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Abstract
This thesis includes three papers exploring urban traffic congestion and the interplay
between urban commuting and economic activity in developing countries. The first
paper studies the impact of peak-hour road congestion pricing on commuter welfare,
using a field experiment and GPS-based data collection in Bangalore, India. Com-
muters value time spent commuting highly and are moderately flexible to change
departure time. However, welfare gains from optimal congestion pricing are pre-
dicted to be low, due primarily to a small road traffic externality. The second paper
studies the impact of a high occupancy vehicle (HOV) policy in Jakarta, Indonesia,
on road traffic congestion measured using data from Google Maps. The lifting of
the “3-in-1” policy led to large increases in traffic congestion throughout the city.
The third paper uses cell phone transaction data in Colombo, Sri Lanka and Dhaka,
Bangladesh, to construct and validate detailed urban commuting flows, and to then
infer urban locations with high labor productivity.
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Chapter 1

The Welfare Effect of Road
Congestion Pricing: Experimental
Evidence and Equilibrium
Implications

Abstract

The textbook policy response to traffic externalities is congestion pricing. However,
quantifying the welfare consequences of pricing policies requires detailed knowledge of
commuter preferences and of the road technology. I study the peak-hour traffic con-
gestion equilibrium using rich travel behavior data and a field experiment grounded
in theory. Using a newly developed smartphone app, I collected a panel data set with
precise GPS coordinates for over 100,000 commuter trips in Bangalore, India. To
identify the key preference parameters in my model – the value of time spent driving
and schedule flexibility – I designed and implemented a randomized experiment with
two realistic congestion charge policies. The policies penalize peak-hour departure
times and driving through a small charged area, respectively. Structural estimates
based on the experiment show that commuters exhibit moderate schedule flexibil-
ity and high value of time. In a separate analysis of the road technology, I find a
moderate and linear effect of traffic volume on travel time. I combine the preference
parameters and road technology using policy simulations of the equilibrium optimal
congestion charge, which reveal notable travel time benefits, yet negligible welfare
gains. Intuitively, the social value of the travel time saved by removing commuters
from the peak-hour is not significantly larger than the costs to those commuters of

13



traveling at different, inconvenient times.1

1.1 Introduction
Traffic congestion is a significant urban disamenity, especially in developing countries,
where urban population and private vehicle ownership are growing rapidly.2 Even
holding fixed the number of vehicles in use, peak-hour traffic jams may be particularly
inefficient, as large numbers of commuters driving at the same time cause longer
travel times for everyone. Reflecting this concern, various urban traffic policies focus
on reducing peak-hour congestion, either through pricing or quantity restrictions.3

However, it is challenging to evaluate the welfare impact of such policies or,
more generally, to quantify the inefficiency in a decentralized unpriced equilibrium.
These calculations depend critically on how drivers value the time they spend driv-
ing, as well as on their flexibility of changing the timing of their trips. Intuitively,
the inefficiency may be small if commuters have sufficient schedule flexibility so as
to eliminate congestion peaks in the decentralized equilibrium to begin with. Al-

1 I am deeply grateful to my advisers Ben Olken, Esther Duflo, Frank Schilbach, and Edward
Glaeser for their advice and generous support throughout this project. I especially thank Nikhil
Agarwal, Vikas Dimble, Matt Lowe and Yuhei Miyauchi for useful conversations. I thank Alex
Bartik, Moshe Ben-Akiva, Benjamin Faber, John Firth, Chishio Furukawa, Nick Hagerty, Rachel
Glennerster, Tetsuya Kaji, Jing Li, Rachael Meager, Scott Nelson, Will Rafey, Otis Reid, Mahvish
Shaukat, Dan Waldinger, and participants at the J-PAL Bangalore brown bag lunch for many
helpful suggestions. Anupriya Khemka, Keerthana Jagadeesh, and Ashwin MB provided excellent
research assistance. I also thank Mohannad Abunassar, Maryam Archie, Priya Chetri, Sasha Fleis-
chman, Mahima Gupta, Aditi Sinha, Mamta Jat, Kristina Kelhofer, Michelle Nenciu, Sebastian
Quinones, Sarvottam Salvi, Meghna Singh, Sahana Subramanyam, Tammy Tseng, Thuy Duong
Vuong, Lantian Xiang, and Massieh Zare, who contributed valuable research assistance at various
stages of the project. I gratefully acknowledge design and technical support for the smartphone
app “Bangalore Traffic Research” from Adrian Drewett and Dharmendra Singh from Gridlocate
Ltd. Funding for this project was generously provided by the Weiss Family Fund for Research
in Development Economics, the IGC Cities Fund, the J-PAL Pilot Fund, and the J-PAL Urban
Services Initiative Pilot Fund. This project has human subjects approval from MIT COUHES (pro-
tocol 1511312369A002) and IFMR (IRB00007107) and was registered in the AEA RCT Registry
(AEARCTR-0002083).

2Between 2005 and 2015, new private vehicle registrations have grown at 15% and 43% per year
in India and China, compared to 0% in the United States and Europe [OICA, 2016].

3The congestion charge policy in Stockholm and Singapore’s Electronic Road Pricing (ERP)
policy have higher fees during the morning and evening peak hours. Jakarta’s former “3-in-1” and
the current “odd-even” policies are in effect during morning and evening peak hours only. Similarly,
Manila’s Unified Vehicular Volume Reduction Program (UVVRP) only applies during peak hours
in certain parts of the city.

14



ternatively, if everyone is very inflexible, the distribution of departure times under
the social optimum will look similar to the unpriced equilibrium. Apart from these
preference parameters, the road technology mediates the externalities that drivers
impose on each other. Engineering studies at the road or highway segment level,
typically in developed countries, regularly find a convex impact of vehicular volume
on travel time [Small et al., 2007], which suggests large social marginal costs when
congestion is already high. However, we know little about this relationship at the
commuter-trip level and in large cities in developing countries, where the infrastruc-
ture, types of vehicles driven, and driving styles differ considerably from the settings
of existing studies.4

This paper analyzes the peak-hour traffic congestion equilibrium using a rich data
set of travel behavior and a theory-grounded field experiment on congestion charge
policies. The backbone of the study is a fine-grained panel data set of trips from
a sample of around 2,000 car and motorcycle commuters from Bangalore, India. I
collected this data using a novel smartphone app that passively logs precise GPS
location data, which I helped design for this purpose. The data covers over 100,000
individual trips and almost one million kilometers of travel inside the city.

I outline the key preference parameters of interest in this setting using a simple
model of commuting trip scheduling and route choice, building on classic models
in transportation economics [Arnott et al., 1993, Noland and Small, 1995]. In the
model, commuters choose between two route options and decide their trip departure
time, taking into account the expectation and uncertainty in travel times for different
departure times and for the two routes, their ideal arrival time (unobserved to the
researcher), and their schedule flexibility.5 The key parameters for welfare are the
value of time spent driving, and the schedule costs of arriving earlier or later than
desired. Intuitively, these parameters respectively measure the benefits and the costs
of policies that aim to reduce peak-hour congestion by inducing commuters to travel
before or after the peak. In an ideal experiment, we would observe choices for various
vectors of prices over departure times and drive times. By contrast, observational
data does not have sufficient independent variation in costs over these two dimen-
sions. For example, an earlier departure time typically affects both the probability
of arriving late and the mean driving time.

In order to identify the model parameters, I designed and implemented two re-

4A notable exception is [Akbar and Duranton, 2017], who use a household travel survey in Bo-
gotá together with Google Maps data collected several years later. They find a small elasticity and
hypothesize that drivers are more likely to use side roads during peak hours.

5The model abstracts from the extensive margin travel decision to focus on the within-day
distribution of travel.
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alistic congestion charge policies as part of a field experiment with 497 commuters.
The two policies introduce exogenous price variation in departure times and driving
times, which identifies the value of time and schedule cost parameters. Under the
“departure time” policy, trips are charged according to a pay-per-km rate that is
higher during peak-hour departures. Under the “area” policy, commuters face a flat
fee for driving through a small area, chosen such that there exists an alternate, un-
tolled route with a longer driving time. Participants were randomized into treatment
and control groups for the “departure time” policy. For the “area” policy, the timing
of the treatment was randomized among participants. For both treatments, charges
were calculated automatically on a daily basis, using the smartphone app travel data,
and subtracted from a prepaid virtual account. In order to separate the effect of price
incentives from that of information, daily SMS updates, and experimenter demand
effects, participants in a separate “information” sub-treatment received daily SMS
information notifications and flat weekly bank transfers.

Experimental results show that commuters have moderate flexibility to adjust
trips away from typical work hours in order to save money. Under “departure time”
charges, commuters leave earlier in the morning and later in the evening. These
findings are consistent with working hours acting as constraints, at least in the short
run. During the morning interval, participants advance their trips by around 4-
6 minutes on average, an effect driven by a subset of commuters that responds
more strongly. Responses in the low rate sub-treatment are roughly half of those in
the high rate sub-treatment, although imprecisely estimated, and I do not find any
impact of the information treatment, which suggests that commuters are responding
to prices rather than to other aspects of the intervention. Under “area” charges,
participants cross the congestion area around 20% less frequently, and switch to
longer routes. Neither randomly doubling the congestion charge nor shortening the
detour affects this fraction. These findings are consistent with considerable preference
heterogeneity, and the implied value of time for the marginal commuter is large
relative to the average hourly wage for this sample.

I next use the experimental price variation to structurally estimate a model of
route and departure time choice for the morning home to work commute. The model
includes random utility shocks over routes and departure times, leading to a nested
logit specification, and it accounts for the non-linear structure of incentives in the
experiment. I construct individual-level choice sets using Google Maps driving time
data collected for each driver’s typical route and detour route, at all departure times,
and I calibrate the driving time uncertainty. I simulate the model to compute choice
probabilities, and perform an additional step to invert the individual-specific distri-
bution of ideal arrival times from observed departure times in the pre-experimental
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period. I estimate the model using two-step GMM and moments chosen to exploit
the variation induced by the congestion charge experiments. The estimated schedule
cost of early arrival, at around Rs. 320 per hour (approximately $5), is roughly a
quarter of the value of time spent driving, at Rs. 1,120 per hour. Late arrival sched-
ule costs are large but imprecisely estimated. I also estimate the probability that
a participant responds to the experiment, by matching the distributions of individ-
ual effects in the departure time and area treatments. Around half of participants
respond to the experiment.6

The structural demand estimates show that commuters are moderately schedule
flexible relative to how much they value time spent driving. However, to understand
the equilibrium welfare costs of congestion, we need to combine these demand es-
timates with knowledge about the shape and size of the technological part of the
externality.

I document a moderate and linear impact of traffic volumes on travel times. I
use all the GPS trips data collected using the smartphone app to measure volumes,
and Google Maps data on travel delay collected daily to measure driving times.7
The average travel delay for trips starting at a certain time of the day is linearly
increasing in the average volume of departures at that time. In particular, I do
not find any convexity for high levels of traffic, unlike previous empirical estimates
for highway road segments. Quantitatively, making an average length trip during
peak hours increases aggregate driving time for everyone else by approximately 15
minutes, which is roughly half of the private trip duration.8

Finally, I compute the optimal equilibrium congestion charge profile, which im-
plements the social optimum. I simulate the city-wide traffic equilibrium in an
environment where agents have preferences drawn from those estimated from the
data, and aggregate travel volumes determine the travel delay profile through the
estimated road technology. This approach has the benefit of relying entirely on es-
timated parameters. However, I ignore extensive margin responses, and results may
differ if long-term responses to congestion charges differ significantly, for example
if in the long run firms can accommodate more flexible schedules. I compute the
social optimal allocation by finding a Nash equilibrium with congestion charges with
the following fixed point property: the charge for departure time ℎ is equal to the

6The experimental results show stark heterogeneity in individual responses, which is not well
explained by models with random coefficients. The binary “response probability” does a much
better job at replicating this pattern.

7I validate the Google Maps driving time data using median driving times from the GPS data.
The two measures co-vary with a slope close to 1.

8I show that such calculations depend on a semi-elasticity and do not require knowledge of the
total number of vehicles.
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marginal social cost of driving at time ℎ.
The social optimum has notable travel time savings relative to the decentralized

unpriced equilibrium. Travel is one minute faster from a base of 39 minutes, which is
7% of the travel time above free-flow speeds. However, welfare gains are negligible.
This is due to the fact that the social benefits of travel time savings are almost
fully offset by the scheduling costs incurred by drivers who now avoid the peak-
hour. I conduct counterfactual simulations with alternate policy parameters and
road technologies and show that the linear road technology is important for driving
these findings.

This result implies that peak-hour congestion pricing and similar quantity-based
restrictions are not warranted in Bangalore for the sole purpose of flattening peak-
hour congestion by re-allocating drivers across departure times.

This project builds on and contributes to several literatures.
First, transportation economists have developed a rich theoretical literature that

models traffic equilibria. [Vickrey, 1969] and [Henderson, 1974] introduced the ineffi-
ciency due to trip scheduling and their ideas were further formalized by []Arnott1993
and [Chu, 1995].9 I build on these early models and adapt them to make it easier to
apply them to data on real travel behavior.

Second, the vast majority of transportation research uses survey methods (such
as trip diaries) to measure travel behavior. In this project, I collected precise travel
behavior data based on detailed GPS traces from around 2,000 participants using
their own smartphones. This method circumvents misreporting and recall bias issues
that affect survey methods, and makes it easier to collect longitudinal data. Early
studies that collected GPS travel behavior data were typically limited to small sam-
ples and used special GPS devices that participants carried with them during the
study (see, for example [Papinski et al., 2009]). [Zhao et al., 2015] use a smartphone
app and a respondent-supervised machine learning trip classification algorithm to
measure travel behavior in Singapore. In this project, I designed and calibrated an
entirely automatic trip detection algorithm, which makes it easier to collect large
quantities of travel behavior data.10

Third, most estimates of travel preferences in transportation research and plan-
ning are based on “stated preferences,” whereby survey respondents make hypo-
thetical choices between alternatives that involve trade-offs [Ben-Akiva et al., 2016].

9Later on, this literature evolved towards more sophisticated models, for example the joint
analysis of departure time and network routing models [Yang and Meng, 1998], and studies of the
distributional impacts of pricing [van den Berg and Verhoef, 2011, Hall, 2016].

10The app used in this study is also more battery efficient – an important requirement in this
setting – due to not collecting accelerometer data.
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Despite their flexibility, stated preferences may bias results if respondents do not
properly anticipate their own behavior, a problem the literature has attempted to
minimize through careful survey design. In this paper, I measure revealed prefer-
ences (real behavior) after experimentally introducing congestion charges for some
commuters.

There are relatively few studies that estimate commuter preferences using a
revealed-preference approach. [Small et al., 2005] analyze real-world driver deci-
sions to use a faster tolled lane to estimate the value of time and of reliability,
and [Bento et al., 2017] estimate the value of urgency in a similar setting. Estimates
of scheduling preferences are even rarer [Small, 1982]. A separate group of papers
analyzes reduced form impacts of road pricing experiments. [Tillema et al., 2013]
study a pilot offering rewards for avoiding peak-hour driving. In a contemporaneous
study, [Martin and Thornton, 2017] analyze a randomized experiment that imple-
mented several types of congestion charges in Melbourne, Australia. They report
reduced-form effects and implied elasticities, and document that peak-hour distance
charges reduced peak-hour travel, cordon charges reduced cordon entries, especially
for commuters moderately close to public transit, while commuting to work was not
affected. In this paper, I bring these two strands of the literature together by de-
signing a randomized experiment in order to be able to recover the key commuter
preference parameters in the model, value of time and scheduling preferences.

Fourth, a growing empirical literature documents the impact of traffic policies on
traffic volumes, travel times and air pollution. Several papers analyze the aggregate
impact of real-world congestion pricing policies, in London [TfL, 2006, Prud’homme and Bocarejo, 2005,
Raux, 2005], Milan [Gibson and Carnovale, 2015] and Stockholm [Karlström and Franklin, 2009],
while another strand studies non-price, vehicle quantity restrictions [Davis, 2008a,
Kreindler, 2016a, Hanna et al., 2017, Gu et al., 2017]. These papers measure im-
pacts on aggregate outcomes, and either do not address the welfare implications of
these policies, or, in a few cases, perform basic welfare calculations treating travel
at any time of the day as a single good. Here, I combine estimated preferences with
road technology estimates to run equilibrium policy simulations, which allows me to
assess policy welfare impacts.

Fifth, empirical studies of the relationship between traffic density, speed and flows
mostly focus on small road segments [Small et al., 2007]. [Geroliminis and Daganzo, 2008a]
used data from fixed-loop detectors and taxi GPS data over a large area in Yokohama,
Japan, to document that speed decreases strongly with vehicle density. We do not
have similar estimates for cities in developing countries. [Akbar and Duranton, 2017]
use trip data from a household travel survey in Bogotá, Colombia and travel times
collected from Google Maps several years later, to estimate both the demand for
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travel and supply (or road technology). They find a small elasticity of travel time
with respect to volume of travel, and I show that the results in Bangalore and Bogotá
are very similar. In this paper, I use a large GPS data set with precise information
on traffic volumes and driving times, as well as contemporaneous driving time data
from Google Maps, and document a linear, moderate relationship between volume
and travel times, both within day and across days.

I organize the rest of the paper as follows. Section 1.2 describes traffic congestion
and travel behavior in Bangalore. Section 1.3 sets up a theoretical model of travel
preferences and analyzes the experiment within the model. Section 1.4 describes the
data collection and study sample, and section 1.5 describes the experimental design
and reduced form results. Section 1.6 describes the structural estimation, section 1.7
quantifies the traffic congestion technology, section 1.8 reports the policy counterfac-
tual simulations and quantifies the inefficiency in the decentralized equilibrium, and
section 1.9 concludes.

1.2 Setting
Traffic Congestion and Travel Behavior in Bangalore, India

Similar to other large cities in developing countries, Bangalore’s fast-growing popula-
tion and economy put stress on its transportation network, which suffers from severe
road traffic congestion. In Bangalore, commuters essentially depend on the road in
order to reach their destinations. Nearly all motorized transport, both private and
public, travels on urban roads, so, to a first approximation, congestion affects all
commuters.11

Traffic congestion in Bangalore is extreme, and shows significant and predictable
within-day variation. Figure 1-1 shows average predicted travel delay in minutes per
kilometer, collected from the Google Maps API on 28 routes in the study area.12 On
average between 7 am and 10 pm on weekdays and across all routes, it takes 3.41
minutes to advance one kilometer. Travel delay is the inverse of speed, so this is
equivalent to a speed of 10.9 miles per hour. This is extremely slow, but broadly in
line with speeds in other heavily congested large cities in developing countries, such as

11The 2011 census reports that roads are used by 97% of all commuters – excluding those who
do not travel, walk or use the bicycle. The main modal split is 33% using motorcycles, 15% cars,
and 44% bus. Ridership on the Bangalore metro was below 100,000 per day in 2016, accounting
for no more than 4% of all commuters.

12Results from 178 routes across Bangalore show a very similar shape and slightly lower travel
delay levels.
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downtown Jakarta, Indonesia [Hanna et al., 2017] and Delhi [Kreindler, 2016a]. Ban-
galore is much slower compared to cities in the U.S. For example, [Anderson, 2014a]
finds an average travel delay of 0.7 minutes per kilometer on urban highways in Los
Angeles.

Figure 1-1 also shows strong predictable within day variation in traffic congestion.
Between 7 am and 9 am, travel delay increases by 0.75 minutes per kilometer, or
30%. In other words, a trip that would take an hour starting at 7 am would take
80 minutes starting at 9 am. Similarly large changes in average travel delay occur
around the evening peak. Here we are taking an average over many different routes
that cover all directions and that may have different temporal patterns. In smaller
areas, the within-day variation in expected travel time is likely larger. In addition,
these results ignore travel time uncertainty, which increases alongside expected travel
time.

Assuming that commuters have some flexibility in their schedules, these results
suggest that it may be more efficient if some people traveled at earlier or later times,
in order to avoid the peak hours. The individual-level GPS data collected for this
study using the smartphone app shows that commuters do indeed vary their depar-
ture times significantly from day to day. Table 1.1 reports descriptive statistics about
travel behavior in the study sample. Panel C shows the within-person departure time
variability in the morning and evening. For the first trip in the morning, the standard
deviation for the median person is 1.3 hours, which implies a 95% confidence interval
of five hours for the departure time! Even restricting to trips between home and
work, the median commuter’s departure time is covered by a 95% confidence interval
of almost two hours for the morning and three and a half hours in the evening.

However, the daily variation in how commuters travel does not automatically
mean that commuters have flexible schedules and that they would respond strongly
to policies that give incentives for off-peak travel. It is possible that desired travel
times change from day to day (based on changes in work or other constraints), yet
commuters may be inflexible around those times on any particular day. Similarly,
the existence of large, predictable travel time differentials between different times
of the day is not by itself enough to understand the externality imposed by an
additional commuter on the road at a given time. Overall, the facts discussed in this
section suggest that peak-hour inefficiency is a possibility, yet they are not enough to
quantify the welfare impact of policies that aim to reduce peak-hour traffic. In order
to study these issues formally, I next introduce and analyze a model of within-day
travel behavior and traffic congestion.

21



1.3 Theoretical Framework
The profile of traffic congestion within a day cannot be summarized effectively by
a single aggregate statistic. Instead, commuters choose when to travel taking into
consideration congestion at each time of the day, among other factors. Moreover, a
commuter’s impact on driving times experienced by others will also depend on their
departure time. This is a departure from classic models, where externalities operate
through a single aggregate measure [Beckmann et al., 1956, Diamond, 1973].

The model introduced here and elaborated in section 1.6 puts a specific structure
on the demand substitution pattern between travel at different times of the day.
I also use the model to explain why the key parameters cannot be identified from
observational data alone, and to show that two specific congestion charge policies
help solve this problem.

The model is based on the classic formulation of preferences over scheduling
and time spent driving from [Arnott et al., 1993], modified to include travel time
uncertainty and ideal arrival time variation. It abstracts from the extensive margin
decision to travel. I first set up the model for a single route, then introduce the route
choice problem briefly in section 1.3.2 and formally in section 1.6.

1.3.1 Model Setup
An atomistic commuter decides when to travel from a stable origin (home) to a stable
destination (work), taking into account traffic conditions at different departure times.
Define 𝑢(ℎ𝐷, 𝑇 ) the utility from departure time ℎ𝐷 and travel time 𝑇 , and assume it
is quasi-linear in money. This general formulation can include preferences to depart
and arrive at specific times, the distaste for time spent traveling, and variations in
travel times based on departure time. The commuter maximizes expected utility,
namely solves maxℎ𝐷

E𝑇𝑢(ℎ𝐷, 𝑇 (ℎ𝐷)), where travel time 𝑇 (ℎ𝐷) is stochastic and
realized only after departure.

I assume utility takes the following form:
𝑢(ℎ𝐷, 𝑇 ) = −𝛼𝑇 + −𝛽𝐸 |ℎ𝐷 + 𝑇 − ℎ*

𝐴|− − 𝛽𝐿 |ℎ𝐷 + 𝑇 − ℎ*
𝐴|+

The commuter cares about travel time and the arrival time ℎ𝐴 = ℎ𝐷 + 𝑇 . Travel
time cost is linear, and 𝛼 measures the value of time. The second and third terms
measure scheduling preferences over arrival time [Arnott et al., 1993]. The commuter
has an ideal arrival time ℎ*

𝐴, and constant per-unit of time costs of arriving early
(𝛽𝐸) and of arriving late (𝛽𝐿). Here, |𝑥|− and |𝑥|+ respectively denote the negative
and positive parts of 𝑥 (both defined as non-negative numbers). I assume that the
ideal arrival time is known in advance but it can change from day to day.
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The key parameters of interest in this model are 𝛼, 𝛽𝐸, and 𝛽𝐿. The first mea-
sures the benefits of any policy that improves expected travel times. The other two
parameters capture the costs of a policy that attempts to push commuters away from
the peak-hour, namely the costs of traveling at inconvenient times.

Under these assumptions, the commuter’s problem becomes

max
ℎ𝐷

−E𝑇

[︁
𝛼𝑇 (ℎ𝐷) + 𝛽𝐸 |ℎ𝐷 + 𝑇 (ℎ𝐷) − ℎ*

𝐴|− + 𝛽𝐿 |ℎ𝐷 + 𝑇 (ℎ𝐷) − ℎ*
𝐴|+

]︁
(1.1)

While the commuter preferences over arrival times have a kink at the ideal arrival
time, the uncertainty in travel time smoothes out the utility. The first order condition
can be re-written as the following identity:

𝜋(ℎ*
𝐷) = 𝛼 · 𝑑E𝑇𝑇/𝑑ℎ𝐷 + 𝛽𝐿

𝛽𝐸 + 𝛽𝐿

(1.2)

Here 𝜋(ℎ𝐷) = Pr (ℎ𝐷 + 𝑇 (ℎ𝐷) < ℎ*
𝐴) is the probability of arriving early when

departing at ℎ𝐷, which depends on the distribution of travel time shock 𝑇 (ℎ𝐷) −
E𝑇𝑇 (ℎ𝐷). At the optimum departure time, the probability to arrive early depends
on the following factors. If the slope of expected travel time with respect to departure
time is positive, the commuter has an incentive to leave earlier to take advantage of
faster travel, and this effect is increasing in the value of time, 𝛼. This is captured
in the first term in the numerator. The commuter also chooses departure time to
balance the costs of arriving early and arriving late. The more costly it is to arrive
late, the earlier the optimal departure time will be. This effect is captured by the

𝛽𝐿

𝛽𝐸+𝛽𝐿
term.

1.3.2 Identifying preferences using congestion charges
The key parameters 𝛼 (value of time spent driving) and 𝛽𝐸 and 𝛽𝐿 (schedule costs of
arriving early and late) are not typically identified from observational data. There are
two problems. First, a change in departure time leads to a change in the distribution
of arrival times, and it may also lead to a change in expected travel time. This
makes it difficult to disentangle the relative importance of schedule costs from the
value of time, as shown in expression (1.2). For example, assuming we know ℎ*

𝐴,
if we observe someone leave early, we do not know if they do so in order to take
advantage of faster travel times (assuming 𝑑E𝑇𝑇/𝑑ℎ𝐷 > 0) or because the cost of
arriving late is very high. The second problem is that it is difficult to learn anything
from day to day variation in departure times. If we allow the ideal arrival time ℎ*

𝐴𝑡

to vary by day (𝑡) – for example because the commuter needs to arrive earlier or
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later to work on some days – then the individual optimal departure time will for the
most part track ℎ*

𝐴𝑡. To see this, assume the travel time distribution is independent
of departure time, then this relationship is exactly linear. In other words, in this
model, day-to-day changes in observed departure time are not informative about the
underlying parameters 𝛼, 𝛽𝐸, 𝛽𝐿.

I now introduce two congestion charge policies that create price variation that
will help identify the required parameters. This procedure has the added benefit of
providing monetized estimates of 𝛼, 𝛽𝐸 and 𝛽𝐿. The first policy imposes a marginal
cost of departure time, 𝑚 = 𝑝 ·ℎ𝐷. Intuitively, this creates an independent incentive
to change departure time and leave earlier. The first order condition with pricing
changes to

𝜋(ℎ*
𝐷) = 𝛼 · 𝑑E𝑇𝑇/𝑑ℎ𝐷 + 𝛽𝐿 + 𝑝

𝛽𝐸 + 𝛽𝐿

By observing the commuter’s departure time behavior for various values of 𝑝,
and given knowledge of the shape of the function 𝜋, we are able to identify the de-
nominator and numerator in (1.2). However, 𝛽𝐿 and 𝛽𝐸 are not identified separately
without knowing 𝛼, how the commuter values time spent commuting, except in the
case when 𝑑E𝑇𝑇/𝑑ℎ𝐷 = 0, that is when expected travel time does not depend on
departure time.

Now consider a different congestion charge scheme to help identify the marginal
value of time 𝛼. First, consider an extension of the model where the commuter also
chooses one of two routes 𝑗 ∈ {0, 1}. The route 𝑗 = 0 is the shorter, direct route from
home to work, while the 𝑗 = 1 (detour) route takes more time. Travel time on route
𝑗 at departure time ℎ𝐷 is denoted by 𝑇𝑗 (ℎ𝐷), and satisfies E𝑇1 (ℎ𝐷) > E𝑇0 (ℎ𝐷)
for all ℎ𝐷. Under the second congestion charge policy, the commuter has a choice
between using the short route 𝑗 = 0 and paying a flat fee 𝑚, or taking the detour
route 𝑗 = 1 for free. The fee 𝑚 that makes the commuter indifferent between the
two options is informative about the value of time 𝛼, although 𝛽𝐸 and 𝛽𝐿 also play
a role by determining the optimal departure time for each route.

Taken together, the two congestion charge schemes jointly identify the value of
time and schedule flexibility parameters, assuming we know the distributions of travel
time and shape of idiosyncratic shocks. The field experiment is designed based on
these insights.
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1.3.3 Closing the model: road technology, equilibrium, and
social optimum

To close the model, we need to specify how the distribution of travel time at each
departure time depends on the volume of traffic at that and other departure times. I
consider a simple relationship between the rate of departures at a given time ℎ, and
the expected travel time starting at that time. Assume E𝑇 (ℎ) = 𝐹 (𝑄 (ℎ)), where
𝑄 is quantity or volume of traffic departing at time ℎ, and 𝐹 (·) is a function that
describes the road technology. (In section 1.7 I will show that a linear 𝐹 provides
a very good fit to the data.13) I further assume that the travel time distribution
at a given departure time is fully determined by the expected travel time. (In the
empirical application, I show that a log-normal distribution with standard deviation
following a quadratic function in the mean offers a good fit to the data.)

