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Abstract

Comparative genomics is a powerful method for identifying functional genetic elements by
their evolutionary patterns across species. However, current studies largely focus on analysis
of genome sequences. The recent development of RNA-sequencing reveals dimensions of
regulatory information previously inaccessible to us by sequence alone. The comparison of
RNA-sequencing data across mammals has great potential for addressing two open problems
in biology: identifying the regulatory mechanisms crucial to mammalian physiology, and
deciphering how gene regulation contributes to the diversity of mammalian phenotypes.

For my thesis, I developed two methodologies for interrogating comparative transcrip-
tomic data for biological inference. First, I developed a framework for quantifying the evo-
lutionary forces acting on gene expression and inferring evolutionarily optimal expression
levels. I demonstrate how to use this framework to identify expression pathways underlying
conserved, adaptive, and disease states of mammalian biology. Second, I developed novel
metrics of transcriptional evolution to evaluate the conservation of long noncoding RNAs.
These metrics further reveal that long noncoding RNAs harbor distinct evolutionary signa-
tures, suggesting that they are not a homogenous class of molecules but rather a mixture of
multiple functional classes with distinct biological roles.

My thesis work provides fundamental quantitative tools for asking biological questions
about transcriptome evolution. These tools provide a pivotal framework for interpreting
transcriptional data across species and pave the way for deciphering the regulatory changes
that lead to mammalian phenotypic variation.

Thesis Supervisor: Aviv Regev, PhD
Title: Professor, Department of Biology
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Introduction

With the completion of the human genome in the early 2000s [1, 2], nearly each of the 3

billion letters that code for human life had been sequenced, but the untangling of how the

genomic code operates had just begun. In the past two decades, scientists have embarked

on monumental efforts to comprehend the genomic code with initiatives ranging from the

cataloging of human genetic variation across thousands of individuals [3], to annotating all

biochemically active parts of the human genome across hundreds of cellular contexts [4],

to sequencing tens of thousands of patients along with medical data collection in order to

understand the genetic impact on disease [5].

In addition to systematically collecting genomic data across the human population, an-

other method that has proven powerful for illuminating the inner workings of the human

genome has been comparative genomics, the strategy of comparing genomic data across

species to infer biological function. The power of comparative genomics rests upon one of

few “truth” known to biology: that the process of DNA replication is imperfect and intro-

duces mutations into the population which then serve as substrates for evolution. Mutations

that confer a selective disadvantage are eventually removed from the population while the

rare mutations that increase species fitness give rise to novel phenotypes. This constant

process of mutation and selection leaves signatures in genomic sequences from which we

may infer what roles those sequences play in biology: sequence that has remained constant

across millions of years of evolution is inferred to be evolutionary constrained and biologi-

cally important, while sequence that appears to have diverged rapidly are hypothesized to

play roles in lineage-specific phenotypes.
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CHAPTER 1. INTRODUCTION

Since the completion of the human genome, over 270 eukaryotic species have now been

sequenced, including over 60 mammalian species [6]. The comparison of these genomes

have led to the comprehensive annotation of nearly all mammalian coding genes [7, 8], as

well as functional noncoding sequence elements such as enhancers [9–11], miRNA target sites

[12,13], and noncoding genes [14–16]. Sequence conservation has also become widely used for

interpreting clinical data and highlighting likely pathogenic mutations that may be causal for

disease [17, 18]. Finally, comparative genomics has unlocked intriguing evolutionary stories

lurking within the human genome such as the identification of ‘ultraconserved’ elements –

stretches of DNA with perfect conservation across 300-400 million years of evolution thought

to play essential roles in development [19,20] – in addition to ‘human accelerated regions’ –

segments of the genome conserved across all mammals except for human, and are thought to

code for human-specific traits [21,22]. (Additionally, comparative genomics has been widely

applied across the animal kingdom from plants, to insects, bacteria, and viruses, but here, I

focus specifically on mammalian comparative genomics and its relationship to understanding

the human genome).

These recent advancements within comparative genomics have been derived primarily

from the analysis of DNA across species. Meanwhile, the field of genomics has expanded

beyond simply genome sequencing. Combined with a tricks borrowed from molecular bio-

engineering, next-generation sequencing can now be used to profile a myriad of attributes of

the genome including its three-dimensional structure [23], epigenetic modifications [24], and

the activity of DNA-binding proteins [25]. Of particular note is the ability to now unbias-

edly sequence all RNA molecules produced in a biological sample (‘RNA-sequencing’, or

RNA-seq), made possible by the reverse transcription of RNA to cDNA [26–28]. RNA-seq

not only reveals the quantity of RNA present in the cell but also transcript structures (e.g.,

exon/intron boundaries, 5’ and 3’ gene boundaries), alternative isoform variants, and the

transcription of noncoding RNA molecules.

RNA-sequencing opens the door for scientists to investigate the first step of information

transfer in the central dogma of molecular biology: how DNA regulates the transcriptional

timing, quantity, and structure of RNA. This fundamental process, termed ‘gene regulation’,

governs essentially all cellular activity from the development of an egg to a fetus to the
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CHAPTER 1. INTRODUCTION

proper control of hormones and metabolites, and yet, very little is understood about how

this process is coded for by the genome. The advent of RNA-seq has now enabled scientists to

directly profile gene regulation in action, from cataloging expression pathways altered under

environmental stresses or disease physiology, to usage of alternative splicing in different

cellular contexts, to the detection of novel regulatory RNA transcripts, and much more

(see [29] for a comprehensive review on RNA-sequencing studies). Further, the pairing of

both genomic and transcriptomic data enables scientists to characterize the noncoding DNA

that control these regulatory processes in an effort to elucidate a ‘noncoding’ code.

Additionally, as a major advancement over its predecessor for RNA profiling – microar-

ray technology – RNA-seq can be applied in an unbiased manner to any species of interest.

(Microarray technology is probe-based and requires previous knowledge of the transcrip-

tional sequence composition to measure quantities.) This generalizability of RNA-seq across

species paves the way for efficient comparative transcriptomic studies that can address ques-

tions that cannot be answered by comparative sequence analysis alone. For example, while

comparative sequence analysis can identify proteins and even protein domains that are fun-

damental to an animal system, comparative transcriptomics now enables the identification of

essential co-expression modules, splicing events, and noncoding RNAs as well as the specific

cellular contexts (e.g., in which tissue type, at which developmental time) in which these

events are most necessary. Such studies would be highly informative for (1) augmenting

our understanding of every gene in the human genome, (2) increasing the ability for medi-

cal community to identify causal processes behind diseases arising from gene misregulation

(e.g., many cancers, autoimmune, and developmental disorders [30]), and (3) informing drug

discovery efforts the almost always begin with experimentation on animal models [31].

On the other end, mapping the diversity of transcriptional mechanisms across species

would lead to an increased understanding of how different transcriptional processes give rise

to new phenotypic traits. This question is especially of interest given the long-standing

hypothesis that evolving gene regulation plays a predominant role in creating new traits

between closely related species [32]. The hypothesis began to gain traction following one of

the earliest comparative genomics studies (that predates even Sanger sequencing and instead

relies on electrophoresis techniques), which discovered that human and chimp proteins are
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CHAPTER 1. INTRODUCTION

more than 99% identical in amino acid similarity [33]. The fact that coding gene conser-

vation is quite high, even across mammals, has now been confirmed with high-throughput

sequencing studies [34–36], further motivating scientists to search the noncoding genome for

the basis of novel phenotypic innovations. Again, the use of comparative transcriptomics to

discover the processes underlying species-specific traits would be highly complementary to

comparative sequence efforts that have indeed led to the discovery of a handful of regulatory

genes controlling intriguing phenotypes [20, 37–39], but have yet lead to a complete under-

standing of how and to what extent gene regulation controls major phenotypic differences.

Given that noncoding sequences are notoriously difficult to interpret with the current state of

knowledge and technologies, comparative RNA-seq studies offer an important intermediate

phenotype for mapping the relationship between gene regulation and biological traits.

Despite the many promises of knowledge to be gained by comparative transcriptomics,

the field remains young and only a few large-scale studies conducting RNA-seq across mam-

malian species have been carried out thus far. Still, these initial studies have begun to

uncover illuminating, and sometimes unexpected, global patterns of transcriptional evolu-

tion that begin to sketch out how regulatory changes, both across species and across tissues,

may be contributing to phenotypic evolution. Of the handful of studies that have been com-

pleted, three general classes of analyses have emerged: expression level, alternative splicing,

and long noncoding RNA analysis. I will describe the current state of the literature for each

class below.

Comparative expression analysis

Differential expression analysis is one of the major areas of investigation for understand-

ing the molecular underpinnings of physiological processes. The levels of mRNA present in

a cell, which is used as a proxy for protein levels, reveals the major molecular players in

different cell types, across developmental timing, or in response to environmental stimuli.

Comparative expression analysis studying expression across species began with the intro-

duction of microarray technology in the early 2000s, initially focused on human, mouse,

and close human relatives (e.g., chimpanzees, gorillas, orangutans). Because microarrays

require species-specific sequence probes for hybridization, these analyses were hampered
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by difficulties overcoming species-specific experimental errors as well as small numbers of

sampled species. In fact, many of the initial comparative microarray studies contain nu-

merous conflicting results regarding questions such as: whether orthologous tissues across

species are more similar than nonorthologous tissues within a species (e.g., human liver and

mouse liver vs. human liver and human brain) [40–43]; whether expression in human tis-

sues was diverging at an accelerated rate compared to other non-human primates [44–47];

and whether expression was largely evolving by neutral drift or under strong stabilizing

pressures [43,48–51].

The introduction of RNA-seq allowed scientists to profile many species efficiently, without

the need for species-specific probes. RNA-seq was quickly carried out in mouse and human

[52], as well as across 11 nonhuman primates and 5 additional mammals [53, 54]. With

a better resolution of gene expression levels across many more species, the field began to

converge on a few observations: transcriptomes of homologous tissues across species are

typically more similar than nonorthologous tissues within a species [53, 55]; expression in

human tissue does not appear to be diverging at an accelerated rate but rather, is consistent

with divergence of other non-human primates [47]; and expression evolution appears to be

shaped strongly by stabilizing pressures (discussed in [43,49,53] and in depth in Chapter 2).

Furthermore, comparative transcriptomic profiling across different organ systems allows

for the analysis of tissue-specific evolutionary pressures: Although transcriptomes of homol-

ogous tissues across vertebrates appear to diverge slowly, the rate of divergence varies by

tissue. Interestingly, it has been consistently observed that brain expression levels diverges

the slowest, despite apparently large cognitive differences across vertebrates, and testis ex-

pression diverges most rapidly, perhaps partially due to sexual selection [43,46,53].

Finally, a major goal in genomics is to map the relationship between noncoding sequence

and its control of expression levels. However, initial analyses have been unable to find

strong correlation between expression divergence and noncoding sequence conservation in

either proximal promoters [56] or within distal regions of a gene [43]. These results suggest

that too many compensatory mutations may be at play to be able to accurately compare

regulatory sequences across the profiled species, and point to the need for data from more

closely related species to dissect the relationship between noncoding sequence and expression.
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Comparative splicing analysis

Given that expression levels across species appear to be highly conserved, alternative splic-

ing offers another avenue of explanation for species-specific differences. Alternative splicing

can greatly expand the complexity of protein products available and generate isforms with

specific regulatory information in 5’ or 3’ untranslated regions [57]. Early comparative

splicing analysis began like expression profiling, with hybridization arrays applied to small

numbers of species. These studies found alternative isoform usage tended to be highly

species-specific [58–60], raising interest in characterizing alternative splicing events across

species. Additionally, though there inconsistent reports on the exact amount of alternative

splicing events within each species, the general trend appears to be that vertebrates utilize

alternative splicing much more than invertebrates do, potentially driven by the increase in

number of distinct cell types between the two phyla [61–63]. This further suggests impor-

tant regulatory roles for alternative splicing and marks the importance of investigating its

contribution to phenotype.

To date, there have been a handful of RNA-seq studies on alternative splicing variation

across primates [54, 64], and vertebrates [62, 65]. These studies have confirmed that there

is indeed significant amounts of species-specific alternative splicing events (∼90% similar-

ity in exon usage between humans and chimps [60, 64]; ∼50% similarity between human

and mouse [62]). Additionally, both large-scale vertebrate studies showed that alternative

splicing events are more similar across nonorthologous tissues within a species rather than

across homologous tissues from different species, in marked contrast to comparisons of ex-

pression level across species and tissues. However, tissue-specific evolutionary pressures on

alternative splicing echo those observed in comparative expression analyses, with brain also

appearing to have maintained the most conservation in splicing and testis diverging most

rapidly.

Finally, when integrated with genomic sequence data, there have been promising re-

sults with identifying correlations of splicing conservation and nearby sequence conserva-

tion: strong signatures of purifying selection on intronic splicing regulatory element (ISRE)

motifs nearby conserved, alternative exons have been reported, while exons that recently con-

verted from alternative to constitutive have also been shown to have substantially increased
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turnover of ISREs [65]. These global patterns suggest that there is potential for precisely

delineating out the evolution of splice site sequences and the resulting isoform products.

Still, very few splicing events underlying novel phenotypic traits are known [66,67], and it is

yet to be determined whether the diversity of alternative splicing events across vertebrates

play major roles in biological function.

Comparative long noncoding RNA analysis

While the contributions of differential expression and alternative splicing to gene regulation

were well-known from the beginnings of molecular biology, another source of regulatory

complexity was only be fully uncovered by genome-wide profiling techniques: long noncoding

RNAs (lncRNAs). LncRNAs are defined to be non-protein coding genes longer than 200

basepairs. Though a few lncRNAs had been discovered in the pre-genomic era, the pervasive

transcription of lncRNAs were first noted in a systematic analysis of transcripts from dense

oligonucleotide arrays [68–70], and later confirmed to be transcribed across mammalian

genome by sequencing analysis [71, 72]. At least one lncRNA, XIST, is quite famous for its

role in X-inactivation [73], but the functions of the vast majority of observed lncRNAs are

unknown. Comparative transcriptome analyses are playing an important part in the current

quest to understand the function of lncRNAs.

A central question about lncRNAs since their discovery is whether these RNA molecules

play important biological functions or whether they are simply the result of noisy biological

processes [74–76]. Initial analysis of the primary sequence of lncRNAs, in which sequence

conservation of lncRNA exons were compared to lncRNA introns and random intergenic

regions, suggested that as a class, lncRNAs are modestly conserved [76–79]. However,

these initial analyses assumed that lncRNA transcription was common across the compared

species. While this assumption is almost always valid in analyzing coding genes, systematic

RNA-seq of mammalian species has revealed that in fact, the transcription of lncRNA is

often not conserved, despite conservation of underlying sequence (discussed in [80–82] and

at length in Chapter 3). Additionally, for the smaller set of lncRNAs that are conserved in

transcription, studies of RNA sequence co-evolution have been applied in attempts to help

identify conserved secondary structures, but have given way to conflicting results [83,84]. In
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sum, comparative lncRNA studies have raised questions on whether the majority of lncR-

NAs truly have function as RNA molecules. However, it should not be overlooked that these

studies have also identified a small number of lncRNAs that are both conserved in transcrip-

tion and show purifying selection on their primary sequence, highlighting useful candidates

for downstream experimental analysis.

Comparative transcriptomics remains a young field with many questions and conflicting

results that await to be resolved. The limited number of comparative RNA-seq studies

is, in part, due to difficulties with tissue collection, especially for protected species such

as non-human primates where tissues can only be harvested after natural death. Tenuous

results from sparse datasets have been further compounded by inconsistent genome quality

across mammalian species that introduce species-specific biases to read mapping, isoform

reconstruction, and quantification of transcriptional traits.

While the amount and quality of RNA-seq data and genomic annotations is only in-

creasing with time and will soon become an irrelevant experimental barrier, a final major

obstacle for comparative transcriptional studies remains: the lack of consensus on the correct

models and methodologies for deriving statistically rigorous conclusions from comparative

RNA-seq data. This obstacle largely arises from our lack of understanding of the molecular

mechanisms of transcriptional evolution. For example in comparative sequence analysis,

where DNA mutational rates are well known, a precise probability of sequence identity be-

tween species can be calculated and used as a quantitative measure of purifying selection.

In contrast, for metrics of transcriptional conservation (e.g., correlation of expression levels,

percent common exon usage, etc.), it is much more difficult to interpret which measure-

ments are simply indicative of neutral evolutionary processes and which represent selective

pressures. As a case in point, the observation that the transcription of most lncRNAs are

species-specific has led to both interpretations that lncRNAs may be playing major roles in

species-specific biology and that lncRNAs must simply be transcriptional noise [74, 75].

For my thesis, I addressed this obstacle and developed statistically rigorous methods to

analyze comparative transcriptomic data in order to make inferences about the evolution
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and function of transcriptional processes. In Chapter 2, I discuss a stochastic framework

for analyzing comparative expression data and inferring evolutionary optimal expression

distributions. This statistical quantification then enables functional hypotheses about the

role of that gene’s expression (or mis-expression) in specific tissue contexts. In Chapter

3, I present novel statistical metrics for evaluating the evolution of lncRNA transcriptional

structure (e.g., isoform structures, splice sites). I show that these evolutionary metrics reveal

that lncRNAs are actually a heterogeneous class of molecules composed of distinct functional

classes, each presenting with unique evolutionary signatures. Finally, I present a short story

in Chapter 4 that is not a cross-species comparison, but instead, a comprehensive comparison

across the human population of alternative splicing in immune cells after viral stimulation.

This story highlights how characterizing differential isoform usage with RNA-seq helps solve

an evolutionary mystery of why a haplotype linked to Crohn’s disease appears to be selected

for in the human population.

With these stories, I hope to show that evolutionary signatures left in the human genome

give us important clues for understanding the history and function of genes, and that these

signatures are not only found in genomic sequence but also in patterns of expression, splicing,

and transcriptional evolution. Comparative genomics analyses has great potential as a

powerful tool for not only teaching us fascinating stories about our prehistoric past, but also

for unearthing the functional elements hidden across the vast human genome.
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The evolutionary history of a gene helps to predict its function and rela-

tionship to phenotypic traits. While sequence conservation is commonly used

to decipher gene function and assess medical relevance, methods for functional

inferences from comparative expression data are lacking. Here, I use RNA-

sequencing across 7 tissues from 17 mammalian species to show that expression

evolution across mammals is accurately modeled by the Ornstein-Uhlenbeck

process, a commonly proposed model of continuous trait evolution. I apply this

model to identify expression pathways under neutral, stabilizing, and directional

selection. I further demonstrate novel applications of this model to quantify the

extent of stabilizing selection on a gene’s expression, parameterize the distribu-

tion of each gene’s optimal expression, and detect deleterious expression levels

in expression data from individual patients. This work provides a statistical

framework for interpreting expression data across species and in disease.

2.1 Background

Comparative genomics has identified and annotated functional genetic elements by their

evolutionary patterns across species [9, 11, 21, 37, 85, 86]. Current comparative studies fo-

cus primarily on analysis of genomic sequences, using methods based on a well-established

theoretical framework developed from observations that neutral sequence diverges linearly

across time [87–91]. These methods allow for detection of sequence elements that evolve

slower (e.g., due to purifying selection) or faster (e.g., due to positive selection or relaxed

selective constraints) than expected under the null model of neutral evolution.

