead to similar errors. Figure 6b shows that the
inference-based and the intrusive reduced model predict the LCO amplitude for the test parameters with a
comparable accuracy as for the training parameters. Note that the purpose of this tubular reactor model is
to distinguish between the steady-state and the LCO regime, see above. Figure 5 and Figure 6 confirm that
the (intrusive and inference-based) reduced models are sufficiently accurate to clearly distinguish between
the two regimes.
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Figure 5: Tubular reactor: The inference-based reduced model enters an LCO at the same parameter where the
intrusive reduced model enters the LCO. The LCO amplitude corresponding to the inference-based reduced model
shows a similar behavior as for the intrusive reduced model.
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Figure 6: Tubular reactor: The LCO amplitudes computed with the inference-based and the intrusive reduced model
lead to a similar absolute error (38) with respect to the LCO amplitude obtained with the full model.
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Figure 7: Global circulation model: The ocean gyre circulation experiment considers a fluid in a 1200km × 1200km
× 5km box that is set in motion by a sinusoidal wind stress at boundary Γ. The result of the experiment is the
velocity of the flow field and the ocean surface elevation.

4.4. General circulation model

The GCM1 is a model to solve the equations of motion governing the ocean and Earth’s atmosphere
for the numerical study of climate [6]. It is widely used as demonstrated by hundreds of published articles
that involve the GCM in some way2. The GCM is a typical example of a community code where the source
code is available, but where the code has reached such a complexity that understanding the implementation
details is tedious and time consuming. Deriving a reduced model with classical intrusive model reduction
would therefore require a significant amount of time. We treat the GCM as a black box and derive a reduced
model with operator inference.

We use the GCM to investigate a wind-forced ocean gyre circulation experiment as described in detail in
[53]. We therefore consider a fluid in a box of size 1200km × 1200km × 5km. The fluid is set in motion by
a wind stress that varies sinusoidally in one direction, see Figure 7.

The following problem setup is derived from the documentation of the GCM. Let Ω ∈ [0, 1]2 ⊂ R2 be
the spatial domain. Note that only a single layer of the fluid is considered and therefore a two-dimensional
spatial domain is sufficient [53]. The wind stress τ : Ω× [0, T ]→ R is defined as

τ(ω, t) = u(t) sin
(
π
ω2

1200

)
,

where ω = [ω1, ω2]T ∈ Ω is the spatial coordinate, t ∈ [0, T ] time, and u : [0, T ] → U the input with input
domain U = [0.100, 0.099] ⊂ R. Note that the problem is sensitive with respect to the input and therefore
a larger input domain leads to solutions with distinctly different behaviors, which are hard to approximate
with a reduced model. The GCM computes the velocities of the fluid in the two spatial directions and the
ocean surface elevation. The GCM documentation proposes a spatial discretization of 60× 60, which leads
to a system of N = 3 × 60 × 60 = 10800 linear ODEs. The system of ODEs is solved by the GCM with a
time step size of δt = 1200s, which guarantees stability. The initial condition is zero. The experiment does
not have a parameter or an output. The governing equations, implementation details, time stepping scheme,
and the discretized operators are unavailable.

Consider an equidistant grid of six grid points γ1, . . . , γ6 ∈ U in the input domain U and define the inputs
u1, . . . , u6 : [0, T ]→ U with ui(t) = γi for i = 1, . . . , 6 and t ∈ [0, T ]. Let further U1, . . . ,U6 ∈ RK×1 be the
corresponding input matrices for T = 1.2 × 106s with Ui = [ui(t1), . . . , ui(tK)] = [γi, . . . , γi]

T ∈ RK×1 and
thus K = 104. We generate the six trajectories X1, . . . ,X6 ∈ RK×N with the GCM from the input matrices
U1, . . . ,U6. We then derive a POD basis of dimension w = 30 from these six trajectories, which leads to

1http://mitgcm.org/
2http://mitgcm.org/publications/
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Figure 8: Global circulation model: An intrusive reduced model is unavailable for this experiment and therefore the
averaged error (30) of the inference-based reduced model is compared to the projection error (39) of the POD basis.
The averaged error of the inference-based reduced model decays with a similar rate as the projection error.

a projection error of about 10−7. The inferred operators Â ∈ Rw×w and B̂ ∈ Rw×1 are constructed with
Algorithm 1 from the trajectory and input matrix

X =

X1

...
X6

 ∈ R6K×10800 , U =

U1

...
U6

 ∈ R6K×10800 .

The inference-based reduced models are marched forward in time with the implicit Euler scheme and the
proposed time step size δt = 1200s. The data matrix corresponding to this example has a large condition
number, leading to asymptotically unstable inference-based reduced models of dimension n > 14, cf. Sec-
tion 3.6. We therefore plot in Figure 8a only the averaged error of the states up to dimension n = 14. The
averaged error of the states is compared to the projection error

1

6

6∑
i=1

‖Xi −XiVnV
T
n ‖2F

‖Xi‖2F
, (39)

because an intrusive reduced model is unavailable for this experiment. The averaged error of the states
of the inference-based reduced model shows a similar behavior as the projection error. No improvement
is achieved from step n = 6 to n = 10 because the operator for n = 10 would lead to an asymptotically
unstable system and therefore the operator of dimension n = 6 is used, cf. the stability check in Section 3.6
and Section 4.2. Figure 8b shows the averaged error of the states of the inference-based reduced model
for test inputs u7, . . . , u11 : [0, T ] → U with ui(t) = (ui−6(t) + ui−5(t))/2 for i = 7, . . . , 11 and t ∈ [0, T ].
This means that the test inputs are in between the inputs u1, . . . , u6 that were used for the inference of the
operators. The behavior of the error on the training and the test inputs is similar. Figure 9 compares the
flow fields obtained with the full model to the flow field obtained with the inference-based reduced model
for n = 14 and input u1. The inference-based reduced model predicts a similar flow field as the full model,
which confirms the accuracy results reported in Figure 8.

5. Conclusions

We introduced operator inference that leads to a nonintrusive approach for the construction of projection-
based reduced models. Our method derives approximations of the reduced operators directly from initial
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Figure 9: Global circulation model: The experiment considers a fluid in a 1200km × 1200km × 5km box, which is
set in motion by a wind stress at the left boundary Γ of the box. Shown is the top view of the box. The flow field
predicted by the inference-based reduced model shows a similar behavior as the flow field of the GCM.
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conditions, inputs, trajectories, and outputs of the full model, without an intrusive projection step that
requires the full-model operators. These data are typically available for black-box full models that are
marched forward in time with a time stepping scheme. The inference of the operators is based on a least-
squares problem. We have shown that the inferred operators converge to the reduced operators that would
be obtained via an intrusive construction. The computational costs of the inference are bounded linearly in
the number of time steps and the number of degrees of freedom of the full model. If the full model has a
polynomial nonlinear term, then the costs of our operator inference grow exponentially in the order of the
polynomial nonlinear term.

Our numerical experiments on models with nonlinear terms of up to third order and on a large-scale
community model demonstrated the wide applicability our approach. Possible further applications of our
operator inference methodology are industry codes, where often intrusive model reduction is infeasible due to
the complexity of the code that leads to significant time and expertise requirements for deriving a projection-
based reduced model.
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