A Bayesian Nash equilibrium of this model is described by a pair of travel de-
cisions (ℎ𝐷𝑖)𝑖 for all commuters 𝑖 in the population, and a travel profile (𝑇 (ℎ))ℎ

such that commuters respond optimally to traffic conditions, and the travel profile is
determined by the aggregate pattern of departures. It is also possible to compute a
Nash equilibrium in the presence of departure time monetary charges 𝜏 (ℎ). Simula-
tions in section 1.8 identify a unique and stable equilibrium. Intuitively, commuters
have well-defined desired arrival times, and congestion makes traveling at a given
time strategic substitutes.

The social optimum can be implemented as a Nash equilibrium with “Pigou”
charges, where the charge 𝜏 (ℎ) at departure time ℎ is exactly the marginal social
cost of a commuter traveling at ℎ. We can compute the marginal social cost of a
commuter 𝑖 traveling at a given departure time ℎ by computing the two equilibria
when 𝑖 leaves at ℎ and when 𝑖 does not travel at all, and comparing the (utilitarian)
welfare for the other commuters.

Having estimated the demand parameters and equipped with a model of road
technology, it is possible to compute the equilibrium, evaluate welfare under counter-
factual congestion charge policies, compute the externalities imposed in the unpriced
equilibrium, and compute the optimal charges.

13The bottleneck model is a classic alternative with useful theoretical characteristics
[Arnott et al., 1993]. In that model, traffic is modeled as a bottleneck with fixed flow capacity.
If vehicles arrive at the bottleneck at a rate below capacity, they pass through without delay. As
soon as the incoming flow exceeds capacity, a queue forms. The queue is cleared in a first-come-first-
served order, at the bottleneck capacity rate per unit of time. The wait time (and queue length)
depends on the entire distribution of departure times in the past. Unfortunately, this type of model
does not fit the data in this setting.
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1.4 Data Sources and Study Sample
The data backbone of the project is a data set of trips with precise GPS coordi-
nates, collected using a newly developed smartphone app. This data was used both
for measuring detailed travel behavior and for implementing the congestion charge
policies in the experiment. This section describes how the app was designed, how
the data was collected, and how it was automatically cleaned and classified. I also
briefly describe several other data sources. The section ends with a description of
the study participant recruitment procedure.

1.4.1 GPS trip-level data from smartphone app
GPS traces. Travel behavior data was collected using a smartphone app that
works in the background of any GPS-enabled Android smartphone and passively
collects phone location data, without requiring any user input. To conserve battery
power, updates were collected at variable time intervals, between every 30 seconds
while traveling and every 6 min when in stationary mode.14 The phone location
is identified by the phone operating system using GPS information, as well as cell
phone network and WiFi information. (Henceforth, I will refer to this data simply as
GPS data.) The app uploads data to a server at regular intervals using the phone’s
data connection. The app has a simple interface that shows a map with the user’s
current location, and users can receive notifications in the phone notification panel.

Measuring travel behavior using a smartphone-based app has several major ad-
vantages over previous data collection techniques. Most often, surveys collect self-
reported behavior, which is affected by recall bias, rounding of departure times and
trip duration, and tends to underestimate within-person temporal and route varia-
tion [Zhao et al., 2015]. The study app solved these issues by collecting the relevant
information completely automatically, without any user input at the beginning or
end of a trip, and without requiring participants to later review and validate their
trips. Using a smartphone as sensing device also improves over previous studies that
required participants to carry a separate GPS device.15

Trip Data Processing. The raw GPS data for each user-day was automatically
cleaned and classified into trips and locations. I designed and implemented a sequence
of algorithms that eliminates outliers and imprecise GPS data points, and segments

14The app, called “Bangalore Traffic Research,” was available from Play Store during the study
period,. I worked together with GridLocate Ltd, a GPS tracking solutions company, to adapt one
of their products to the specific needs of this project.

15In a phone survey performed after the experiment ended, only 2.5% of respondents said they
left their phone at home “sometimes, for usual destinations.”
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each day into a sequence of trips and locations, as well as segments corresponding to
missing data. Consecutive trips with short stops (at most 15 minutes) between them
are linked together into chains, which is the unit of analysis. There is no direct way
to distinguish the travel mode, including walking or public transport. However, short
walking trips are automatically excluded from the sample of trips. The algorithm
tags trips outside Bangalore, defined as more than 18km away from the city center.
This algorithm was used during the experiment to compute congestion charges for
participants in the treatment groups.

Missing GPS data was caused by technical as well as human factors. The app
does not record location data if the phone or the location services are switched off, if
app permissions are revoked, or if the phone is unable to determine its own location.
The last situation may arise, for example, when the phone’s 3G internet connection is
switched off, because an active connection helps achieve a faster first GPS location. I
classify data into three quality categories based on the total duration without location
data, and the total distance traveled without precise route information: good quality
data, insufficient data, and no data. During the experiment, around 75% of days are
good quality, which is the category used for analysis.

Common Destinations and Regular Commuters. Travel behavior and pref-
erences may differ on regular and non-regular trips. In order to be able to control
for this important regularity in travel behavior, I identify common, recurring des-
tinations at the commuter level (such as a workplace or school) using a clustering
algorithm to group locations into groups, followed by manual review of the location
groups most frequently visited.16 The home location is easy to identify as the most
common location group. I then classify one or at most two location groups as “work”
destinations. Next, I compute the fraction of distance traveled between home and
work, as well as the fraction of days present at work. Using these two variables, I
classify participants into regular and variable commuters. Around 75% of study par-
ticipants have a regular destination, and the median regular commuter visits work
on 91% of weekdays (Table 1.1 Panel B).

Google Maps data. I collected two types of Google Maps data on travel times
that include information on traffic congestion. The first data set collected “live”
or real-time travel time on 178 routes across Bangalore, including 28 routes in the
study area of South Bangalore, every 20 minutes throughout the day, for 207 days
in 2017. This data will be used to calibrate the distribution of travel times, holding

16For grouping locations, I used the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm implemented in the sklearn package in python. I then define the top two
groups as home and work candidates, respectively, and classify all trips based on whether they
connect one or both of these locations.
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route and departure time fixed, and in order to measure the road technology impact
of traffic volume on speeds. The second data set is individual-level data on typical
travel times between their home and work locations, at all departure times during
the day. This data will be used to understand the choice set faced by individual
commuters.

1.4.2 Study sample and survey data
Study participants were recruited in a random sample of gas stations in South Ban-
galore.17 Surveyors approached private vehicle drivers (commuters) who were using
a car, motorcycle or scooter, excluding taxis and professional drivers, and invited
them to participate in a study about understanding traffic congestion in Bangalore.
Respondents first answered a short eligibility filter,18 and if eligible the surveyor
explained in broad terms the study purpose, mentioning monetary rewards for par-
ticipation and the possibility to receive monetary incentives tied to changes in travel
behavior. Respondents were invited to install the study smartphone app and an-
swer a very short survey on the spot. All respondents received a study kit including
a branded study flyer and consent form.19 The recruitment survey collected basic
contact data, demographic variables (age category, gender, self-reported income, oc-
cupation) as well as information on the vehicle (car, motorcycle or scooter, brand
and model, odometer reading).20

In the weeks after recruitment, we collected travel data from the participant
smartphone app.21

17Gas stations are ideal locations to meet commuters who regularly use their private vehicle.
(During piloting our team attempted household visits, which suffered from a very low probability
of finding respondents at home.) In gas stations, surveyors worked Monday–Saturday in one of two
shifts, 8 am – 1 pm or 3 pm – 8 pm.

18A respondent was eligible if they reported being the owner or regular user of the private vehicle
used on that day, traveling with it or another private vehicle at least 20 Km in total per day, at least
three days per week, owning a smartphone and not planing to leave Bangalore for more than two
weeks over the following two months. Smartphone usage is very high: 76% of participants eligible
based on other conditions owned a GPS Android smartphone (an additional 12% owned an iphone
and were not included).

19Out of 16,912 persons approached, 43% refused to be interviewed. A further 28% were ineligible.
Out of eligible respondents, 27% or 2,300 accepted to install the app. This is calculated assuming
the same fraction of ineligibles between those who answered the initial filter and those who refused.

20A few variables were collected for all respondents, including refusals: age category, vehicle type,
brand and model. I also scraped vehicle prices from an online marketplace, and merged this data
with the recruitment survey data for all respondents who were approached.

21The study team monitored quality and contacted respondents in case data quality problems
arose. Participants were also offered an incentive worth Rs. 300 in phone recharge for providing
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1.5 Congestion Charge Policies Experimental De-
sign

I designed and implemented two congestion charge policies that capture the main
dimensions of traffic congestion: time and location. The first policy, called “depar-
ture time” congestion charges, imposed a pay-per-kilometer congestion rate that was
higher during morning and evening peak hours. Peak hours are a natural target for
traffic policies, and congestion charge policies in Stockholm and Singapore have the
same feature of higher fees for peak-hour travel. The second policy, called “area”
congestion charges, imposed a flat fee for crossing or driving through a specific cir-
cular area. This is modeled after flat fee cordon pricing policies (such as those in
London and Milan), with an additional special focus on detour route decisions.22

In addition to emulating common congestion pricing policies, the two policies were
designed such that commuter responses to these charges identify the key parameters
of the travel demand model described in section 1.3.

The experimental sample was selected based on app data quality and a second
eligibility check.23 Participants were invited to meet with a surveyor to discuss the
second part of the study (the experimental phase). Overall, 497 or 22% of all app
participants were enrolled in the experiment on a rolling basis. After the meeting was
scheduled and before it took place, participants were randomized into treatments;
all participants (including the control group) met in person with a surveyor at a
location convenient for the respondent. During the meeting, surveyors explained the
treatment and (if applicable) how congestion charges function. Participants were
told that the purpose of the study is to understand how commuters in Bangalore
would react to the presence of charges, and the surveyors emphasized that there are
no correct or incorrect behaviors in response to congestion charges.

During the experiment, charges were deducted from a pre-paid virtual account
that was set up for each participant. The outstanding balance at the end of each
week during the experiment was transferred to the participant’s bank account. In
addition to any charges due to their travel behavior, participants were charged a flat
fee for no or severely incomplete GPS data, and in case they did not make any trips

one week of quality data.
22The diameters of the congestion areas in London and Milan are 6.5 and 3.5 kilometers, respec-

tively, whereas in this experiment they range between 0.5 and 2 kilometers. Study participants
never have a stable destination inside the congestion area, and always have a detour route that
takes at most 14 minutes more than their usual route.

23Commuters with less than 5km of travel per day, and those who actually lived or spent consid-
erable amount of time outside Bangalore, were dropped.

29



on a given weekday.24 A maximum daily total charge and minimum account balance
of Rs. 250 also applied. Account opening balances were chosen independently for
each participant, based on a model that predicted expected charges given baseline
travel behavior and a hypothesis of responsiveness to treatment. (The target final
account balance was randomized to either Rs. 500 or Rs. 1,000 per week.) Charges
were calculated automatically and participants received daily account balance up-
dates through SMS and app notifications. In addition, weekly phone calls reminded
participants about their treatment group details. Participants also received support
materials such as a laminated rate card with information about congestion charges
(see Appendix Figure A3). To establish trust, participants received a welcome bank
transfer soon after the first meeting, and/or an external smartphone battery (power
bank) as a gift during the meeting. A study call center was available if study par-
ticipants had questions or complaints.

Experimenter demand effects are an important concern in this setting. Com-
muters in Bangalore generally care deeply about traffic congestion, and study par-
ticipants may be motivated to avoid congested times or areas by a sense of civic
duty. While these responses may in principle be real, it is also possible that they
are specific to this (short-term) experiment, where their participation was voluntary
and compensated. I took several steps to guard the experimental results against this
possibility. First, during the meeting surveyors were trained to present the options
in a neutral light, and to emphasize at least twice that the study does not have a
preference over whether participants change or do not change their behavior. Impor-
tantly, the experimental design includes a departure time “information” treatment,
where participants received flat payments as well as SMS and app notifications that
concerned how they can change departure times to avoid traffic. Finally, both types
of congestion charges had sub-treatments with price variation, in principle allowing
the estimate price responsiveness controlling for overall responsiveness.25

Participants were added to the experiment on a rolling basis, and the allocation
to treatments was pre-randomized for each stratum. There were eight strata in the
experiment, all combinations of participants eligible or ineligible for the area charge,
car or non-car (motorcycle or scooter) users, and participants with high or low daily
travel distance in the baseline period. The strata, sub-treatments for each of the

24The “no trip” fee was designed to dissuade incentive gaming by leaving one’s smartphone at
home for the entire day.

25In addition, as argued in section 1.3, we are mainly interested in relative preferences over time
spent driving and schedule costs, and these measures are more robust to experimenter effects than
the absolute values, as there is no obvious reason for these effects to disproportionally affect one
treatment over the other.
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departure time and area treatments, and timing, is described in Appendix Tables
A11 and A12. All departure time and area sub-treatments were cross-randomized
within each stratum, and the sub-treatments in each main treatment were stratified
in time, across blocks of 8 consecutive slots.

1.5.1 Congestion Charges
Departure Time Pay-per-Km Congestion Charge

Participants in this treatment were charged for each trip based on a per-km rate
and the length of their trip. The rate was positive during a 3-hour interval during
the morning and a 3-hour interval during the evening. Each charged interval had
the same structure: a one hour increasing “shoulder” ramp when the rate grew
linearly from zero to the peak rate, one hour of peak rate, and a one hour decreasing
“shoulder” ramp when the rate fell linearly to 0. Appendix Figure A3 shows an
example rate card (given to study participants) that illustrates the charges for the
morning interval.26

Four sub-treatments were designed to separate the impact of prices from other
features of the intervention. The sub-treatments were: control, information, low
rate, and high rate (see Appendix Table A11). Participants in the control group
were monitored for 5 weeks, received regular updates about their data quality, and
received a flat Rs. 300 payment per week for participation. I included an information
group in order to measure the bundle of experimenter demand, information and
reminder provision, and other non-price features. Participants in the information
group received daily messages about the trips they had completed the previous day,
together with advice about quicker travel times outside the morning and evening
peak hours. They also participated for 5 weeks. The low and high rate groups
had a maximum (peak) congestion rate of Rs. 12/Km and Rs. 24/Km, respectively.
These participants received this treatment for three consecutive weeks out of four
in total, either the first three or the last three. (During the remaining week, they
received the information group treatment.) Before the start of the congestion charge
phase, participants underwent a three-day trial phase where they received congestion
charge messages to understand how charging works. In total, low rate and high rate
participants also were in the experiment for approximately 5 weeks.

26The start time of the charged interval differed by at most ±30 minutes between commuters, and
was designed to maximize the overlap between the shoulder periods and typical departure times for
that commuter based on baseline data. This procedure was implemented for all commuters before
randomizing them between the treatment groups.
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Area Congestion Charge

Participants in this treatment were charged for driving through a congestion area
that was chosen individually for each participant. The area was a disc with radius
250m, 500m or 1000m positioned along a route used frequently by the participant
during the pre- period. The area induced an alternate non-intersecting detour route,
which was between 3 and 14 minutes longer than the original route. If no area charge
with this property was found, the participant was ineligible for the area congestion
charge. (Roughly half of the experiment participants were are eligible.) The charge
was in effect between 7 am and 9 pm, and applied at most once for the morning
interval (7 am – 2 pm) and at most once for the evening interval (2 pm – 9 pm).
The area congestion charge was implemented for one week (five weekdays). The area
location, radius, boundaries, and induced detour were emphasized by the surveyor
during the meeting before the experiment, and this information was repeated in each
daily reminder SMS sent to study participants.27

The area treatment did not include a pure control group, due to the smaller size
of participant pool. However, participants were randomized between being treated
early (in the first week after the meeting) or late (in the last or forth week of the
study), which is the basis for the experimental comparison.

The area sub-treatments were designed to identify the effect of price and detour
time variation on choices. On two randomly chosen days, the congestion charge was
50% higher. The following sub-treatments were cross-randomized (see Appendix Ta-
ble A11). Low rate participants were charged a baseline charge of Rs. 80 (and Rs. 120
on the two days per week when the charge was higher), while High Rate participants
were charged Rs. 160 (and Rs. 240 respectively). Long detour participants had an
area location and radius that induced a predicted detour between 7 and 14 minutes
above the usual route, if such an area existed. Short detour participants had an area
that induced a predicted detour between 3 and 7 minutes above the usual route, if
such an area existed.

1.5.2 Reduced-Form Responses to Congestion Charges
Reduced-Form Specification

The congestion charges described above may affect the number as well as the tempo-
ral and spatial distribution of trips. In order to capture unconditional effects, I first

27The area location did not specifically target congested areas. Surveyor were instructed to not
convey this idea to the participant during the in-person meeting, and if they were asked to reply
that the area was selected by an algorithm.
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aggregate outcomes at the day level and run the following difference-in-difference
specification:
𝑦𝑖𝑡 = 𝛿𝐼𝑇 𝐼

𝑖 +𝛿𝐿𝑇𝐿
𝑖 +𝛿𝐻𝑇𝐻

𝑖 +𝛾𝐼𝑇 𝐼
𝑖 ×𝑃𝑜𝑠𝑡𝑡+𝛾𝐿𝑇𝐿

𝑖 ×𝑃𝑜𝑠𝑡𝑡+𝛾𝐻𝑇𝐻
𝑖 ×𝑃𝑜𝑠𝑡𝑡+𝜇𝑡+𝛼𝑖+𝜀𝑖𝑡,

(1.3)
where 𝑦𝑖𝑡 is an outcome of interest for commuter 𝑖 on day 𝑡, such as the number of

trips that day, 𝑃𝑜𝑠𝑡𝑡 is a dummy for the period of the experiment, 𝑇 𝐼
𝑖 , 𝑇𝐿

𝑖 and 𝑇𝐻
𝑖 are

dummies for the information, low rate and high rate departure time sub-treatments,
and 𝛼𝑖 is a commuter fixed effect, 𝜇𝑡 is a study cycle fixed effect whose categories are
the period before the experiment, and each week in the experiment. The coefficients
of interest, 𝛾𝐼 , 𝛾𝐿 and 𝛾𝐻 , respectively measure the impact of information, low
congestion rates and high rates relative to control, during the experiment relative to
the period before.

The sample is all non-holiday weekdays when the respondent does not travel
outside Bangalore. During the experiment, I include the three weeks when charges
are in effect; in the control and information groups I also keep three weeks to make
the timing in each sub-treatment comparable. Where necessary for the construction
of the 𝑦𝑖𝑡 variable, the sample is restricted to days with “good quality” GPS data,
as defined above. Standard errors are clustered at the commuter level. For trip level
outcomes, I use the same specification with outcome 𝑦𝑗𝑖𝑡 corresponding to trip 𝑗 of
commuter 𝑖 on day 𝑡.

For the Area treatment, there is no pure control group. Instead, the empirical
strategy is based on comparing commuters randomly assigned to be treated early
or late. Specifically, in the first week I compare commuters treated early (treated
group) to those treated late (control group). In the fourth week, these roles are
reversed. The period before the experiment and the second and third week during
the experiment are included to gain precision when estimating individual fixed effects.
Specifically, define 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑡 = (1 − 𝑇𝐿𝑎𝑡𝑒

𝑖 ) × 1(𝑡 ∈ 𝑊1) + 𝑇𝐿𝑎𝑡𝑒
𝑖 × 1(𝑡 ∈ 𝑊4) where

𝑇𝐿𝑎𝑡𝑒
𝑖 is an indicator for being treated late, and 𝑊𝑠 is an indicator for week 𝑠. I run

the following specification:
𝑦𝑖𝑡 = 𝛾𝐴 · 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑡 + 𝜇𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡 (1.4)

The coefficient of interest is 𝛾𝐴, which measures how the outcome 𝑦𝑖𝑡 differs as
a result of being exposed to area congestion charges, relative to similar commuters
who are not treated that week.

Experimental Integrity Checks

Table A2 reports the experimental balance check. The different treatment groups are
similar along demographic and pre- period travel behavior variables. All coefficients
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are small, and join significance tests cannot reject the null of no effect.
Given that smartphone app data was used to implement the congestion charges,

it is especially important to ensure that treated participants did not differentially
tamper with their smartphones by switching the phone or the GPS sensor off during
certain trips or on certain days. During the experiment, participants provided good
quality GPS data on approximately 75% of weekdays. Appendix Table A1 shows that
the departure time and area sub-treatments did not have any detectable differential
impact on GPS data quality. This suggests that missing GPS data was mostly due
to technical and human factors unrelated to gaming incentives.28

The Impact of Departure Time Pay-per-Km Charges

Commuters may respond to charges by canceling trips with departure times during
the charged period, as well as by rescheduling these trips to departure times with
lower charges. Figure 1-2 shows the causal impact of congestion charges on the
distribution of trip departure times, for the morning and evening charges. It plots a
locally linear difference-in-difference by departure bin. To construct Figure 1-2, for
each commuter, day and departure time relative to the midpoint of the congestion
charge for the commuter,29 I compute the number of trips that start around that
time, using an Epanechnikov kernel. Then, for each departure time I run a regression
similar to (1.3) except that I compare the low rate and high rate charge groups
(identified by 𝑇𝐿𝐻

𝑖 ) to the control and information groups combined. Figure 1-2
plots the coefficients on 𝑇𝐿𝐻

𝑖 × 𝑃𝑜𝑠𝑡𝑡 as well as pointwise 95% confidence intervals.
Commuters substitute away from departure times with high charges towards de-

parture times with lower charges. In the morning (panel A) there is strong substi-
tution within the early ramp interval, when the charge is linearly increasing. In this
interval, there is a marginal incentive to advance one’s departure time. The results
suggest that study participants understood this feature and decided to leave earlier
and take advantage of lower charges. There is suggestive evidence of an increase in
the number of trips starting right after the end of the charged period; note that the
exact position of this increase does not map cleanly to the predicted response given
incentives, in the way that the early AM change does.

28The experiment was generally successful in terms of retaining study participants: around 5% of
participants dropped out right after the meeting, and this figure rose to 10% on the last day of the
study. Drop outs are 2 percentage point more frequent in the treatment group, yet this difference
is not statistically significant (p-value 0.20).

29Recall that the congestion charge has the same shape for everyone, but its location varies by
commuter, including for those in the information and control groups.
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The results for the evening period are broadly mirrored, namely commuters sub-
stitute towards later departure times on the decreasing ramp of the congestion charge
profile. However, the results are slightly weaker and less precise. In sum, Figure 1-2
shows that commuters responded to charges by advancing their departure times in
the morning when this leads to lower charges, and delaying their departure times in
the evening.

Table 1.2 shows results on daily outcomes. Panel A of Table 1.2 shows impacts
on trip shadow rates. This outcome is computed in the same way for every trip in
the data given its departure time and the commuter’s own congestion charge rate
profile (which is defined for everyone irrespective of treatment group) and using a
normalized peak rate of 100. The rates are then summed over all trips in the day.
This outcome is a summary statistic for whether the commuter changed their travel
behavior to avoid charges, and includes intensive and extensive margin responses.
The results show that the High Rate sub-treatment leads to a decrease of around
14 from a base of 97 in the control group. The Low Rate treatment also appears to
lead to a decrease in rates, of roughly half the size of that of the High Rate group,
yet these results are not significant. The information group does not seem to have
any effect on charges. In panel B, the outcome is the total number of trips in the
first column, and the total number of trips during the morning and evening in the
other columns. The point estimates are negative, small, and far from statistical
significance.

Running the same specification at the trip level leads to similar results. Daily
charges are mechanically related to the number of trips per day that occur in the
charged interval. Even in the absence of a treatment effect on the number of trips,
chance variation in the number of trips per day between treatment groups reduces the
precision of the estimates in panel A. Table 1.3 explores the impact of charges at the
trip level instead of daily level. Panel A covers the entire sample of commuters and
trips, panel B covers only regular commuters and trips between home and work or
vice-versa, and panel C covers all trips belonging to the approximately 25% variable
commuters. In addition to full day results in column (1) and results in the morning
and evening in columns (2) and (4), the table also reports results restricted to the
early morning interval (all departure times before the midpoint of the peak of the
rate profile) in column (3), and restricted to the late evening interval in column (5).

Trips in the High Rate have on average lower rates by around 13 − 15% relative
to the control group (panel A), with a larger and precisely estimated effect in the
morning. The coefficients for the Low Rate treatment are also negative, of roughly
half the size, yet not statistically significant. The effects are more precisely estimated
for regular commuters in panel B. In particular, the coefficients for early morning
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and late evening are negative and larger than for the entire day period, as suggested
in Figure 1-2. In panel C there is no evidence that congestion charges changed the
distribution of trip departure times for variable commuters. In the entire table, no
discernible pattern emerges for the information group, suggesting that information
alone did not shift travel behavior.

In Appendix Figure A1 panel A, I investigate the heterogeneity in individual
responses to the departure time treatments. Pooling together the Low Rate and
High Rate (as in Figure 1-2), the figure shows that treatment group respondents
have a bi-modal distribution in the within-person change in shadow trip rates. This
suggests that a certain group of commuters decided to change their behavior to take
advantage of lower charges, while others did not make any changes.

The Impact of Area Charges

Following the discussion of the model in section 1.3, we are interested in the impact of
Area charges on the choice probability of alternate routes that avoid the congestion
area. Tables 1.4 and 1.5 report the results at the day and trip level, respectively.

Panel A of Table 1.4 reports the impact on total shadow charges due to cross-
ings of the congestion area. These are calculated for every trip in the sample, and
the charge for a crossing is normalized to 100. The results show a large, precisely
estimated decrease in the probability to cross the congestion area. The decrease is
around 23% of the control mean, significant at the 1% level. The impact is similar
in the morning and evening intervals, and roughly similar for participants treated in
the first or the last week (columns 4-6). Panel B shows the impact of being treated
on the number of trips in the day. Being treated results in around 6−10% more trips
per day, with the effect concentrated in the morning and for participants treated in
the last week. The increase in number of trips seems related to a small increase in
data quality in the treatment group (both effects are concentrated in the 4th week).
Note that a larger number of trips will tend to mechanically increase the coefficient
on shadow rates, so the treatment impact may in reality be slightly more negative
than the result in column (1).

Table 1.5 investigates whether the area charge induced commuters to take a longer
detour, and the choice probability of alternate routes that avoid the congestion area.
The table shows results at the trip level and restricts the sample to regular commuters
and trips from home to work or vice-versa.30 Panel A reports the impact on whether
the trip intersects the congestion area, and shows a large reduction of 23 percentage
points on a base of 83%, or equivalently a 29% reduction in area crossings. The effect

3093% of Area treatment participants are regular commuters.
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is very precisely estimated, and of similar magnitude in the morning and evening
intervals.

Panel B uses trip duration as outcome variable and reports the experimental
effect of being treated on trip duration. The point estimates are positive on average,
yet small and not significant. This result is likely due to lack of power to detect
a reduced-form effect on trip duration. Indeed, multiplying the treatment effect in
panel A by the average difference in duration (4 minutes) we find an average increase
of 1.45 minutes for Treated respondent. The point estimates are most often smaller,
but we cannot reject this value either.

One concern would be that study participants identified alternate routes that
avoided the congestion area that are quicker than what I estimated using Google
Maps. To explore this hypothesis, Appendix Table A5 shows the non-experimental
correlation between trip duration and whether a trip is charged, including commuter-
level, directed route fixed effects. Charged trips are significantly shorter, by about
5 minutes. Moreover, this effect is significantly larger for respondents in the Long
Detour Area sub-treatment (column 2), and the extra duration for avoiding trips
closely tracks the Google Maps predicted detour of the quickest non-intersecting
alternative (column 3). These results show that the Google Maps data accurately
predicts the extra time detour incurred in real trips that avoid the congestion area.

Randomly varying the crossing charge and the detour length does not affect
the response to the area treatment. Indeed, Table 1.6 shows that neither doubling
the congestion charge (randomized across participants), nor having a 50% higher
charge on a random day (randomized within participant), has any significant effect
on shadow charges (columns 2 and 3). The last column shows that participants
randomly assigned to a short detour ranging between 3 and 7 minutes (as opposed
to the long detour, between 7 and 14 minutes) do not reduce their shadow charges
more. These results are consistent with high levels of heterogeneity in the population,
whereby some participants are easy to sway to change their routes (low values of
time), while the others are much more difficult to convince (high values of time).

Individual level response heterogeneity is consistent with this story (Appendix
Figure A1 panel B). For each area participant, I count the fraction of days crossing
the congestion area, separately when treated and when in the control group. The
distribution in the control group is concentrated near 1, as most commuters select the
shortest route in the absence of charges (solid, gray bars). In the presence of charges,
the distribution becomes bi-modal, with around 20 per cent of the population in the
lowest bin, implying that some participants stopped crossing the congestion area at
all (outline, red bars).

