
Scaling Collaborative Open Data Science

by

Micah J. Smith

B.A., Columbia University (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2018

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Laboratory for Information and Decision Systems

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Scaling Collaborative Open Data Science

by

Micah J. Smith

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Large-scale, collaborative, open data science projects have the potential to address
important societal problems using the tools of predictive machine learning. However,
no suitable framework exists to develop such projects collaboratively and openly, at
scale. In this thesis, I discuss the deficiencies of current approaches and then develop
new approaches for this problem through systems, algorithms, and interfaces. A cen-
tral theme is the restructuring of data science projects into scalable, fundamental
units of contribution. I focus on feature engineering, structuring contributions as the
creation of independent units of feature function source code. This then facilitates
the integration of many submissions by diverse collaborators into a single, unified,
machine learning model, where contributions can be rigorously validated and verified
to ensure reproducibility and trustworthiness. I validate this concept by designing
and implementing a cloud-based collaborative feature engineering platform, Feature-
Hub, as well as an associated discussion platform for real-time collaboration. The
platform is validated through an extensive user study and modeling performance is
benchmarked against data science competition results. In the process, I also collect
and analyze a novel data set on the feature engineering source code submitted by
crowd data scientist workers of varying backgrounds around the world. Within this
context, I discuss paths forward for collaborative data science.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principle Research Scientist, Laboratory for Information and Decision Systems

3

4

Acknowledgments

I’d like to thank my advisor, Kalyan Veeramachaneni, for invaluable mentorship,

feedback, resources, and support. I’d like to thank all of the members of the Data

To AI Lab, both past and present, who have contributed feedback and valuable

discussions. Roy Wedge and Max Kanter have been great collaborators. I’d also like to

thank the members of our FeatureHub platform user study for their participation and

feedback. Finally, I’d like to thank all of my friends and family who have supported

me in my studies.

5

6

Contents

1 Introduction 19

1.1 Motivating open data science . 21

1.2 The modern data science process . 23

1.3 The state of collaboration . 27

1.3.1 Shared notebooks . 29

1.3.2 Vanilla software engineering 30

1.3.3 Hosted platforms . 30

1.3.4 Data science competitions . 32

1.3.5 Challenges of open data science 34

1.4 Data science abstractions . 35

2 Background and Related Work 39

2.1 Crowdsourcing methods in machine learning 39

2.1.1 Crowdsourced data labeling 39

2.1.2 Crowdsourced data cleaning 40

2.1.3 Crowdsourced feature engineering 40

2.2 Automated methods in machine learning 40

2.2.1 Automated machine learning 41

2.2.2 Automated feature engineering 42

2.3 Programming and data science competitions 42

2.4 Collaborative software development 44

7

3 A collaborative data science platform 45

3.1 Overview . 47

3.2 Launching a project . 48

3.3 Creating new features . 49

3.3.1 Load and explore . 49

3.3.2 Write features . 51

3.3.3 Evaluate and submit . 53

3.3.4 Collaborate . 55

3.4 Combining contributions . 56

3.5 Design . 58

4 Assessment 61

4.1 Experimental conditions . 61

4.1.1 Study participants . 62

4.1.2 Prediction problems . 63

4.1.3 Experiment groups . 63

4.1.4 Performance evaluation . 64

4.2 Modeling performance . 65

4.3 Evaluating collaboration . 69

4.4 Analysis of contributors . 71

4.4.1 Worker attributes and output 72

4.4.2 Contributions in source code 74

4.4.3 Educational opportunities . 74

5 Discussion 85

5.1 Opportunities . 85

5.1.1 Flexible data science abstractions 85

5.1.2 Automated methods to augment collaboration 87

5.1.3 Creating interpretable models 89

5.2 Challenges we faced . 90

5.2.1 Maintaining platforms . 90

8

5.2.2 Administering user studies . 92

5.2.3 Motivating contributions . 93

5.2.4 Adversarial behavior . 95

6 The future of collaborative data science 97

6.1 The problem with platforms . 97

6.2 A turn towards platformless collaboration 99

6.3 Lightweight collaborative systems . 100

A Implementation of FeatureHub 109

A.1 Configuration . 109

A.2 User interface . 112

A.3 Feature evaluation . 113

A.4 Discussion forum . 114

A.5 Automated machine learning . 114

A.6 Data management . 115

A.7 Deployment . 115

B Prediction problem details 119

B.1 Problem statement . 119

B.2 Data schemata . 121

B.3 Pre-extracted features . 123

C User study survey 127

C.1 Survey questions . 127

C.1.1 Getting oriented . 128

C.1.2 FeatureHub Platform . 128

C.1.3 Forum . 130

C.1.4 Collaboration . 130

C.2 Survey responses . 132

D Listings 135

9

10

List of Figures

1-1 High-level view of the modern data science process1. Different phases

of this highly iterative process can cause prior work or assumptions to

be revisited. First, an organization must determine that data science

solutions are needed for a problem rather than traditional software or

logic systems. The organization’s high-level goal is then formulated

as a precise prediction problem. Data engineers and data scientists

survey and prepare data resources, like databases and APIs. Next is

the all-important feature engineering step, in which data scientists try

to transform these raw data sources into a feature matrix that can be

used as the input to a predictive machine learning model. With the

feature matrix in hand, data scientists try to formulate and train a

model and then evaluate it for predictive accuracy and generalization

potential. Finally, the model can be deployed to make predictions. The

process doesn’t stop there, as monitoring and maintenance of the model

reveal more details about the relationship between the predictions and

the organization’s goals. 24

11

3-1 Overview of FeatureHub workflow. A coordinator receives the problem

to be solved, and associated data. She prepares the data and does the

necessary preprocessing using different available functions. Then, the

platform is launched with the given problem and dataset. Data sci-

entists log in, interact with the data, and write features. The feature

scripts are stored in a database along with meta information. Finally,

the coordinator automatically combines multiple features and gener-

ates a machine learning model solution. 46

3-2 It is straightforward for users to use the FeatureHub client to import

a sample dataset for an example problem called demo. 51

3-3 Example interactions with the evaluate and submit API methods.

In evaluating a feature, the feature is executed in the user’s notebook

environment to extract feature values, which are validated against a

list of criteria. If successful, feature performance metrics are returned.

In submitting a feature, the user is prompted for a description, after

which the feature source code is extracted and sent to the evaluation

server. Upon success, the evaluation metrics are returned, as well as a

link to an automatically-generated forum post (if applicable). 53

3-4 Natural language description of a feature function written in Python.

These descriptions can be helpful for interpreting model performance

and establishing trust in the implementation. 54

3-5 Output of a call to discover_features in the Jupyter Notebook. In

this example, the user has filtered features to those containing the

string 'action' and then scrolled to inspect Feature 48. Scrolling

further, the user will be able to see the performance metrics (accuracy,

precision, recall, and ROC AUC) for this feature before continuing on

to the other matching features in the database. 56

12

3-6 A forum post for the sberbank prediction problem (Section 4.1.2) show-

ing an actual feature submitted by a crowd worker. The feature de-

scription, source code, and computed metrics are shown, along with

prompts for further discussion. 57

3-7 Overview of FeatureHub platform architecture, comprising the Fea-

tureHub computing platform and the Discourse-based discussion plat-

form. Users log into the platform to find a customized Jupyter Note-

book environment with dedicated compute and storage resources (1).

They can query the feature database to see the work that others have

already done (2). Once they have an idea for a feature, the user im-

plements it and evaluates it locally on training data, then submits

their code to the feature evaluation server (3). The code is validated

as satisfying some constraints to ensure that it can be integrated into

the predictive model without errors. The corresponding feature is ex-

tracted and an automated machine learning module selects and trains

a predictive model using the candidate features and other previously-

registered features (4, 5). The results are registered to the database

(6), posted to the discussion forum (7), and returned to the user (8). 59

4-1 Hourly wages of data scientists from Upwork. 62

4-2 Performance of FeatureHub integrated model as compared to indepen-

dent data scientists. For airbnb, performance is measured as normal-

ized discounted cumulative gain at 𝑘 = 5. The negative of the scoring

metric is reported on the y-axis to facilitate a “smaller-is-better” com-

parison. The automatically generated FeatureHub model ranked 1089

out of 1461 valid submissions, but was within 0.03 points of the best

submission. For sberbank 2, performance is measured as root mean

squared logarithmic error. The automatically generated FeatureHub

model ranked 2067 out of 2536 valid submissions, but was within 0.05

points of the best submission. 67

13

4-3 The amount of days, by Kaggle competitor, from their first submission

to the problem to their first submission that achieved a better score

than FeatureHub on airbnb. Since we only see the first submission,

rather than when the competitor first starting working, this omits the

effect of participants’ preprocessing, feature engineering, and modeling

work over as much as 2.5 months before initially submitting a solution. 69

4-4 Features for airbnb projected on first two PCA components by Fea-

tureHub (grey circles) and Deep Feature Synthesis (red squares). . . 70

4-5 Features for sberbank projected on first two PCA components by Fea-

tureHub (grey circles) and Deep Feature Synthesis (red squares). . . 70

4-6 Relationship between hourly wage and feature performance, including

linear trend and 95% confidence interval. For the sberbank problem,

performance is measured by the maximum 𝑅2 of any feature submitted

(𝛽 = 0.0008, 𝑝 = 0.025). For the airbnb problem, performance is

measured by the maximum ROC AUC of any feature submitted (𝛽 =

1.8𝑒− 5, 𝑝 = 0.018). Y-axis scales are not comparable. 72

4-7 Relationship between data scientist experience and feature performance.

For the sberbank problem, performance is measured by the maximum

𝑅2 of any feature submitted. For the airbnb problem, performance

is measured by the maximum ROC AUC of any feature submitted.

Y-axis scales are not comparable. 73

4-8 Anti-pattern of iteration on DataFrames. The original submission,

adapted for clarity, uses a Python range to iterate over rows directly.

An improved version instead leverages highly-optimized vectorized code

under the hood to achieve performance and readability benefits. . . . 76

14

4-9 Anti-pattern of reinventing the wheel in terms of pandas library func-

tions. The original submission, adapted for clarity, implements a proce-

dure to fill missing values with zeros, even though the library method

fillna is available and widely used for the same task. (The orig-

inal source code also demonstrates more general programming anti-

patterns, such as the use of .apply(lambda a: cleankitch_sq(a))

instead of .apply(cleankitch_sq).) 77

4-10 A frequent task for data scientists is to process datetime variables,

which is often done by converting the variable to a native datetime data

type and then using robust library methods. In each listing, a snippet

of a submitted feature instead shows the processing of a timestamp

using string methods or arithmetic directly. While these approaches

“work,” they should be discouraged. (Example raw timestamps in the

data for the timestamp and timestamp_first_active columns take

the form "2013-05-27" and 20120519182207, respectively.) 79

5-1 Feature engineering represented as a directed, acyclic data-flow graph.

Edges represent the flow of data between nodes, which transform their

inputs and send the output to other consumers. 88

A-1 Entity-relationship diagram for FeatureHub database. The crow’s foot

arrow represents a one-to-many relationship; that is, each feature has

many metrics associated with it, and so on. 116

B-1 Entity-relationship diagram for Kaggle airbnb prediction problem. The

entities table is users and the target table is target. The list of

attributes is truncated for users (15 total). 121

B-2 Entity-relationship diagram for Kaggle sberbank prediction problem.

The entities table is transactions and the target table is target.

The list of attributes is truncated for transactions (291 total) and

macro (100 total). 122

15

16

List of Tables

1.1 Comparison of selected hosted data science platforms. Each platform

shown, both from commercial and academic developers, provides the

ability to write, edit, and host source code; store data; and compute us-

ing cloud resources. The aims of these platforms vary — from enabling

data scientists in companies to work more effectively (the commercial

products), to providing a managed compute environment to support

analysis of large atmospheric and oceanographic datasets (Pangeo), to

enabling reproducibility of computational academic research (CodeO-

cean). 31

3.1 Set of methods for data scientists to interact with FeatureHub. . . . 50

4.1 Prediction problems used in FeatureHub user testing. 63

4.2 Bonus payment weights (in %) for control and experimental groups.

For groups 1 and 2, the “Collaboration” category was listed as “Doc-

umentation” to avoid bias, and the “Forum interactions” subcategory

was not shown. 65

B.1 Metrics for decision tree model training on pre-extracted feature matrix

for different splits. 124

B.2 Metrics for decision tree model training on pre-extracted feature matrix

for different splits. 125

C.1 Summary of survey responses for intro questions (Appendix C.1.1), . 132

C.2 Summary of survey responses for platform questions (Appendix C.1.2). 133

17

C.3 Summary of survey responses for forum questions (Appendix C.1.3). . 133

C.4 Summary of survey responses for collaboration questions (Appendix C.1.4).134

18

Chapter 1

Introduction

In the modern world, the vast quantities of data that have been collected by orga-

nizations are affecting our lives in many ways. Every day, we rely on services that

can predict the best train routes, suggest the most interesting movies and hottest

musical tracks, and protect us from financial fraud. However, for every successful

data science application, there are many more potential projects that have not yet

been developed. Every two days, we generate as much data as we did from the dawn

of civilization until 2003 [43], and the size of the digital universe is doubling every

two years, up to a projected 44 trillion gigabytes by 2020 [49].

The amount of data collected has significantly outpaced the supply of data sci-

entists and analytics professionals who are able to derive value from this data. Job

openings alone for data scientists are projected to grow to over 60,000 by 2020 [6].

Even so, qualified candidates are often expected to have completed doctoral degrees.

The data science skill set includes knowledge of statistics, optimization, and machine

learning; data cleaning, munging, and wrangling; big data computing and distributed

systems engineering; communication and presentation ability; and problem domain

knowledge. It may require many years of education and experience for one person to

accumulate all these distinct skills.

To relieve human-related bottlenecks associated with a shortage of data science

resources, organizations can resort to various innovations. These include data science

automation technologies, which can extract insights from datasets without human in-

19

tervention; crowdsourcing-augmented workflows; and cloud computing and improved

hardware.

Another promising approach is to facilitate increased collaboration in data science

projects, scaling the size of data science teams from ones or tens of collaborators to

hundreds or thousands. These larger collaborations can include many diverse types

of collaborators: lay contributors like business analysts and domain experts as well as

other technical stakeholders. However, also at this scale, new barriers to collaboration

arise that do not apply to the same extent in more mature areas such as software

engineering. These include co-management of data and source code, including prove-

nance, versioning, storage, and branching for raw data, data pipelines, and other

data science artifacts; communicating and coordinating work to avoid redundancy;

and combining contributions into a single data science product. Existing workflows

for dealing with these sorts of issues are not easily parallelizable and do not easily

scale to very large teams. More innovations are needed to realize the potential of

large-scale data science collaborations.

For the largest enterprises, to which data science, predictive modeling, and ar-

tificial intelligence are important assets, intense engineering effort has made these

problems more manageable. But the state of affairs is poor in organizations with

fewer resources, in particular for open data science. To this point, open data sci-

ence collaborations have had difficulty scaling beyond tens of contributors, in stark

contrast to the most successful open-source software projects. Tailored solutions are

needed in order to scale these valuable projects to thousands of contributors.

Given the challenges of scaling data science efforts, and the unique obstacles fac-

ing teams of data scientists within even the most resourceful organizations, new ap-

proaches to collaboration are needed. In this thesis, I will present my research on

scaling collaborative data science endeavors with a focus on open data science.

20

1.1 Motivating open data science

What is open data science? In an open data science project, diverse collaborators try

to use data science and predictive modeling in the open-source paradigm for societal

benefit1.

In a commercial setting, many of the most successful applications of data science

come in advertising technology (“Ad Tech”). Companies in e-commerce, social me-

dia, and digital news have developed highly sophisticated data operations in which

clickstreams from customer interactions with digital platforms are combined with

harvested personal and demographic information to price and sell digital ads. In a

welcome contrast, the goals of open data science efforts are analyses or predictive

models that have outsized societal impacts. These projects are crucial in areas with

large potential impact but less formal resources available, such as education, health

care, environmental studies, conservation, civic administration, and government ac-

countability.

Successful open data science projects are relatively scarce at this point, but they

hint at what is possible for this movement.

• The Fragile Families Challenge tasks researchers with predicting key socioeco-

nomic outcomes for disadvantaged children and their families, with the goal of

targeting clinical and sociological interventions [40].

• The Boston crash modeling project, developed by the organization Data For

Democracy, is an application that can predict where and when car crashes are

most likely to occur on Boston city streets in order to increase pedestrian safety

[9]. Through this application, city officials could target timely interventions to

predict crashes before they happen. The development of this application was

spurred by city officials and concerned citizens under a “Vision Zero” initiative,

but with insufficient resources available to city governments, the open data

1Contrast this definition with another sense of “open data science” to mean open-source software
libraries that have been developed for use within data science projects. Examples include pandas,
ggplot2, scikit-learn, and Tensorflow. Each of these projects in itself is a software library, not a data
science project.

