
Neural Graph Representation Learning with

Application to Chemistry

by

Wengong Jin

B.S. in Computer Science
Shanghai Jiao Tong University, 2012

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 14, 2018

Certified by. .
Regina Barzilay

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Neural Graph Representation Learning with Application to

Chemistry

by

Wengong Jin

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis focus on deep learning algorithms for learning continuous representation
of molecular graphs, a much more compact representation than traditional finger-
prints. We demonstrate its better predictive performance in two tasks. First, we seek
to automate the prediction of organic reaction outcomes. The previous solution uti-
lizes reaction templates to limit the space, but it suffers from coverage and efficiency
issues due to its discrete nature. We propose a template-free approach to efficiently
explore the space of product molecules by pinpointing the reaction center. The can-
didates products are scored by a Weisfeiler-Lehman Difference Network that models
high-order interactions between changes occurring at nodes across the molecule. Our
framework outperforms the top-performing template-based approach with a 10% mar-
gin, while running orders of magnitude faster. Moreover, we demonstrate that the
model accuracy rivals the performance of domain experts.

Secondly, we seek to automate the design of molecules based on specific chemi-
cal properties. Our primary contribution is the direct realization of molecular graphs
from continuous space. Our junction tree variational autoencoder generates molecular
graphs in two phases, by first generating a tree-structured scaffold over chemical sub-
structures, and then combining them into a molecule with a graph message passing
network. This approach allows us to incrementally expand molecules while main-
taining chemical validity at every step. We evaluate our model on multiple tasks
ranging from molecular generation to optimization. Across these tasks, our model
outperforms previous state-of-the-art baselines by a significant margin.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I would like to thank my advisor Regina Barzilay and Tommi

Jaakkola, whose guidance and assistance was crucial in the completion of this thesis.

This work will never be possible without their energy and involvement on the research

and their never ending source of support.

I would like to thank those who contributed to the papers on which this thesis is

based. First, my sincere thanks to Klavs Jensen, William Green and Connor Coley

from MIT chemical engineering department and Tim Jamison from MIT department

of chemistry for their invaluable suggestions and discussions during our collaboration.

I also thank Tao Lei, Yuan Zhang, Karthik Narasimhan, Jiaming Luo, Tianxiao

Shen, Benson Chen, Darsh Shah and every member of MIT NLP group whose ideas,

feedback, and assistance were critical to this work. I would also like to acknowledge

the support of DARPA Make-It program under contract ARO W911NF-16-2-0023.

Lastly, I am grateful to my mother for her sacrificial love and her support of

my study. Her support and love has always been my motivation to overcome many

difficulties in my life. I am forever indebted to God and my church family including

P. Joseph Han, P. John Peng, Joonhyoon Jeong, Zhenghua Wu, Ce Liu, Hu Huang,

Jiaxing Zhang, Donglai Wei, Wenjie Lu, Peilun Dai, and Xun Peng. I have received

so much love from my leaders, peers, and most importantly, from God himself who

sacrificed his son to save a wretched sinner like me.

5

6

Contents

1 Introduction 9

1.1 Reaction Prediction . 9

1.2 Molecule Optimization . 11

2 Reaction Prediction 15

2.1 Overview . 15

2.1.1 Reaction Center Identification 16

2.1.2 Candidate Generation . 19

2.1.3 Candidate Ranking . 20

2.2 Experiments . 21

2.2.1 Results . 22

2.2.2 Human Evaluation Study . 25

3 Molecule Optimization 27

3.1 Background: Variational Autoencoder 27

3.2 Junction Tree Variational Autoencoder 27

3.2.1 Junction Tree . 29

3.2.2 Graph Encoder . 30

3.2.3 Tree Encoder . 31

3.2.4 Tree Decoder . 32

3.2.5 Graph Decoder . 34

3.3 Experiments . 37

3.3.1 Molecule Reconstruction and Validity 39

3.3.2 Bayesian Optimization . 40

3.3.3 Constrained Optimization . 41

7

4 Related Work 43

4.1 Graph Neural Network . 43

4.2 Reaction Prediction . 43

4.3 Molecule Optimization . 44

5 Conclusion 47

A Molecular Graph Generation 55

A.1 Tree Decomposition . 55

A.2 Stereochemistry . 56

A.3 Training Details . 57

A.4 More Experimental Results . 57

8

Chapter 1

Introduction

Chemical synthesis planning and drug discovery involves practitioners with years

of advanced training and is carried out in a trial-and-error, labor-intensive fashion.

For instance, current drug discovery paradigm involves exhaustive screening of large

compound libraries against biological targets to find molecules with high potency,

which becomes a bottleneck in drug discovery. My goal is to overcome these challenges

by deep learning – design novel deep learning approaches to learn chemical knowledge

from existing reaction/drug databases. These approaches would potentially automate

molecule physiochemical property testing and drug optimization in drug discovery,

avoiding exhaustive search in drug design.

On the technical side, my research focus on graph neural network and genera-

tive model over graphs, with application to organic reaction prediction and molecule

optimization (or drug discovery).

1.1 Reaction Prediction

One of the fundamental problems in organic chemistry is the prediction of which

products form as a result of a chemical reaction [52, 54]. While the products can be

determined unambiguously for simple reactions, it is a major challenge for many com-

plex organic reactions. Indeed, experimentation remains the primary manner in which

reaction outcomes are analyzed. This is time consuming, expensive, and requires the

help of an experienced chemist. The empirical approach is particularly limiting for

9

the goal of automatically designing efficient reaction sequences that produce specific

target molecule(s), a problem known as chemical retrosynthesis [52, 54].

Viewing molecules as labeled graphs over atoms, we propose to formulate the

reaction prediction task as a graph transformation problem. A chemical reaction

transforms input molecules (reactants) into new molecules (products) by performing

a set of graph edits over reactant molecules, adding new edges and/or eliminating

existing ones. Given that a typical reaction may involve more than 100 atoms, fully

exploring all possible transformations is intractable. The computational challenge is

how to reduce the space of possible edits effectively, and how to select the product

from among the resulting candidates.

The state-of-the-art solution is based on reaction templates (Figure 1-1). A reac-

tion template specifies a molecular subgraph pattern to which it can be applied and

the corresponding graph transformation. Since multiple templates can match a set of

reactants, another model is trained to filter candidate products using standard super-

vised approaches. The key drawbacks of this approach are coverage and scalability. A

large number of templates is required to ensure that at least one can reconstitute the

correct product. The templates are currently either hand-crafted by experts [19, 5, 50]

or generated from reaction databases with heuristic algorithms [6, 32, 9]. For example,

Coley et al. [9] extracts 140K unique reaction templates from a database of 1 million

reactions. Beyond coverage, applying a template involves graph matching and this

makes examining large numbers of templates prohibitively expensive. The current

approach is therefore limited to small datasets with limited types of reactions.

In this paper, we propose a template-free approach by learning to identify the

reaction center, a small set of atoms/bonds that change from reactants to products.

In our datasets, on average only 5.5% of the reactant molecules directly participate

in the reaction. The small size of the reaction centers together with additional con-

straints on bond formations enables us to directly enumerate candidate products.

Our forward-prediction approach is then divided into two key parts: (1) learning to

identify reaction centers and (2) learning to rank the resulting enumerated candidate

products.

Our technical approach builds on neural embedding of the Weisfeiler-Lehman iso-

morphism test. We incorporate a specific attention mechanism to identify reaction

10

Figure 1-1: An example reaction where the reaction center is (27,28), (7,27), and
(8,27), highlighted in green. Here bond (27,28) is deleted and (7,27) and (8,27)
are connected by aromatic bonds to form a new ring. The corresponding reaction
template consists of not only the reaction center, but nearby functional groups that
explicitly specify the context.

centers while leveraging distal chemical effects not accounted for in related convo-

lutional representations [13, 10]. Moreover, we propose a novel Weisfeiler-Lehman

Difference Network to learn to represent and efficiently rank candidate transforma-

tions between reactants and products.

We evaluate our method on two datasets derived from the USPTO [36], and

compare our methods to the current top performing system [9]. Our method achieves

83.9% and 77.9% accuracy on two datasets, outperforming the baseline approach

by 10%, while running 140 times faster. Finally, we demonstrate that the model

outperforms domain experts by a large margin.

1.2 Molecule Optimization

The key challenge of drug discovery is to find target molecules with desired chemical

properties. Currently, this task takes years of development and exploration by expert

chemists and pharmacologists. Our ultimate goal is to automate this process. From

a computational perspective, we decompose the challenge into two complementary

subtasks: learning to represent molecules in a continuous manner that facilitates

the prediction and optimization of their properties (encoding); and learning to map

an optimized continuous representation back into a molecular graph with improved

properties (decoding). While deep learning has been extensively investigated for

11

Figure 1-2: Two almost identical molecules with markedly different canonical SMILES
in RDKit. The edit distance between two strings is 22 (50.5% of the whole sequence).

molecular graph encoding [13, 25, 15], the harder combinatorial task of molecular

graph generation from latent representation remains under-explored.

Prior work on drug design formulated the graph generation task as a string gener-

ation problem [16, 30] in an attempt to side-step direct generation of graphs. Specif-

ically, these models start by generating SMILES [56], a linear string notation used

in chemistry to describe molecular structures. SMILES strings can be translated

into graphs via deterministic mappings (e.g., using RDKit [31]). However, this de-

sign has two critical limitations. First, the SMILES representation is not designed

to capture molecular similarity. For instance, two molecules with similar chemical

structures may be encoded into markedly different SMILES strings (e.g., Figure 1-2).

This prevents generative models like variational autoencoders from learning smooth

molecular embeddings. Second, essential chemical properties such as molecule valid-

ity are easier to express on graphs rather than linear SMILES representations. We

hypothesize that operating directly on graphs improves generative modeling of valid

chemical structures.

Our primary contribution [23] is a new generative model of molecular graphs.

While one could imagine solving the problem in a standard manner – generating

graphs node by node – the approach is not ideal for molecules. This is because cre-

ating molecules atom by atom would force the model to generate chemically invalid

intermediaries (see, e.g., Figure 1-3), delaying validation until a complete graph is

generated. Instead, we propose to generate molecular graphs in two phases by ex-

ploiting valid subgraphs as components. The overall generative approach, cast as a

junction tree variational autoencoder, first generates a tree structured object (a junc-

tion tree) whose role is to represent the scaffold of subgraph components and their

12

Figure 1-3: Comparison of two graph generation schemes: Structure by structure ap-
proach is preferred as it avoids invalid intermediate states (marked in red) encountered
in node by node approach.

coarse relative arrangements. The components are valid chemical substructures au-

tomatically extracted from the training set using tree decomposition and are used as

building blocks. In the second phase, the subgraphs (nodes in the tree) are assembled

together into a coherent molecular graph.

We evaluate our model on multiple tasks ranging from molecular generation to op-

timization of a given molecule according to desired properties. As baselines, we utilize

state-of-the-art SMILES-based generation approaches [30, 11]. We demonstrate that

our model produces 100% valid molecules when sampled from a prior distribution,

outperforming the top performing baseline by a significant margin. In addition, we

show that our model excels in discovering molecules with desired properties, yielding

a 30% relative gain over the baselines.

13

14

Chapter 2

Reaction Prediction

2.1 Overview

Our approach bypasses reaction templates by learning a reaction center identifier.

Specifically, we train a neural network that operates on the reactant graph to pre-

dict a reactivity score for every pair of atoms (Section 2.1.1). A reaction center is

then selected by picking a small number of atom pairs with the highest reactivity

scores. After identifying the reaction center, we generate possible product candidates

by enumerating possible bond configurations between atoms in the reaction center

(Section 2.1.2) subject to chemical constraints. We train another neural network to

rank these product candidates (represented as graphs, together with the reactants)

so that the correct reaction outcome is ranked highest (Section 2.1.3). The overall

pipeline is summarized in Figure 2-1. Before describing the two modules in detail, we

formally define some key concepts used throughout the paper.

Chemical Reaction A chemical reaction is a pair of molecular graphs (Gr, Gp),

where Gr is called the reactants and Gp the products. A molecular graph is described

asG = (V,E), where V = {a1, a2, · · · , an} is the set of atoms and E = {b1, b2, · · · , bm}
is the set of associated bonds of varying types (single, double, aromatic, etc.). Note

that Gr is has multiple connected components since there are multiple molecules

comprising the reactants. The reactions used for training are atom-mapped so that

each atom in the product graph has a unique corresponding atom in the reactants.