It has long been accepted that divergence of gene regulation, manifested by phenotypic

changes in gene expression, also plays a key role in evolution [33,50,92–95]. An evolutionary

analysis of gene expression should help interpret gene function and evolutionary processes

in ways that cannot be addressed by sequence alone: the extent of stabilizing selection on

a gene’s expression level in different tissues could reveal the one(s) in which the gene plays

the most important role; the strength of evolutionary constraint on a gene’s expression

level could help interpret expression levels observed in clinical samples; and genes whose
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expression level is under directional selection can help assess the basis of lineage- and species-

specific phenotypes.

While multiple studies have analyzed expression data collected across mammalian species

using various heuristic methods for defining conserved and divergent expression levels [43,53,

54,65], there remains no consensus on a quantitative framework for addressing the functional

questions related to evolution of expression levels, due in part to a lack of agreement for

how to best model expression evolution in mammals. In Drosophila, studies have found that

unlike sequence evolution, divergence of gene expression levels is not continuously linear

across evolutionary time. Instead, it reaches saturation due to stabilizing selective pressures,

requiring more sophisticated models than standard neutral drift models [96, 97]. However,

initial studies on an evolutionary model for mammalian gene expression have been hampered

by small datasets, leading to inconsistent reports on whether the same evolutionary pattern

is true within mammals [41, 48, 51, 53], and resulting in conflicting usages of both pure

neutral drift models [54] and those that incorporate stabilizing selection [53] in comparative

mammalian studies. Moreover, it has not been substantially explored how to use such

models, once fit, to draw conclusions on gene function.

2.2 A model for mammalian expression evolution

To systematically explore expression evolution, I compiled a well-sampled dataset across the

mammalian phylogeny, spanning 17 species and 7 different tissues (brain, heart, muscle, lung,

kidney, liver, testis) (Fig. 2-1a, Methods, Additional file 1). The dataset combines published

data for 12 species [53,65,98–101] with data for five additional species newly collected here

(Fig. 2-1a, asterisks, Methods) to improve phylogenetic coverage. I focused on the 10,899

annotated mammalian one-to-one orthologs [102]. As previously reported [55], expression

profiles first cluster by tissue and then by species (Fig. 2-1b), and their hierarchical clustering

closely matches the phylogenetic tree (Fig. A-1).

On average, I find that pairwise expression differences between species (Fig. A-2, Meth-

ods) saturate with evolutionary time (Fig. 2-2, A-3, A-4), consistent with observed evo-

lutionary trends in Drosophila. For example, when comparing each species to the human
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Figure 2-1: Overview of mammalian RNA-seq data.

profile, differences initially increasingly diverge with increasing evolutionary distance, but

this trend plateaus beyond the primate lineage (43.2 million [M] years) [103] (Fig. 2-2). This

relationship is observed in each of the five tissues for which I have expression data for all

primates (brain, heart, kidney, liver, testis) (Fig. A-3), and regardless of reference species

(Fig. A-4), albeit with varying rates.

2.2.1 Modeling expression evolution with an Ornstein-Uhlenbeck process

The observed pattern of expression divergence corresponds to an Ornstein-Uhlenbeck (OU)

process (Fig. 2-3), a stochastic process initially proposed as a model for evolution of gen-

eral continuous phenotypes by Hansen [104] and has more recently been suggested as an

appropriate model specifically for the evolution of gene expression levels in Drosophila [96].

In the context of expression levels, the OU process (Fig. 2-3a) is a modification of a
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Figure 2-2: Pairwise mean squared expression distances (y-axis) between mammalian and
human liver samples across evolutionary time, as estimated by substitutions per 100 base-
pairs (bp) (x-axis). Error bars: standard deviation of the mean across replicates. Solid line:
nonlinear regression fit.

random walk, describing the change in expression (𝑋𝑡) across time (𝑑𝑡) by:

𝑑𝑋𝑡 = 𝜎𝑑𝐵𝑡 + 𝛼(𝜃 −𝑋𝑡)𝑑𝑡

where 𝑑𝐵𝑡 denotes a Brownian motion process. The model elegantly quantifies the contribu-

tion of both drift and selective pressure for any given gene: (1) drift is modeled by Brownian

motion with a rate 𝜎 (Fig. 2-3a, top), while (2) the strength of selective pressure driving

expression back to an optimal expression level 𝜃 is parameterized by 𝛼 (Fig. 2-3a, bottom).

The OU process incorporates time information and fully accounts for phylogenetic relation-

ships, thus allowing us to fit individual evolutionary expression trajectories. At longer time

scales, the interplay between the rate of drift (𝜎) and the strength of selection (𝛼) reaches

equilibrium and, as time increases to infinity, constrains expression 𝑋𝑡 to a stable, normal

distribution, with a mean, 𝜃, and variance, 𝜎2/2𝛼 (Fig. 2-3b).
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Figure 2-3: Modeling expression evolution using an Ornstein-Uhlenbeck process.
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2.3 Functional genomic characterizations using the OU model

Thus far, OU models have primarily been employed for theoretical inferences about fitness

gains and selective effects of evolving expression levels [96, 97, 105]. There have also been

limited applications of the OU model for detecting selection on expression across smaller

mammalian phylogenies and incomplete gene annotations [53,106]. However, the full power

of using the OU model to characterize the evolutionary history of a gene’s expression for

biological insight has yet to be fully explored.

I thus next developed applications of the OU model to yield biologically interpretable

results to evolutionary questions about gene expression levels, gene function, and disease

gene discovery. First, for each tissue separately, I estimate from the data the asymptotic

distribution of optimal expression for genes under stabilizing selection. I demonstrate that

this distribution’s OU variance (which I refer to as ‘evolutionary variance’) accurately char-

acterizes how constrained a gene’s expression level is in each tissue. Second, I compare the

observed expression level in an individual patient with disease to the optimal level from the

model, in order to detect potentially deleterious levels and use those to nominate causal

disease genes. Third, I use an extension of the OU model [104, 107] that accounts for the

existence of multiple distributions of optimal expression within a phylogeny. I fit this model

with a better powered phylogeny and more complete set of gene annotations than previous

analyses to identify genetic pathways that may be related to lineage-specific adaptations. I

describe each of these applications in turn.

2.3.1 Detecting expression pathways under stabilizing selection

To test whether a gene is under stabilizing selection, I used a likelihood ratio test to compare

the fit with no selection (𝛼 = 0; Brownian motion only; Fig. 2-3a, top) to one with stabilizing

selection (𝛼 > 0, OU process; Fig. 2-3a, bottom, Methods). Because the expression level

estimates of lowly expressed genes are associated with high technical variation, their true

biological variation across species cannot be accurately inferred [108]. Thus, throughout all

subsequent analyses, I focus only on genes expressed over 5 transcripts per million (TPM)

(Fig. A-5, Methods). On average, 83% of genes tested (range: 77% - 90%; false discovery
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rate [FDR] < 0.05) were under stabilizing selection (Fig. 2-4, left, Fig. A-6). Nevertheless,

the expression of hundreds of genes within each tissue appeared to be neutrally evolving

(Fig. 2-4, right, Fig. A-6).
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Figure 2-4: Expression divergence patterns of gene expression evolving under neutral evolu-
tion or stabilizing selection.

Comparing across tissues, the expression levels of 57% (5,669/8,913) of genes were under

stabilizing selection in all tissues in which they were expressed, 39% (2,722) were under

stabilizing selection in only some of the tissues where they were expressed, and only 6%

(521) were not under stabilizing selection in any of the tissues in the study (Fig. 2-5).

I assessed the sensitivity and specificity to detect genes under expression-stabilizing

selection using a jackknifing procedure, where I subsampled to consider phylogenies ranging

from 3 to 16 species (Methods). As expected, the number of genes called under stabilizing

selection (i.e., rejecting the null hypothesis) increases as more species are included (Fig. A-

7a), but does saturate at 14 species. Importantly, the discordance rate (relative to analysis

of the full dataset) is very low: less than 1% of genes that are found as under selection with

a subsampled phylogeny are found to be neutral (i.e., accepting the null hypothesis) with

the full phylogeny (Fig. A-7b).
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Figure 2-5: Heatmap indicating genes (rows) whose expression is predicted to be evolv-
ing under stabilizing selection (red) or neutral evolution (blue) across 5 different tissues
(columns). Gray: genes that are expressed < 5 TPM.

2.3.2 Quantifying selective constraint by evolutionary variance

The OU process was considered attractive when initially proposed for modeling expression

evolution in Drosophila [96] because of its ability to distinguish neutral from stabilizing

selection. Given the finding that most mammalian genes are under stabilizing selection,

I next explored the ability of the OU model in estimating the stable distribution of gene

expression level, which I reasoned is an estimate of the evolutionarily optimal distribution

of expression levels. I first investigated the use of the OU model’s evolutionary variance as

a quantitative measurement of the extent of evolutionary constraint on a gene’s expression

in each tissue.

The same jackknifing procedure as described above showed that the OU model’s evo-

lutionary variance is highly robust to subsampling, as determined by the very low mean

squared error (MSE < 0.005) when estimating variance from subsampled phylogenies and

with less than 6 species (Fig. A-7c). In fact, the evolutionary variance is far more robust

than the simple sample variance used by non-phylogenetic methods (Fig. A-7c). However,

because the data compendium is compiled from multiple sources, I do not attempt to inter-
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pret absolute values of variance but rather focus on understanding the relative relationship

between genes with lower and higher variance.

Brain had the most genes with low variance (most constraint), and testis the least, con-

sistent with previous estimates of rate of expression evolution for those tissues [43,53] (Fig.

2-6a and Fig. A-8). Variance was highly correlated between somatic tissues (mean Pear-

son’s 𝑟 = 0.84), and less correlated between somatic tissues and testis (mean Pearson’s 𝑟 =

0.55) (Fig. A-9a). For genes expressed across three or more somatic tissues, expression level

across tissues was negatively correlated with variance across the tissues (median Pearson’s

𝑟 = -0.27), though the tissue of highest expression only matched tissue of lowest variance in

34.5% (1,673 / 4,840) of genes (Fig. A-9b).
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(a) Heatmap of evolutionary variance of
expression (orange: low; purple: high)
across 8,794 genes (columns) in 5 tissues
(rows). Gray: genes < 5 TPM.
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Figure 2-6: Evolutionary variance across tissues and biological processes.

Evolutionary variance and function were strongly associated, consistent with results from

previous non-phylogenetic methods that investigated the relationship between cross-species

expression variance and gene function [43, 109]: across all tissues, genes with low variance

were enriched for housekeeping functions (e.g., RNA binding and splicing, chromatin organi-

zation, cell cycle), whereas those with high variance were enriched for extracellular proteins

(rank-based enrichment test FDR < 10−3, Methods). Some processes were enriched in genes

with low or high variance only in specific tissues (Fig. 2-6b, Additional file 2): among the pro-
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cesses with tissue-specific low variance were synaptic proteins in brain (FDR = 1.10×10−2)

and Wnt signaling in testis (FDR = 1.14 × 10−2); processes with high variance included

contractile fiber part in heart (FDR = 5.00×10−3), oxidoreductase activity in kidney (FDR

= 6.10 × 10−6), and lipid metabolism in liver (FDR = 2.31 × 10−9). Thus, estimates of

evolutionary variance can be relied on as an indicator of expression constraint and gene

function.

2.3.3 Relationship between expression and sequence constraint

I found only a modest correlation between expression and sequence constraint (Pearson’s

r = -0.25) (Fig. 2-7, Methods). Genes conserved in both expression and sequence were

significantly enriched for housekeeping processes (FDR < 10−4, Fig. 2-7, Additional file 3),

and genes divergent in both were enriched for immune and inflammatory response (FDR

< 10−6, Fig. 2-7, Additional file 3). More intriguingly, genes conserved in sequence but

divergent in expression were enriched in transcriptional regulators (FDR = 3.10 × 10−5),

especially those involved in embryonic morphogenesis (FDR = 9.80 × 10−8; e.g., IRX5,

HAND2, NOTCH1 ). Although higher evolutionary variance of expression levels may be

impacted by environment, changes in cell type composition, and genetic differences, this

analysis supports the hypothesis that divergence in gene regulation without protein sequence

divergence can account for species-specific phenotypes.

2.3.4 Detecting deleterious expression levels with evolutionary expres-

sion distributions

In analysis of rare diseases, sequence conservation is commonly used to prioritize mutations

in genes that are more essential and likely causal for rare diseases when mutated [110–112].

By analogy, I hypothesized that expression conservation should also be predictive of gene

essentiality. Indeed, the expression levels of genes that are either essential in culture [113],

essential in mice [114], or haploinsufficient in humans [115] had significantly lower evolu-

tionary variance (higher constraint) than their non-essential or haplosufficient counterparts

across almost all tissues (Wilcoxon rank-sum test p < 0.01, Fig. 2-8a, Methods).

I then examined the variance of disease genes in each of three settings: rare single genes
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directly linked to non-syndromic autism spectrum disorder (ASD) (brain) [116], congenital

heart defects (heart) [117, 118], and neuromuscular disease (skeletal muscle) [119]. In each

case, disease genes with tissue-specific expression (Fig. A-10, Methods) consistently exhibited

significantly lower variance in the disease-relevant tissue than tissue-specific non-disease

genes (p < 0.05, Fig. 2-8b). In ASD-linked genes (but not the other two conditions), I also

observed significantly lower variance of ubiquitously expressed disease vs. non-disease genes,

perhaps related to observed high rates of co-morbidities with ASD [120].

Next, I hypothesized that the parameters of each gene’s optimal OU distributions can

predict disease genes by highlighting outlier, likely pathogenic, gene expression levels in

rare disease patient data. This is analogous to causal disease gene discovery by identifying

putatively pathogenic sequence mutations in whole exome sequencing [121–124]. To this end,

I obtained RNA-seq of muscle biopsies of 93 patients clinically diagnosed with neuromuscular

disease (Methods, Additional file 4). For each patient sample, I calculated a z-score for each

gene to assess how they deviate from the evolutionarily optimal fit for that gene’s expression

in skeletal muscle, with correction for multiple hypothesis testing (Fig. 2-9a, Methods).

Compared to GTEx muscle samples from 184 healthy people [125], patients had, on av-

erage, 3.2-fold more dysregulated genes overall by this measure (Wilcoxon rank sum test p =
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Figure 2-8: Evolutionary variance of essential and disease-related genes.
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Figure 2-9: Using evolutionary distributions to identify outlier gene expression in patient
RNA-seq data.
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2.0× 10−9, Fig. 2-9b, left), 3.0-fold more dysregulated muscle-expressed disease genes [126]

(p = 2.1 × 10−10, Fig. 2-9b, middle), and 2.0-fold more dysregulated known neuromuscu-

lar disease genes (p = 2.7 × 10−4, Fig. 2-9b, right). This suggests that the evolutionary

parameters fit by the OU model can be used to detect outlier expression values that are

more likely to be deleterious. Importantly, in contrast to methods for differential expression

between patient and healthy controls, the test does not require a control population, and

can be conducted for a single patient sample.

Finally, I tested whether the OU model could be used to identify the causative gene in

rare disease analysis. As a proof of principle, I focused on the subset of 8 patients from

the muscle disease cohort who were clinically diagnosed with either Becker or Duchenne

muscular dystrophy, including confirmation of absent or decreased dystrophin protein via

immunoblotting [119]. To compare this approach to a standard differential expression analy-

sis, I ranked genes by outlier expression with z-scores defined based either on (1) comparison

to the mean and variance estimated from the evolutionary data; or (2) comparison to a mean

and variance estimated from only healthy GTEx human data (Fig. 2-10a).

Calculate z-scores 

GTEx RNA-seq
distribution

Gene

Evolutionary
distribution

Gene

Muscular dystrophy patient

RNA-sequencing
(muscle biopsies)

(a) Two scoring approaches based
on evolutionary distributions (left)
or GTEx distributions (right).

Evolutionary distribution GTEX RNA-seq distribution
# sig.
genes

DMD
-log10FDR

DMD
rank

# sig.
genes

DMD
-log10FDR

DMD
rank

2 4.49 1 0 0.65 43
1 2.26 2 0 0.15 75
3 9.13 1 1 3.87 1
32 8.27 1 7 1.73 57
10 6.50 2 22 3.80 10
0 2.96 1 80 0.58 377
5 15.4 1 132 11.7 31
23 7.22 2 250 5.22 50

(b) Results from scoring approaches when using distributions
estimated from evolutionary data (left) or GTEx RNA-seq
(right). Highlighted row denotes FDR < 10−3.

Figure 2-10: Identifying outlier gene expression from RNA-seq data of muscular dystrophy
patients.

By the evolutionary data, fewer genes ranked as significant outliers in each patient (me-

dian: 4, range: 0 – 32), and DMD ranked as either the top or second most significantly

aberrantly expressed gene in 6 of 8 patients, each showing significant underexpression (FDR

40



CHAPTER 2. EVOLUTION OF MAMMALIAN GENE EXPRESSION

< 10−3) (Fig. 2-10b, left). By comparison, scoring in reference to GTEx expression data did

not yield such specific results: a median of 14.5 genes were outliers (range: 0 – 250), only 4

of 8 patients were called as significantly underexpressing DMD (FDR < 10−3) (Fig. 2-10b,

right), and its significance in these patients ranked between 1 and 50. Thus, using the OU

model’s estimate of evolutionary mean and variance of optimal gene expression helps detect

gene dysregulation of the actual disease gene and could aid novel disease gene discovery in

individual patients, even without any control samples.

2.3.5 Identifying directional selection in gene expression with a multi-

variate OU model

Finally, I explored the use of the OU framework to detect directional selection in gene

expression. I used an extension of the model that accounts for multiple selection regimes

across a single phylogeny by modeling the distribution of expression level as a multivariate

normal distribution whose mean and variance are estimated for each (predefined) subclade

[104, 107] (Fig. 2-11a). A previous application of this extended OU model identified over

9,000 significant expression changes across the mammalian phylogeny [53], but the analysis

relied on a smaller phylogeny and thus focused on identifying species-specific shifts in gene

expression that are easily confounded by environmental causes or technical effects.

I leveraged the comprehensive phylogenetic coverage of my dataset and focused on de-

tecting shifts in expression consistent in direction and magnitude across entire subclades of

two or more mammals, whose samples were collected and sequenced across multiple sources

to mitigate non-genetic confounders. I identified ‘differential gene expression’ across the tree

based on the approach suggested by Butler and King 2004 (Methods): I applied the extended

model for each gene in each tissue and tested each of three hypotheses: OU𝑎𝑙𝑙, which models

a single optimum for all species, and OU𝑝𝑟𝑖𝑚𝑎𝑡𝑒𝑠 and OU𝑟𝑜𝑑𝑒𝑛𝑡𝑠, each modeling two optima,

one for the ancestral distribution and one for the distribution within primates (branch length

= 0.12) or rodents (branch length = 0.18), respectively (Fig. 2-11b).

For each gene, I first used a likelihood ratio test between each OU model and the null

hypothesis of a Brownian motion model and removed any models against which the neutral

model could not be rejected. I then assigned the best OU model using goodness-of-fit
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Figure 2-11: Modeling lineage-specific expression changes using a multivariate OU process

tests. In a related method [53, 106], p-values are derived by directly testing the alternative

hypothesis 𝜃𝑠𝑢𝑏𝑐𝑙𝑎𝑑𝑒 ̸= 𝜃𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙 against the null hypothesis 𝜃𝑠𝑢𝑏𝑐𝑙𝑎𝑑𝑒 = 𝜃𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙. However,

I found that many models are unable to overcome multiple hypothesis correction with this

stringent approach, even with my larger phylogeny. Instead, I estimate false discovery rates

by shuffling species assignments (Methods) and found that I achieved FDR < 30% in liver

and testis (both subclades), as well as in the primate clade for brain and lung (Fig. A-11).