On the other hand, results on observable sources of heterogeneity are somewhat
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imprecise (Appendix Table A6). Regular commuters and self-employed commuters
appear to respond more to the departure time treatment (columns 1 and 2, panel
A), although these differences are not quite statistically significant. Surprisingly,
commuters with more expensive vehicles seem to respond more to the departure
time treatment, and there is also evidence that they reduce their number of trips
(column 4, panels A and B). There is also suggestive evidence that older respondents
respond more to both treatments (column 5). There is no evidence that stated
preferences predict responses in the experiment (columns 6 and 7).

In summary, departure time pay-per-km charges caused commuters to change
their departure times towards departure times with lower charges, especially towards
earlier departures in the morning and later departures in the evening. This means
that commuters have some flexibility to move trips away from typical work hours
in order to save money. These results are driven by a subset of commuters who
responds more strongly. Responses in the low rate sub-treatment are roughly half of
those in the high rate sub-treatment, although imprecisely estimated, and I do not
find any impact of the information and nudges treatment.

Area congestion charges lead to a precisely estimated shift to routes that avoid the
congestion area. Participants intersect the congestion area around 20% fewer times
when “area” charges are in effect. Doubling the congestion charge or shortening
the implied detour experimentally do not affect this fraction. (Routes that do not
intersect the congestion area are on average 5 minutes longer.) Consequently, the
naive implied value of time for the marginal participant lies between Rs. 1,152 and
Rs. 2,304 per hour, both of which are large. These findings are consistent with
considerable preference heterogeneity.

However, in order to better quantify these results – especially in terms of inter-
preting and comparing the responses to the two treatments – I will next estimate a
structural model where agents choose departure times and routes.

1.6 Structural Travel Demand Estimation
I now estimate the key parameters in a model of travel demand over routes and de-
parture times, using experimental variation from the congestion charge treatments.
This procedure will provide monetary measures of individual preferences over sched-
ule inflexibility and mean driving time.

I first augment the model set up in section 1.3 with route choice, commuter
heterogeneity and random utility shocks, and derive the choice probabilities. I then
describe the Google Maps data used to construct individual-level choice sets, discuss
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the experimental moments, and finally I present discuss the results and robustness
exercises.

Nested Logit Model over Routes and Departure Times

To make the model of the morning home to work commute introduced in section 1.3
easier to fit to real data, I add route choice, commuter heterogeneity and random
utility shocks. On day 𝑡, a commuter 𝑖 chooses a route type 𝑗 ∈ {0, 1}, where 𝑗 = 0
represents any route from home to work that intersects the congestion area, and
departure time ℎ𝐷, chosen from a discrete grid of departure times 𝐻𝐷. Utility is
given by:

𝑈𝑖𝑡 (ℎ𝐷, 𝑗, ℎ
*
𝐴𝑖𝑡) = − 𝛼E𝑇𝑖 (𝑗, ℎ𝐷) − 𝛽𝐸 E |ℎ𝐷 + 𝑇𝑖 (𝑗, ℎ𝐷) − ℎ*

𝐴𝑖𝑡|− − 𝛽𝐿 E |ℎ𝐷 + 𝑇𝑖 (𝑗, ℎ𝐷) − ℎ*
𝐴𝑖𝑡|+

−𝑚𝐷𝑇
𝑖𝑡 (ℎ𝐷) −𝑚𝐴

𝑖𝑡 (𝑗) + 𝜀𝑖𝑡 (𝑗, ℎ𝐷) , (1.5)

where ℎ*
𝐴𝑖𝑡 is the ideal arrival time on day 𝑡, 𝑇𝑖 (𝑗, ℎ𝐷) is the (random) driving

time on route 𝑗, 𝑚𝐷𝑇
𝑖𝑡 (ℎ𝐷) represents the departure time congestion charge that

may apply to the current trip, 𝑚𝐴
𝑖𝑡 (𝑗) is the area congestion charge for route 𝑗, and

𝜀𝑖𝑡 (𝑗, ℎ𝐷) is a random utility shock for route 𝑗 and departure time ℎ𝐷 on day 𝑡.31

Both ℎ*
𝐴𝑖𝑡 and 𝜀𝑖𝑡 (𝑗, ℎ𝐷) are drawn i.i.d. each day. Expectations are with respect

to the random driving time 𝑇𝑖. The key preference parameters of interest are 𝛼, 𝛽𝐸

and 𝛽𝐿, respectively the value of mean travel time, and the schedule costs of arriving
early and late. Commuter heterogeneity is captured by different distributions of ideal
arrival times ℎ*

𝐴𝑖𝑡 and different driving time profiles 𝑇𝑖.
In order to allow different patterns of substitution between departure times and

between routes, I assume that the random utility shocks 𝜀𝑖𝑡 (𝑗, ℎ𝐷) follow an extreme
value distribution with correlation within each route. This leads to a nested logit
structure over routes and departure times. The two route choices constitute the
upper nest, while the choice over departure times is the within-nest component.32,33

31When calculating departure time congestion charges, I ignore the trip distance dependence on
route 𝑗. In the experiment, the area and departure time treatments never apply at the same time;
trip distance still matters, by making route 𝑗 = 1 relatively less attractive when departure time
charges are in effect. However, this effect is of secondary importance.

32The assumption of independent utility shocks at several minute intervals along the departure
time grid may not seem particularly attractive. However, the resulting choice probabilities have a
familiar form. To see this, assume that utility is quadratic – which always holds as an approximation
around the optimum ℎ*

𝐷 – then as the grid becomes finer the multinomial logit model becomes
equivalent to choosing the optimum ℎ*

𝐷 plus a random noise term, with the standard deviation of
the noise term related to the inverse curvature of the utility function at the optimum.

33It is possible to set up more detailed models over departure times and routes. For example,
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The distribution of the random utility shocks depends on two parameters, 𝜎 and
𝜇, which will be estimated from the data.34 The probability to choose a given depar-
ture time and route can be decomposed as Pr (𝑗, ℎ𝐷 | ℎ*

𝐴𝑖𝑡) = Pr (ℎ𝐷 | 𝑗, ℎ*
𝐴𝑖𝑡) Pr (𝑗 | ℎ*

𝐴𝑖𝑡).
Denote by 𝑉𝑖𝑡 (ℎ𝐷, 𝑗, ℎ

*
𝐴𝑖𝑡) the constant part of utility in (1.5) (without the utility

shock 𝜀𝑖𝑡 (𝑗, ℎ𝐷)), then the departure time choice conditional on route is

Pr (ℎ𝐷 | 𝑗, ℎ*
𝐴𝑖𝑡) =

exp
(︁

1
𝜎𝑖
𝑉𝑖𝑡 (ℎ𝐷, 𝑗, ℎ

*
𝐴𝑖)
)︁

∑︀
ℎ exp

(︁
1
𝜎𝑖
𝑉𝑖𝑡 (ℎ, 𝑗, ℎ*

𝐴𝑖)
)︁ (1.6)

Costs scale approximately linearly with route length, so I normalize the logit
parameter for commuter 𝑖 by 𝑖’s route length, namely 𝜎𝑖 = 𝐾𝑀𝑖

𝐾𝑀
𝜎 where 𝐾𝑀 is the

sample average of 𝐾𝑀𝑖. This means that all commuters have similar probabilities
to choose non-optimal departure times, instead of commuters who travel far having
more precise choices, as would be implied by a constant 𝜎𝑖 = 𝜎.

The route choice probability is given by

Pr (𝑗 | ℎ*
𝐴𝑖𝑡) =

exp
(︁

1
𝜇
𝑉𝑖𝑡 (𝑗)

)︁
exp

(︁
1
𝜇
𝑉𝑖𝑡 (0)

)︁
+ exp

(︁
1
𝜇
𝑉𝑖𝑡 (1)

)︁ (1.7)

where 𝑉𝑖𝑡 (𝑗) = 𝜎𝑖 log
(︁∑︀

ℎ exp
(︁

1
𝜎𝑖
𝑉𝑖𝑡 (ℎ, 𝑗, ℎ*

𝐴𝑖𝑡)
)︁)︁

is the expected utility assuming
𝑖 chooses route 𝑗, called the “logsum” term for route 𝑗. The parameters 𝜎 and 𝜇
measure the importance of utility shocks for departure time choice and route choice,
respectively. Higher values correspond to more importance given to utility shocks
(less precise choices).35 Overall choice probabilities are obtained by integrating over
the (individual-specific) distribution of ideal arrival times ℎ*

𝐴𝑖𝑡.
To capture the stark heterogeneity documented in the reduced form experimental

results, I assume that each participant responds to experimental congestion charges
with some probability 𝑝, while with probability 1 − 𝑝 they behave as if there were
no charges. This assumption has two possible interpretations: either this behavior
reflects real preferences, that is, a fraction 1 − 𝑝 of the population is infra-marginal
to the incentives offered in the experiment, or for other reasons these participants

transportation researchers have developed route choice models that are considerably more sophisti-
cated than the one used here [Ben-Akiva M., 2003]. However, this model serves the primary purpose
of understanding the margin of route choice highlighted in the experiment, namely the trade-off
between taking a longer route and paying a higher congestion charge.

34The normalization used here is that utility is expressed in Rupees.
35Commuters not in the area treatment only choose departure time, according to multino-

mial logit (there is no route choice). Their choice probabilities are given by Pr (ℎ𝐷 | ℎ*
𝐴𝑖𝑡) ∝

exp
(︁

1
𝜎𝑖

𝑉𝑖𝑡 (ℎ𝐷, ℎ*
𝐴𝑖𝑡)

)︁
.
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decided to ignore the experiment, in which case we do not know their true prefer-
ences.36

To summarize, agents choose routes and departure times according to nested
logit, and they ignore monetary charges with some probability. The full vector of
parameters to be estimated is 𝜃 = (𝛼, 𝛽𝐸, 𝛽𝐿, 𝜎, 𝜇, 𝑝) as well as the individual specific
distributions of ideal arrival times ℎ*

𝐴𝑖𝑡.

Data Sources and Model Simulation

In addition to behavior data collected using the smartphone as part of the exper-
iment, fitting this model requires knowledge of the counterfactual distribution of
driving times. For average driving times E𝑇𝑖 (0, ℎ𝐷) and the short route length 𝐾𝑀𝑖,
for each person I collected Google Maps predicted driving times on their home to
work route at all departure times throughout the day. To calibrate the distribution
of driving times conditional on route and departure time, I use live Google Maps
data collected on a set of 178 routes across Bangalore. Conditional on route and
departure time, driving time is approximately log-linearly distributed across the 146
weekdays in the data, with the standard deviation well explained by a quadratic in
the average driving time (Appendix Figures A5 and A6). Thus, for each commuter
and departure time, I assume that driving time follows such a distribution given the
measured Google Maps average driving time. I calibrate driving times on the alter-
nate route (𝑗 = 1) as an individual-specific constant multiple of driving times on the
shortest route (𝑗 = 1).37 I assume that the relevant variation in commuter beliefs is
captured by the Google Maps travel time. In particular, if commuters systematically
over- or under-estimate travel time differences, then the structural estimates from
these procedure should be adjusted based on those beliefs.

The estimation sample covers the morning interval, covers all trips between home
and work, and restricts to 308 regular commuters with at least two observed trips
between home and work in the morning interval during the experiment.

36A more traditional way to capture preference heterogeneity is by assuming random coefficients,
that is that parameters 𝛼, 𝛽𝐸 and 𝛽𝐿 vary at the individual level according to some distribution
(such as log normal). In this setting, estimating models with random coefficients fails to fully
capture the heterogeneity documented in section 1.5.2 and Appendix Figure A1.

37For area treatment participants, before the experiment, I obtained from Google Maps the
driving time for the quickest route that does not intersect the congestion area, for a departure time of
9 am for all participants. I assume that the driving times on the detour route (𝑗 = 1) are a constant
multiple of the driving times on the main (intersecting) route, namely 𝑇𝑖 (1, ℎ𝐷) = 𝜆𝑖𝑇𝑖 (0, ℎ𝐷). The
constant 𝜆𝑖 is chosen to match the alternate route travel time at 9 am for person 𝑖, as queried before
the experiment.
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To compute choice probabilities, I use formulas (1.6) and (1.7) given individual
preference parameters 𝛼, 𝛽𝐸, 𝛽𝐿, the nested logit parameters 𝜎 and 𝜇, the ideal arrival
time ℎ*

𝐴𝑖𝑡, and the travel time distributions for each route and departure time, de-
noted 𝜏𝑖 ≡ (𝑇𝑖 (𝑗, ℎ𝐷))𝑗,ℎ𝐷

. During estimation, I assume candidate values for the first
five preference parameters, while the travel times are taken from the Google Maps
data together with the log-normal distribution assumption. The remaining difficulty
is that the distribution of ℎ*

𝐴𝑖𝑡 is neither observed nor known a priori. To overcome
this, I use the observed distribution of departure times in the pre period (before
the experiment) to obtain the distribution of ideal arrival times conditional on other
parameters. I then use this distribution for ℎ*

𝐴𝑖𝑡 to compute choice probabilities both
before and during the experiment.38 During the experiment, the terms 𝑚𝐷𝑇

𝑖𝑡 (ℎ𝐷)
and 𝑚𝐴

𝑖𝑡 (𝑗) are either zero or the congestion charges experienced by commuter 𝑖 in
that period, denoted by 𝑀𝐷𝑇

𝑖𝑡 and 𝑀𝐴
𝑖𝑡 .

GMM Estimation and Moment Choice

To estimate the model parameters, I use the generalized method of moments (GMM).39

I use four sets of moments: (1) difference in difference changes in departure time
“market shares,” (2) the variance of individual-level changes in shadow charges in
the departure time treatment and control groups, (3) route choice “market shares”
when treated and not treated with area charges, and (4) the 3-bin histograms for
individual sample frequency of choosing the short route when treated and not treated
with area charges.

The first 61 moments match the difference in difference in departure time market
shares, between the departure time treatment and control groups, during the exper-
iment relative to before. Formally, for each 5-minute departure time bin ℎ𝑘 between

38Specifically, I first fit a normal distribution on departure times during the pre period. This
is done before estimation, and confidence intervals in Table 1.7 do not take into account that the
departure time distributions are themselves estimated. Then, for given parameter values, I find the
distribution of ideal arrival times that, under optimal behavior, would give rise to the normal fit
on departure times. This inversion is computationally expensive to do precisely. Instead, I make
the following approximations: (1) for each ideal arrival time ℎ*

𝐴𝑖𝑡 the optimal departure time is
normally distributed around the utility maximizing departure time, with the standard deviation
given by the curvature of the utility around the optimum (see footnote (32)), and (2) I assume
that the standard deviation is constant for all ℎ*

𝐴𝑖𝑡 which allows me to obtain the distribution of
optimal departure times by shrinking the distribution of departure times. I then invert the optimal
departure time relationship to obtain the distribution of ideal arrival times.

39Nested logit has a closed form likelihood function, recommending maximum likelihood on ef-
ficiency grounds. Nevertheless, with GMM it is possible to choose moments such that parameters
are essentially identified from experimental variation.
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−2.5 and 2.5 hours relative to the rate profile peak, and for each participant 𝑖, I com-
pute the probability that 𝑖 leaves during ℎ𝑘, conditional on a trip being made. In the
model, for a day 𝑡, let 𝑃𝐷𝑇

𝑖𝑡𝑘

(︁
𝜃, 𝜏𝑖,𝑚

𝐷𝑇
𝑖𝑡

)︁
= Pr

(︁
ℎ𝑖

(︁
𝜃, 𝜏𝑖,𝑚

𝐷𝑇
𝑖𝑡

)︁
∈ ℎ𝑘

)︁
where the ran-

dom departure time (relative to 𝑖’s peak) ℎ𝑖 depends on preference parameters, the
travel time profile 𝜏𝑖 and charges 𝑚𝐷𝑇

𝑖𝑡 . In the data, define 𝑃𝐷𝑇
𝑖𝑘 (𝑝𝑟𝑒) and 𝑃𝐷𝑇

𝑖𝑘 (𝑝𝑜𝑠𝑡)
the fractions of trips starting in bin ℎ𝑘 for individual 𝑖 in pre- and post- periods,
respectively. Recall that 𝑀𝐷𝑇

𝑖𝑡 denotes the charges assigned to 𝑖 in the experiment,
and for convenience make the dependence on 𝜃 and 𝜏𝑖 implicit. For 𝑘 ∈ {1, . . . , 61},
the 𝑘-th moment is:
𝑔𝑘

𝑖 (𝜃) =
(︁(︁
𝑃𝐷𝑇

𝑖𝑘 (𝑝𝑜𝑠𝑡) − 𝑃𝐷𝑇
𝑖𝑘 (𝑝𝑟𝑒)

)︁
· 𝑇𝐿𝐻

𝑖 −
(︁
𝑃𝐷𝑇

𝑖𝑘 (𝑝𝑜𝑠𝑡) − 𝑃𝐷𝑇
𝑖𝑘 (𝑝𝑟𝑒)

)︁
·
(︁
1 − 𝑇𝐿𝐻

𝑖

)︁)︁
− 𝑝 ·

(︁(︁
𝑃𝐷𝑇

𝑖𝑡𝑘

(︁
𝑀𝐷𝑇

𝑖𝑡

)︁
− 𝑃𝐷𝑇

𝑖𝑡𝑘 (0)
)︁

· 𝑇𝐿𝐻
𝑖 −

(︁
𝑃𝐷𝑇

𝑖𝑡𝑘

(︁
𝑀𝐷𝑇

𝑖𝑡

)︁
− 𝑃𝐷𝑇

𝑖𝑡𝑘 (0)
)︁

·
(︁
1 − 𝑇𝐿𝐻

𝑖

)︁)︁

where 𝑇𝐿𝐻
𝑖 is an indicator for being in any of the departure time treatment

groups (low or high rate), 𝑡 is a day during the experiment, and the heterogeneity
parameter 𝑝 enters by attenuating the model term. Intuitively, for given 𝑝 these
moments help identify the schedule costs 𝛽𝐸 and 𝛽𝐿, as well as the logit parameter
𝜎. The magnitude of responses on the early and late ramps of the congestion rate
profile identify the first two parameters, while the precision of these responses helps
identify 𝜎.

The departure time heterogeneity moments target the variance of the individual-
level change in shadow charges for trips in the early morning, between the pre and
post periods. For these moments, it is important to take sampling variation into
account when simulating the model, so denote 𝑁𝑝𝑟𝑒

𝑖 and 𝑁𝑝𝑜𝑠𝑡
𝑖 the number of days

in the pre and post periods for 𝑖. Assume ℎ𝑖𝑡 for 𝑡 =
{︁
1, . . . , 𝑁𝑝𝑟𝑒

𝑖 +𝑁𝑝𝑜𝑠𝑡
𝑖

}︁
are

independent random variables, the first 𝑁𝑝𝑟𝑒
𝑖 distributed according to ℎ𝑖 (𝜃, 𝜏𝑖, 0),

and the rest according to ℎ𝑖

(︁
𝜃, 𝜏𝑖,𝑀

𝐷𝑇
𝑖𝑡

)︁
, in both cases conditional on departure

times in the two hours before the rate profile peak, namely ℎ𝑖 ∈ [−2, 0]. Define
𝑐ℎ (ℎ) to the be the shadow charge of departure time ℎ, and the random individual
effect as

𝑐ℎ𝐷𝑇
𝑖 = 1

𝑁𝑝𝑜𝑠𝑡
𝑖

𝑁𝑝𝑟𝑒
𝑖 +𝑁𝑝𝑜𝑠𝑡

𝑖∑︁
𝑡=𝑁𝑝𝑟𝑒

𝑖 +1
𝑐ℎ (ℎ𝑖𝑡) − 1

𝑁𝑝𝑟𝑒
𝑖

𝑁𝑝𝑟𝑒
𝑖∑︁

𝑡=1
𝑐ℎ (ℎ𝑖𝑡)

Denote the individual effect in the data by 𝑐ℎ𝐷𝑇

𝑖 . The two departure time hetero-
geneity moments match the variance of 𝑐ℎ𝐷𝑇

𝑖 in the treatment and control groups.
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The expressions for full response (𝑝 = 1) are:40

𝑔62
𝑖 =

(︂
𝑣𝑎𝑟

(︁
𝑐ℎ𝐷𝑇

𝑖

)︁
− ̂︂𝑣𝑎𝑟 (︂𝑐ℎ𝐷𝑇

𝑖

)︂)︂
· 𝑇𝐷𝑇

𝑖

𝑔63
𝑖 =

(︂
𝑣𝑎𝑟

(︁
𝑐ℎ𝐷𝑇

𝑖

)︁
− ̂︂𝑣𝑎𝑟 (︂𝑐ℎ𝐷𝑇

𝑖

)︂)︂
·
(︁
1 − 𝑇𝐷𝑇

𝑖

)︁
The first moment helps identify the probability 𝑝 that a study participant re-

sponds to the treatment. Indeed, given other parameter values, 𝑝 affects the variance
of the individual effect, by splitting the sample between participants who respond
and those who do not respond. The second moment helps ensure that the model is
able to replicate the sampling variation in individual effects.

The next two moments match route choice market shares, namely the proba-
bility to intersect the congestion area when treated and when not treated for com-
muters in the area congestion charge treatment. Formally, define 𝑃𝐴

𝑖

(︁
𝜃, 𝜏𝑖,𝑚

𝐴
𝑖𝑡

)︁
=

Pr
(︁
𝑗
(︁
𝜃, 𝜏𝑖,𝑚

𝐴
𝑖𝑡

)︁
= 0

)︁
the probability to take the short route (intersect the congestion

area), where the random route choice 𝑗 depends on preference parameters, the travel
time profile 𝜏𝑖 and charges 𝑚𝐴

𝑖𝑡. In the data, define 𝑃𝐴
𝑖 (𝑡𝑟𝑒𝑎𝑡) and 𝑃𝐴

𝑖 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙) the
fraction of days (mornings) when the commuter intersects the congestion area, when
treated and when not treated, respectively. Recall that 𝑀𝐴

𝑖𝑡 denotes the area charge
assigned to 𝑖 in the experiment, and for convenience make the dependence on 𝜃 and
𝜏𝑖 implicit. The area moments are:

𝑔64
𝑖 (𝜃) =

(︁
𝑝 · 𝑃𝐴

𝑖

(︁
𝑀𝐴

𝑖𝑡

)︁
− (1 − 𝑝) · 𝑃𝐴

𝑖 (0) − 𝑃𝐴
𝑖 (𝑡𝑟𝑒𝑎𝑡)

)︁
· 𝑇𝐴

𝑖

𝑔65
𝑖 (𝜃) =

(︁
𝑃𝐴

𝑖 (0) − 𝑃𝐴
𝑖 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

)︁
· 𝑇𝐴

𝑖

where 𝑇𝐴
𝑖 is an indicator for being in the area treatment. Without area charges,

a commuter will only choose the detour route (𝑗 = 1) due to large utility shocks that
offsets the driving time penalty. For a given value of time 𝛼, this helps identify the
outer nest logit parameter 𝜇. With area charges, there is an additional monetary
benefit to choosing the detour, and for given 𝑝 these moments together help identify
𝛼.

The area heterogeneity moments target the distribution of individual-level sample
frequency of intersecting the area. Once again, it is important to take sampling
variation into account, so define 𝑁 𝑡𝑟𝑒𝑎𝑡

𝑖 and 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖 the number of days when 𝑖 is

treated and not treated, respectively. Assume 𝑗𝑖𝑡 for 𝑡 =
{︁
1, ..., 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 +𝑁 𝑡𝑟𝑒𝑎𝑡
𝑖

}︁
are

40Note that 𝑐ℎ𝐷𝑇
𝑖 is random for a given commuter 𝑖, and its distribution also differs between

commuters. We are interested in the overall variance, both between commuters and within
commuter, as this is what we see in the data. Hence, I use the following shorthand notation:
𝑣𝑎𝑟

(︀
𝑐ℎ𝐷𝑇

𝑖

)︀
≡ E

(︁
𝑐ℎ𝐷𝑇

𝑖 − E 1
𝑁

∑︀𝑁
𝑗=1 𝑐ℎ𝐷𝑇

𝑗

)︁2
and ̂︂𝑣𝑎𝑟

(︁
𝑐ℎ

𝐷𝑇

𝑖

)︁
≡
(︁

𝑐ℎ
𝐷𝑇

𝑖 − 1
𝑁

∑︀𝑁
𝑗=1 𝑐ℎ

𝐷𝑇

𝑗

)︁2
.
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independent random variables, the first 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖 distributed according to 𝑗 (𝜃, 𝜏𝑖, 0),

and the rest according to 𝑗
(︁
𝜃, 𝜏𝑖,𝑀

𝐴
𝑖

)︁
. Define the (random) sample average of

intersecting the area in control and treatment as

𝑐ℎ𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖 = 1

𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖∑︁
𝑡=1

𝑗𝑖𝑡 and 𝑐ℎ𝐴,𝑡𝑟𝑒𝑎𝑡
𝑖 = 1

𝑁 𝑡𝑟𝑒𝑎𝑡
𝑖

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖 +𝑁𝑡𝑟𝑒𝑎𝑡

𝑖∑︁
𝑡=𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 +1
𝑗𝑖𝑡

In the data, denote the corresponding quantities by 𝑐ℎ
𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 and 𝑐ℎ
𝐴,𝑡𝑟𝑒𝑎𝑡

𝑖 , re-
spectively. We are interested in the distribution of these variables. The four area
heterogeneity moments match the probability that these variables are the middle or
top third of the unit interval (the moment for the bottom third is omitted because it
is colinear with the others), when treated and not treated. The expressions for full
response (𝑝 = 1) are:

𝑔66
𝑖 =

(︂
Pr
(︁
𝑐ℎ𝐴,𝑡𝑟𝑒𝑎𝑡

𝑖 ∈ [1/3, 2/3)
)︁

− 1

(︂
𝑐ℎ

𝐴,𝑡𝑟𝑒𝑎𝑡

𝑖 ∈ [1/3, 2/3)
)︂)︂

· 𝑇𝐴
𝑖

𝑔67
𝑖 =

(︂
Pr
(︁
𝑐ℎ𝐴,𝑡𝑟𝑒𝑎𝑡

𝑖 ∈ [2/3, 1]
)︁

− 1

(︂
𝑐ℎ

𝐴,𝑡𝑟𝑒𝑎𝑡

𝑖 ∈ [2/3, 1]
)︂)︂

· 𝑇𝐴
𝑖

𝑔68
𝑖 =

(︂
Pr
(︁
𝑐ℎ𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 ∈ [1/3, 2/3)
)︁

− 1

(︂
𝑐ℎ

𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 ∈ [1/3, 2/3)
)︂)︂

· 𝑇𝐴
𝑖

𝑔69
𝑖 =

(︂
Pr
(︁
𝑐ℎ𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 ∈ [2/3, 1]
)︁

− 1

(︂
𝑐ℎ

𝐴,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖 ∈ [2/3, 1]
)︂)︂

· 𝑇𝐴
𝑖

Intuitively, the first set of moments will help identify the probability 𝑝 that a
study participant responds to the treatment, by matching the empirical histogram
in the treated group with an average between the model treated and the model
control histograms.

1.6.1 Structural Estimation Results
Table 1.7 shows the estimation results from two-step GMM, using 100 random pa-
rameter starting values to ensure convergence to the global minimum of the objective
function.

Commuters value time spent driving at Rs. 1,122, and the estimated schedule
cost of arriving earlier than ideal is Rs. 320. Commuters are thus relatively schedule
flexible to leave earlier in the morning. To put these values in context, a commuter
with these preferences would be indifferent between leaving one hour earlier if the
driving time from leaving early was 15 minutes lower (this back of the envelope
example ignores uncertainty). In particular, this means that commuters have some
ability to “self-insure” against congestion, in the sense that commuters will tend to
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change departure times in response to a localized increase in congestion, which will
reduce the welfare impact of the shock. It is important to note that the estimated
value of time is significantly larger than the average self-reported monthly income of
Rs. 270 per hour (Rs. 39,000 per month).41

The late arrival cost 𝛽𝐿 cannot be estimated precisely from the data. The under-
lying reason is that in Figure 1-2 there is no reduced form impact on late departures.
This tells us that 𝛽𝐿 is large; however, it is not clear how large. For the estimation in
Table 1.7, this parameter is fixed at 𝛽𝐿 = Rs.Â 4, 000. Appendix Figure A8 (Panel
A) shows that the GMM objective function is mostly flat above this value. In Ap-
pendix Table A7, I show that using 𝛽𝐿 = Rs.Â 1, 000 or 𝛽𝐿 = Rs.Â 8, 000 instead has
no detectable effect on the other estimated parameters. This inflexibility of leaving
later is consistent with work requirements acting as a firm constraint.

Around half of all study participants responded to congestion charges (𝑝 = 0.46).
Intuitively, this value maximizes the variance of individual responses, emphasizing
the stark response heterogeneity in the data.

Both logit parameters are estimated to be approximately Rs.Â 37, indicating a
small or moderate amount of noise in choices. The fact that these terms are equal
means that I cannot reject the multinomial logit model over the entire decision
space. The inner nest logit parameter 𝜎, corresponding to departure time choice,
is estimated with significantly more noise than the outer nest parameter 𝜇, which
corresponds to route choice. This is related to commuter heterogeneity in terms
of ideal arrival time. In principle, both a wide distribution of ℎ*

𝐴𝑖𝑡 and a large 𝜎
will imply a wide observed distribution of departure times. The logit parameter is
separately identified from the shape of the experimental response to departure time
congestion charges. As 𝜎 becomes smaller, the impact concentrates around the kinks
of the congestion ramp. In practice, and with the available data, I can only estimate
𝜎 somewhat imprecisely.