15

Figure 2-1: Overview of our approach. (1) we train a model to identify pairwise
atom interactions in the reaction center. (2) we pick the top K atom pairs and
enumerate chemically-feasible bond configurations between these atoms. Each bond
configuration generates a candidate outcome of the reaction. (3) Another model is
trained to score these candidates to find the true product.

Reaction Center A reaction center is a set of atom pairs {(ai, aj)}, where the

bond type between ai and aj differs from Gr to Gp. In other words, a reaction center

is a minimal set of graph edits needed to transform reactants to products. Since

the reported reactions in the training set are atom-mapped, reaction centers can be

identified automatically given the product.

2.1.1 Reaction Center Identification

In a given reaction R = (Gr, Gp), each atom pair (au, av) in Gr is associated with

a reactivity label yuv ∈ {0, 1} specifying whether their relation differs between re-

actants and products. The label is determined by comparing Gr and Gp with the

help of atom-mapping. We predict the label on the basis of learned atom representa-

tions that incorporate contextual cues from the surrounding chemical environment.

In particular, we build on a Weisfeiler-Lehman Network (WLN) that has shown su-

perior results against other learned graph representations in the narrower setting of

predicting chemical properties of individual molecules [33].

16

Weisfeiler-Lehman Network (WLN)

The WLN is inspired by the Weisfeiler-Lehman isomorphism test for labeled graphs.

The architecture is designed to embed the computations inherent in WL isomorphism

testing to generate learned isomorphism-invariant representations for atoms.

WL Isomorphism Test The key idea of the isomorphism test is to repeatedly

augment node labels by the sorted set of node labels of neighbor nodes and to compress

these augmented labels into new, short labels. The initial labeling is the atom element.

In each iteration, its label is augmented with the element labels of its neighbors. Such

a multi-set label is compactly represented as a new label by a hash function. Let c
(L)
v

be the final label of atom av. The molecular graph G = (V,E) is represented as a

set {(c(L)u , buv, c
(L)
v) | (u, v) ∈ E}, where buv is the bond type between u and v. Two

graphs are said to be isomorphic if their set representations are the same. The number

of distinct labels grows exponentially with the number of iterations L.

WL Network The discrete relabeling process does not directly generalize to

continuous feature vectors. Instead, we appeal to neural networks to continuously

embed the computations inherent in the WL test. Let r be the analogous continuous

relabeling function. Then a node v ∈ G with neighbor nodes N(v), node features fv,

and edge features fuv is “relabeled” according to

r(v) = τ(U1fv + U2

∑
u∈N(v)

τ(V[fu, fuv])) (2.1)

where τ(·) could be any non-linear function. We apply this relabeling operation

iteratively to obtain context-dependent atom vectors

h(l)
v = τ(U1h

(l−1)
v + U2

∑
u∈N(v)

τ(V[h(l−1)
u , fuv])) (1 ≤ l ≤ L) (2.2)

where h
(0)
v = fv and U1,U2,V are shared across layers. The final atom representa-

tions arise from mimicking the set comparison function in the WL isomorphism test,

yielding

cv =
∑

u∈N(v)

W(0)h(L)
u �W(1)fuv �W(2)h(L)

v (2.3)

17

The set comparison here is realized by matching each rank-1 edge tensor h
(L)
u ⊗ fuv ⊗

h
(L)
v to a set of reference edges also cast as rank-1 tensors W(0)[k]⊗W(1)[k]⊗W(2)[k],

where W[k] is the k-th row of matrix W. In other words, Eq. 2.3 above could be

written as

cv[k] =
∑

u∈N(v)

〈
W(0)[k]⊗W(1)[k]⊗W(2)[k], h(L)

u ⊗ fuv ⊗ h(L)
v

〉
(2.4)

The resulting cv is a vector representation that captures the local chemical environ-

ment of the atom (through relabeling) and involves a comparison against a learned

set of reference environments. The representation of the whole graph G is simply the

sum over all the atom representations: cG =
∑

v cv.

Finding Reaction Centers with WLN

We present two models to predict reactivity: the local and global models. Our local

model is based directly on the atom representations cu and cv in predicting label

yuv. The global model, on the other hand, selectively incorporates distal chemical

effects with the goal of capturing the fact that atoms outside of the reaction center

may be necessary for the reaction to occur. For example, the reaction center may be

influenced by certain reagents1. We incorporate these distal effects into the global

model through an attention mechanism.

Local Model Let cu, cv be the atom representations for atoms u and v, respec-

tively, as returned by the WLN. We predict the reactivity score of (u, v) by passing

these through another neural network:

suv = σ
(
uT τ(Macu + Macv + Mbbuv)

)
(2.5)

where σ(·) is the sigmoid function, and buv is an additional feature vector that encodes

auxiliary information about the pair such as whether the two atoms are in different

molecules or which type of bond connects them.

Global Model Let αuv be the attention score of atom v on atom u. The global

context representation c̃u of atom u is calculated as the weighted sum of all reactant

1Molecules that do not typically contribute atoms to the product but are nevertheless necessary
for the reaction to proceed.

18

atoms where the weight comes from the attention module:

c̃u =
∑
v

αuvcv; αuv = σ
(
uT τ(Pacu + Pacv + Pbbuv)

)
(2.6)

suv = σ
(
uT τ(Mac̃u + Mac̃v + Mbbuv)

)
(2.7)

Note that the attention is obtained with sigmoid rather than softmax non-linearity

since there may be multiple atoms relevant to a particular atom u.

Training Both models are trained to minimize the following loss function:

L(T) = −
∑
R∈T

∑
u6=v∈R

yuv log(suv) + (1− yuv) log(1− suv) (2.8)

Here we predict each label independently because of the large number of variables.

For a given reaction with N atoms, we need to predict the reactivity score of O(N2)

pairs. This quadratic complexity prohibits us from adding higher-order dependen-

cies between different pairs. Nonetheless, we found independent prediction yields

sufficiently good performance.

2.1.2 Candidate Generation

We select the top K atom pairs with the highest predicted reactivity score and des-

ignate them, collectively, as the reaction center. The set of candidate products are

then obtained by enumerating all possible bond configuration changes within the

set. While the resulting set of candidate products is exponential in K, many can be

ruled out by invoking additional constraints. For example, every atom has a maxi-

mum number of neighbors they can connect to (valence constraint). We also leverage

the statistical bias that reaction centers are very unlikely to consist of disconnected

components (connectivity constraint). Some multi-step reactions do exist that vio-

late the connectivity constraint. As we will show, the set of candidates arising from

this procedure is more compact than those arising from templates without sacrificing

coverage.

19

2.1.3 Candidate Ranking

The training set for candidate ranking consists of lists T = {(r, p0, p1, · · · , pm)},
where r are the reactants, p0 is the known product, and p1, · · · , pm are other enu-

merated candidate products. The goal is to learn a scoring function that ranks the

highest known product p0. The challenge in ranking candidate products is again rep-

resentational. We must learn to represent (r, p) in a manner that can focus on the

key difference between the reactants r and products p while also incorporating the

necessary chemical contexts surrounding the changes.

We again propose two alternative models to score each candidate pair (r, p). The

first model naively represents a reaction by summing difference vectors of all atom

representations obtained from a WLN on the associated connected components. Our

second and improved model, called WLDN, takes into account higher order interac-

tions between these differences vectors.

WLN with Sum-Pooling Let c
(pi)
v be the learned atom representation of atom

v in candidate product molecule pi. We define difference vector d
(pi)
v pertaining to

atom v as follows:

d(pi)
v = c(pi)

v − c(r)
v ; s(pi) = uT τ(M

∑
v∈pi

d(pi)
v) (2.9)

Recall that the reactants and products are atom-mapped so we can use v to refer to

the same atom. The pooling operation is a simple sum over these difference vectors,

resulting in a single vector for each (r, pi) pair. This vector is then fed into another

neural network to score the candidate product pi.

Weisfeiler-Lehman Difference Network (WLDN) Instead of simply sum-

ming all difference vectors, the WLDN operates on another graph called a difference

graph. A difference graph D(r, pi) is defined as a molecular graph which has the same

atoms and bonds as pi, with atom v’s feature vector replaced by d
(pi)
v . Operating on

the difference graph has several benefits. First, in D(r, pi), atom v’s feature vector

deviates from zero only if it is close to the reaction center, thus focusing the processing

on the reaction center and its immediate context. Second, D(r, pi) explicates neighbor

dependencies between difference vectors. The WLDN maps this graph-based repre-

sentation into a fixed-length vector, by applying a separately parameterized WLN on

20

top of D(r, pi):

h(pi,l)
v = τ

U1h
(pi,l−1)
v + U2

∑
u∈N(v)

τ
(
V[h(pi,l−1)

u , fuv]
) (1 ≤ l ≤ L) (2.10)

d(pi,L)
v =

∑
u∈N(v)

W(0)h(pi,L)
u �W(1)fuv �W(2)h(pi,L)

v (2.11)

where h
(pi,0)
v = d

(pi)
v . The final score of pi is s(pi) = uT τ(M

∑
v∈pi d

(pi,L)
v).

Training Both models are trained to minimize the softmax log-likelihood objec-

tive over the scores {s(p0), s(p1), · · · , s(pm)} where s(p0) corresponds to the target.

2.2 Experiments

Data As a source of data for our experiments, we used reactions from USPTO

granted patents, collected by Lowe [36]. After removing duplicates and erroneous

reactions, we obtained a set of 480K reactions, to which we refer in the paper as

USPTO. This dataset is divided into 400K, 40K, and 40K for training, development,

and testing purposes.2

In addition, for comparison purposes we report the results on the subset of 15K

reaction from this dataset (referred as USPTO-15K) used by Coley et al. [9]. They

selected this subset to include reactions covered by the 1.7K most common templates.

We follow their split, with 10.5K, 1.5K, and 3K for training, development, and testing.

Setup for Reaction Center Identification The output of this component

consists of K atom pairs with the highest reactivity scores. We compute the coverage

as the proportion of reactions where all atom pairs in the true reaction center are

predicted by the model, i.e., where the recorded product is found in the model-

generated candidate set.

The model features reflect basic chemical properties of atoms and bonds. Atom-

level features include its elemental identity, degree of connectivity, number of attached

hydrogen atoms, implicit valence, and aromaticity. Bond-level features include bond

type (single, double, triple, or aromatic), whether it is conjugated, and whether the

bond is part of a ring.

2Code and data available at https://github.com/wengong-jin/nips17-rexgen

21

Both our local and global models are build upon a Weisfeiler-Lehman Network,

with unrolled depth 3. All models are optimized with Adam [26], with learning rate

decay factor 0.9.

Setup for Candidate Ranking The goal of this evaluation is to determine

whether the model can select the correct product from a set of candidates derived

from reaction center. We first compare model accuracy against the top-performing

template-based approach by Coley et al. [9]. This approach employs frequency-based

heuristics to construct reaction templates and then uses a neural model to rank the

derived candidates. As explained above, due to the scalability issues associated with

this baseline, we can only compare on USPTO-15K, which the authors restricted to

contain only examples that were instantiated by their most popular templates. For

this experiment, we set K = 8 for candidate generation, which achieves 90% coverage

and yields 250 candidates per reaction. To compare a standard WLN representation

against its counterpart with Difference Networks (WLDN), we train them under the

same setup on USPTO-15K, fixing the number of parameters to 650K.

Next, we evaluate our model on USPTO for large scale evaluation. We set K = 6

for candidate generation and report the result of the best model architecture. Finally,

to factorize the coverage of candidate selection and the accuracy of candidate ranking,

we consider two evaluation scenarios: (1) the candidate list as derived from reaction

center; (2) the above candidate list augmented with the true product if not found.

This latter setup is marked with (*).

2.2.1 Results

Reaction Center Identification Table 2.1a reports the coverage of the model as

compared to the real reaction core. Clearly, the coverage depends on the number

of atom pairs K, with the higher coverage for larger values of K. These results

demonstrate that even for K = 8, the model achieves high coverage, above 90%.

