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Time series are an important data class that includes recordings
ranging from radio emissions, seismic activity, global position-
ing data, and stock prices to EEG measurements, vital signs, and
voice recordings. Rapid growth in sensor and recording technolo-
gies is increasing the production of time series data and the
importance of rapid, accurate analyses. Time series data are com-
monly analyzed using time-varying spectral methods to charac-
terize their nonstationary and often oscillatory structure. Current
methods provide local estimates of data features. However, they
do not offer a statistical inference framework that applies to
the entire time series. The important advances that we report
are state-space multitaper (SS-MT) methods, which provide a
statistical inference framework for time-varying spectral analy-
sis of nonstationary time series. We model nonstationary time
series as a sequence of second-order stationary Gaussian pro-
cesses defined on nonoverlapping intervals. We use a frequency-
domain random-walk model to relate the spectral representations
of the Gaussian processes across intervals. The SS-MT algorithm
efficiently computes spectral updates using parallel 1D complex
Kalman filters. An expectation–maximization algorithm computes
static and dynamic model parameter estimates. We test the frame-
work in time-varying spectral analyses of simulated time series
and EEG recordings from patients receiving general anesthesia.
Relative to standard multitaper (MT), SS-MT gave enhanced spec-
tral resolution and noise reduction (>10 dB) and allowed statisti-
cal comparisons of spectral properties among arbitrary time series
segments. SS-MT also extracts time-domain estimates of signal
components. The SS-MT paradigm is a broadly applicable, empiri-
cal Bayes’ framework for statistical inference that can help ensure
accurate, reproducible findings from nonstationary time series
analyses.

nonparametric spectral analysis | spectral representation theorem |
complex Kalman filter | statistical inference | big data

The importance of developing principled methods to solve
big data problems is now broadly appreciated (sites.

nationalacademies.org/DEPS/BMSA/DEPS 171738). Time series
are an important big data class that includes signals ranging from
gravitational waves (1), solar variations (2), radar emissions (3),
seismic activity (4), global positioning data (5), and stock prices
(6) to neural spike train measurements (7), EEG recordings (8),
vital signs (9), and voice recordings (10). Rapid growth in sen-
sor and recording technologies in science, engineering, and eco-
nomics is increasing time series data production and with it, the
importance of conducting rapid, accurate analyses. Such analy-
ses require extracting specific data features and characterizing
their uncertainty in a way that makes possible formal statisti-
cal inferences the same way as they are conducted in simpler
problems.

A range of time-frequency methods is used to characterize the
nonstationary and often oscillatory features in time series data.
Standard nonparametric spectral methods estimate the spectrum
(i.e., the frequency content of the time series in a small time
interval on which the data are presumed to be stationary) (8, 11,
12). Fourier-based spectral methods estimate only signal power

as a function of frequency and therefore, cannot provide time-
domain signal estimates. Spectrogram estimation (time-varying
spectral analysis), which entails estimating the frequency content
as function of time for nonstationary data, is carried out by sim-
ply repeating spectrum estimation on overlapping or nonover-
lapping time intervals. Spectrum estimates on adjacent intervals
(8, 10–14) are not formally related. While recently developed
time-frequency methods address the general problem of mini-
mizing the resolution tradeoff between time and frequency, these
techniques are computationally intensive, give their best perfor-
mance in high signal-to-noise problems, and to date, have had
limited application in actual time series analyses (15, 16). Despite
their use to study important problems, current time-frequency
methods have a critical shortcoming. None of these methods pro-
vides a statistical inference framework applicable to the entire
time series. (1–10).

State-space (SS) modeling is a flexible, established inference
framework for analyzing systems with properties that evolve with
time (17–21). This paradigm has been used for time-frequency
analysis of nonstationary time series with parametric time series
models (22–24), harmonic regression models (25), and nonpara-
metric time series models using batch processing (26). Given
stationary data recorded on a finite interval, multitaper (MT)
methods are optimal for balancing the bias–variance tradeoff in
spectrum estimation conducted by combining Fourier-based
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methods with tapering (8, 11, 12). Therefore, a plausible
approach to analyzing nonstationary and oscillatory time series
is to combine SS modeling with MT methods to optimize locally
the bias–variance tradeoff, relate spectral estimates across local
intervals, and conduct formal statistical inference.

The important advances that we report are state-space mul-
titaper (SS-MT) methods, which provide a statistical inference
framework for time-varying spectral analysis of nonstationary
time series. The balance of the paper is organized as follows.
In Theory, we define the SS-MT time-frequency model, SS-MT
spectrogram estimation algorithm, time-domain signal extrac-
tion algorithm, and empirical Bayes’ inference framework. In
Applications, we illustrate use of the algorithms in the analy-
sis of a simulated nonstationary time series and of EEG time
series recorded from patients under general anesthesia. Discus-
sion summarizes the properties of the SS-MT paradigm and high-
lights the implications of this future research for solving large
data inference problems.

Theory
An SS-MT Time-Frequency Model. Assume that we observe a non-
stationary time series of the form

yt = xt + εt , [1]

where xt is a zero mean, second-order, locally stationary Gaus-
sian process and εt is independent, zero mean Gaussian noise
with common variance σ2

ε for t = 1, 2, . . .,T . A common practice
in analyses of nonstationary time series is to assume a minimal
interval length and that data are stationary on intervals having
this minimal length (SI Appendix, Table S1). We define the local
stationarity of xt by assuming that we can write T =KJ , where K
defines the number of distinct, nonoverlapping stationary inter-
vals in xt and J is the number of observations per stationary
interval. We index the stationary intervals as k = 1, . . . ,K and
the points per interval as j = 1, . . . , J . For example, if we have
1,440 s of a time series that is stationary on 1-s intervals and
recorded at 250 Hz, then K = 1,440, J = 250, and T = 3,60,000.

We present the data on stationary interval k as the vector
Yk of length J , with the j th element that is Yk,j = yJ(k−1)+j ,
Xk,j = xJ(k−1)+j , and εk,j = εJ(k−1)+j for k = 1, . . . ,K and
j = 1, . . . , J . By the spectral representation theorem (27), we can
express each Yk as

Yk = Xk + εk

= W∆Zk + εk , [2]

where W is a J × J matrix with the (l , j )th element that
is (W )l,j = J−1/2 exp (i2π(l − 1)j/J ). ∆Zk = (∆Zk (ω1), . . . ,

∆Zk (ωJ ))′ are differences of orthogonal Gaussian increments,
and we define ωj = 2π(j − 1)J−1.