Appendix Figure A7 shows the model fit graphically by plotting the data and
model prediction for the moments used in estimation. The model generally fits the
data well, and in particular it does a good job of replicating the variance in individual
effects for departure times and in route choices (panels B, C, and E).

I use two empirical methods to shed light on how model parameters are identi-
fied. The first is to show numerically that the estimation procedure can recover the

41It is possible that this estimate of 𝛼 also includes a fixed cost of switching routes. The field
experiment was designed to separate the fixed cost of route change and marginal costs of travel
time, through the low and high rate sub-treatments in the area treatment. Given that I do not find
any reduced form effect of increasing the area congestion charge, I model the route choice decision
in this parsimonious way.
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parameters using simulated data for various sets of random parameter. Appendix
Table A8 shows that estimated parameters track the true parameters closely. The
estimated slope between the underlying parameter and the GMM estimate is close to
1, and the 𝑅2 is very high, in all cases except for the inner nest (departure time) logit
parameter 𝜎, for which the slope is above 1 and statistically significantly different
from zero, yet noisier.

The second exercise is to compute the sensitivity measure from [Andrews et al., 2017].
The (scaled) sensitivity matrix Λ captures how estimated parameters depend on the
different moments of the data. Specifically, each entry Λ𝛾𝑘 measures the impact of
a standard deviation increase in moment 𝑔𝑘, 1 ≤ 𝑘 ≤ 69, on estimated parameter
𝛾 ∈ {𝛼, 𝛽𝐸, 𝛽𝐿, 𝜎, 𝜇, 𝑝}. The results generally confirm the intuitions described earlier,
while also emphasizing that parameters are jointly estimated, with contributions from
several moments. As expected, the early schedule cost 𝛽𝐸 depends most strongly on
departure time moments in the early ramp part of the departure time problem (de-
parture times between −1.5 and −0.5 in Appendix Figure A8, Panel B). However,
the area moments also have important contributions (column 2 in Appendix Table
A9). As expected, the value of time driving 𝛼 is most strongly identified by the area
moments (column 1 in Appendix Table A9). The probability to respond, 𝑝, is af-
fected more strongly by the area moments than by the departure time heterogeneity
moments (column 5 in Appendix Table A9).

Overall, the structural model offers a good fit to how commuters responded to
the congestion charge experiments. The results indicate that commuters are fairly
flexible to change their schedules by leaving earlier locally around their ideal depar-
ture time, relative to how much they value time spent driving. However, in order to
quantify the externalities involved in peak-hour traffic congestion, and the welfare
impacts of congestion mitigating policies, it is also necessary to know how traffic
responds to aggregate changes in driving patterns.

1.7 The Road Traffic Congestion Technology
Each additional vehicle on the road leads to slower road speeds. I now quantify this
external cost using all the GPS trip data collected during the study, and real-time
Google Maps driving time data collected during the same period on a set of routes
in Bangalore.42

42Driving also imposes other external costs, such as increases in pollution emissions, pollution
exposure (which is related to traffic speeds), and accidents. Here I am only considering the impact
on higher (and less reliable) driving times.
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The traditional approach to studying this relationship in transportation engineer-
ing has been to analyze road or highway segments in developed countries. Empir-
ical estimates vary considerably, in part due to the variation in the specific roads
considered.43 From an economic perspective, we are interested in full trips, not
only road segments or small areas. Indeed, commuters make decisions over trips,
and trips cover large areas and different types of roads. There are few empir-
ical studies that measure travel time costs and external costs at the trip level.
[Geroliminis and Daganzo, 2008a] use GPS taxi trip data from 140 taxis for one
month in Yokohama, Japan, and show that average trip speed declines strongly at
times of the day when many trips are taking place. [Akbar and Duranton, 2017] mea-
sure road traffic volume from around 20,000 motorized trips recorded in a household
transportation survey in Bogotá, Colombia, and travel times from real-time Google
Maps data collected several years later. They establish a much smaller elasticity of
travel time with respect to the volume of traffic. Their results suggest that there are
fundamental differences in city-wide road technology in Bogotá relative to cities in
richer countries. One potential concern with their approach is attenuation bias due
to survey survey recall bias, which can lead to mis-measurement in the traffic volume
measure. For example, survey respondents may omit trips or only report imprecise
departure and arrival times. In this paper, I use precise GPS data, contemporaneous
real-time Google Maps data, and a larger sample of trips than in the two previous
papers. I show at the end of this section that the elasticity in Bogotá estimated by
[Akbar and Duranton, 2017] is very similar and slightly smaller than what I find in
Bangalore.

To measure the quantity of driving, I rely on 117,527 trips coded from GPS data
from 1,747 app users, covering 185 calendar dates and 44,034 user-days with travel
information.44 (This sample includes the experimental sample, as well as other study
participants who used the smartphone app for shorter periods of time and were not
included in the experiment.)

For road speeds, I use two different data sources that give very similar results.
My main data source is Google Maps travel delay data collected on 28 routes in the

43A commonly used functional form to describe travel time 𝑇 as a function of incoming flow 𝑉

is given by 𝑇 = 𝑇𝑓 ·
(︁

1 + 𝑎 · (𝑉/𝑉𝑘)𝑏
)︁

, where 𝑇𝑓 is time under free-flow, and 𝑉𝑘 is the maximum
road capacity. The parameter values for 𝑎 and 𝑏 vary considerably. For example, the Bureau
of Public Roads (BPR) and the updated BPR functions use 𝑎 = 0.15, 𝑏 = 4 and 𝑎 ∈ [0.05, 0.2],
𝑏 = 10, respectively. See section 3.3.2 in [Small et al., 2007] for a review of estimated and postulated
functional forms.

44I restrict the sample to trips longer than 2 km. Shorter trips have higher travel delay, possibly
because of higher likelihood of walking trips. Results are almost identical including all trips.
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study area over the same calendar period, at 20 minute intervals.45 I also compute
trip-level travel delay directly from the GPS data.46 The two measures track each
other exceptionally well at the level of departure time (column 3 in Table 1.8 and
panel A in Appendix Figure A9).

I use a simple empirical specification to measure the impact of traffic volumes on
travel delay. (I discuss possible threats to causal inference below.) In order to reduce
measurement error in the dependent variable, I summarize traffic volume and travel
delay along two dimensions: trip departure time, and calendar date. In the first case,
the average departure rate at a given time of the day measures inflows into the urban
road network, so this approach is similar to classic transport engineering estimates,
except that here I consider results for a large urban area.47 The second approach
considers the total travel on a given calendar date. In both cases, I normalize the
dependent (volume) variable to mean 1, so the results are directly comparable. I
am not able to distinguish between the impact of motorcycles and cars, and cannot
account for vehicle occupancy.48 Results should be interpreted as the average effect
along these dimensions.

Travel delay is well explained by a linear function of traffic volume, and results
are similar using variation within day and across calendar dates. Figure 1-3 shows
the main results in graphical form. Panel A shows results at the departure time level
(collapsing over all weekdays in the data), and plots the results for all departure
times at 30 minute intervals, while panel B shows results by calendar date. Columns

45Travel delay is the inverse of driving speed, measuring the number of minutes necessary to cover
1 kilometer, on average. To obtain it, for each route I divide driving time (in minutes) by the route
path length (in kilometers).

46Trips in the GPS data may have considerably more noise, for example due to short stops along
the way, or errors in trip classification. I use medians to summarize this data in order to limit the
influence of outliers. The sample is all weekday trips shorter than 2km, without stops along
the way. To avoid circuitous trips, I restrict to trips with diameter to total length ratio
above 0.6 (the 25th percentile). For each departure time, I compute the median delay of
all trips starting around that departure time (weighting each trip using an Epanechnikov
kernel with bandwidth 20 minutes around the reference departure time). In addition,
Appendix Table A10 reports results from quantile (median) regressions.

47It is plausible that travel conditions depend on the history of inflows, not only on contempo-
raneous inflow. One way to model this is to measure the number or density of vehicles on the road
at any given time. This approach gives very similar results, see panel B in Appendix Figure A9.
Intuitively, the two variables are strongly correlated, because trips are short relative to the scale of
peak/off-peak fluctuation. In addition, models that includes lags will fit the data marginally better.
Indeed, in panel A of Figure 1-3 the travel delay at 9 am – following a large inflow – is slightly lower
than predicted by the linear relationship, yet delay continues to rise after 9 am despite slightly
decreasing inflows. Here, I use the more parsimonious functional relationship.

48The share of trips made by car is roughly constant throughout the day, at around a third.
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1, 2 and 4 in Table 1.8 show the same results in regression format. For departure
times, an increase in the number of vehicles equal to 10% of the mean is associated
with an increase of 0.106 minutes per kilometer higher travel times (column 1). The
relationship is close to linear, and I can reject at the 95% level an exponent of
1.18 (column 2). The relationship is similar and slightly shallower across calendar
dates at 0.097 minutes per kilometer (column 2). The difference may partly reflect
attenuation bias due to measurement error in traffic volumes along calendar dates.

These results imply that every additional (average length) trip departing increases
the aggregate driving time of everyone else on average by approximately 4.2 minutes
for a 7 am departure time, and by approximately 17 minutes for trips departing at
the morning peak (9 am) or evening peak (7 pm). (For reference, the average trip
duration is 33 minutes.) To derive this result, note that the impact on aggregate
driving time is equal to the traffic volume, times the marginal impact on travel
delay, and times the average trip length, namely 𝑄̃ (ℎ) 𝜕𝑇 (ℎ)

𝜕𝑄̃(ℎ) · 𝐾𝑀 . The first two
terms form a semi-elasticity, so this social cost calculation does not depend on the
scaling of traffic volume 𝑄̃. In other words, for a representative sample the in-sample
calculation is consistent for the population calculation. The empirical results show
that 𝜕𝑇 (ℎ)

𝜕𝑄̃(ℎ) = 1.06 min/km (for any ℎ), and the average trip length is 8.0 kilometers,
which gives an effect of 8.5 · 𝑄̃ (ℎ) minutes, where 𝑄̃ (ℎ) is the relative traffic volume
at ℎ. Figure 1-3 shows that 𝑄̃ (7 am) ≈ 0.5 and 𝑄̃ (9 am) ≈ 𝑄̃ (7 pm) ≈ 2, which
gives the figures cited above.

One potential concern is whether the data used here is representative for Ban-
galore. It is reassuring that the results from two completely different data sets on
speeds (GPS data and Google Maps data) give similar results: column 3 in Table
1.8 shows that the slope between the two variables is very close to one. The other
concern is whether the traffic quantity measure is not representative in a way that is
correlated with the pattern of congestion. In principle, it is possible that the survey
team recruited disproportionately more (or fewer) respondents during peak hours,
which may bias the results. However, the link between recruitment time and average
departure time is very weak. Indeed, the R squared of a regression of trip departure
time in the morning on morning recruiting time is below 4%, and below 2% for the
evening.49

Interpreting these results as the causal impact of driving on external driving time
costs raises several potential concerns. One issue arises if different types of drivers
systematically travel at different times, for example if inherently slower drivers are

49Panel C in Appendix Figure A9 shows graphically that the recruit time and trip departure time
distributions are very different.
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more likely to travel during peak hours. A related concern is if peak-hour and off-
peak trips differ in some dimension correlated with speed, such as trip length. In
principle, these issues could even affect the Google Maps travel delay estimates, if
Google’s algorithms do not correct for such biases. To address these concerns, in
Appendix Table A10 I run trip-level quantile (median) regressions of trip delay on
the traffic volume at the trip departure time, where I control for trip length and
commuter fixed effects. The results are broadly similar and somewhat smaller than
those in Table 1.8. More generally, any factor correlated with the within-day or
across-date distribution of traffic volume, which also directly impacts driving times,
is a potential omitted variable. For example, anticipated weather and road network
shocks (e.g. construction, closures) may bias the estimates downwards. These factors
are unlikely to be a major concern in this setting. First, weather during the study
period was very stable, and there were no major road network shocks. Secondly, the
within-day results are less likely to be significantly biased by this type of factors,
because weather and road network shocks tend to last longer. Higher pedestrians
flows during peak hours may bias our results upwards, if pedestrians interact with
and slow down incoming traffic. Anecdotally, drivers in Bangalore tend to not slow
down considerably when pedestrians cross the road.

The results in Bangalore are very similar to those reported by [Akbar and Duranton, 2017]
in Bogotá. Appendix Figure A9 panel D compares the log-log curves in the two cities.
The curve for Bogotá is slightly lower and the maximum elasticities in Bangalore and
Bogotá are 0.33 and 0.25, respectively. The curve in Bogotá also becomes flat for
high values of traffic volume. There may be two reasons for this. First, note that
the local linear fit in Bangalore also has a slightly lower slope for high volumes;
this may be due to the linear contemporaneous road technology specification, which
omits traffic volume lags. In particular, traffic volume rises quickly in the morn-
ing, and speed grows slightly slower (only to continue to grow even past the peak
in traffic volume); this tends to attenuate the relationship between traffic volume
and travel times. Another potential reason for the more pronounced flat region in
[Akbar and Duranton, 2017] is that survey respondents are likely to give typical de-
parture times that underestimate the variability in departure times, which tends to
overestimate peak-hour volumes. Indeed, [Zhao et al., 2015] document exactly this
phenomenon by comparing survey data with precise GPS travel data collected with
a smartphone app on the same sample in Singapore.

Previous engineering studies on road segments show that travel time responds
strongly and convexly to traffic inflows. Intuitively, one would expect this relation-
ship to be even stronger in a high congested city, such as Bangalore. In fact, I pro-
vided evidence for a shallower and linear relationship. The slope is several times shal-
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lower than the slope identified based on taxi trips in [Geroliminis and Daganzo, 2008a].
There are several potential reasons why the road technology may be different in Ban-
galore. The high ratio of motorcycles may render traffic more fluid; however, using
the GPS data I find that motorcycles are faster only during the night, and have a
similar speed as cars during the day. Another hypothesis is that drivers switch to
side streets during peak hours, thus avoiding traffic build-ups on main thorough-
fares [Akbar and Duranton, 2017]. Further, the driving style in cities like Bangalore,
where anecdotally vehicles are driven close to each other, may attenuate traffic jams.
(However, in principle this type of driving could also make jams worse.) Another
structural difference is the smaller number of automatic traffic signals compared to
cities like Yokohama, Japan, and potentially higher reliance on traffic police agents,
which may also affect the bottleneck properties at certain key junctures. I consider
average travel times over several months, which are likely the relevant measure to
measure the expected externality. This is similar to [Akbar and Duranton, 2017] and
unlike [Geroliminis and Daganzo, 2008a], who use instantaneous relationships.50

In this section, I provided new evidence that despite high levels of traffic con-
gestion in Bangalore, the shape of the road technology externality is moderate and
linear throughout the distribution of traffic volume. Equipped with this estimate,
we are now in a position to quantify the inefficiency involved in the peak-hour traffic
equilibrium.

1.8 Policy Simulations
In this section I quantify welfare and the inefficiency in the no-toll equilibrium, and
explore how these numbers depend on preferences and on the road technology.

Commuters make departure time decisions based on their own travel time and
schedule costs, and have some flexibility to adjust departure times to avoid conges-
tion, as shown in the experimental results. However, their decisions also affect the
other traffic participants by increasing delays at the times when they travel, an effect
mediated through the road technology that was quantified in the previous section.
Moreover, other commuters adjust to the increase in congestion, and this has either
positive or negative first order impacts on welfare, as the envelope theorem does not
hold for welfare at an inefficient equilibrium. For example, for the same level of
congestion, traveling after the peak-hour may have a higher externality because it

50In principle, it is possible that the instantaneous relationship is convex, and the peak-hour
is realized at slightly different times on different days, which would smooth out the relationship.
However, the relationship in Figure 1-3 looks similar when using a single day of data (not shown).
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induces other commuters to switch to earlier (more congested) travel times.
I now study these interactions and their welfare consequences using a simulation

model of the city-wide road traffic equilibrium. I use the model to solve for decen-
tralized Nash equilibria without or with departure time charges, I then compute the
marginal social cost of departing at a certain time around a given Nash equilibrium,
and I finally solve for the social optimum and compare the improvement relative to
the decentralized equilibrium using various benchmarks. In any equilibrium with
charges, I assume that tax revenue is transferred back to commuters lump-sum.

The model parameters are derived entirely from demand and road technology
estimates presented in previous sections. At the same time, there are several impor-
tant limitations of this approach. I continue to abstract from the extensive margin
decision of whether to travel using a private vehicle. Thus, the analysis here pertains
specifically to the within-day inefficiency due to commuters wanting to travel at sim-
ilar times. I also do not take into account longer term preferences and adjustments,
which may be different from the short-term responses measured in the experiment.
As in the road technology estimation, I do not distinguish between the externali-
ties generated by motorcycles and cars, although in practice the latter is likely to
be higher. Finally, this analysis ignores other traffic, including trips that are not
between home and work, bus passengers (who would also benefit from reductions in
travel times), taxis, bus and truck traffic (which may respond differently to similar
congestion charges and may affect traffic differently). I also do not measure in these
calculation other important social costs of congestion, such as pollution generation
and pollution exposure.

The simulation environment is populated with 𝑁 agents. Each agent has a single
route and chooses a morning departure time according to multinomial logit probabil-
ities, using 𝜎̂ as estimated previously. Each simulation agent is a copy of a real study
participant, with the same route length and preferences as estimated in section 1.6,
with a fixed ideal arrival time randomly drawn from the distribution estimated for
that agent. In practice, I replicate each real commuter and draw 120 ideal arrival
times for each copy, for a total of 𝑁 = 36, 960 simulation agents.

I use an asynchronous logit best-response dynamic to compute Nash equilibria.
Given (fixed) congestion charges that depend on the departure time, and an initial
travel time profile, each period a 1% random sample of agents re-compute their choice
probabilities,51 and then the travel time is updated given the aggregate volume at
each departure time (integrated choice probability over all simulation agents). The

51Travel time uncertainty is parametrized based on the mean travel time, as was done for struc-
tural estimation. Travel time is log-normal distributed, and travel delay standard deviation is
quadratic in the mean. See Appendix Figure A6.
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simulation stops when every agent is close to best-responding, namely when the ℓ2-
norm of changes in choice probability, averaged over the entire population, is below
a certain threshold. This procedure leads to fast convergence to equilibrium; indeed,
the choice probability norm roughly halves after half of the population updates (ev-
ery 50 periods), and it takes around 7 revisions per capita to reach equilibrium.
Moreover, this dynamic has a natural interpretation in terms of commuters revising
their actions periodically. In practice, the simulation finds a unique equilibrium in-
dependently of starting conditions, which is consistent with travel at various times
being strategic substitutes due to congestion.

The marginal social cost imposed by a commuter leaving at a certain depar-
ture time ℎ𝐷 should be calculated allowing other commuters to adjust.52 Indeed,
other commuters may change their departure times in response to the increase in
congestion, which will decrease their costs and may have either positive or nega-
tive spillovers.53 This effect is quantitatively meaningful; for example, the partial
equilibrium social welfare cost of an additional departure at 9:40 am, starting from
the Nash equilibrium, is Rs. −408.6, compared to Rs. −352.0 after recomputing the
equilibrium with the fixed departure at 9:40 am. Moreover, for the same level of
congestion, the marginal social cost depends on the slope of congestion around that
point. Figure 1-4 shows in blue (right axis) that the marginal social cost is higher
after the peak. This happens because displaced commuters tend to leave earlier
(because 𝛽𝐸 < 𝛽𝐿) and when the additional commuter departs after the peak, this
switching leads to even more congestion at earlier times.

The social optimum is a Nash equilibrium with departure time Pigou charges.54

It has the following fixed point property: charges at departure time ℎ𝐷 equal the
marginal social cost of an additional commuter at ℎ𝐷. To find this fixed point, I use
a lazy adjustment dynamic for charges. The starting point is the Nash equilibrium,
and for each iteration I compute the marginal social cost and update charges at
each departure time with a 1/3 weight on the new marginal social cost and 2/3 on
the current charge. This procedure converges in around 15 iterations with precision
Rs. 0.1 for welfare.

52[Arnott et al., 1993] make the same point in their model with identical agents, where the stark
implication is that MSC does not depend on departure time (as in equilibrium all agents are
indifferent). The more general point also applies in this setting, where agents differ.

53Computing the marginal social cost thus requires computing a new Nash equilibrium for each
departure time.

54I assume that the social planner knows individual preferences but does not observe the exact
realization of the random utility shocks. In this case, where also all commuters have the same
externality conditional on departure time, the planner can implement the social optimum with
departure time congestion charges.
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The social optimum leads to small but notable improvements in travel times.
Figure 1-4 shows the travel delay under the decentralized unpriced equilibrium and
under the social optimum. The social optimum has a lower peak, and more com-
muters departing early, between 5:30 am and 7:45 am. However, the distance between
the two travel delay profiles is not very large; at the peak, travel delay improves by
0.14 minutes per kilometer, which translates to 0.9 and 2.3 minutes faster travel time
for the commuters at the 25th and 75th percentile of route distance. One reason for
this moderate difference is that moving some people away from the peak does not
have an outsized effect on congestion under the linear road technology. The social
marginal cost function is also drawn (right Y axis). For the same level of congestion,
social marginal cost is higher after the peak, and yet there is almost no aggregate
difference between the Nash and social optimum on that side of the graph. This
happens because the cost of departing later 𝛽𝐿 is very high. Despite large congestion
charges, individual changes under the social optimum are small. The average change
in average departure time (conditional on ideal arrival time) is leaving 3 minutes
earlier, and the 25th and 75th percentiles are 4.1 minutes earlier and half a minute
later. These number are within the range of experimental responses to the departure
time policy. Hence, these counterfactual results do not rely on extrapolating based
on the functional form in preferences.

Table 1.9 quantifies the effects on travel time and on welfare. The social optimum
leads to a reduction of 1.04 minutes in expected travel time, from a base under Nash of
38.7 minutes.55 This represents a 2.7% improvement relative to the Nash equilibrium,
or a 6.8% improvement when considering only travel time above free-flow. (Free-flow
is defined as a speed of 2.14 minutes per kilometer, which is the intercept in Table
1.8.)

The improvement in welfare under the social optimum are an order of magnitude
smaller. In other words, the travel time benefits are nearly offset by schedule costs
incurred by commuters who are induced to travel at privately inconvenient times.
Welfare is Rs. 4.5 per commuter per morning higher under the optimum (7 US cents),
from a total trip cost of around Rs. 773, which represents a roughly half percentage
improvement. Relative to free-flow, the improvement is only 1.3%. Moreover, to
achieve the social optimum, commuters pay on average Rs. 267.3 in charges, or
35% of their average private cost. For this exercise, I assumed that charges are a
costless transfer, whereas in reality policy enforcement and attention costs may be

55Note that the average route length is not evenly distributed across departure time, with com-
muters who travel far slightly more likely to depart early. Moreover, under the social optimum this
effect is slightly stronger, which contributes to lower average travel time than suggested by Figure
1-4 alone.
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important. It is likely that real-world, more forceful policies that attempt to cap
peak-hour congestion may lower welfare. This framework can be used to quantify
these effects.

The road technology plays a key role for these results. Indeed, the welfare gain
would be higher and would depend more on preferences if travel time was convex in
traffic volume. Figure 1-5 shows this by plotting the improvement of going from the
unpriced equilibrium to the social optimum, for travel times (panel A) and for welfare
(panel B). The black and red lines denote the current (linear) and counterfactual
(third power) road technology, while preferences vary along the X axis. The welfare
gains are an order of magnitude higher with the power road technology, and range
between 3.5% and 5.5%, relative to 0 − 0.5% with the linear technology.

Overall, I have shown using policy simulations grounded in demand and road tech-
nology estimates that the social inefficiency due to departure times is likely small.
This result highlights the importance of measuring and considering the (schedule)
costs of a policy that attempts to clear up the congestion peak-hour. An important
reason for these findings is the size of the road externality, and especially its linearity,
which implies that even for high levels of congestion the travel time benefit of remov-
ing a commuter from the peak is the same as for lower levels. By consequence, road
traffic congestion does not warrant intervention through corrective taxation solely
for the reason of departure time inefficiency.

1.9 Conclusion
Reducing traffic congestion has significant benefits in terms of the value that com-
muters put on the time they spend driving; it can also lead to improved subjective
well-being [Anderson et al., 2016]. This makes it tempting to only consider these
benefits when thinking about traffic policies, and in particular about policies de-
signed to reduce peak-hour congestion. However, it is also important to take into
account the costs of disruption to commuter schedules.

In this paper, I collected new data on travel behavior and implemented a field
experiment motivated by a model of travel demand to study both sides of the peak-
hour traffic equilibrium. Estimating a model of the morning commute decision using
experimental variation, I find that the cost of arriving earlier than ideally desired is
around 4 times smaller than the value of time spend driving. To put this in context,
as a first approximation this means that a commuter facing a one hour expected
drive time would prefer to leave one hour earlier, if this reduced the expected drive
time to less than 45 minutes.
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Surprisingly, given high levels of traffic congestion in Bangalore, I find a mod-
erate road traffic externality, and a linear effect of traffic volume of travel times,
including for high values of traffic volume. This result is robust to using different
data sources and analyzing this relationship across days or within day and across
departure times. These estimates are smaller than a previous study in Yokohama,
Japan [Geroliminis and Daganzo, 2008a], and they rule out hyper-congestion. Dif-
ferences in driving style and the density of traffic control measures (traffic lights) are
possible explanations for the discrepancy between the two settings.

Putting demand and road technology estimates together, I calculate the equilib-
rium optimal congestion charge for the morning peak-hour. I find that relative to
the decentralized equilibrium without charges, the social optimum allocation leads
to notable travel time benefits of around 1.2 minutes per trip from a base of 36.5
minutes (which is 30% of the improvement that can be achieved by spreading all
commuters evenly between 5 am and 12 pm). However, the welfare gains from op-
timal charging are small, as the travel time benefits are almost fully offset by the
schedule costs of making commuters travel at inconvenient times.

The elasticities of travel at different times may differ from those estimated here in
the long-run and in the presence of a city-wide policy. For example, firms may adjust
by providing more flexible schedules, allowing commuters to more easily change their
travel timings. As in other large cities marred by high congestion, some large compa-
nies in Bangalore are already implementing this type of flexible work-hours policies
[Merugu et al., 2009]. Moreover, around 20% of the sample in this study are self-
employed and may already have higher autonomy in deciding their own schedules.
Finally, it is worth noting that the welfare impacts of firm-level work-hours changes
is ambiguous, due to complementarities between firms of having similar work hours
[Henderson, 1981].

The cost and road technology estimates in this paper are also useful for thinking
about the extensive margin of making trips with private vehicles, which was held
constant throughout this analysis. Indeed, the same methods can be used to compute
the social marginal cost of adding a commuter at a certain departure time,56 and thus
calculating the optimal congestion charge. The results will depend on the elasticity
of making a trip with respect to generalized travel cost. Given the small share of
metro travel in Bangalore, this effect would likely mostly go through canceling non-
essential trips, working from home, or switching to bus travel.57 Moreover, the same

56The marginal social cost will not be exactly the same, because some commuters who are at the
margin may cancel their trip in response to an increase in congestion.

57There are two reasons why this margin was not studied experimentally here. The first is a
measurement issue, as commuters would have strong incentives to leave their smartphones at home
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framework can be used to include additional externalities, such as the air pollution
that drivers generate, and the impact that longer driving times have on exposure to
air pollution, which is high on urban roads.

This paper argues that the peak-hour traffic congestion equilibrium is close to
efficiency from the point of view of travel speed externalities. This does not imply
that there are no welfare enhancing policies to ease traffic congestion. Pricing the
extensive margin may be a viable policy, either done directly or through taxes on
gasoline or private vehicle ownership. Road infrastructure investment – including
investments to make road network flows more efficient – may currently be at an
inefficient level. Of course, developing viable public transport options may also
contribute to lower congestion and more convenient travel. However, the results
in this paper do put into focus the welfare costs that well-intended traffic control
policies may have on commuters affected by such charges or restrictions.

given monetary incentives to reduce the number of trips. It is possible to solve this problem by
installing a GPS device in the private vehicle – as Singapore plans to implement its next generation
Electronic Road Pricing policy, and as in the experiment studied in [Martin and Thornton, 2017].
The second reasons is that extensive margin changes will plausibly take longer, as commuters
need to find alternate travel arrangements or substitutes for canceling unessential trips. Indeed,
[Martin and Thornton, 2017] do not find any reduced-form impact of distance-based congestion
charges on trip extensive margin, even after two months.
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1.10 Figures

Figure 1-1: Average Predicted Travel Delay in the Study Region in Bangalore
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Notes: This graphs plots the average predicted travel delay on 28 major routes across the
study area of South Bangalore, by day of the week. Travel delay is defined as the number
of minutes to cover one kilometer, i.e. the inverse of speed. (A travel delay of 2 minutes
per kilometer corresponds to 18.6 miles per hour.) The travel time and route length data
is obtained from the Google Maps API. For each route, weekday and departure time (at 20
minute frequency) I queried the typical travel time under normal conditions, as predicted
by Google.
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Figure 1-2: Impact of Departure Time Charges on the Distribution of Departure
Times
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Notes: These graphs plot the impact of departure time charges on the distribution of de-
parture times, in the morning and evening. To construct this figure, for each commuter,
day and departure time relative to the commuter’s mid-point of the congestion charge
rate profile, I compute the number of trips that start approximately at that time, using
an Epanechnikov kernel with bandwidth 20 or 30 minutes for AM and PM, respectively.
Then, for each relative departure time I run a difference-in-difference regression that iden-
tifies the impact of being in any of the charged sub-treatments (either High Rate or Low
Rate) relative to being in the control or information sub-treatments. Each figure plots the
charged sub-treatment times 𝑃𝑜𝑠𝑡 interaction coefficients, as well as pointwise 95% confi-
dence intervals clustered at the individual level. The dimension of the Y axis is the number
of trips at a given departure time, divided by 100. The sample is all non-holiday weekdays
with good quality GPS data, excluding days outside Bangalore. In the post period, only
the first or the last three weeks are included.
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Figure 1-3: Road Technology: Travel Delay Linear in Traffic Volume
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Notes: These graphs show that travel delay is approximately linear in the volume of traffic.