The results also clearly demonstrate the advantage of the global model over the

local one, which is consistent across all experiments. The superiority of the global

model is in line with the well-known fact that reactivity depends on more than the

immediate local environment surrounding the reaction center. The presence of certain

functional groups (structural motifs that appear frequently in organic chemistry)

22

USPTO-15K

Method |θ| K=6 K=8 K=10

Local 572K 80.1 85.0 87.7

Local 1003K 81.6 86.1 89.1

Global 756K 86.7 90.1 92.2

USPTO

Local 572K 83.0 87.2 89.6

Global 756K 89.8 92.0 93.3

Avg. Num. of Candidates (USPTO)

Template - 482.3 out of 5006

Global - 60.9 246.5 1076

(a) Reaction Center Prediction Performance.
Coverage is reported by picking the top K
(K=6,8,10) reactivity pairs. |θ| is the num-
ber of model parameters.

USPTO-15K

Method Cov. P@1 P@5

Coley et al. 100.0 72.1 90.7

WLN 90.1 74.9 86.3

WLDN 90.1 76.7 86.8

WLN (*) 100.0 81.4 94.8

WLDN (*) 100.0 84.1 96.1

USPTO

Method |θ| P@1 P@5

WLDN 3.2M 79.6 89.2

WLDN (*) 3.2M 83.9 95.2

(b) Candidate Ranking Performance. Precision
at ranks 1,3,5 are reported. (*) denotes that
the true product was added if not covered by
the previous stage.

Table 2.1: Model Comparison on USPTO-15K and USPTO dataset.

far from the reaction center can promote or inhibit different modes of reactivity.

Moreover, reactivity is often influenced by the presence of reagents, which are separate

molecules that may not directly contribute atoms to the product. Consideration of

both of these factors necessitates the use of a model that can account for long-range

dependencies between atoms.

Figure 2-2 depicts one such example, where the observed reactivity can be at-

tributed to the presence of a reagent molecule that is completely disconnected from

the reaction center itself. While the local model fails to anticipate this reactivity, the

global one accurately predicts the reaction center. The attention map highlights the

reagent molecule as the determinant context.

Candidate Generation Here we compare the coverage of the generated can-

didates with the template-based model. Table 2.1a shows that for K = 6, our

model generates an average of 60.1 candidates and reaches a coverage of 89.8%. The

template-based baseline requires 5006 templates extracted from the training data

(corresponding to a minimum of five precedent reactions) to achieve 90.1% coverage

with an average of 482 candidates per example.

This weakness of the baseline model can be explained by the difficulty in defin-

23

Figure 2-2: A reaction that reduces the carbonyl carbon of an amide by removing
bond 4-23 (red circle). Reactivity at this site would be highly unlikely without the
presence of borohydride (atom 25, blue circle). The global model correctly predicts
bond 4-23 as the most susceptible to change, while the local model does not even
include it in the top ten predictions. The attention map of the global model show
that atoms 1, 25, and 26 were determinants of atom 4’s predicted reactivity.

ing general heuristics with which to extract templates from reaction examples. It is

possible to define different levels of specificity based on the extent to which atoms

surrounding the reaction center are included or generalized [32]. This introduces an

unavoidable trade-off between generality (fewer templates, higher coverage, more can-

didates) and specificity (more templates, less coverage, fewer candidates). Figure 2-3a

illustrates one reaction example where the corresponding template is rare due to the

adjacency of the reaction center to both a carbonyl group and a phenyl ring. Because

adjacency to either group can influence reactivity, both are included as part of the

template, although reactivity in this case does not require the additional specification

of the phenyl group.

The massive number of templates required for high coverage is a serious impedi-

ment for the template approach because each template application requires solving a

subgraph isomorphism problem. Specifically, it takes on average 7 seconds to apply

the 5006 templates to a test instance, while our method takes less than 50 ms, about

140 times faster.

Candidate Ranking Table 2.1b reports the performance on the product predic-

tion task. Since the baseline templates from [9] were optimized on the test and have

100% coverage, we compare its performance against our models to which the correct

product is added (WLN(*) and WLDN(*)). Our model clearly outperforms the base-

line by a wide margin. Even when compared against the candidates automatically

computed from the reaction center, WLDN outperforms the baseline in top-1 accu-

24

(a) An example where reaction occurs at the
α carbon (atom 7, red circle) of a carbonyl
group (bond 8-13), also adjacent to a phenyl
group (atoms 1-6). The corresponding tem-
plate explicitly requires both the carbonyl and
part of the phenyl ring as context (atoms 4,
7, 8, 13), although reactivity in this case does
not require the additional specification of the
phenyl group (atom 1).

(b) Performance of reactions with different
popularity. MRR stands for mean reciprocal
rank

Figure 2-3

racy. The results also demonstrate that the WLDN model consistently outperforms

the WLN model. This is consistent with our intuition that modeling higher order

dependencies between the difference vectors is advantageous over simply summing

over them. Table 2.1b also shows the model performance improves when tested on

the full USPTO dataset.

We further analyze model performance based on the frequency of the underlying

transformation as reflected by the the number of template precedents. In Figure 2-3b

we group the test instances according to their frequency and report the coverage of

the global model and the mean reciprocal rank (MRR) of the WLDN model on each

of them. As expected, our approach achieves the highest performance for frequent

reactions. However, it maintains reasonable coverage and ranking accuracy even for

rare reactions, which are particularly challenging for template-based methods.

2.2.2 Human Evaluation Study

We randomly selected 80 reaction examples from the test set, ten from each of the

template popularity intervals of Figure 2-3b, and asked ten chemists to predict the

outcome of each given its reactants. The average accuracy across the ten performers

25

was 48.2%. Our model achieves an accuracy of 69.1%, very close to the best individual

performer who scored 72.0%.

Chemist 56.3 50.0 72.0 63.8 66.3 65.0 40.0 58.8 25.0 16.3

Our Model 69.1

Table 2.2: Human and model performance on 80 reactions randomly selected from
the USPTO test set to cover a diverse range of reaction types. The first 8 are chemists
with rich experience in organic chemistry (graduate, postdoctoral and professor level
chemists) and the last two are graduate students in chemical engineering who use
organic chemistry concepts regularly but have less formal training.

26

Chapter 3

Molecule Optimization

3.1 Background: Variational Autoencoder

The variational autoencoder [27] is a probabilistic generative model that learns both

an encoder and a decoder for mapping data x to and from latent variables z. The

decoder defines the generative process of x given latent representation z, i.e. the likeli-

hood function pθ(x|z). The encoder approximates the posterior pθ(z|x) ∝ pθ(x|z)p(z)

with a parameterized model qψ(z|x). The encoder and decoder are jointly trained to

maximize the evidence lower bound of the marginal likelihood

L(θ, ψ; x) = Eqψ(z|x) [log pθ(x, z)− log qψ(z|x)]

where prior distribution is a Gaussian p(z) = N (0, I).

3.2 Junction Tree Variational Autoencoder

Our approach extends the variational autoencoder [27] to molecular graphs by in-

troducing a suitable encoder and a matching decoder. Deviating from previous

work [16, 30], we interpret each molecule as having been built from subgraphs chosen

out of a vocabulary of valid components. These components are used as building

blocks both when encoding a molecule into a vector representation as well as when

decoding latent vectors back into valid molecular graphs. The key advantage of this

view is that the decoder can realize a valid molecule piece by piece by utilizing the

27

collection of valid components and how they interact, rather than trying to build the

molecule atom by atom through chemically invalid intermediaries (Figure 1-3). An

aromatic bond, for example, is chemically invalid on its own unless the entire aro-

matic ring is present. It would be therefore challenging to learn to build rings atom

by atom rather than by introducing rings as part of the basic vocabulary.

Our vocabulary of components, such as rings, bonds and individual atoms, is

chosen to be large enough so that a given molecule can be covered by overlapping

components or clusters of atoms. The clusters serve the role analogous to cliques in

graphical models, as they are expressive enough that a molecule can be covered by

overlapping clusters without forming cluster cycles. In this sense, the clusters serve as

cliques in a (non-optimal) triangulation of the molecular graph. We form a junction

tree of such clusters and use it as the tree representation of the molecule. Since our

choice of cliques is constrained a priori, we cannot guarantee that a junction tree

exists with such clusters for an arbitrary molecule. However, our clusters are built on

the basis of the molecules in the training set to ensure that a corresponding junction

tree can be found. Empirically, our clusters cover most of the molecules in the test

set.

The original molecular graph and its associated junction tree offer two comple-

mentary representations of a molecule. We therefore encode the molecule into a

two-part latent representation z = [zT , zG] where zT encodes the tree structure and

what the clusters are in the tree without fully capturing how exactly the clusters are

mutually connected. zG encodes the graph to capture the fine-grained connectivity.

Both parts are created by tree and graph encoders q(zT |T) and q(zG|G). The latent

representation is then decoded back into a molecular graph in two stages. As illus-

trated in Figure 3-1, we first reproduce the junction tree using a tree decoder p(T |zT)

based on the information in zT . Second, we predict the fine grain connectivity be-

tween the clusters in the junction tree using a graph decoder p(G|T , zG) to realize

the full molecular graph. The junction tree approach allows us to maintain chemical

feasibility during generation.

Notation A molecular graph is defined as G = (V,E) where V is the set of

atoms (vertices) and E the set of bonds (edges). Let N(x) be the neighbor of x. We

denote sigmoid function as σ(·) and ReLU function as τ(·). We use i, j, k for nodes

28

Figure 3-1: Overview of our molecule generation paradigm: A molecular graph G
is first decomposed into its junction tree TG, where each colored node in the tree
represents a substructure in the molecule. We then encode both the tree and graph
into their latent embeddings zT and zG. To decode the molecule, we first reconstruct
junction tree from zT , and then assemble nodes in the tree back to original molecule,
guided by zG.

in the tree and u, v, w for nodes in the graph.

3.2.1 Junction Tree

A tree decomposition maps a graph G into a junction tree by contracting certain

vertices into a single node so that G becomes cycle-free. Formally, given a graph

G, a junction tree TG = (V , E ,X) is a connected labeled tree whose node set is

V = {C1, · · · , Cn} and edge set is E . Each node or cluster Ci = (Vi, Ei) is an induced

subgraph of G, satisfying the following constraints:

1. The union of all clusters equals G. That is,
⋃
i Vi = V and

⋃
iEi = E.

29

2. Running intersection: For all clusters Ci, Cj and Ck, Vi ∩ Vj ⊆ Vk if Ck is on

the path from Ci to Cj.

Viewing induced subgraphs as cluster labels, junction trees are labeled trees with label

vocabulary X . By our molecule tree decomposition, X contains only cycles (rings)

and single edges. Thus the vocabulary size is limited (|X | = 780 for a standard

dataset with 250K molecules).

Tree Decomposition of Molecules Here we present our tree decomposition

algorithm tailored for molecules, which finds its root in chemistry [41]. Our cluster

vocabulary X includes chemical structures such as bonds and rings (Figure 3-1).

Given a graph G, we first find all its simple cycles, and its edges not belonging to any

cycles. Two simple rings are merged together if they have more than two overlapping

atoms, as they constitute a specific structure called bridged compounds [8]. Each of

those cycles or edges is considered as a cluster. Next, a cluster graph is constructed by

adding edges between all intersecting clusters. Finally, we select one of its spanning

trees as the junction tree of G (Figure 3-1). As a result of ring merging, any two

clusters in the junction tree have at most two atoms in common, facilitating efficient

inference in the graph decoding phase. The detailed procedure is described in the

supplementary.

3.2.2 Graph Encoder

We first encode the latent representation of G by a graph message passing network [10,

15]. Each vertex v has a feature vector xv indicating the atom type, valence, and

other properties. Similarly, each edge (u, v) ∈ E has a feature vector xuv indicating

its bond type, and two hidden vectors νuv and νvu denoting the message from u to v

and vice versa. Due to the loopy structure of the graph, messages are exchanged in

a loopy belief propagation fashion:

ν(t)
uv = τ(Wg

1xu + Wg
2xuv + Wg

3

∑
w∈N(u)\v

ν(t−1)
wu) (3.1)

where ν
(t)
uv is the message computed in t-th iteration, initialized with ν

(0)
uv = 0. After

T steps of iteration, we aggregate those messages as the latent vector of each vertex,

30

which captures its local graphical structure:

hu = τ(Ug
1xu +

∑
v∈N(u)

Ug
2ν

(T)
vu) (3.2)

The final graph representation is hG =
∑

i hi/|V |. The mean µG and log variance

logσG of the variational posterior approximation are computed from hG with two

separate affine layers. zG is sampled from a Gaussian N (µG,σG).