To relate the data on adjacent intervals, we assume that the
Gaussian increment differences are linked by the random walk
model

∆Zk = ∆Zk−1 + vk , [3]

where we assume that vk is a zero mean, independent complex
Gaussian process with J × J diagonal covariance matrix I (σ2

v,j )
for j = 1, . . . , J . Eq. 3 defines a stochastic continuity constraint
on the nonstationary time series in the frequency domain.

To represent the observation model [2] in the frequency
domain, we let F be the Fourier transform operator defined
as the J × J matrix with the (j , l)th element that is (F )j ,l =

J−1/2 exp (−i2π(l − 1)j/J ). Taking the Fourier transform of
Eq. 2 yields

Y F
k = ∆Zk + εFk , [4]

where Y F
k =FYk , FW = I , and εFk =Fεk is a zero mean, com-

plex Gaussian vector with J × J diagonal covariance matrix

I (σ2
ε). Eqs. 2 and 3 define a frequency-domain SS model for the

nonstationary time series.
To combine the SS and MT paradigms, we note that, in the

absence of Eq. 3, MT methods with Slepian functions selected as
tapers would be used to estimate the spectrum on each stationary
interval (11, 12). Therefore, as in the application of MT methods,
given J , the number of data points in the stationary interval and
∆, the data sampling rate, we also assume that ωr , the desired
frequency resolution for the spectral analysis, has been specified
for the problem. Next, M , the number of tapers, is chosen to
minimize the local bias–variance tradeoff for spectrum estima-
tion on each stationary interval using the standard MT formula
M ≤ 2[J∆−1ωr ]− 1 (28). We index the tapers as m = 1, ...,M .

We let S (m) denote the operator for applying the mth Slepian
taper to the data, Y (m)

k =S (m)Yk denote the tapered data, and
Y

(m),F
k =FY

(m)
k denote the Fourier transform of the tapered

data. If we take the Slepian tapers to be orthonormal, then
by theorem 4.4.2 in ref. 29, the Fourier transform of each
tapered series has the same probability distribution and thus,
the same spectral representation as Y F

k in Eq. 4. Therefore,
we write

Y
(m),F
k = ∆Z

(m)
k + ε

(m),F
k , [5]

and we view ∆Z
(m)
k and ε(m),F

k as a realization of ∆Zk and of
εFk , respectively, observable through the mth tapered series. It
follows that the random walk model in Eq. 3 has the realization

∆Z
(m)
k = ∆Z

(m)
k−1 + v

(m)
k , [6]

where we assume that v
(m)
k is a zero mean, independent com-

plex Gaussian vector with a J × J diagonal covariance matrix
I (σ

2,(m)
v,j ) for j = 1, . . . , J and m = 1, . . . ,M . Eq. 6 induces

stochastic continuity constraints on the tapered nonstationary
time series. Eqs. 5 and 6 define an SS-MT time-frequency model.
Use of the Slepian tapers to achieve the desired frequency reso-
lution given the assumed length of the local stationary intervals
transforms the original time series [2] and its state model [3] into
M independent time series [5] and their respective M indepen-
dent state models [6].

SS-MT Spectrogram Estimation Algorithm. The linear complex
Gaussian form of Eqs. 5 and 6 suggests that a Kalman fil-
ter algorithm can be used to compute the sequence of incre-
ment differences (23) and thus, the sequence of spectrum
estimates. For this problem, the Kalman filter has a special
structure. Because the M ∆Z

(m)
k are independent, there are

M separate, independent J -dimensional Kalman filters. In addi-
tion, because ∆Z

(m)
k (ωj ) is orthogonal across frequencies, there

are, for each tapered series, J parallel 1D complex Kalman fil-
ter algorithms, one for each frequency ωj . Hence, the Gaussian
increment differences can be recursively estimated by applying
M ·J 1D complex Kalman filter algorithms to the M tapered time
series. Assuming that the increment difference estimates have
been computed on interval k − 1, then for tapered series m , the
1D complex Kalman filter algorithm for estimating ∆Z

(m)
k (ωj )

on interval k is

∆Z
(m)

k|k−1(ωj ) = ∆Z
(m)

k−1|k−1(ωj ) [7a]

σ
2,(m)

k|k−1,j =σ
2,(m)

k−1|k−1,j + σ
2,(m)
v,j [7b]

∆Z
(m)

k|k (ωj ) = ∆Z
(m)

k|k−1(ωj )

+C
(m)
k,j (Y

(m),F
k,j −∆Z

(m)

k|k−1(ωj )) [7c]

σ
2,(m)

k|k,j = (1− C
(m)
k,j )σ

2,(m)

k|k−1,j , [7d]
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where the Kalman gain for m = 1, . . . ,M , k = 1, . . . ,K , and
j = 1, . . . , J is

C
(m)
k,j = (σ2,(m)

ε + σ
2,(m)

k|k−1,j )
−1
σ
2,(m)

k|k−1,j . [8]

The notation k |s denotes the estimate on stationary interval
k given all of the data observed through stationary interval s .
The derivation of the Kalman filter algorithm is in SI Appendix.
We assume that the algorithm has initial conditions ∆Z

(m)
0 (ωj )

and σ2,(m)
0,j . We carry out their estimation along with the model

parameters using an expectation–maximization (EM) algorithm,
which we describe in SI Appendix. Given the Kalman filter esti-
mate of the increment differences on interval k , the SS-MT spec-
trogram estimate at frequency ωj on interval k is

f SS−MT
k|k (ωj ) =M−1

M∑
m=1

||∆Z
(m)

k|k (ωj )||2, [9]

where ||∆Z
(m)

k|k (ωj )||2 is the mth SS eigenspectrogram at fre-
quency ωj (11). Each SS eigenspectrogram is a spectrogram esti-
mate computed by weighting the data with a different Slepian
taper. Like the MT spectrogram defined below [10], SS-MT spec-
trogram estimate [9] is the average of the M approximately inde-
pendent SS eigenspectrograms.