Data. The volume measures are based on GPS data covering 117,527 trips from 1,747 app
users across 185 days (including weekends). In panel A, all weekday trip departure times
are aggregated at the departure time minute level, then smoothed using a local linear
regression with Epanechnikov kernel with 10 minutes bandwidth, and finally normalized
to have mean 1. In panel B, for each date I compute the number of trips per capita (using
the number of app users that day), and again normalize this variable to have mean 1. The
travel delay measures use Google Maps data collected over 28 routes in South Bangalore,
every 20 minutes daily for 185 weekdays. In panel A, I compute the average delay over all
weekdays and routes for each departure time, interpolating at the minute level. In panel
B, I compute the average delay over all routes and departure times, for each day in the data.

The OLS slopes for the two panels are 1.06 (0.06) and 0.97 (0.04), respectively. Table 1.8
reports the regression version of these relationships.61



Figure 1-4: Unpriced Nash Equilibrium and Social Optimum (Policy Simulation)
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Notes: This graph shows the profile of travel delay under the simulated Nash equilibrium for
morning departures (black, dashed line, left axis) and under the social optimum (red, solid
line, left axis). The social optimum is a Nash equilibrium implemented with (equilibrium-
consistent) social marginal charges in Rupees (blue, long dashed line, right axis). Under the
Nash equilibrium, departure time choice probabilities are given by multinomial logit based
on the travel time profile, and the profile itself is determined based on the road technology
formula and aggregate traffic volume at each departure time. It is the end point of an
asynchronous logit “best-response” dynamic whereby 1% of the population updates their
choices each period (and travel delay updates in response). To compute the marginal social
cost of adding a commuter at departure time ℎ𝐷, I compute the new Nash equilibrium with
that (fixed) addition and compute the change in total expected utility. The social optimum
is a Nash equilibrium with the following fixed point property: departure time charges are
exactly the marginal social cost of adding a commuter at that departure time. I compute
the social optimum by updating departure time charges towards the marginal social costs
until convergence.
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Figure 1-5: Policy Simulations with other Preference and Road Technology Param-
eters
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Notes: This graph plots the improvement in average travel times and welfare of going
from the no-toll equilibrium to the social optimum (as a percentage of the value in the no-
toll equilibrium), for various assumptions on preference parameters and road technology.
The black solid line corresponds to the linear road technology from Table 1.8 (𝐷𝑒𝑙𝑎𝑦 =
𝜆0 + 𝜆1𝑉 𝑜𝑙𝑢𝑚𝑒 where 𝑉 𝑜𝑙𝑢𝑚𝑒 is relative volume), while the red dashed line corresponds
to road technology given by a thrid power (𝐷𝑒𝑙𝑎𝑦 = 𝜆0 + 𝜆1𝑉 𝑜𝑙𝑢𝑚𝑒3). The X axis reports
the approximate ratio of early schedule cost (𝛽𝐸) to value of time spent driving (𝛼); at the
center I report results using the estimated value of 𝛽𝐸/𝛼̂ = 0.28 ≈ 1/4; the other estimates
vary this by a factor of 1/4, 1/2, 2 and 4. For each point, I compute the Nash (to toll)
equilibrium and the social optimum for that road technology and preference parameters as
described in Table 1-4, and plot the percentage imporvement in the social optimum relative
to the Nash.
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Table 1.2: Impact of Departure Time Charges on Daily Outcomes
(1) (2) (3)

Time of Day AM & PM AM PM
Commuter FE X X X

Panel A. Total Shadow Rates Today
High Rate × Post -13.9** -7.8** -6.1*

(6.1) (3.8) (3.4)
Low Rate × Post -7.4 -2.8 -4.6

(6.3) (3.7) (3.8)
Information × Post -0.3 -0.2 -0.0

(5.4) (3.3) (3.3)
Post 1.1 -0.9 2.1

(4.9) (2.9) (3.1)
Observations 15,610 15,610 15,610
Control Mean 96.5 48.3 48.2

Panel B. Number of Trips Today
High Rate × Post -0.11 -0.04 -0.06

(0.14) (0.07) (0.07)
Low Rate × Post -0.06 -0.00 -0.07

(0.14) (0.07) (0.07)
Information × Post 0.08 0.05 0.03

(0.13) (0.06) (0.07)
Post 0.04 -0.01 0.06

(0.11) (0.06) (0.06)
Observations 15,610 15,610 15,610
Control Mean 3.05 1.16 1.30

Notes: This table reports difference-in-difference impacts of the departure time sub-
treatments on daily total shadow (per-Km) rates and total number of trips. In panel
A, the outcome is the sum over all trips that day of the trip shadow rate. The shadow rate
for a given trip is between 0 and 100 and is computed based on the trip departure time, the
respondent’s rate profile, and a peak rate of 100 for all respondents. (See Appendix Figure
A3 for an example of rate profile.) In panel B, the outcome is the number of trips that
day. The sample is all non-holiday weekdays with good quality GPS data, excluding days
outside Bangalore. In the post period, only the first or the last three weeks are included.
Column (2) and (3) restrict to the morning interval (7am-1pm) and to the evening interval
(4-10pm), respectively. All specifications include respondent and study cycle fixed effects,
and 𝑃𝑜𝑠𝑡 is an indicator for days during the experiment. The mean of the outcome variable
in the control group during the experiment is reported for each specification. Standard er-
rors in parentheses are clustered at the respondent level. *𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table 1.3: Impact of Departure Time Charges on Trip Shadow Rate
(1) (2) (3) (4) (5)

Time of Day AM & PM AM AM pre peak PM PM post peak
Commuter FE X X X X X

Panel A. Full Sample
High Rate × Post -3.99*** -6.23*** -5.60 -3.12* -5.40*

(1.34) (2.25) (3.50) (1.84) (2.80)
Low Rate × Post -1.85 -2.71 -3.59 -1.33 1.07

(1.41) (2.24) (3.49) (1.96) (3.20)
Information × Post -1.00 -2.32 -0.13 -0.41 0.40

(1.06) (1.81) (2.70) (1.63) (2.53)
Post -0.36 -0.81 -0.95 -0.35 -3.28

(1.09) (1.70) (2.38) (1.76) (2.45)
Observations 43,776 16,764 7,592 18,468 7,899
Control Mean 31.64 41.81 46.98 37.21 44.29

Panel B. Regular Commuters, Home-Work and Work-Home Trips
High Rate × Post -4.97* -7.48** -10.12** -1.54 -8.97

(2.68) (3.38) (4.50) (3.85) (6.15)
Low Rate × Post -4.02 -2.97 -9.12** -5.38 -9.67

(3.18) (3.98) (4.46) (4.90) (7.07)
Information × Post -0.25 0.85 -2.73 -1.15 -1.97

(2.06) (2.96) (3.32) (3.42) (4.60)
Post -2.07 -2.73 -0.94 -3.86 -4.79

(1.97) (2.73) (3.17) (3.40) (5.05)
Observations 11,895 5,789 3,782 4,862 2,113
Control Mean 37.08 44.59 44.91 38.16 42.28

Panel C. Variable Commuters, All Trips
High Rate × Post -1.99 -1.00 -4.41 -4.73 -2.10

(2.90) (5.05) (10.32) (4.26) (7.64)
Low Rate × Post 0.47 -4.28 -6.15 -0.19 11.16

(2.30) (5.35) (9.83) (4.68) (8.67)
Information × Post -1.37 -3.38 -1.07 -1.22 -0.99

(2.21) (4.10) (8.51) (3.41) (6.18)
Post -1.05 -1.27 -0.17 -1.33 -2.45

(2.22) (3.72) (8.07) (3.55) (5.81)
Observations 8,177 2,826 961 3,432 1,439
Control Mean 27.37 34.91 41.51 36.18 41.67

Notes: This table reports difference-in-difference impacts of the departure time sub-
treatments on (per-Km) trip shadow rates. The shadow rate for a given trip is between
0 and 100 and is computed based on the trip departure time, the respondent’s rate pro-
file, and a peak rate of 100 for all respondents. The sample of users and days, and the
specifications, are the same as in Table 1.2. In addition, columns (3) and (5) respectively
restrict to trips before the morning peak (between 7 am and the mid-point of the AM rate
profile), and after the evening peak (between the mid-point of the PM rate profile and 10
pm). Panel B restricts to regular commuters and direct trips between their home and work
locations, and panel C restricts to variable commuters. Standard errors in parentheses are
clustered at the respondent level . *𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table 1.4: Impact of Area Charges on Daily Outcomes
(1) (2) (3) (4) (5) (6)

Time of Day AM & PM AM PM AM & PM AM PM
Commuter FE X X X X X X

Panel A. Total Shadow Charges Today

Treated -22.8*** -13.2*** -9.6***
(5.5) (3.4) (3.3)

Treated in Week 1 -26.2*** -16.3*** -9.9*
(8.3) (5.0) (5.3)

Treated in Week 4 -19.2* -9.9* -9.3*
(10.1) (6.0) (5.5)

Observations 8,878 8,878 8,878 8,878 8,878 8,878
Control Mean 107.7 54.4 53.3 107.7 54.4 53.3

Panel B. Number of Trips Today

Treated 0.17** 0.12** 0.06
(0.08) (0.05) (0.05)

Treated in Week 1 0.06 0.04 0.01
(0.13) (0.07) (0.09)

Treated in Week 4 0.30* 0.20** 0.10
(0.16) (0.08) (0.10)

Observations 8,878 8,878 8,878 8,878 8,878 8,878
Control Mean 2.50 1.13 1.37 2.50 1.13 1.37

Notes: This table reports difference-in-difference impacts of the Area treatment on daily
total shadow charges and total number of trips. In panel A, the outcome is the sum over
all trips that day of the trip shadow charge. The shadow charge of a trip is equal to 100
if the trip intersects the respondent’s congestion area, and 0 otherwise. In panel B, the
outcome is the number of trips that day. The sample is all non-holiday weekdays with good
quality GPS data, excluding days outside Bangalore. In the post period, all days except
trial days are included. Column (2) and (5) restrict to the morning interval (7am-2pm),
and columns (3) and (6) to the evening interval (2-10pm). The sample is restricted to the
243 participants in the Area treatment. The Treated dummy is equal to one in the week
when the individual is treated (first and fourth week of the experiment for “early area” and
“late are” sub-treatment commuters, respectively) and zero otherwise. All specifications
include respondent and study cycle fixed effects. The mean of the outcome variable in the
control group in weeks one and four of the experiment is reported for each specification.
Standard errors in parentheses are clustered at the respondent level. *𝑝 ≤ 0.10, **𝑝 ≤ 0.05,
***𝑝 ≤ 0.01
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Table 1.5: Impact of Area Charges on Trip Duration and Trip Shadow Charge
(1) (2) (3) (4) (5) (6)

Time of Day AM & PM AM PM AM & PM AM PM
Route FE X X X X X X

Panel A. Trip Shadow Charge

Treated -22.5*** -25.9*** -19.0***
(3.4) (3.8) (4.1)

Treated in Week 1 -23.6*** -26.1*** -21.5***
(4.9) (5.0) (6.3)

Treated in Week 4 -21.3*** -25.6*** -16.1**
(6.4) (7.4) (7.0)

Observations 7,455 4,108 3,347 7,455 4,108 3,347
Control Mean 83.4 85.1 81.3 83.4 85.1 81.3

Panel B. Trip Duration (minutes)

Treated 0.52 0.66 0.40
(0.72) (0.74) (1.29)

Treated in Week 1 -1.14 -0.53 -1.55
(0.97) (1.04) (1.74)

Treated in Week 4 2.49** 2.05 2.72
(1.09) (1.25) (1.80)

Observations 7,455 4,108 3,347 7,455 4,108 3,347
Control Mean 40.81 39.15 42.73 40.81 39.15 42.73

Notes: This table reports difference-in-difference impacts of the Area treatment on trip
shadow charge (panel A) and on trip duration (panel B). The shadow charge of a trip is
equal to 100 if the trip intersects the respondent’s congestion area, and 0 otherwise. The
sample of users and days are the same as in Table 1.4, except that we restrict to regular
commuters and direct home to work or work to home trips. All specifications include
route fixed effects. Standard errors in parentheses are clustered at the respondent level .
*𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table 1.6: Impact of Area Charge Sub-Treatments on Daily Outcomes
(1) (2) (3) (4)

Commuter FE X X X X

Panel A. Total Shadow Charges Today

Treated -22.8*** -21.4*** -25.0*** -23.6**
(5.5) (7.4) (5.9) (11.1)

Treated × High Rate -3.0
(9.6)

Treated × High Rate Day 5.4
(5.4)

Treated × Short Detour 3.2
(12.0)

Observations 8,878 8,878 8,878 5,417
Control Mean 107.7 107.7 107.7 110.6

Panel B. Number of Trips Today

Treated 0.17** 0.09 0.24** 0.19
(0.08) (0.09) (0.10) (0.13)

Treated × High Rate 0.17
(0.14)

Treated × High Rate Day -0.16*
(0.10)

Treated × Short Detour -0.07
(0.16)

Observations 8,878 8,878 8,878 5,417
Control Mean 2.50 2.50 2.50 2.53

Notes: This table reports difference-in-difference impacts of Area sub-treatments on daily
total shadow charges and total number of trips. For outcome definitions and specifications
see the notes for Table 1.4. The sample is the same as in Column (1) in Table 1.4. In
column (4) the sample consists of the 148 Area participants for whom candidate areas
included at least one with short detour (3-7 minutes) and at least one with long detour
(7-14 minutes). (See section 1.4 for more details.) The specification in column (4) includes
fixed effects for each day in the experiment. Standard errors in parentheses are clustered
at the respondent level. *𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table 1.7: Structural Parameter Estimates
(1) (2) (3) (4) (5) (6)

Value of time
𝛼 (Rs/hr)

Schedule cost early
𝛽𝐸 (Rs/hr)

Logit inner 𝜎
(dep. time.)

Logit outer 𝜇
(route)

Probability
to respond 𝑝

Ratio
𝛼/𝛽𝐸

1,121.9 319.4 36.5 36.9 0.46 3.51
(318.7) (134.5) (65.4) (9.3) (0.13) (1.11)

Notes: This table reports structural estimates of model parameters using two-step GMM
with 69 moments. The first set of moments match the difference in difference average
number of trips in each of 61 departure time bins (between −2.5 and +2.5 hours around
the peak-hour, in 5 minute increments). Two moments match the variances of individual
changes in shadow charges for trips between the morning rate profile peak and two hours
earlier, in treatment and control. Two moments match the probability to intersect the
congestion area with and without area charges. Four moments match the fraction of
commuters whose sample frequency to intersect the congestion area lies in the middle
third and top third of the unit interval, with and without area charges. Data on the
distributions of travel times at different departure times and routes was collected from
Google Maps. Model simulation details are described in Section 1.6. The two-step GMM
is estimated with 100 random initial conditions. The cost of late arrival is held fixed at
𝛽𝐿 = Rs.Â 4, 000 (Appendix Figure A8 shows that the objective function is mostly flat
for 𝛽𝐿 ≥ Rs.Â 4, 000. Appendix Table A7 shows that results are essentially unchanged by
using 𝛽𝐿 = Rs.Â 1, 000 or 𝛽𝐿 = Rs.Â 8, 000). Standard errors from 100 bootstrap runs are
shown in parentheses.
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Table 1.8: Road Technology: Travel Delay Linear in Traffic Volume
(1) (2) (3) (4)

Dependent Variable: Google Maps Travel Delay (min/km)
Sample: Departure Time Dates

Traffic Volume 1.06*** 1.15*** 0.97***
(0.06) (0.12) (0.04)

Traffic Volume Exponent 𝛾 0.89***
(0.15)

GPS Travel Delay (min/km) 1.00***
(0.04)

Constant 2.14*** 2.08*** -0.10 2.19***
(0.03) (0.06) (0.12) (0.04)

Observations 1,440 1,440 1,440 185
Traffic Volume Std.Dev. 0.69 0.69 0.16
𝑅2 0.94 0.94 0.95 0.56

Notes: Table version of Figure 1-3 and Appendix Figure A9. This table shows that travel
delay – measured either using Google Maps or GPS data – is approximately linear in the
volume of traffic.

Data. The volume measures are based on 117,527 trips from 1,747 app users across 185
days (including weekends). Google Maps travel delay was collected over 28 routes in
South Bangalore, every 20 minutes daily for 207 days (including weekends).

Variables and Sample. In the first and second columns, all weekday trip departure
times are aggregated at the departure time minute level, then smoothed using a local
linear regression with Epanechnikov kernel with 10 minutes bandwidth, and finally
normalized to have mean 1; I compute the average delay over all weekdays and routes for
each departure time, interpolating at the minute level. In the last column, for each date
I compute the number of trips per capita (using the number of app users that day), and
again normalize this variable to have mean 1; I compute the average delay over all routes
and departure times, for each day in the data. GPS travel delay in column 3 is computed
based on the GPS trips data. The sample is all weekday trips without any stops along
the way, and with a trip diameter to total length ratio above 0.6 (the 25th percentile).
For each departure time that is a multiple of 20 minutes, I compute the median delay of
all trips starting around that departure time (weighting each trip using an Epanechnikov
kernel with bandwidth 20 minutes around the reference departure time), then interpolate
the result at the minute level.

Specifications. Columns 1, 3, and 4 report OLS regression with Google Maps Delay
as outcome, with Newey-West standard errors, with three-hour lag in columns (1) and
(3), and 10 day lag in column (4). Column 2 reports results from a nonlinear regression
𝐷𝑒𝑙𝑎𝑦ℎ = 𝜆0 + 𝜆1𝑉 𝑜𝑙𝑢𝑚𝑒𝛾

ℎ with HAC standard errors with Newey-West kernel and three-
hour lag.*𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table 1.9: Travel Times and Welfare in the Unpriced Nash Equilibrium and in the
Social Optimum

(1) (2) (3) (4)

Nash Social
Optimum Improvement Improvement

(% of Nash)

Panel A. Benefits and Welfare
Travel Time (minutes) 38.7 37.7 -1.04 -2.69%
Welfare (Rupees) -773.4 -769.0 4.46 -0.58%

Panel B. Benefits and Welfare Relative to Free-flow
Travel Time (minutes) 15.4 14.4 -1.04 -6.77%
Welfare (Rupees) -337.8 -333.3 4.46 -1.32%

Notes: This table reports average travel times and welfare under the decentralized unpriced
Nash equilibrium and under the social optimum. In panel B travel times and welfare are
computed relative to the "free-flow" benchmark, where delay is constant at 2.14 minutes
per kilometer regardless of traffic volume. (The average trip length is 10.9 Km.) Travel
times are calculated taking individual route length into account, and welfare is the sum
over all simulation agents of expected utility, including travel time and scheduling costs,
and assuming charges are transferred lump-sum back to commuters. Columns 3 and 4
report the improvement from the unpriced Nash to the social optimum, in levels and as a
fraction of the baseline (Nash) value.
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Chapter 2

Citywide effects of high-occupancy
vehicle restrictions: Evidence from
“three-in-one” in Jakarta
joint with Rema Hanna, Benjamin A. Olken

Abstract
Widespread use of single-occupancy cars often leads to traffic congestion. Using
anonymized traffic speed data from Android phones collected through Google Maps,
we investigated whether high-occupancy vehicle (HOV) policies can combat conges-
tion.We studied Jakarta’s “three-in-one” policy, which required all private cars on
two major roads to carry at least three passengers during peak hours. After the
policy was abruptly abandoned in April 2016, delays rose from 2.1 to 3.1 minutes
per kilometer (min/km) in the morning peak and from 2.8 to 5.3 min/km in the
evening peak. The lifting of the policy led to worse traffic throughout the city, even
on roads that had never been restricted or at times when restrictions had never been
in place. In short, we find that HOV policies can greatly improve traffic conditions.1

1 We thank D. Acemoglu, M. Anderson, A. Banerjee, and M. Turner for helpful comments; A.
Yansyah, Jakarta Transportation Agency (Dishub) for technical advice; and M. Fryar, Z. Hitzig,
W. Perdhani, and F. Siregar for helpful assistance. This project was financially supported by the
Australian Government’s Department of Foreign Affairs and Trade. All views expressed in the paper
are those of the authors alone, and do not necessarily reflect the views of any of the institutions or
individuals acknowledged here. All data and programs are available at http://dx.doi.org/10.7910/
DVN/48U7GP. This paper was published as Hanna, Rema, Kreindler, Gabriel and Olken, Benjamin
A. (2017), Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in
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Traffic congestion is a scourge of cities everywhere. In U.S. metropolitan areas
such as New York, Washington, and Atlanta, people spend, on average, more than
an hour a day commuting to and from work [McKenzie and Rapino, 2011]. In many
developing countries, the figures are similar or even worse, with individuals spending
on average 50min per day commuting in Mumbai and more than 1.5 hours per day
in SÃ£o Paolo and Rio de Janeiro [Baker et al., 2005, Pereira and Schwanen, 2013].
In addition to wasted time, traffic congestion may influence urban economic activity,
affecting important decisions from where to live to which jobs one would be willing to
take.Moreover, it constitutes a substantial cause of health hazards from air pollution
[Knittel et al., 2016].

A commonly cited reason for congestion is the inefficiency of single-occupancy
vehicles, which use a substantial amount of road capacity for each passenger trans-
ported. In response, one policy prescription is to restrict certain lanes or roads
to vehicles carrying multiple passengers. First begun in the 1970s, so-called “high-
occupancy vehicle” (HOV) lanes were introduced in Washington,New York, and Cali-
fornia and have spread throughout metropolitan areas both in the United States and,
somewhat, internationally [Fuhs and Obenberger, 2002].

Yet, the benefits of HOV restrictions are unclear, with this type of policy re-
maining quite controversial. The main concern is that HOV lanes are underused
[Dahlgren, 1998, Kwon and Varaiya, 2008]. By restricting certain lanes to HOV traf-
fic, these policies reduce the amount of available road space available for regular, sin-
gle occupancy traffic. If not enough people are induced to carpool by the existence of
the HOV lanes, these policies could potentially make traffic worse in the remaining
lanes. They may also have spillovers, either positive or negative, on other routes,
depending on how drivers change their routes in response to changes in congestion in
the HOV lanes. The equilibrium traffic response from implementing the restrictions
is difficult to predict theoretically because it depends on the full traffic network and
the full network of drivers’ origins, destinations, times of departure, and preferences.
Indeed, the well-known Braess’s Paradox states that adding more roads can actually
increase equilibrium congestion [Steinberg and Zangwill, 1983], so what happens is
ultimately an empirical question.

We examine this question empirically by analyzing the elimination of perhaps the
most extreme HOV restrictions anywhere in the world: the “three-in- one” policy in
Jakarta, Indonesia. This is an ideal setting to study traffic congestion policies. With
a population of more than 30 million, Jakarta is the world’s second-largest metropoli-
tan area, second only to Tokyo [Indonesian Central Bureau of Statistics (BPS), 2015a,
Indonesian Central Bureau of Statistics (BPS), 2015b]. Virtually all commuters in

Jakarta, Science, 357 (6346), 89–93.
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the region use the roads in some form or another; the city has no subway or light-rail
system and only a limited commuter rail network. Not surprisingly, it has some of
the world’s worst traffic: A recent study of cities using Global Positioning System
data found that the typical Jakarta driver experienced an average of 33,240 “stops
and starts” in traffic per year, the worst in the world. By this metric, traffic jams
in Jakarta are more than twice as severe as the worst-ranking U.S. city, New York,
where drivers average only 16,320 stops and starts [Castrol, 2014].

Under the three-in-one policy, first introduced in 1992 and unchanged since 2004,
all private cars during the morning rush (7:00 to 10:00 a.m.) and evening rush
(4:30 to 7:00 p.m.) on the main streets of Jakarta’s central business district (CBD)
were restricted to those carrying at least three individuals. This included the 12-
lane Jalan Sudirman, the city’s main artery and home of the stock exchange, the
education ministry, large shopping malls, and numerous corporate headquarters, as
well as several other main thoroughfares (see Figure 2-1). By requiring at least three
individuals, the policy was more stringent than the common HOV2+ lane policies.

The policy was not necessarily popular, with many believing that it did little
or nothing to help reduce Jakarta’s notorious traffic [Mochtar and Hino, 2006]. Al-
though police were posted at the entrances of the three-in- one zone and routinely
stopped cars in violation, with a maximum fine of Rp. 500,000 ( USD 37.50),
there was a potential workaround: The policy had led to the development of profes-
sional passengers, called “jockeys,” who stood by the road near three-in-one access
points and provided an additional passenger in exchange for around Rp. 15,000
(USD 1.20). In fact, a single driver in need of two additional passengers could hire
a mother and child standing on the side of the road to gain another two bodies
[Jakarta Globe, 2012].

In this paper, we study the effects of the elimination of the three-in-one policy on
traffic speeds throughout the city using innovative, high-resolution anonymized data
collected from Android phones through Google Maps. On Tuesday, 29 March 2016,
the Jakarta government unexpectedly announced the abolition of the three-in-one
restrictions, effective 7 days later. They initially announced a 1-week trial; thiswas
then extended for another month and then the policy was permanently scrapped on
10 May 2016. To study the impact of this change, starting two days after the first an-
nouncement (Thursday afternoon, 31 March), we began collecting real-time data on
driving speeds on several main roads in Jakarta-including some roads affected by the
three-in-one policies and alternate unaffected routes-by querying the Google Maps
application programming interface (API) for each route every 10 min, 24 hours per
day. This “live” data captures current travel conditions based on real-time reporting
of traffic conditions from Android smartphone users and is intended for real-time
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navigation.
To study the effects, we rely on two alternative counterfactuals. First, we use

preperiod data from the 2 to 3 days before the policy change took effect. Second, we
take advantage of Google’s own innovative prediction algorithms by asking Google to
predict the expected trip duration for each route, day of the week, and departure time
under typical traffic conditions. These predictions essentially use all of Google’s data
on average road speeds. We show that both counterfactuals are virtually identical.

We collected data in two phases. Starting on 31 March at 4:40 p.m. local time,
about 48 hours after the announcement but 2.5 “weekday” days before the three-in-
one policy was lifted,we began collecting traffic data in both directions on three main
roads (see Figure 2-1) - Jalan Sudirman, Jakarta’s main artery and a road subject to
the HOV policy, and two alternate roads that run parallel to parts of Jalan Sudirman
that were never subject to the HOV policy: Jalan Rasuna Said (another main CBD
road with many office towers) and Jalan Tentara Pelajar (an artery leading into the
CBD from the southwest). Thus,we have data from both before and after the policy
was lifted, as well as the predicted speeds described above. Starting on 28 April
2016,we expanded our data set to include an additional previously HOV road, Jalan
Gatot Subroto, as well as eight alternate routes that had never been subject to HOV
restrictions that were suggested to us by the Jakarta Department of Transportation.
As with the earlier roads, we also queried the “predicted” business-as-usual data for
comparison. More details on the data can be found in the supplementary materials.
2

The data from before the policy was lifted reveal that traffic was clearly bad. We
focused on delay, defined as the number of minutes to move one kilometer (i.e., delays
are defined as the inverse of speed). Delays averaged 2.8min/km on the former HOV
road from 7:00 a.m. to 8:00 p.m. and 3.2 and 2.2 min/km on the two alternate roads
(see table S1). Certain time intervals had considerably worse congestion, up to 3.6
and 4.4 min/km. By comparison, average delay is 0.7 min/km (53 mph) on the Los
Angeles highways studied in Anderson (15). In Delhi, another congested city, delays
are 2.6 to 2.7 min/km on average between 8:00 a.m. and 8:00 p.m. over many routes
across the city (16).

The preperiod data also contains suggestive evidence that the HOV policywas
effective in reducing traffic at the restricted times of the day. Specifically, on Jalan
Sudirman, the delaywas lower during the morning and evening peaks, relative to
the midday off-peak and the hour after the evening peak, respectively. On the two
nonrestricted roads, the opposite pattern holds. In fact, Jalan Sudirman traffic was
abruptly worse right after the end of the two restricted time periods (fig. S1).