21

science community was put to the task.

• The city of Chicago, along with private and open-source collaborators, has de-

veloped a Food inspections evaluation application to make predictions of critical

violations at food establishments in Chicago [33]. Using this application, city

public health staff can prioritize inspections to find critical violations faster.

While it is a challenge to build machine learning models in centralized organiza-

tions, it is even more difficult to do so in the open data science setting. Contributors

to open data science projects may range from experienced data scientists and appli-

cation developers to novice programmers and lay domain experts. Collaborators may

be located around the world, in different time zones, speaking different languages.

They may not have the fastest internet connections, let alone the resources to train

deep neural networks on cloud GPU clusters or subscribe to expensive commercial

data science productivity software products.

What can we actually build with approaches like these? Consider what has been

accomplished with large-scale collaborations in open-source software development.

The Linux kernel is considered one of the most successful open-source projects ever,

with over 13, 000 developers having contributed over 700, 000 commits to the code-

base. By taking advantage of decentralized version control systems, highly active

mailing lists and forums, and a larger ecosystem of open-source tooling and sys-

tems, developers from around the world have contributed actively and effectively,

to this project and many others. The development of massively collaborative soft-

ware systems is a major achievement of software engineering and computer systems

practitioners and researchers.

If we could scale the size of open data science collaborations to match that of the

most successful open-source software projects, what could we achieve? Let us return

to the Fragile Families Challenge. Researchers were given a large and complex lon-

gitudinal dataset on children and their families, and tasked with predicting various

key socioeconomic outcomes, such as GPA and eviction. Under the large-scale open

data science paradigm, this problem, with the power to impact so many lives, could

22

be worked on by hundreds or thousands of social scientists, data scientists, clinicians,

economists, educators, and citizen scientists. A psychologist could write a feature that

encodes their expertise on the relationship between maternal engagement and aca-

demic performance. An educator could write a feature that combines several measures

of teacher performance together. A statistician could devise a customized imputation

procedure for highly correlated variables. And a machine learning researcher could

implement a learning algorithm to deal with the high dimensionality of the dataset.

Sophisticated automated machine learning technologies and tightly engineered sys-

tems would support the efforts of these researchers, enabling them to extract the most

insight with the least effort. The progress of the unified model could be transparently

reviewed in real time, and deployed for clinical and sociological interventions.

In this vein, I consider the promise of large-scale collaborative open data science.

This will be characterized by the ability of thousands of people around the world to

openly collaborate on one solution to a single data science task, incrementally building

upon and improving the same predictive machine learning model. This “integrated

model” can be deployed at any point with minimal effort to address important societal

challenges.

1.2 The modern data science process

In discussing the topic of this thesis, it will help to review the modern data science

process. Certainly, the realities of data science as it is currently practiced vary widely,

and there is considerable disagreement about how to define the scope of the term

“data science” at all. Without dwelling on those discussions, I will focus at first on

predictive modeling through machine learning as deployed in a commercial setting.

(In Section 1.3.5, I will describe similarities to and differences from this process in

the open data science paradigm.) The data science process is highly interconnected

and iterative, and the results of one phase frequently cause some other phase to be

revisited. It may involve many people of different roles, from organization leadership

to data scientists to DevOps engineers. A depiction of this process can be seen in

23

Figure 1-1. As one example, the reader can keep an mind an internet company that

sells customers a monthly subscription to receive a new novel in the mail.

Prediction engineering

Prepare data resources

API

C-suite

X is too high!

Analyst

Predict Z?
How far ahead?

Data
engineer

DatabaseData stream

Which databases?
Subscribe to APIs?

Need for data science

Deployment, monitoring, maintenance

SELECT a FROM b

Feature engineering Modeling and evaluation

D
isc

rim
in

at
or

y

Time series

Ti
m

e
se

rie
s

St
ac

ke
d

Data scientist
Machine learning researcher

Linear model?
Which loss function?

Data scientist
Domain expert

Underlying relationships?
Remove outliers?

Software engineer
DevOps engineer

Scale 1000x?
When to retrain?

X1

X2 X3

X4 X5

Features
Entities

Figure 1-1: High-level view of the modern data science process2. Different phases
of this highly iterative process can cause prior work or assumptions to be revisited.
First, an organization must determine that data science solutions are needed for a
problem rather than traditional software or logic systems. The organization’s high-
level goal is then formulated as a precise prediction problem. Data engineers and
data scientists survey and prepare data resources, like databases and APIs. Next is
the all-important feature engineering step, in which data scientists try to transform
these raw data sources into a feature matrix that can be used as the input to a
predictive machine learning model. With the feature matrix in hand, data scientists
try to formulate and train a model and then evaluate it for predictive accuracy and
generalization potential. Finally, the model can be deployed to make predictions.
The process doesn’t stop there, as monitoring and maintenance of the model reveal
more details about the relationship between the predictions and the organization’s
goals.

2 Adapted from [17].

24

Recognize the need for data science. At first, an organization may not see a need

for data science at all. Existing processes or non-data driven software systems may

produce suitable support for decision making. It may be difficult to commit to a

potentially costly investment in data science resources. Ultimately, the organization

may decide that the benefit from predictive modeling (or some other data science

product) outweighs its costs. In our case, perhaps the book subscription company is

struggling with identifying which of its customers are likely to churn (discontinue sub-

scriptions) and has decided to try to predict this outcome in order to take preemptive

action.

Formulate a problem. Translating a business need into a well-defined prediction

problem is not an easy task. Data scientists must take open-ended directives (e.g.

“predict customer churn”) and determine specific prediction problems that are most

useful. This involves specifying exact prediction horizons, training datasets, and

labeling functions and writing code to apply these ideas. For our example company,

a data scientist might decide to formulate a problem as follows: for each customer

and each week, predict whether the customer will deactivate their subscription within

the next one week using data from the last 60 days. The data scientists must also

take care not to forget the business objective of reducing customer churn — that

is, a formulation of a prediction problem that results in lower predictive accuracy

might actually yield more benefit to the company if action taken in response to such

predictions is more impactful. Previous authors have termed this phase “prediction

engineering” [42].

Prepare data resources. It is not of much use to engage in data science if there

is no data to work with. Data scientists take stock of the data resources in their

organization: databases backing transactional systems, website clickstream logs, un-

structured and textual data, and external linkable datasets and APIs. How long has

data for each resource been collected such that it is usable for training machine learn-

ing models? How frequently is each resource updated and how quickly are updates

visible to production systems that are serving predictions? What are the financial

costs of using different data sources, and are there licensing or privacy issues? In some

25

cases, organizations might choose this opportunity to begin collecting new datasets

for future use. The data resources and associated infrastructure available to different

organizations varies enormously. For our example company, data scientists might

identify a Postgres database backing the transaction system, clickstream logs up-

loaded nightly to Amazon Web Services (AWS) S3, email marketing records dumped

by a third party accessible at noon each day, and demographic information from third

party data brokers.

Clean and preprocess. All data is dirty. Once data resources has been identified,

significant effort may be necessary for cleaning and preprocessing the data. For

example, our example company might find that after the front-end team redesigned

the website, the logging event sign_out changed to log_out, and a script must be

written to standardize this name over time. Some cleaning and preprocessing work

may be integrated directly into the subsequent feature engineering phase.

Feature engineering. Even after cleaning and preprocessing, the data is not in a

form that is suitable for inclusion in machine learning models, in that it may be in

a multi-table relational format or represented as categories, text or images. In the

feature engineering step, data scientists create “features” from the raw data that asso-

ciate numeric values with each entity. For example, data scientists might conjecture

that the number of times customers of our example company log in to the website

over a preceding period is predictive of churn. To extract feature values following this

definition, the data scientists would need to write code to extract and aggregate spe-

cific login events from the website log data. This is a phase of the modern data science

process in which the creativity and ingenuity of data scientists can, after sufficient

effort, lead to significant performance gains. The output of the feature engineering

process is a collection of vectors of numeric values associated with each entity, known

as a feature matrix.

Formulate and evaluate machine learning models. With the feature matrix in

hand, data scientists can begin to formulate machine learning models to predict the

desired outcome. While composing modeling strategies, the data scientists will pay

special care to overfitting and other problems that can negatively impact general-

26

ization performance on the live predictions. Data scientists will manually tune the

hyperparameters of these models or resort to various automated methods. An iter-

ative process of model development, model training, and model evaluation can be

undertaken until the data scientists are satisfied with the model’s performance. One

common misconception about the data science process is that it entirely consists of

finding an appropriate machine learning model given a feature matrix and then com-

puting cross-validated metrics. We see here that such a phase, of formulating and

evaluating machine learning models, is just one small part of the data science process.

Deploy, monitor, maintain. Finally, the data scientists are happy with their model

and wish to deploy it to make live predictions. Depending on the organization and the

development process, this could be as simple as changing a few lines in a configuration

file, or as involved as providing detailed specifications to a separate engineering team

to build a productionized version of the model and integrate it with the rest of the

product. The deployed model must be monitored and maintained to ensure that its

performance is as expected. Thus, this is not the final phase of the modern data

science process at all, but a continuous undertaking for the lifetime of the product or

business need.

1.3 The state of collaboration

Given this view of the modern data science process in commercial and open data

science settings, we can consider the role that collaboration plays in data science

and in existing attempts to collaboratively develop data science projects, with an

attention to the unique challenges of the open data science paradigm.

It will be instructive to keep in mind the state of collaboration in the closely related

field of software engineering. Since early large-scale projects like the development of

the Apollo flight software by Margaret Hamilton and NASA and the development

of IBM’s OS/360 operating system, the field of software engineering has grown by

leaps and bounds. Over this time, there has been ample work by both researchers

and practitioners in creating tools, workflows, and methods to enable large-scale and

27

productive collaborations. An expansive ecosystem of tooling is freely available for

software engineers at all stages of the software creation process. Innovations in the

software engineering and programming languages communities include object-oriented

programming, version-control systems, software testing, integrated development envi-

ronments, and formal verification. These have enabled projects like Linux (13, 000+

contributors), GNU (4, 500+ contributors), nodejs (2, 000+ contributors), and django

(1, 500+ contributors) to provide irreplaceable services to their users. Unfortunately,

many of these tools, techniques, and successful large-scale collaborations have no

analogue in data science.

Collaborative data science workflows include a wide spectrum of approaches, none

of which has proven to be completely suitable for the demands of practitioners. In

particular, it is challenging to collaboratively develop a single data science solution,

rather than many parallel but co-located analyses, and to appropriately treat the

data artifacts of such a project. The following data science collaboration approaches

together form some of the options available for data science teams working today to

organize their communication, software, analyses, and deployments.

I will evaluate commonly-used existing approaches to collaboration in data science

projects along several dimensions: integrability, usability, and scalability. For the

purposes of studying open data science, I will also address a dimension of openness.

• Integrability. The ability for the contributions of each collaborator to be

readily integrated into a single data science product. For example, if two con-

tributors each write source code to create a different feature, can their source

code be easily combined to result in one procedure that generates two features?

• Usability. The usability of the collaborative approach in the general sense of

software systems, with a special focus on the learnability for collaborators of

various backgrounds, especially those who are not software engineers or com-

puter scientists.

• Scalability. The degree to which the collaborative system can support contri-

butions from a large number of collaborators. The system may enable realtime

28

(or close-to-realtime) feedback on contributions, an organizational structure to

manage the volume of contributions, and software or automated systems to

scale the review and integration of contributions into the main project.

• Openness. The fidelity of the software underlying the collaborative approach

to the open-source software model as well as other issues of openness such as

financial cost and data availability.

1.3.1 Shared notebooks

In this approach, data scientists develop analyses independently using interactive

notebooks in the literate programming paradigm [21]. These interactive notebooks,

such as Jupyter [19], R Markdown3, Beaker4, Zeppelin5, and Mathematica6, are a

popular format for development and interactive editing and dissemination of results.

Analyses are generally structured as long scripts, with intermediate outputs inter-

spersed. When results are ready to be distributed, the notebooks are emailed to

collaborators or uploaded to shared file hosting solutions like Dropbox. The shared

notebooks approach is rarely used beyond teams sized in the tens of collaborators,

though it is common to find notebooks included in much larger software projects for

tutorial or explicatory purposes.

This approach earns high marks from a usability point of view, as these interac-

tive documents are self-contained and widely used among engineers and researchers

of many backgrounds. However, it is quite difficult to reuse any encapsulated routines

from one notebook in another analysis, as most are structured as long scripts with

expressions executed at the global scope, reducing the possibility of integrating code

from multiple notebooks in a single data science product. Scaling collaboration be-

comes prohibitively difficult, as it is challenging enough to keep track of the notebooks

of dozens or hundreds of collaborators, let alone version code snippets and marshal

these to productive ends.
3https://rmarkdown.rstudio.com/
4http://beakernotebook.com/
5https://zeppelin.apache.org/
6https://www.wolfram.com/technologies/nb/

29

https://rmarkdown.rstudio.com/
http://beakernotebook.com/
https://zeppelin.apache.org/
https://www.wolfram.com/technologies/nb/

1.3.2 Vanilla software engineering

Another commonly used approach in medium or large teams is to treat a data science

project just like a software engineering project. The data science process then plays

out on top of a version control system (VCS) like git — modifications to source

files, updates to exploratory notebooks, and data artifacts like model parameters are

checked in to the repository. Developers can write unit tests (for non-data bound

routines), provide code reviews for collaborators, and hopefully easily reuse code

within the repository.

This structure allows the project to make use of the robust open-source tooling

that has been developed in that field. These tools include version control systems

like git, repository hosting providers like GitHub, code review tools, continuous

integration testing, and so on. Also, under this workflow, contributors can submit

patches to specific modules within a repository, allowing new functionality to be easily

integrated into the larger project, rather than creating separate, redundant analyses.

However, tools such as git are famously difficult to use for many data scientists

and statisticians, let alone for software engineers themselves [36]. The concept of a

“commit” of source code is also not an ideal abstraction to use for data science, where

data scientists have not typically composed their project out of small, self-contained

blocks, and where data artifacts, like trained model parameters or images, are included

alongside source code, which can often lead to merge conflicts. Furthermore, it is

difficult to scale this approach beyond tens or hundreds of collaborators working

on the same phase of the data science process as without additional structure on the

project, redundant feature definitions or model specifications can be contributed side-

by-side to the repository without being detected. Overall, the typical usability issues

of git are compounded under this paradigm when scaling the number of collaborators.

1.3.3 Hosted platforms

Hosted data science platforms are applications that manage all aspects of data sci-

ence product infrastructure, development, and deployment. In typical use, members

30

of a data science team log onto the application hosted on servers of a commercial en-

tity, prepare and run analyses in notebooks, and share and deploy selected outputs.

Organizations pay a monthly subscription fee for each user as well as a usage rate

for compute and storage. As of this writing, companies such as Domino Data Lab7,

Dataiku8, and Algorithmia 9 have developed hosted platforms in this increasingly

competitive space. In a similar vein, academic entities have created hosted platforms,

such as CodeOcean10 for targeting reproducibility in scientific research or Pangeo [38]

for enabling analysis of large geoscience datasets. These academic platforms are less

likely to provide features for the end-to-end data science process. A comparison of

selected platforms can be seen in Table 1.1.

Platform Type Capabilities
Code Data Compute Integration

Dataiku Commercial ! ! ! %

Domino Data Lab Commercial ! ! ! %

Algorithmia Enterprise Commercial ! ! ! %

Pangeo Academic ! ! ! %

CodeOcean Academic ! ! ! %

Table 1.1: Comparison of selected hosted data science platforms. Each platform
shown, both from commercial and academic developers, provides the ability to write,
edit, and host source code; store data; and compute using cloud resources. The aims
of these platforms vary — from enabling data scientists in companies to work more
effectively (the commercial products), to providing a managed compute environment
to support analysis of large atmospheric and oceanographic datasets (Pangeo), to
enabling reproducibility of computational academic research (CodeOcean).

These platforms are easy to use in terms of providing helpful user interfaces and

managing “pain points” such as data versioning, provenance, compute, deployment,

and access control for collaborators. Various platforms have also experimented with

novel collaborative mechanisms, such as bringing lay users into the platform in specific

roles and enabling native discussion alongside notebooks and reports. In addition, due

7https://dominodatalab.com
8https://www.dataiku.com
9https://algorithmia.com/enterprise

10https://www.codeocean.com

31

https://dominodatalab.com
https://www.dataiku.com
https://algorithmia.com/enterprise
https://www.codeocean.com

to robust underlying infrastructure, these platforms can scale to support concurrent

usage and discussion by large numbers of collaborators.