Eqs. 7–9 define the SS-MT algorithm for spectrogram estima-
tion for nonstationary time series. For each tapered series, the
increment difference estimate on interval k is a weighted aver-
age between the increment difference estimate on interval k − 1
and the difference between the Fourier transform of the tapered
series and the increment difference estimate on interval k − 1.
The weighting depends on the Kalman gain, which is between
zero and one by construction. If the Kalman gain is close to zero,
then the one-step prediction variance σ2,(m)

k|k−1,j is small relative

to the observation variance σ2,(m)
ε , and hence, the increment dif-

ference estimate on interval k is close to the estimate on inter-
val k − 1. If the Kalman gain is close to one, then the one-step
prediction variance is large relative to the observation variance,
meaning that the uncertainty in the prediction of the increment
difference on interval k based on the data up through interval
k − 1 is large. In this case, the increment difference estimate on
interval k is close to the Fourier transform of the tapered series
observed on interval k .

In the absence of the state models [3 and 6], Eq. 9 becomes
the MT spectrogram estimate

f MT
k (ωj ) =M−1

M∑
m=1

‖Y (m),F
k,j ‖2, [10]

where Y
(m),F
k = (Y

(m),F
k,1 , . . . ,Y

(m),F
k,J )

′
and ||Y (m),F

k,j ||2 is the
mth MT eigenspectrogram at frequency ωj (12). In the absence
of tapering, Eq. 9 becomes the SS periodogram estimate

f SS−P
k|k (ωj ) = ||∆Z SS−P

k|k (ωj )||2, [11]

which is computed by applying J parallel 1D complex Kalman fil-
ters to the Fourier transformed data Y F

k . In the absence of taper-
ing and the SS model, Eq. 11 becomes the periodogram estimate

f Pk (ωj ) = ||Y F
k,j ||2, [12]

where Y F
k = (Y F

k,1, · · · ,Y F
k,J )′. By comparing the SS-MT algo-

rithm [7–9] with the standard MT [10], the periodogram [12], and
the SS periodogram [11] algorithms, it is possible to understand
the effects on spectrogram estimation of combining the MT
approach with SS modeling. In addition, the SS-MT paradigm
can be applied to compute cross-spectrograms between two or
more time series that are described in SI Appendix (SI Appendix,
Fig. S12).

Time-Domain Signal Extraction. Given the ∆Z
(m)

k|k , we can estimate
the denoised time-domain signal as

Xk|k =W∆Zk|k , [13]

where ∆Zk|k =M−1∑M
m=1 ∆Z

(m)

k|k . The extracted signal is a lin-
ear combination of the estimated increment differences across
all of the frequencies. Frequency components on different sta-
tionary intervals are related, because all are estimated by the
complex Kalman filter algorithm in Eqs. 7a–7d. Hence, selective
filtering, such as high-pass, low-pass, and band-pass filtering, can
be performed by simply choosing the components of ∆Zk|k in
the desired frequency range. Given a set of L, not necessarily
sequential frequencies, ωj for j = s1, . . . , sL, we can obtain the
filtered time-domain signal as

X L
k|k =W∆ZL

k|k , [14]

where the components of ∆ZL
k|k , outside the L frequencies

and their conjugate symmetric frequencies, are all zero. Eq.
14 provides a highly flexible alternative to an empirical mode
decomposition that allows extraction of a time-domain signal
composed of any specified frequency components. The ana-
lytic version of the filtered time-domain signal can be com-
puted as

RL
k|k,t + iI L

k|k,t = 2J−
1
2

sL∑
j=s1

∆ZL
k|k (ωj )e

iωj t [15]

for t = J (k−1)+l and l = 1, . . . , J . Here, [(RL
k|k,t)

2
+(I L

k|k,t)
2
]
1/2

and tan
(
−I L

k|k,t/R
L
k|k,t

)
are the instantaneous amplitude and

phase of the time-domain signal in the specified frequency
range, respectively (SI Appendix, Figs. S1 and S2). This com-
putation obviates the need to apply a Hilbert–Huang trans-
form to either filtered data or data processed by an empiri-
cal mode decomposition to estimate instantaneous amplitude
and phase.

Inferences for Functions of the Increment Differences. To make
inferences for functions of the increment differences at any time
points, we compute the joint distribution of the increment differ-
ences conditional on all of the data in the time series using the
fixed interval smoothing algorithm (20, 21), which is

∆Z
(m)

k|K (ωj ) = ∆Z
(m)

k|k (ωj )

+Ak,j (∆Z
(m)

k+1|K (ωj )−∆Z
(m)

k+1|k (ωj ))

σ
2,(m)

k|K ,j = σ
2,(m)

k|k,j + A2
k,j (σ

2,(m)

k+1|K ,j − σ
2,(m)

k+1|k,j )

Ak,j = σ
2,(m)

k|k,j (σ
2,(m)

k+1|k,j )
−1
, [16]

where the initial conditions are ∆Z
(m)

K |K (ωj ) and σ
2,(m)

K |K ,j for
k =K − 1,K − 2, . . . , 1 and j = 1, 2, . . . , J . To compute the
covariances between any two states, we use the covariance
smoothing algorithm defined as (20)

σ
(m)

k,u|K ,j =Ak,jσ
(m)

k+1,u|K ,j [17]

for 1 ≤ k ≤ u ≤ K . Eqs. 16 and 17 allow us to compute the joint
distribution of the increment differences conditional on all of the
data. Therefore, we can compute the distribution of any function
of the increment differences by Monte Carlo methods (30). For
each Monte Carlo sample, we draw from the joint distribution
and compute the function of interest. The histogram of the func-
tion of interest provides a Monte Carlo estimate of its posterior
probability density. The estimate is empirical Bayes, because it
is computed conditional on the maximum likelihood parameter
estimates (31).
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Model Parameter and Initial Condition Estimation. The Kalman fil-
ter [7 and 8], Kalman smoother [16], and covariance smoothing
[17] algorithms assume that the initial states ∆Z

(m)
0 (ωj ), the ini-

tial state variances σ2,(m)
0,j , and the model parameters σ2,(m)

v,j and
σ
2,(m)
ε are known. We use an EM algorithm (32) designed after

refs. 20 and 21) to compute maximum likelihood estimates of
the initial conditions and the model parameters. The details are
given in SI Appendix.