2Supplementary materials are available at www.sciencemag.org/content/357/6346/89/suppl/DC1.
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We begin our analysis of the lifting of the policy by comparing traffic right be-
fore and after the policy. In Figure 2-2, we graph the average delay in minutes per
kilometer on the weekdays for the former HOV road Jalan Sudirman (Figure 2-2A),
as well an alternate road, Jalan Rasuna Said (Figure 2-2B); results for an additional
alternate road, Jalan Tentara Pelajar, are in fig. S2. We average delay over both
road directions (north and south) because there are strong traffic flows in both di-
rections at both times (disaggregated results are in fig. S3). The dashed line denotes
the preperiod days of 31 March (from 4:40 p.m. onward), 1 April, and 4 April,
whereas the solid line denotes the postperiod from 5 April to 4 May. We started by
examining only what occurred during the first month after the policy change so that
our postperiod would be as comparable as possible to the preperiod. The concern
is that factors-e.g., citywide changes in school schedules, income, and weather-may
eventually change over time.We lift this restriction below to explore what happens
over time. Bootstrapped 95% confidence bands, bootstrapped pointwise, and clus-
tered by date and direction, are shown shaded. For convenience, vertical lines mark
the morning and evening peak-hour intervals during which the three-in-one policy
was in effect during the preperiod.

Traffic clearly increased after the HOV policy was lifted. On the former HOV road
(Figure 2-2A), we observed traffic increasing in both the morning and evening peak.
This could be due to one of two factors: (i) after the abolition of the three-in-one
policy, the number of car trips increased and there are more cars on the road (e.g.,
people stopped carpooling, stopped using bus transit, or increased their likelihood of
travel to and from the CBD) or (ii) the number of cars on the road is the same, but
people changed the times of day when they travel or their routes. Figure 2 shows
that (ii) is unlikely to play a large role. If anything, we observe an increase in traffic
on the former HOV road during nonpeak hours (Figure 2-2A), especially after 7:00
p.m., when HOV restrictions were never in place.

Moreover, we do not observe any changes in traffic on the alternate routes in
the morning peak hours and actually observe an increase in traffic on the alternate
routes in the evening rush hour. This implies that individuals are not just changing
their travel time or routes but rather that there is more traffic overall throughout
the city.

Table 2.1 formalizes Figure 2-2 and allows us to quantify the magnitudes. Specif-
ically, we estimated, separately for each road segment and time period, the following
equation

𝑑𝑒𝑙𝑎𝑦𝑖𝑑ℎ = 𝛼 + 𝛽 × 𝑝𝑜𝑠𝑡𝑑 + 𝛾 × 𝑛𝑜𝑟𝑡ℎ𝑖 + 𝜀𝑖𝑑ℎ

where 𝑑𝑒𝑙𝑎𝑦𝑖𝑑ℎ is the average travel delay in minutes per kilometer for segment 𝑖
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on date 𝑑 and for departure time ℎ, 𝑛𝑜𝑟𝑡ℎ𝑖 is an indicator for whether segment 𝑖 is
northbound, and 𝑝𝑜𝑠𝑡𝑑 is an indicator for dates after the lifting. 𝛽 is the coefficient
of interest, providing the difference in average delays after the policy is lifted relative
to before. Each column in Table 2.1 restricts the sample of departure times ℎ. We
provide 𝛽 for both the morning (column 2) and evening rush hours (column 4) where
three-in-one restrictions were in place in the preperiod, as well as the nonpeak periods
(columns 1, 3, 5, and 6) that were always unrestricted on all roads. Standard errors
are clustered by date times direction.

The results in Table 2.1 echo the graphical findings from Figure 2-2. Table
2.1A shows that traffic is worse on the former HOV road after the policy is lifted.
Specifically, we observe a 0.98 min/km increase (46% increase over the control mean
of 2.14 min/ km) in travel delay during the morning rush hour (significant at the
1% level, column 2) after the policy is lifted and a 2.5 min/km (87%) increase in
the evening rush hour (significant at the 1% level, column 4). This translates into a
decline in average morning rush hour speeds from 28 to 19 km/hour in the morning
and a decline in evening rush hour speeds from 21 to 11 km/hour. The resulting
speeds after the policy-lifting are extremely slow; by comparison, typical walking
speeds are about 5 km/hour.

Perhaps more surprising, the elimination of the HOV restrictions during the morn-
ing and evening rush - from 7:00 to 10:00 a.m. and from 4:30 to 7:00 p.m.-also led
to increases in congestion at other times of the day when no HOV restrictions were
in place in the preperiod. Specifically, traffic delays also increase by 2.0 min/km
(55during the hour immediately after the evening peak (i.e., from 7:00 to 8:00 p.m.),
which was never restricted, even during the HOV policy period. Likewise, traffic
delay increases by 0.55 min/km during the midday period, which was also never
restricted. This implies that individuals are not simply substituting away from trav-
eling at other time periods once the three-in-one policy is lifted. We do not observe
any change in traffic either in the hour before the morning rush hour (Table 2.1,
column 1) or at night (Table 2.1, column 6).

We then turn to examine whether there were any positive or negative spillover
effects of the HOV restrictions on other roads. One might expect that, after the
elimination of the HOV restrictions, congestion should decrease on these alternate
routes, because traffic induced to use these routes would revert back to Sudirman
once it became open. Yet we find the opposite; delays on the main alternate route
(Jalan Rasuna Said) also increase, by 0.60 min/km (14%), during the evening com-
mute.Delays also increase during the middle of the day and in the 7:00 to 8:00 p.m.
evening period. We find broadly similar effects on Jalan Tentara Pelajar, another
alternate route (see table S2). In short, these spillovers to other time periods and the
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alternative roads imply an overall negative general equilibrium effect on traffic con-
gestion when the HOV policy is lifted, even at times or on routes that had previously
not been affected by the policy.

We next extend the analysis in two ways: We explore (i) what happened to traffic
over time, as individuals learned that traffic conditions worsened over time, and (ii)
what was happening in the rest of the road network. For this analysis, we use the
second phase of our data collection, adding another former three-in-one road and a
larger set of eight alternate routes suggested by the Jakarta government. For these
routes and dates, we do not have comparable pre-policy-lifting “live” data; instead,
we rely on our second counterfactual, the Google Maps’ predicted travel time data.
The supplementary materials show, using a variety of checks, that this counterfactual
appears reasonable; importantly, due to time lags and smoothing in their prediction
algorithm, this predicted data does not take into account the change in policy.

Figure 3 graphs the live post-policy-lifting data against the predicted traffic data
for the extended set of HOV roads (Figure 2-3A) and alternate routes (Figure 2-3B)
for 28 April to 3 June. Table 2.2 provides the corresponding regressions. As before,
we observed an increase in traffic for both the morning and evening rush hours for the
former HOV roads after the policy is lifted; the evening rush hour delay is nearly 70%
higher than the predicted delay (column 4 of Table 2.2A). We also observed both an
increase in traffic in the non-rush hour times of the former HOV roads (Table 2.2A)
and an increase in traffic on the alternate routes (Table 2B). In fact, the alternate
routes experienced an increase in delay from 3.08 to 3.72 min/km (21% increase)
in traffic delays in the midday period, an increase from 3.61 to 4.67 min/km (29%
increase) in the evening rush hour, and an increase from 3.25 to 4.35 min/km (34%
increase) in the hour after rush hour.

Examining the effects day by day, we found that the effect of the policy appeared
immediately after the policy was lifted and persisted over time on both the HOV and
alternate roads. Delay dropped during the holiday of Lebaran (when many Jakarta
residents leave Jakarta to travel to their native regions) and increased again relative
to the predicted after the holidays, albeit to a lesser extent (see figs. S4, S5, and S10
to S12).

There are several potential reasons why eliminating HOV restrictions could lead
to a general equilibrium increase in congestion. The most parsimonious explanation
is that more people were induced to drive; once people decided to drive during peak
hours, they also used their cars at other times of day and on other roads, creating
more traffic.

However, other explanations could explain our findings. For example,HOV re-
strictions may have prevented hypercongestion on the targeted roads. Hypercon-
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gested conditions describe a situation in which an increase in density of vehicles
on the roads decreases average speeds by so much that the total flow of cars over
the road actually falls [Geroliminis and Daganzo, 2008b]. If eliminating the HOV
restriction resulted in the emergence of hypercongestion on the affected roads, the
total amount of volume handled by these roads would have fallen, forcing more traffic
onto other roads and worsening speeds throughout the city (see the supplementary
materials for a stylized example). Another potential reason is through the feeder
aspect of the road network. It is possible that some people were trying to get to the
now-congested CBD and that the congestion in the CBD spilled back to other parts
of the network.

Although our data do not allow us to disentangle these hypotheses directly, the
fact that we saw spillovers on other times of the day, and even on one alternate route
that heads away from the CBD, suggests that there may have been more cars on the
road.

Importantly, the magnitude of the policy effects is quite remarkable and consid-
erably larger than those of other policies documented in the literature For example,
in the 7:00 to 8:00 p.m. time period- when three-in-one was never in effect-we find
that eliminating three-in-one led to increases of delays of 1.3 to 2 min/km, even on
alternate roads. By contrast, estimates are that the London Congestion Charge led
to a decrease in delay of 0.6min/km [Transport for London (TfL), 2006]. Anderson
[Anderson, 2014b] found that a public transport strike in Los Angeles led to an in-
crease of between 0.2 and 0.4 min of delay per mile during peak hours on highways
throughout the city. Kreindler [Kreindler, 2016b] studied the introduction of short-
term driving restrictions based on license plate numbers in Delhi and, using similar
Google Maps data, found an improvement of 0.2min/km across the city, and other
studies of even-odd restrictions have found small effects due to household behavioral
responses [Davis, 2008b, Gallego et al., 2013].

These relatively large effects are even more notable given the challenges of im-
plementing HOV policies in a developing country. In particular, as discussed above,
in Jakarta, there was a widespread practice of hiring “jockeys” to serve as extra pas-
sengers in order to enter the three-in one restricted areas. Had the widespread use
of jockeys compromised the policy, we would expect little or no effect of the lifting.
The evidence emphatically rejects this view, because the lifting of three-in-one made
a large difference to traffic congestion.

In sum, we show that the lifting of Jakarta’s three-in-one policy not only had ef-
fects on traffic on former HOV roads but also had spillovers to alternative roads and
time periods. The results therefore suggest that quantity restrictions on severely con-
gested roads can have beneficial spillover effects on traffic throughout the city,whether
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by potentially eliminating hypercongestion or by getting cars off the road. We can-
not decisively say, however,whether the three-in-one policy improved welfare. This
depends on how commuters with cars value the alternatives to single-occupancy
cars (e.g., carpooling, taxi, public transport, or not traveling). However, given the
extremely high congestion levels, we can infer that the wedge between private and so-
cial cost is also high, making it likely that the equilibrium after the lifting is severely
inefficient.

83



2.1 Figures

Figure 2-1: Routes included in the analysis
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Notes: (1) Former three-in-one road (Jalan Sudirman, red and orange). (2) Former three-
in-one road (Jalan Gatot Subroto, orange). (3) Unrestricted alternate road (Jalan Rasuna
Said, blue). (4) Unrestricted alternate road (Jalan Tentara Pelajar, blue). (5) Eight
unrestricted alternate routes from the Jakarta Department of Transport (gray). Routes
from the first phase of data collection are drawn with thin lines: 1 (red), 3 (blue), and 4
(blue). [Map data from Google, 2017]
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Figure 2-2: Effect of three-in-one policy-lifting
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Notes: (A) Former three-in-one restricted road (Jalan Sudirman) and (B) unrestricted
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Figure 2-3: Effect of three-in-one policy-lifting on expanded set of routes using “pre-
dicted” counterfactual.
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Chapter 3

Billions of Calls Away from Home:
Measuring Commuting and
Productivity inside Cities with
Cell Phone Records
joint with Yuhei Miyauchi

Abstract

We show how urban commuting flows extracted from cell phone transaction data can
be used to measure the spatial distribution of income and economic activity within
cities. We use data from Dhaka and Colombo to construct commuting flow matrices
for several million users in each metropolis, with fine spatial coverage and daily
frequency. We relate commuting to productivity using a model of workplace choice
that predicts a gravity equation. We recover workplace labor productivity values that
rationalize observed commuting patterns; this procedure essentially assigns higher
productivity to locations with higher in-commuting, ceteris paribus. Empirically, we
show that commuting flows from cell phone data correlate strongly with flows from
a transportation survey in Dhaka. We then show that model-predicted income is a
robust predictor of self-reported survey income. We apply our method to measure
spatial and temporal variation in economic activity. First, we compare the urban
economic structures of Dhaka and Colombo. Secondly, we calculate the economic
costs of hartals (a form of strike) and find that people travel less on hartal days, an
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effect concentrated on routes with high predicted income.1

3.1 Introduction
Measures of urban economic activity at fine temporal and spatial scale are important
yet scarce. Such data is useful for researchers and policy-makers to understand how
cities respond to shocks such as floods or industry-specific demand shocks, as well as
to urban policies such as transportation infrastructure improvements, or to monitor
informal economic activity not covered by tax records. Traditionally, fine grained
economic data is only available infrequently and often with long delays, such as from
population and economic censuses. These issues are especially salient in large cities
in developing countries, which are growing fast (commonly by 30-40% per decade2)
and thus experiencing high urban environment stress, yet which are least covered by
conventional data sources.

In this paper we measure economic activity indirectly, based on urban commuting
flows. The logic of our approach is simple. A core function of cities is to connect
workers and jobs. While many factors enter into workplace choice decisions, areas
with high labor productivity should disproportionately attract commuting workers,
keeping distance and worker home locations fixed. This suggests a revealed preference
approach to measure high economic activity areas based on the pattern of observed
commuting flows.

We formalize this intuition using an urban economic model of commuting flows
derived from individual utility maximizing behavior. The model relates aggregate
bilateral commuting flows and commuting time costs, which appear in the data, and

1The authors are grateful to the LIRNEasia organization for providing access to Sri Lanka cell
phone data and an excellent working environment, and especially to Sriganesh Lokanathan, Senior
Research Manager at LIRNEasia, whose dedication and relentless efforts made this project possible.
The authors are also grateful to Ryosuke Shibasaki for navigating us through the cell phone data in
Bangladesh, as well as Anisur Rahman and Takashi Hiramatsu for the access to the DHUTS data in
Bangladesh. We sincerely thank Alexander Bartik, Abhijit Banerjee, Sam Bazzi, Arnaud Costinot,
Esther Duflo, Seema Jayachandran, Sriganesh Lokanathan, Danaja Maldeniya, Ben Olken, members
of the LIRNEasia BD4D team (Dedunu Dhananjaya, Kaushalya Madhawa, and Nisansa de Silva),
and seminar participants at MIT, LIRNEasia, NEUDC 2016, and the Harvard Urban Development
mini-conference for constructive comments and feedback. We thank Danaja Maldeniya for providing
an early version of the Hadoop code used to process trips from the raw cell phone data. We also
thank Laleema Senanayake and Thushan Dodanwala for assistance processing GIS and census data
in Sri Lanka. We gratefully acknowledge funding from the International Development Research
Centre (IDRC) for the analysis of Sri Lanka data and International Growth Center (IGC) for the
analysis of Bangladesh data.

2Author calculation based on [DESA, 2016, UN DESA].
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wages, or workplace productivity levels, which we seek to estimate. The relationship
takes the form of an unconstrained gravity equation on log commuting flows, with ori-
gin and destination fixed effects. Inverting this relationship to derive wages amounts
to estimating the gravity equation and recovering the destination fixed effects.

To implement this approach, we use two data sets of commuting flows extracted
from cell phone transaction data in Sri Lanka and in Bangladesh. Together, they hold
information on almost half a billion days with commuting data. We first confirm that
our measure indeed captures commuting flows, by comparing it with a commuting
survey from Dhaka. We find that the two measures line up well, even when controlling
for travel time, meaning that commuting flows from cell phone data pick up subtle
route-specific variations in commuting flows. The advantage over conventional data
sources is the much higher sample size, as well as very fine geographic resolution at
the level of cell phone towers, and daily time variation.

To validate our model-based approach of inferring relative productivity, we com-
pare model-predicted income and income from the transportation survey in Dhaka.
The model prediction is derived purely from commuting flows and the matrix of
commuting travel times. We find a strong correlation with self-reported income from
the survey, at the origin-destination pair level. The model-predicted income measure
depends on how much commuting time and idiosyncratic shocks affect productivity
(in addition to affecting utility). We show how these parameters – as well as the
Fréchet shape parameter – can be directly estimated using the survey income data,
and we find that distance is a pure utility cost, while idiosyncratic shocks contribute
partially to productivity.

We show how the constructed income and economic activity measures can be
used in practice with two applications that roughly map on the space and time
dimension of the data. We first compare the city profiles of Dhaka and Colombo in
terms of population and average incomes at the residential and employment locations
level, and find that Colombo has a distinctly more concentrated Central Business
District in terms of employment population and income. In the second application,
we estimate the economic impact of hartals, a form of strike action intended to disrupt
transportation that is common in Bangladesh [Duncan, 2005, UNDP]. We find that
on hartal days, people travel less along both extensive and intensive margins, and this
effect is biased towards high-income commuting links. Using the model estimated on
non-hartal days, and assuming commuters receive the income of the destination, we
account for a 4.6% decrease in output on hartal days relative to usual workdays (95%
CI of 0.9 to 8.6% decrease). For reference, Fridays (the main free day in Bangladesh)
are associated with a 11% decrease in output using this measure.

Our project has two main contributions. We explore a model linking commuting
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and destination location productivities, and show that the model predictions are
generally satisfied. Secondly, we show that the model and model output are useful
in practice for measuring spatial and temporal changes in economic activity.

This project contributes to several strands of literature. Our proof of concept
method is applicable to many data-scarce large cities in developing countries, and
it should be of interest to researchers and urban planners alike. Similar to night-
lights data from satellites [Henderson et al., 2012], we show how big data can be
used to infer economic activity over space and time. Our focus is on distinguishing
differences within cities, and using the model we can compute how income “moves”
across the city, specifically to compute residential income, and income of commuters
on a specific commuting link. This is a contribution over existing purely statis-
tical measures of economic activity, such as nighttime lights, which do not easily
allow making this distinction. The topic of how economic productivity and com-
muting costs interact to determine urban structure is fundamental in urban eco-
nomics models [Alonso, 1960, Mills, 1967, Muth, 1968]. Here, we use a new genera-
tion of models inspired from the trade literature, designed to better match the real
data [Ahlfeldt et al., 2015].3 Finally, we contribute to a recent, growing and diverse
literature that uses CDR data to measure human mobility and economic activity
[Calabrese et al., 2011, Wang et al., 2012, Csáji et al., 2013, Iqbal et al., 2014].

Increasingly, new data sources on mobility are becoming available, such as pub-
lic transport ticketing data in digital format, electricity metering data, cell phone
transaction data, passively collected smartphone app location data, etc. This data
is usually highly multi-dimensional, so it is not a priori obvious how to relate it to
economic activity. One approach uses statistical learning techniques to relate mobil-
ity or the underlying data to economic indicators [Blumenstock et al., 2015] . This
approach focuses on predictive power, yet is agnostic about any theoretical relations
in the data.

The paper is organized as follows. Section 3.2 describes the cell phone and com-
muting data, and compares survey-based commuting flows with those derived from
cell phone data. Section 3.3 sets up and analyzes the model, and section 3.4 reports
the main validation results. Sections 3.5 and 3.6 report the results from the the two
applications, and section 3.7 concludes.

3The ideas in these models, especially the relation between discrete choice and the gravity
equation, have been explored previously [Anas, 1983].
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3.2 Cell-Phone Data and Commuting Flows
In this section we describe the cell phone data and the procedure to extract com-
muting flows. We perform a validation exercises based on a transportation survey
from Dhaka.

3.2.1 Data Sources
Cell phone transaction data and commuting flows. We use call detail record
(CDR) data from multiple operators in Sri Lanka and Bangladesh to compute de-
tailed commuting matrices.4 CDR data includes an observation for each transac-
tion, such as making or receiving a voice call, sending or receiving a text message,
or initiating a GPRS internet connection. Each observation has a timestamp, the
participant user identifiers, and their locations at the cell tower level. Towers are un-
evenly distributed in space; they are denser in urban and developed areas. We focus
of the greater metropolitan areas around the capital cities of Colombo and Dhaka.
The data covers a little over a year in Sri Lanka and four months in Bangladesh,
and it is anonymized at the telephone number level, which allows us to observe all
transactions associated with a given user throughout the study period.

We infer within-day movement by observing a user connect to different cell towers
during the day. On a given day, we define a user’s origin as the location of the first
transaction between 5am to 10am, and the user’s destination as the location of the
last transaction between 10am and 3pm.56 By definition, a user has at most one
commuting trip per day. If the origin and destination correspond to the same cell
tower, we consider that the user was stationary that day, and if they are different
we consider that the user made a commuting trip that day. If transaction data is
missing in either time interval, commuting behavior is not defined for that user and
day. Table A.1 shows that commuting data (either stationary or trips) is available for
16% and 29% of of the theoretical maximum if we observed each user on every day

4The data for Bangladesh is prepared by the Asian Development Bank for the project (A-
8074REG: “Applying Remote Sensing Technology in River Basin Management”), a joint initiative
between ADB and the University of Tokyo.

5In addition to the validation discussed below, where we compare commuting flows computed
using this definition to commuting flows from a separate transportation survey in Dhaka, we have
also experimented defining the home and work locations as the most popular destinations of a
users in certain time intervals, computed using the data for the whole period for that user. The
commuting flows computed using the two methods are strongly correlated, even after controlling
for distance (not reported).

6We focus on the morning commute as other types of trips (e.g., shopping) are more likely in
the evening [Frank and Murtha, 2010].
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in the sample in Dhaka and Colombo, respectively. In theory, incomplete coverage
can lead to biased findings if travel behavior and calling behavior are correlated. For
example, people may be more likely to make calls when traveling, which would lead
us to measure more travel than in reality. In the second application in Section 3.6,
we use a Heckman selection model to control for fewer calls during hartal days, as
this may influence observed travel behavior; we find very similar results.

In each city, we aggregate trips over all non-holiday weekdays to obtain an origin-
destination (OD) matrix of commuting flows between every pair of cell towers. For
analysis, we restrict the sample to trips between tower pairs that are not very close
or very far away. Specifically, we exclude stationary (within tower) flows, which
account for roughly half of all flows, because they may partly capture non-commuting
behavior from individuals not in the labor market. We also exclude commuting
flows between nearby tower pairs, as we are concerned that they may partly reflect
stationary users who randomly connect to different nearby towers, instead of real
travel.

Figure 3-2 shows one cut of the data, plotting in each city the spatial distribution
of total commuting inflows for each cell phone tower. Inflows are a measure of
workplace population, as they measure where people are during the day. In both
cities, inflows are highest around the center of the city, they decay with distance, yet
other local centers are also visible. In particular, several concentrated centers are
visible in Dhaka.

Google Maps distance data. We obtain typical driving travel times and road
distances between pairs of cell towers using the Google Maps API. For a given pair of
cell towers, we query the Google Maps Distance Matrix API for the typical driving
travel time on a typical weekday with 8am departure time. Because of the large
number of bilateral pairs (on the order of ∼ 106), in each city we obtain Google
data for 90,000 randomly selected pairs of towers in the sample, and predict the
travel time and road distance for the remaining pairs of towers. The prediction for
an origin-destination pair (𝑖, 𝑗) is based on measured travel times for pairs whose
origins are close to i and whose destinations are close to 𝑗.7

Household commuting survey. In Dhaka, we use survey data from the Dhaka
Urban Transport Network Development Study or DHUTS [Japan International Cooperation Agency, 2010,
JICA]. This survey interviewed individuals in randomly selected households, in each
of 72 “commuting zones” defined in Dhaka. The sample size that we use for analysis

7See Appendix C.2 for more detail about the exact prediction procedure. To assess the predictive
power, for each pair with original Google Maps data we compare the original travel time and the
predicted travel time using all data except for the pair itself. The 𝑅2 is 0.979 and 0.962 in Sri
Lanka and Bangladesh, respectively, indicating that the prediction performance is good.
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is 13,905 individuals.

3.2.2 Commuting Data Validation
We now explore quantitatively how commuting flows derived from cell phone data
in Dhaka relate to flows from the DHUTS commuting survey. Previous work shows
that origin-destination commuting flows derived from cell phone data correlate well
with commuting and origin population measured from transportation surveys or
census data [Calabrese et al., 2011, Iqbal et al., 2014, Wang et al., 2012]. However,
a simple correlation between two flow measures may in principle be due to strong
intermediary factors, such as distance.

Figure 3-1 shows how log average commuting flows decreases with travel time
in the two data sources. To construct this figure, we first aggregate the cell phone
commuting data up to the level of commuting zones defined in the DHUTS survey.
The sample consists of 7,676 pairs of distinct commuting zones, with a total of 7,903
trips in the DHUTS survey and ∼ 6 · 106 trips in the cell phone data. For each pair
of commuting zones, we estimate the average travel time by summing over all cell
phone tower pairs included in the two commuting zones, weighted by commuting
flow. We then divide log travel time into 100 bins and compute the log of mean flow
for all pairs of distinct commuting zones with log travel time in that bin.8 Figure 3-1
plots the resulting relationship, as well as point-wise bootstrapped 95% confidence
intervals clustered at the origin commuting zone level. The decay with distance is
virtually identical throughout the range of distance. For small distances, the cell
phone data tends to pick up slightly higher commuting compared to the survey data.
This may be due to bouncing between towers, short non-commuting trips, or due to
underreporting in the survey data.

Table A.2 shows regression results with the same data, including specifications
that control for origin and destination commuting zone fixed effects, and log travel
time. Throughout, commuting flows derived from cell phone data are a strong predic-
tor of survey-based commuting flows. That cell phone data detects real variations in
commuting flows controlling for these factors implies that it contains rich information
about how people move around the city for work.

It is not obvious a priori how to link commuting flows – which are defined at

8The DHUTS data is sparse, so it is important to take the average of the flow for pairs in a
certain distance bin before taking logs. Appendix Figure A.1 shows that without this adjustment,
there is considerable bias in the slope with respect to distance due to the large number of pairs
with zero flows. Commuting flows from cell phone data do not have this problem due to their much
higher coverage, and the adjustment does not make any notable difference.
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the location pair level – and location-specific productivity and income. We now
introduce a simple theoretical model that clarifies the relationships that we expect
to see in the data.

3.3 Theoretical Framework
In this section, we set up a simple urban economic model that we will use to inter-
pret the commuting data. Commuters decide their work location taking into account
wages at different potential work locations, commuting costs, as well as destination-
specific idiosyncratic utility shock. This discrete choice model implies that log bi-
lateral commuting flows follow an unconstrained gravity equation, with destination
fixed effects capturing log wages. The basic intuition of the model is to assign higher
wages to a destination location that attracts more workers net of how far workers
live and commuting costs. We use this relationship and the commuting flow data
to back out the distribution of wages across locations. The model also allows us to
compute several important measures, such as the average income at a given location
or for commuters on a specific route. We will then compare these predicted income
measures with survey-collected income data.

The model presented here is a partial equilibrium version of the model devel-
oped by [Ahlfeldt et al., 2015], which is in turn inspired by models in international
trade [Eaton and Kortum, 2002]. We assume that competitive forces lead wages to
reflect productivity. We are otherwise agnostic about how rents and firm production
decisions are determined in general equilibrium. As we will show, this approach is
sufficient for our purpose of inferring wages and income from commuting flows us-
ing equilibrium relationships.9 Hereinafter, we describe our model, followed by the
empirical estimation procedure.

3.3.1 Model Setup
Space is partitioned into a finite set of locations 𝐿, which may serve as both residential
locations and work locations. In our application, these correspond to Voronoi cells
around cell phone towers. Each worker supplies one unit of labor inelastically. A
worker 𝜔 who lives at residential location (or origin) 𝑖 can choose to work at any work
location (or destination) 𝑗 ∈ 𝐿 that offers employment. The utility if she chooses

9It should be noted, however, that if one is interested in how different policies will change prices
and commuting flows, a complete general equilibrium framework is needed.
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destination 𝑗 is:
𝑈𝑖𝑗𝜔 = 𝑊𝑗𝑍𝑖𝑗𝜔

𝐷𝜏
𝑖𝑗

(3.1)

𝑊𝑗 is the wage offered at location 𝑗 (all firms at location 𝑗 offer the same wage),
𝐷𝑖𝑗 is the travel time between 𝑖 and 𝑗, and 𝑍𝑖𝑗𝜔 is an idiosyncratic utility shock
that is i.i.d. following the Fréchet distribution, with scale parameter 𝑇 and shape
parameter 𝜖. Standard results on the Fréchet distribution (reviewed in Appendix
B.1.1) imply that 𝑈𝑖𝑗𝜔 is also a Fréchet-distributed random variable, with shape 𝜖
and scale 𝑇𝑖𝑗 = 𝑇𝑊 𝜖

𝑗𝐷
−𝜏𝜖
𝑖𝑗 .

Each worker chooses the work location 𝑗 where 𝑈𝑖𝑗𝜔 is maximized. This implies
that the probability that a worker residing in 𝑖 commutes to 𝑗 is given by:

𝜋𝑗|𝑖 =
(𝑊𝑗/𝐷

𝜏
𝑖𝑗)𝜖∑︀

𝑠(𝑊𝑠/𝐷𝜏
𝑖𝑠)𝜖

(3.2)

In the absence of random shocks, all workers from a given location would choose the
same work location. The 𝑍𝑖𝑗𝜔 shocks lead to a non-degenerate distribution of work
location choices, and a higher variance of 𝑍𝑖𝑗𝜔 decreases the relative importance of
distance and wage.