Finally, as a conservative measure, I retained only those genes that also changed at least

2-fold between subclades and had a mean expression level of at least 5 TPM in one of the

subclades.

As an example, in liver, I identified 640, 794, and 615 genes with lineage-specific ex-

pression changes in primates, rodents, and carnivores, respectively, highlighting specific

metabolic processes diverging in regulation in each clade. The expression levels of lineage-

specific genes deviated significantly from expectation only if there was no clade-specific

selection (Fig. 2-12).

Because of the larger set of differentially expressed genes compared to previous applica-

tions, I could identify functional enrichments among lineage-specific genes (Additional file

5). I found primate-specific downregulation of genes related to a number of lipid metabolic
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each of three tested OU models. Black points: Species evolving under ancestral distribution;
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processes in the liver (FDR = 1.88× 10−11). These processes include peroxisomal functions

(FDR = 2.45 × 10−8), fatty acid metabolism (FDR = 1.52 × 10−8), and lipid transport

(FDR = 3.36 × 10−3) (Fig. 2-13, Additional file 5), and contain known regulators of lipid

metabolism such as the LDL receptor (LDLR) [127], hepatic lipase (LIPC ) [128], and the

transcription factor PPAR-𝛼 [129]. Thus, the expression of multiple pathways may have di-

verged at the ancestral primate branch, consistent with observations that human lipidemia

is not well-modeled by mice without further genetic modification [130]. In another exam-

ple, genes involved in regulation of immune response were downregulated across rodent livers

(FDR = 6.97×10−4), and in testis, microtubule-based movement genes (FDR = 2.82×10−3)

and spermatogenesis (FDR = 2.82× 10−2) were downregulated across primates (Fig. 2-13),

reflecting the known rapid evolution of immune- [109, 131, 132] and reproduction-related

genes [133,134].
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Figure 2-13: Example processes enriched for lineage-specific expression.
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2.4 Conclusion

In conclusion, by combining a large dataset of comparative gene expression profiles across

mammals with systematic analysis, I showed that gene expression of one-to-one mammalian

orthologs is evolving nonlinearly across evolutionary time and is accurately modeled by an

OU process. I then show how to use this model to answer three key questions: (1) estimating

the distributions of optimal gene expression levels and quantifying the extent of evolution-

ary constraint on expression, (2) identifying deleterious gene expression in individual patient

disease tissue by characterizing outliers relative to a predicted distribution of optimal ex-

pression for each gene, and (3) detecting lineage-specific expression using an extension that

accounts for multiple distributions of optimal expression. Looking forward, I anticipate that

the OU model can be further developed for other biological queries, for example testing

for stabilizing selection across pathways of genes or paralog families or estimating ancestral

expression states. As shown by my analysis, characterizations of expression across addi-

tional tissue types and species under varied developmental and environmental contexts will

provide increased power and further insight into the evolution of gene expression, and the

relationship between genotype and phenotype.
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2.5 Methods

2.5.1 Data collection

The following table summarizes the sources for all data used in this study. For a more

detailed table of SRA accession numbers and read alignment statistics, see Additional file 1.

Sources

Illumina Body Map 2.0 at https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/

Merkin et al. 2012 [65]

Brawand et al. 2011 [53]

Harr and Turner 2010 [98]

Non-human primate reference transcriptome resource (NHPRTR) [99]

Cortez et al. 2014 [100]

Wong et al. 2015 [101]

(Table on next page.)
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Species Reference
genome

Brain Heart Kidney Liver Lung Sk.
muscle

Testis

Human hg19 Brawand
et al.;
Illumina
Body
Map 2.0

Brawand
et al.;
Illumina
Body
Map 2.0

Brawand
et al.;
Illumina
Body
Map 2.0

Brawand
et al.;
Illumina
Body
Map 2.0

Illumina
Body
Map 2.0

Illumina
Body
Map 2.0

Brawand
et al.;
Illumina
Body
Map 2.0

Chimp panTro4 Brawand
et al.

Brawand
et al.

Brawand
et al.

Brawand
et al.

NHPRTR NHPRTR Brawand
et al.

Bonobo panTro4 Brawand
et al.

Brawand
et al.

Brawand
et al.

Brawand
et al.

NHPRTR NHPRTR Brawand
et al.

Gorilla gorGor3 Brawand
et al.

Brawand
et al.

Brawand
et al.

Brawand
et al.

Brawand
et al.

Orangutan ponAbe2 Brawand
et al.

Brawand
et al.

Brawand
et al.

Brawand
et al.

Macaque rheMac8 Brawand
et al.;
Merkin et
al.

Brawand
et al.;
Merkin et
al.

Brawand
et al.;
Merkin et
al.

Brawand
et al.;
Merkin et
al.

Merkin et
al.

Merkin et
al.

Brawand
et al.;
Merkin et
al.

Marmoset calJac3 Cortez et
al.

Cortez et
al.

Cortez et
al.

Cortez et
al.

NHPRTR NHPRTR

Mus
musculus

mm10 Brawand
et al.;
Merkin et
al.

Brawand
et al.,;
Merkin et
al.

Brawand
et al.;
Merkin et
al.

Brawand
et al.;
Merkin et
al.

Merkin et
al.

Merkin et
al.

Brawand
et al.;
Merkin et
al.

Mus spretus mm10 Wong et
al.

Harr and
Turner

Mus caroli mm10 Wong et
al.

Rat rn6 Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Rabbit oryCun2 This
study

This
study

This
study

This
study

This
study

This
study

This
study

Dog canFam3 This
study

This
study

This
study

This
study

This
study

This
study

This
study

Ferret musFur1 This
study

This
study

This
study

This
study

This
study

This
study

This
study

Cow bosTau6 Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Merkin et
al.

Armadillo dasNov3 This
study

This
study

This
study

This
study

This
study

Opossum monDom5 Brawand
et al.;
This
study

Brawand
et al.;
This
study

Brawand
et al.;
This
study

Brawand
et al.;
This
study

This
study

This
study

Brawand
et al.;
This
study

Table 2.1: Data sources for all samples used in in this study.
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Samples for evolutionary dataset

RNA samples from dog and rabbit tissues were commercially obtained from Zyagen. RNA

samples from opossum tissues were a kind gift from Paul Samollow (Texas A&M). RNA

samples from armadillo tissues were a kind gift from Jason Merkin and Christopher Burge

(MIT). All tissue collection was approved by IACUC and carried out in accordance with

respective institutional guidelines.

RNA-seq for evolutionary dataset

RNA-seq libraries were prepared as described in [135]. Briefly, 10 𝜇g total RNA was poly-

A selected twice using Dynabeads mRNA Purification Kit (Invitrogen, 610.06). Resulting

mRNA was DNase treated (Ambion AM1907) and then fragmented using heat. First strand

cDNA synthesis was performed using the SuperScript Double-Stranded cDNA Synthesis Kit

(Invitrogen, 11917-010), supplementing in SuperScript III Reverse Transcriptase (Invitrogen,

18080-093), incorporating SUPERase*In (Ambion, AM2694), and Actinomycin D (USB,

10415). First strand cDNA was cleaned using 1.8X RNAClean XP SPRI beads (Beckman

Coulter, A64987). Second-Strand synthesis was performed replacing dTTP with dUTP, and

the resulting double-stranded cDNA was cleaned using a MinElute PCR Purification Kit

(Qiagen, 28004). Illumina libraries were constructed by repairing the ends of the cDNA,

ligating adapters, and cleaning/size-selecting with 0.7x SPRI. Illumina libraries were treated

with USER to excise dUTP, and amplified via PCR using Fusion Master mix with GC buffer

(NEB, F532S). Samples were sequenced on an Illumina HiSeq 2000 sequencer, to a minimum

depth of 35M reads.

2.5.2 Data processing

Genome and transcriptome annotations

All genomes were downloaded from the UCSC Genome Browser [6]. To assemble tran-

scriptomes, Ensembl gene annotations [102] were downloaded from UCSC Table Browser

(table ensGene) and converted to sequence using BEDTools [136]. Ortholog annotations

were downloaded from Ensembl BioMart (Ensembl Genes 90) [137]. Only genes that met
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the following criteria were used for this study: (1) no duplications in any of the studied

mammals, (2) an ortholog present in either armadillo or opossum (i.e., placental mammal or

marsupial outgroup), (3) no more than three gene losses across primates (human, chimp, go-

rilla, orangutan, macaque, marmoset), (4) no more than one gene loss across glires (mouse,

rat, rabbit), and (5) no more than one gene loss across laurasiatherians (cow, dog, ferret).

Alignment and expression quantification

RSEM v1.2.12 [138] was used to align reads to the transcriptome of each species and to

quantify TPM of each gene using default parameters.

2.5.3 Estimating divergence rate of gene expression

Quantifying expression difference

To calculate pairwise expression differences between each species (‘comparing species’) and a

reference species (e.g., human in Fig. 2-2, or mouse in Fig. A-4, I applied principal component

analysis (PCA) on pairwise gene expression levels (log10[TPM]), considering only genes that

were expressed (> 0 TPM) in at least one species. For each tissue and each pair of species,

I used the first principal component as the best fit line between the two species’ expression

profiles. I then defined the pairwise expression difference as the orthogonal distance from

the observed expression level in the comparing species to the best fit line. I used PCA

rather than a linear regression because PCA accounts for noise in expression values from

both species, while the linear regression would only model noise in the comparing species

and treat the reference species as an independent variable (Fig. A-2).

Phylogenetic tree

The phylogenetic tree of vertebrate species was downloaded from UCSC Genome Browser at

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/ [6]. Distances be-

tween mammals used in this study were extracted using the Environment for Tree Explo-

ration Toolkit [139].
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2.5.4 Modeling expression evolution

Fitting linear and nonlinear regression models

Under an OU model, the expected mean squared distance across time follows a power law

relationship (𝑦 = 𝑎𝑥𝑘). To fit this relationship between observed mean squared expression

distances (𝑦) and evolutionary time (𝑥), I log-transformed both axes to relate the variables

linearly: 𝑙𝑜𝑔(𝑦) = 𝑙𝑜𝑔(𝑎) + 𝑘𝑙𝑜𝑔(𝑥). I then used least squares regression to find coefficients

𝑎 and 𝑘.

For genes whose expression evolution fit better under a Brownian motion model (see be-

low), I used least squares regression to find the best fit line between mean squared expression

distances and evolutionary time.

Normalization of gene expression values

Gene expression values (log10[TPM]) were normalized using TMM normalization [140] from

the Bioconductor package edgeR [141]. Briefly, TMM normalization assumes that the ma-

jority of genes are not differentially expressed (DE) between samples and estimates a scaling

factor between a pair of samples, such that the trimmed mean of log expression ratios

(trimmed mean of M values [TMM]) is equal to 1. It is reasonable to make the assumption

that the majority of genes between pairs of species are not DE, because even between distant

mammals such as human and opossum, Pearson’s correlation of expression level in a given

tissue is > 0.75. Within each tissue, I then use human expression level as a reference to fit

a scale factor and normalize all other samples.

Fitting OU process parameters

Brownian motion (BM) and OU models were fit to normalized expression values using the R

package ouch [107] with default parameters. P -values for each gene were calculated using a

likelihood ratio test comparing the OU (alternative hypothesis) to the BM (null hypothesis)

model, and then corrected for multiple hypothesis testing using the Benjamini-Hochberg

FDR procedure [142].
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Relationship between gene expression level and OU variance

As expected, genes with low expression levels are estimated to have high OU variance, but

this is likely largely contributed from technical, rather than true biological, variance [108].

To account for this, I focused only on genes whose estimated OU mean (𝜃) was over 5 TPM.

I chose this cutoff because it removes the majority of the relationship between OU variance

and expression level, while preserving the majority of expressed genes for analysis (Fig. A-5).

Note that even among genes with TPM > 5, those with higher expression level still have

slightly lower OU variance, contrary to expectations of heteroscedasticity.

2.5.5 Estimating robustness of OU process parameters

To test the robustness of the OU model, I used a jackknifing procedure, where I subsampled

phylogenies ranging from 3 to 16 species (out of a total of 17 species). For each phylogeny

size, I created 10 randomly subsampled phylogenies and then fit the OU model as described

above.

2.5.6 Functional annotations, by evolutionary variance

To test for enriched GO categories across genes with low or high evolutionary variance, I

used the ranked enrichment test from GOrilla [143]. To avoid biases due to relationship

between lowly expressed genes and high evolutionary variance estimates, I only used genes

expressed at > 5 TPM.

2.5.7 Functional annotations, by expression variance and sequence con-

servation

Measuring sequence conservation

Sequence conservation of a gene was defined by mean phyloP score [86] across the coding

region of the longest annotated coding transcript of that gene.
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GO annotation by sequence and expression conservation

I tested for enriched GO categories across genes in all four categories of high or low evolu-

tionary variance and high or low sequence conservation. For each tissue separately, I defined

‘high’ or ‘low’ based on the median evolutionary expression variance and median phyloP

score, respectively, and assigned all genes expressed at > 5 TPM to one of four categories.

For GO enrichment analysis, where only sets with relatively large numbers of genes are typi-

cally enriched at levels that survive multiple hypothesis testing correction, I first unified the

genes of each category across all tissues and then used GOrilla [143] to test for enrichments

in the combined gene lists. Because gene function is related to evolutionary variance, for

the background set I used the appropriate list of all high or low expression variance genes

expressed at > 5 TPM.

2.5.8 Evolutionary variance of essential and disease genes

Essential, haploinsufficient, and disease gene sets

The following gene lists were downloaded from the McArthur Lab gene lists repository at

https://github.com/macarthur-lab/gene_lists: essential in culture, essential in mice,

ClinGen haploinsufficient genes, genes with any disease association reported in ClinVar, and

neuromuscular disease genes.

Rare, single genes contributing to non-syndromic autism spectrum disorder were down-

loaded from the SFARI database at https://gene.sfari.org/ by selecting Category 1

genes (rare single gene variants, disruptions/mutations, and submicroscopic deletions/duplications

directly linked to ASD) with a gene score of 1 (high confidence), 2 (strong candidate) or 3

(suggestive evidence).

Genes contributing to congenital heart disease were curated by filtering for genes an-

notated with ‘Congenital heart defects’ in OMIM’s Morbid Map at https://omim.org/

downloads/ as well as genes associated with congenital heart disease (DOID: 1682) from

the MGI Disease Ontology Browser at http://www.informatics.jax.org/disease.
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Defining tissue-specific genes

Because the dataset consists of closely related tissues (e.g., heart and skeletal muscle, Fig.

2-1b), I did not want to define only genes expressed in a single tissue as tissue-specific. I

found that the distribution of number of tissues in which genes are expressed > 5 TPM (Fig.

A-10) is somewhat bimodal and, based on visual inspection, defined a cut-off of three or

fewer tissues as tissue-specific. The observation that tissue-specific disease genes had lower

variance compared to non-disease genes was robust to different cutoffs (data not shown).

(However, lower cutoffs result in fewer genes defined tissue-specific, reducing power to achieve

statistical significance for downstream analyses.)

2.5.9 Identifying disease genes from neuromuscular disease RNA-seq data

Samples for neuromuscular disease dataset

The cohort of neuromuscular disease patient RNA-seq described in this study is a superset

of that described in Cummings et al. 2017 [119] (dbGaP accession phs000655.v3.p1) and

30 additional patients. Tissues were procured under Institutional Review Board (IRB)

approved protocols at National Institute of Neurological Disorders and Stroke (Protocol

#12-N-0095), Newcastle University (CF01.2011), Boston Children’s Hospital (03-12-205R),

University College London (08ND17), UCLA (15-001919), and St. Jude Children’s Research

Hospital (10/CHW/45). Patients were consented to these protocols in clinic visits prior to

biopsy. Patient muscle biopsies were collected as described in Cummings et al. 2017.

RNA-seq for neuromuscular disease dataset patient data

RNA-seq from muscle biopsies was performed as described in Cummings et al. 2017 [119].

To minimize technical differences, patient muscle samples were sequenced using the same

protocol as in the GTEx project [125], patients sequenced at or above the same coverage

as GTEx, and analyzed using identical pipelines. Briefly, muscle biopsies or RNA were

shipped frozen from clinical centers via a liquid nitrogen dry shipper and stored in liquid

nitrogen cryogenic storage. All samples analyzed with H&E showed muscle quality sufficient

to proceed to RNA-seq. RNA was extracted from muscle biopsies via the miRNeasy Mini Kit
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from Qiagen per kit instructions. All RNA samples were measured for quantity and quality

and samples had to meet the minimum cutoff of 250ng of RNA and RNA Quality Score

(RQS) of 6 to proceed with library prep. RNA-seq library preparation was performed at the

Broad Institute Genomics Platform using the poly-A selection of mRNA with an Illumina

TruSeq kit. Paired-end sequencing was performed in the Genomics Platform on Illumina

HiSeq 2000 instruments. Read length and sequence coverage information is available in

Additional file 4.

GTEx BAM files were downloaded from dbGaP under accession ID phs000424.v6.p1 and

realigned after conversion to FASTQ files with Picard SamToFastq. Both patient and GTEx

reads were aligned using Star 2-Pass v.2.4.2a [144] using hg19 as the genome reference and

Gencode V19 annotations [145]. Duplicate reads were marked with Picard MarkDuplicates

(v.1.1099) available at http://broadinstitute.github.io/picard.

Detecting outlier expression in patient samples

Genes expression values (log10[TPM]) were first normalized by TMM normalization [140] to

the human skeletal muscle expression values used to originally to fit the OU parameters. For

each gene in each patient sample, a z-score was calculated using the asymptotic mean and

variance estimated from the evolutionary data. Z-scores were only calculated for genes that

were assessed to fit better under the OU rather than the BM model (FDR < 0.05, see Fitting

OU process parameters) and whose asymptotic mean was estimated to be 5 TPM or higher.

Z-scores were converted to p-values and then corrected for multiple hypothesis testing [142].

I used a FDR threshold of 0.01 to initially define significance. I then removed another 330

genes that scored as a significant outlier in more than 25% of the GTEx samples.

As a comparator (Fig. 2-10), z-scores were also calculated using the sample mean and

variance estimated from healthy human GTEx samples. To ensure comparability between

the two methods, I only calculated z-scores for genes that were not filtered out at any steps

during the evolutionary method above.
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2.5.10 Detecting lineage-specific expression programs

Within each tissue, OU parameters for each of the three hypotheses (OU𝑎𝑙𝑙, OU𝑝𝑟𝑖𝑚𝑎𝑡𝑒𝑠,

OU𝑟𝑜𝑑𝑒𝑛𝑡𝑠) were estimated for each gene as described above. P -values were calculated using

a likelihood ratio test comparing each of the OU models to the BM model. Results from each

of the three hypotheses were then independently adjusted for multiple hypothesis testing

using the Benjamini-Hochberg FDR procedure [142]. For each gene, Akaike and Bayesian

Information Criterion scores were calculated on all models that were significant against the

null to determine the best fitting model. Both scores were in agreement for the best fitting

model in all cases. Unrealistic parameters (optimal expression 𝜃 > 104.5 or 𝜃 < 0) were

estimated only in very few cases (1.6% of genes tested per tissue, on average) and moreover

none of these models was found to be statistically significant against the null hypothesis.

Estimating FDR of lineage-specific expression programs

To estimate the FDR, I performed the same procedure in each tissue using shuffled species

assignments (on the same tree topology) and only retained hypotheses that achieved a FDR

< 0.30. For additional stringency, I only defined genes as being differentially expressed if

the fold change between the estimated means across the lineages (e.g., primate mean vs.

ancestral mean) was greater than 2-fold and if the mean reached at least 5 TPM in one of

the lineages. I performed GO enrichment analysis on each set of up- and down-regulated

genes separately, using a background set of genes with mean expression of at least 1 TPM

across all species in the appropriate tissue.