These platforms should not be thought of as solutions to the problem of integra-

bility in large collaborations. They do not provide additional structure to the data

science process to allow units of contribution from many collaborators to be inte-

grated. Rather, they often encourage users to develop new analyses within notebooks

or scripts, which can have the same problems described in Section 1.3.1.

Most importantly, as hosted, for-profit systems, they are not suitable in their

current iterations for large-scale, open-source collaborations. For an open data science

project with hundreds of collaborators, project organizers could expect subscription

fees in the tens of thousands of dollars per year, in addition to the usage rates for

cloud services. This is an untenable situation, especially when there is a risk that a

new collaborator to the project would not just be using their subscription for personal

use and free compute. Such open data science projects would also be handicapped

by the non-free nature of the underlying platform. These problems will be discussed

further in Section 6.1.

1.3.4 Data science competitions

Data science competitions such as the Netflix Prize11, KDD Cup12, and Kaggle13

attract thousands of data scientists from around the world to work on interesting data

science problems. In the competition model, a project sponsor provides a significant

pool of money to reward the creators of winning solutions. Then, any data scientist

can download a training dataset and project description and independently develop

a predictive model. The competitors then download a test dataset that has had

the target variable withheld and upload predictions in turn for each entity. The

competition software automatically scores these submissions and records the results

on a public leaderboard.

11https://www.netflixprize.com/
12http://www.kdd.org/kdd-cup
13https://www.kaggle.com

32

https://www.netflixprize.com/
http://www.kdd.org/kdd-cup
https://www.kaggle.com

The competitive format yields results that push the state-of-the-art in terms of

predictive modeling methodology. These competitions can also scale without limit

as more and more data scientists enter the competition, develop models, and submit

entries. Individual data scientists may find this format more or less usable depending

on their strengths and comfort with their preferred toolset and compute environment.

At the end of a predefined period, the competitor who has achieved the best

score on an unseen test set is crowned the winner and earns a monetary payout.

What next? The project organizer is handed a dump of source code, notebooks, and

model parameters, which may be in an arbitrary state of organization and usefulness.

To integrate this model into production systems to the point of being able to serve

predictions may require months more effort from data scientists and software engineers

within the organization. Similarly, what happens to the 𝑛 − 1 submissions that did

not yield the best testing performance? They are more or less jettisoned, even though

they may contain innovative ideas or approaches. Since these competitions impose

no additional structure on the data science process besides providing the inputs,

innovative approaches to data preprocessing, feature engineering, or modeling cannot

be integrated with each other into one, larger, unified solution.

There are several other drawbacks of the data science competition approach to

collaboration. First, the format may lead users to primarily tackle the machine learn-

ing algorithms themselves, instead of the features that go into them. Rather than

focusing their collective brainpower on the difficult “bottleneck” step of feature en-

gineering, users may engineer only a few features before attempting to tinker with

different learning algorithms and their parameters, a potentially less efficient road

to progress. Second, the pool of organizations that are willing to sponsor challenges

is relatively small, because such sponsorship requires releasing proprietary data to

the public. Third, because datasets are released in varying formats, users spend a

significant amount of initial time wrangling and preprocessing the data, and these

same tasks are redundantly performed by thousands of competitors over the course

of the exercise.

Data science competitions have been highly successful at marshaling many data

33

scientists to each work to the same end goal, but provide little new or additional

structure for them to work collaboratively.

1.3.5 Challenges of open data science

At the scale of open data science that we are considering, new challenges emerge to

collaboration that do not previously appear in internal data science projects within

smaller organizations. Some of these concerns will then be familiar to open-source

software collaborations, and similarities and differences will be noted.

Redundancy. It becomes difficult, if not impossible, for individual contributors to

keep track of the work being done by other collaborators. Redundancy in data science

projects can be separated into at least three types. Take for example, redundancy

that can arise in feature engineering (Section 1.2). The first is redundant code from

one person duplicating work that had already been contributed to the project earlier.

A second is redundant code from two people working on the same idea simultaneously

without coordinating. And a third is feature functions that extract highly correlated

feature values.

Now, these first two are redundancy related to the software aspect of data science,

and as such, appear in software development projects as well. They are usually

addressed as follows. A developer wants to fix a bug or implement a new software

feature. They first consult a list of outstanding issues — if they find their issue on the

list, they can assign themselves to work on it, or if someone else is already assigned,

they can communicate with the over developer directly about joining forces. This

does not work so well in the context of data science. Partly, this is because it has

not been really tried, but largely because the units of contribution in a data science

project — a data labeling function, a feature engineering function, or otherwise —

may be too numerous and intricate to be enumerated as just described, and are parts

of a creative process with no pre-defined end.

The third type of redundancy, a data-related redundancy, is unique to data science

projects. That is, it is not known before the fact that two features will turn out to be

highly correlated. If the two features are transformations of the same variable in the

34

raw data, then certainly they may be correlated. One can conceive of “assigning” raw

variables or sets of variables to different collaborators to avoid this issue. But two

different correlated raw variables, say height and weight, could lead to two correlated

features as well. To address data-related redundancy, machine-driven automation

must be leveraged.

Quality control. It becomes essential to be able to differentiate between high-

quality contributions and low-quality contributions or noise, and to filter out the

latter category of contributions without too much of a human burden to project

maintainers. In OSS projects, automated tools can run tests and assess code quality

using simple heuristics, giving project maintainers a first filter for quality. For data

science, these filters are helpful, but the project maintainers must still evaluate the

ideas underlying contributions like feature engineering functions on their own merits

while discouraging noise.

Distributed computation. Systems must be engineered such that a substantial

amount of computation can be distributed among the heterogeneous resources brought

to the table by collaborators, while taking special care to avoid re-computation and to

delicately manage data dependencies and data science artifacts. In OSS development,

computation is not usually as scarce a resource given the demands.

Manipulation.: Finally, the project itself must not be vulnerable to manipulation

or attack by adversaries including malicious contributors and irresponsible maintain-

ers — or even accidental damage by well-meaning but naïve contributors. These

concerns are shared in OSS development as well.

1.4 Data science abstractions

Inherent in this discussion is the idea that collaborative data science workflows need

to be restructured such that units of source code contribution better align with fun-

damental pieces of a data science project. Traditionally, one commit in a software

development project might include a new (software) feature along with documenta-

tion and test cases, all spread out over several files. In a data science project, on the

35

other hand, one unit of contribution could be the source code for one (machine learn-

ing) feature as added to a database comprising all features included in the model. By

rethinking data science in terms of features, processing functions, labeling functions,

prediction functions, model specifications, hyperparameter sets, and more, instead of

lines of code or files, data science projects can be better organized, and automation

strategies can more easily process this information into a coherent whole.

Of these abstractions, I will focus on tailoring innovations in collaborative data

science to feature engineering. Feature engineering is a rather lengthy part of the data

science process, in which practitioners ideate and write scripts to extract explanatory

features from the data. These features are measurable quantities that describe each

entity. For example, in an online learning platform such as a massive open online

course14 (MOOC), features that measure each student’s progress include the amount

of time she spends on the platform in a particular week, the number of visits she

makes to the website, and the number of problems she attempts. The set of all

features extracted by the data scientists can then be used as input to a predictive

machine learning model. When attempting to solve a particular prediction problem,

a small, easily-interpretable subset of features may prove to be highly predictive of

the outcome in question. For example, the average pre-deadline submission time is

highly predictive of a MOOC student’s stopout, or withdrawal from the course [47]. To

identify and extract these particular features requires human intuition, domain exper-

tise, sound statistical understanding, and specialized programming ability. Successful

practitioners contend that feature engineering is one of the most challenging aspects

of a data science task, and that the features themselves often determine whether a

learning algorithm performs well or poorly [11, 28].

Of the different units of contribution to a predictive modeling effort, I argue that

feature engineering is the most amenable to a collaborative approach. Ideation by

multiple people with different perspectives, intuitions, and experiences is yields a

more diverse and predictive set of features. Then, implementing these features in

code can be done in parallel, as long as the abstractions in place are well-structured

14http://mooc.org/

36

http://mooc.org/

such that the features can be combined in a single framework.

Regardless of my focus on feature engineering, the methods I develop and describe

in this thesis will apply more generally, to other parts of the data science process such

as prediction engineering [42] and data programming [37]. Feature engineering will

be cast as a particularly useful special case of a general procedure to combine units

of source code that satisfy some fixed structure. These and more will be fit within a

class of abstractions that apply to data science more generally.

The rest of this thesis is structured as follows. In Chapter 2, I present addi-

tional background and review related work. In Chapter 3, I present FeatureHub, a

new approach to scaling data science through collaborative feature engineering, and

describe my implementation of this platform as a scalable cloud application. Next,

in Chapter 4, I provide a detailed assessment of this approach through user stud-

ies, quantitative evaluation, and more. In Chapter 5, I discuss the strengths and

weaknesses of our proposed collaborative framework from a high level. Finally, in

Chapter 6, within the context of my research, I discuss potential paths forward for

collaborative data science and conclude.

37

38

Chapter 2

Background and Related Work

This thesis builds off of and relates to work in several areas, including crowdsourced

data analysis, automated machine learning, and data science competitions. In this

chapter, I review in detail background material in these areas.

2.1 Crowdsourcing methods in machine learning

Given the sheer volume of data that confronts data science and machine learning

practitioners, crowdsourcing techniques that leverage human intelligence and labor

are widely used in domains like image labeling and topic modeling.

2.1.1 Crowdsourced data labeling

More and more researchers have used the crowd to label datasets at scale, using

crowdsourcing platforms like Amazon Mechanical Turk [10, 26]. These platforms are

best suited for relatively unskilled workers performing microtasks, such as labeling a

single image. Crowd workers can also be leveraged for more complex tasks via hybrid

systems that use machine learning models to prepare or combine data for human

workers. For example, [45] use crowd workers to continuously evaluate machine-

generated classifications in a large-scale multiclass classification setting. In another

example, [41] use crowd workers to count the number of objects in an image by

39

first segmenting the image into smaller frames using machine vision algorithms. [31]

use crowd workers to estimate the nutritional content of images of meals using a

framework for managing the crowdsourcing of complex tasks.

2.1.2 Crowdsourced data cleaning

The problem of dirty data has been an intense focus of researchers from various

disciplines. Recently, some research has involved delegating this aspect of data man-

agement to systems using crowdsourcing. [8] propose a hybrid system to leverage the

power of knowledge bases and crowdsourced labor to identify and repair incorrect

data. [13] build a crowd-powered database query engine that leverages crowd workers

for tasks including entity resolution.

2.1.3 Crowdsourced feature engineering

Crowd workers have been involved in feature engineering in the past, but to a limited

extent. Most systems have used crowd workers either to assess the value of a fea-

ture on an example-by-example basis (which can be thought of as data labeling, as

above) or to compose features using natural language or other interface elements. For

example, [7] incorporate crowd workers in the data labeling and feature engineering

steps when constructing hybrid human-machine classifiers. In their system, users la-

bel data and give their opinions on different feature definitions via a structured voting

system. Feature values must be manually extracted from these feature definitions;

thus, scalability and automation remain issues.

2.2 Automated methods in machine learning

Machine learning applications can be very complex and developing these applications

can require highly specialized skills. Any machine-driven automation can make a

substantial impact on the success of these projects. Automated methods have been

introduced for all aspects of the modern data science process (Section 1.2). Of these,

40

I review some methods for machine learning and feature engineering.

2.2.1 Automated machine learning

Recent advances in hyperparameter optimization and open-source software packages

have led to increased use of, and attention paid to, automated machine learning

(AutoML) methods. [48] formalize AutoML problems as combined algorithm selec-

tion and hyperparameter optimization. [12] use Bayesian optimization techniques to

automatically choose approaches to feature preprocessing and machine learning algo-

rithms, and to select hyperparameters for these approaches. In a similar approach,

[34] use genetic programming to optimize machine learning pipelines. These algo-

rithms enable automated machine learning models to be generated with relatively

little difficulty, performing well in various machine learning tasks. Importantly, they

remove the time-consuming burden of tuning and evaluating models from the data

scientists themselves. Unfortunately, these systems require a well-formed feature ma-

trix as input, requiring feature engineering to transform unstructured or relational

data, limiting their application as end-to-end solutions.

Other systems address the automated machine learning space from different an-

gles. In [27], the authors develop a general purpose automated system for statistical

inference called the “Automated Statistician. [3] use a technique called “bag of lit-

tle bootstraps” to efficiently subsample data and enable hyperparameter search over

more complex, end-to-end, data science pipelines with very large search spaces. In

[51], the authors address the problem of neural network architecture search through a

reinforcement learning-based solution, and are able to design novel architectures that

achieve state-of-the-art results on some problems.

The success of these software libraries has motivated algorithm and systems de-

velopment that targets more practical aspects of the modern data science process.

[46] develop a distributed, multi-user automated machine learning system that can

be used to tune models at scale. This is one of the first examples of approaches

to AutoML that scals beyond the use case of a single data scientist working within

their notebook, and is suitable as a component within a production machine learning

41

system.

2.2.2 Automated feature engineering

Feature engineering is a very broad field that applies to many different modalities.

Chief of interest in this thesis is multi-table relational data which is commonly used in

practical data science projects within organizations. In [18], the authors develop an

algorithm for automatically extracting features from relational datasets. This algo-

rithm, called Deep Feature Synthesis, enumerates a subset of the feature space through

understanding of the dataset schema and the primary key-foreign key relationships.

Other attempts at automated feature engineering include [25] which extends the Deep

Feature Synthesis methodology and [24] which uses recurrent neural networks to learn

a composition of functions. Alternately, in the databases community, much focus has

been paid to relational data mining, often via propositionalizing relational databases

into “attribute-value” form [20, 22].

There is a vast body of work on extracting features from other unstructured data

such as images, audio, and text. Convolutional neural networks and auto-encoders

are widely used to extract feature representations of image data, while techniques like

tf-idf vectors, word2vec [30], and Latent Dirichlet Allocation [4] are commonly used

to automatically extract features from text data, whether at the level of individual

words or entire documents.

2.3 Programming and data science competitions

There are several existing platforms that present data science or machine learning

problems as competitions. The most prominent of these, Kaggle, takes data science

problems submitted by companies or organizations and presents them to the pub-

lic as contests, with the winners receiving prizes provided by the problem sponsor.

Competing data scientists can view problem statements and training datasets, and

can develop and train models on their own machines or in cloud environments. They

can also discuss the competition, comment on each others’ code, and even modify

42

existing notebooks. The idea of gamifying machine learning competitions has led to

increased interest in data science, and the Kaggle platform has lowered the barrier to

entry for new practitioners.

Building off the success of Kaggle, a variety of other data science competition plat-

forms have emerged, focusing on both commercial and social good projects. Driven

Data1 emulates Kaggle competitions but for projects like predicting whether water

pumps in Tanzania are faulty, predicting outcomes from the United Nation’s Mille-

nium Development Goals, and predicting whether a blood donor will return for future

blood donations. EvalAI2 is an extensible, open-source platform that aims to help

AI researchers, practitioners, and students to host, collaborate, and participate in

AI challenges organized around the globe. Other similar platforms for data science

and machine learning competitions include CodaLab3, ChaLearn4, and InnoCentive5.

The Epidemic Prevention Initiative of the United States Centers for Disease Con-

trol administers a competitive epidemic prediction site6 with competitions such as

FluSight, in which participants forecast influenza incidence at various geographies.

The OpenML platform [50] aims to build an open ecosystem for machine learning.

Contributors can easily explore different datasets (presented as a single-table feature

matrix), upload algorithms, and compare their results to others.

A variety of one-off data science competitions have also emerged. The US National

Oceanic and Atmospheric Administration, in coordination with other US federal agen-

cies, created a competition to try to predict incidence of dengue fever in San Juan,

Puerto Rico and Iquitos, Peru [32]. Within the biomedical image analysis community,

a series of “Grand Challenges”7 produces independent competitions co-located with

academic conferences, such as “CADDementia”, a competition to diagnose dementia

based on structural MRI data [5].

In another vein, researchers have focused on factors that drive innovation in pro-
1https://www.drivendata.org/
2https://evalai.cloudcv.org/
3https://competitions.codalab.org/
4https://www.chalearn.org
5https://www.innocentive.com
6https://predict.phiresearchlab.org/about
7https://grand-challenge.org/

43

https://www.drivendata.org/
https://evalai.cloudcv.org/
https://competitions.codalab.org/
https://www.chalearn.org
https://www.innocentive.com
https://predict.phiresearchlab.org/about
https://grand-challenge.org/

gramming contests [14]. These factors include a competitive structure highlighted by

leaderboards, real-time feedback, discussion, and open-source code.