Equation (3.2) describes a gravity equation for commuting probabilities. Taking
logs, and denoting log quantities by lowercase letters:

log(𝜋𝑗|𝑖) = 𝜖 log(𝑊𝑗) − 𝜖𝜏 log(𝐷𝑖𝑗) − log
(︃∑︁

𝑠

(︃
𝑊𝑠

𝐷𝜏
𝑖𝑠

)︃𝜖)︃
(3.3)

= 𝜖𝑤𝑗 − 𝜖𝜏𝑑𝑖𝑗 − log
(︃∑︁

𝑠

exp (𝜖𝑤𝑠 − 𝜖𝜏𝑑𝑖𝑠)
)︃

We estimate this equation through the following empirical gravity model:

log(𝜋𝑗|𝑖) = 𝜓𝑗 + 𝛽 log(𝐷𝑖𝑗) + 𝜇𝑖 + 𝜀𝑖𝑗 (3.4)

where 𝜇𝑖 is an origin fixed effect, 𝜓𝑗 is a destination fixed effect, and 𝜀𝑖𝑗 accounts for
measurement error. Gravity equations have been widely used to model international
trade [Anderson, 1979], transportation [Erlander and Stewart, 1990] and commuting
behavior [Duran-Fernandez and Santos, 2014, Sohn, 2005]. Applications in trans-
portation usually specify a constrained gravity model that is guaranteed to match
inflows, outflows, or both, and are used to estimate the effect of distance. Here,
we are primarily interested in the destination fixed effects, so the model is uncon-
strained. Equation (3.3) does, however, imply a constraint between the origin fixed
effects and the other quantities. For computational reasons, we choose to estimate
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(3.4) unconstrained and check the relationship post estimation. In practice, the R-
squared in the regression of 𝜇̂𝑖 on log

(︁∑︀
𝑠 exp

(︁
𝜓𝑠 + 𝛽𝑑𝑖𝑠

)︁)︁
is 0.64, suggesting that

the bias due to unconstrained gravity estimation is not problematic.

3.3.2 Model-Predicted Wages and Income
The gravity equation identifies relative wages at all employment locations. Indeed,
the destination fixed effects directly estimate

𝜓𝑗 = 𝜖𝑤𝑗 (3.5)

Notice that the Fréchet scale parameter 𝜖 also enters in the destination fixed effect.
We explain below how we estimate this parameter using survey data on income.10

We next derive average income at a given residential location, and for workers
commuting between a given pair of residential and work locations. Equation (3.1)
shows that distance and idiosyncratic shocks affect utility. In order to compute aver-
age worker income, we must take a stand on how the two variables affect productivity
and thus labor income. Our approach is to derive a general formula for income and
let the data speak as to the the role of shocks and distance in explaining income.

Assume income is given by 𝑌𝑖𝑗𝜔 (𝛼𝑧, 𝛼𝑑) = 𝑊𝑗𝑍
𝛼𝑧
𝑖𝑗𝜔𝐷

−𝜏𝛼𝑑
𝑖𝑗 , where 𝛼𝑧 ∈ [0, 1] con-

trols how much the shocks 𝑧𝑖𝑗𝜔 are productive, and 𝛼𝑑 ∈ [0, 1] controls how much
distance 𝑑𝑖𝑗 is a productive cost. At the extreme where 𝛼𝑧 = 𝛼𝑑 = 0, these variables
affect utility but not productivity; when 𝛼𝑧 = 𝛼𝑑 = 1, the variables affect utility
and income equally. Taking logs, we express income as a convex combination of four
extreme cases:

𝑦𝑖𝑗𝜔 (𝛼𝑧, 𝛼𝑑) = 𝛼𝑧 (𝛼𝑑 · 𝑦𝑖𝑗𝜔 (1, 1) + (1 − 𝛼𝑑) 𝑦𝑖𝑗𝜔 (1, 0)) + (3.6)
(1 − 𝛼𝑧) (𝛼𝑑 · 𝑦𝑖𝑗𝜔 (0, 1) + (1 − 𝛼𝑑) 𝑦𝑖𝑗𝜔 (0, 0))

Expected income in these four cases is given by the following formulas:
E𝑦𝑖𝑗𝜔 (0, 0) = 𝑤𝑗

E𝑦𝑖𝑗𝜔 (0, 1) = 𝑤𝑗 − 𝜏𝑑𝑖𝑗

E𝑦𝑖𝑗𝜔 (1, 1) = 1
𝜖

log
(︃∑︁

𝑠

exp (𝜖𝑤𝑗 − 𝜖𝜏𝑑𝑖𝑗)
)︃

− 𝐾

𝜖
for some absolute constant 𝐾

E𝑦𝑖𝑗𝜔 (1, 0) = E𝑦𝑖𝑗𝜔 (1, 1) + 𝜏𝑑𝑖𝑗

When neither shocks nor distance are productive, income is simply the desti-
nation wage, and thus it is constant regardless of commuting origin and does not

10Faced with a similar situation, [Ahlfeldt et al., 2015] calibrate 𝜖 to match the wage standard
deviation from survey data across the city.
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vary between individuals. In the second case, when distance imposes a productivity
cost, income is origin-destination specific but still does not vary between individuals.
When the shocks 𝑧𝑖𝑗𝜔 are productive as in the third and fourth cases, log income
for a worker commuting between 𝑖 and 𝑗 depends on the distribution of the shock
conditional on destination 𝑗 being chosen. By virtue of the Fréchet distribution, the
conditional distribution 𝑦𝑖𝑗𝜔|𝑗 ∈ arg max𝑠 𝑈𝑖𝑠𝜔 is also Fréchet with the same shape
parameter 𝜖 and scale 𝑇𝑖 = ∑︀

𝑠 𝑇𝑖𝑠 = ∑︀
𝑠 𝑊

𝜖
𝑠𝐷

−𝜏𝜖
𝑖𝑠 . In particular, this distribution only

depends on the origin 𝑖 and thus expected log income is the same for all destinations
𝑗. Detailed derivations can be found in Appendix B.1.1.

We next show how we can use data on income to learn how distance and idiosyn-
cratic shocks affect productivity, and thus identify the parameters 𝛼𝑧 and 𝛼𝑑.

3.3.3 Taking the Model to Data
Estimating Wages and Income. We estimate the gravity equation (3.4) using
the matrix of commuting flows derived from the cell phone data. Equipped with
estimated fixed effects and the coefficient on log travel time, we can compute log
wages at each location (up to the factor 𝜖), as well as the income measures described
in the previous section.

In order to let the data speak about which income measures provides a better
fit, we will estimate the parameters 𝛼𝑧 and 𝛼𝑑. The procedure described below has
the added advantage of providing an estimate of the shape parameter 𝜖. We begin
by comparing the income measures with self-reported income from a transportation
survey. The survey data also contains residential and work locations, so we can
compare the two measures at the origin and destination level. Next, note that
plugging in the four extreme values into equation (3.6) simplifies to

E𝑦𝑖𝑗𝜔 (𝛼𝑧, 𝛼𝑑) = 𝛼𝑧E𝑦𝑖𝑗𝜔 (1, 0) + (1 − 𝛼𝑧)𝑤𝑗 − 𝛼𝑑𝜏𝑑𝑖𝑗 (3.7)

We estimate this equation using OLS with survey income as outcome and model
predicted measures on the right-hand side:

𝑦𝑆
𝑖𝑗𝜔 = 𝜌1𝑦

1,0
𝑖𝑗 + 𝜌2𝜓𝑗 + 𝜌3𝑑𝑖𝑗 + 𝜀𝑆

𝑖𝑗𝜔 (3.8)

where 𝑦𝑆
𝑖𝑗𝜔 is survey-based income of commuter 𝜔 who lives at 𝑖 and works at 𝑗,

𝑦1,0
𝑖𝑗 = log

(︃∑︁
𝑠

exp
(︁
𝜓𝑠 − 𝛽𝑑𝑖𝑗

)︁)︃
+ 𝛽𝑑𝑖𝑗

is the estimated counterpart of E𝑦𝑖𝑗𝜔 (1, 0) without the 𝜖 factor, 𝜓𝑗 is the estimated
destination fixed effect at destination 𝑗, and 𝑑𝑖𝑗 is log distance. The asymptotic
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relationship between the regression coefficients and equation (3.7) is
𝜌1 = 𝛼𝑧

𝜖
, 𝜌2 = 1 − 𝛼𝑧

𝜖
, and 𝜌3 = −𝛼𝑑

𝜖
.

We invert this system of equations to obtain estimates for the productivity shares
of shocks and distance, and the Fréchet shape parameter:

𝛼̂𝑧 = 𝜌1

𝜌1 + 𝜌2
, 𝛼̂𝑑 = − 𝜌3

𝜌1 + 𝜌2
, and 𝜖 = 1

𝜌1 + 𝜌2
. (3.9)

Mapping Model Locations to the Data. An important aspect of taking the
model to the data is choosing how to represent residential and work locations in
the data. Specifically, we need to choose an aggregation level for our data, and to
take a stand on the geographic level where the shocks from the model are realized.
Previous work in urban economics uses fine urban administrative levels for one or
both purposes [Ahlfeldt et al., 2015], yet at its most granular geographic level our
cell phone data contains cell phone tower locations. If predictions on wages, income,
output, depend on how geography is defined, this could mean that the model is not
a reliable tool for empirical work. In fact, we show that the model has a general
(approximate) invariance property for the level of geographic aggregation of both
origin and destination locations. We summarize the main results here, and relegate
detailed derivations to Appendix (B.1.1).

At the origin level, the model is approximately invariant with respect to the
origin aggregation level, because the basic discrete choice problem is individual spe-
cific. At the destination level, the aggregation level affects the interpretation of
wages 𝑊𝑗 in a straight-forward way. Assume that location 𝑗 is in fact composed
of several sub-locations

{︁
𝑘1, 𝑘2, ..., 𝑘𝑁𝑗

}︁
, and we estimate the model at the higher

level (𝑗) and ignore the sub-locations. The wage we obtain, 𝑊𝑗 =
(︁∑︀𝑁𝑗

ℓ=1 𝑊
𝜖
𝑘ℓ

)︁1/𝜖
,

represents a C.E.S. aggregate with elasticity 𝜖 of the true underlying wages at all
sub-locations within 𝑗. In particular, this implies a simple adjustment for the des-
tination fixed effect 𝜓𝑗 = 𝜖𝑤𝑗 estimated using the gravity model. Assume that
the “real” underlying wage is constant and denoted by 𝑊𝑅

𝑗 within each location 𝑗,
then the C.E.S. relationship becomes 𝑊𝑗 = 𝑁

1/𝜖
𝑗 𝑊𝑅

𝑗 , or in logs the underlying wage
is given by 𝑤𝑅

𝑗 = 𝑤𝑗 − 1
𝜖

log (𝑁𝑗). In terms of estimated quantities, this becomes
𝜓𝑅

𝑗 = 𝜓𝑗 − log (𝑁𝑗). The underlying destination fixed effect 𝜓𝑅
𝑗 is obtained from the

fixed effect 𝜓𝑗, estimated ignoring sub-locations, minus an adjustment factor equal
to the log of the number of true underlying locations where shocks are realized, 𝑁𝑗.

For most of the analysis we map locations 𝑖 and 𝑗 from the model to cell phone
towers in the data. (When comparing with survey data, we aggregate up to survey
commuting zones.) We also assume that shocks 𝑍𝑖𝑗𝜔 are drawn for each area in

102



Euclidian geometry, and the true wage 𝑊𝑅
𝑗 is approximately constant within cell

phone towers. Following the argument above, we adjust each estimated destination
fixed effect downward by log (𝐾𝑗) where 𝐾𝑗 is the area of cell tower 𝑗.

3.4 Results
We now turn to estimating the gravity equation with commuting data from Colombo
and Dhaka. We then validate the model’s ability to predict income by comparing
model-predicted income measures with self-reported income data collected in the
DHUTS transportation survey in Dhaka.

3.4.1 Gravity Estimation to Recover Destination Wages
In this section, we estimate equation (3.4) using the cell phone commuting flows and
the Google Maps travel time distance measure. Our goal is to recover the destination
fixed effects, which are a measure of workplace productivity (or, equivalently, wages).
We estimate the gravity equation using OLS and a procedure to account for two-way
fixed effects at the level of origin and destination. In our analysis sample, we exclude
tower pairs further than 50 kilometers away, and those with travel time less than 180
seconds (which account for 0.1% of the tower pairs within 50 km).

Table 3.1 reports the results. As expected from Figure 3-1, the travel time be-
tween the origin and destination is strongly and negatively associated with the com-
muting flow. The specification implied by the model is shown in columns (1) and
(3) for Dhaka and Colombo, respectively. The coefficients for the two cities are very
similar, at−1.64 and −1.75. This is surprising, as these cities vary considerably in
terms of their level of development and population. In columns (2) and (4) we omit
the destination fixed effects (which in the model capture variation in productivity
levels). The coefficient drops significantly in Dhaka, but less so in Colombo. This
suggests that wages are distributed spatially differently in the two cities, a theme
that we explore in more details in our first application in section 3.5. In short, these
results are consistent with a “flatter” distribution of productivity in Dhaka.

3.4.2 Validating Model-Predicted Income using Survey In-
come Data

We now move on to the main validation exercise of our approach. Figure 3-3 shows
the simple correlation between our preferred model-predicted income measure and
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earnings at the workplace or destination level (panel A) and at the residential or
origin level (panel B). The size of each scatter point indicates the relative number of
commuters at that location. In both cases, we observe a strong correlation between
the survey data set and model predictions.

Table 3.2 compares survey income to four model-predicted income measures, and
selects the best fit measure, implementing the procedure described in Section 3.3.3.
Columns (1) through (4) regress individual-level income from the DHUTS survey on
the four model-predicted measures, separately. Measures where distance is produc-
tive (𝑦𝑖𝑗𝜔 (0, 1) and 𝑦𝑖𝑗𝜔 (1, 1)) are either not correlated with in come, or if anything
negatively correlated. However, the two measures where distance is a pure utility
shock are robustly correlated with income.

In column (5) we estimate equation (3.8) in order to obtain the estimates for the
productivity levels for distance and shocks (𝛼𝑑 and 𝛼𝑧) and the Frechet distribution
shape parameter 𝜀. The transformed results are shown in Panel B, with standard
errors computed using the Delta method. Columns (1) shows the unconstrained
regression, where we obtain a negative point estimate for the productivity of distance.
The result is not significantly different from zero, so in column (2) we run the same
regression constraining 𝛼𝑑 = 0. We obtain an intermediate value for the productivity
of shocks 𝛼𝑧 = 0.56 and a value of the shape parameter 𝜀 = 6.4 that is in line with
estimates in other urban contexts [Ahlfeldt et al., 2015].

3.5 Urban Economic Structure in Colombo and
Dhaka

In this section we use the commuting data and model-predicted income data to
explore the spatial distribution of residential and work population, as well as average
incomes at these locations. A canonical way to think about cities is given by the
monocentric model [Mills, 1967], where commuters from the entire city commute to
the Central Business District (CBD) in the center on the city. While in the model all
business activity happens exactly at the city center, the model is used as a general
way to think about business activity that is much more concentrated than residential
population. In reality, cities depart from this structure to various extents, and in
some cases have a polycentric structure, with multiple regional centers attracting
commuters.

Figure 3-4 analyzes these patterns for Colombo and Dhaka. In Panel A, we
look at the cumulative population as we go away from the CBD. We compute this
separately for tower residential population (the number of commutes originating at
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that tower) and employed population (the number of commutes ending at that tower
location). In general, the two measures track each other well, suggesting that business
activity is also very highly distributed across the city, consistent with evidence from
the U.S. [Wheaton, 2004]. In Dhaka, the employed population is only slightly more
concentrated than residents (the line for employed is slightly to the left of that for
residents), while in Colombo this effect is much more pronounced. This indicates
that employment population is more concentrated in Colombo.

In Panel B, we plot the average model-predicted income as we move away from
the CBD, calculated separately for residents and for employees. Surprisingly, we
find that residents in Colombo and Dhaka have a very similar spatial distribution
of income as a function of distance to the city center. Moreover, in Dhaka there
is virtually no difference between residential and work locations, again emphasizing
the polycentric, mixed nature of this metropolis. In Colombo, we observe a starkly
more concentrated income at the destination level, consistent with a monocentric
structure for Colombo.

3.6 The economic costs of Hartal days
We now use the data in Bangladesh to estimate the economic costs of hartals. Hartals
are a form of political strike action that involve a partial shutdown of urban trans-
portation and businesses. They are common in South Asia, and especially in Dhaka
[Duncan, 2005, UNDP]. On hartal days, which are typically announced several days
in advance, groups of people in the streets enforce the transportation shutdown,
especially on major roads and in certain locations of the city.

Hartals have the potential to seriously disrupt economic activity – indeed, this
is their declared goal. At the same time, they may be concentrated only in certain
areas of the city, and may or may not affect high economic activity commuting
routes. In addition, commuters may adapt to hartals, for example by substituting
their usual trips with shorter but at least somewhat productive trips. The economic
cost of hartal is thus an empirical question; our data and model are uniquely suited
to analyze this question.

We find that people travel less and shorter distances on hartal days, and trips
with high predicted income are disproportionately affected. We conclude with an
estimation that income is 5% lower on hartal days compared to working days. To
benchmark this effect, we show that relative to working days, income is 11% lower
on Fridays, which are the free day in Bangladesh.

Table 3.3 shows reduced form results comparing extensive and intensive margin
behavior on hartal and non-hartal days. The sample is a 5% random sample of
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all commuters in our data that have at least one hartal and one non-hartal day.
Panels A, B and C report the results for the extensive margin of making any trip,
total trip duration and total trip distance. The first three columns use different
empirical specifications, including commuter fixed effects in column (1), plain OLS
in column (2), and a two-step Heckman selection procedure in column (3). In the
last column, in panels B and C, we condition on making a trip, that is we drop zeros.
For comparison, we also control for travel behavior on Fridays (the free day of the
week in Bangladesh), Saturdays and other holidays.

We find a large, robust negative effect on travel on hartal days. hartal days have 2
percentage points lower travel probability compared to regular weekdays. This effect
is roughly a third of the effect of a typical Friday (5.4 percentage points). However,
the results in Panels B and C suggest that different types of trips are affected on
hartal days. Indeed, commuting trips on hartal days have roughly 10% smaller trip
duration and distance, an effect similar or larger than for Fridays.

Figure 3-5 shows the change in travel behavior on hartal versus working days, as
a function of trip predicted income. For each pair of origin and destination cell phone
tower locations, we compute the predicted income (preferred specification) based on
the gravity equation estimated on non-hartal days. To construct this graph, for each
bin in the trip predicted income distribution, we run a regression of making a trip
that falls in that bin on a given day, on commuter fixed effects, and a hartal dummy.
The top panel plots the coefficients on "hartal" as well as point-wise 95% confidence
intervals clustered at the trip origin level. The bottom panel shows the mean values
on control days and hartal days.

The results show that there is a statistically significant decrease in trips at the
high end of the income distribution, and the size of the effect is moderate in size
(around 10% at it’s highest). Interestingly, there is also a slightly but statistically
significant increase in trips with low predicted income. This suggests that commuters
avoid certain high-income destinations during hartals, and re-route to other (likely
closer) destinations.

Our final point is an accounting exercise, where we integrate the impact on travel
over the distribution log income in Figure 3-5 to obtain a total fraction of income
lost on hartal days due to commuters not traveling to their usual destinations. This
exercise makes several assumptions, notably that the income is additive across days,
and that commuters who change their destination on hartal days nevertheless gain
the income of the chosen destination. We find that income is 4.6% lower on hartal
days, with a 95% confidence interval of 0.9 to 8.6%. To benchmark this effect, the
impact on Fridays is approximately 11%. In other words, hartals have a statistically
and economically significant impact on economic activity.
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3.7 Conclusion
In this paper we used commuting flows derived from cell phone transaction data to
infer productivity variations at a fine geographic scale within cities. We use a urban
economic model of workplace choice to derive a gravity equation that allows us to
“back out” productivity levels that rationalize observed commuting flows. We show
empirically that cell phone commuting flows pick up fine variations in commuting
controlling for distance, origin and destination, while offering much finer and frequent
coverage. We validate the model-predicted income using self-reported survey income,
and allow the data to inform the productivity effects of distance and idiosyncratic
shocks.

The method we introduce can be used to study the impact on commuting and
economic activity of various natural shocks and policies. Among other applications,
we believe this method can also be extended to study the relationship between com-
muting and economic activity, disaggregated by skill level and industry sector (at
the origin and destination levels, respectively). Given high levels of inequality and
occupational heterogeneity in large cities in developing countries, this seems a partic-
ularly important extension. Similarly, this framework can be used to study commut-
ing behavior at different wealth levels, using individual-level wealth predictions from
the cell phone data itself [Blumenstock et al., 2015]. The data and framework are
uniquely suited to study the extent and causes of “wasteful” or “excess” commuting
[Hamilton and Röell, 1982, White, 1988]. This method can also be used by or in
collaboration with policy-makers to study discrepancies between official accounts of
economic activity, such as tax records, and our measure, which also includes informal
activity.
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3.8 Figures

Figure 3-1: Comparison of Commuting Flows from Survey Data and Cell Phone
Data
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Notes. This figure shows the relationship between commuting flows and log commuting
travel time (in seconds) at the route level in Dhaka, using two different data sets: the
DHUTS transportation survey (red, solid line) and commuting flows constructed using cell
phone data (blue, dashed line). Commuting flows from the cell phone data were aggregated
at the larger commuting zone level defined in the DHUTS survey. The sample consists of
7,676 pairs of distinct commuting zones, with a total of 7,903 commuters in the DHUTS
survey and ∼ 6 · 106 commuters in the cell phone data. (Commuting zone pairs below the
1st and over the 99th percentiles of the log distance distribution are not included.) To
adjust for pairs with zero flow (where log is not defined), for each of 100 log travel time
bins, we first take the average commuting flow, and then take logs. (Figure A.1 shows
results using average log flow.) Pointwise bootstrapped 95% confidence intervals clustered
at the origin commuting zone level are shown in gray.
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Figure 3-3: Correlation Between Self-reported Survey Income and Model-predicted
Income using Cell Phone Data

(A) Workplace level (B) Residential level

Notes. These figures show the correlation between income reported in the DHUTS survey
on the Y axis, and optimal model-predicted income on the X axis. Panel A shows results
aggregated at the (DHUTS commuting zone) destination (workplace) level, and Panel B
at the origin (residential) level. The size of the scatter point indicates the relative number
of commuters at that location (total in-flows in Panel A and total out-flows in panel B).
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Figure 3-4: Application (1) The Urban Structures of Colombo and Dhaka
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(B) Model Predicted Income, for Residents and Employees, by Distance from CBD

Notes. These figures plot the distribution of population and mean income at the residential
and employment location in Colombo, Sri Lanka and Dhaka, Bangladesh. To construct it,
towers are first ordered by distance to the CBD, which is Colombo Fort in Colombo (red,
thick lines) and Motijheel in Dhaka (blue, thin lines). Panel A plots the cumulative pop-
ulation with respect to distance to the CBD. Dashed lines indicate residential population
(at the origin level) and solid lines indicate employment population (at the destination
level). In panel B, origin-destination link specific model-predicted log income (using the
optimal weights, see Section 3.3.3 for details) is averaged at the origin level (dashed lines)
and at the destination level (solid lines), in each case using commuting flows as weights.
The figure plots a local linear regression as a function of distance to the CBD. Gray lines
around the destination-level plots indicate pointwise 95% confidence intervals.

111



Figure 3-5: Application (2) Impact of Hartal on Travel by Trip Predicted Income
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Notes. This figure shows the change in travel behavior on hartal versus working days, as a
function of trip predicted income. For each pair of origin and destination cell phone tower
locations, we compute the predicted income (preferred specification) based on the gravity
equation estimated on non-hartal days. To construct this graph, for each bin in the trip
predicted income distribution, we run a regression of making a trip that falls in that bin
on a given day, on commuter fixed effects, and a hartal dummy. The top panel plots the
coefficients on "hartal" as well as point-wise 95% confidence intervals clustered at the trip
origin level. The bottom panel shows the mean values on control days and hartal days.112



3.9 Tables

Table 3.1: Commuting Flows and Travel Time (Gravity Equation)

Dependent variable:
log Commuting Flow

(1) (2) (3) (4)
log Travel Time −1.640*** −1.281*** −1.745*** −1.651***

(0.001) (0.001) (0.002) (0.002)

City Dhaka Dhaka Colombo Colombo
Origin FE X X X X
Destination FE X X
Observations 1,541,912 1,541,912 1,169,267 1,169,267
Adjusted R2 0.618 0.395 0.754 0.474

Note: *p<0.1; **p<0.05; ***p<0.01

Notes. This table reports estimates of the gravity equation (3.4). The outcome data is
commuting flows from cell phone data between pairs of cell phone tower locations, aggre-
gated over all weekdays in the data. For each individual in the data, the origin of their
commuting trip on a given day is defined as the first location (tower) between 5 am and
10 am, and the destination as the last location between 10 am and 3 pm (see Section 3.2
for more details). Tower pairs less than 180 seconds away (including same tower pairs)
and pairs at more than 50 km are dropped. Travel time between each pair of towers is
measured from Google Maps. Each column reports the coefficient on travel time from an
OLS regression that accounts for two-way (origin and destination) fixed effects, except in
columns (2) and (4) where only origin fixed effects are included.
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Table 3.2: Validation of Income Measure

Panel A Correlation of Reported Income and Predicted Income
Dependent variable:
log Reported Income

(1) (2) (3) (4) (5) (6)
Pred log Income ( 𝛼𝑧 = 1, 𝛼𝑑 = 1 ) 0.056

(0.097)

Pred log Income ( 𝛼𝑧 = 0, 𝛼𝑑 = 1 ) −0.045**

(0.021)

Pred log Income ( 𝛼𝑧 = 1, 𝛼𝑑 = 0 ) 0.101*** 0.092
(0.023) (0.118)

Pred log Income ( 𝛼𝑧 = 0, 𝛼𝑑 = 0 ) 0.128*** 0.077***

(0.025) (0.026)

log Travel Time −0.016
(0.169)

Pred log Income with Estimated 𝛼𝑧, 𝛼𝑑, , 𝜖 1.000***

(0.171)

Observations 11,785 11,785 11,785 11,785 11,785 11,785
Adjusted R2 0.0002 0.006 0.029 0.019 0.035 0.035

Panel B Estimated Structural Parameters

(1) (2)
Shape Parameter 𝜖 6.95 6.41***

(5.39) (0.96)
Shock Productivity 𝛼𝑧 0.51*** 0.56***

(0.09) (0.09)
Distance Productivity 𝛼𝑑 -0.09 0.00

(4.64)

Constraint 𝛼𝑑 = 0
Observations 11,785 11,785

Notes. This table reports results regression results from estimating equation 3.8. In Panel
A, the dependent variable is income as reported in the DHUTS survey, at the individ-
ual level. The first four columns correlate survey income with the four model-predicted
measures of income, based on the extreme assumptions on how shocks and distance affect
productivity (𝛼𝑧 and 𝛼𝑑 respectively). Columns (5) implements equation 3.8. Column
(6) uses the estimated parameters from Column (5) to construct our preferred measure of
income. Panel B inverts the coefficients in Column (4) to recover 𝛼𝑧, 𝛼𝑑 and 𝜖
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Table 3.3: Impact on Hartal on Probability of Travel, Duration and Distance

(1) (2) (3) (4)
Specification: Commuter FE OLS Heckit Commuter FE

Panel A. Makes trip
Hartal day -0.021*** -0.027*** -0.027***

(0.0045) (0.0050) (0.0050)
Friday -0.054*** -0.069*** -0.069***

(0.0057) (0.0083) (0.0083)

Saturday, Holiday FE X X X
Control Mean 0.56 0.56 0.56
Observations 5.1 · 106 5.1 · 106 24.8 · 106

Panel B. Trip duration (minutes)
Hartal day -0.89*** -1.05*** -1.28*** -0.86***

(0.19) (0.21) (0.019) (0.19)
Friday -0.50* -0.98*** -1.01*** 1.10***

(0.23) (0.27) (0.022) (0.22)
Sample: only trips X
Saturday, Holiday FE X X X X
Control Mean 9.64 9.64 9.64 17.3
Observations 5.1 · 106 5.1 · 106 24.8 · 106 2.7 · 106

Panel C. Trip distance (kilometers)
Hartal day -0.31*** -0.35*** -0.42*** -0.32***

(0.068) (0.074) (0.0071) (0.072)
Friday -0.073 -0.22* -0.23*** 0.50***

(0.080) (0.095) (0.0081) (0.085)

Sample: only trips X
Saturday, Holiday FE X X X X
Control Mean 3.04 3.04 3.04 5.45
Observations 5.1 · 106 5.1 · 106 24.8 · 106 2.7 · 106

Notes: This table reports regression results in Dhaka of the impact of hartal days on the
extensive margin of travel (panel A), trip duration (panel B) and trip distance (panel C).
The sample is a 5% random sample of all users with at least one hartal day with commuting
data and at least one non-hartal day with commuting data. Column (1) includes commuter
fixed effects, columns (2) is plain OLS, and columns (3) implements two-step Heckit on
the full rectangular sample (all days and user combinations) where the selection variable
is whether we observe commuting for a given user on a given day. In panels B and C,
column (4) restricts the sample to days with trips; in other words it provides results on the
intensive margin. Standard errors are clustered at the date level in columns (1), (2) and
(4).
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Appendix A

Appendix for Chapter 1

A.1 Appendix Figures
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Figure A1: Treatment Heterogeneity for Departure Time and Area Treatments
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Notes. These figures show the distribution of individual changes in shadow charges in
the departure time treatment and control (panel A) and the distribution of individual
frequency of intersecting the area when treated and not treated in the area treatment
(panel B). In panel A, the sample is all regular commuters and all trips between the
morning profile peak and 2 hours earlier. The graph plots the pre-post change in shadow
trip rates for each participant, separately for participants with charges (Low Rate and High
Rate treatments) versus those without charges (the control and information treatments).
(The graph with shrunk distributions using empirical Bayes shows a similar pattern.) The
sample for panel B is all days with trips in the morning between home and work for regular
commuters (see Table 1.5 column 2). The graph shows the histogram of the fraction of days
when a participant intersects the congestion area, separately for treated and not treated
participants. Both graphs suggest a stark form of heterogeneity in how commuters respond
to charges.
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Figure A3: Departure Time Congestion Charge (AM) Rate Profile Card Example

P
E

A
K

f

H
O

U
R

₹
7

:0
0

 a
m

8
:0

0
  
  
  
  
  
  
  
 9

:0
0

 
1

0
:0

0
  

1
1

:0
  
  
  
  
  
  
  
  
  
  
 1

2
:0

0

O
F

F
 P

E
A

K

₹
p

e
r 
K

M

D
E

P
A

R
T
U

R
E

 T
IM

E

O
F

F
 P

E
A

K

C
H

E
A

P
E

R
C

H
E

A
P

E
R

     
    

 
MORNING AM 

     
Departure 

time ₹perKM 

O
F

F
-P

E
A

K
 7:00 

0₹ 
per KM 

7:10 

7:20 

7:30 

7:40 

7:50 

S
H

O
U

L
D

E
R

        8:00  0 
8:10 4 
8:20 8 
8:30 12 
8:40 16 
8:50 20 

P
E

A
K

 

9:00 

24₹ 
per KM 

9:10 

9:20 

9:30 

9:40 

9:50 

10:00 

S
H

O
U

L
D

E
R

 10:10 20 
10:20 16 
10:30 12 
10:40 8 
10:50 4 
11:00 0 

O
F

F
-P

E
A

K
 11:10 

0₹ 
per KM 

11:20 

11:30 

11:40 

11:50 

12:00 

Notes: This figure shows an example of Rate Profile card that study participants in the
departure time charge sub-treatments received. The cards for different participants differed
in the value of the peak rate (Rs. 12/Km and Rs. 24/Km in the Low Rate and High Rate
sub-treatments, respectively), and in the starting time of the profile (between 8 am and 9
am for the morning profile, and between 5 pm and 6 pm for the evening profile).