2.5.11 Data availability

Processed expression data and evolutionary expression distributions for all one-to-one mam-

malian orthologs in each tissue context are available at https://portals.broadinstitute.

org/evee/.

New RNA-seq data is available under GEO accession GSE106077 at https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE106077.
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2.5.12 Additional files

Additional file 1: Data accessions. [link]

Additional file 2: Enriched GO annotations, by evolutionary variance. [link]

Additional file 3: Enriched GO annotations, by expression variance and sequence conser-

vation. [link]

Additional file 4: Alignment statistics for neuromuscular disease RNA-seq data. [link]

Additional file 5: Enriched GO annotations of genes with lineage-specific expression.

[link]
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(Figure continues on next page.)
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Figure A-1: Dendrograms from hierarchical clustering of gene expression (log10[TPM])
within each of 7 tissue type (label, top) using Pearson’s correlation as the distance met-
ric.
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Figure A-2: Illustrative example of unnormalized expression level of all genes from a human
(x-axis) and an opossum liver sample (y-axis) and the best fit regression line as calculated
by a linear regression (blue line) and PCA (red line). Expression distance is the orthogonal
distance to the best fit line from PCA (dashed red line).
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Figure A-3: Pairwise mean squared expression distances (y-axis) between mammals and
human for each of six tissue types across evolutionary time, as estimated by substitutions
per 100 bp (x-axis). Error bars: standard deviation of the mean across replicates.
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Figure A-4: Pairwise mean squared expression distances (y-axis) between mammals and
mouse for each of seven tissue types across evolutionary time, as estimated by substitutions
per 100 basepairs (x-axis). Error bars: standard deviation of the mean across replicates.
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Figure A-6: Pairwise mean squared expression distances for genes whose expression evolution
fits better under a BM process (i.e., neutral evolution, top) and for genes whose expression
evolution fits better an OU process (i.e., presence of stabilizing selection, bottom).
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Figure A-7: Percent of genes concordantly rejected (top, left), percent genes discordantly
rejected (top, right), and mean squared error of variance (bottom) estimated from OU
model (black) or directly from the sample (red) when compared to estimates using the full
phylogeny. Each metric is test on increasing number of species in the phylogeny (x-axis).
Error bars: standard deviation of the mean across 10 iterations of sampled phylogenies.
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Figure A-8: Distribution of log(evolutionary variance) for all genes in each of 7 tissue types.
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Figure A-9: Correlation between evolutionary variance and expression across tissues.
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Figure A-11: Number of genes (y-axis) detected to have lineage-specific expression changes
across primates (green) and rodents (orange) in each of 7 tissue types (x-axis). Gray shading:
number of genes detected by the same analysis when using a shuffled phylogeny. * denotes
FDR < 0.30.
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Evolutionary analysis across

mammals reveals distinct classes of long

noncoding RNAs

This chapter is adapted from its initial publication:

Jenny Chen, Alexander A. Shishkin, Xiaopeng Zhu, Sabah Kadri, Itay Maza, Mitchell

Guttman, Jacob H. Hanna, Aviv Regev and Manuel Garber. Evolutionary analysis across

mammals reveals distinct classes of long noncoding RNAs. Genome Biology, February 2016.
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Recent advances in transcriptome sequencing have enabled the discovery of

thousands of long noncoding RNAs (lncRNAs) across many species. Though

several lncRNAs have been shown to play important roles in diverse biological

processes, the functions and mechanisms of most lncRNAs remain unknown.

Two significant obstacles lie between transcriptome sequencing and functional

characterization of lncRNAs: identifying truly noncoding genes from de novo

reconstructed transcriptomes, and prioritizing the hundreds of resulting puta-

tive lncRNAs for downstream experimental interrogation. I present slncky , a

lncRNA discovery tool that produces a high-quality set of lncRNAs from RNA-

sequencing data and further uses evolutionary constraint to prioritize lncRNAs

that are likely to be functionally important. My analysis reveals that evolution-

ary selection acts in several distinct patterns, highlighting that lncRNAs are

not a homogenous class of molecules but rather a mixture of multiple functional

classes with distinct biological mechanism and/or roles. Further, my novel com-

parative methods for lncRNAs reveals 233 constrained lncRNAs out of tens of

thousands of currently annotated transcripts, whose data is available through

the slncky Evolution Browser for downstream experimental interrogation.

3.1 Background

Recent advances in transcriptome sequencing have led to the discovery of thousands of

lncRNAs, many of which have been shown to play important roles in diverse biological

processes from development to immunity, or associated with numerous cancers when mis-

regulated [73, 146–154]. Given the importance of lncRNAs in biology and disease, there is

great interest in defining lncRNAs in new experimental systems, disease models, and even

primary cancer samples. Yet, despite important progress in RNA-sequencing (RNA-seq),

the annotation and computational characterization of lncRNAs from RNA-seq data remains

a major challenge.

Current computational approaches for filtering lncRNAs from RNA-seq transcript as-

semblies are largely based on the absence of evolutionarily signatures of protein-coding po-
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tential [78,79,82,155]. Yet, this approach is limited in both sensitivity and specificity: (1) it

incorrectly classifies bona fide lncRNAs as protein-coding simply because they are conserved;

and (2) it incorrectly classifies transcripts as lncRNAs when they are actually fragmented

untranslated regions (UTRs) of coding genes, pseudogenes, or members of lineage-specific

protein-coding gene family expansions, such as zinc finger proteins or olfactory genes. Other

lncRNA cataloging efforts have addressed these issues by incorporating additional filtering

criteria along with extensive manual curation [79, 155, 156] or by performing additional ex-

periments to better capture transcript boundaries (e.g., 5’- or 3’-end sequencing) [82, 157].

While these approaches have proven to be extremely valuable, they remain labor-intensive

and time-consuming, even for experienced users.

To address this challenge, I developed slncky, a method and accessible software package

that enables robust and rapid identification of high-confidence lncRNA catalogs directly

from RNA-seq transcript assemblies without reliance on evolutionary measures of coding

potential. slncky goes through several key steps to accurately separate lncRNAs from coding

genes, pseudogenes, and assembly artifacts, while also identifying novel proteins including

small peptides. When applied to mouse embryonic stem cells (ESCs), slncky accurately

identifies virtually all well-characterized lncRNAs and performs as well as previous manually

curated catalogs.

Downstream of lncRNA annotation, comparative analysis remains an important com-

putational approach to assess potential function of a lncRNA without requiring additional

experimental efforts. Despite its importance, few tools for identifying conservation of lncR-

NAs exist. To address this need, slncky additionally incorporates a comparative analysis

pipeline with novel metrics especially designed for the study of RNA evolution. Here, I

demonstrate the utility of slncky by applying it to a comparative study of the ESC tran-

scriptome across human, mouse, rat, chimpanzee, and bonobo, and to previously defined

datasets consisting of > 700 RNA-seq experiments across human and mouse. When applying

slncky to these datasets, I discover hundreds of conserved lncRNAs. Furthermore, my met-

rics for evaluating transcript evolution show that evolutionary properties divide lncRNAs

into separate classes, which each display distinct patterns of selective pressure.
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3.2 A method for defining a high-quality set of long noncoding

RNAs

Determining a set of lncRNAs from reconstructed annotations involves several steps to

ensure that transcripts represent complete transcriptional units and that they are unlikely

to encode for a protein. Current methods for defining coding potential, such as PhyloCSF

[15] and RNACode [16], rely on codon substitution models which fail in three important

cases: (1) they often misclassify noncoding RNAs as protein-coding — including TUG1,

MALAT1, and XIST — merely because they are conserved; (2) they fail to identify lineage-

specific proteins as coding; and (3) they erroneously identify noncoding elements (e.g., UTR

fragments, intronic reads) as lncRNAs. Rather than use codon substitution models, slncky

implements a set of sensitive filtering steps to exclude fragment assemblies, UTR extensions,

gene duplications, and pseudogenes, which are often mischaracterized as lncRNAs, while

also avoiding the exclusion of bona fide lncRNA transcripts that are often excluded simply

because they have high evolutionary conservation.

To achieve this goal, slncky carries out the following steps (Fig. 3-1, Methods): (1)

slncky removes any transcript that overlaps (on the same strand) any portion of an anno-

tated protein-coding gene in the same species; (2) slncky leverages the conservation of coding

genes and uses annotations in related species to further exclude unannotated protein-coding

genes, or incomplete transcripts that align to UTR sequences; and (3) to remove poorly

annotated members of species-specific protein-coding gene expansions, slncky aligns all iden-

tified transcripts to each other and removes any transcript families that shares significant

homology with each other. The result is a filtered set of transcripts that retains conserved,

noncoding transcripts that may score highly for coding potential, while excluding up to

approximately 25% of coding or pseudogenic transcripts normally identified as lncRNAs by

traditional approaches.

After removing reconstructions that are likely gene fragments, pseudogenes, or members

of gene family expansions, slncky searches for novel or previously unannotated coding genes

using a method that is less confounded by evolutionary conservation than codon substitu-
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Figure 3-1: Schematic of slncky ’s filtering pipeline.

tion models (Methods). Specifically, slncky aligns orthologous transcripts and analyzes all

possible open reading frames (ORFs) that are present in both species. For each ORF, slncky

computes the ratio of nonsynonymous to synonymous mutations (dN/dS) and excludes all

annotations with a significant dN/dS ratio. By requiring the presence of a conserved ORF

that is transcribed in multiple species, and by computing the dN/dS ratio across the entire

ORF alignment, slncky is more specific than conventional coding-potential scoring software

which report all high-scoring segments within an alignment.

3.2.1 Validation with mouse embryonic stem cell lncRNAs

Having developed a method to identify lncRNAs directly from RNA-seq data, I sought to

characterize its sensitivity and specificity by comparing lncRNAs identified by slncky to the

well-studied set of lncRNAs expressed in mouse ESCs [78]. To do this, I used RNA-seq

libraries from pluripotent cells obtained from three different mouse strains cultured using

previously described growing conditions [158,159] (Methods, Table B.1). I then performed de

novo reconstruction to build transcript models (Methods), and subsequently applied slncky
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to define a set of 408 lncRNAs (Fig. B-1). The analysis also revealed four transcripts —

Apela, Tunar, 1500011K16Rik (LINC00116 ), and BC094334 (LINC00094 ) — that contain

conserved ORFs with high coding potential (Fig. B-2a, Table B-2b).

Several lines of evidence indicate that the identified set represents bona fide lncRNAs: (1)

slncky recovered all of the 20 well-characterized lncRNAs that are expressed in the pluripo-

tent state (Methods), demonstrating that this stringent approach is still sensitive; (2) Iden-

tified lncRNAs contain chromatin modifications of active RNA Polymerase II transcription

(Methods), exhibiting similar levels as previous ES catalogs (approximately 70%) [78, 160];

(3) lncRNAs identified by slncky have significantly lower evolutionary coding potential scores

than protein-coding genes (t-test p = 1.3× 10−6, Methods) (Fig. 3-2a); (4) slncky does not

filter out known conserved lncRNAs, such as Malat1, Tug1, Miat, that are often excluded due

to significant coding-potential scores (Fig. B-2a, Table B-2c); and (5) Identified lncRNAs

have significantly reduced ribosome release scores [161] (Methods), a measure that accu-

rately predicts coding potential from ribosome profiling data, than protein-coding genes

(73-fold, t-test p < 2.2× 10−16) (Fig. 3-2b).
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These results demonstrate that slncky provides a simple and robust strategy for iden-

tifying lncRNAs from a de novo transcriptome. Rather than requiring many user-defined

parameters, slncky learns filtering parameters directly from the data making it useful across

many different species, including non-model organisms.

3.2.2 Comparison to previous methods

To verify the scalability and overall utility of slncky for defining lncRNAs across multiple

datasets in different species, I ran slncky on GENCODE’s latest comprehensive gene annota-

tion set (V19) totaling 189,020 transcripts, of which 16,482 are annotated as lncRNAs that

do not overlap a coding gene [156]. GENCODE is an ideal test case because it represents the

current gold standard lncRNA annotation set, as much of its content undergoes extensive

manual curation. Applying slncky, I identified 14,722 human lncRNA genes. Importantly,

these include > 90% of the lncRNAs identified by GENCODE, with only 136 human (0.9%)

annotated protein coding gene, and 83 (0.6%) annotated pseudogenes identified as lncRNAs.

Transcripts that are annotated as lncRNAs by GENCODE but not by slncky include 1,735

(12%) transcripts that are part of a cluster of duplicated genes, of which 123 (1%) aligned

to a known zinc finger protein or olfactory gene. An additional 181 (1%) transcripts were

excluded because they aligned significantly to an orthologous protein coding gene in mouse

(Fig. 3-3a).

I then compared my filtering strategy with two previously published large-scale compar-

ative studies that were based on GENCODE annotations, Washietl et al. [81] and Necsulea

et al. [80] (Methods). For the set of lncRNAs defined by Washietl et al., slncky was able to

remove 9.6% (156) of the annotations that were likely results of gene duplications and 1.2%

(19) that aligned significantly to a mouse coding transcript. In contrast, slncky only removed

a handful of transcripts (< 0.1%) from the Necsulea et al. dataset. Importantly, slncky was

much more sensitive as it identified virtually all well-characterized lncRNAs (20/21) com-

pared to only 20% (4/21) by these previous reports (Fig. 3-3b). Finally, I compared slncky

to a recently published pipeline for filtering reconstructed transcripts from RNA-seq data

called PLAR (Hezroni et al. [82]). I found that slncky and PLAR performed comparably in

removing coding gene orthologs and gene duplications, but slncky remained more sensitive
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in recovering well-characterized transcripts (33/36 recovered by slncky compared to 27/36

by PLAR) (Fig. B-3).
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Figure 3-3: Comparison of previously published sets of lncRNAs to slncky results.

Together, these results highlight the power of slncky for identifying a high-confidence set

of lncRNAs and excluding known artifacts that are often mistaken for lncRNAs. Further-

more, these results demonstrate that slncky performs as well as manual curation for defining

bona fide lncRNAs and can even identify the challenging cases that are often missed by cu-

ration efforts.

3.3 A method for studying lncRNA evolution

Having developed a method to define a high-quality set lncRNAs, I sought to study the

evolutionary properties of lncRNAs. While comparative genomics has provided important

insights for studying proteins, enhancers, and promoters [7,11,162–165], relatively few com-

parative methods have been developed to study the evolution of lncRNAs. One of the main

challenges is that lncRNAs diverge rapidly, accumulating both nucleotide substitutions and

insertion/deletion (indel) events, rendering lncRNAs difficult to align with conventional
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aligners and phylogenetic approaches.

To enable evolutionary analysis of lncRNAs, I implemented a computationally efficient

and sensitive strategy to align lncRNAs and characterize their sequence and transcript evo-

lution (Fig. 3-4, Methods). To this end, slncky identifies the syntenic genomic region for a

lncRNA in the orthologous species. If a transcript exists in a syntenic region, slncky aligns

the two regions using a sensitive seed-based local pairwise aligner [166]. To avoid the possi-

bility of spurious matches, slncky scores each alignment relative to a set of random intergenic

regions from the orthologous genome and only keeps alignments that score higher than 95%

of the random intergenic sequences.
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Figure 3-4: Schematic of slncky ’s orthology pipeline and metrics for measuring sequence and
transcript evolution.

3.3.1 Novel metrics for quantifying lncRNA evolution

Next, slncky characterizes sequence and transcript conservation properties of orthologous

lncRNAs. slncky calculates four metrics (Fig. 3-4):

1. A ‘transcript-genome identity’ (TGI) score, defined as the percent of lncRNA

base pairs that align and are identical to a syntenic genomic locus, to characterize

how well the transcript sequence is conserved across the two species;
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2. A ‘transcript-transcript identity’ (TTI) score, defined as the percent of identi-

cal, aligning base pairs found in the transcribed, exonic regions of both lncRNAs, to

characterize how much of the transcript is transcribed in both species;

3. A ‘splice site conservation’ (SSC) score, defined as the percent of splice sites

that are conserved across both lncRNAs, to characterize conservation of transcript

structure; and

4. An ‘insertion/deletion rate’ (IDR), defined as the log2 rate of insertion/deletion

events in exonic regions relative to intronic regions, to provide an alternative measure

of sequence conservation.

3.3.2 Comparison to previous methods

I tested the performance of slncky ’s orthology finding step by reanalyzing previous studies

of lncRNA conservation across mammals [81] and vertebrates [80, 82, 157] (Methods). The

approach of aligning the two syntenic loci rather than just the transcripts increases slncky

sensitivity with very little drop in specificity. In mammals, slncky successfully identified

the vast majority (> 95%, 1,466/1,521 lncRNAs) of the previously reported orthologous

lncRNAs while also finding an additional 121 pairs (8.0%) of homologous human-mouse

lncRNAs that were previously reported as species-specific. Similarly, in vertebrates, a four-

fold greater evolutionary distance, slncky was able to recover 26 of 29 (90%) of the previously

defined ancestral lncRNAs; the alignments for the remaining three, although found, are

indistinguishable from alignments that can be randomly found across syntenic loci and do

not pass the significance threshold. Furthermore, slncky identified an additional three pairs

of vertebrate conserved lncRNAs.

Together, these results demonstrate that slncky provides an efficient, sensitive, and ac-

cessible method for detecting and characterizing orthologous lncRNAs across any pair of

species, providing an important tool for studying lncRNA evolution or for prioritizing lncR-

NAs based on evolutionary conservation.
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3.4 Studies of mammalian lncRNA evolution

Initial work by others suggests that the expression of lncRNAs is often poorly conserved —

with the rate of transcript expression loss occurring faster than loss of its genomic sequence

identity across species [80, 81]. While these results provided important insights into the

evolution of lncRNAs, these analyses did not fully explore the properties of the conserved

lncRNAs. Having developed a method to comprehensively identify and align lncRNAs across

species, I sought to further understand the evolutionary properties of lncRNAs. To do this,

I used RNA-seq data from ESCs derived from three mouse strains (129SvEv, NOD, and

castaneous), rat, and human (Methods). I added additional published RNA-seq data for

chimpanzee and bonobo iPS cells [167] (Table B.1). The gene expression across mammalian

pluripotent cells shows a similarly high correlation to that previously observed for matched

somatic tissues across mammals (Fig. B-4), highlighting the suitability of this set for com-

parative analysis.

Applying slncky, I identified 408 mouse, 492 rat, 407 chimpanzee, and 413 human lncR-

NAs (Fig. B-1, Additional file 2). Consistent with previous work, I found that lncRNAs

are generally expressed only in a single species, despite the fact that most lncRNA loci can

be aligned across species (Fig. 3-5a). In all, I found 73 (18%) lncRNAs that are expressed

in pluripotent cells across all mammals and are likely to be present prior to the divergence

between rodents and primates (Fig. 3-5b, Methods, Additional file 3).

3.4.1 Distinct evolutionary signatures of ESC lncRNAs

Like previous catalogs, the set of pluripotent-expressed lncRNAs fall into different classes:

miRNA host genes, snoRNA host genes, divergently expressed lncRNAs that are

transcribed in the opposite orientation of a coding gene with which they share a promoter,

and a remaining set of ‘intergenic’ lncRNAs (lincRNAs). Interestingly, I found that these

classes have distinct patterns of sequence and transcript evolution (Fig. 3-6a):

∙ While the loci of miRNA host genes can readily be aligned across species (i.e., have

high TGI), their transcript structure have diverged tremendously, with only 8.5%

median TTI across humans and mouse.
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Figure 3-5: Conservation of lncRNA sequence and expression across mammalian ESCs.