Applications
Spectrogram Analysis of Simulated Data. We first tested the SS-
MT algorithm on the simulated nonstationary process (Fig. 1A)
defined by the sixth-order autoregressive model adapted from
ref. 12:

xt = 3.9515xt−1 − 7.8885xt−2 + 9.7340xt−3 − 7.7435xt−4

+ 3.8078xt−5 − 0.9472xt−6 +
16t

T
vt , [18]

where T = 1,28,000 s and vt is independent, zero mean Gaus-
sian noise with unit variance. The spectrogram of the model has
three peaks at 3.5, 9.5, and 11.5 Hz (Fig. 1B). All three peaks
grow linearly in height and width with time. We added an inde-
pendent zero mean Gaussian noise with variance set to achieve a
signal-to-noise ratio of 0 dB. The sampling rate is 64 Hz. Eq. 18 is

0

5

10

15

8
9

10
11
12
13

0

5

10

15

8
9

10
11
12
13

0

5

10

15

8
9

10
11
12
13

Time (min)
0 5 10 15 20 25 30

0

5

10

15

Time (min)
24 25 26 27

8
9

10
11
12
13

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z)

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z)

C

D

E

F

0
5
10
15

-5
-10

0
5
10
15

-5
-10

0
5
10
15

-5
-10

0
5
10
15

-5
-10

Fr
eq

ue
nc

y 
(H

z)

0

5

10

15

8
9

10
11
12
13

0
5
10
15

-5
-10

B

A

E
E

G
 (µ

V
)

300 302 304 306 308 310
-40
-20

0
20
40

960 962 964 966 968 970 1500 1502 1504 1506 1508 1510

Time (sec)

Fig. 1. Spectrogram analysis of the time-varying sixth-order autoregressive process defined in Eq. 18. (A) Ten-second segments from the simulated time
series starting at 5, 16, and 25 min. (B) True spectrogram. (C) Periodogram. (D) MT spectrogram. (E) SS periodogram. (F) SS-MT spectrogram. Right shows for
each panel a zoomed-in display of the 3 min between 24 and 27 min. The color scale is in decibels.

nonstationary at each time t . However, because it can be approx-
imated in small intervals by a stationary sixth-order autoregres-
sive process, it satisfies the Dahlhaus definition of local station-
arity (33). We set J = 1024 and K = 125. We choose M , the
number of tapers, to be four, which corresponds to a spectral
resolution of 0.5 Hz for the MT methods. We estimated the
model parameters from the first 50 observations using the EM
algorithm (SI Appendix).

Fig. 1 C–F shows the periodogram (Fig. 1C), the MT spectro-
gram (Fig. 1D), the SS periodogram (Fig. 1E), and the SS-MT
spectrogram (Fig. 1F). While all four methods capture the gen-
eral structure of the true spectrogram (Fig. 1B), there are clear
differences. The MT spectrogram (Fig. 1D) shows, as expected,
better resolution of (less variability in estimating) the three peaks
compared with the periodogram (Fig. 1C). However, when com-
paring the power in the frequency bands outside the three peaks,
both the periodogram (Fig. 1C) and the MT spectrogram (Fig.
1D and SI Appendix, Fig. S6) overestimate the noise relative
to the true spectrogram (Fig. 1B and SI Appendix, Fig. S6 C
and D) by 10–15 dB. The SS periodogram (Fig. 1E) and the
SS-MT spectrogram (Fig. 1F and SI Appendix, Fig. S6 C and
D) estimate the noise outside the three peaks to be at or near
−10 dB as in the true spectrogram (Fig. 1B and SI Appendix,
Fig. S6 C and D). The MT and the SS-MT spectrograms cap-
ture well and agree closely in their estimates of the power in
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the three peaks (Fig. 1 D, Right and F, Right and SI Appendix,
Fig. S6).

A key difference between the MT and the SS-MT spectro-
grams appears as the power increases. As the heights of the spec-
tral peaks at 9.5 and 11.5 Hz increase, the depth of the “valley”
in the spectrogram between them increases also (Fig. 1B and SI
Appendix, Fig. S6 C and D). The valley is at 5 dB between min-
utes 24 and 27 (Fig. 1B, Right and SI Appendix, Fig. S6D). The
MT spectrogram estimates the valley to be at 10 dB (Fig. 1D,
Right and SI Appendix, Fig. S6D). In contrast, the SS-MT spec-
trograms estimates the valley to be at 4 dB (Fig. 1D, Right and
SI Appendix, Fig. S6D). In addition, the mean squared error was
lower at all frequencies for the SS-MT algorithm compared with
the other three methods (SI Appendix, Table S2). We explain
the enhanced denoising and enhanced spectral resolution of the
SS-MT algorithm relative to the MT algorithm after we analyze
the real EEG recordings in the next examples. In SI Appendix,
we assess the effect of stationary interval length on spectrogram
estimation.

Spectrogram Analysis of the EEG During General Anesthesia. Anes-
thetic drugs act in the brain to create the altered states of
general anesthesia by producing highly structured oscillations
that disrupt normal information flow between brain regions (34,
35). Because these oscillations are readily visible in the EEG,
EEG and EEG-derived measures are commonly used to track
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Fig. 2. Spectrogram analysis of EEG time series recorded from a patient under general anesthesia maintained with sevoflurane and oxygen. (A) The expired
concentration of sevoflurane. (B) Raw EEG signals. (C) Periodogram. (D) MT method spectrogram. (E) SS periodogram. (F) SS-MT spectrogram. The color scale
is in decibels.

in real time the brain states of patients receiving general anes-
thesia and sedation (36). We illustrate the SS-MT methods by
comparing them with the other three spectrogram methods in
the analysis of EEG recordings from patients during general
anesthesia.