3.2.3 Tree Encoder

We similarly encode TG with a tree message passing network. Each cluster Ci is

represented by a one-hot encoding xi representing its label type. Each edge (Ci, Cj)

is associated with two message vectors mij and mji. We pick an arbitrary leaf node

as the root and propagate messages in two phases. In the first bottom-up phase,

messages are initiated from the leaf nodes and propagated iteratively towards root.

In the top-down phase, messages are propagated from the root to all the leaf nodes.

Message mij is updated as:

mij = GRU(xi, {mki}k∈N(i)\j) (3.3)

where GRU is a Gated Recurrent Unit [7, 34] adapted for tree message passing:

sij =
∑

k∈N(i)\j
mki (3.4)

zij = σ(Wzxi + Uzsij + bz) (3.5)

rki = σ(Wrxi + Urmki + br) (3.6)

m̃ij = tanh(Wxi + U
∑

k∈N(i)\j

rki �mki) (3.7)

mij = (1− zij)� sij + zij � m̃ij (3.8)

The message passing follows the schedule where mij is computed only when all its

precursors {mki | k ∈ N(i)\j} have been computed. This architectural design is

motivated by the belief propagation algorithm over trees and is thus different from

the graph encoder.

After the message passing, we obtain the latent representation of each node hi by

31

aggregating its inward messages:

hi = τ(Woxi +
∑

k∈N(i)
Uomki) (3.9)

The final tree representation is hTG = hroot, which encodes a rooted tree (T , root).
Unlike the graph encoder, we do not apply node average pooling because it confuses

the tree decoder which node to generate first. zTG is sampled in a similar way as in

the graph encoder. For simplicity, we abbreviate zTG as zT from now on.

This tree encoder plays two roles in our framework. First, it is used to compute

zT , which only requires the bottom-up phase of the network. Second, after a tree T̂
is decoded from zT , it is used to compute messages m̂ij over the entire T̂ , to provide

essential contexts of every node during graph decoding. This requires both top-down

and bottom-up phases. We will elaborate this in section 3.2.5.

3.2.4 Tree Decoder

We decode a junction tree T from its encoding zT with a tree structured decoder.

The tree is constructed in a top-down fashion by generating one node at a time. As

illustrated in Figure 3-2, our tree decoder traverses the entire tree from the root, and

generates nodes in their depth-first order. For every visited node, the decoder first

makes a topological prediction: whether this node has children to be generated. When

a new child node is created, we predict its label and recurse this process. Recall that

cluster labels represent subgraphs in a molecule. The decoder backtracks when a

node has no more children to generate.

At each time step, a node receives information from other nodes in the current tree

for making those predictions. The information is propagated through message vectors

hij when trees are incrementally constructed. Formally, let Ẽ = {(i1, j1), · · · , (im, jm)}
be the edges traversed in a depth first traversal over T = (V , E), where m = 2|E| as

each edge is traversed in both directions. The model visits node it at time t. Let Ẽt
be the first t edges in Ẽ . The message hit,jt is updated through previous messages:

hit,jt = GRU(xit , {hk,it}(k,it)∈Ẽt,k 6=jt) (3.10)

32

Figure 3-2: Illustration of the tree decoding process. Nodes are labeled in the order
in which they are generated. 1) Node 2 expands child node 4 and predicts its label
with message h24. 2) As node 4 is a leaf node, decoder backtracks and computes
message h42. 3) Decoder continues to backtrack as node 2 has no more children. 4)
Node 1 expands node 5 and predicts its label.

where GRU is the same recurrent unit as in the tree encoder.

Topological Prediction When the model visits node it, it makes a binary pre-

diction on whether it still has children to be generated. We compute this probability

by combining zT , node features xit and inward messages hk,it via a one hidden layer

network followed by a sigmoid function:

pt = σ(ud · τ(Wd
1xit + Wd

2zT + Wd
3

∑
(k,it)∈Ẽt

hk,it) (3.11)

Label Prediction When a child node j is generated from its parent i, we predict

its node label with

qj = softmax(Ulτ(Wl
1zT + Wl

2hij)) (3.12)

where qj is a distribution over label vocabulary X . When j is a root node, its parent

i is a virtual node and hij = 0.

Learning The tree decoder aims to maximize the likelihood p(T |zT). Let p̂t ∈
{0, 1} and q̂j be the ground truth topological and label values, the decoder minimizes

33

Algorithm 1 Tree decoding at sampling time

Require: Latent representation zT
1: Initialize: Tree T̂ ← ∅
2: function SampleTree(i, t)
3: Set Xi ← all cluster labels that are chemically compatible with node i and its

current neighbors.
4: Set dt ← expand with probability pt. . Eq.(3.11)
5: if dt = expand and Xi 6= ∅ then
6: Create a node j and add it to tree T̂ .
7: Sample the label of node j from Xi .. Eq.(3.12)
8: SampleTree(j, t+ 1)
9: end if

10: end function

the following cross entropy loss:1

Lc(T) =
∑

t
Ld(pt, p̂t) +

∑
j
Ll(qj, q̂j) (3.13)

Similar to sequence generation, during training we perform teacher forcing : after

topological and label prediction at each step, we replace them with their ground

truth so that the model makes predictions given correct histories.

Decoding & Feasibility Check Algorithm 1 shows how a tree is sampled from

zT . The tree is constructed recursively guided by topological predictions without any

external guidance used in training. To ensure the sampled tree could be realized into

a valid molecule, we define set Xi to be cluster labels that are chemically compatible

with node i and its current neighbors. When a child node j is generated from node i,

we sample its label from Xi with a renormalized distribution qj over Xi by masking

out invalid labels.

3.2.5 Graph Decoder

The final step of our model is to reproduce a molecular graph G that underlies the

predicted junction tree T̂ = (V̂ , Ê). Note that this step is not deterministic since

there are potentially many molecules that correspond to the same junction tree. The

underlying degree of freedom pertains to how neighboring clusters Ci and Cj are

1The node ordering is not unique as the order within sibling nodes is ambiguous. In this paper
we train our model with one ordering and leave this issue for future work.

34

Figure 3-3: Decode a molecule from a junction tree. 1) Ground truth molecule

G. 2) Predicted junction tree T̂ . 3) We enumerate different combinations between
red cluster C and its neighbors. Crossed arrows indicate combinations that lead
to chemically infeasible molecules. Note that if we discard tree structure during
enumeration (i.e., ignoring subtree A), the last two candidates will collapse into the
same molecule. 4) Rank subgraphs at each node. The final graph is decoded by
putting together all the predicted subgraphs (dashed box).

attached to each other as subgraphs. Our goal here is to assemble the subgraphs

(nodes in the tree) together into the correct molecular graph.

Let G(T) be the set of graphs whose junction tree is T . Decoding graph Ĝ from

T̂ = (V̂ , Ê) is a structured prediction:

Ĝ = arg max
G′∈G(T̂)

fa(G′) (3.14)

where fa is a scoring function over candidate graphs. We only consider scoring

functions that decompose across the clusters and their neighbors. In other words,

35

each term in the scoring function depends only on how a cluster Ci is attached to its

neighboring clusters Cj, j ∈ NT̂ (i) in the tree T̂ . The problem of finding the highest

scoring graph Ĝ – the assembly task – could be cast as a graphical model inference

task in a model induced by the junction tree. However, for efficiency reasons, we

will assemble the molecular graph one neighborhood at a time, following the order in

which the tree itself was decoded. In other words, we start by sampling the assembly

of the root and its neighbors according to their scores. Then we proceed to assemble

the neighbors and their associated clusters (removing the degrees of freedom set by

the root assembly), and so on.

It remains to be specified how each neighborhood realization is scored. Let Gi be

the subgraph resulting from a particular merging of cluster Ci in the tree with its

neighbors Cj, j ∈ NT̂ (i). We score Gi as a candidate subgraph by first deriving a

vector representation hGi and then using fai (Gi) = hGi ·zG as the subgraph score. To

this end, let u, v specify atoms in the candidate subgraph Gi and let αv = i if v ∈ Ci
and αv = j if v ∈ Cj \Ci. The indices αv are used to mark the position of the atoms in

the junction tree, and to retrieve messages m̂i,j summarizing the subtree under i along

the edge (i, j) obtained by running the tree encoding algorithm. The neural messages

pertaining to the atoms and bonds in subgraph Gi are obtained and aggregated into

hGi , similarly to the encoding step, but with different (learned) parameters:

µ(t)
uv = τ(Wa

1xu + Wa
2xuv + Wa

3µ̃
(t−1)
uv) (3.15)

µ̃(t−1)
uv =


∑

w∈N(u)\v µ
(t−1)
wu αu = αv

m̂αu,αv +
∑

w∈N(u)\v µ
(t−1)
wu αu 6= αv

The major difference from Eq. (3.1) is that we augment the model with tree messages

m̂αu,αv derived by running the tree encoder over the predicted tree T̂ . m̂αu,αv pro-

vides a tree dependent positional context for bond (u, v) (illustrated as subtree A in

Figure 3-3).

Learning The graph decoder parameters are learned to maximize the log-

likelihood of predicting correct subgraphs Gi of the ground true graph G at each

36

NH

O

N

S

O H
S

O

O

NH

O

H3N
+

N
NH O

O-

N

O

N
NH+

NH

O

N

NH

Cl

NH2
+

NH

O

N

S

O

O

N

S

O

NH

S

N

H

O

O

N

N
N

O

O

N

N

N

N
Cl

NH
O

N

F

N
O

N

O

N
O

H2N

NH

O
N

O

N

NH+

NH

O

N

S

N

N

O

O

NH

S

NH3
+

NH

O

O

S

O

O

O

S

O

NH

N

OH

N

O

NH

NH2

O

NH
N

O

NH

O

O

H2N

NH

S
O

O

O

O

NH

O

O

O

NH

N

N

N

OH

S
N

N

O

NH2
+

O

O

N
N

NHO

NH+ N

O

S

O O

N

O

H

H

NH2

N

O

NH

O

NH

N

S

N

N

Cl

N
O

N

OH

S
NH

O

N

NH

N

N N

N

H

H
NH

N

N N

N

H

H

N N

N

N

NHH
NH2

+

NH

N

N
N

N

NH

N

N N

N

NH2
+

NH

N

N N

N

NH2
+

NH

N

N N

N

NH

N

N N

N

NH

N

N

N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

NN

N

N

N

N

N

NH

S

O

N

N

N

N

NH

S

O

NH

S

O

N

N

N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

S

O
N

N

N

N

NH

S

O
N

N

N

N

NH

S

O
N

N

N

N

NH

N

N

N

N

NH

N

N

N

N
NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

S

O
N

N

N

N

NHN

H2N

S

N

NH

N

N

N

N
NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH N

NH2

S

N

S

NH N

NH2

S

N

S
NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH N

NH2

S

N

S

NH N

NH2

S

N

S

N

NH
N

NH 2

S

S

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

N

S

N
N

NH2

NH

NH+

NH

N

NH2
S

N

O
NH2

+ N

NH

N

NH

2

S

S

N

NH

N

NH

2

S

S

N

NH

N

NH2

S

S

NH

N

NN

N

NH

N

NN

N

NH

N

N

N

N

N

N

S

N
N

N

NH+

N

N

S

N
N

NH2

NH

NH+

NH

N

NH2
S

N

O
NH2

+

NH

N

NH2
S

N

O
NH2

+

N

NHN

H2N

S S

N

NHN

H2N

S S

N

NH

N

NH

2

S

S NH

N

N

N

N

NH

N

N

N

N

NH+

N

N

S

N
N

NH2

NH

NH+

N

N

S

N
N

NH2

NH

Figure 3-4: Left: Random molecules sampled from prior distributionN (0, I). Right:
Visualization of the local neighborhood of a molecule in the center. Three molecules
highlighted in red dashed box have the same tree structure as the center molecule, but
with different graph structure as their clusters are combined differently. The same
phenomenon emerges in another group of molecules (blue dashed box).

tree node:

Lg(G) =
∑
i

fa(Gi)− log
∑
G′
i∈Gi

exp(fa(G′i))

 (3.16)

where Gi is the set of possible candidate subgraphs at tree node i. During training,

we again apply teacher forcing, i.e. we feed the graph decoder with ground truth

trees as input.