∙ lncRNAs divergently transcribed within 500 base pairs of a coding gene have also

diverged rapidly in TTI, except for sequence transcribed near the promoter. For these

genes, TTI is generally confined to the first exon.

∙ snoRNA host transcripts are very well conserved in both sequence and transcript

structure, though they contain an excess of indel events in exons (1.2-fold more) as

compared to introns (Fig. 3-6b).

∙ Finally, intergenic lncRNAs (lincRNAs) also have conserved transcript structure

but a 1.5-fold reduction in exonic indel events compared to snoRNA hosts (Fig. 3-6b),

despite comparable intronic indel rates (Fig. B-5), suggesting that they undergo dif-

ferent selective pressure than host genes. Most of the pluripotent-expressed,

well-characterized lncRNAs are found in this class of lincRNAs, which displays high

TTI and splice site conservation (SSC). Two notable exceptions to the class of lincR-

NAs are FIRRE and TSIX, which have very poor TTI (5% and 0.1%, respectively).

Both lincRNAs have been previously reported as ‘conserved in synteny’ only [82,168],

indicating that they may belong to a different class of lincRNAs.

In addition to distinct differences in conservation of transcript structure, I found that

the turnover of transcription differ across lncRNA classes: the majority of miRNA host and
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Figure 3-6: Evolutionary signatures reveal distinct functional classes of ESC lncRNAs.

snoRNA host genes show conserved transcription across mammals (95% and 87%, respec-

tively), whereas only a small percentage of divergent and intergenic genes show conserved

transcription (22% and 7%, respectively, Fig. 3-7).

Some lncRNAs have been proposed to have dual functions and these novel evolutionary

metrics allow us to further explore this possibility. For example, GAS5 is a known snoRNA
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host gene and has also been reported to function as a RNA gene [169]. Interestingly, I

found that GAS5 does not match the evolutionary profile of an intergenic gene but rather

has the typical signature of a snoRNA host, with higher indel rates at exons relative to its

intronic regions (1.4-fold higher) (Fig. 3-6b, Additional file 3). This suggests that if GAS5

is truly functional as a noncoding gene, it likely acts through a different mechanism than

other intergenic lncRNAs.

I further note that these distinct signatures of evolution are robust enough to identify

incorrectly annotated transcripts. For example, based on current annotations, LINC-PINT

is an ‘intergenic’ lncRNA as the closest annotated coding gene, MKLN1, begins approxi-

mately 184 kb downstream [170]. However, its transcriptional conservation pattern is typical

of a divergent transcript, with transcriptional identity confined only to its first exon. Closer

inspection of expression data from ESCs and other tissues [65] revealed that in fact, an

unannotated, alternative transcriptional start site of MKLN1 begins less than 200 base

pairs downstream, suggesting that LINC-PINT is in fact a divergently transcribed lncRNA

(Fig. B-6).

3.4.2 Distinct evolutionary signatures across all annotated

lncRNAs

I next sought to extend my evolutionary analysis to larger catalogs of mouse and human

lncRNAs (Methods) [80, 81, 156, 171]. Altogether, I searched for candidate orthologs across

251,786 human and 25,335 mouse transcripts corresponding to 56,280 and 15,508 unique

lncRNA loci (Fig. B-7) using default parameters of slncky. miRNA hosts, divergent lncR-
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NAs, and snoRNA host genes show the same distinct evolutionary patterns that I observed

in pluripotent cells (Fig. 3-8). Additionally, I found that miRNA hosts that harbor miRNAs

inside exonic regions (e.g., H19 [172]) show a distinct conservation pattern reminiscent of

lincRNAs (high TTI and SSC), but without indel-constrained exons (Fig. B-8).
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Figure 3-8: Evolutionary signatures of all annotated lncRNAs.

Turning my attention specifically to 1,861 candidate orthologous intergenic lncRNAs

(lincRNAs), I found that the majority of orthologous pairs did not display signatures of

purifying selection and instead had low TTI (< 30%) and no conserved splice sites. Several

lines of evidence suggest that the majority of these poorly aligning pairs may not be true

orthologs but instead may be transcripts at syntenic loci in different cell types or transcrip-

tional noise. First, applying my orthology-finding pipeline to randomly shuffled transcripts
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resulted in a similar proportion of syntenic transcripts with low TTI and zero conserved

splice sites (Fig. 3-9). Second, though poor alignment metrics could be the result of incom-

plete reconstructions of lowly expressed lincRNAs, when I performed a similar analysis on

a expression-matched set of reconstructed coding transcripts, orthologous pairs have both

high TTI and high SSC (Fig. B-9). Third, incorporating human and mouse expression data

and limiting the orthology search to only lincRNAs expressed in matched tissues drastically

reduced the number of poorly aligning lincRNAs (Fig. B-10).

Fr
eq

ue
nc

y

0.0

400

300

200

100

0

1500

1000

500

0
0.2 0.4 0.6 0.8 1.0

Transcript-transcript identity Splice site conservation

0.0 0.2 0.4 0.6 0.8 1.0

All
Shuffled

FDR < 10% FDR < 10%

Figure 3-9: Evolutionary metrics of candidate (solid bars) and shuffled (hashed bars) in-
tergenic lncRNAs. Dotted line and green bars denote orthologs with false discovery rate
controlled at 10%.

Taken together, I concluded that the majority of syntenic pairs I found were actually

unrelated transcripts that have been annotated independently in human and mouse, perhaps

in very different cell types, and which have no ancestral relationship. Therefore, I sought

to reduce the number of possible spurious lincRNA orthologous pairs by either requiring

transcript-transcript identity > 60% or by requiring at least one conserved splice sites, which

controls the false discovery rate (FDR) at 10% (3-9). (I also excluded eight intergenic tran-

scripts that contain a conserved ORF between human and mouse with a significant dN/dS

ratio and significant coding potential score because they appear to encode for small proteins

[Table B.2].) Applying these filtering criteria, 232 pairs of human-mouse lincRNAs orthologs

remained with a conservation profile suggestive of high purifying selection at the transcript

level (Fig. B-11). However, unlike the pluripotent analysis, the TTI distribution of the fil-

tered lincRNAs was bimodal (Fig. 3-10). Modeling the TTI distribution as two Gaussians,

I found 186 (80.1%) lincRNAs with high TTI (mean 65.5% +/- 7.1%) and 46 (19.8%) with

84



CHAPTER 3. EVOLUTION OF MAMMALIAN LONG NONCODING RNAS

low TTI (mean 15.6% +/- 11.7%). This further suggests that selection may operate in two

distinct ways: for the majority of lincRNAs, it acts on the full RNA transcript, preserving

the transcript sequence, while for a small subset of lincRNAs, the lincRNA sequence may

be under positive selection, or perhaps only the act of transcription may be under selective

constraint. With the goal of aiding in the study of these human-mouse conserved lincRNAs,

I built an easily accessible application available at https://scripts.mit.edu/~jjenny as a

resource for visually exploring the alignment and conservation properties of these lincRNAs.
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3.4.3 Properties of lineage-specific and conserved intergenic

lncRNA promoters

Finally, I sought to understand properties of lincRNAs that explain their conservation

or rapid turnover by investigating promoter conservation (Methods). Within the set of
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(a) Sequence conservation (left), CpG island composition (middle), and repeat content (right) of ESC
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(b) Same promoter metrics as above for mouse-specific and mammalian-conserved lincRNAs from
combined lncRNA catalogs. Mammalian-conserved lincRNAs are split between those with low and
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Figure 3-11: Genomic properties of lincRNA promoters of increasing evolutionary age.

pluripotent-expressed lincRNAs (Fig. 3-11a), I found that mammalian-conserved lincRNA

promoters have conservation scores comparable to protein coding genes, consistent with pre-

vious reports [78, 79], while species-specific lincRNA promoters are indistinguishable from

neutral evolution of random intergenic genomic sequence. Conservation also extends to the

promoter structure, as I found clear enrichment for CpG islands in conserved lincRNAs,

despite comparable CG content (approximately 48%) to that of species-specific lincRNA

promoters. In contrast, I found that conservation is negatively correlated with repeat con-

tent in lincRNA promoters, and that a significant fraction (30.6%, Fisher’s exact test p =
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1.65 × 10−3) of species-specific lincRNA promoters contain species-specific endoretroviral

K (ERVK) repeat element that appear to be driving transcription. This repeat element

is enriched only in promoters of lincRNAs expressed in pluripotent and testis cells (Table

B.3), consistent with previous observations that repeat elements are transcribed in ES and

germline tissues and silenced in differentiated tissues. I observe that for 60.7% of mouse-

or rodent-specific lincRNAs, the time of ERVK integration on the evolutionary tree cor-

responds exactly with the evolutionary pattern of lincRNA transcription, providing strong

evidence that the ERVK element is a primary driver for the origin of the lincRNA. I found

corroborating trends of promoter conservation when examining the larger set of lincRNAs

from the combined set of annotations (Fig. 3-11b). Importantly, I found no statistical dif-

ference in promoter conservation between high and low TTI lincRNA orthologs, suggesting

selection for transcriptional control even with poorly aligning orthologs. Together, these

results highlight the power of evolutionary analysis to sift through the tens of thousands

of annotated lncRNAs to identify a small set of transcripts under selection and likely to

be biologically functional. This set serves as an important starting point for downstream

experimental interrogation for unraveling the roles and mechanisms of lncRNAs.

3.5 Conclusion

While interest in lncRNAs has intensified, there is still relatively little known about the

functions of lncRNAs and much skepticism about what these large number of transcripts

mean. The main challenge is that the number of functionally characterized lncRNAs remains

a tiny fraction of the total number of lncRNAs that have been annotated. The significant

effort required for functional characterization of a single lncRNA compared to its annotation

has impeded the functional characterization of the large catalogs of lncRNAs. Accordingly,

liberal cataloging efforts have led to a plethora of transcripts defined as lncRNAs that

are rarely transcribed or artifacts of transcript assembly, thereby preventing experimental

progress. slncky provides an important and conservative approach for defining lncRNAs

that enriches for bona fide lncRNAs. While slncky will not necessarily capture every single

lncRNA nor will it provide the longest list of possible lncRNAs, it provides a method to
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define high confidence annotation of lncRNAs from any RNA-seq dataset. This approach will

enable meaningful experimental characterization of lncRNAs, making it easier to reconcile

the large numbers of defined lncRNAs with the functional roles of these lncRNAs, and

providing a consistent standard for evaluating bona fide lncRNAs.

Additionally, evolutionary conservation has long been a confusing feature of lncRNAs.

While it is clear that lncRNAs are enriched for conserved genomic sequences, the majority

of lncRNAs appear to be transcribed in a species-specific manner, raising questions about

whether most of these transcripts are simply byproducts of transcription, with no important

biological function. Alternatively, these lncRNA functions may be highly redundant or

easily replaceable, in which case evolutionary turnover could be explained by a stochastic

evolutionary process where redundant lincRNAs are fixed randomly along the evolutionary

tree. Finally, it is possible that many lncRNAs have ‘functional orthologs’: genes with similar

function but no ancestral relationship. For example, evidence of functional orthology was

recently reported for XIST. Although XIST is not found in marsupials, an opossum lncRNA

called RSX was shown to have similar function. While RSX is capable of silencing the X

chromosome in mouse, it shares no ancestral relationship with XIST [173]. I note that

functional orthology cannot be studied with the methods presented here and future work

will be needed to explore how many lncRNAs might play such lineage-specific roles or to

what extend non-homologous lncRNAs carry similar function.

Despite the rapid turnover in transcription of lncRNAs, I demonstrated that those that

are conserved across species can further be categorized into distinct sets based on their

evolutionary properties. In particular, I found 232 conserved intergenic lncRNAs that do

not host small RNAs in their introns nor are they transcribed from the promoter of a coding

gene. Notably, these lincRNAs fall into two sets: one that shows signs of purifying selection

in transcript sequence and transcriptional control (i.e., promoter properties), and one that

shows selection only for transcriptional control. Furthermore, there are likely many other

classes of lncRNAs that cannot be defined by conservation alone. I anticipate that as more

cell types and tissues are explored, these annotation and evolutionary approaches will be

even more valuable and enable more detailed studies of lncRNA biology.
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3.6 Methods

3.6.1 slncky

Filtering pipeline for high-quality lncRNAs

slncky filters for lncRNAs in three simple steps. First, slncky filters out reconstructed

transcripts that overlap coding genes or ‘mapped-coding’ genes on the same strand, in any

amount.

After this step, slncky chooses a canonical isoform to represent overlapping transcripts.

To do this, slncky clusters all transcripts with any amount of exonic overlap into one cluster,

and chooses the longest transcript as the canonical isoform.

Next, slncky searches for gene duplication events (e.g., zinc finger protein or olfactory

gene expansions) by aligning each transcript to every other putative lncRNA transcript using

lastz with default parameters [166]. slncky then aligns each transcript to shuffled intergenic

regions to find a null distribution of alignment scores, repeating this procedure 200 times

in order to estimate an empirical p-value. Any alignment with a p-value lower than 0.05 is

considered significant. Sets of putative lncRNAs transcript that share significant homology

are then merged, creating larger ‘duplication clusters’. These transcripts do not necessarily

share similarity to a protein-coding gene, though slncky will check and report homology to

known ZFPs and olfactory genes. slncky ’s default parameters, which I used in all analyses

reported (--min_cluster_size 2), notes and removes any duplication cluster containing two

or more transcripts.

Finally, slncky removes any transcript that aligns to a syntenic coding gene in another

species. (Human and mouse annotations are provided, though users can define their own).

First, slncky learns a positive distribution by aligning all the transcripts removed in the first

filtering step, which overlapped coding genes, to their syntenic coding gene and building an

empirical positive score distribution from these alignments. To align genes slncky first uses

liftOver (--minMatch = 0.1) [174] to determine the syntenic loci in the comparing genome

and lastz [166] to perform the alignment across the syntenic region. Using the empirical

distribution, slncky learns an exonic identity threshold that has an empirical p-value of
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0.05. slncky repeats the alignment procedure on the putative lncRNAs to syntenic coding

genes and filters out any transcripts that align at a higher score than this threshold, even if

alignments occur only in UTR or intronic regions. In this way, slncky removes unannotated

coding genes, pseudogenes, as well use UTR or intronic fragments from incomplete transcript

assemblies. To reduce computational cost, whenever more than 250 coding-overlapping genes

were filtered out from the first step, only a random subset of 250 transcripts is used to build

the positive distribution.

Flagging potentially coding ‘lncRNAs’

To find conserved lncRNAs that potentially harbor novel, unannotated protein, slncky first

aligns putative lncRNAs to syntenic transcripts in a comparing species, using a sensitive

noncoding alignment strategy described below. slncky then crawls through each significant

alignment and reports back any aligned ORF longer than 30 base pairs. Only ORFs that

do not contain a frame shift inducing indel in either species are reported. The start codon

is defined as ‘ATG’ and stop codons are defined as ‘TAA’, ‘TAG’, or ‘TGA’. slncky further

calculates the ratio of nonsynonymous to synonymous substitutions (dN/dS ratio). For the

analyses in this study, I additionally calculated an empirical-value for each dN/dS ratio

by aligning 50,000 random intergenic regions and repeating the ORF finding procedure.

Because the distribution of dN/dS ratio is dependent on ORF length (Fig. B-2a), I binned

ORF lengths by 5 base pair windows and assigned an empirical p-value if I had at least

100 random ORFs within that bin. For long ORFs, for which less than 100 length-matched

random ORFs existed, I defined all alignments with dN/dS ratios < 1 as significant.

A sensitive method for aligning orthologous lncRNAs

In searching for conserved lncRNA orthologs, slncky first defines the syntenic region of the

comparing genome with liftOver (--minMatch = 0.1 --multiple = Y) [174]. If a noncoding

transcript exists in the syntenic region, slncky then aligns the area 150,000 base pairs up-

stream to 150,000 base pairs downstream of two syntenic regions. I choose 150,000 base

pairs as a general heuristic that is likely to include an easily-alignable coding transcript up-

and downstream of the lncRNA, which helps lastz to find a positively scoring alignment.
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Importantly, I also found that lncRNAs could only be aligned with a reduced gap-open

penalty (--gap = 25,40) because of many small insertions that appear to be well-tolerated

by lncRNA transcripts.

To ensure I am not reporting alignments that may occur at random (driven mostly by

repetitive elements), I align each lncRNA to shuffled intergenic regions to establish a null

distribution and determine the empirical 5% threshold for determining significant alignment

scores. Because of the inclusion of flanking regions, it is possible to have a significant align-

ment in which only the flanking regions align but not the lncRNA transcripts. slncky reports

these transcripts since it is possible that they are ‘syntologs’ and carry out orthologous func-

tions but have evolved to a point where they no longer align.

3.6.2 Data collection

Pluripotent cell lines and growth conditions

Naïve 2i/LIF media for mouse and rat (rodent) naïve pluripotent cells was assembled as

follows: 500 mL of N2B27 media was generated by including: 240 mL DMEM/ F12 (Bi-

ological Industries; custom-made), 240 mL Neurobasal (Invitrogen; 21103), 5 mL N2 sup-

plement (Invitrogen; 17502048), 5 mL B27 supplement (Invitrogen; 17504044), 1 mM glu-

tamine (Invitrogen), 1% non-essential amino acids (Invitrogen), 0.1 mM 𝛽-mercaptoethanol

(Sigma), penicillin-streptomycin (Invitrogen), and 5 mg/mL BSA (Sigma). Naïve conditions

for murine ESCs included 10 𝜇g recombinant human LIF (Peprotech) and small-molecule in-

hibitors CHIR99021 (CH, 1 𝜇M Axon Medchem) and PD0325901 (PD, 0.75 𝜇M - TOCRIS)

referred to as naïve 2i/LIF conditions. Naïve rodent cells were expanded on fibronectin

coated plates (Sigma Aldrich). Primed (EpiSC) N2B27 media for murine and rat cells

(EpiSCs) contained 8 ng/mL recombinant human bFGF (Peprotech Asia), 20 ng/mL re-

combinant human Activin (Peprotech), and 1% Knockout serum replacement (Invitrogen).

Primed rodent cells were expanded on matrigel (BD Biosciences).

129SvEv (Taconic farms) male primed epiblast stem cell (EpiSC) line was derived from

E6.5 embryos previously described in [175]. 129SvEv naïve ESCs were derived from E3.5

blastocysts. NOD naïve ESC and primed EpiSC lines were previously embryo-derived gen-

erated and described in [176]. Castaneous ESC line was derived from E3.5 in naive 2i/LIF
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conditions and rendered into a primed cell line by passaging over eight times into primed

conditions [177,178].

Rat naïve iPSC lines were previously described in Hanna et al. [178]. Briefly, rat tail

tip derived fibroblasts were infected with a DOX inducible STEMCA-OKSM lentiviral re-

programming vector and M2rtTa lentivirus in 2i/LIF conditions. Established cell lines were

maintained on irradiated MEF cells in 2i/LIF independent of DOX. Simultaneously, primed

rat pluripotent cells were generated by transferring the rat naïve iPSC cells into primed

EpiSC medium for more than eight passages before analysis was conducted.

Naïve human C1 iPSC lines were derived and expanded on irradiated DR4 feeder cells

as previously described [158].