The EEG recordings, in this example and the subsequent
examples, are deidentified data collected as part of protocols
at the Massachusetts General Hospital (MGH) that have been
approved by the MGH Human Research Committee. For EEGs
recorded from patients, informed consent was not required,
whereas for EEGs recorded from volunteer subjects, informed
consent was required and was obtained. For each patient, the
EEG was continuously recorded during general anesthesia using
the Sedline monitor (Masimo) with the standard six-electrode
frontal montage. The Sedline array records from electrodes
located approximately at positions Fp1, Fp2, F7, and F8. On
each channel, the electrode impedance was less than 5 kohms.
We used the EEG data recorded at Fp1 for the spectral analyses
and the EEG data recorded at Fp1 and Fp2 for the coherence
analyses (SI Appendix, Fig. S12). We began the EEG recordings
approximately 3–5 min before induction of general anesthesia
and continued the recordings for ∼3–5 min after extubation.

The data analyzed in Fig. 2 consist of 190 min of EEG
recorded at 250 Hz during maintenance of general anesthesia
using the ether anesthetic sevoflurane with oxygen. Hence, we
take T = 2,850,000. We set J = 500 based on our several years of
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experience analyzing the EEG of anesthetized patients. Hence,
we have K = 5,750. We chose M , the number of tapers, to be
three. This corresponds to a spectral resolution of 2 Hz for the
MT method. We estimated the model parameters and initial con-
ditions from the first 5 min of data using the EM algorithm. To
estimate the observation noise variance in the EM algorithm, we
restricted the analysis to frequencies in the physiologically rel-
evant range from 0.1 to 30 Hz. The raw EEG signal (Fig. 2B)
shows strong modulation with changes in the sevoflurane con-
centration (Fig. 2A).

All four spectrograms for these data show the well-known
alpha-beta oscillations (8–17 Hz) and slow-delta oscillations
(0.1–4 Hz) that are characteristic of general anesthesia main-
tained by sevoflurane (36). When the sevoflurane concentration
increases, the power in the alpha-beta band shifts to lower fre-
quencies, while the power in the slow-delta band power shifts
to higher frequencies. The opposite changes occur when the
sevoflurane concentration decreases. The spectral changes asso-
ciated with increases in the sevoflurane concentration appear
as increases in theta oscillation power (4–8 Hz) (36). The peri-
odogram (Fig. 2C) shows diffuse, grainy power between 10 and
17 Hz and in the slow-delta range. As expected, the MT spec-
trogram (Fig. 2D) has higher spectral resolution relative to the
periodogram. Both the periodogram and the MT spectrogram
show diffuse power ranging from 7 to −2 dB in the theta range
and from −5 to −15 dB in the beta-gamma range (>17 Hz).
Relative to the periodogram and the MT spectrogram, the SS
periodogram (Fig. 2E) and the SS-MT spectrogram (Fig. 2F)
show substantially greater denoising defined as a reduction in
power in the frequency bands with low power. For the latter
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Fig. 3. Spectrogram analysis of EEG recorded in a volunteer subject receiving a computer-controlled infusion of propofol. (A) Time course of propofol
target effect site concentrations based on the Schneider model (35). The black dashed vertical lines define the anesthetic states determined by the behavioral
analysis: awake1, baseline conscious state; LC; UNC; RC; and awake2, final conscious state. (B) Two seconds of unprocessed EEG (black curves) and of EEG
extracted from the SS-MT analysis (red curves) [14] at different target effect site concentrations. (C) MT method spectrogram. (D) SS-MT spectrogram. The
color scale is in decibels.

two spectrograms, the power in the beta-gamma range is uni-
formly at −15 dB, which is a 5–15 dB power reduction relative
to the MT spectrogram. Both the SS periodogram and the SS-
MT spectrogram estimate the power in the theta band to be
10–15 dB less than that for either the periodogram or the MT
spectrogram. Like the periodogram, the prominent alpha-beta
and the slow-delta power in the SS periodogram is grainy and
diffuse.

Spectrogram Analysis of the EEG During Transitions Among Anes-
thetic States. To illustrate the full potential of the SS-MT algo-
rithm, we reanalyze 155.4 min of EEG data recorded at 250 Hz
from a frontal lead in a human volunteer subject receiving i.v.
propofol administered by a computer-controlled infusion at an
increasing and then, a decreasing infusion rate (35). Gradually
increasing the propofol infusion rate allows the subject to tran-
sition gradually from being awake to unconsciousness (UNC).
Gradually decreasing the propofol infusion rate from the rate
required to achieve the maximum target effect site concentration
(model-derived brain concentration) allows the subject to transi-
tion from UNC to the awake state. Baseline EEG was recorded
for 20 min while the subject lay supine with eyes closed and
received no propofol. After the baseline period, propofol was
administered through a computer-controlled infusion to achieve
five different effect site concentrations in increasing levels (Fig.
3A) (35). After completing the fifth level, the propofol infusion
rate was systematically decreased to achieve a similar sequence
of target effect site concentrations in decreasing order until the
infusion was stopped. Each target effect site concentration was
maintained for 14 min.
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Based on the analyses of the subject’s responses to yes–no
questions administered every 4 s, we identified five distinct
behavioral or anesthetic states: conscious, loss of consciousness
(LC), UNC, recovering consciousness (RC), and conscious (Fig.
3A, black dashed vertical lines) (35). The important scientific
question to answer is whether these distinct anesthetic states are
associated with distinct EEG signatures.

We take T = 2,331,000 and set J = 1,000, K = 2,331, and
M = 5. This gives a spectral resolution of 1.5 Hz for the MT
method. Because we expect the EEG frequency content to
change substantially with changes in target effect site concen-
tration, we estimated, using the EM algorithm, a new set of
model parameters from the first 5 min of EEG data recorded
at each level. The effects of changing the propofol infusion rate
are apparent in the unprocessed EEG (Fig. 3B, black curves),
the denoised time-domain signal (Eq. 14 and Fig. 3B, red curves),
the MT spectrogram (Fig. 3C), and the SS-MT spectrogram (Fig.
3D). At baseline, moderate-amplitude slow oscillations domi-
nate the EEG. Low-amplitude beta-gamma oscillations appear
midway through level 2 and transition into narrow-band, high-
amplitude alpha oscillations by level 4. At the same time, the
slow oscillations transition to high-amplitude, slow-delta oscilla-
tions. By level 5, the alpha oscillations have nearly dissipated, and
the EEG is dominated by slow-delta oscillations. As the propo-
fol infusion rate is decreased, EEG dynamics are recapitulated
in reverse. As in the previous examples, the SS-MT spectrogram
shows substantial spectral denoising and increased resolution rel-
ative to the MT spectrogram. The denoised time-domain signals
and the SS-MT spectrogram strongly suggest that different oscil-
latory components are present in the EEG when the subject is in
different anesthetic states.