Complexity By our tree decomposition, any two clusters share at most two

atoms, so we only need to merge at most two atoms or one bond. By pruning

chemically invalid subgraphs and merging isomorphic graphs, |Gi| ≈ 4 on average

when tested on a standard ZINC drug dataset. The computational complexity of

JT-VAE is therefore linear in the number of clusters, scaling nicely to large graphs.

3.3 Experiments

Our evaluation efforts measure various aspects of molecular generation. The first two

evaluations follow previously proposed tasks [30]. We also introduce a third task —

37

constrained molecule optimization.

• Molecule reconstruction and validity We test the VAE models on the

task of reconstructing input molecules from their latent representations, and

decoding valid molecules when sampling from prior distribution. (Section 3.3.1)

• Bayesian optimization Moving beyond generating valid molecules, we test

how the model can produce novel molecules with desired properties. To this

end, we perform Bayesian optimization in the latent space to search molecules

with specified properties. (Section 3.3.2)

• Constrained molecule optimization The task is to modify given molecules

to improve specified properties, while constraining the degree of deviation from

the original molecule. This is a more realistic scenario in drug discovery, where

development of new drugs usually starts with known molecules such as existing

drugs [3]. Since it is a new task, we cannot compare to any existing baselines.

(Section 3.3.3)

Below we describe the data, baselines and model configuration that are shared

across the tasks. Additional setup details are provided in the task-specific sections.

Data We use the ZINC molecule dataset from Kusner et al. [30] for our experi-

ments. It contains about 250K drug molecules extracted from the ZINC database [49].

We follow the same training/testing split as the previous work.

Baselines We compare our approach with SMILES-based baselines: 1) Char-

acter VAE (CVAE) [16] which generates SMILES strings character by character; 2)

Grammar VAE (GVAE) [30] that generates SMILES following syntactic constraints

given by a context-free grammar; 3) Syntax-directed VAE (SD-VAE) [11] that incor-

porates both syntactic and semantic constraints of SMILES via attribute grammar.

For molecule generation task, we also compare with GraphVAE [47] that directly

generates atom labels and adjacency matrices of graphs.

Model Configuration To be comparable with the above baselines, we set the

latent space dimension as 56, i.e., the tree and graph representation hT and hG have

28 dimensions each. Full training details and model configurations are provided in

the appendix.

38

Method Reconstruction Validity

CVAE 44.6% 0.7%

GVAE 53.7% 7.2%

SD-VAE2 76.2% 43.5%

GraphVAE - 13.5%

JT-VAE 76.7% 100.0%

Table 3.1: Reconstruction accuracy and prior validity results. Baseline results are
copied from Kusner et al. [30], Dai et al. [11], Simonovsky and Komodakis [47].

3.3.1 Molecule Reconstruction and Validity

Setup The first task is to reconstruct and sample molecules from latent space.

Since both encoding and decoding process are stochastic, we estimate reconstruction

accuracy by Monte Carlo method used in [30]: Each molecule is encoded 10 times

and each encoding is decoded 10 times. We report the portion of the 100 decoded

molecules that are identical to the input molecule. For a fair comparison, we define

two molecules as identical if they have the same SMILES string. At testing time, we

convert all generated graphs to SMILES using RDKit.

To compute validity, we sample 1000 latent vectors from the prior distribution

N (0, I), and decode each of these vectors 100 times. We report the percentage of

decoded molecules that are chemically valid (checked by RDKit).

Results Table 3.1 shows that JT-VAE outperforms previous models in molecule

reconstruction, and always produces valid molecules when sampled from prior dis-

tribution. These sampled molecules have non-trivial structures such as simple chains

(Figure 3-4). We further sampled 5000 molecules from prior and found they are all

distinct from the training set. Thus our model is not a simple memorization.

Analysis We qualitatively examine the latent space of JT-VAE by visualizing

the neighborhood of molecules. Given a molecule, we follow the method in Kusner

et al. [30] to construct a grid visualization of its neighborhood. For comparison, we

select the same molecule visualized in Dai et al. [11]. Figure 3-4 shows the local neigh-

borhood of this molecule. Compared to the figure in Dai et al. [11], our neighborhood

does not contain molecules with huge rings (with more than 7 atoms), which rarely

occur in the dataset. We also highlight two groups of closely resembling molecules

2The SD-VAE result is copied from Table 1 in Dai et al. [11].

39

Method 1st 2nd 3rd

CVAE 1.98 1.42 1.19

GVAE 2.94 2.89 2.80

SD-VAE 4.04 3.50 2.96

JT-VAE 5.30 4.93 4.49

Table 3.2: Best molecule property scores found by each method. Baseline results are
from Kusner et al. [30], Dai et al. [11].

that have identical tree structures but vary only in how clusters are attached together.

This demonstrates the smoothness of learned molecular embeddings.

3.3.2 Bayesian Optimization

Setup The second task is to produce novel molecules with desired properties. Fol-

lowing [30], our target chemical property y(·) is octanol-water partition coefficients

(logP) penalized by the synthetic accessibility (SA) score and number of long cycles.3

To perform Bayesian optimization (BO), we first train a VAE and associate each

molecule with a latent vector, given by the mean of the variational encoding distribu-

tion. After the VAE is learned, we train a sparse Gaussian process (SGP) to predict

y(m) given its latent representation. Then we perform five iterations of batched BO

using the expected improvement heuristic.

For comparison, we report 1) the predictive performance of SGP trained on latent

encodings learned by different VAEs, measured by log-likelihood (LL) and root mean

square error (RMSE) with 10-fold cross validation. 2) The top-3 molecules found by

BO under different models.

Results As shown in Table 3.2, JT-VAE finds molecules with significantly better

scores than previous methods. Figure 3-5 lists the top-3 best molecules found by JT-

VAE. In fact, JT-VAE finds over 50 molecules with scores over 3.50 (the second

best molecule proposed by SD-VAE). Moreover, the SGP yields better predictive

performance when trained on JT-VAE embeddings (Table 3.3).

3y(m) = logP (m) − SA(m) − cycle(m) where cycle(m) counts the number of rings that have
more than six atoms.

40

Figure 3-5: Best three molecules and their property scores found by JT-VAE using
Bayesian optimization.

Method LL RMSE

CVAE −1.812± 0.004 1.504± 0.006

GVAE −1.739± 0.004 1.404± 0.006

SD-VAE −1.697± 0.015 1.366± 0.023

JT-VAE −1.658± 0.023 1.290± 0.026

Table 3.3: Predictive performance of sparse Gaussian Processes trained on different
VAEs. Baseline results are copied from Kusner et al. [30] and Dai et al. [11].

3.3.3 Constrained Optimization

Setup The third task is to perform molecule optimization in a constrained scenario.

Given a molecule m, the task is to find a different molecule m′ that has the highest

property value with the molecular similarity sim(m,m′) ≥ δ for some threshold δ.

We use Tanimoto similarity with Morgan fingerprint [42] as the similarity metric, and

penalized logP coefficient as our target chemical property. For this task, we jointly

train a property predictor F (parameterized by a feed-forward network) with JT-

VAE to predict y(m) from the latent embedding of m. To optimize a molecule m,

we start from its latent representation, and apply gradient ascent in the latent space

to improve the predicted score F (·), similar to [38]. After applying K = 80 gradient

steps, K molecules are decoded from resulting latent trajectories, and we report the

molecule with the highest F (·) that satisfies the similarity constraint. A modification

succeeds if one of the decoded molecules satisfies the constraint and is distinct from

the original.

To provide the greatest challenge, we selected 800 molecules with the lowest prop-

erty score y(·) from the test set. We report the success rate (how often a modification

41

δ Improvement Similarity Success

0.0 1.91± 2.04 0.28± 0.15 97.5%

0.2 1.68± 1.85 0.33± 0.13 97.1%

0.4 0.84± 1.45 0.51± 0.10 83.6%

0.6 0.21± 0.71 0.69± 0.06 46.4%

Table 3.4: Constrained optimization result of JT-VAE: mean and standard deviation
of property improvement, molecular similarity and success rate under constraints
sim(m,m′) ≥ δ with varied δ.

Figure 3-6: A molecule modification that yields an improvement of 4.0 with molecular
similarity 0.617 (modified part is in red).

succeeds), and among success cases the average improvement y(m′)−y(m) and molec-

ular similarity sim(m,m′) between the original and modified molecules m and m′.

Results Our results are summarized in Table 3.4. The unconstrained scenario

(δ = 0) has the best average improvement, but often proposes dissimilar molecules.

When we tighten the constraint to δ = 0.4, about 80% of the time our model finds

similar molecules, with an average improvement 0.84. This also demonstrates the

smoothness of the learned latent space. Figure 3-6 illustrates an effective modification

resulting in a similar molecule with great improvement.

42

Chapter 4

Related Work

4.1 Graph Neural Network

Graph-structured Encoders The neural network formulation on graphs was first

proposed by Gori et al. [17], Scarselli et al. [43], and later enhanced by Li et al.

[34] with gated recurrent units. For recurrent architectures over graphs, ?] designed

Weisfeiler-Lehman kernel network inspired by graph kernels. Dai et al. [10] considered

a different architecture where graphs were viewed as latent variable graphical models,

and derived their model from message passing algorithms. Our tree and graph encoder

are closely related to this graphical model perspective, and to neural message passing

networks [15]. For convolutional architectures, Duvenaud et al. [13] introduced a

convolution-like propagation on molecular graphs, which was generalized to other

domains by Niepert et al. [39]. Bruna et al. [4], Henaff et al. [20] developed graph

convolution in spectral domain via graph Laplacian. For applications, graph neural

networks are used in semi-supervised classification [29], computer vision [37], and

chemical domains [25, 44, 22].

4.2 Reaction Prediction

Template-based Approach Existing machine learning models for product pre-

diction are mostly built on reaction templates. These approaches differ in the way

templates are specified and in the way the final product is selected from multiple

43

candidates. For instance, Wei et al. [55] learns to select among 16 pre-specified,

hand-encoded templates, given fingerprints of reactants and reagents. While this

work was developed on a narrow range of chemical reaction types, it is among the

first implementations that demonstrates the potential of neural models for analyzing

chemical reactions.

More recent work has demonstrated the power of neural methods on a broader set

of reactions. For instance, Segler and Waller [45] and Coley et al. [9] use a data-driven

approach to obtain a large set of templates, and then employ a neural model to rank

the candidates. The key difference between these approaches is the representation

of the reaction. In Segler and Waller [45], molecules are represented based on their

Morgan fingerprints, while Coley et al. [9] represents reactions by the features of

atoms and bonds in the reaction center. However, the template-based architecture

limits both of these methods in scaling up to larger datasets with more diversity.

Template-free Approach Kayala et al. [24] also presented a template-free ap-

proach to predict reaction outcomes. Our approach differs from theirs in several ways.

First, Kayala et al. operates at the mechanistic level - identifying elementary mecha-

nistic steps rather than the overall transformations from reactants to products. Since

most reactions consist of many mechanistic steps, their approach requires multiple

predictions to fulfill an entire reaction. Our approach operates at the graph level -

predicting transformations from reactants to products in a single step. Second, mecha-

nistic descriptions of reactions are not given in existing reaction databases. Therefore,

Kayala et al. created their training set based on a mechanistic-level template-driven

expert system. In contrast, our model is learned directly from real-world experimental

data. Third, Kayala et al. uses feed-forward neural networks where atoms and graphs

are represented by molecular fingerprints and additional hand-crafted features. Our

approach builds from graph neural networks to encode graph structures.

4.3 Molecule Optimization

Molecule Generation Previous work on molecule generation mostly operates on

SMILES strings. Gómez-Bombarelli et al. [16], Segler et al. [46] built generative

models of SMILES strings with recurrent decoders. Unfortunately, these models

44

could generate invalid SMILES that do not result in any molecules. To remedy this

issue, Kusner et al. [30], Dai et al. [11] complemented the decoder with syntactic

and semantic constraints of SMILES by context free and attribute grammars, but

these grammars do not fully capture chemical validity. Other techniques such as

active learning [21] and reinforcement learning [18] encourage the model to gener-

ate valid SMILES through additional training signal. Very recently, Simonovsky and

Komodakis [47] proposed to generate molecular graphs by predicting their adjacency

matrices, and Li et al. [35] generated molecules node by node. In comparison, our

method enforces chemical validity and is more efficient due to the coarse-to-fine gen-

eration.

Tree-structured Models Our tree encoder is related to recursive neural net-

works and tree-LSTM [48, 51, 57]. These models encode tree structures where nodes

in the tree are bottom-up transformed into vector representations. In contrast, our

model propagates information both bottom-up and top-down.