2.4 Collaborative software development

Software has been developed in teams of various sizes since the dawn of computers.

The open-source software (OSS) community, which thrives on highly collaborative

development for many motivated developers, has seen its growth accelerate in recent

years with the proliferation of online tools and communities. Some researchers have

addressed the question of why developers contribute to open-source projects, when

they are usually not compensated and the effort devoted can be significant. In [15],

the authors survey Linux developers and find that identification with the project

and available time are important factors for volume of contributions. [23] survey

open-source developers and find that enjoyment-based intrinsic motivation, such as

expression of creativity and intellectual stimulation, is the primary factor for contri-

bution. Other important factors include the user’s need for the software itself and

the desire to improve his or her programming skills. [39] survey available evidence

on motivations of open-source contributors, under the organizational psychology and

economics lenses, and find that a large number of motivations underpins the contri-

butions of a very heterogenous developer pool, including user needs and a reputation

of generosity.

Though there is a large body of (somewhat inconclusive) evidence on OSS devel-

opers, there is little that is known about motivations for contributing to open data

science projects. Analogy to software development suggests that the projects that

may be most successful in attracting contributors are those that allow data scientists

to express themselves creatively and to work on solutions that could affect them and

their communities. As the open data science community continues to grow, more

research will be needed on this subject.

44

Chapter 3

A collaborative data science platform

In this chapter, I present FeatureHub, an approach to collaborative data science based

on collaborate feature engineering [44]. With the FeatureHub platform, multiple users

log into a cloud platform to explore a predictive modeling problem, write source code

for feature extraction, request an evaluation of their proposed features, and submit

their work to a central location. The platform then aggregates features from multiple

users, and automatically builds a machine learning model for the problem at hand.

Through this process, collaborators can incrementally develop an integrated predictive

model.

In Section 1.2, I presented a high-level overview of the modern data science pro-

cess. There, I highlighted feature engineering as one of the most important steps in

predictive modeling that is also particularly amenable to a collaborative approach.

Despite the benefits of a collaborative model, no system previously existed to enable

it as I have described. This desired system is distinguished by the ability to develop

features in parallel across contributors in real-time and to integrate contributions

into a single modeling solution, as introduced in Section 1.3. To build such a sys-

tem, we must break down the data science process into well-defined steps, provide

scaffolds and structure such that data scientists can focus on the feature engineering

process, provide automated methods for everything else in the data science process,

and provide the functionality to view, merge, evaluate, and deploy combined efforts.

FeatureHub is the first collaborative engineering platform in this spirit. In this

45

chapter, I first propose a new approach to collaborative data science efforts, in which

a skilled crowd of data scientists focuses creative effort on writing code to perform

feature engineering. Next, I architect and develop a cloud platform to instantiate this

approach, during which I develop scaffolding that allows us to safely and robustly in-

tegrate heterogeneous source code into a single predictive machine learning model. In

the next chapter, I will present experimental results that show that crowd-generated

features and automatically trained predictive models can compete against expert data

scientists.

In the following section, I motivate the FeatureHub workflow, before then describ-

ing in detail how both coordinators and feature creators interact with the platform.

The workflow is divided into three phases: Launch (Section 3.2), Create (Sec-

tion 3.3) and Combine (Section 3.4). Coordinators execute Launch and Combine,

and feature creators interact with the platform in the Create phase. A stylized view

of this workflow is shown in Figure 3-1.

Figure 3-1: Overview of FeatureHub workflow. A coordinator receives the problem
to be solved, and associated data. She prepares the data and does the necessary
preprocessing using different available functions. Then, the platform is launched
with the given problem and dataset. Data scientists log in, interact with the data,
and write features. The feature scripts are stored in a database along with meta
information. Finally, the coordinator automatically combines multiple features and
generates a machine learning model solution.

46

3.1 Overview

To motivate the use of FeatureHub for collaborative data science, consider an example

of predicting to which country users of the home rental site Airbnb will travel [1]. The

problem includes background information on the prediction problem and a dataset,

in a relational format, containing information on users, their interactions with the

Airbnb website, and their potential destinations. Data scientists are asked to make

predictions such that the five most highly ranked destinations of their model match

the actual destination of each user as closely as possible. (This dataset is described

in more detail in Section 4.1.) Under the approach facilitated by FeatureHub, the

coordinator first prepares the prediction problem for feature engineering by taking

several steps. They deploy a FeatureHub instance or uses an already-running system.

They upload the dataset and problem metadata to the server, and then perform some

minimal cleaning and preprocessing to prepare the dataset for use in feature engineer-

ing. This includes identifying the users table as containing the entities instances,

moving the target country_destination column into a separate table, splitting the

data into a training and validation set, and more.

The coordinator steps back and the data scientists log in. On the platform, they

can read background information about the problem, load the dataset, and conduct

exploratory data analysis and visualization. When they are familiar with the problem

and the dataset, they begin writing features. One data scientist may use her intuition

about what aspects of countries are most appealing to travelers, and write a set

of features that encodes whether the user speaks the language spoken in different

destinations. Another data scientist may look for patterns hidden deep within users’

clickstream interactions with the Airbnb site, and write a feature that encodes the

number of actions taken by a user in their most recent session. Once these users have

written their features, FeatureHub automatically builds a simple machine learning

model on training data using each feature, and reports important metrics to the data

scientists in real-time. If the predictive performance of a feature meets expectations,

the feature can be submitted and “registered” to a feature database, at which point

47

performance on the unseen test set is also assessed. Though these data scientists

are looking for signal in different places, their work can be combined together easily

within FeatureHub’s scaffolding. They may be following their ideas in isolation, or

using integrated collaboration and discussion tools to split up work and exchange

ideas.

At this point in a typical data science workflow, data scientists working inde-

pendently might have accumulated several features, and, having spent much time on

preparing a working environment and cleaning data, would be anxious to test the

performance of a model trained on their features. They might specify several ma-

chine learning models in order to get a sense of baseline performance and compute

cross-validated metrics. As they continue ideating and doing feature engineering, they

might take successively longer pauses to focus on model training and selection. How-

ever, using FeatureHub, individual workers can focus their creative efforts entirely on

writing features while the system takes care of evaluating performance.

Meanwhile, the coordinator is monitoring the progress of workers. Each time

they register a new feature, a model is selected and trained completely automatically

and the performance is reported to the coordinator. After three days of feature

engineering, the coordinator finds that the model has crossed a suitable threshold of

performance for her business purpose and notifies the data scientists that the feature

engineering has concluded. The data scientists can move on to a new task.

3.2 Launching a project

Let us return to the beginning of a FeatureHub project workflow. In the Launch

phase, a problem coordinator initializes a FeatureHub problem. The coordinator

starts with a prediction problem that they want to solve, along with a dataset in

relational format. Next, the coordinator performs preprocessing on the dataset to

extract important metadata, including the problem type, the target error metric used

to evaluate solutions, and the locations and names of data tables. The coordinator

also has the option to pre-extract a set of basic features that can be used to initialize

48

the machine learning models. Often, these are features that require the most minimal

and obvious transformations, such as one-hot encodings of categorical variables or

conversions of string-encoded dates to timestamps. In fact, this entire step could be

automated using existing frameworks such as Featuretools/Deep Feature Synthesis

[18]. Finally, in order to orient workers, the coordinator prepares a description of the

prediction problem, the data tables along with primary key-foreign key relationships,

and details of the pre-extracted features.

This requires that all relevant tables are available from the outset. One might

argue that a key contribution of a talented feature engineer may be to ingest and

merge previously-unknown, external data sources that are relevant to the problem at

hand. For our purposes, though, we include this in the data preprocessing step.

3.3 Creating new features

In the Create phase, data scientists log into a server using credentials provided by

the coordinator. Their working environment is the Jupyter Notebook, a widely used

interactive document that contains explanatory text, live code, and inline visualiza-

tions.

3.3.1 Load and explore

Notebooks for each problem contain detailed problem information provided by the

coordinator, as in Section 3.2. In this self-contained environment, users have all of

the information they need to understand the problem and engage with the available

data. The environment also comes pre-loaded with all of the packages users require for

data science and feature engineering, including the FeatureHub client library. After

reading through the problem setup, users import a FeatureHub client, which provides

a minimal but powerful set of methods for interacting with the feature engineering

process. The full functionality exposed by the client is shown in Table 3.1.

Data scientists then load the data into their workspace by calling

get_sample_dataset. This method returns the variables dataset, a mapping from

49

Phase Method Functionality

Launch
(Coordinator)

prepare_dataset Prepare the dataset and load it into the
FeatureHub interface.

preextract_features Extract simple features.

setup Launch multiple machines in the cloud
with JupyterHub installed and the
dataset set up.

Create
(Data
Scientists)

get_sample_dataset Load the dataset into the workspace.

evaluate Validate and evaluate a candidate
feature locally, on training data.

discover_features Discover and filter features in the
database that have been added by the
user and other workers.

submit Validate and evaluate* a candidate
feature remotely, on test data, and, if
successful, submit it to the feature
database.

Combine
(Coordinator)

extract_features Execute the feature extraction scripts
submitted by the data scientists.

learn_model Learn a machine learning model using
AutoML.

* Though both of these last two methods “evaluate” the performance of the candidate feature, they are named from

the perspective of the data scientist’s workflow.

Table 3.1: Set of methods for data scientists to interact with FeatureHub.

table names to tabular data objects, and target, a table of target values for each

entity in the sample dataset. This data representation is a simple way to provide

access to a relational dataset in Python and pandas, a tabular data processing library.

Users can then explore the dataset using all of the familiar and powerful features of

the Jupyter Notebook. The sequence of commands for an example problem is shown

in Figure 3-2.

50

1 from featurehub.problems.demo import commands
2 dataset , target = commands.get_sample_dataset ()

Figure 3-2: It is straightforward for users to use the FeatureHub client to import a
sample dataset for an example problem called demo.

3.3.2 Write features

We ask workers to observe a basic scaffolding of their source code when they write

new features, to allow us to standardize the process and vet candidate features. This

setup is crucial in allowing us to safely and robustly combine source code of varying

quality. In this scaffold, a feature maps the problem dataset to a single column of

numbers, where one value is associated with each entity instance.

More formally, we are given a dataset composed of 𝑘 tables

𝒟 = {𝑇𝑖 | 𝑖 = 1, . . . , 𝑘}. (3.1)

The first table 𝑇1 is identified as the entities table, in that there is a one-to-one

mapping between rows of the table and entities for which we will make predictions.

We define the number of entities 𝑛 in correspondence with the number of rows of the

entities table. We also identify table 𝑇𝑘 ∈ ℛ𝑛 as the target table, where the 𝑖th entry

of 𝑇𝑘 is the target for entity 𝑖.

We then define a feature function

𝑓 : 𝒫(𝒟)→ ℛ𝑛 (3.2)

which maps any subset of the tables in the dataset to a vector of length 𝑛, the feature

values.

Given a collection ℱ = {𝑓𝑖 | 𝑖 = 1, . . . ,𝑚} of feature functions and a dataset 𝒟,

we extract a feature matrix 𝑋ℱ ,𝒟 as

𝑋ℱ ,𝒟 =
(︀
𝑓1(𝒟), . . . , 𝑓𝑚(𝒟)

)︀
(3.3)

51

Our focus is on the feature functions ℱ itself, rather than the feature matrix 𝑋ℱ ,𝒟,

which is what is otherwise usually taken as the starting point for a machine learning

analysis.

At the outset, this definition seems to disallow categorical features or other “logical

features” that consist of multiple columns. However, these can be represented simply

as numerical encodings or encoded one column at a time, in the case of one-hot

encodings of categorical features or lags of time series variables.

In this spirit, we require that a candidate feature be a Python function1 that

• accepts a single input parameter, dataset, and

• returns a single column of non-null numerical values that contains as many rows

as there are entity instances, that is ordered in the same way as the entity table,

and that can be represented as a tabular data structure such as a DataFrame.

In order for the feature values to be reproducible, we also require that features not

use variables, functions, or modules that are defined outside of the function scope,

nor external resources located on the file system or elsewhere. This ensures that the

source code defining the feature is sufficient to reproduce feature values by itself, such

that it can be re-executed on unseen test data. We verify that a feature meets these

requirements during the feature submission process. A trivial feature that fits this

scaffold is shown in Listing 3.1.

1 def hi_lo_age(dataset):
2 """ Whether users are older than 30 years """
3 from sklearn.preprocessing import binarize
4 threshold = 30
5 return binarize(dataset["users"]["age"]
6 .values.reshape (-1,1), threshold)

Listing 3.1: A simple feature. The input parameter is a mapping (dict) of table
names to DataFrames. This function imports external packages within its body and
returns a single column of values.

1We could easily extend this framework to allow the use of other languages commonly used in
data science, such as R, Julia, or Scala.

52

3.3.3 Evaluate and submit

After the user has written a candidate feature, they can evaluate its validity and

performance locally2 on training data using the evaluate command. This procedure

executes the candidate feature on the training dataset to extract feature values, and

builds a feature matrix by concatenating these values with any pre-extracted features

provided by the problem coordinator. A reference machine learning model is then

fit on this feature matrix, and metrics of interest are computed via cross-validation

and returned to the user. This procedure serves two purposes. First, it confirms to

the user that the feature has no syntax errors and minimally satisfies the scaffolding.

(As we will see, this by itself is not sufficient to ensure that the feature values are

reproducible.) Second, it allows them to see how their feature has contributed to

building a machine learning model. If the resulting metrics are not suitable, the data

scientist can continue to develop and ideate. Example output of a feature evaluation

is shown in Figure 3-3.

(a) evaluate
(b) submit

Figure 3-3: Example interactions with the evaluate and submit API methods. In
evaluating a feature, the feature is executed in the user’s notebook environment to
extract feature values, which are validated against a list of criteria. If successful, fea-
ture performance metrics are returned. In submitting a feature, the user is prompted
for a description, after which the feature source code is extracted and sent to the
evaluation server. Upon success, the evaluation metrics are returned, as well as a link
to an automatically-generated forum post (if applicable).

2Here, “local” is used to mean that evaluation occurs in the same executation context as the rest
of the user’s development, i.e. in their Jupyter Notebook kernel. This kernel, however, runs on our
own servers, not the user’s own device.

53

Once the user has confirmed the validity of their feature and is satisfied by its

performance, they submit it to the feature evaluation server using the submit com-

mand. In this step, they are also asked to provide a description of the feature in

natural language. This description serves several valuable purposes. It allows the

feature to be easily labeled and categorized for in-notebook or forum viewing. It also

facilitates a redundant layer of validation, allowing other data scientists or problem

coordinators to verify that the code as written matches the idea that the data scien-

tist had in mind. It may even be used to provide a measure of interpretability of the

final model, because descriptions of the features included in the final model can be

shown to domain experts or business analysts. An example feature source code with

the accompanying natural language description is shown in Figure 3-4.

Average ren t p r i c e f o r one room apartment (economy c l a s s)
a t t ime o f t r an s a c t i o n .

Listing 3.2: Description

1 def one_room_rent(dataset):
2 merged = pd.merge(
3 dataset['transactions '],
4 dataset['macro'][['timestamp ', 'rent_price_1room_eco ']],
5 how='left',
6 left_on='timestamp ',
7 right_on='timestamp '
8)
9 rent = merged['rent_price_1room_eco ']

10 return rent

Listing 3.3: Source code

Figure 3-4: Natural language description of a feature function written in Python.
These descriptions can be helpful for interpreting model performance and establishing
trust in the implementation.

At the server, the same steps are repeated, with slight exceptions. For example,

the machine learning model is fit using the entire training dataset, and metrics are

computed on the test set. The fact that the feature is extracted in a separate environ-

ment with an isolated namespace and a different filesystem ensures that the resulting

feature values can be reproduced for future use.

If the feature is confirmed to be valid, the feature is then both registered to the

feature database and posted to a forum. The URL of the forum post is returned

54

to the user, so that with just one click, they can begin, view, or participate in a

discussion around their feature. In this way, we try to make discussion as frictionless

as possible. It would also be possible to integrate discussion into the FeatureHub site

directly through Jupyter extensions.

3.3.4 Collaborate

We make a distinction between implicit and explicit collaboration in data science

projects. Implicit collaboration occurs when contributions from different people are

combined into a single, integrated model. Explicit collaboration is the ability to

communicate directly with collaborators; view, discuss, and improve their work; and

coordinate further development. Although the data scientists are already collabo-

rating implicitly, in the sense that their features are combined into a single feature

matrix, FeatureHub also aims to make this collaboration more explicit. We facilitate

this through several approaches.