Inferring Differences in Spectral Power Between Anesthetic States.
To make a formal statistical inference about the relationship
between these anesthetic states and EEG signatures, we com-
pare the power across the spectrogram from 0.1 to 30 Hz among
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representative 100-s intervals during each of the anesthetic states
(Fig. 3A). The 100-s intervals are baseline awake period awake1,
500–600 s; LC, 3,100–3,200 s; UNC, 4,600–4,700 s; RC, 6,600–
6,700 s; and final awake state awake2, 9,000–9,100 s. To compare
two 100-s intervals for each frequency ω in a given frequency
range, we compute the average difference spectrogram between
two intervals:

∆f̄r,s(ω) =
1

100

[∫
r

f SS−MT
t (ω)dt −

∫
s

f SS−MT
t (ω)dt

]
, [19]

where r and s are two distinct 100-s intervals. To determine if
there is a significant change in the spectrogram between any two
of the anesthetic states, we use a Monte Carlo procedure to com-
pute an approximate empirical Bayes’ 95% confidence interval
(95% CI) for ∆f̄r,s(ω) (30). Together, the Kalman filter [7 and
8], the Kalman smoothing [16], and the covariance smoothing
[17] algorithms define the multivariate complex Gaussian joint
posterior density of ∆Zk|K for k = 1, . . . .K , conditional on the
parameter estimates. The quantity ∆f̄r,s(ω) is a function of the
∆Zk|K , so that given a random sample of the ∆Zk|K , we can
compute ∆f̄r,s(ω). By drawing a large number of the ∆Zk|K , say
1,000, we can, therefore, compute 95% CIs for ∆f̄r,s(ω) (Fig. 4).
A significant difference in power is observed if the zero is not in
the 95% CI.

We show 6 of 10 possible comparisons of differences in power
among the five anesthetic states (Fig. 4). The LC and UNC
states show significant increases in power in the slow-delta and
alpha bands relative to awake1, the baseline awake state (Fig.
4 A and B). There is also a significant increase in power in the
upper part of the slow-delta and in the alpha bands between
RC and awake1 (Fig. 4C) and between LC and the UNC state
(Fig. 4E). In contrast, there are no appreciable differences in
power between awake2 and awake1 (Fig. 4D) or between LC
and RC (Fig. 4F). These findings are in complete agreement
with the structure of the power in the spectrogram (Fig. 3D). We
can conclude that there are significant quantifiable differences in
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EEG power between different anesthetic states and that those
differences can range from 10 to 20 dB (95% CI). These find-
ings also agree with and go beyond the original analyses of these
data, in which hypothesis testing methods with Bonferroni cor-
rections were used to compare the anesthetized states with just
awake1 (35). Using the model in Eq. 18, we assessed the cover-
age probability of the empirical Bayes’ CIs in a simulation study
(SI Appendix) and found that the actual and nominal coverage
probabilities are in good agreement.

Spectrogram Denoising. The SS-MT spectrogram has greater
denoising than the MT spectrogram (Figs. 1–3) because of the
stochastic continuity constraints (Eq. 3) and the eigenspectro-
gram averaging (SI Appendix, Figs. S3 and S4). The stochastic
continuity constraint has a different independent effect at each
frequency. In both the theoretical and the real data examples,
the state variances, σ2,(m)

v,l , are small (0.05–4 dB) for frequencies
with low power and large (27–38 dB) for frequencies with high
power (SI Appendix, Fig. S5, blue curves). The Kalman gains,
C

(m)
k,l , reached steady-state values within 5–10 updates, and like

the state variances, the Kalman gains were small (0.1–0.4) for
frequencies with low power and large (0.7–0.95) for frequencies
with high power (SI Appendix, Fig. S5, red curves). Rewriting Eq.
7c as

∆Z
(m)

k|k (ωl) = (1− C
(m)
k,l )∆Z

(m)

k−1|k−1(ωl) + C
(m)
k,l Y

(m),F
k,l [20]

shows that the increment difference estimate on interval k is a
weighted average between the increment difference estimate on
interval k − 1 and the Fourier transform of the tapered data
on interval k . In particular, frequencies with low power weight
Z

(m)

k−1|k−1(ωl) more than Y
(m),F
k,l . This weighting favors suppress-

ing increases or fluctuations in the low-power or noise frequen-
cies. In contrast, frequencies with high power weight more the
new information in Y

(m),F
k,l . These differential effects denoise

the spectrogram by heightening the contrast between frequen-
cies with high power and those with low power in the analysis of
the simulated data (Fig. 1F and SI Appendix, Fig. S6 C and D)
and in the analysis of the actual EEG recordings (Fig. 2F and SI
Appendix, Figs. S6C and S9C).

Averaging the MT eigenspectrograms reduces the variabil-
ity in the MT spectrogram (SI Appendix, Fig. S3) (11). Each
SS-MT eigenspectrogram (SI Appendix, Fig. S4 A–C) has vari-
ability comparable with the SS periodogram (Fig. 2E) (29).
Averaging the SS-MT eigenspectrograms reduces the vari-
ability of the SS-MT spectrogram at each frequency rela-
tive to the SS periodogram (SI Appendix, Fig. S4D) by M−1

[9], thus giving the SS-MT spectrogram a further denoising
enhancement.

Spectral Resolution and Leakage Reduction. Kalman filter updating
[7c and 20] enhances the spectral resolution of the SS-MT spec-
trogram relative to the MT spectrogram by reducing leakage. To
see why, assume that fk (ωj ) and fk (ωl) are the true spectrograms
on time interval k at two frequencies ωj and ωl , respectively, and
that fk (ωj )� fk (ωl). Let ∆ωr be the frequency resolution cho-
sen for the MT analysis. If |ωj − ωl | < ∆ωr (|ωj − ωl | > ∆ωr ),
then in the MT analysis, the narrow (broad)-band power at ωj

leaks into the power at ωl (12). The extent of the leakage is gov-
erned by the power spectral density of each taper (SI Appendix,
Figs. S7, S8, S10, and S11). In the SS-MT analysis, because ωl

has low power, ∆Z
(m)

k|k (ωl) weights ∆Z
(m)

k−1|k−1(ωl) much more

than Y
(m),F
k,l , the term in Eq. 20 that carries the leakage from

ωj . Hence, broad- and narrow-band power leakage from ωj into
the power at ωl is reduced, because the Kalman gain at ωl

is small.