On the decoding side, tree generation naturally arises in natural language pars-

ing [14, 28]. Different from our approach, natural language parsers have access to

input words and only predict the topology of the tree. For general purpose tree gen-

eration, Vinyals et al. [53], Aharoni and Goldberg [1] applied recurrent networks to

generate linearized version of trees, but their architectures were entirely sequence-

based. Dong and Lapata [12], Alvarez-Melis and Jaakkola [2] proposed tree-based

architectures that construct trees top-down from the root. Our model is most closely

related to Alvarez-Melis and Jaakkola [2] that disentangles topological prediction from

label prediction, but we generate nodes in a depth-first order and have additional steps

that propagate information bottom-up. This forward-backward propagation also ap-

pears in Parisotto et al. [40], but their model is node based whereas ours is based on

message passing.

45

46

Chapter 5

Conclusion

In this thesis, we proposed a novel template-free approach for chemical reaction pre-

diction. Instead of generating candidate products by reaction templates, we first

predict a small set of atoms/bonds in reaction center, and then produce candidate

products by enumerating all possible bond configuration changes within the set. Com-

pared to template based approach, our framework runs 140 times faster, allowing us

to scale to much larger reaction databases. Both our reaction center identifier and

candidate ranking model build from Weisfeiler-Lehman Network and its variants that

learn compact representation of graphs and reactions.

Furthermore, we presented a junction tree variational autoencoder for generating

molecular graphs. Our method significantly outperforms previous work in molecule

generation and optimization. For future work, we attempt to generalize our method

for general low-treewidth graphs.

47

48

Bibliography

[1] Roee Aharoni and Yoav Goldberg. Towards string-to-tree neural machine trans-
lation. arXiv preprint arXiv:1704.04743, 2017.

[2] David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with
doubly-recurrent neural networks. 2016.

[3] Jérémy Besnard, Gian Filippo Ruda, Vincent Setola, Keren Abecassis, Ra-
mona M Rodriguiz, Xi-Ping Huang, Suzanne Norval, Maria F Sassano, Antony I
Shin, Lauren A Webster, et al. Automated design of ligands to polypharmaco-
logical profiles. Nature, 492(7428):215–220, 2012.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203,
2013.

[5] Jonathan H Chen and Pierre Baldi. No electron left behind: a rule-based ex-
pert system to predict chemical reactions and reaction mechanisms. Journal of
chemical information and modeling, 49(9):2034–2043, 2009.

[6] Clara D Christ, Matthias Zentgraf, and Jan M Kriegl. Mining electronic lab-
oratory notebooks: analysis, retrosynthesis, and reaction based enumeration.
Journal of chemical information and modeling, 52(7):1745–1756, 2012.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[8] Jonathan Clayden, Nick Greeves, Stuart Warren, and P Wothers. Organic Chem-
istry. Oxford University Press, 2001.

[9] Connor W Coley, Regina Barzilay, Tommi S Jaakkola, William H Green, and
Klavs F Jensen. Prediction of organic reaction outcomes using machine learning.
ACS Central Science, 2017.

[10] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In International Conference on Machine Learning,
pages 2702–2711, 2016.

49

[11] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-
directed variational autoencoder for structured data. International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=

SyqShMZRb.

[12] Li Dong and Mirella Lapata. Language to logical form with neural attention.
arXiv preprint arXiv:1601.01280, 2016.

[13] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional net-
works on graphs for learning molecular fingerprints. In Advances in neural in-
formation processing systems, pages 2224–2232, 2015.

[14] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recur-
rent neural network grammars. arXiv preprint arXiv:1602.07776, 2016.

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212, 2017.

[16] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representation
of molecules. ACS Central Science, 2016. doi: 10.1021/acscentsci.7b00572.

[17] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning
in graph domains. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE
International Joint Conference on, volume 2, pages 729–734. IEEE, 2005.

[18] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha
Farias, and Alán Aspuru-Guzik. Objective-reinforced generative adversarial net-
works (organ) for sequence generation models. arXiv preprint arXiv:1705.10843,
2017.

[19] Markus Hartenfeller, Martin Eberle, Peter Meier, Cristina Nieto-Oberhuber,
Karl-Heinz Altmann, Gisbert Schneider, Edgar Jacoby, and Steffen Renner. A
collection of robust organic synthesis reactions for in silico molecule design. Jour-
nal of chemical information and modeling, 51(12):3093–3098, 2011.

[20] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[21] David Janz, Jos van der Westhuizen, and José Miguel Hernández-Lobato.
Actively learning what makes a discrete sequence valid. arXiv preprint
arXiv:1708.04465, 2017.

50

[22] Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting
organic reaction outcomes with weisfeiler-lehman network. In Advances in Neural
Information Processing Systems, pages 2604–2613, 2017.

[23] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational
autoencoder for molecular graph generation. arXiv preprint arXiv:1802.04364,
2018.

[24] Matthew A Kayala, Chloé-Agathe Azencott, Jonathan H Chen, and Pierre Baldi.
Learning to predict chemical reactions. Journal of chemical information and
modeling, 51(9):2209–2222, 2011.

[25] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley.
Molecular graph convolutions: moving beyond fingerprints. Journal of computer-
aided molecular design, 30(8):595–608, 2016.

[26] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representation, 2015.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[28] Eliyahu Kiperwasser and Yoav Goldberg. Easy-first dependency parsing with
hierarchical tree lstms. arXiv preprint arXiv:1603.00375, 2016.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[30] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar
variational autoencoder. arXiv preprint arXiv:1703.01925, 2017.

[31] Greg Landrum. Rdkit: Open-source cheminformatics. Online). http://www.
rdkit. org. Accessed, 3(04):2012, 2006.

[32] James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong
Khew, A Peter Johnson, Sarah Major, Robert A Wade, and Howard Y Ando.
Route designer: a retrosynthetic analysis tool utilizing automated retrosynthetic
rule generation. J. Chem. Inf. Model., 49(3):593–602, 2009. ISSN 1549-9596.

[33] Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural
architectures from sequence and graph kernels. In Proceedings of 34th Interna-
tional Conference on Machine Learning (ICML), 2017.

[34] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[35] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learn-
ing deep generative models of graphs. 2018. URL https://openreview.net/

forum?id=Hy1d-ebAb.

51

[36] D. M. Lowe. Patent reaction extraction: downloads; https://bitbucket.org/
dan2097/patent-reaction-extraction/downloads. 2014.

[37] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svo-
boda, and Michael M Bronstein. Geometric deep learning on graphs and mani-
folds using mixture model cnns. arXiv preprint arXiv:1611.08402, 2016.

[38] Jonas Mueller, David Gifford, and Tommi Jaakkola. Sequence to better sequence:
continuous revision of combinatorial structures. In International Conference on
Machine Learning, pages 2536–2544, 2017.

[39] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convo-
lutional neural networks for graphs. In International Conference on Machine
Learning, pages 2014–2023, 2016.

[40] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint
arXiv:1611.01855, 2016.

[41] Matthias Rarey and J Scott Dixon. Feature trees: a new molecular similarity
measure based on tree matching. Journal of computer-aided molecular design,
12(5):471–490, 1998.

[42] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal
of chemical information and modeling, 50(5):742–754, 2010.

[43] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[44] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Ste-
fan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A
continuous-filter convolutional neural network for modeling quantum interac-
tions. In Advances in Neural Information Processing Systems, pages 992–1002,
2017.

[45] Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for
retrosynthesis and reaction prediction. Chemistry-A European Journal, 2017.

[46] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Gen-
erating focussed molecule libraries for drug discovery with recurrent neural net-
works. arXiv preprint arXiv:1701.01329, 2017.

[47] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of
small graphs using variational autoencoders. arXiv preprint arXiv:1802.03480,
2018.

52

[48] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-
ning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 con-
ference on empirical methods in natural language processing, pages 1631–1642,
2013.

[49] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. J.
Chem. Inf. Model, 55(11):2324–2337, 2015.

[50] Sara Szymkuc, Ewa P. Gajewska, Tomasz Klucznik, Karol Molga, Piotr Dittwald,
Micha Startek, Micha Bajczyk, and Bartosz A. Grzybowski. Computer-assisted
synthetic planning: The end of the beginning. Angew. Chem., Int. Ed., 55
(20):5904–5937, 2016. ISSN 1521-3773. doi: 10.1002/anie.201506101. URL
http://dx.doi.org/10.1002/anie.201506101.

[51] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[52] Matthew H Todd. Computer-aided organic synthesis. Chemical Society Reviews,
34(3):247–266, 2005.

[53] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geof-
frey Hinton. Grammar as a foreign language. In Advances in Neural Information
Processing Systems, pages 2773–2781, 2015.

[54] Wendy A Warr. A short review of chemical reaction database systems, computer-
aided synthesis design, reaction prediction and synthetic feasibility. Molecular
Informatics, 33(6-7):469–476, 2014.

[55] Jennifer N Wei, David Duvenaud, and Alán Aspuru-Guzik. Neural networks
for the prediction of organic chemistry reactions. ACS Central Science, 2(10):
725–732, 2016.

[56] David Weininger. Smiles, a chemical language and information system. 1. in-
troduction to methodology and encoding rules. Journal of chemical information
and computer sciences, 28(1):31–36, 1988.

[57] Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. Long short-term memory over
recursive structures. In International Conference on Machine Learning, pages
1604–1612, 2015.

53

54

Appendix A

Molecular Graph Generation

A.1 Tree Decomposition

Algorithm 2 presents our tree decomposition of molecules. V1 and V2 contain non-

ring bonds and simple rings respectively. Simple rings are extracted via RDKit’s

GetSymmSSSR function. We then merge rings that share three or more atoms as they

form bridged compounds. We note that the junction tree of a molecule is not unique

when its cluster graph contains cycles. This introduces additional uncertainty for

our probabilistic modeling. To reduce such variation, for any of the three (or more)

intersecting bonds, we add their intersecting atom as a cluster and remove the cycle

connecting them in the cluster graph. Finally, we construct a junction tree as the

maximum spanning tree of a cluster graph (V , E). Note that we assign an large weight

over edges involving clusters in V0 to ensure no edges in any cycles will be selected

into the junction tree.

Figure A-1: Illustration of tree decomposition and sample of cluster label vocabulary.

55

Algorithm 2 Tree decomposition of molecule G = (V,E)

V1 ← the set of bonds (u, v) ∈ E that do not belong to any rings.
V2 ← the set of simple rings of G.
for r1, r2 in V2 do

Merge rings r1, r2 into one ring if they share more than two atoms (bridged rings).
end for
V0 ← atoms being the intersection of three or more clusters in V1 ∪ V2.
V ← V0 ∪ V1 ∪ V2
E ← {(i, j, c) ∈ V × V × R | |i ∩ j| > 0}. Set c =∞ if i ∈ V0 or j ∈ V0, and c = 1
otherwise.
Return The maximum spanning tree over cluster graph (V , E).

A.2 Stereochemistry

Though usually presented as two-dimensional graphs, molecules are three-dimensional

objects, i.e. molecules are defined not only by its atom types and bond connections,

but also the spatial configuration between atoms (chiral atoms and cis-trans iso-

merism). Stereoisomers are molecules that have the same 2D structure, but differ in

the 3D orientations of their atoms in space. We note that stereochemical feasibility

could not be simply encoded as context free or attribute grammars.

Empirically, we found it more efficient to predict the stereochemical configuration

separately from the molecule generation. Specifically, the JT-VAE first generates the

2D structure of a molecule m, following the same procedure described in section 3.2.