RNA-sequencing

RNA-seq libraries were prepared as described in Shishkin et al. [179]. Briefly, 10 𝜇g of to-

tal RNA was polyA selected twice using Oligo(dT)25 beads (Life Technologies) and NEB

oligo(dT) binding buffer. PolyA-selected RNA was fragmented, repaired, and cleaned using

Zymo RNA concentrator-5 kit. A total of 30 ng of polyA-selected RNA per sample were

used to make RNA-seq libraries. An adapter was ligated to RNA, RNA was reverse tran-

scribed, and a second adapter was ligated on cDNA. Illumina indexes were introduced during

nine cycles of PCR using NEB Q5 Master Mix. Samples were sequenced 100-index-100 on

HiSeq2500.

3.6.3 Transcriptome reconstruction and filtering

Transcripts were reconstructed from RNA-sequencing data using Scripture (v3.1, --coverage

= 0.2) [78] and multi-exonic transcripts were filtered using slncky with default parameters.

Annotations of coding genes were downloaded from UCSC (‘coding’ genes from track UCSC

Genes, table kgTxInfo) [180] and RefSeq [181]. Mapped coding genes were downloaded from

UCSC Transmap database (track UCSC Genes, table transMapAlnUcscGenes) [180]. For

the mouse genome, I also included any blat-aligned human coding gene (track UCSC Genes,

table blastHg18KG) [180]. As expected, the majority of reconstructed transcripts overlapped

an annotated coding or mapped coding gene at > 95% (Fig. B-1). In the next step, slncky
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aligned each putative lncRNA to every other putative lncRNA to detect duplications of

species-specific gene families. Across mouse, rat, and human transcriptomes, I found large

clusters (15+ genes) of transcripts sharing significant sequence similarity with each other

that also aligned to either zinc finger proteins or olfactory proteins. For unclear reasons, but

likely due to the draft status of the assembly which results in collapsed repetitive sequence,

I did not find any large clusters of duplicated genes in the chimpanzee genome, and instead

found five small clusters of paralogs (Fig. B-1).

Finally, slncky aligned the remaining transcripts to syntenic coding genes. For mouse

and chimp transcripts, I aligned to syntenic human coding genes and for rat and human

transcripts, I aligned to syntenic mouse coding genes. The learned transcript similarity

threshold for each pair of comparing species varied as a function of distance between species:

the empirical threshold for calling a significant human-chimp alignment was 29.8% sequence

similarity while for human-mouse alignments it was approximately 14% (Fig. B-1).

Single exon lncRNAs

Transcript reconstruction software tends to report thousands of single exon transcripts exist-

ing in a RNA-seq library. Previous work suggests that the vast majority of these transcripts

are results from incomplete UTR reconstruction, processed pseudogenes, very low expressed

regions, and DNA contamination [82]. Although slncky filters a great number of these arti-

facts, I find that especially for single exon transcripts, many spurious reconstructions remain.

For this reason, when analyzing single exon genes, I only focused on single-exon lncRNAs

that are conserved across species.

3.6.4 Verification of filtered lncRNAs

I verified slncky ’s lncRNA annotations by comparing slncky results with other computational

and experimental methods, detailed below.

Well-characterized lncRNAs

To test the sensitivity of lncRNA filtering pipelines, I derived a list of well-characterized

lncRNAs. To do this, I first took the intersection of annotated noncoding transcripts from
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UCSC [180], RefSeq [181], and GENCODE [145]. I then removed any lncRNA with a

generically assigned name (e.g., LINC00028 or LOC728716 ) as well as generically named

snoRNA and miRNA host genes (e.g., SNHG8 or MIR4697HG). Finally, I performed a

literature search on the remaining lncRNAs, and kept only those that were specifically

experimentally interrogated rather than reported from a large-scale screen. This list of

well-characterized lncRNAs is available in Additional file 1.

Chromatin modifications

Raw reads from ChIP-sequencing experiments for H3K4me3 and H3K4me36 histone mod-

ifications in mouse embryonic stem cells (E14) were downloaded from Xiao et al. [182]

(GSE36114). Reads were mapped to mouse genome (mm9) using Bowtie (v0.12.7) [183]

with default parameters. Peaks were called as previously described [184].

Coding potential

I scored coding potential of mouse lncRNAs using RNACode (v0.3) [81] with default pa-

rameters and multiple sequence alignments of 29 vertebrate genomes from the mouse per-

spective [11].

Ribosome release scores

Ribosome profiling data of mouse ESCs (E14) was downloaded from Ingolia et al. [185]

(GSE30839). Ribosome release scores (RRS) were calculated as described in [161] using the

RRS Program provided by the Guttman Lab.

3.6.5 Reanalysis of previously published lncRNA sets

I compared slncky ’s annotation of lncRNAs to three different human lncRNA sets: GEN-

CODE V19 ‘Long noncoding RNA’ set [145], a set reported by Necsulea et al. [80] based,

in part, on GENCODE V7 annotations, and a set reported by Washietl et al. [81] based on

GENCODE V12 annotations. For all three comparisons, I first downloaded the appropriate

version of GENCODE’s ‘Comprehensive’ gene annotations and applied slncky using default

parameters. Because Necsulea et al. and Washietl et al. both focused on lncRNAs expressed
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in RNA-seq data from Brawand et al. [53], I further scored expression of GENCODE anno-

tations using the same RNA-seq data (using Cufflinks v2.1.1 [186] with default parameters)

and constrained my analysis to only robustly expressed lncRNAs (fragments per kilobase

transcript per million mapped reads [FPKM] > 10 in any tissue).

3.6.6 Reanalysis of previous studies of lncRNA conservation

I downloaded lncRNA annotations and ortholog tables derived from Necsulea et al. [80] and

applied slncky ’s orthology pipeline to mouse and human lncRNAs using default parameters.

I compared the human-mouse orthologs discovered by slncky to the list of transcripts that

were defined by Necsulea et al. to be ancestral to all Eutherians. I used downloaded FPKM

tables from Necsulea et al. to constrain my analysis to pairs in which both transcripts are

expressed in corresponding tissues.

To assess the ability of slncky to discover lncRNAs of a further evolutionary distance

than mouse and human, I downloaded lncRNA and ortholog annotations from [157] and

applied slncky using more relaxed parameters (--minMatch 0.01, --pad 500000) to search

for human-zebrafish and mouse-zebrafish lncRNA orthologs. Note that in both analyses,

lncRNA annotations were not filtered by slncky ’s filtering pipeline prior to the ortholog

search so that the results could be directly comparable with the original publication.

3.6.7 Annotating orthologous lncRNAs in mammalian ESCs

I applied slncky to the pluripotent RNA-seq data to conduct an evolutionary analysis of

lncRNAs across multiple mammalian species. I first searched for orthologous lncRNAs in a

pairwise manner between every possible pair of species. Because the reconstruction software

I used does not report lowly expressed transcripts that do not pass a significance threshold,

and because I removed single-exons in the filtering step, I devised a method to rescue

orthologous transcripts that may have been removed in those steps. For each lncRNA, if

no orthologous lncRNA was detected by slncky, I went back to the original RNA-seq data

and forced reconstruction of lowly-expressed and/or single-exon transcripts in the syntenic

region. I then re-aligned the lncRNA with these newly reconstructed transcripts and added

the transcript to the lncRNA set when a significant alignment was found. I kept only pairs
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of conserved lncRNAs where a significant alignment was found in both reciprocal searches

(e.g., mouse-to-human and human-to-mouse).

Next, given pairs of lncRNA orthologs across all species, I created ortholog groups by

greedily linking ortholog pairs. For example, given pairs {A,B} and {B,C}, I assigned

{A,B,C} to one orthologous group, even if pairing {A,C} did not exist. Finally, I used

Fitch’s algorithm [187] to recursively reconstruct the most parsimonious presence/absence

phylogenetic tree for each lncRNA and determine the last common ancestor (LCA) in which

each lncRNA appeared. In the event a single LCA could not be determined by parsimony,

I chose the most recent ancestor as the LCA in order to have conservative conservation

estimates. For example, if a lncRNA was found in mouse and rat, but missing in human

and chimp, I assigned the LCA to be at the rodent root, rather than at the mammalian root

with a loss event at primates.

Annotating matched low expression coding genes

I tested slncky ’s ability to detect conservation of lowly expressed transcripts by first recon-

structing lowly-expressed coding genes known to be conserved across mammalian species

from the RNA-seq data. I then binned the set of intergenic lncRNAs by increments of

0.1 log10(FPKM), and sampled a set of 162 coding genes that matched in log10(FPKM)

distribution in mouse ESCs. I applied slncky ’s orthology-finding module to the de novo re-

constructed coding genes. Repeating the same analysis as was done for lncRNAs, I assigned

the LCA of each coding gene. I was able to correctly assign the human-mouse ancestor as the

LCA for 134 of 162 (83%) coding genes, providing confidence that I am able to sensitively

detect orthologs of lncRNAs, even though they are lowly expressed.

3.6.8 Combined catalog analysis

I downloaded human and mouse lncRNA annotations, where they existed, from RefSeq [80,

181], UCSC [180], GENCODE (v19 and vM1) [79,145], and MiTranscriptome [171]. I filtered

lncRNAs and searched for orthologs using slncky with default parameters. For overlapping

isoforms that belong to the same gene, I chose one canonical ortholog pair that had the

highest number of conserved splice sites or, if no splice sites were conserved, the highest

96



CHAPTER 3. EVOLUTION OF MAMMALIAN LONG NONCODING RNAS

transcript-transcript identity. miRNA host and snoRNA host genes were annotated using

Ensembl annotations of miRNAs and snoRNAs [188]. Divergent genes were annotated based

on distance and orientation of closest UCSC- or RefSeq-annotated coding gene. Orthologous

lncRNAs were classified as a miRNA host, divergent, or snoRNA host if the transcript was

annotated as such in both species. All other lncRNAs were classified as intergenic.

An orthology search was conducted on shuffled transcripts by collapsing overlapping

isoforms to a canonical gene as described above, and shuffling to an intergenic location (that

is, not overlapping an annotated coding gene) using shuffleBed [136]. I then carried out the

orthology search and alignment exactly as described for lncRNAs. To empirically estimate

the expected number of conserved splice sites across shuffled orthologs, I took each pair of

true lncRNA orthologs and reshuffled splice sites within the loci such that it was correctly

located at donor/acceptor sites (GT, AG), and re-evaluated number of conserved splice sites.

I used distributions resulting from the shuffled orthology search to filter and remove

spurious hits from the set of candidate lincRNA orthologs such that the FDR < 10%. I then

fitted two Gaussians to the resulting transcript-transcript identity using mixtools [189].

Convergence was reached after 31 iterations of EM and final log-likelihood was 146.64. Each

ortholog pair was assigned to a Gaussian based on posterior probability cutoff of 50%.

3.6.9 Promoter properties

I defined promoters to be the 500 base pairs upstream of the lincRNA’s transcription start

site. I calculated several genomic properties of this region as follows:

SiPhy scores

I calculated average SiPhy score across promoter region as previously described [190] using

29-mammals alignment from mouse perspective [11].

CpG islands

For the analysis of CpG islands, I used annotations provided by the UCSC Genome Browser

(assembly mm9, track CpG Islands, table cpgIslandExt).
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Repeat elements

I intersected promoter regions with annotations from RepeatMasker [191] and calculated

the number of base pairs of a lincRNA promoter belonging to a repeat element as well as

percentage of lincRNA promoters harboring each class of repeat element. I then repeated

this analysis with random intergenic regions, matched in size and GC content. To find

statistically significant deviations in repeat content, I used Fisher’s exact test to compare

the proportion of species-specific lincRNA promoters containing each repeat element to

the proportion of random, GC-matched intergenic regions containing the same element. I

reported any repeat element that deviated from random, intergenic regions with a p-value

< 0.005 (corrected for number of repeat types tested).

3.6.10 Data availability

Raw and processed RNA-seq data are available under GEO accession GSE64818 at https:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64818.

A database of conserved lncRNAs discovered in this analysis is available at https://

scripts.mit.edu/~jjenny

3.6.11 Software availability

slncky (http://slncky.github.io) was developed in Python 2.0 and is freely available as

source code distributed under the MIT License. slncky was tested on Linux and Mac OS X.

The version used in this manuscript is available from DOI: 10.5281/zenodo.44628.

3.6.12 Additional files

Additional file 1: Curated list of “well-characterized lncRNAs”. [link]

Additional file 2: Bed file of lncRNAs discovered from mouse (mm9), human (hg19),

chimp/bonobo (panTro4), and rat (rn5). [link]

Additional file 3: Excel file of evolutionary metrics of all lncRNAs found to be conserved

to the primate and rodent ancestor. [link]
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Species (Strain) Assembly Cell type Number of
sequenced
fragments

Number
of aligned
fragments

SRA
accession

Mouse (120SvEv) mm9 naïve ESC 180,535,866 118,386,301 SRR1747435
Mouse (120SvEv) mm9 primed epiSC 180,368,378 110,377,225 SRR1747436
Mouse (NOD) mm9 naïve ESC 141,615,128 94,816,294 SRR1747437
Mouse (NOD) mm9 primed epiSC 177,918,230 102,394,440 SRR1747438
Mouse (cast) mm9 naïve ESC 199,168,080 158,066,464 SRR1747439
Mouse (cast) mm9 primed epiSC 224,000,150 157,372,110 SRR1747440
Rat rn5 naïve ESC 247,087,648 100,883,4721 SRR1747441
Rat rn5 primed epiSC 114,987,318 80,516,323 SRR1747442
Chimpanzee panTro4 iPS 159,906,000 108,736,080 SRR873623*

SRR873624*
SRR873625*
SRR873626*

Bonobo panTro4 iPS 239,033,834 162,543,008 SRR873626*
SRR873629*
SRR873628*
SRR873627*

Human hg19 iPS 244,014,732 201,066,988 SRR1747443

Table B.1: RNA-Sequencing libraries used in lncRNA study. Asterix denotes downloaded
data.
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Figure B-1: Statistics from slncky ’s filtering pipeline applied to mammalian ESC data.
Top row: Percent exonic overlap of reconstructed transcripts with annotated coding genes.
Number of transcripts removed are shown inside circles. Middle row: Exonic sequence
similarity between coding-overlapping transcripts that align to syntenic coding genes (red)
and reconstructed transcripts that align to a syntenic coding gene (gray). Distribution
of sequence similarity for coding-overlapping transcripts (red) is used to define empirical
5% threshold used for filtering. Bottom row: Heatmap of sequence similarity between
reconstructed transcripts that align significantly to each other.
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Red line shows dN/dS cutoff for p < 0.05. For long ORFs, where not enough shuffled alignments were
available to estimate a p-value cutoff, the dN/dS cutoff is set to 1. Labeled black points are dN/dS
ratios of true lncRNAs with significant coding potential scores; labeled red points are annotated
lncRNAs with conserved ORFs flagged by slncky.

Gene ORF length
(bp)

dN dS dN/dS Coding potential
(RNACode p-value)

Tunar 147 0.003 0.22 0.014 1.19e-14
150011K16Rik 171 0.01 0.14 0.059 2.78e-04
BC094334 255 0.02 0.15 0.103 5.90e-10
Apela 165 0.05 0.15 0.308 2.00e-03

(b) dN/dS ratios of annotated lncRNAs, flagged by slncky as likely harboring a coding ORF.

Tug1 330 0.04 0.02 2.69 4.34e-06
Malat1 NA - - - 2.28e-04
Cyrano NA - - - 1.10e-03
Mir22hg 105 0.10 0.04 2.905 6.00e-03
Dleu2 33 0.16 0.00 inf 6.00e-03

(c) dN/dS ratios of known lncRNAs with significant coding potential scores.

Figure B-2: dN/dS ratios of ORFs found in shuffled and real lncRNA alignments.
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Figure B-4: Pearson’s correlation of log10(FPKM) values from expressed genes between
mouse and human samples from somatic tissues [65] and iPS data presented in this study.
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(b) Evolutionary metrics of each lncRNA class from combined analysis compared to exonic miRNA
host genes.

Figure B-8: Evolutionary signatures of exonic miRNA host genes
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Figure B-10: TTI of all candidate lincRNA orthologs compared to TTI from only lincRNAs
expressed in matched tissues of human and mouse. * denotes p < 0.05 (t-test when compared
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Gene ORF
length
(bp)

dN dS dN/dS Coding poten-
tial (RNACode
p-value)

ENSMUSG00000053724 525 0.07 0.13 0.54 4.18e-11
LINC00948 (MRLN ) 141 0.04 0.21 0.19 1.33e-08
LINC00890 273 0.01 0.09 0.13 1.03e-08
LOC100507537 108 0.05 0.12 0.46 1.71e-05
CDIPT-AS1 123 0.08 0.10 0.45 4.80e-04
GQ868703 87 0.02 0.06 0.27 5.00e-03
AK136239 60 0.03 0.08 0.38 3.60e-02
AK094929 90 0.01 0.02 0.27 3.60e-02

Table B.2: dN/dS ratios and coding potential scores of transcripts that likely harbor ORFs.
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(b) Evolutionary metrics of candidate lincRNA orthologs before (dark green) and after (light green)
filtering.

Figure B-11: Evolutionary signatures of candidate and filtered lincRNA orthologs.
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Pluripotent lncRNAs Necsulea, et al. lncRNAs
Mouse
specific
(n=291)

Conserved
(n=48)

ES
(n=829)

Brain
(n=566)

Heart
(n=352)

Kidney
(n=828)

Liver
(n=254)

Ovary
(n=1170)

Testis
(n=3379)

L1 9.2e-06 5.1e-02 8.2e-11 8.9e-07 2.9e-04 3.7e-07 7.3e-05 2.0e-16 2.9e-42
Low
complexity

3.1e-01 5.8e-01 1.9e-05 6.0e-03 1.8e-03 1.7e-04 1.0e-01 2.8e-07 1.1e-06

Simple
repeat

1.0e+00 4.3e-01 1.1e-01 1.8e-02 6.1e-02 7.6e-01 9.2e-01 2.9e-05 4.0e-07

Alu 3.1e-01 1.0e+00 4.2e-02 4.8e-01 1.3e-01 8.0e-03 5.7e-01 1.6e-02 2.6e-03
MaLR 1.0e+00 5.9e-02 1.8e-02 6.7e-01 1.5e-01 6.9e-01 8.0e-01 6.9e-01 1.6e-10
ERVK 1.7e-03 1.0e+00 4.1e-03 5.3e-02 7.9e-01 1.8e-02 8.7e-01 7.2e-02 1.7e-04
B4 1.3e-01 1.0e+00 7.1e-01 1.0e+00 7.2e-01 1.4e-02 5.6e-01 1.4e-01 3.0e-01
B2 3.8e-02 1.0e+00 3.1e-01 6.8e-02 7.9e-01 1.0e+00 4.9e-01 8.4e-01 4.1e-01
ERV1 3.0e-01 1.0e+00 3.2e-01 7.2e-01 4.9e-02 1.4e-01 3.8e-01 4.6e-01 7.0e-02

Table B.3: Enrichment and depletion of repeat elements in lncRNA promoters. Fisher’s
exact test p-values from comparing proportion of repeat element in lncRNA promoters
to the proportion observed in GC-matched, random intergenic regions. Red text denotes
enrichment and blue denotes depletion.
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This chapter is not a comparative analysis across species, but instead, an analysis of the regu-

latory control of isoform usage across the human population. Still, this study highlights how

investigations into transcriptional regulation can help answer questions about unexplained

evolutionary signatures observed in the human genome.
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While the impact of common genetic variants on transcript abundance in

response to cellular stimuli has been analyzed in depth, less is known about

how stimulation modulates the genetic control of isoform usage. Using RNA-

sequencing profiles of monocyte-derived dendritic cells from 243 individuals, we

uncovered thousands of unannotated isoforms synthesized in response to viral

infection or stimulation with Type 1 interferon. We identified more than a thou-

sand single nucleotide polymorphisms associated with isoform usage (isoQTLs),

many of which are independent of expression QTLs (eQTLs) for the same gene.