For example, at 70 min (Fig. 2 D and F and SI Appendix, Fig.
S9 A and C), the MT and SS-MT spectrograms agree in the high-
power frequency bands (i.e., 0.1–5 and 9.5–15.5 Hz) and disagree
in the low-power frequency bands (5.1–9.4 and 15.6–30 Hz); 6 Hz
is just on the border of the narrow-band leakage from 5 Hz for
the MT spectrogram (SI Appendix, Fig. S9A). The 12-dB dif-
ference between the MT and the SS-MT spectrograms at 6 Hz
results, because the former has leakage from the power at 5 Hz,
whereas the latter has enhanced denoising and reduced leakage.
A 10- to 15-dB power difference persists between the MT and
SS-MT spectrograms beyond 15 Hz because of the small values
of the Kalman gain in this frequency band (SI Appendix, Fig. S9
C and D).

At 80 min (Fig. 2 D and F and SI Appendix, Fig. S9 B and
D), the MT and SS-MT spectrograms also agree in the high-
power frequency bands (0.1–5 and 10.5–15 Hz) and disagree in
the low-power frequency bands (i.e., 5.1–9.4 and 15.1–30 Hz). A
similar argument explains the 7-dB difference in power at 16 Hz
between the MT and the SS-MT spectrograms at minute 80. The
same argument also explains in the analysis of the simulated data
example the 7-dB difference in power at 11 Hz in the MT and
SS-MT spectrograms at 25 min (SI Appendix, Fig. S6D). The dif-
ferences between MT and SS-MT tapering are discussed in SI
Appendix.

Discussion
Time series are a prominent big data class with growth that
is being spurred by innovations in sensing and recording tech-
nologies. These data track dynamic processes, making accu-
rate real-time analyses an important objective. Aside from sim-
ply extracting important features from the series, the analysis
should provide associated measures of uncertainty, so that for-
mal statistical inference can be conducted the same way that
it would be conducted for questions arising from smaller, sim-
pler datasets. No current time-frequency analysis method pro-
vides an inference framework applicable to the entire series
(8, 11–16). To address the inference problem for nonstation-
ary time series, we combined the MT and the SS approaches
into an empirical Bayes’ paradigm for frequency- and time-
domain analyses of nonstationary time series. We showed the
SS-MT inference paradigm by analyzing differences in EEG
power between different propofol-induced anesthetic states
(Fig. 4). By reporting the results in terms of 95% empiri-
cal Bayes’ CIs, we measure directly the effect size (i.e., how
much EEG power differs among propofol’s anesthetic states).
We base our inferences on 95% CIs derived from the empir-
ical Bayes’ estimate of the joint posterior distribution of the
power across all of the frequencies and all times in the time
series rather than on tests of multiple hypotheses. Our small
simulation study (SI Appendix) suggests that the nominal and
actual coverage probabilities of the empirical Bayes’ CIs are in
good agreement. The empirical Bayes’ paradigm has been sug-
gested as a practical approach to solving large-scale inference
problems (37).

Our analyses offer scientific insights. The SS-MT spectrograms
show denoising and spectral resolution that more clearly define
the frequency content of anesthetic EEG signals. As a conse-
quence, the results in Fig. 2 suggest that most of the theta oscil-
lation power in the sevoflurane spectrogram could be caused by
power shifts from both the alpha band above and the slow-delta
band below. The results in Fig. 4 allow us to make formal infer-
ences about EEG power difference as a function of the level of
unconsciousness in a single individual.

SS-MT Time-Frequency Analysis of Nonstationary Time Series. In
addition to providing a statistical inference framework, the SS-
MT paradigm has other desirable features. By the spectral rep-
resentation theorem, the orthogonal increment differences are

E12 | www.pnas.org/cgi/doi/10.1073/pnas.1702877115 Kim et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702877115/-/DCSupplemental/pnas.1702877115.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1702877115


PN
A

S
PL

U
S

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

the fundamental process that underlies a stationary time series
(27, 38). Hence, we defined nonstationarity by starting with the
common practice of choosing a minimal interval on which the
time series is assumed stationary (SI Appendix, Table S1) and
then applying a stochastic continuity constraint [3 and 6] to
link the increment differences across the minimal intervals. We
constructed the SS model by taking the observed data to be
the Fourier transforms of the M tapered data series [5]. For
a given taper, the Fourier transform of the tapered data is J
independent, complex Gaussian observations in the frequency
domain. Hence, to estimate the increment differences, we imple-
mented in parallel J independent 1D complex Kalman filters
[7a–7d]. Given the M tapers, the M ·J algorithms run in parallel,
and the SS-MT spectrogram (cross-spectrogram) estimates are
computed by summing the M eigenspectrograms (eigen cross-
spectrograms) in Eq. 9 (SI Appendix, Eq. S14) at each Kalman fil-
ter update. Parallel computation makes SS-MT spectrogram esti-
mation attractive for real-time applications. Each 1D complex
Kalman filter has an associated Kalman smoother [16], covari-
ance smoothing [17], and an EM algorithm for parameter esti-
mation at each frequency (SI Appendix).

Both the SS and the MT components of SS-MT analysis con-
tribute significantly to spectrogram denoising. The state vari-
ances and Kalman gains are high (low) at frequencies with high
(low) power (SI Appendix, Fig. S5). Therefore, the Kalman filter
updating [7c and 20] denoises the spectrogram by heightening
the contrast between high- and low-power spectrogram ordinates
(Figs. 1 D and F, 2 D and F, and 3 C and D). The MT component
of the SS-MT algorithm further contributes to the denoising by
averaging the eigenspectrograms to reduce the variance at all fre-
quencies by M−1 (SI Appendix, Figs. S3 and S4). In addition, SS
estimation [7c and 20] enhances the spectral resolution in the
SS-MT spectrogram relative to the MT spectrogram by reducing
both narrow-band and broad-band leakage (SI Appendix, Figs.
S6 and S9). Because the Kalman gains at low-power frequencies
are small, leakage from even nearby frequencies with high power
is reduced (SI Appendix, Figs. S6 and S9). In our simulated and
real data examples, the effect of SS updating on denoising and
spectral resolution was a 10- to 15-dB difference between the SS-
MT and the MT spectrograms in the low-power frequency bands
(Figs. 1 D and F, 2 D and F, and 3 C and D and SI Appendix, Figs.
S6 and S9).