First, we provide an in-notebook API method, discover_features, that allows

users to query the feature database for features that have been submitted by others,

optionally filtering on search terms. This, for example, allows a user who is considering

developing a feature for a particular attribute to see all features that mention this

attribute. If there are close matches, the user could avoid repeating the work, and

develop another feature instead. The user could also use the existing feature as a

jumping-off point for a related or new idea. The matching feature source code is

displayed to the user as well as its description and performance metrics, as shown in

Figure 3-5. Though coarse, this output can be copied and adapted in other Notebook

cells.

Second, we tightly integrate a Discourse-based forum. Discourse3 is an open-source

discussion platform that is often used as a forum for discussing software projects.

Users are provided with a forum account by the coordinator. They can then post

to several categories, including help, where they can ask and answer questions about

technical usage of the platform, and features, where they can see the formatted fea-
3https://www.discourse.org

55

https://www.discourse.org

Figure 3-5: Output of a call to discover_features in the Jupyter Notebook. In
this example, the user has filtered features to those containing the string 'action'
and then scrolled to inspect Feature 48. Scrolling further, the user will be able to see
the performance metrics (accuracy, precision, recall, and ROC AUC) for this feature
before continuing on to the other matching features in the database.

tures, automatically posted, that have been successfully submitted to the feature

database. This provides an opportunity for users to discuss details of the feature en-

gineering process, post ideas, get help from other users about how to set up a feature

correctly, and use existing features as a jumping-off point for a related or new idea.

An example forum post is shown in Figure 3-6.

While the specifics of this forum integration are relevant only for our current in-

stantiation of FeatureHub, the overarching idea is to define the unit of discussion at

the feature level, facilitating pointed feedback, exploration, and ideation — one fea-

ture at a time. This contrasts with the software engineering approach (Section 1.3.2),

in which feedback is often presented at the commit or pull request level.

3.4 Combining contributions

During or after the feature engineering process, the coordinator can use FeatureHub

to build a single machine learning model, using the feature values from every feature

56

Figure 3-6: A forum post for the sberbank prediction problem (Section 4.1.2) showing
an actual feature submitted by a crowd worker. The feature description, source code,
and computed metrics are shown, along with prompts for further discussion.

submitted thus far. These tasks can be executed by the coordinator multiple times,

at each point assessing the combined work of the data scientists to date. To do so,

the coordinator uses the following methods:

• extract_features: Feature source code is queried from the database and com-

piled into functions, which are executed on the training and test datasets to

extract corresponding feature matrices.

• learn_model: A sophisticated automated machine learning framework,

auto-sklearn [12], is used to build a single predictive model. The coordina-

tor can modify AutoML hyperparameters, but the goal is to build the model

with little intervention. Alternately, the coordinator can integrate a standalone

automated machine learning system such as ATM [46], or even override this

behavior and build models directly for finer control.

57

3.5 Design

The platform is designed around several priorities. First, it must support concurrent

usage by dozens of data scientists, each of whom needs an isolated environment suit-

able for data science, along with a copy of the training data. Next, it must integrate

heterogeneous source code contributions by different workers into a single machine

learning model. The platform must be able to safely execute and validate untrusted

source code as best as possible without leaking information about the test sample.

Finally, it must enable detailed logging of users’ interactions with the platform, to be

used in further analysis of data scientists’ workflows.

A schematic of the FeatureHub platform is shown in Figure 3-7. We leverage

JupyterHub, a server that manages authentication and provisioning of Jupyter Note-

book container environments [19]. Each individual user environment is pre-loaded

with the most common data science packages, as well as FeatureHub-specific ab-

stractions for data acquisition and feature evaluation and submission, as discussed in

Section 3.3.

Careful consideration is given to ensuring that all code contributions are thor-

oughly validated, and that extracted feature values can be fully reproduced. To

achieve this, a user first evaluates their feature on training data in the local environ-

ment. This ensures that the feature code has no syntax errors and minimally satisfies

the scaffolding. However, it is not sufficient to ensure that the feature values are

reproducible.

When the user attempts to submit a feature, FeatureHub both extracts the feature

source code and serializes the Python function. Then, the function is deserialized by

a remote evaluation service, which attempts to extract the feature values again, this

time using the unseen test dataset as input. This reveals reproducibility errors such

as the use of variables or libraries defined at the global scope, or auxiliary files or

modules stored on the local file system. This service also has flexible post-evaluation

hooks, which we use to integrate with a separate Discourse forum, but can also enable

other custom behaviors.

58

Figure 3-7: Overview of FeatureHub platform architecture, comprising the Feature-
Hub computing platform and the Discourse-based discussion platform. Users log into
the platform to find a customized Jupyter Notebook environment with dedicated com-
pute and storage resources (1). They can query the feature database to see the work
that others have already done (2). Once they have an idea for a feature, the user
implements it and evaluates it locally on training data, then submits their code to the
feature evaluation server (3). The code is validated as satisfying some constraints to
ensure that it can be integrated into the predictive model without errors. The corre-
sponding feature is extracted and an automated machine learning module selects and
trains a predictive model using the candidate features and other previously-registered
features (4, 5). The results are registered to the database (6), posted to the discussion
forum (7), and returned to the user (8).

Logging the users’ interactions with FeatureHub allows us to more carefully ana-

lyze the efficacy of the platform and user performance. Indeed, this is a key advan-

tage of developing and deploying our own system. We log user session events and

detailed information each time the user attempts to evaluate or submit a feature in

the database backend.

Finally, we design the platform with an aim towards easy deployment, so that it

can more easily be used in classroom or intra-organizational environments.

Full details on the implementation of the platform are available in Appendix A.

59

60

Chapter 4

Assessment

I assess the FeatureHub platform along two main dimensions: the ability to develop

powerful predictive machine learning models and the usability by collaborating data

scientists.

To preview the results, we find that models built using FeatureHub and collabo-

rating data scientists achieve performance that is competitive with the best models

submitted by expert data scientists working for weeks on end on the data science

competition platform Kaggle. We also find that functionality in our platform to

enable explicit collaboration between data scientists substantially reduces the time

to successfully submitting a first feature. One factor contributing to this effect was

that some data scientists frequently used a functionality we developed to search for

and discover features written by others, allowing them to see and build off existing

successful submissions.

4.1 Experimental conditions

We conducted a user test to validate the FeatureHub concept and to compare the

performance of a collaborative feature engineering model to that of independent data

scientists who work through the entire data science pipeline. We also assessed to what

extent the collaborative functionality built into the platform affects collaboration and

performance.

61

4.1.1 Study participants

We recruited data scientists on Upwork1, a popular freelancing platform. We adver-

tised a position in feature engineering, filtering users that had at least basic experience

in feature engineering using Python and pandas, a tabular data processing library.

Unlike other crowdsourcing tasks, in which relatively unskilled workers execute “mi-

crotasks,” the challenges posed by feature engineering require data scientists to have

a minimum level of expertise. To allow data scientists with different experience levels

to attempt the task, we hired each freelancer at their proposed rate in response to our

job posting, up to a $45 per hour limit. Figure 4-1 shows the distribution of hourly

rates for 41 hired data scientists. This exposes FeatureHub to an extreme test in en-

abling collaboration; as opposed to a small, in-house, data science team or a group of

academic collaborators, our experimental participants live in many countries around

the world, work in different time zones, and possess greatly varying communication

ability, skill levels, and experience.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

Hourly wage

C
ou

nt

Figure 4-1: Hourly wages of data scientists from Upwork.

We asked data scientists to work a maximum of 5 hours on the platform. First,

1https://www.upwork.com

62

https://www.upwork.com

they were provided with a tutorial on platform usage and other documentation. Then,

they were presented with background on various prediction problems. Next, they

were tasked with writing feature engineering source code that would be helpful in

predicting values of the target variable. Finally, we administered a post-experiment

survey (Appendix C.1) and provided feedback on their performance2.

4.1.2 Prediction problems

We presented data scientists with two prediction problems. In the first problem, data

scientists were given data about users of the home rental site Airbnb and each user’s

activity on the site [1]. Data scientists were then tasked with predicting, for a given

user, the country in which they would book their first rental. In the second problem,

data scientists were given data provided by Sberbank, a state-owned Russian bank and

financial services company, on apartment sale transactions and economic conditions in

Russia [2]. Data scientists were then tasked with predicting, for a given transaction,

the apartment’s final selling price. Summaries of these prediction problems are shown

in Table 4.1, while further details are available in Appendix B.

Problem Name Type Tables Instances
Train Test

airbnb Classification 4 213451 62096
sberbank Regression 2 30472 7662

Table 4.1: Prediction problems used in FeatureHub user testing.

4.1.3 Experiment groups

In order to assess the effects of different types of collaborative functionality on feature

performance, we randomly split data scientists into three groups. The first group was

provided access to the FeatureHub platform, but was not able to use the in-notebook
2The Upwork platform requires employers to provide feedback on freelancers after the conclusion

of the work. As our study was an experiment and not an evaluation, we gave 5 star ratings to
everyone who completed the experiment.

63

feature discovery method nor the forum for viewing and discussing submitted features.

Thus, this group consisted of isolated data scientists who were implicitly collaborating

in the sense that their features were combined into a single model, but otherwise had

no coordination. A second group was provided access to and documentation for the

discover_features client method as well as the integrated feature forum. A third

group was provided access to the same functionality as the second group, and was

also provided monetary incentives to avail themselves of this functionality.

4.1.4 Performance evaluation

Although we hired data scientists at an hourly rate, we also wanted to create mecha-

nisms that would motivate both high-quality features and collaborative behavior. We

sought to align incentives that would motivate an entire group towards a particular

goal: achieving the best-performing model using the features written by all data sci-

entists in that group. To that extent, we offered participants bonus payments based

on their performance in two broad areas.

• Collaborative behavior : Contributing to forum discussions, building off code

written by other participants, writing well-documented and reusable code, and

writing clear, accurate, informative, and concise natural language descriptions

of features.

• Evaluation of features : Feature ranking of final model and incremental models,

and qualitative evaluation of complexity and usefulness of features.

Bonus payments were offered in terms of percentage points over the worker’s

base hourly rate, allowing us to ignore differences in base salary. We then created

a bonus pool consisting of 25 percentage points per user. Thus, a user that did no

work might receive no bonus, an average user might receive a bonus of 25% of their

base salary, and an exceptional worker could receive a bonus of as much as 25𝑛% of

their base salary, where 𝑛 is the number of data scientists in their group. We then

clearly defined, to each worker, what objective we were working toward, how we were

64

measuring their performance with respect to this objective, and what weight we gave

to different performance categories and subcategories. The weights shown to each

group can be seen in Table 4.2.

Group 1,2 3

Collaboration 28 50
. . . Feature descriptions 28 20
. . . Forum interactions 0 30
Evaluation of features 72 50
. . . Quantitative 57 40
. . . Qualitative 15 10

Table 4.2: Bonus payment weights (in %) for control and experimental groups. For
groups 1 and 2, the “Collaboration” category was listed as “Documentation” to avoid
bias, and the “Forum interactions” subcategory was not shown.

This was a first attempt to align financial incentives in collaborative feature en-

gineering with the outcome of the overall predictive model. In general, this is a

challenging problem for algorithm and market design reasons, as discussed further in

Section 5.2.3.

4.2 Modeling performance

Collectively, the data scientists spent 171 hours on the platform. Of 41 people who

logged into the platform, 32 successfully submitted at least one feature, comprising

150 of the hours worked. In total, we collected 1952 features. We also received 28

responses to our post-experiment survey to participants (Appendix C.2).

We limited data scientists to 5 hours on the platform, and those that submitted

at least one feature used, on average, slightly less than that time. This constraint

meant that a worker was allotted at most 2.5 hours per problem to read the problem

description, familiarize themselves with the data, and write, test, and submit fea-

tures. (Though we did not restrict data scientists from dedicating more effort to one

of the problems). Before a data scientist could begin to ideate and write features,

they needed to invest some time in learning the basics of the platform and under-

65

standing the specific prediction problem. According to our survey3, though 21% of

users reported beginning to work on a specific prediction problem within 20 minutes

of logging in, another 39% reported working through tutorials and documentation for

40 minutes or more, restricting the time they spent on feature engineering directly.

In a real-world setting, data scientists may spend days or weeks becoming familiar

with the data they are modeling. Even so, we find that useful features can be created

within minutes or hours.

During or after the feature engineering process, the project coordinator can com-

bine source code contributions into a single predictive model, as described in Sec-

tion 3.4. This should be accomplished with minimal intervention or manual modeling

on the part of the coordinator, a key consideration reflected in the design. FeatureHub

provides abstractions that allow the coordinator to automatically execute functions

that extract feature values and use these as inputs to a machine learning model.

Modeling can then be done either via an integrated wrapper around an automated

machine learning library, or via manual model training, selection, and tuning.

Upon the conclusion of the experiment, we use this functionality to extract final

feature matrices and model the feature matrix using our integrated auto-sklearn-

based modeling. Using these completely automatically generated models, we make

predictions for the unseen test sets on Kaggle. The results of our models, as well as

those of other competitors, are shown in Figure 4-2.

Overall, our models achieve performance that is competitive with the best models

submitted by expert data scientists working for weeks or months at a time. The scores

we achieve, though not close to winning such competitions, place our automatically

generated models within several hundredths of a point of the best scores: 0.03 and

0.05 for airbnb and sberbank, respectively. In both cases, the scores achieved by our

models put them at an inflection point, in which an important amount of predictive

capability has been unlocked, but the last few hundredths or thousandths or a point

of performance on the target metric have not been met. To be sure, to a business, the

value proposition of this difference, though small in magnitude, can be significant.

3A full summary of survey responses is shown in Appendix C.2.

66

0 200 400 600 800 1000 1200 1400
−1

−0.8

−0.6

−0.4

−0.2

0

Team position

N
eg

at
iv

e
Sc

or
e

Score
Best score
FeatureHub score

(a) Performance on airbnb.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Team position

Er
ro

r

Score
Best score
FeatureHub score

(b) Performance on sberbank.

Figure 4-2: Performance of FeatureHub integrated model as compared to indepen-
dent data scientists. For airbnb, performance is measured as normalized discounted
cumulative gain at 𝑘 = 5. The negative of the scoring metric is reported on the y-axis
to facilitate a “smaller-is-better” comparison. The automatically generated Feature-
Hub model ranked 1089 out of 1461 valid submissions, but was within 0.03 points of
the best submission. For sberbank 4, performance is measured as root mean squared
logarithmic error. The automatically generated FeatureHub model ranked 2067 out
of 2536 valid submissions, but was within 0.05 points of the best submission.

Regardless, this exercise demonstrates that the combination of collaborating data

scientists writing creative features and automated modeling can produce useful, “good-

enough” results. If so desired, the coordinator can devote more resources to increasing

the length of the Create phase, the automated machine learning modeling, or direct

modeling, up to the point where they are satisfied with the model’s performance.

Time to solution

If we are to compare data scientists working for weeks or months and FeatureHub

collaborators working for 5 hours on two problems, it may not be surprising that the

former group outperforms the latter. However, for many organizations or employers

of data science solutions, an operative concern is the end-to-end turnaround time for

producing a solution. Under the FeatureHub approach, data scientists can be requi-

sitioned immediately and work in parallel, meaning that the parameters controlling

4Sberbank competition leaderboard was accessed on 2017-06-04.

67

time to model solution are the amount of time for each data scientist to work on

feature engineering and the amount of time to run the automated modeling. In our

experiment, given the 2.5 hour per problem limit and automated modeling over six

hours, the potential turnaround time is less than one day.

On the other hand, in the independent or competitive approach (Section 1.3.4),

each data scientist has little incentive to begin work immediately, and rather consid-

ers the total amount of time they anticipate working on the problem and the final

submission deadline, which may be two to three months ahead. In Figure 4-3, we

show the time from first submission to first recording a submission that beats the

score of the FeatureHub automated model output. Of the participants who succeed

in surpassing FeatureHub at all, 29% take two days or longer to produce these sub-

missions. This, too, is an extremely conservative analysis, in that many competitors

are working actively before recording a first submission. Finally, once a winning so-

lution has been identified at the end of the entire competition period, the problem

sponsor must wait for the winner’s code and documentation to be submitted, up to

two weeks later, and integrate the black box model into their own systems [1].

Diverse features

Given that freelance data scientists have a variety of backgrounds, skill levels, and

intuitions, it is unsurprising that we observed significant variation in the number

and quality of features submitted. We visualize the collected features in Figures 4-4

and 4-5. Data scientists were able to draft features that covered a wide subset of

the feature space. By comparison, we also show features automatically generated by

Deep Feature Synthesis [18]. In the two-dimensional projection, features generated

by FeatureHub data scientists span the feature space.