119



Figure
A

2:
Study

A
rea

and
R

ecruitm
ent

Locations

N
otes.

T
his

figure
show

s
the

area
of

South
B

angalore
w

here
the

study
w

as
conducted.

T
he

red
discs

represent
the

random
ly

chosen
gas

stations
w

here
study

participants
w

ere
recruited

(the
diam

eter
indicates

the
num

ber
of

com
m

uters
approached).

T
he

black
points

represent
allthe

G
PS

data
collected

during
the

study.
(In

the
inset

the
B

angalore
O

pen
Street

M
ap

road
netw

ork
is

overim
posed

for
com

parison.)

120



Figure A4: Area Congestion Charge Example

Congestion Area

Detour Route

Usual Route

Notes: This figure shows an example of congestion area. Congestion areas were selected as
follows. Given a regular route between home and work for a participant (in green), several
“candidate” areas were selected along the route, with a radius of 250m, 500m or 1000m.
For each candidate area, I found the quickest detour route that avoids the congestion area,
based on a custom algorithm using multiple queries to the Google Maps API. Candidate
areas with detours between 3 and 14 minutes longer were manually reviewed, and the final
area was randomly selected from within this group.
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Figure A5: Google Maps Travel Time is Approximately Log-Linear Distributed
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Notes: This figure shows the shape of the day-to-day variation of log normalized travel time.
For each route and departure time cell, I consider the distribution of travel times over 147
weekdays. Within each cell, I compute the normalized residual by subtracting the mean
and dividing by the standard deviation for that cell. The graph shows the distribution of
the log residuals for all cells, and a standard normal (solid blue line).
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Figure A6: Travel Time Standard Deviation is Approximately Quadratic in Travel
Time Mean
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Notes: This figure shows the relationship between the mean and standard deviation of
travel time. Each dot represents a route and departure time cell, and the two axes measure
the mean and standard deviation in that cell over over 147 weekdays. The local linear,
linear and quadratic fits are respectively shown in red (long dash), green (dash) and blue
(solid). The local linear fit uses and Epanechnikov kernel with 0.5 minute per kilometer
bandwidth, and 95% confidence intervals, bootstrapped by route, are also shown (thin red
dashed line). The estimated quadratic equation is:

StdDevDelay = 0.24
(0.02)

− 0.05
(0.01)

· MeanDelay + 0.04
(0.002)

· MeanDelay2
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Figure A7: Structural Model Fit
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Notes: This figure shows the fit of the estimated structural model. Panel A shows the
61 moments that target the difference in difference in number of trips by departure time
bin. Panels B and C show the distributions of individual effects in the departure time
treatments (changes in shadow charges between pre- and post-). Panels D and E show the
distributions of individual effects in the area treatment (fraction of days intersecting the
congestion area when treated and not treated).
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Figure A8: Structural Model Diagnostics
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Notes: Panel A shows that the objective function is mostly flat for values of the late schedule
cost 𝛽𝐿 above Rs. 4, 000. It is evaluated at the estimated parameters, using the optimal
weighting matrix. Panel B plots the scaled sensitivity measure from [Andrews et al., 2017],
quantifying the change in the estimated early schedule cost parameter 𝛽𝐸 given by one
standard deviation change in each of the 61 departure time moments (see Appendix Table
A9 for the full definition of the sensitivity measure).
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Figure A9: Road Technology Estimation Robustness Checks
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Notes: Panel A shows the relationship between travel delay measured using Google Maps
and travel delay measured using GPS trips from smartphone app users, at the level of
departure time. The notes for Table 1.8 describe the samples and variable construction.
Each dot represents the average delay from Google Maps (X axis) over all weekdays in the
sample, and median delay from GPS data (Y axis) over all weekday trips in the sample.
The OLS fit with slope 1.00 (0.04) is also shown.
Panel B replicates Figure 1-3 with traffic density instead of volume of departures on the X
axis. Road density at a certain time is defined as the number of ongoing trips.
Panel C plots the distribution of participant recruitment times (histogram in solid gray)
and the distribution of trip departure times (kernel density plot in solid blue line). Both
Y axes start at zero.
Panel D compares log-log road technology estimates from this paper (gray dots, dashed
blue line) with those from [Akbar and Duranton, 2017] in Bogotá (red solid line). (Their
estimate is computed from Figure 4 panel C.) [Akbar and Duranton, 2017] use a trans-
portation survey to measure traffic volume at different times of the day. [Zhao et al., 2015]
document that in Singapore survey respondents report more concentrated departure times
in the morning and evening, compared to real departure times as measured with a GPS
smartphone app; this leads to overestimating peak-hour volumes. A similar effect may
explain the slightly flatter region for high traffic volumes in Bogotá.
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A.2 Appendix Tables

Table A1: GPS Data Quality at Daily Level (Attrition Check)
(1) (2) (3) (4)

Commuter FE X X X X

Panel A. Departure Time Treatment

High Rate × Post 0.01
(0.05)

Low Rate × Post -0.01
(0.05)

Information × Post -0.01
(0.04)

Post 0.09***
(0.04)

Observations 24,827
Control Mean 0.76

Panel B. Area Treatment and Sub-treatments

Treated 0.05** 0.04 0.05** 0.05
(0.02) (0.03) (0.02) (0.03)

Post 0.06* 0.06* 0.03 0.07**
(0.03) (0.03) (0.03) (0.04)

Treated × High Rate 0.01
(0.04)

Treated × High Rate Day -0.00
(0.02)

Treated × Short Detour -0.05
(0.05)

Observations 13,479 13,479 13,479 8,032
Control Mean 0.73 0.73 0.73 0.76

Notes. This table shows experimental impacts on the quality of the GPS data received from
study participants. The outcome is a dummy for good quality GPS data on a given day.
The sample covers all non-holiday weekdays for all experiment participants, excluding days
outside Bangalore. In the post period, in panel A only the first or the last three weeks are
included, and in panel B only the first and the last week are included. Panel B restricts to
243 participants in the Area treatment, except in column (4) where the sample consists of
the 148 Area participants for whom candidate areas included at least one with short detour
(3-7 minutes) and at least one with long detour (7-14 minutes). (See section 1.4 for more
details on the candidate area selection process.) All specifications include respondent and
study cycle fixed effects; column (4) includes fixed effects for each day in the experiment.
The mean of the outcome variable in the control group during the experiment is reported
for each specification. Standard errors in parentheses are clustered at the respondent level.
*𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table A3: Impact of Departure Time Charges on Daily Shadow Charges
(1) (2) (3)

Time of Day AM & PM AM PM
Commuter FE X X X

Panel A. Total Shadow Charges Today

High Rate × Post -22.7** -16.5** -6.2
(11.1) (7.4) (6.3)

Low Rate × Post -11.7 -3.5 -8.2
(13.5) (8.5) (7.9)

Information × Post 9.5 2.9 6.6
(10.2) (6.7) (6.2)

Post 0.6 -1.2 1.9
(9.1) (5.6) (6.0)

Observations 15,610 15,610 15,610
Control Mean 151.0 81.7 69.3

Notes: This table replicates panel A in Table 1.2 using shadow charges instead of shadow
rates. The shadow charge for a trip is equal to the shadow rate multiplied by the trip
length in kilometers. Shadow charges are expressed in Rupees and are calculated based on
a peak rate of Rs. 24/Km for for all respondents.
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Table A4: Impact of Departure Time Charges on Trip Shadow Charge
(1) (2) (3) (4) (5)

Time of Day AM & PM AM AM pre peak PM PM post peak
Commuter FE X X X X X

Panel A. Full Sample

High Rate × Post -6.00* -12.98** -19.60* -2.39 -10.55
(3.10) (5.44) (10.07) (4.53) (6.60)

Low Rate × Post -3.43 -4.86 -13.31 -4.68 -4.29
(3.93) (6.92) (11.39) (5.55) (8.55)

Information × Post 1.66 -2.55 -5.92 4.19 6.28
(2.67) (4.59) (7.07) (4.06) (6.40)

Observations 43,776 16,764 7,592 18,468 7,899
Control Mean 49.49 70.74 83.87 53.44 59.88

Panel B. Regular Commuters, Home-Work and Work-Home Trips

High Rate × Post -14.29* -27.00** -44.46** 2.67 -10.17
(8.07) (11.22) (17.39) (10.71) (13.40)

Low Rate × Post -10.56 -10.71 -30.68* -10.76 -34.80
(10.53) (12.66) (16.20) (16.79) (26.84)

Information × Post 1.34 -0.63 -7.17 8.43 3.16
(5.32) (7.30) (8.59) (9.82) (11.43)

Observations 11,895 5,789 3,782 4,862 2,113
Control Mean 68.87 83.39 85.20 70.19 76.48

Panel C. Variable Commuters, All Trips

High Rate × Post -7.98 -5.25 1.04 -16.16* -25.36*
(6.05) (11.06) (20.67) (8.58) (14.65)

Low Rate × Post 0.69 -5.54 10.28 -4.08 27.66
(8.22) (17.12) (27.75) (11.76) (19.59)

Information × Post -1.73 -3.96 -1.10 -3.13 -3.07
(5.92) (9.42) (19.31) (7.40) (11.17)

Observations 8,177 2,826 961 3,432 1,439
Control Mean 37.09 49.88 61.41 46.82 49.64

Notes: This table replicates Table 1.3 using shadow charges instead of shadow rates. The
shadow charge for a trip is equal to the shadow rate multiplied by the trip length in
kilometers. Shadow charges are expressed in Rupees and are calculated based on a peak
rate of Rs. 24/Km for for all respondents.
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Table A5: Trip Duration for Trips that Intersect or Do Not Intersect the Congestion
Area

(1) (2) (3)
Trip Duration (minutes)

Route FE X X X

Trip Charged -4.81*** -3.16** -0.28
(0.98) (1.34) (1.79)

Trip Charged × Long Detour -3.66*
(1.91)

Trip Charged × Predicted Detour -0.83***
(0.29)

Observations 7,455 7,455 7,455
Control Mean 38.51 38.51 38.51

Notes: This table compares the trip duration (in minutes) of trips that intersect and trips
that do not intersect the congestion area. The sample is home to work or work to home
trips of area participants on non-holiday weekdays. Each specification includes route fixed
effects. “Trip Charged” is a dummy for whether the trip intersects the congestion area.
Column (2) includes the interaction with the “Long Detour” Area sub-treatment. Column
(3) includes the interaction with detour duration (in minutes) as predicted from Google
Maps.
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Table A6: Treatment Heterogeneity
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Heterogeneity
Dummy Variable 𝐾

Regular
Destination

Self
Employed

Car
Driver

Small Log
Vehicle Value Older Small

Stated 𝛼
Small

Stated 𝛽
Short
Route

Seldom
Avoid Area

Panel A. Departure Time Treatment: Trip Rate
Charges×Post×(𝐾 = 0) -1.25 -2.74** -2.89** -5.81*** -1.06 -3.41** -5.04*** -2.85*

(2.17) (1.30) (1.35) (1.63) (1.90) (1.52) (1.92) (1.47)
Charges×Post×(𝐾 = 1) -4.11*** -7.01*** -4.69** -0.85 -4.70*** -4.26** -2.68 -3.95**

(1.37) (2.68) (2.26) (1.59) (1.47) (1.96) (1.66) (1.77)
Observations 43,776 43,170 43,776 43,776 43,776 40,783 39,639 43,776
Participants 𝐾 = 0 119 407 350 280 175 252 218 249
Participants 𝐾 = 1 378 82 147 217 322 205 228 248
Control Mean 𝐾 = 0 29.71 32.34 32.16 32.57 30.90 32.25 32.43 30.73
Control Mean 𝐾 = 1 33.34 32.73 33.06 32.24 33.32 33.11 32.68 34.59
P-value interaction 0.27 0.15 0.50 0.03 0.13 0.73 0.35 0.63

Panel B. Departure Time Treatment: Number of Trips Today
Charges×Post×(𝐾 = 0) -0.40* -0.10 -0.14 -0.36** -0.09 0.03 -0.15 -0.10

(0.24) (0.13) (0.15) (0.15) (0.20) (0.19) (0.15) (0.20)
Charges×Post×(𝐾 = 1) -0.09 -0.34 -0.20 0.11 -0.19 -0.20 -0.16 -0.28*

(0.14) (0.35) (0.19) (0.19) (0.15) (0.16) (0.18) (0.15)
Observations 15,610 15,367 15,610 15,610 15,610 14,416 14,073 15,610
Participants 𝐾 = 0 119 407 350 280 175 252 218 249
Participants 𝐾 = 1 378 82 147 217 322 205 228 248
Control Mean 𝐾 = 0 2.98 2.78 3.01 2.84 2.87 2.93 2.79 3.20
Control Mean 𝐾 = 1 2.94 3.70 2.82 3.10 3.00 3.02 3.11 2.68
P-value interaction 0.26 0.52 0.80 0.06 0.69 0.37 0.94 0.46

Panel C. Area Treatment: Trip Shadow Rate
Treated×(𝐾 = 0) -11.91*** -11.54*** -11.29*** -7.04** -12.92*** -9.65** -11.46*** -9.43***

(2.49) (2.56) (2.80) (3.56) (2.97) (4.04) (2.81) (2.74)
Treated×(𝐾 = 1) -7.94** -12.73*** -12.54*** -14.18*** -10.19*** -13.07*** -12.66*** -14.19***

(3.58) (3.95) (3.38) (2.66) (3.36) (2.73) (3.38) (3.26)
Observations 20,367 20,594 20,594 20,594 18,741 18,260 20,594 20,594
Participants 𝐾 = 0 190 163 133 73 100 90 123 110
Participants 𝐾 = 1 32 63 93 153 104 109 103 116
Control Mean 𝐾 = 0 47.03 44.10 46.14 39.79 41.99 43.13 46.99 34.43
Control Mean 𝐾 = 1 37.31 46.75 42.84 47.35 46.56 45.21 42.07 53.00
P-value interaction 0.36 0.80 0.78 0.11 0.54 0.48 0.79 0.27

Panel D. Area Treatment: Number of Trips Today
Treated×(𝐾 = 0) 0.21** 0.08 0.15 0.15 0.19 0.18 0.16 0.32**

(0.09) (0.10) (0.10) (0.15) (0.13) (0.12) (0.13) (0.13)
Treated×(𝐾 = 1) -0.07 0.40** 0.20 0.18* 0.14 0.19 0.21* -0.00

(0.24) (0.16) (0.14) (0.10) (0.12) (0.12) (0.11) (0.10)
Observations 8,745 8,878 8,878 8,878 8,056 7,874 8,878 8,878
Participants 𝐾 = 0 204 174 141 79 108 95 132 121
Participants 𝐾 = 1 35 69 102 164 110 118 111 122
Control Mean 𝐾 = 0 2.28 2.55 2.44 2.43 2.51 2.32 2.80 2.38
Control Mean 𝐾 = 1 3.80 2.37 2.58 2.53 2.45 2.58 2.17 2.61
P-value interaction 0.29 0.09 0.74 0.88 0.79 0.96 0.76 0.05

Notes: This table reports heterogeneous experimental response by observable characteristics. All heterogeneity
variables 𝐾 are dummy variables. They are: whether the commuter has a stable destination in column 1, whether
the commuter’s vehicle value is below median in column 4, whether the commuter is at least 35 years old in column 5,
whether the stated preference value of time (𝛼) is below median in column 6, whether the stated preference schedule
cost (𝛽) is below median in column 7, whether the daily average kilometers travelled pre-experiment is below median
in column 8, and whether the frequency of intersecting the congestion area pre-experiment is below median in column
9.
Data. Vehicle values are scrapped from a global online marketplace and matched by vehicle type, brand and model.
Stated preferences are from a phone survey. Value of time is measured by asking for the fee that would make
commuters indifferent between their usual travel time plus the fee, or a longer travel time. The measure of schedule
costs is computed asking by how much commuters would advance (or delay) their departure time if each minute
leaving earlier (or later) was less expensive. A commuter has "small stated 𝛽" if the absolute change in departure
time is above median. The stated preference values are residuals after controlling for morning or evening and cheaper
earlier or cheapear later effects.
Specification. Each regression includes commuter fixed effects, study period fixed effects interacted with each
group. The last line in each panel reports the p-value from the test of whether the two groups (𝐾 = 0 and 𝐾 = 1)
responded identically to the experiment.

133



Table A7: Structural Estimation Robustness Checks
(1) (2) (3) (4) (5) (6)

Value of time
𝛼 (Rs/hr)

Schedule cost early
𝛽𝐸 (Rs/hr)

Schedule cost late
𝛽𝐿 (Rs/hr)

Logit inner 𝜎
(dep. time.)

Logit outer 𝜇
(route)

Probability
to respond 𝑝

1,187.2 345.2 1,000 27.3 37.3 0.47
1,092.3 322.9 8,000 31.9 36.8 0.47

Notes: This table replicates Table 1.7 using different assumptions for the late schedule cost.
In Table 1.7 the late cost is fixed at 𝛽𝐿 = Rs.Â 4, 000; here it is fixed at 𝛽𝐿 = Rs.Â 1, 000
and 𝛽𝐿 = Rs.Â 8, 000.
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Table A8: Numerical Model Identification Check
(1) (2) (3) (4) (5)

𝛼̂ 𝛽𝐸 𝜎̂ 𝜇̂ 𝑝

Value of time 𝛼 1.12***
(0.04)

Penalty early 𝛽𝐸 1.00***
(0.17)

Logit inner 𝜎 1.41**
(0.55)

Logit outer 𝜇 1.08***
(0.03)

Probability to respond 𝑝 1.05***
(0.03)

Observations 90 90 90 90 90
𝑅2 0.92 0.43 0.06 0.92 0.90

Notes: This table shows numerically that the GMM estimation is able to recover model
parameters. To construct it, I drew 100 random sets of model parameters, and for each
set I simulated the model to generate choice data corresponding to those parameters,
and estimated the structural model on the simulated data. Each column in this table
reports the results from a regression of the estimated parameter on the original parameter.
Each random parameter 𝜃0 ∈ {𝛼, 𝛽𝐸 , 𝛽𝐿, 𝜎, 𝜇, 𝑝} was drawn independently from a uniform
distribution 𝑈

(︁
0.3 · 𝜃, 2 · 𝜃

)︁
where 𝜃 is the GMM parameter estimate from Table 1.7. The

simulated data covered five times more commuters than the real data. When running
GMM, the random initial conditions did not depend on the original parameters, and the
late schedule cost was fixed at 𝛽𝐿 = Rs. 4, 000 as in Table 1.7. Ten observations where the
estimated parameters had extreme values were dropped; results are essentially unchanged
with all 100 observations, except for column (3) where the coefficient becomes 0.53 (0.78).
Robust standard errors in parentheses. *𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table A10: Road Technology Trip Level Regressions
(1) (2) (3) (4)

Dependent Variable: Trip Delay (min/km)
Commuter FE X X

Traffic Volume at Trip Departure Time 0.87*** 0.84*** 0.70*** 0.70***
(0.04) (0.03) (0.04) (0.04)

Trip Length (km) -0.05*** -0.01**
(0.00) (0.00)

Constant 2.47*** 2.97*** 3.11*** 3.17***
(0.06) (0.05) (0.06) (0.06)

Observations 61,234 61,234 61,234 61,234

Notes: This table reports trip-level quantile (median) regressions of the trip delay, defined
as trip duration in minutes divided by trip length in kilometers, on the average traffic
volume at the trip departure time and trip length. The sample is all weekday trips more
than 2km in length, without any stops along the way, and with a trip diameter to total
length ratio above 0.6 (the 25th percentile). Columns 3 and 4 first residualize the trip delay
on commuter fixed effects. Standard errors in parentheses are clustered at the commuter
level. *𝑝 ≤ 0.10, **𝑝 ≤ 0.05, ***𝑝 ≤ 0.01
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Table A11: Experimental Design (strata, sub-treatments, timing)
Strata Congestion Charge Treatments Timing

Departure Time (DT)
Sub-treatments

Area
Sub-treatments

(︃
Area eligible

Area ineligible

)︃
×(︃

Car
Motorcycle

)︃
×(︃

High Daily KM
Low Daily KM

)︃

⎛⎜⎜⎜⎝
High Rate
Low Rate

Information
Control

⎞⎟⎟⎟⎠
(︃

Low Rate
High Rate

)︃
×(︃

Long Detour
Short Detour

)︃
(︃

DT First
DT Last

)︃
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Appendix B

Appendix for Chapter 3

B.1 Appendix

B.1.1 Additional Model Derivations

Properties of the Fréchet Distribution. We review some basic properties of the
Fréchet distribution.

The cumulative distribution function of a Fréchet random variable with scale
parameter 𝑇 and shape parameter 𝜖 is 𝐹 (𝑧) = exp (−𝑇𝑧−𝜖).

Consider a sequence of independent Fréchet random variables 𝑧𝑘 with scale 𝑇𝑘

and the same shape 𝜖, for 𝑘 = {1, . . . , 𝐾}. The probability that the maximum is
achieved by the 𝑗th variable, with 𝑗 ∈ {1, . . . , 𝐾}, is given by Pr (𝑗 ∈ arg max𝑘 𝑧𝑘) =
exp (𝑇𝑗) / (∑︀𝑘 exp (𝑇𝑘)).

The class of Fréchet random variables is closed with respect to the max operator.
The random variable max𝑘 𝑧𝑘 is Fréchet distributed with scale 𝑇 = ∑︀

𝑘 𝑇𝑘 and shape
𝜖. Moreover, the conditional maxima, namely 𝑧𝑗|𝑗 ∈ arg max𝑘 𝑥𝑘 , have exactly the
same distribution as the unconditional maximum.

The mean of a Fréchet distributed variable is E(𝑧) = 𝑇 1/𝜖Γ
(︁
1 − 1

𝜖

)︁
where Γ (·)

is the gamma function. It follows that ln E (𝑧) = ln(𝑇 )
𝜖

+ ln
(︁
1 − 1

𝜖

)︁
. Also, for some

absolute constant 𝐾 we have E ln (𝑧) = ln(𝑇 )
𝜖

− 𝐾
𝜖

.

Derivation of Income Measures.
Standard errors for 𝛼̂𝑧, 𝛼̂𝑑 and 𝜖 are derived using the Delta method. Differenti-

ating the equations in (3.9) with respect to 𝜌’s yields:
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∇

⎛⎜⎝ 𝜖
𝛼𝑧

𝛼𝑑

⎞⎟⎠ =

⎡⎢⎢⎣
−1

(𝜌1+𝜌2)2
−1

(𝜌1+𝜌2)2 0
𝜌2

(𝜌1+𝜌2)2
−𝜌1

(𝜌1+𝜌2)2 0
𝜌3

(𝜌1+𝜌2)2
𝜌3

(𝜌1+𝜌2)2
−1

(𝜌1+𝜌2)2

⎤⎥⎥⎦

and thus

𝑉 𝑎𝑟

⎛⎜⎝
⎡⎢⎣ 𝜖
𝛼̂𝑧

𝛼̂𝑑

⎤⎥⎦
⎞⎟⎠ = ∇𝑇 Σ∇

where Σ is the variance covariance matrix of the estimator (𝜌1, 𝜌2, 𝜌3).

B.1.2 Additional Data Details

Geographic Information and Census Population. We use population counts
from Sri Lanka’s 2011 census, at the Grama Niladhari (GN) level, the lowest admin-
istrative level in Sri Lanka. There are 14,021 GN’s in Sri Lanka in our data. We
obtained geographic administrative GN boundaries from the Survey Department of
Sri Lanka, which we combine with spatial data on cell towers. For each cell tower, we
interpolate the population based on the information from the census. Specifically, we
assume that population is uniformly distributed within each GN. We partition every
cell tower’s Voronoi cell into subareas corresponding to different GNs, and calculate
the population of each subarea, based on its land surface relative to the entire GN it
belongs to. Our estimate of the cell tower’s population is obtained by summing over
all subareas.
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B.2 Figures

Figure A.1: Comparison of Commuting Flows from Survey Data and Cell Phone
Data
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Notes. This figure replicates Figure 3-1 including plots that do not adjust for origin-
destination pairs with zero flows. The short dashed lines plot the local linear regression
of log flow on log travel time for survey data (red, short dash dot line) and for cell phone
data (blue, short dash line).
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B.3 Tables

Table A.1: Cell Phone Data Coverage at the User-Day Level

Dhaka,
Bangladesh

Colombo,
Sri Lanka

(1) Users in sample 5.3 · 106 3.0 · 106

(2) Days in sample 122 395
(3) All user-days possible = (1)×(2) 6.5 · 108 1.2 · 109

(4) User-days with data 2.9 · 108

(5) User-days with data (5-10am) 1.5 · 108

(6) User-days with data (10am-3pm) 2.4 · 108

(7) User-days with data (5-10am and 10am-3pm) 1.0 · 108 3.4 · 108

(8) Coverage rate =(7)/(3) 16.1% 28.8%

Notes: This table shows descriptive statistics on data coverage in the two data sets. The
first row indicates the number of unique users (who appear at least once in the data set).
The second row shows the total number of calendar dates with data. The third row is the
product of the previous two, which is the theoretical upper bound of user-day combinations
that could appear in the data. (Note that in practice some users only start using a cell
phone partway through the period, so this is an overestimate.) Rows 4-6 describe the actual
number of user-days in the Bangladesh data under different restrictions. The seventh row
shows the number of user-days for which we have at least one location between 5 am and
10 am, and at least one location between 10 am and 3 pm – this corresponds to the data
necessary to define commuting behavior for that user and that day.
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Table A.2: Comparison of Commuting Flows from Survey Data and Cell Phone Data

Log flow survey data (DHUTS)
(1) (2) (3) (4)

Log flow cell phone data 0.29*** 0.50*** 0.18*** 0.58***

(0.024) (0.018) (0.038) (0.044)
Log travel time -0.48*** 0.22

(0.097) (0.13)
Origin and destination

fixed effects Yes Yes
Observations 1859 1857 1858 1856
R2 0.24 0.62 0.29 0.62

Notes: This table shows the relationship between commuting flows from two different data
sets: the DHUTS transportation survey (red, solid line) and commuting flows constructed
using cell phone data (blue, dashed line), in Dhaka.
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