By applying the spectral representation theorem to the esti-
mated increment differences [14 and 15], we extracted the time-
domain signals within specified frequency bands as well as instan-
taneous phase and amplitude (Fig. 3B and SI Appendix, Figs.
S1 and S2). The SS-MT paradigm is highly flexible, because
arbitrary combinations of frequency components can be chosen
to construct the time-domain signal. Time-domain signal extrac-
tion is not possible with standard nonparametric spectral meth-
ods, which only estimate power as a function of frequency.
Estimating instantaneous phase and amplitude with conven-
tional approaches requires a separate analysis (14). The SS-
MT paradigm conducts spectral analysis, signal extraction, and
instantaneous phase and amplitude estimation as parts of a uni-
fied framework.

Theoretical and Problem-Specific Methods Development. Our local
stationarity definition differs from the Dahlhaus definition,
which assumes time-invariant increment differences with deter-
ministic continuity of the time-dependent transfer function in
the spectral representation (33). The lengths of the local inter-
vals are either assumed (33) or estimated (39). The local spectral
estimates are computed as the squared modulus of the Fourier
transform of the data after applying a single taper or by fitting a
parametric model using local Whittle likelihoods (40). Like the
MT methods, these local estimation approaches do not combine
information across the local stationary intervals.

In contrast, the stochastic continuity constraint imposed by the
random walk model enables recursive estimation of the time-
dependent increment differences and the spectrogram. The cur-
rent form of the continuity constraint has a theoretical draw-
back. It implies that, at each frequency, spectral power grows
with time, since the theoretical spectrum on stationary interval
k at frequency ωj is

fk (ωj )dωj = fk−1(ωj )dωj + σ2
j . [21]

In practice, the spectrogram estimate does not explode, because
on every stationary interval k , C (m)

k,l , the Kalman gain is bounded
between zero and one [8]. If the Kalman gain is zero, then the
spectrogram estimate on interval k is the SS-MT spectrogram
estimate on interval k−1, whereas if the Kalman gain is one, then
the spectrogram estimate on interval k is the MT spectrogram
estimate on interval k [20]. Nevertheless, a possible correction
to Eq. 21 is to assume that the increment differences follow a
stationary model, such as

∆Zk (ωj ) = ρj∆Zk−1(ωj ) + vk (ωj ), [22]

where we assume that 0 < ρj < 1. Hence, we have

fk (ωj )dωj = E‖∆Zk (ωj )‖2

= ρ2j E‖∆Zk−1(ωj )‖2 + σ2
j

= ρ2j fk−1(ωj )dωj + σ2
j . [23]

Eq. 22 means that the nonstationary time series has an underly-
ing stationary increments process. The parameter ρj can easily
be estimated in the EM algorithm. Our SS approach falls into
the class of regularization methods for solving big data problems
(41). Thus, the current wealth of regularization research can be
applied to the SS-MT paradigm.

In our data analyses, we followed the common practice of set-
ting the stationary interval a priori (SI Appendix, Table S1). Our
analyses (SI Appendix, Fig. S14 and Table S2) suggest that the
spectrogram estimates can be sensitive to interval choice and that
different stationary intervals could be optimal for different fre-
quencies. Therefore, in future work, we will incorporate interval
choice into the estimation by evaluating the likelihood as a func-
tion of stationary interval length.

At present, both our model-fitting algorithms and inference
framework depend critically on the Gaussian observation and
state models [2 and 3]. Description of signal frequency content
and inferences may be inaccurate when these assumptions do not
hold. As an alternative, model-fitting and inference using non-
Gaussian SS models can be readily carried out using sequential
Monte Carlo methods (42). This extension will be the topic of a
future investigation.

Application of the SS-MT paradigm in time-frequency anal-
yses of different types of nonstationary time series is a pro-
ductive way to extend our methods by allowing the question
under investigation to guide problem-specific development
of the framework. We will continue to study EEG time series
recorded under different anesthetic drugs (36). The EEG
recorded during sevoflurane general anesthesia (Fig. 2) sug-
gests a smooth process defining continuity among the time inter-
vals. Therefore, higher-order stationary models could be chosen
to impose a greater degree of smoothness on the increment dif-
ferences and the spectrogram. In contrast, the EEG recorded
during induction of and recovery from propofol-induced uncon-
sciousness (Fig. 3) suggests that a process with jump discon-
tinuities may be a more appropriate state model for these
data. SI Appendix, Table S1 summarizes problems from dif-
ferent fields of science that have used MT spectral methods
to study nonstationary processes. These several applications
suggest a rich testbed for further development of the SS-MT
paradigm.
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Adaptive model parameter estimation using local likelihood,
SS, or method of moments techniques can be combined with dif-
ferent continuity models. A key decision in using adaptive esti-
mation is defining the timescale of the parameter updates. We
used the target anesthetic levels as covariates—subject matter
constraints—to set this timescale in Fig. 3. Subject matter con-
straints may also be used to reduce the number of parameters.
We limited state variance estimation to frequencies below 30 Hz
based on knowledge of the frequency range relevant for track-
ing anesthetic states (36). The näıve empirical Bayes’ CIs had
good coverage probabilities based on our small simulation study
of the model in Eq. 18. These intervals can be further calibrated
by taking account of the uncertainty in the maximum likelihood

parameter estimates obtained from the EM algorithm (43).
Computation of the SS-MT cross-spectrogram (SI Appendix, Fig.
S12) suggests that our paradigm can be extended to inference
problems for multivariate nonstationary time series.

The SS-MT paradigm provides a computationally efficient
framework for spectrogram estimation, time-domain signal extrac-
tion, and statistical inference for nonstationary time series.
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