One challenge was that some participants thought they could maximize the reward

for their features by registering very similar features in a loop. Though individual

features scored low, based on criteria in Table 4.2, we observed a single data scientist

who still submitted an overwhelming 1, 444 features in our experiment. Automated

modeling strategies that perform feature selection or use tree-based estimators are

68

1 da
y

2 da
ys

3-5
da

ys

6-1
0 da

ys

>10
da

ys

Ne
ve
r b

ea
t

0

100

200

300

400

500

600

700

800

Days from first submission

C
ou

nt

Figure 4-3: The amount of days, by Kaggle competitor, from their first submission to
the problem to their first submission that achieved a better score than FeatureHub
on airbnb. Since we only see the first submission, rather than when the competitor
first starting working, this omits the effect of participants’ preprocessing, feature
engineering, and modeling work over as much as 2.5 months before initially submitting
a solution.

able to discard less predictive features. Nevertheless, such behavior should be re-

stricted as best as possible.

4.3 Evaluating collaboration

Facilitating collaboration among data scientists is a challenging prospect. Data sci-

entists, who may not have much software engineering experience, often do not take

advantage of existing approaches such as version control systems.

FeatureHub facilitates implicit collaboration among data scientists through the

integration of submissions from all contributors. In this conception, the model of the

group outperforms the model of any individual. We probe this suggestion by building

models for each user separately based on the set of features that they submitted, and

69

0 50 100 150 200

0

200

400

Principal component 1
P
rin

ci
pa

lc
om

po
ne

nt
2

Figure 4-4: Features for airbnb projected on first two PCA components by FeatureHub
(grey circles) and Deep Feature Synthesis (red squares).

−25 −20 −15 −10 −5 0
0.5

1

1.5

2

2.5

3

Principal component 1

P
rin

ci
pa

lc
om

po
ne

nt
2

Figure 4-5: Features for sberbank projected on first two PCA components by Fea-
tureHub (grey circles) and Deep Feature Synthesis (red squares).

comparing this to a single model built on the entire group’s feature matrix. We find

that in the case of the sberbank prediction problem, the group’s model improved upon

the best user’s model by 0.06 points. To be sure, it is not surprising that adding more

features to a model can improve its performance. However, this still shows that the

amount of work that can be produced by individuals working in isolation is limited,

in practice, compared to the scalability of the crowd.

As discussed in Sections 4.1.3 and 4.1.4, one approach to facilitating more explicit

collaboration is through the implementation of in-notebook feature discovery meth-

ods, as well as through the integration of a discussion forum. Through our user study,

we attempted to evaluate the impacts of providing the discover_features API

70

method and the integrated Discourse-base forum on user performance and user expe-

rience. Due to the substantial variation in individual worker quality and productivity,

we were not able to robustly disentangle the quantitative effects of these mechanisms

on feature performance. However, qualitative observations can be made. According

to our survey, we found that including functionality for explicit collaboration reduced

the mean time from first logging in to the platform to successfully submitting a first

feature by about 45 minutes, as reported by participants. One factor contributing to

this effect was that data scientists with access to the discover_features command

reported using this functionality approximately 5 times each, on average, allowing

them to see and build off existing successful submissions. Furthermore, this subset

of data scientists reported that they found the integrated discussion most helpful for

learning how to successfully submit features, through imitation or by others.

4.4 Analysis of contributors

One of the innovations of FeatureHub is that we not only collect the feature values

submitted by collaborators but also the feature engineering source code that gen-

erates those values. Through the experiments detailed in this chapter, I collected

a unique, detailed dataset consisting of the interactions of data scientists with the

feature engineering process. Analysis of this dataset can reveal insights into users’

behavior and the source code they wrote.

The study of workers on traditional crowdsourcing platforms like Amazon Mechan-

ical Turk has received much attention in the literature [16] due to the importance of

crowdsourcing in many human intelligence tasks. Unfortunately, the study of high-

skilled workers — such as data scientists contributing to FeatureHub — has received

less focus. In this section, I identify salient relationships in the data science code

written by our users. I then propose future research directions for understanding

type of work.

71

4.4.1 Worker attributes and output

When freelancers respond to project proposals on sites like Upwork, they present their

education, experience, and qualifications. This gives us the opportunity to investigate

the effect of some of these worker attributes on feature engineering output within

our platform. In this section, I investigate the relationship between data scientists’

proposed wages and stated experience on their feature engineering performance.

In our user experiment, potential data scientists were asked to submit a bid with

an proposed wage, and we then accepted all minimally qualified data scientists that

bid under a threshold. The relationship between stated wage and feature performance

is shown in Figure 4-6. Here, performance is measured by the score of the best feature

submitted to each problem (using 𝑅2 for sberbank and ROC AUC for airbnb). There

is a small, but statistically significant, positive weight on wage (𝛽 = 0.0008, 𝑝 =

0.025, 𝑛 = 17 and 𝛽 = 1.8𝑒− 5, 𝑝 = 0.018, 𝑛 = 27). One should note that there are

many potentially confounding variables in this analysis, such as that data scientsits

who live in developed countries with higher purchasing power are likely to both charge

more (in USD terms) and speak better English.

10 20 30 40
Wage

B
es

t F
ea

tu
re

 S
co

re

sberbank

10 20 30 40
Wage

airbnb

Figure 4-6: Relationship between hourly wage and feature performance, including
linear trend and 95% confidence interval. For the sberbank problem, performance is
measured by the maximum 𝑅2 of any feature submitted (𝛽 = 0.0008, 𝑝 = 0.025).
For the airbnb problem, performance is measured by the maximum ROC AUC of any
feature submitted (𝛽 = 1.8𝑒− 5, 𝑝 = 0.018). Y-axis scales are not comparable.

72

Alternately, we can try to tease out the effect of data science experience on feature

engineering performance. I categorize each participant into low, medium, and high

levels of experience by parsing their self-reported descriptions of Python/pandas abil-

ity and data science experience, as well as their cover letter and freelancer overview

blurb. My heuristic categorization focuses on self-reported markers such as years of

data science experience and scope of past projects. The relationship between expe-

rience and feature performance for both problems is shown in Figure 4-7. Based on

this categorization, there is no statistically significant difference of the groups across

experience levels for either sberbank or airbnb (one-way Kruskal-Wallis 𝐻 = 3.08, 𝑝 =

0.21, 𝑛 = 17 and 𝐻 = 0.38, 𝑝 = 0.83, 𝑛 = 27).

Low Medium High
Experience Level

B
es
t F

ea
tu
re
 S
co
re

sberbank

Low Medium High
Experience Level

airbnb

Figure 4-7: Relationship between data scientist experience and feature performance.
For the sberbank problem, performance is measured by the maximum 𝑅2 of any feature
submitted. For the airbnb problem, performance is measured by the maximum ROC
AUC of any feature submitted. Y-axis scales are not comparable.

The small or nonexistent effect of wage and experience can be viewed as encourag-

ing. This suggests feature engineering can be effectively scaled to many collaborators,

few of whom need to be highly paid experts, but rather sufficiently experienced con-

tributors with nuggets of insight. Alternately, we could interpret this to mean that

the structure imposed on the feature engineering process by FeatureHub is too lim-

iting for experts to show the extent of their skills — or that the limited scope of our

user experiment did not allow experts enough time to shine. Further experiments

73

could disentangle these explanations.

4.4.2 Contributions in source code

In Section 4.2, I investigate the quality of feature engineering source code written by

freelance data scientists from the perspective of the overall modeling performance.

We can also evaluate the source code on its own merits. What can we learn about

the contributions of our data scientists?

A first major contribution is the domain knowledge incorporated into features by

our data scientists. For example, one data scientist had the insight that the number of

distinct actions that is taken by a user of airbnb suggests higher engagement with the

website and an interest in a “broader range” of destinations. Another data scientist

working on sberbank had the insight that, in “Soviet” apartments, a larger kitchen

relative to overall living area is desirable, and wrote a feature to that extent. Still

another encoded the distance from desirable shopping areas in Moscow. Many more

insights like these reveal the power of a diverse set of collaborators, each with different

experiences and perspectives.

A second major contribution is the development of very complex features that

attempt to capture non-trivial patterns in the data. For example, one data scien-

tist wrote a feature for airbnb to perform affinity propagation clustering of similar

users using principal components extracted from a subset of important raw variables.

Another data scientist tried encoding airbnb user session device types using a tf-idf

vectorizer, rather than just treating them like normal categorical variables.

Another contribution was sophisticated processing of dirty data. Our contribu-

tors used contextual knowledge to impute missing values by within-group means or

intelligently incorporate lag information.

4.4.3 Educational opportunities

To implement data science ideas correctly and efficiently is a challenge that requires

strong programming skills and statistical know-how. Ultimately, feature engineering

74

is as much a problem solving endeavor as much as it is programming one. In our

feature corpus, a variety of anti-patterns, or techniques that are frequently-used but

considered improper practice, are evident that merit further discussion. I view these

anti-patterns as both educational opportunities and directions for improvement of the

FeatureHub platform. By studying these anti-patterns, we can identify opportunities

for targeted guidance to alleviate the challenge of bringing innovative feature ideas to

the screen. Some of these motivate extensions to the feature engineering abstractions

presented in FeatureHub, as will be discussed in Section 5.1.1.

Features written exhibited a wide range of anti-patterns, from inefficient code to

improper data science techniques. None of the features demonstrate errors, in the

sense of bad syntax or API nonconformance, but many may do something wrong

nonetheless. The following paragraphs outline some of the main anti-patterns that

emerge.

Inefficient code. Often times, data scientists wrote pandas code for manipulating

DataFrames that was very inefficient for the task. This does not pose a problem for

small datasets, but as the size of the analysis scales, small inefficiencies begin to add

up and can make it difficult for the underlying AutoML to provide real-time feedback.

• Premature denormalization. Some data scientists did not seem accustomed

to working with relational, multi-table datasets and began every feature by

denormalizing the entire dataset into one large table. In some cases, only a

subset of the tables (such as exactly one table) was needed to compute the

proposed feature, so the expensive joins were included needlessly.

• Iteration. Another common anti-pattern is to operate on tabular data through

iteration. This consists of iterating over entities in DataFrames using Python

ranges, pandas iterrows, or some other method. In Python code, these itera-

tion methods can be substantially less efficient than native C implementations

that underlie “vectorized” methods. An instance of this problem, as well as in

improved implementation of the same idea, is shown in Listings 4.1 and 4.2.

• Reinventing the wheel. Some data scientists were not as familiar with pandas

75

library functions for common tasks, and reimplemented them from scratch in-

stead. These reimplementations come at a sizable cost in terms of programmer

time, computational efficiency, and recognizability by others. One example of

this problem, as well as an improvement using the appropriate library function,

is shown in Listings 4.3 and 4.4.

1 def far_from_metro_station(dataset):
2 distance = []
3 mean = dataset['transactions ']['metro_km_walk '].mean()
4 for i in range(0, len(dataset['transactions '])):
5 if dataset['transactions ']['metro_km_walk '][i] > mean:
6 distance.append (1)
7 else:
8 distance.append (0)
9 return distance

Listing 4.1: Original

1 def far_from_metro_station(dataset):
2 mean = dataset['transactions ']['metro_km_walk '].mean()
3 result = dataset['transactions ']['metro_km_walk '] > mean
4 return result.astype(int)

Listing 4.2: Improved

Figure 4-8: Anti-pattern of iteration on DataFrames. The original submission,
adapted for clarity, uses a Python range to iterate over rows directly. An improved
version instead leverages highly-optimized vectorized code under the hood to achieve
performance and readability benefits.

Mutated data. Feature engineering best practices suggest to avoid mutating

DataFrames passed into a function, as such a function might then corrupt a larger

data processing pipeline. Many features written exhibited this pattern, which justified

precautions taken in the FeatureHub evaluation and modeling modules to ensure

data integrity and reload data that had been modified by submitted features during

execution. Unfortunately, knowing when operations on DataFrames will create a

copy or mutate the original data requires in-depth knowledge of the pandas data

model and implementation. In general, programmers avoid this issue by using the

DataFrame.copy instance method to ensure that columns they have initially accessed

will be copied before invoking further operations that might mutate the underlying

data.

76

1 def percent_kitch_sq(dataset):
2 pct_kitch_area = (
3 dataset['transactions ']['kitch_sq ']
4 / dataset['transactions ']['full_sq ']
5 * 100
6)
7
8 def cleankitch_sq(a):
9 import math

10 if math.isnan(a):
11 return 0
12 else:
13 return a
14
15 pct_kitch_area = pct_kitch_area.apply(
16 lambda a: cleankitch_sq(a)
17)
18 return pct_kitch_area

Listing 4.3: Original

1 def percent_kitch_sq(dataset):
2 pct_kitch_area = (
3 dataset['transactions ']['kitch_sq ']
4 / dataset['transactions ']['full_sq ']
5 * 100
6).fillna (0)
7 return pct_kitch_area

Listing 4.4: Improved

Figure 4-9: Anti-pattern of reinventing the wheel in terms of pandas library functions.
The original submission, adapted for clarity, implements a procedure to fill missing
values with zeros, even though the library method fillna is available and widely
used for the same task. (The original source code also demonstrates more general pro-
gramming anti-patterns, such as the use of .apply(lambda a: cleankitch_sq(a))
instead of .apply(cleankitch_sq).)

Inappropriate treatment of categorical variables. Handling categorical variables is

one of the most common tasks for a data scientist during feature engineering. These

discrete variables can contain important information but are usually not suitable for

direct inclusion in a machine learning model. For a categorical variable with few

distinct levels, one of the most common approaches is to represent it using a one-hot

encoding. Unless there is a natural “ordering” of categories (an ordinal variable like

“quality” with levels like “poor”, “fair”, “good”), it rarely makes sense to represent this

type of variable using a single numerical column5.

5That is, one should not encode a categorical variable “color” with levels like “blue”, “green,” and
“yellow,” as a single column with the numbers 1, 2, and 3, because there is no natural ordering
between the colors.

77

• Inappropriate encoding of categorical variables. A fairly common anti-pattern

in the corpus is representing categorical variables in a single numeric column.

This is generally a poor modeling choice. One example of of this problem is

shown in Listing 4.5.

• Inappropriate interaction of categorizations. An astute data scientist may find

that one categorical variable correlates differently with the target when “cut by”

(interacted with) another categorical variable to create a compound category.

This can become an anti-pattern if there is no realistic expectation that the

categorization has any semantic meaning. For example, there are 19 features in

our corpus that represent the one-hot encoding of the interaction of the “Season”

and “Time of Day” of the Airbnb user’s first booking (e.g. AutumnMorning,

WinterNight). While either of these categories (derived from the timestamp of

the first booking) can be useful on their own, there is no reason to suspect that

there is any interaction between them.

1 # ...
2 users = dataset['users']
3 users = users.set_value(
4 users[
5 (users['age'] > 40)
6 & (users['affiliate_channel '] == 'sem -brand ')
7].index ,
8 'age_channel ',
9 1,

10)
11 users = users.set_value(
12 users[
13 (users['age'] > 40)
14 & (users['affiliate_channel '] == 'sem -non -brand')
15].index ,
16 'age_channel ',
17 2,
18)
19 # ...

Listing 4.5: Anti-pattern of encoding categorical variables as single numeric feature.
This selection of the original submission shows the data scientist is representing the
type of affiliate channel that the Airbnb user signed up with as the values 1, 2, 3,
In this case, they are also interacting this categorical variable with the user’s age.

Processing dates and times. One of the most common non-numeric data types is

temporal data. Dates and times are commonly represented in raw data (or parsed

by import routines) as strings, and it is the job of the data scientist to first find an

78

appropriate representation and then do further feature engineering. In our corpus, one

anti-pattern was improper processing of datetime data. Some examples are shown in

Figure 4-10. It was common to see features that convert temporal data to strings and

then operate on the strings directly, when library functions are much more efficient,

robust, and readily available. As one possible education opportunity, a system could

attempt to infer temporal variables that were not previously annotated as such, and

then propose native datetime manipulation methods in place of string- or integer-

based manipulation.

1 yearmonth = dataset['transactions ']['timestamp '].apply(
2 lambda x: int(x[:4] + x[5:7])
3)

1 hour = dataset['users']['timestamp_first_active '].apply(
2 lambda a: str(a)[8: -4]
3)

1 hour = dataset['users']['timestamp_first_active '].apply(
2 lambda v: (v % 1000000) // 10000
3)

Figure 4-10: A frequent task for data scientists is to process datetime variables, which
is often done by converting the variable to a native datetime data type and then using
robust library methods. In each listing, a snippet of a submitted feature instead shows
the processing of a timestamp using string methods or arithmetic directly. While
these approaches “work,” they should be discouraged. (Example raw timestamps in
the data for the timestamp and timestamp_first_active columns take the form
"2013-05-27" and 20120519182207, respectively.)