Then we generate all its stereoisomers Sm using RDKit’s EnumerateStereoisomers

function, which identifies atoms that could be chiral. For each isomer m′ ∈ Sm, we

encode its graph representation hm′ with the graph encoder and compute their cosine

similarity f s(m′) = cos(hm′ , zm) (note that zm is stochastic). We reconstruct the final

3D structure by picking the stereoisomer m̂ = arg maxm′ f s(m′). Since on average

only few atoms could have stereochemical variations, this post ranking process is very

efficient. Combining this with tree and graph generation, the molecule reconstruction

loss L becomes

L = Lc + Lg + Ls; Ls = f s(m)− log
∑
m′∈Sm

exp(f s(m′)) (A.1)

56

A.3 Training Details

By applying tree decomposition over 240K molecules in ZINC dataset, we collected

our vocabulary set X of size |X | = 780. The hidden state dimension is 450 for all

modules in JT-VAE and the latent bottleneck dimension is 56. For the graph encoder,

the initial atom features include its atom type, degree, its formal charge and its chiral

configuration. Bond feature is a concatenation of its bond type, whether the bond

is in a ring, and its cis-trans configuration. For our tree encoder, we represent each

cluster with a neural embedding vector, similar to word embedding for words. The

tree and graph decoder use the same feature setting as encoders. The graph encoder

and decoder runs three iterations of neural message passing. For fair comparison to

SMILES based method, we minimized feature engineering. Our VAE loss function is

L + αLKL where LKL is the KL-divergence. We found setting α = 1 greatly hurts

the training reconstruction performance (mostly for tree reconstruction), similarly

reported in Kusner et al. [30], where they used α = 1/56. We explore α = 0.001, 0.005

and report the test result from setting with best validation performance. We use

PyTorch to implement all neural components and RDKit to process molecules.

A.4 More Experimental Results

Sampled Molecules Note that a degenerate model could also achieve 100% prior

validity by keep generating simple structures like chains. To prove that our model does

not converge to such trivial solutions, we randomly sample and plot 250 molecules

from prior distribution N (0, I). As shown in Figure A-2, our sampled molecules

present rich variety and structural complexity. This demonstrates the soundness of

the prior validity improvement of our model.

Neighborhood Visualization Given a molecule, we follow Kusner et al. [30] to

construct a grid visualization of its neighborhood. Specifically, we encode a molecule

into the latent space and generate two random orthogonal unit vectors as two axis of a

grid. Moving in combinations of these directions yields a set of latent vectors and we

decode them into corresponding molecules. In Figure A-3 and A-4, we visualize the

local neighborhood of two molecules presented in Dai et al. [11]. Figure A-3 visualizes

57

the same molecule in Figure 3-4, but with wider neighborhood ranges.

Bayesian Optimization We directly used open sourced implementation in Kus-

ner et al. [30] for Bayesian optimization (BO). Specifically, we train a sparse Gaussian

process with 500 inducing points to predict properties of molecules. Five iterations of

batch BO with expected improvement heuristic is used to propose new latent vectors.

In each iteration, 50 latent vectors are proposed, from which molecules are decoded

and added to the training set for next iteration. We perform 10 independent runs

and aggregate results. In Figure A-5, we present the top 50 molecules found among

10 runs using JT-VAE. Following Kusner et al.’s implementation, the scores reported

are normalized to zero mean and unit variance by the mean and variance computed

from training set.

Constrained Optimization For this task, a property predictor F is trained

jointly with VAE to predict y(m) = logP (m) − SA(m) from the latent embedding

of m. F is a feed-forward network with one hidden layer of dimension 450 followed

by tanh activation. To optimize a molecule m, we start with its mean encoding

z0
m = µm and apply 80 gradient ascent steps: ztm = zt−1m + α∂y

∂z
with α = 2.0. 80

molecules are decoded from latent vectors {zim} and their property is calculated.

Molecular similarity sim(m,m′) is calculated via Morgan fingerprint of radius 2 with

Tanimoto similarity. For each molecule m, we report the best modified molecule m′

with sim(m,m′) > δ for some threshold δ. In Figure A-6, we present three groups

of modification examples with δ = 0.2, 0.4, 0.6. For each group, we present top three

pairs that leads to best improvement y(m′) − y(m) as well as one pair decreased

property (y(m′) < y(m)). This is caused by inaccurate property prediction. From

Figure A-6, we can see that tighter similarity constraint forces the model to preserve

the original structure.

58

NH

O

O

Cl

N

N

N

N

O

N

O

S

O

N

NH2

NH

O

O
O

NH

N

NH
NH+

H
H

H
O

OH

N

N

NH N

O

NH

OH

NH2
+

NH+N

O

F

NH

O S

O

O

NH

O
F

NH

N

O

N

N

O

OH

S

O
O

NH

O

N

S

O H
S

O

O

NH

O

H3N
+

N
NH O

O-

N

O

N
NH+

NH

O

N

NH

Cl

NH2
+

NH

O

N

S

O

O

N

S

O

NH

S

N

H

O

O

N

N
N

O

O

N

N

N

N
Cl

NH
O

N

F

N
O

N

O

N
O

H2N

NH

O
N

O

N

NH+

NH

O

N

S

N

N

O

O

NH

S

NH3
+

NH

O

O

S

O

O

O

S

O

NH

N

OH

N

O

NH

NH2

O

NH
N

O

NH

O

O

H2N

NH

S
O

O

O

O

NH

O

O

O

NH

N

N

N

OH

S
N

N

O

NH2
+

O

O

N
N

NHO

NH+ N

O

S

O O

N

O

H

H

NH2

N

O

NH

O

NH

N

S

N

N

Cl

N
O

N

OH

S
NH

O

N

N

NH

O

NH2
+

H

H

N

O

N

NH

O

O

NH

O

N

S

O

NH3
+

N

N

NH O

O

N+

O

O-

N

NH

O

SNO
NH

N
H2N

O

O

N

N

N

N

NH2

O

N

O

S

O

NH+

Cl

NH

O

NH2

OH

O

N

O

N

OH
NH+

H2N

O

N

H

N

O

NH2

NH

O

O

N

N

N N

O

O

NH

O

N

S

N+

O

O-
NH2

S NH2

O

O

NH

O

NH

O

N

N

NH

O

NH

O

O

NH+

F

NH
S

O

O

N

NH

O

Cl

S

NNH2

O

NH

H HN

N
N

O

O

O

O

N

O

S

O

O

N-

NH

O

N+
F

N

O

NH

Cl

N

O

N

O

NH

OH

O

SH

O

O

NH+

N

N

O

O

NH

O

NH

H

O

NH
N+

OH

NH+

NH2

N

NH+

NH

O

N

OH

OH

O S

O

O

N

N

N

N

N

S
O

N

OO

O

O
O

S

N

N

N

H2N
S

NH

S

O

O O

O

N

O

NH H

H

Br O

NH

N
NH

S

O

O

O

NH

S

NH+

OH

NH2 O

N

S

N

NH

O

O

O

NH+

N

S

NH2
+

N

O

F N

O

N

N

O

N

F

FF HO

O

N
N

F

O

NH

NH3
+

NH2
+

NH+

O

N

O

O

O

N NH

N

O

NH

FS

S

O

O

NH

N+

O

O-

O

F

F

N

N

N

N

O

N
O

H

H O
NH

O

N

S

O

O

N

N

H3N
+ NH3

+

N

NH+

O

N
N

HS

N
N

O

N

NH O

O

NH

N

S

NH2

N

O

O

NH

FBr

N

O

NH

O

O
O

O
N

O
N

Br

N

O

NH

O

NH

H

O

NH

S

N
S

NH2

O

NH2
+

NH

N

NH2

O

F

S

O

O

NH

O

NH

N

O

NH

O Cl

O

NH

O
OH

N

O

NH

O

NH

NH3
+

NH2
+

H

O

OH

N

S

O

NH

N
NH

O

N

O

NH

O

N

O
O

N

O

NH+

NH2

O

NH
O

N S

N

N

O

N

N O

O

NH

H2N

NH

O

H3N
+

OH

NH3
+

NH2
+

N

O Cl
N

N

O

NH

O

N

O

NH

O

NH

N

N

O

O

NH

N

N

O

O

O

NH2

NH

N

NH

OH
NH

H

NH

O

O

N

N

N

F

O

N

NH

O

H2N

NH2
+

NH

NH3
+

F

N

S

O

N

O

NH
S

O

O

NHN

NH2

O

N
O

N

N

OH

O

O

N

NH

O

NH

S

H

O

NH

O

N
N

S

NH2

O
O

O

NH

O

N

S
NH

O

N

N

O

Br

NH+

H2N

NH

NH+ NH

O

N

N

NH2
+

S
N

NH
O

H

O
F

NH

N
NH

O

O-

O

N

O

O

NH
N

O

NH
H

N

O

S NH

N

O

O

NH

O

NH2

NH

H3N
+

NH2
+

N O

O

NH2
+

OH

NH

S

O

O

O-

N
O

NH2
+

S

H

H

HO

NH

O

H3N
+ NH2

+

NH

O

N

H2N

N
NH

O

SH

O

O

N

N
NH2

S

Cl

N

NH

N

O

OH

NO

S

O

O

N

NH2
+

N NH2
+

N

HO

O

N

S

H

H
O

NH

O

NH

H2N

H3N
+

NH3
+

N

O

O

N

Cl

N

O
O

O

N

F

N

O

NH

O

NH

O

SH

O NH

N

NH

NH

O

NH

O

F

N-

S

O

O

NH2

NH

O

O
NH

O

OH

O

NH3
+ O

N

NH2
+

NH+

O

NH

N O

O

O

N

O

NH

S

O

O

NH

O

F

NN

O

N

N

O

NH

N

NNH

O

O

NH2
NH

O

N
O

NH

O

F

O

N

Cl

SH

Br

NH

O

NH
N

S

O

NH+

NH

O

NH

N

S

O

NH

F

F

N

O

NH

S

O

O

Cl

N

NH

O

O-

N

O

N

N

HO

H

H

H3N
+

SNH2

Cl

S

N

N

O

O

N

O

N
N

O

O

N

N

N

O

O

O

N

O

O

O

O

O

NH+

NH

O O

O

N

N

S

O

O

NH

O

O

N

N

O

N

N

NH

O

N

O
NH

N

N

O

O

N N N

N

N-

N

OH

N

N

O
O

N

N

O

NH

N
O

NH

N

O

O

NH

N

O NH

O

N

NH2
+

O

NH

O

O

N

NH2
+

H2N N

O

NH

OH

N

O

O

S

O

NH

NH2

NH

OH

F

FS

H2N

O

NH
N

NNH

N

O

NH

Br
O

O

N

N

N

NH3
+

NH

O

NH2
+

N

O

O-

N

NH3
+

S

NH

O

O

NH

H2N

NH

N
N+

O

O-

NH

O

N

N

S

O

NH+

NH+

N

OH

O

O

N

N
O

N

N

S

O

O

NH NH

O

O

S

NH2

N

O

O

N

NH2
+O

N

N

N

N

O
O-

N

F

S

O

NH

O

N

SO O

S
O

O

NH
O

N NH+

NH+

O

NH

S

N

S

O

NH

NH

O

O

F

H
O

N

O
N

O

NH

F

O

NH

NN

O

N NH+ NH

O O

N

N

O

N

O

O

S

N

O

NH

HO
N

N

NNH

Cl

O

N

NH

H2N

OH

N O

O

NH

NH3
+

N
N

O

O

NH

O

H2N

NH2
+ NH

O

N

H
H

S

NH

O

NH2

F

F

NH

NH2

S

O

O

N

O

N

N

N

O

N

O

N
O

N

NH
S

O

O

N

Cl

N

N

O

O
Cl

NH

NH+

O

NH
N

N
H

H

O
O

N

NH2
+

N

N
N

N

NH2

O

F
N

N

N

N

N

O

O O

H2N

O

N

O

N

S

O

Br
O

NH N

O

O

N
O

N
S

O

O

O
NH

O

N
O

O

N

O

N

N

N

Cl

S

O

O

O

NH

NH

N

O

ON

N
N O

O N

S

O

O

N
NH

S

O

O

N

N

N

OH

N-

S

O

O

O

N

O

OH

N

S
O

NH

N

OHN

O

S

Cl

O

O

N

O

NH

O

H2N O

NH

O

O

H O

NH

OH

NH2
+

NH2

S

O

O

O

NH
OH

NH3
+

O

NH

O

O

NH
S

HO

N

NH+

N

O

N

O

H

H

O

O

NH
NH

N
H2N

Br
N

O

N

O

N

NH S

O

O

O

N

S

N

O N

N

O

S

O

NH

N

O

Cl

S

O

N

N

O

O-

N O

N
NH

O

O

H

O

S

NH
O

O

NH

S

Cl
NH

O

O

N

F
NH

O

N

O

HS O

O

ClNH

O

S

O

NH

S

NH

O

O

N

N

N

NH

NH2

O N

NNH+

O

N

O

N

NH2
+

NH3
+

N

H

H

O

NH

O

O
O

O

O

NH

N

O

Figure A-2: 250 molecules sampled from prior distribution N (0, I).