Compared to eQTLs, isoQTLs are enriched for splice sites and untranslated re-

gions, and depleted of upstream sequences. We specifically examine the ERAP2

locus, where the major haplotype is under balancing selection, though associated

with Crohn’s disease risk. At baseline and following Type 1 interferon stimula-

tion, the major haplotype is associated with absence of ERAP2 expression; but

in response to influenza infection, the major haplotype results in the expression

of two previously uncharacterized, alternatively transcribed, spliced, and trans-

lated short isoforms. Thus, genetic variants at a single locus could modulate

independent gene regulatory processes in the innate immune response, and in

the case of ERAP2, may confer a historical fitness advantage in response to

virus, but increase risk for autoimmunity in the modern environment.

4.1 Background

An important aspect of eukaryotic gene regulation is the control of alternative gene isoforms.

This is achieved through several mechanisms at the transcript level, including: alternative

promoters for transcription initiation, alternative splicing of pre-messenger RNA, alterna-

tive polyadenylation, and selective degradation of isoforms. These processes regulate the

relative abundances of multiple coding and non-coding RNAs from the same underlying

DNA sequence, often resulting in altered function of the protein products in response to

developmental or environmental changes [192–195].

A case in point is the role of alternative isoform usage in the human immune response.
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For example, studies have shown that alternative splicing is critical across many immune

processes, such as B cell functions reflected in the balance between IgM and IgD immunoglob-

ulin isoforms [196], naïve and memory T cell functions controlled by CD45 isoforms [197],

and innate immune responses to pathogens regulated by different isoforms of MYD88 [198].

Genetic variants that affect isoform usage have been associated with immune disorders [199]

including the association of systemic lupus erythematosus with common variants in a splice

site at the IRF5 locus [200].

Previous studies have identified shared and divergent transcriptional programs in the

antibacterial and antiviral response of innate immune cells [201,202], with genetic variation

imparting stimulation specific effects on gene expression [202–205]. While genetic maps

of alternative splicing are beginning to emerge, most notably in lymphoblastoid cell lines

[206, 207], across healthy human tissues [208, 209], and in macrophages stimulated with

bacteria [210], variability in isoform usage across individuals and its genetic basis in the

human antiviral response have not been studied.

Here, we integrate RNA-sequencing (RNA-seq) with dense genotyping to systematically

investigate the genetic control of isoform usage in monocyte derived dendritic cells (MoDCs)

at rest, and in response to influenza-infection or Type 1 interferon. Because the Type 1

interferon pathway is known to be engaged by a broad array of microbial products, our study

design is unique in allowing the separation of the universal and influenza-specific effects on

the interferon-induced response. Since the human transcriptome has never been annotated

under these conditions, we first used de novo assembly to catalog and quantify all synthesized

isoforms in resting and stimulated cells. Then, by harnessing the natural transcriptomic

and genetic variation in the ImmVar cohort [202, 211, 212], we mapped genetic variants

associated with isoform usage (isoQTLs). Systematic characterization of isoQTLs, especially

in comparison to eQTLs, provides mechanistic insights into the genetic control of different

aspects of gene regulation and enables the functional interpretation of loci associated with

immune disease and under natural selection.
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4.2 Alternate isoform usage in anti-viral response

We used paired-end RNA-seq to profile the transcriptomes of primary MoDCs from healthy

donors at rest (n = 99), and following stimulation with either influenza ΔNS1 (a strain

engineered to maximize the IFN𝛽-induced host response to infection by the deletion of a

key virulence factor [213]) (n = 250) or interferon beta (IFN𝛽), a cytokine that stimulates

anti-viral effectors (n = 227). A total of 552 pass-filter samples (out of 576) – 84 from all

three conditions, 127 from both stimulation conditions, and 46 from only one condition –

were analyzed (Additional file 1). To define the corpus of transcripts in human dendritic

cells at rest and in response to stimulation, including previously unannotated transcripts,

we assembled the transcriptome de novo in each sample (individual-condition pair), retained

only expressed isoforms (> 5 transcripts per million in any sample), then combined isoforms

across all samples to enable direct comparisons between conditions. Overall, we identified

35,411 transcripts: 18,644 present in resting cells, and 29,841 (flu) and 25,127 (IFN𝛽) present

in stimulated cells. The 35,411 transcripts correspond to 15,123 genes, including 8,338 pre-

viously unannotated transcription start sites (TSSs) (corresponding to 5,414 genes), 16,062

previously unannotated splice sites (corresponding to 11,704 isoforms and 6,703 genes), and

1,653 previously unannotated transcripts (corresponding to 1,281 genes) (Additional file 2).

Compared to IFN𝛽 induction, flu infection elicited a prominent change in isoform usage

independent of gene expression, estimated as the ratio of isoform abundance over total gene

abundance. Relative to baseline, the usage of 3x as many isoforms (4,937 vs. 1,651) were

altered in flu-infected compared to IFN𝛽-stimulated cells (beta regression, FDR < 0.01,

isoform abs(log2[fold change]) > 1, Additional file 3). In response to both conditions, more

than 50% of isoforms with differential usage were previously unannotated, highlighting the

inadequacy of current annotations in describing the full diversity of gene isoforms in the

human antiviral response. Of the differentially expressed genes with more than one isoform,

36% (flu, 1326/3680) and 22% (IFN𝛽, 433/1995) had at least one isoform that differed in

usage (Fig. 4-1), suggesting independent regulatory mechanisms that control overall gene

abundance and specific isoform usage in response to stimuli.
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Figure 4-1: Scatterplot of fold change of overall gene abundance (x-axis) versus fold change in
isoform percentage (y-axis) in flu-infected (left) and IFN𝛽-simulated (right) cells compared
to baseline. Each dot represents one isoform. Isoforms that significantly differed in their
usage percentages (beta regression, FDR < 0.01) are highlighted in red.

4.3 Genetic control of alternative isoform usage

We assessed whether common genetic variants, known to affect gene expression [202], could

affect isoform usage in both resting and stimulated MoDCs. We associated over 10 million

(M) imputed variants with two transcriptional traits, isoform percentage and total gene

abundance, to identify isoform usage quantitative trait loci (isoQTLs) and expression quan-

titative trait loci (eQTLs), respectively. After adjusting for unwanted variation from latent

effects (Fig. C-1), we identified 2,393 isoforms corresponding to 1,345 genes (linear regres-

sion, permutation FDR < 0.05, Additional file 4) with local isoQTLs (+/- 500 kilobases [kb]

of TSS) and 8,350 genes (linear regression, permutation FDR < 0.05, Additional file 5) with

local eQTLs in at least one condition. A substantial proportion of leading isoQTL SNPs

(58% baseline, 42% flu, 39% IFN𝛽) were not significant eQTLs, suggesting that the genetic

control of isoform usage and overall gene abundance are largely independent.

4.3.1 Regulatory features of genetic determinants of isoform usage

Genetic variants could modulate isoform usage through several mechanisms including per-

turbing the usage of alternate promoters, splice sites, or regulatory elements in the untrans-

lated regions (UTRs). We compared the cis properties of isoQTLs and eQTLs to identify

the mechanisms by which each class of variants acts. When normalized by exon and intron
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lengths, leading SNPs for isoQTLs were enriched across the entire gene body (Fig. 4-2a),

in distinct contrast with leading SNPs for eQTLs, which were enriched near TSS and tran-

scription end site. Further, when compared to a set of SNPs matched for allele frequency

and distance to TSS, leading SNPs for isoQTLs were most enriched for splice sites (4.8x

baseline, 2.8x flu, 2.7x IFN𝛽), synonymous (1.6x baseline, 1.6x flu, 2.1x IFN𝛽) and missense

variants (2.0x baseline, 1.4x flu, 1.9x IFN𝛽), and 5’ (1.7x baseline, 1.1x flu, 1.4x IFN𝛽) and

3’ (1.5x flu, 1.4x IFN𝛽) UTRs (Fig. 4-2b). These results suggest that genetic variants asso-

ciated with isoform usage likely do so via cis regulatory sequences that modulate alternative

splicing and transcript stability.
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(b) Fold enrichment of genomic annotations of eQTLs and isoQTLs compared to a background set
of SNPs matched for distance to TSS and allele frequency. * denotes adjusted p < 0.05; ** denotes
adjusted p < 0.01; *** denotes adjusted p < 0.001.

Figure 4-2: Genomic properties of eQTLs and isoQTLs.
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4.3.2 Genetic control of alternative isoform usage in responses to virus

and interferon

To assess how the genetic control of isoform usage differs in response to stimuli, we ana-

lyzed 84 donors whose cells were assayed in all three conditions to enable equally powered

comparisons across conditions. Genetic variants imparted stronger effects on isoform usage

in baseline and IFN𝛽-infected cells than in flu-infected cells as indicated by more isoQTLs

detected (815 in baseline, 784 in IFN𝛽, and 427 in flu, permutation FDR < 0.05) and an

increase in the proportion of variance of isoform usage explained (𝑅2
𝑖𝑠𝑜) by the associated

variants (Fig. C-2). The correlation of 𝑅2
𝑖𝑠𝑜 was lowest between flu-infected and baseline

cells (Pearson’s 𝜌𝑓𝑙𝑢,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.46 compared to 𝜌𝐼𝐹𝑁,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.69 and 𝜌𝐼𝐹𝑁,𝑓𝑙𝑢 = 0.66)

suggesting flu-specific genetic control of isoform usage independent of Type 1 interferon

signaling. Isoforms with higher 𝑅2
𝑖𝑠𝑜 in stimulated cells are upregulated in response to stim-

uli, suggesting that the activation of specific gene regulatory programs that control isoform

usage are sensitive to genetic effects unobserved in inactive states (Fig. 4-3).
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Figure 4-3: Correlation of effect sizes (𝑅2) for isoQTLs between pairs of conditions. Tran-
scripts are colored by differential expression (red: up-regulated, blue: down-regulated).

To directly assess how stimulation modifies the effects of individual genetic variants on

isoform usage, we mapped SNPs associated with the difference in isoform usage between

conditions, herein referred to as response-isoQTLs (r-isoQTLs). Compared to resting cells,

we identified 74 (flu) and 22 (IFN𝛽) significant r-isoQTLs corresponding to 50 and 14 genes

(permutation FDR < 0.1, Additional file 6). Amongst the 13 genes that share r-isoQTLs
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in both stimulated conditions was IFI44L (Fig. 4-4, left), a type 1 interferon-stimulated

gene that has been shown to have moderate effects in inhibiting human hepatitis virus

replication in vitro [214] and whose splicing has been shown to be influenced by the most

significant r-isoQTL (rs1333973) [215]. Among the 37 genes that have r-isoQTLs in flu-

infected but not interferon-stimulated cells was ZBP1 (Fig. 4-4, right), a sensor of influenza

infection that triggers cell death and inflammation and contributes to virus-induced lethality

[216]. While influenza-infected and interferon-stimulated cells are expected to share some

r-isoQTLs reflecting a common gene regulatory program (as interferons are induced by viral

infection), influenza-specific r-isoQTLs confer genetic control of previously unknown viral

sensing pathways independent of downstream effector (type-1 interferon) signaling.
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Figure 4-4: De novo reconstructed transcript structure (top panel) and box-whisker plots
(bottom three panels) between transcript quantitative traits (y-axis: log2(normalized gene
counts), normalized isoform counts, or isoform percentage) and genotype (x-axis) for 2 genes
(IFI44L and ZBP1 ) with r-isoQTLs. Significant r-isoQTLs are highlighted with red text.
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4.4 Influenza-specific regulation of ERAP2 isoforms under bal-

ancing selection

Finally, we specifically examined the genetic control of ERAP2 transcripts in the human

antiviral response because of the known role of ERAP2 in antigen presentation [217] and

because of its peculiar evolutionary history. The ERAP2 locus is characterized by two

frequent and highly differentiated (40 SNPs in perfect linkage disequilibrium) haplotypes

observed in every major human population (B: 53% and A: 47%) (Fig. C-3). The major allele

(G) of rs2248374, a splice-site variant tagging Haplotype B, creates an alternate 3’ donor

splice site inducing the splicing of an extended exon 10 with two premature termination

codons35. As a result, transcripts from Haplotype B are degraded by nonsense-mediated

decay resulting in one of the most significant eQTLs and isoQTLs in most tissues and cell

types [202, 206, 208, 212]. Intriguingly, while Haplotype B is associated with increased risk

for Crohn’s disease [218], and it is also maintained by long term balancing selection (between

1.4M [219] and 5.1M years [220]). This raises the important question: in what environmental

condition does balancing selection act to maintain the seemingly loss-of-function (LOF),

disease-causing haplotype in humans?

In resting and IFN𝛽-stimulated cells, we confirmed the known genetic association of

rs2248374𝐺 allele with lower ERAP2 expression (Fig. 4-5). Remarkably, while the overall

abundance of ERAP2 was elevated in stimulated conditions, two previously uncharacterized

short isoforms (ERAP2/Iso2, ERAP2/Iso3, Fig. 4-5, C-4) were transcribed from Haplo-

type B only in flu-infected and not IFN𝛽-stimulated cells, resulting in the partial rescue

of ERAP2 expression. The short isoforms differed from the constitutive full-length isoform

(ERAP2/Iso1 transcribed from Haplotype A) by the initiation of transcription at exon 9

and the alternate splicing of an extended exon 10, and differed from each other by alternative

splicing at a secondary splice site at exon 15. The initiation of transcription at exon 9 re-

sults in an alternate in-frame translation start site at exon 11 thus rendering the premature

termination codon in exon 10 inactive.

The influenza-dependent genetic control of ERAP2 isoform usage is further supported

by (1) correlation between overall flu transcript abundance, a proxy for degree of infection,
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and ERAP2/Iso2 (𝑅2 = 0.57) and ERAP2/Iso3 (𝑅2 = 0.70) (Fig. 4-6a), (2) evidence of

alternative translation starting at exon 11 as shown by the detection of flu-specific protein

isoforms (50 kilodaltons) in flu-infected cells from Haplotype B homozygotes and heterozy-

gotes (Fig. 4-6b), and (3) evidence of transcription of ERAP2/Iso2 or ERAP2/Iso3 (marked

by an extended exon 10) in monocyte derived macrophages infected by H3N2 over a time

course (fluomics, GEO: GSE97672) (Fig. C-5).

The complex genetic signals at the ERAP2 locus is consistent with three perfectly linked

variants on Haplotype B affecting ERAP2 transcription and splicing in response to viral

stimulation independent of Type 1 interferon signaling. rs2548538, an intronic variant that

overlaps chromatin marks from LCLs [221], likely causes alternate transcript initiation at

exon 9. rs2248374𝐺, the known splice site mutation, creates an alternate preferred splice site
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Figure 4-6: Evidence for influenza-specific regulation of ERAP2 isoforms.

resulting in alternative splicing of an extended exon 10. rs2549797𝐺, a splice-site mutation

that creates a competing alternate splice site, results in ∼40% of the transcripts with an

extended exon 15. The signature of natural selection, the previous disease associations, and

the viral specific transcription suggest a critical antiviral role for the short ERAP2 isoforms

that could also result in an overactive auto-inflammatory response in Crohn’s disease.

4.5 Conclusion

Although maps of genetic variants associated with overall transcript abundance have been

generated in many tissue types, the genetic control of alternate isoform usage has not been

extensively studied. Using de novo transcript reconstruction, we found a large number of

previously uncharacterized transcripts in human dendritic cells, especially in response to

influenza and interferon stimulation, indicating that the current reference human transcrip-

tome is far from complete. We further found genetic variants (isoQTLs) associated with

alternate isoform usage are widespread, approximately half of which are not associated with

the overall abundance of the corresponding gene, indicative of independent genetic control

122



CHAPTER 4. GENETIC ANALYSIS OF ISOFORM USAGE IN THE HUMAN
ANTI-VIRAL RESPONSE

of gene regulation at most loci of the genome.

IsoQTLs, like eQTLs, can affect gene expression at other loci in the genome suggest-

ing important downstream effects on gene regulation. Different genetic variants in a locus

could also affect multiple facets of gene regulation in response to stimulation in establish-

ing transcriptome diversity and susceptibility to disease. This was clearly demonstrated at

the ERAP2 locus where multiple variants on the Crohn’s disease-associated haplotype lead

to differential expression and splicing of the transcript in response to influenza. Previous

experimental evidence has shown that full length ERAP2 is a prototypical aminopeptidase

that heterodimerizes with ERAP1 [217] to perform peptide trimming during MHC class I

presentation. The lack of the aminopeptidase domain in the flu-specific ERAP2 isoforms

suggests that it could interact with ERAP1 to negatively influence antigen presentation or

adopt previously unknown immunological function. Altogether, this dataset can help eluci-

date the mechanisms underlying disease alleles by providing deeper molecular data for each

gene in baseline and inflammation.

4.6 Methods

4.6.1 Data collection

Study subjects

Donors were recruited from the Boston community and gave written informed consent for the

studies. Individuals were excluded if they had a history of inflammatory disease, autoimmune

disease, chronic metabolic disorders or chronic infectious disorders. Donors were between

18 and 56 years of age (mean 29.9 years).

Preparation and stimulation of primary human monocyte-derived dendritic cells

Influenza A (PR8 ΔNS1) was prepared as described in [213]. Recombinant human IFN𝛽

was obtained from PBL Assay Science (Piscataway, NJ). Antibodies used were anti-IRF1

(sc-497x; Santa Cruz Biotechnology; Dallas, TX), anti-STAT2 (sc-476x; Santa Cruz Biotech-

nology) and anti-IRF9 (sc-10793x; Santa Cruz Biotechnology).
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As previously described in [202], 35 - 50 mL of peripheral blood from fasting subjects

was collected between 7:30 - 8:30 am. The blood was drawn into sodium heparin tubes and

peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque (GE Health-

care Life Sciences; Uppsala, Sweden) centrifugation. PBMCs were frozen in liquid N2 in

90% FBS (Sigma-Aldrich; St. Louis, MO) and 10% DMSO (Sigma-Aldrich). Monocytes

were isolated from PBMCs by negative selection using the Dynabeads Untouched Human

Monocytes kit (Life Technologies; Carlsbad, CA) modified to increase throughput and op-

timize recovery and purity of CD14+CD16𝑙𝑜 monocytes: the FcR Blocking Reagent was

replaced with Miltenyi FcR Blocking Reagent (Miltenyi; Bergisch Gladbach, Germany); per

mL of Antibody Mix, an additional 333 𝜇g biotinylated anti-CD16 (3G8), 167 𝜇g biotiny-

lated anti-CD3 (SK7) and 167 𝜇g biotinylated anti-CD19 (HIB19) antibodies (Biolegend;

San Diego, CA) were added; the antibody labeling was modified to be performed in 96-well

plates; and Miltenyi MS Columns or Multi-96 Columns (Miltenyi) were used to separate

magnetically-labeled cells from unlabeled cells in an OctoMACS Separator or MultiMACS

M96 Separator (Miltenyi) respectively. The number of PBMCs and monocytes was esti-

mated using CellTiter-Glo Luminescent Cell Viability Assay (Promega; Madison, WI). A

subset of the isolated monocytes was stained with PE-labeled anti-CD14 (M5E2; BD Bio-

sciences; Franklin Lakes, NJ) and FITC-labeled anti-CD16 (3G8; Biolegend), and subjected

to flow cytometry analysis using an Accuri C6 Flow Cytometer (BD Biosciences). A me-

dian of 94% CD14+ cells and 99% CD16lo cells was obtained. The remaining monocytes

were cultured for seven days in RPMI (Life Technologies) supplemented with 10% FBS, 100

ng/mL GM-CSF (R&D Systems; Minneapolis, MN) and 40 ng/mL IL-4 (R&D Systems) to

differentiate the monocytes into monocyte-derived dendritic cells (MoDCs). 4×104 MoDCs

were seeded in each well of a 96-well plate, and stimulated with influenza virus for 10 hours,

100 U/mL IFN𝛽 for 6.5 hours or left unstimulated. Cells were then lysed in RLT buffer

(Qiagen; Hilden, Germany) supplemented with 1% 𝛽-mercaptoethanol (Sigma-Aldrich).