Missing values. Any real-world data science analysis must confront dirty data,

especially the presence missing values. Though some of this cleaning may occur in a

standalone data preprocessing phase, it is often deeply interconnected with the feature

engineering phase. Our data scientists paid careful attention to missing values, as any

features with missing values would be rejected by the evaluation system. However,

we observe a variety of anti-patterns related to treatment of these missing values.

To alleviate these issues, we could allow data scientists to expose features that still

have missing values, deferring the cleaning of missing values as a separate phase, or

incorporate automated methods that fill missing values with sensible methods for the

specific column.

79

• Sentinel values. One approach to handle missing values is to replace them with

some constant sentinel value. This is a perfectly valid approach to cleaning

categorical variables, as the sentinel values then represent a new “category,”

as long as the categorical variables are dealt with further. Otherwise, sentinel

values can cause issues for linear estimators and many others. One example of

this anti-pattern is shown in Listing 4.6. Missing values for “year” are replaced

with 0, even though the year of the first transaction in the data is 2011. This

may be a “doubly-bad” anti-pattern because it more likely conceals data quality

or parsing issues than true missingness. In our corpus, many feature definitions

simply ended with a call to the pandas function fillna, filling missing values

with a parameter 0, −1, −999, or otherwise. It is probably gratuitous to think

of these cases as the purposeful use of sentinel values; instead, this may be more

of a desire to get rid of the missing values as quickly as possible, even if not

done in a rigorous manner.

• Naïve strategies. Based on the context, there may be very reasonable, simple

strategies for imputing missing values, such as imputing the mean for population

measurements, the mode for categorical values, and the first lag or a rolling mean

for time series features. The lack of sophistication in treating missing values in

many cases in our corpus can be thought of as an anti-pattern. For example,

one feature filled missing values in a feature representing the average rental

price of a one-bedroom apartment at 0. Better options include the global mean

or the mean of the subset of transactions from the same month or approximate

location.

1 def year_from_timestamp(dataset):
2 import pandas as pd
3
4 year_from_timestamp = pd.to_datetime(
5 dataset['transactions ']['timestamp ']
6).dt.year.fillna(
7 0
8)
9 return year_from_timestamp

Listing 4.6: Simple feature demonstrating the anti-pattern of filling nulls with
sentinel values (sberbank problem).

80

Rescaling. Rescaling feature values, via centering, standardizing, or taking some

non-linear transformation, can be an important step in several cases, such as when

using a nearest neighbor estimator (e.g. kNN) or when the conjectured relationship

between the variable and the target is non-linear. One important contribution of a

data scientist is to choose such transformations carefully. In our corpus, one anti-

pattern was the inappropriate use of these rescaling transformations, such as taking

the logarithm of an age feature, as this results in a highly-skewed distribution. To

be fair, one weakness of the FeatureHub approach is that there is no ability for data

scientists to target specific transformations to different estimators, as the automated

machine learning is performed without their control.

Unexplained behaviors. Finally, there were some practices in the corpus of features

we collected that may be wrong, but would never raise errors in any software testing

suite. One feature tried to weight certain variables by the maximum of another vari-

able in the same group, but the maximum over the entire dataset, rather than the

maximum of the subgroup, was incorrectly applied. Another computed a meaning-

less interaction between the logarithm of users’ ages and the period of the day that

the users took some action. Still another wrote 35 lines of code to count the number of

airbnb website compound events of type -unknown-_I_calendar_tab_inner2_I_-unknown-,

an event type that would be better-off ignored. When scaling collaboration, more and

more curious or unexplained behaviors like this emerge. Algorithms and systems need

to be awar of this kind of behavior and rigorously use feature selection methods to

filter out such features.

Many features that displayed the anti-patterns presented in this section could be

improved by their authors in a very educational revision process. Further research

could focus on the automated detection of these data science anti-patterns and provide

real-time interventions.

Going through hoops

In analyzing the corpus of features submitted by FeatureHub collaborators, in some

cases, what first appear to be anti-patterns actually represent concerted efforts to

81

evade restrictions imposed by the platform. In these cases, where collaborators “go

through hoops” to make their features comply with the structure imposed by Fea-

tureHub, it reveals weaknesses with the platform itself that should be considered in

future development.

Low-hanging fruit. Many FeatureHub collaborators submitted excessively simple

features. These include passing through a single column from the raw data with-

out little or no modification and taking the sum, difference, or ratio of two related

columns. We had several strategies to discourage these relatively unproductive contri-

butions: pre-extracting basic features (Section 3.2) and providing real-time feedback

on feature performance. The evidence from the feature corpus suggests that further

interventions, such as additional tutorial materials and more aggressively utilizing

automation techniques like Deep Feature Synthesis [18], are needed to reduce this

behavior.

Duplicated joins. More involved joins of different data tables were re-implemented

by different users. For example, two users separately implemented a fuzzy join of

columns in two tables that encoded the name of a spoken language using different

values. If the two FeatureHub contributors could have collaborated at this intermedi-

ate level, they could have eliminated redundant work and combined the best of their

two approaches.

Inconsistent cleaning. Multiple FeatureHub collaborators cleaned extreme values

by detecting values above some threshold, but were inconsistent in the thresholds

they used, even for the same column. For consistency within a project, FeatureHub

could support exposing these preprocessing steps which could be reused by others.

Multiple columns of output. In FeatureHub, we restrict the output of features to be

a single column of values. In Section 3.3.2, I discuss why this is not an unreasonable

restriction. In some cases, however, our contributors wanted to produce a multi-

column encoding of a categorical variable. To do this, they duplicated tens of lines of

code and iteratively selected out a different column of the logical, multi-column feature

they had created. Further effort can be paid to finding the balance between allowing

submissions of multiple columns of logically related feature values and dissuading

82

monolithic contributions and spam.

Feature tagging. Patterns of similar features emerged from our corpus, such as

“user engagement” features for the airbnb problem (e.g. unique action types) or

“apartment characteristics” features for the sberbank problem (e.g. relative size of

kitchen). Clustering or collecting similar features during the development process

would provide more avenues for collaboration. Unfortunately, FeatureHub does not

allow users to provide tags, keywords, or any other annotations besides a high-level

description.

83

84

Chapter 5

Discussion

Having designed and realized a new collaborative data science platform, I have had

a chance to reflect on opportunities for improvement and challenges of the approach.

FeatureHub, as a research prototype, can be extended and improved along many

dimensions in order to unlock the full potential of collaborative data science.

5.1 Opportunities

5.1.1 Flexible data science abstractions

In this thesis, I introduced a simple structure for feature engineering that allows

heterogeneous source code contributions to be integrated successfully. Recall from

Section 3.3 that the feature engineering structure imposed is a single Python function

that accepts as input a mapping of table names to DataFrames and produces as output

a column of feature values. However, this abstraction may not be sufficiently flexible

or powerful for all situations.

• Separate fit and transform phases. In the existing feature abstraction, there is

no concept of being able to “fit” a feature on the training set and then apply

it to make new predictions in evaluation or after deployment. For example, we

would like to center a variable by computing the mean on the training set values

only, to avoid leakage. The fit-transform paradigm popularized in scikit-learn

85

[35] is one potential approach.

• Ease database-style joins. The input data to the feature function is generally

relational, in the problems we focus on, but the input data structure is unaware

of relationships between tables. Collaborators must possess an intermediate

level of pandas expertise in order to cleanly join tables together. Higher-level

programming facilities that enable more declarative processing could help this

issue.

• Fetch external data sources. The integration of external data sources into a

feature engineering pipeline is one valuable contribution that data scientists

can make. For example, a data scientist using a retail dataset from a German

department store may want to identify whether each day was a national holiday.

To do so, she would need to find an external data source identifying German

holidays and join it with the current project, either by identifying some external

API or library or storing a calendar dataset within the project. We could expose

the ability to integrate external data sources directly, and provide assistance

with storing and querying the new data.

• Become cleaning-aware. We present data preprocessing and cleaning as a sepa-

rate step in the data science process that is completed before the feature engi-

neering step begins. However, feature engineering and data cleaning go hand-

in-hand in practice (Figure 1-1). For example, in the process of encoding some

categorical variables during feature engineering, the data scientist may discover

that some categories are duplicates of others and desires to merge the two cat-

egories. Under our framework, they would need to re-do this cleaning within

every feature that references the dirty column. Ideally, upon discovering new

data cleaning operations, the data scientist could add them to the cleaning step

and make the cleaned data available to all collaborators.

• Transform intermediate results. The previous point underscores a larger prob-

lem in which we want to be able to reuse intermediate results for further com-

86

putations. Imagine that a first data scientist writes a feature to compute an

entity’s age at each observation by subtracting the timestamp of the observation

with the entity’s date of birth. A second data scientist may want to create new

features that further transform this age feature, say raising it to some power

or binarizing it at some threshold. This can be most easily accomplished by

taking the age feature produced by the first data scientist as input, rather than

the entire dataset. FeatureHub does not allow this sort of composition; the sec-

ond data scientist would have to recreate the age feature within every derived

feature that they write. Indeed, one can conceive of feature engineering more

generally as the creation of a dynamic, acyclic graph (DAG) of data-flow. In

this conception, edges represent the flow of data and nodes represent the appli-

cation of transformations, as shown in Figure 5-1. We would then like to allow

collaborators to identify the specific inputs to and outputs from their features,

incrementally assembling a data-flow graph in the process. Each node produces

feature output that can be sent directly into the feature matrix, consumed as

input to another node, or both. Feature selection would be performed over all

features proposed for inclusion in the meature matrix. Feature selection would

then be performed over all nodes except the root nodes. A graphical user inter-

face could allow data scientists to visualize the feature engineering graph and

position a new feature at a specific location.

These suggestions touch on feature engineering alone, but similar concerns apply

to other aspects of the modern data science process, such as prediction engineering,

data preprocessing, and model development.

5.1.2 Automated methods to augment collaboration

In FeatureHub, we enable and support collaboration through a variety of approaches,

including the automated combination of feature values into a single feature matrix,

the in-notebook feature discovery API and the integrated Discourse-based discussion

forum (Section 3.3.4). However, there are many possible avenues for further support-

87

users

transactions feature
matrix

age

zscore
(purchase_price)

age^2

older_than_18

Figure 5-1: Feature engineering represented as a directed, acyclic data-flow graph.
Edges represent the flow of data between nodes, which transform their inputs and
send the output to other consumers.

ing collaboration.

Organizing efforts at scale

As the number of collaborating data scientists and the number of feature submissions

increases, it becomes more difficult for any one data scientist to process the sheer

volume of work being produced by collaborators. That is, when the scale of the

collaboration is small, two data scientists writing features to transform the same

column or table can easily notice that they are working on the same problem and can

join forces. If there are one thousand other data scientists, then this might not be the

case. To be most successful in this endeavor, we will attempt to make use of several

strategies including both interface design and automation.

• Proactive organization. In this approach, we begin by assigning data scientists

into small groups focused on different feature engineering subtasks. These tasks

could be organized by different tables of raw data, different columns, different

types of features (time series, categorical, standardization, etc.), or something

else entirely.

• Real-time organization. We attempt to detect in real-time that a data scientist

is working on a feature that has already been created. To detect these dupli-

cate, redundant, or highly correlated features, we could operate on source code,

88

feature values, or both. By operating on the source code, we could detect using

either static or dynamic analysis whether two functions are accessing the same

column of the underlying data table. We could also wait for the feature to

be evaluated, and then determine pairwise correlations between the proposed

feature values and existing feature values from already-submitted features. A

hybrid approach may combine the best of each strategy. Detection of redun-

dancies could be achieved before writing the feature is too far underway, saving

time and effort.

• Novel user interfaces. We ask FeatureHub collaborators to work in the Jupyter

Notebook environment, which raises the possibility of creating novel Notebook-

based (or Jupyter Lab-based) interface elements. For example, a sidebar show-

ing the features submitted by other data scientists that updated in real-time

would take advantage of Jupyter Notebook’s powerful extensibility. Users could

select a feature description in the sidebar and have a new cell be created in the

Notebook that they could then adapt for their own purposes and ideas.

5.1.3 Creating interpretable models

One opportunity that is afforded by our feature abstractions is to associate with each

feature an interpretable, natural-language description that can be shown to domain

experts. Such descriptions aid greatly in the interpretability of some models. Indeed,

we require that our FeatureHub collaborators include self-reported descriptions of

their feature in natural language alongside their feature submissions.

This also raises the possibility of automated feature description generation. General-

purpose tools for mapping source code to natural language could be applied to the

collected feature functions, though they often produce dense and unnatural results,

especially for complex features. Since we have collected a unique dataset of mappings

between features and descriptions through our FeatureHub experiments, we could

consider supervised generative modeling to automate the creation of natural language

descriptions of features. By targeting our application to the feature engineering do-

89

main, and by collecting source code, self-reported descriptions, and extracted feature

values jointly, we may be able to improve on existing approaches.

To be sure, there is substantial variation in the way data scientists described

the 1952 features that we collected. Likely, it would first be necessary to normalize

descriptions using some controlled natural language.

5.2 Challenges we faced

The development and evaluation of FeatureHub revealed a variety of challenges. Some

of these challenges are engineering in nature, others are algorithmic, and still others

are design-oriented. Regardless of the specific challenge, these all present opportuni-

ties for future research and development.

5.2.1 Maintaining platforms

A first challenge was the development and implementation of FeatureHub itself. It is

no small task to develop the means to isolate, evaluate, submit, and combine feature

engineering source code. But as a hosted platform (see Section 1.3.3), there is also

a need to support the functioning of many other aspects of this full-fledged cloud

application. The engineering effort to do this is nontrivial, and requires knowledge

of many different layers of the application stack. Here are a few of the specific

engineering problems that I addressed.

• Cloud hosting, computing, and storage. Our application is built on various

cloud technologies, including Amazon Web Services S3, EC2, EBS, Route53,

and SES. It was necessary to become familiar with these technologies in order

to configure them for our use, including configuring access permissions and

networking between different components. For many organizations, a dedicated

professional would lead this effort.

• User management and authentication. JupyterHub provides a pluggable system

to manage and authenticate users. This system must be configured for the

90

specific application. In our case, we wanted to create usernames and passwords

for our experiment participants to avoid having them connect other OAuth-

capable accounts for privacy purposes. This turned out to be a very manual

process (without dedicating further engineering effort).

• Application security. In exposing any application to the internet, security risks

are present. Specific configuration was required to enable TLS/HTTPS, without

which JupyterHub would not operate. We also provided users with a full-fledged

execution environment on our servers, which had to be suitably virtualized using

Docker containers to avoid compromise.

• Application deployment. Using a containerized architecture makes it easier than

otherwise to deploy the entire FeatureHub application. Regardless, the applica-

tion consists of a JupyterHub instance container, a MySQL database instance

container, an evaluation server container, and separate containers provisioned

on demand for each authenticated user. To deploy this application, we used

Docker Compose. A separate server was provisioned and configured manually

to host the Discourse-based forum. (Additional details are available in Ap-

pendix A.7.)

• Efficient feature evaluation. Users expect evaluation of their features in real-

time. To support that, we implement lightweight feature evaluation routines

which can be executed in seconds (Section 3.3.3). However, more engineering

would allow some intermediate results to be cached and more involved feature

evaluation techniques to be supported.

• Efficient automated machine learning. In the ideal FeatureHub application, the

problem coordinator refits an automated machine learning model after every

feature is submitted (Section 3.4). However, many existing AutoML libraries

require on the order of days to search the model and parameter space, which is

impractical for our purposes. Strategies focusing on models that can be trained

partially in the feature dimension would be appropriate, as would be distributed,

91

stand-alone AutoML systems,

• Application scaling. Given the cloud computing resources available during the

time of our experiment, it was possible to use one large AWS EC2 instance to

host most of the application, including the Hub and the Notebook containers,

by imposing per-user resource limits. To scale much beyond on the order of

50 concurrent users, much more careful engineering would be required. To

achieve this, Docker Swarm could be used to provision new compute servers

for user notebooks. Alternately, other battle-tested orchestration technologies

like Ansible or Kubernetes could be integrated. This level of DevOps work may

require experienced collaborators. This is nothing to say of the challenge of

scaling the automated machine learning services present in the application.

• Integration testing. FeatureHub is a complex application, as has hopefully been

made clear in this section. To ensure such an application functions correctly

requires complex testing infrastructure. For integration tests, I resorted to ad-

hoc scripts that deploy a fresh FeatureHub instance, create users, log in as a

user, and submit features to the backend. This is a fragile and arduous approach

that could be better addressed using mocking and other testing strategies.