59

O

NH

N

N

N

N

NH

N

N

N

N

O

N

S

NH

N

N

N

N N

N

N

NH

H

N N

N

N

NHH

NH

N

N N

N

NH

N

N N

N

N

NH

N

N

N

N

NH

N

N

N

N NH

N N

N

N NH

N N

N

N

NH

N
N

N

NH2
+

NH3
+

N

N

N

N

NH2

N

O

NH

N

N

N

N

NH

N

N

N

N H

H

NH

N

N N

N

H

H

NH

N

N

N

N H

H

N N

N

N

NHH

N N

N

N

NHH

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

N NH

N N

N

N

NH

N
N

N

NH2
+

N

NH

N
N

N

NH2
+

N

NH

N
N

N

NH+

NH

N

N

N

N H

H

NH

N

N

N

N H

H

NH

N

N

N

N H

H

NH

N

N

N

N H

H

N N

N

N

NHH
NH2

+

NH

N

N
N

N

NH

N

N N

N

NH2
+

NH

N

N N

N

NH2
+

NH

N

N N

N

NH

N

N N

N

NH

N

N

N

N

N

NH

N
N

N

NH+

N

NH
N

N

N

NH+

N

NH
NH2

NH2

S NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

NN

N

N

N

N

N

NH

S

O

N

N

N

N

NH

S

O

NH

S

O

N

N

N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N N

N

NH

N

N

NH2

NH

N

NH2

S
S

NH

N

S

NH2

H

H
NH2

N

N

NH

N

S

NH2

NH

N

N N

N

NH

N

N N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

S

O
N

N

N

N

NH

S

O
N

N

N

N

NH

S

O
N

N

N

N

NH

N

N N

N

NH

N

N N

NH2
NH

NH2
NH

N

S

NH2

NH2

N

N

NH

N

S

NH2
NH

N

N

N

N

NH

N

N

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

S

O
N

N

N

N

NH

N

N

N

NH2

NH

O

N

S N

N

NH2

NH

NN

N

NH

N

NH2

S

H

S

S

NH

N

H2N
S

H

H

NHN

H2N

S

N

NH

N

N

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

N

S

N
N

NH2

NH

N

N

S N

N

NH2

NH

NN

N

NH

N

NH2

S

S

S

H

H

NH

N

NH2

S

N

H

NH N

NH2

S

N

S

NH N

NH2

S

N

S
NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N NH

S

N

N

NH2

NH
N

N

S N

N

NH2

NH

NN

N

NH

N

NH2

S

S

S

H

H

N

NH

N

H2N

S NH N

NH2

S

N

S

NH N

NH2

S

N

S

N

NH
N

NH2

S

S

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

N

S

N
N

NH2

NH

NH+

NH

N

S
N

N

NH2

NH
NH

S

N

N

NH2

NH

N

N

NH

N

NH2

S

S

S

H

H

N

NH

N

NH2

S

S

S

H

H

NH

N

NH2

S
N

O

NH2
+ N

NH

N

NH2

S

S

N

NH

N

NH2

S

S

N

NH

N

NH2

S

S

NH

N

NN

N

NH

N

NN

N

NH

N

N

N

N

N

N

S

N
N

N

NH+

N

N

S

N
N

NH2

NH

NH+

N

S N

N

NH2

NH

N
NH+

N

S N

N

NH2

NH

N
NH+

N

NH

N

NH2

S

S

S

H

H

N

NH

N

NH2

S

S

S

H

H

NH

N

NH2

S
N

O

NH2
+

NH

N

NH2

S
N

O

NH2
+

N

NHN

H2N

S S

N

NHN

H2N

S S

N

NH

N

NH2

S

S NH

N

N

N

N

NH

N

N

N

N

NH+

N

N

S

N

N

NH2

NH

NH+

N

N

S

N

N

NH2

NH
NH+

N

S
N

N

NH2

NH

N

NH+

N

S
N

N

NH2

NH

N

N

O

NH

N

H2N

S

N

NH

N

NH2

S

S

S

H

H

N

NH

N

NH2

S

S

S

H

H

N

N
NH

N

H2N
S

S

O

N

N
NH

N

H2N
S

S

O

N

N

NH

N

H2N

S

S

O

N

N

NH

N

H2N

S

S

O

NH

N

NH2

S

N

N

O

N

NH+

N

N

S

N

N

N

NH+

N

N

S

N

N

NH2

NH
NH+

N

S
N

N

NH2

NH

N

NH+

N

S
N

N

NH2

NH

N

NH+

N

S
N

N

NH2

NH

N

N

NH+

NH
S

S

N

N

NH

N

H2N

S

H2N
+

N

NH

N

H2N

S

H2N
+

N

N

NH

N

H2N

S

NH

O

N

N

NH N

NH2

S

N

N

N

NH

N

H2N

S

S

O

N

N

NH

N

H2N

S

S

O

N N

NH

N

NH2

S

N

O

N

N

NH

N

NH2

S

N

O

NH+

N

N

S

N

N

NH2

NH
NH+

N

S
N

N

NH2

NH

N

NH+

N

S
N

N

NH2

NH

N

NH+

N

S
N

N

NH2

NH

N

Figure A-3: Neighborhood visualization of molecule C[C@H]1CC(Nc2cncc(-
c3nncn3C)c2)C[C@H](C)C1.

60

O

NH+

H2N

O

F

O

NH+

F

OH

O

N

F

O

O

N

F

NH3
+

O

O

NH3
+

N

F

O

N

F

N

O

N

Cl

O

NH2
+

F

N
NH

O

Cl

O

NH2
+

F

N
NH

O

OH O

O

NH2
+

F

N
NH

O

O

O

NH2
+

F

N
NH

O

O

O

NH+

F

N

NH

O

O

NH+

F

N

NH O

O

F

NH N

O

O

NH+

F

F

OH

O

NH2
+

N

F

OH

O

NH2
+

NF

OH

O

NH2
+

NF

OH

O
NH+

F

F

F

OH

O

HO

NH+

F

F

F

O

O NH+ F

O

O NH+ F

O

O

NH2
+

F

N
NH

O

O

O

NH2
+

F

N
NH

O

O

O

NH2
+

F N
NH

O

O

O

NH2
+

F N
NH

O

O

N
NH

NH+

F
O

O

O

NH2
+

N

N

O

O

NH2
+

N

N

O

NH2
+

N

N

N+

O O-

O

O
NH+

F

F

F

OH

O
NH+

F

F

F

OH

O

O
NH+

F

F

F

O

O NH+ F

O

O NH+ F

O

O
NH+

F

O

O
NH+

F

O

O

NH2
+

F N
NH

O

O

O

NH2
+

F N
NH

O

O

O

NH2
+

F N
NH

O

O

NH2
+

N

F

F

OH

O

O
NH+

F

F

O
NH+

F

F

F

OH

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

O

O

NH+

F

O O

O

NH+

F

O

O

O

NH+

F

O

O
O

S

O

O

O

NH
N O

O

O
NH+

F

F

O

O
NH+

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

NH+

F

O

O

H3N
+

SH2N

O

O

F

NH2
+

O

O

O
NH+

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

NH3
+

F

F

F

NH2
+

O

H3N
+

F

F

F

NH2
+

O

O

O
NH+

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

NH3
+

F

F

F

NH2
+

O

O

NH+

F

F

H

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

F

F

O

S

O

O

NH2
+

O

Br

NH+

OH

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F O

O

O
NH2

+

S

N

NH+

N

O

O

N

NH+

HO

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

F

F

O

S

N
NH2

+

O

N

NH+

F

F

O

O

O

NH+

HON

O

NH+

OH

N

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

N

N

O

NH+

S

O

O
O

O

F

F

O

S

N
NH2

+

O

N

NH+

F

F

O

O

O

N

NH+

F

F

O

O

O

NH+

O

N

O

NH+

O

N

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O
NH+

F

F

F

O

O

NH+

F

F

F

O

O

NH+

F

F

F

O

O

N

N

O

NH+

S

O

O

O

O

N

N

O

NH+

S

O

O
O

O

F

F

O

S

N
NH2

+

O

NH+

F

F

N

O

NH+

F

F

N

O

NH+

F

F

N

O

NH+

O

N
O

NH+

O

N

O

O
NH+

F

F

F

O

O

NH+

F

F

F

O

O

NH+

F

F

F

O

O

NH+

F

F

F

O

O

NH+

F

F

F

O

F

NH+

S

N

O

O

O NH+

S

N

O

O

O

F

F

O

S

N
NH2

+

Figure A-4: Neighborhood visualization of molecule
COc1cc(OC)cc([C@H]2CC[NH+](CCC(F)(F)F)C2)c1.

61

O

Cl
O

NH

NH

O

NH

5.30

O

NH

O

NH

Cl

Cl

NH

SNH

Cl

4.93

O

NH

NH

O

NH

F

4.49

O

Cl

Cl

Cl

4.45

NH NH

Cl

Cl

4.42

O

NH

NH

S

NH

Cl

Cl

4.42

O

NH

NH

S

NH

O

NH

Cl

Cl

4.40

O

NH

NH

S

NH

Cl

Cl

4.37

Br

S

O

Cl

4.30

O

NH

NH

O

NH

Cl

Cl

4.26

F

S

N

NH

S

N

F

NH

N

4.23

O
NH

O

Cl

4.18

O

NH

O

S

4.17

NH

O

NH

NH

S

Cl

4.08

O

NH

Cl

NH

NH
Cl

Cl

4.07

S

NH

O

NH

NH

O

NH

Cl

Cl

4.07

O

NH

N

Br

S

Cl

Cl

4.04

O

S

O

S

Cl

S

4.04

Cl

S

Cl

Cl

4.03

O

S

NH

Br

Cl

4.02

NH

O

NH

O

NH

Cl

Cl

4.01

O

NH

O

S

4.00

O

N

S

N
NH

S

3.99

O

NH

S

NH
NH

O

NH

Cl

Cl

3.98

O

NH

NH

Cl

NH

NH

O

Cl

Cl

3.96

N

Cl

NH

3.86

Br

Br N

O

S

3.83

O

NH

O

NH

Cl

3.81

Cl

ClCl

NHCl

3.79

NH

O

N

Cl

3.72

O

I

N

Cl

N

Cl

3.69

Cl

Cl

Cl

NH

Cl

3.68

S

O

NH

O

O

3.64

O

S

N

S

3.61

N

Br

O

S

S

3.61

N

Br

O

S

S

3.61

O

Cl

N

Cl

3.60

NH

Cl

Cl

Cl

O

3.58

F

Cl

Cl
Cl

3.58

S

F
Cl

N

3.58

Cl

S

N

3.57

N
N

Cl

S
N

O

F

3.56

N

S

O

O

N

N

3.53

NH

O

NH

Cl

N+
O

O-

3.52

O

NH

N

S

Cl

Cl

3.51

O

NH

Cl

Cl

Cl

3.51

O NH

F

3.50

O

S

3.50

O

O

Br

Br

Br

3.50

OBr

3.50

Figure A-5: Top 50 molecules found by Bayesian optimization using JT-VAE.

62

N
H

N

-S
NH+

S

N

NBr

O

+H3N

O O-

O

O

N
H

O
O

N

+

H
N

O

N+
O

O-

OH

S

O

H
N

OH

N

N+O

-O

O

O-
O

N
O

N

OS

+

H
N

Cl N
H
+

N

O

SN
HO

N

-2.056.516.696.80

O

N
H

O

N

O
N

+

H
N

O

O

HN

O

N

O
O

N

O

N
H

O

O

H2N

O O-

O

O

H
N

NH

O

Br

S

O

O

N

N

O
O O-

S

O

O

N

N

O

+

H
N NH2

O

NH+

NH2

O

NH2

O

-2.214.524.945.69

N
H

O

N
H

S

O

O

O

O-

N
H

O

N
H

S

O

O

O

H
N Br

O

N

NH2
+

N

O

N

N
O

N
H

O

O-

O

N

N
O

N
H

O

N

O

OH

N

N
N

N+

O

-O

OH

N

N
N

+

H
N

-1.922.693.034.00

Figure A-6: Row 1-3: Molecule modification results with similarity constraint
sim(m,m′) ≥ 0.2, 0.4, 0.6. For each group, we plot the top three pairs that leads
to actual property improvement, and one pair with decreased property. We can see
that tighter similarity constraint forces the model to preserve the original structure.

63