DNA extraction and genotyping

As previously described [202], genomic DNA was extracted from 5 mL whole blood (DNeasy

Blood & Tissue Kit; Qiagen), and quantified by Nanodrop. Each subject was genotyped us-
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ing the Illumina Infinium Human OmniExpress Exome BeadChips, which includes genome-

wide genotype data as well as genotypes for rare variants from 12,000 exomes as well as

common coding variants from the whole genome. In total, 951,117 SNPs were genotyped,

of which 704,808 SNPs are common variants (Minor Allele Frequency [MAF] > 0.01) and

246,229 are part of the exomes. The genotype success rate was greater than or equal to

97%.

RNA isolation and sequencing

RNA from all samples was extracted using the RNeasy 96 kit (Qiagen, cat. #74182), ac-

cording to the manufacturer’s protocols. 576 total samples were sequenced (99 baseline,

250 influenza infected, and 227 interferon stimulated). 552 pass filter samples (94 baseline,

243 influenza, and 215 interferon) were sequenced to an average depth of 38M 76 basepair

paired end reads using the Illumina TruSeq kit with 86% mapping to transcriptome and

97% mapping to the genome (Additional file 1).

4.6.2 Data processing

Adjusting for expression heterogeneity

We empirically determined the number of principal components to adjust for each stimu-

lation condition and either overall gene abundance or isoform percentage. Because of the

smaller number of individuals in the baseline study, the number of principal components ad-

justed is fewer (Fig. C-1). Because the isoform percentage implicitly adjusts for confounders

that affect overall gene abundance and isoform abundance levels (i.e., other eQTLs), the

number of adjusted PCs is also fewer (Fig. C-1).

Transcriptome reconstruction

After aligning reads to the genome, we reconstructed transcriptomes for each sample indi-

vidually using StringTie [222] using default parameters and quantified the abundances of

annotated transcripts using kallisto [223]. For genes expressed at > 5 transcripts per million

(TPM) in any sample, we removed isoforms expressed at < 5 TPM across all samples. In or-
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der to preserve isoforms that may be uniquely expressed in a single condition (e.g., baseline,

flu, IFN), transcriptomes within the same conditions were first merged before transcrip-

tomes across all three conditions were merged, using cuffcompare [186]. As a final step,

cuffmerge [186] (--overhang-tolerance 0) was used to remove redundant isoforms.

Transcriptome quantification

Differential expression testing was carried out with sleuth [224] using 100 bootstraps per

sample. Gene-level quantification was estimates by summing isoform counts and differential

expression testing was carried out with DESeq2 [225].

Beta regression

Differential isoform ratio testing was carried out in R using beta regression package betareg

[226] and p-values were calculated using likelihood ratio test and adjusted with a false

discovery rate adjustment [142].

DNA genotyping

We applied rigorous subject and SNP quality control (QC) that includes (1) gender misiden-

tification, (2) subject relatedness, (3) Hardy-Weinberg Equilibrium testing, (4) use concor-

dance to infer SNP quality, (5) genotype call rate, (6) heterozygosity outlier, (7) subject

mismatches. In the European population, we excluded 1,987 SNPs with a call rate < 95%,

459 SNPs with Hardy-Weinberg equilibrium p-value < 10−6, 234 SNPs with a MisHap p-

value < 10−9, and 63,781 SNPs with MAF < 1% from (a total of 66,461 SNPs excluded). In

the African-American population, we excluded 2,161 SNPs with a call rate < 95%, 298 SNPs

with Hardy-Weinberg equilibrium p-value < 10−6, 50 SNPs with a MisHap p-value < 10−9,

and 17,927 SNPs with MAF < 1% from (a total of 20,436 SNPs excluded). In the East Asian

population, we excluded 1,831 SNPs with a call rate < 95%, 213 SNPs with Hardy-Weinberg

equilibrium p-value < 10−6, 47 SNPs with a MisHap p-value < 10−9, and 84,973 SNPs with

MAF < 1% from (a total of 87,064 SNPs excluded). After QC, 52 subjects across all three

populations and approximately 18,000 – 88,000 SNPs in each population were filtered out

from our analysis.

126



CHAPTER 4. GENETIC ANALYSIS OF ISOFORM USAGE IN THE HUMAN
ANTI-VIRAL RESPONSE

Underlying genetic stratification in the population was assessed by multi-dimensional

scaling using data from the International HapMap Project [227] (CEU, YRI and CHB sam-

ples) combined with IBS cluster analysis using the Eigenstrat 3.0 software [228].

The quality control of the genotyping data were performed using PLINK [229].

Genotype imputation

To accurately evaluate the evidence of association signal at variants that are not directly

genotyped, we used the BEAGLE software (version: 3.3.2) [230] to imputed the post-QC

genotyped markers using reference haplotype panels from the 1000 Genomes Project (version

3) [3], which contain a total of 37.9M SNPs in 1,092 individuals with ancestry from West

Africa, East Asia, and Europe. For subjects of European and East Asian ancestry, we used

haplotypes from Utah residents (CEPH) with Northern and Western European ancestry

(CEU), and combined panels from Han Chinese in Beijing (CHB) and Japanese in Tokyo

(JPT), respectively. For imputing African American subjects, we used a combined haplotype

reference panel consisting of CEU and Yoruba in Ibadan, Nigeria (YRI). For the admixed

African American population, using two reference panels substantially improves imputation

performance. After genotype imputation, we filtered out low MAF SNPs (MAF < 0.01),

which resulted in 7.7M, 6.6M, 12.7M common variants in European, East Asian and African

American, respectively. This set of genotyped and imputed markers was used for all the

subsequent association analysis.

QTL mapping

QTL mapping was performed using the Matrix eQTL [231] package using empirically de-

termined number of principal components as covariates for each analysis (Fig.C-1). For cis

QTLs, isoform usage or overall gene abundance were regressed against all genetics variants

with a MAF > 5% in a 1 megabase (+/- 500 kb) window. Empirical p-values were calcu-

lated by comparing the nominal p-values with null p-values determined by permuting each

isoform/gene 1,000 times [232]. False discovery rates were calculated using the qvalue [233]

package as previously described [234].
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QTL annotation

QTLs were annotated using Variant Effect Predictor and Ensembl release 79 [235]. Exonic

and intronic locations of QTLs were determined using UCSC’s canonical transcripts (table

knownCanonical) as a reference [235]. Enrichments were calculated against background set

of SNPs that were matched in allele frequency (binned by 4%) and distance to nearest

transcription start site (binned by 10 kb).

GWAS associations

The GREGOR suite [236] was used for calculating the enrichment of eQTLs and isoQTLs

containing a GWAS loci across baseline, flu, and IFN𝛽 stimulations. GWAS associations for

disease with FDR < 0.1 are reported.

Estimating flu transcript abundance

Flu transcript abundance was estimated by running RSEM [138] on a custom reference of

the influenza PR8 genome.

4.6.3 Experimental validation

ERAP2 Western Blot

Protein extracts were fractionated by SDS-PAGE (4-12% Bis-Tris gel, Thermo scientific,

NP0335BOX) and transferred to PVDF membrane (BioRad, cat. #162-0177). After block-

ing with 2% BSA in TBST (Tris buffered saline containing 0.1% tween-20) for 1 hour, mem-

branes were incubated with primary antibody (either ERAP2, R&D Systems, cat# AF3830,

1:3000) or b-actin (Abcam, cat. #ab6276, 1:15,000) overnight at 4C. Membranes were then

washed and incubated with a 1:5000 dilution of HRP conjugated secondary antibody (either

donkey anti-goat from Santa Cruz Biotech cat. #sc2020, or with goat anti-mouse from Jack-

son immune Research cat. #115-035-146) for 1 hour. Membranes were washed and developed

with ECL system (VWR, cat. #89168-782) according to the manufacturer’s protocol.
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4.6.4 Data availability

Processed RNA-sequencing data is available under GEO accession GSE92904. Raw fastq

data is available from dbGAP under accession phs000815.v1.p1.

4.6.5 Additional files

Additional file 1: Sequencing statistics. [link]

Additional file 2: Reconstructed transcriptome annotations. [link]

Additional file 3: Differential isoform usage analysis results. [link]

Additional file 4: eQTL results. [link]

Additional file 5: isoQTL results. [link]

Additional file 6: r-isoQTL results. [link]
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Figure C-1: Empirically determined number of principal components (PCs) to adjust for
eQTLs (left) and isoQTLs (right) in each of three conditions.
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Figure C-2: Effect size (𝑅2) distribution of eQTLs and isoQTLs at each of three conditions.
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Figure C-3: Distribution of ERAP2 haplotypes based on human populations from 1000
Genomes Project. AFR: African; AMR: American; EAS: East Asian; EUR: European;
SAS: South Asian.
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Figure C-4: Diagram of ERAP2 isoform abundances in response to influenza as a function
of patient genotype.

Figure C-5: ERAP2 isoform abundances in monocyte derived macrophages infected by
H3N2 over a time course (left) compared to mock infections (right).
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Discussion

Comparative transcriptomics holds great promise for studying and understanding the con-

tributions of gene regulation and expression to biology and physiology. The evolutionary

signatures contained within comparative transcriptomic data harbor evolutionary stories

that provide abundance of clues to each gene’s role across a diversity of species pheno-

types. However, extracting knowledge from comparative transcriptomic data requires accu-

rate models transcriptional evolution and statistically principled analysis methods to isolate

the evolutionary signal from the noise.

While the field of comparative genomics is now decades old, many of the comparative

genomics methods that have been developed and widely accepted are targeted at compara-

tive sequence analysis are not appropriate for analyzing transcriptional properties that (1)

are often continuous traits (as opposed to the discrete nature of DNA sequence), and (2)

evolve under mechanisms that are still yet to be understood. As a result, comparative tran-

scriptomics studies frequently suffer from shallow analyses that give way to global patterns

but cannot test specific hypotheses, or make incorrect assumptions that lead to erroneous

interpretations.

Here, I present quantitative methods for analyzing comparative transcriptomic data in

order to test precise hypotheses about whether expression levels and transcriptional struc-

tures are evolving under unique selective pressures, indicative of biological function. First,

I present a framework that utilizes the stochastic Ornstein-Uhlenbeck process to model op-

timal gene expression levels as probabilistic distributions that, in turn, enable statistical

testing for deleterious expression in disease tissues and directional selection along specific
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phylogenetic branches. Second, I present novel metrics for evaluating the conservation of

lncRNAs that reveal unique evolutionary histories behind the heterogeneous class of genes.

Both studies highlight the unsuitability of simply applying models and metrics used in

sequence analysis to transcriptional traits. Unlike the widespread neutral evolution of base-

pair substitutions, expression is evolving nonlinearly under strong purifying selection and

requires a more complex model than a simple random walk for accurate hypothesis test-

ing; and unlike coding genes, which are almost always conserved in transcription, lncRNAs

turn over rapidly in transcription and their conservation cannot be accurately quantified

by sequence conservation alone. However, with the proper analytical tools, both studies

also highlight the power of using evolutionary signatures to refine hypotheses about the

operations and mechanisms of the genome. Though it was initially hypothesized that gene

expression differences would explain many species-specific traits, analysis of the evolution

of gene expression reveals that the majority of genes’ expression levels are under strong

purifying selection. While this observation can be utilized to improve the annotation of

essential expression pathways and distributions of optimal expression levels, it also leaves

open the question of where species-specific traits are arising from. Additionally, the initial

discovery of lncRNAs was followed by speculations as to their fundamental regulatory roles

in cellular biology, but the observation that they turn over rapidly across species point to the

idea that many of them may not play significant functional roles. Further, the evolutionary

signatures of lncRNA transcription suggest that those that are conserved are comprised of

different classes of genes that may have distinct biological functions.

The studies presented here represent just the beginning of what comparative transcrip-

tomics can teach us. So far, we have only profiled transcriptional profiles from a small

number of differentiated, steady-state adult organs from mammalian species. However, the

analysis of splicing events in human immune cells before and after viral stimulation demon-

strates that many regulatory events are only observable in dynamic states. It may be that

the majority of species-specific phenotypic diversity arises from transcriptional differences

that occur in development or in response to environmental stimuli. While these tissue con-

texts are extremely difficult to obtain directly from higher mammals, current bioengineering

advancements in in vitro cellular reprogramming and organoid development now permits
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us to begin to investigate transcriptional evolution in these dynamic contexts [237–239].

Looking forward, the resolution of transcriptional data can be increased not only through

expanded repertoires of tissues profiled, but also through current progress in single cell

RNA-sequencing technologies which will further facilitate the decomposition of cell type

proportional differences from regulatory differences - an aspect of transcriptional variation

that cannot be addressed with current bulk RNA-seq methods.

Additionally, my thesis work focused only on characterizing the transcriptional results of

regulatory evolution, with limited analyses integrating genomic regulatory data or noncoding

sequence. In part, this is due to the immense difficulties analyzing comparative regulatory

data: the few comparative regulatory studies that have been conducted thus far have found

that regulatory sequence and enhancers evolve rapidly and cannot be easily traced across

currently profiled species [240, 241]. To address this limitation, data collection is needed

across more species, ideally from a dense phylogeny in which noncoding sequences and

enhancer elements have not yet degraded beyond the point where ancestral events cannot

be inferred. The successful integration of both comparative regulatory and transcriptomic

data would be a huge methodological advancement for mapping noncoding sequences to

phenotypic traits.

Finally, comparative transcriptomic analysis suffers greatly from our lack of understand-

ing of the biological mechanisms by which transcription is controlled. Without this knowl-

edge, it is near impossible to develop proper models of transcriptional evolution to fully

explain the complexities of comparative genomics data. The studies in this thesis present

two strategies for overcoming this issue: In the first study, I utilized a model that globally fits

the data well, but doesn’t necessarily represent the mechanism by which expression actually

evolves (i.e., by a bounded random walk process). In the second study, I used permutation-

based methods to estimate the significance of observations, which avoids the need for a

model, but can lead to results that are highly sensitive to the permutation strategy. While

both strategies have been informative to our understanding of transcriptional evolution,

they are far from being optimal tools for interrogating comparative transcriptional data. In

this regard, comparative analysis could benefit greatly from directed evolution studies that

help elucidate how mutations affect transcription from generation to generation, in both the

137



CHAPTER 5. DISCUSSION

presence and absence of selective pressure. For example, a few studies have already begun

to suggest that random sequences code for transcription and transcription factor binding

much more frequently than initially expected [242, 243] which has implications for what a

null model for functional transcription should be. Experimental efforts to develop models of

transcriptional evolution will only serve to better refine our data collection and data analysis

methods for even more accurate characterization of transcriptional evolution.

The 21𝑠𝑡 century is an exhilarating time to be a genomic scientists, with a dizzying array

of high-throughput profiling technology, and even mammalian genome editing technology,

available for conducting experiments and collecting data. Amidst the sea of genomic data,

however, still lays an uncompleted mission of comprehending genome biology to the extent

such that we can easily read, interpret, and predictably edit genomic sequence. The in-

credible existing diversity of species and animal phenotypes, generated by a universal DNA

code, presents us with a rich sampling of unique genotype-phenotyping pairings, and offers

us an opportunity to use comparative methodologies to deduce the roles and mechanisms of

genomic elements. Understanding of how to identify and interpret evolutionary signatures

harbored by both coding and noncoding DNA sequence remains a powerful strategy for

deciphering genomic properties. As genomic science moves beyond simply whole-genome se-

quencing and into probing uncharted depths of transcriptomic and epigenomic traits, so too,

must comparative methodologies advance in order to complement and inform experimental

strategies, refine scientific models of how the genome operates, and contribute towards fully

decoding the complexities of the genome.
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I wrote this essay at the end of my fifth year of graduate school, shortly after I made it out

of the “valley of despair”. I wrote it as a reminder to myself of a very important leg of my

PhD journey and I offer it now for any future graduate students who may find themselves

in a similar struggle.

In my second year of grad school, I fell off my bike. After making the incredibly stupid

decision to bike home in the dark without bike lights, I hit a curb at full speed, flipped over

the handlebars, and crashed into the sidewalk. A stranger came running out of her house

yelling “Are you okay??” I sobbed a bit from the shock; she rubbed my back and gave me

bandaids and Neosporin for my wounds. The next day, a friend who saw my bruises gave

me very good advice. She said, “If you want to be able to ride your bike again, get back

on that bike as soon as possible. It will be one of the hardest thing you’ll ever do, but the

longer you wait, the less likely you’ll ever get on a bike again. Just start out slow.” She was

right. Getting back on the bike was terrifying and panic-inducing, but in time, I went from

biking slower than I could walk to biking like nothing had ever happened.

In the fourth year of grad school, I fell off my proverbial PhD bike. After spending years

analyzing a dataset, the only conclusion I could reach was a less-than-exciting negative result

that was difficult to publish. This time, it was less of a crash and more of a very, very, very

slow derailment into a ditch. This time, people were less helpful. Many people pretended

like I hadn’t fallen off. “Just keep riding!” they yelled at me with two thumbs up, as they

quickly sped by. Others told me I really should have seen that ditch coming when I picked
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such a busy advisor. Some people told me that I’d come far enough already and shouldn’t

be whining about being in a ditch when there were bikeless children in Africa.

Not everyone was terribly unhelpful. A few good friends came and hung out with me in

the ditch, but of course I couldn’t expect them to stay forever. One astute friend peered in

and remarked, “That looks a lot deeper than the other ditches I’ve seen. Maybe you should

try to find professional help for getting out of a ditch that size.” The professionals couldn’t

tell me exactly how to get out of the ditch, but reassured me that it was okay to be angry

about being in it, even if there were bikeless children in Africa. The most helpful friends

encouraged me to get back on my bike, regain my confidence, and get outta the goddamn

ditch.

Like the process of getting back on my actual bike, I started out slow. I put my paper

on a preprint server and received emails from appreciative scientists who were grateful

to hear about the negative result sooner than later. I contributed my expertise to other

projects going on in the lab and brainstormed with younger grad students about what

projects to pursue. I volunteered at a local middle school to teach genetics and evolution and

rediscovered why I entered science to begin with. Many months later, I finally found myself

able to think about embarking on a new science project without becoming immobilized with

panic and dread.

Every year, I TA a genetics course and tell the incoming graduate students, “Life is a

journey, not a race.” Now, I understand that I forgot to add “Life is a journey, not a race,

but either way you might fall off your proverbial PhD bike and it will be really confusing

because it won’t exactly hurt when you fall and no one will run over asking if you’re okay,

but months later you’ll find yourself overwhelmed and terrified at the mere thought of having

to complete a thesis.” Perhaps a better message would be, “Life is a journey, not a race, and

if you find that you’ve fallen off your bike at any point in this journey, just get back on that

bike as soon as possible. It will be one of the hardest thing you’ll ever do, but the longer

you wait, the less likely you’ll ever get on a bike again. Just start out slow.”
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