All of these problems would be severely compounded if not for the plethora of

high-quality, open-source software upon which FeatureHub is built. Most notably,

Jupyter Notebook and JupyterHub are fundamental building blocks, for which I am

very appreciative.

5.2.2 Administering user studies

Even after addressing the challenges in Section 5.2.1, it was another step to administer

user studies on top of our platform. One aspect of our user study was to separate

users into two experimental groups and one control group to investigate the efficacy of

our different attempts for facilitating collaboration. This required us to create three

separate FeatureHub instances to maintain experiment integrity. However, this more

92

than tripled the amount of work to deploy and administer the FeatureHob platform

instances.

Another challenge was that we wanted to provide comprehensive documentation

for users to learn the system as well as possible, hopefully allowing us to isolate

the effect of the platform on facilitating collaboration. Unfortunately, even with

significant effort in creating documentation and tutorial materials, user errors were

found. Specifically, some users did not understand that they needed to first evaluate

and then also submit their feature to the system. Postmortem investigation revealed

that many high-quality features had been created within users’ notebooks but not

submitted to the system. It is likely that our modeling performance in comparison

to competitors on Kaggle would have been improved if some of these high-quality

features had been included.

5.2.3 Motivating contributions

The FeatureHub model for collaborative data science can be used in several different

environments. In one environment, an organization with a tight-knit data science

team deploys a FeatureHub instance internally as a way to facilitate collaboration

and easily develop integrated predictive modeling solutions. In another environment,

a FeatureHub project can be made available more widely, either to paid freelancers or

open-source contributors. In this latter situation, the problem of motivating feature

contributions arises (Section 2.4). One overarching strategy is to be able to provide

feedback on the value of feature contributions, whether for determining financial

compensation or public acknowledgment.

Evaluating feature contributions

Why is evaluating feature contributions so challenging? There are several counter-

vailing factors. The first is that features cannot be evaluated in isolation; rather, they

should be evaluated in the context of their contribution to the overall model. This

means that it is not enough to compute mutual information between the feature and

93

the target, or some other similar feature selection/evaluation strategy — the entire

model must be considered. The second is that we want to simultaneously incentivize

collaboration (sharing existing work, suggesting improvements to the work of others,

etc.) and discourage manipulation. There are many forms that this manipulation can

take. Suppose we were to use a naïve scheme of evaluating features based on mutual

information with the target and awarding compensation based on the most highly

ranked features according to this criterion. Then, a freerider could observe existing

work in the spirit of collaboration, submit it as her own, and then absorb a portion

of the payout from the original author. Another form is a spammer who generates

random vectors centered at the mean of the training dataset target and submits thou-

sands of these vectors. Some of them might be highly ranked by pure chance, earning

the spammer a non-zero payout. The burden to the system of processing all these

submissions would be significant.

This gives rise to the following considerations:

• reward features for their marginal contribution to a final model,

• reward features based on their positive influence on other features, and

• penalize spam features, malicious features, and other features submitted “in bad

faith”.

Even these motivating principles for evaluating features may not be enough. One

possible approach is to make a submodularity assumption and then put forth an effi-

cient approximation to the otherwise combinatorial problem of evaluating all feature

subsets.

A compensation scheme for features

Without an immediate solution to the problem posed in Section 5.2.3, we resorted to

intermediate approaches, as described in Section 4.1.4. This solution, based on bonus

payments over several categories, tries to avoid rewarding manipulative behavior.

Even so, the assessment of performance becomes highly manual and burdensome for

the experimenters.

94

5.2.4 Adversarial behavior

The considerations of the previous sections should motivate future work on evaluating

feature performance in the collaborative setting with the possibility of manipulative

behavior. However, that discussion does not even cover the full range of adversarial

behavior. This behavior is all the more possible when financial compensation is

at stake. Adversarial behavior in the FeatureHub paradigm includes the following

possibilities and more:

• Users submit manipulative features for financial gain, as previously discussed.

• Users submit low quality features, whether maliciously or accidentally, in terms

of noise, runtime, code quality, or similar.

• Users take advantage of the ability to get the system to execute untrusted code

to sabotage the platform and extract withheld test set target values or other

sensitive data.

Fully addressing all of these is beyond the scope of a prototype collaborative data

science system, but is necessary in the future for production systems depending on

the threat model of the specific collaborative project.

95

96

Chapter 6

The future of collaborative data

science

The ideas and systems presented so far in this thesis represent one foray into the new

world of collaborative data science. This world shares similarities with collaborative

software development, to be sure, but it would be a mistake to approach these worlds

the same way. Instead, I have proposed a new approach based on restructuring the

modern data science process using well-defined, task-specific abstractions. I focus on

feature engineering and develop a full-fledged collaborative data science platform and

bring together freelance data scientists from around the world to create an integrated

predictive machine learning model using this platform.

But is this approach, represented in the FeatureHub platform, the way forward? In

this chapter, I speculate on the future of collaborative data science. I will recall some

of the opportunities and challenges presented in the previous chapter (Sections 5.1

and 5.2), and consider whether they can be seized or overcome under current ap-

proaches.

6.1 The problem with platforms

Collaborative data science through hosted platforms (Section 1.3.3) is a fraught path.

As previously discussed, there are huge engineering challenges with creating, scaling,

97

and maintaining these systems. However, these engineering challenges are not even

the main reason why, in my opinion, hosted platforms are not the way forward for

collaborative data science, and especially not the way forward for open data science

efforts.

While FeatureHub and other similar platforms have enabled significant progress

towards collaborative data science, as “hosted platforms” they are constrained in

important ways. In using these hosted platforms, users log into a remote server,

where compute, storage, and source code editing resources are made available. The

reliance on external hosting becomes a fundamental limitations for how successful

collaborative endeavors can be, particularly for open data science projects. There are

a variety of problems with hosted platforms.

Financial costs. To operate a hosted platform, a company or organization incurs

various financial costs. These include the costs of servers, storage, engineering, and

maintenance. Even if the platform is developed and maintained completely by volun-

teers, the cloud “hard costs” are not insignificant. In the case of a commercial offering,

the costs of using a hosted platform can run into the tens or hundreds of dollars per-

user, per-month, or on the order of tens or hundreds of thousands of dollars per year

for larger collaborations. This is an untenable situation for open data science efforts.

Even a model in which nonprofit organizations provide grants to open data science

efforts to cover these costs is flawed, partly because the number of open data science

collaborators cannot easily scale up or down.

There is also a significant risk of lock-in, especially for ambitious projects with

many-year horizons. The lock-in risk is that a project hosted on a third party’s servers

and running a third party’s application cannot be easily ported elsewhere. This allows

the third party to charge a higher price for the use of their platform and the resold

cloud resources.

Environment flexibility. To use a hosted platform, data scientists connect via a

web interface and write code using an editing environment providing by the platform.

This situation constrains data scientists into a certain development environment,

whereas they otherwise have varied preferences on editors, programming languages,

98

and visualization packages. For the same reasons that organizations do not constrain

their software developers to all use the same editor or IDE (let alone a web-based

solution), neither should large-scale collaborative data science projects.

Trust and security. In using a hosted platform as the one-stop-shop for an entire

data science project, the organization becomes vulnerable to any number of failures

on the part of the platform. This includes data leaks with sensitive data, security

vulnerabilities, server downtime, delays in supporting requested features, and more.

For many applications, putting this much faith in a third party may not be acceptable.

Transparency. For open data science projects, transparency is a requirement dur-

ing development. The same open-source philosophy of open-source software (that

the source code itself be freely accessible by all who are interested) also applies to

open data science projects. Imagine that collaborators were developing an applica-

tion to predict the incidence of some diseases yielding an associated recommendation

to deploy public health resources to specific areas to combat that disease. Why

should policymakers and the public trust the recommendations of the application if

they cannot even inspect the modeling assumptions, and request third party audits?

Transparent development is crucial for high-leverage open data science projects.

Freedom. Finally, hosted platforms, as commercial products, are usually not free

(as in libre) software. Often times the software is closed source as well. Though there

are exceptions, such as FeatureHub and other academic projects, this lack of freedom

is inappropriate for the open data science paradigm.

6.2 A turn towards platformless collaboration

These considerations motivate a turn towards platformless collaboration. In this ap-

proach, we facilitate collaboration on an integrated machine learning model without

relying on functionality provided by a monolithic central server — and without yield-

ing control to a hosted platform.

The challenge of platformless collaboration is that we need to find replacements

for all the functionality that a hosted platform provides. This includes the ability

99

for collaborators to easily acquire training data, write and evaluate features, and

submit them to a centralized repository; and the ability to validate submissions before

accepting them to the repository, collect and import submitted features, and train

and deploy an integrated model. Without the ability to operate and control our own

server, it will require a fair amount of imagination to achieve all of these objectives.

I propose the development of a new paradigm for platformless collaborative data

science, with a focus on feature engineering. Under this approach collaborators will

develop feature engineering source code on their own machines, in their own preferred

environments. They will submit their source code to a authoritative repository that

will use still other services to verify that the proposed source code is syntactically and

semantically valid and to evaluate performance on an unseen test set. If tests pass

and performance is sufficient, the proposed code can be merged into the repository

of features comprising the machine learning model.

In one sense, this is fairly similar to the FeatureHub paradigm. However, the key

innovation is to remove the dependence on a managed and development environment,

which was previously integral to the functioning of the platform. Indeed, I envision

that these dependencies would otherwise be harmful in the long run. Rather, this

concentration of functionality and separation of concerns will allow us to focus on

developing more natural abstractions and prepare us for a new phase of research.

6.3 Lightweight collaborative systems

Lightweight collaborative systems enable collaborative data science projects without

relying on a hosted platform to manage collaboration. These systems will be built on

top of open, widely-used existing platforms and tools.

Motivated by the enormous ecosystem of free and open tooling for open-source

software development, I propose to repurpose some of these tools for collaborative

data science. First, one can scaffold a predictive modeling project in a specific reposi-

tory structure, leveraging widely-used templating tools such as cookiecutter. GitHub,

as the primary home for open-source software, can host the repository and be the

100

focal point for external software integrations. Code submissions can be formatted as

highly structured pull requests. Continuous integration providers freely test and eval-

uate open-source codebases, and these providers can be used to dynamically create

and execute test suites for submitted code in pull requests. Overall, by imposing a

specific structure on data science projects, and by creating and leveraging a constella-

tion of externals libraries, tools and integrations, we can develop integrated predictive

models without the drawbacks of hosted platforms (Section 1.3.3) or vanilla software

engineering approaches (Section 1.3.2).

With this vision for one future for collaborative data science, I conclude. Over

the course of this thesis, I have introduced the reader to the modern data science

process and how existing approaches to collaborative data science fit in. I then

propose a new paradigm for collaborative data science, focused in integrating feature

engineering contributions from diverse collaborators, and instantiate this approach in

a cloud platform. Ultimately, while this platform enables successful collaborations, I

propose to turn attention in a slightly different direction for future development of

large-scale, collaborative open data science.

101

102

Bibliography

[1] Kaggle airbnb new user bookings. https://www.kaggle.com/c/airbnb-
recruiting-new-user-bookings. Accessed: 2017-06-04.

[2] Kaggle sberbank russian housing market. https://www.kaggle.com/c/
sberbank-russian-housing-market. Accessed: 2017-06-04.

[3] Alec Anderson, Sébastien Dubois, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Sample, estimate, tune: Scaling bayesian auto-tuning of data science
pipelines. 2017 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 361–372, 2017.

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[5] Esther E Bron, Marion Smits, Wiesje M Van Der Flier, Hugo Vrenken, Fred-
erik Barkhof, Philip Scheltens, Janne M Papma, Rebecca ME Steketee, Car-
olina Méndez Orellana, Rozanna Meijboom, et al. Standardized evaluation of
algorithms for computer-aided diagnosis of dementia based on structural mri:
the caddementia challenge. NeuroImage, 111:562–579, 2015.

[6] The quant crunch: How the demand for data science skills is disrupting
the job market. https://public.dhe.ibm.com/common/ssi/ecm/im/en/
iml14576usen/analytics-analytics-platform-im-analyst-paper-or-
report-iml14576usen-20171229.pdf, 2017.

[7] Justin Cheng and Michael S Bernstein. Flock: Hybrid crowd-machine learning
classifiers. In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, pages 600–611. ACM, 2015.

[8] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. Katara: A data cleaning system powered by knowledge bases and
crowdsourcing. In SIGMOD Conference, 2015.

[9] Data For Democracy. Boston crash modeling. https://github.com/
Data4Democracy/boston-crash-modeling.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern

103

https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings
https://www.kaggle.com/c/sberbank-russian-housing-market
https://www.kaggle.com/c/sberbank-russian-housing-market
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14576usen/analytics-analytics-platform-im-analyst-paper-or-report-iml14576usen-20171229.pdf
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14576usen/analytics-analytics-platform-im-analyst-paper-or-report-iml14576usen-20171229.pdf
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14576usen/analytics-analytics-platform-im-analyst-paper-or-report-iml14576usen-20171229.pdf
https://github.com/Data4Democracy/boston-crash-modeling
https://github.com/Data4Democracy/boston-crash-modeling

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,
2009.

[11] Pedro Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78–87, 2012.

[12] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine learn-
ing. In Advances in Neural Information Processing Systems, pages 2962–2970,
2015.

[13] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and
Reynold Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD
Conference, 2011.

[14] Ned Gulley. Patterns of innovation: a web-based matlab programming contest.
In CHI’01 extended abstracts on Human factors in computing systems, pages
337–338. ACM, 2001.

[15] Guido Hertel, Sven Niedner, and Stefanie Herrmann. Motivation of software
developers in open source projects: an internet-based survey of contributors to
the linux kernel. Research policy, 32(7):1159–1177, 2003.

[16] Ayush Jain, Akash Das Sarma, Aditya Parameswaran, and Jennifer Widom.
Understanding workers, developing effective tasks, and enhancing marketplace
dynamics: a study of a large crowdsourcing marketplace. Proceedings of the
VLDB Endowment, 10(7):829–840, 2017.

[17] James Max Kanter. The data science machine: emulating human intelligence
in data science endeavors. PhD thesis, Massachusetts Institute of Technology,
2015.

[18] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: To-
wards automating data science endeavors. In Data Science and Advanced An-
alytics (DSAA), 2015. 36678 2015. IEEE International Conference on, pages
1–10. IEEE, 2015.

[19] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. Jupyter notebooks – a publishing format for reproducible computa-
tional workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power
in Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press,
2016.

[20] Arno J. Knobbe, Marc de Haas, and Arno Siebes. Propositionalisation and
Aggregates, volume 2168, pages 277–288. Springer Science & Business Media,
2001.

104

[21] Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):97–
111, 1984.

[22] Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization Approaches
to Relational Data Mining, pages 262–291. Springer Berlin Heidelberg, 2001.

[23] Karim R Lakhani and Robert G Wolf. Why hackers do what they do: Under-
standing motivation and effort in free/open source software projects. MIT Sloan
Working Paper No. 4425-03, 2003.

[24] Hoang Thanh Lam, Tran Ngoc Minh, Mathieu Sinn, Beat Buesser, and Martin
Wistuba. Learning features for relational data. CoRR, abs/1801.05372, 2018.

[25] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep
Mai, and Oznur Alkan. One button machine for automating feature engineering
in relational databases. CoRR, abs/1706.00327, 2017.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In European conference on computer vision, pages 740–755.
Springer, 2014.

[27] James Robert Lloyd, David K Duvenaud, Roger B Grosse, Joshua B Tenenbaum,
and Zoubin Ghahramani. Automatic construction and natural-language descrip-
tion of nonparametric regression models. In AAAI, pages 1242–1250, 2014.

[28] Ben Lorica. Crowdsourcing feature discovery. http://radar.oreilly.com/
2014/03/crowdsourcing-feature-discovery.html, 2014.

[29] Michael McKerns and Michael Aivazis. Pathos: a framework for heterogeneous
computing. http://trac.mystic.cacr.caltech.edu/project/pathos, 2010.

[30] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781, 2013.

[31] Jon Noronha, Eric Hysen, Haoqi Zhang, and Krzysztof Z. Gajos. Platemate:
crowdsourcing nutritional analysis from food photographs. In UIST, 2011.

[32] National Oceanic and Atmospheric Administration. Dengue forecasting project.
http://dengueforecasting.noaa.gov/docs/project_description.pdf.

[33] City of Chicago. Food inspections evaluation. https://github.com/Chicago/
food-inspections-evaluation.

[34] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore.
Evaluation of a tree-based pipeline optimization tool for automating data science.
In Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, pages 485–492, New York, NY, USA, 2016. ACM.

105

http://radar.oreilly.com/2014/03/crowdsourcing-feature-discovery.html
http://radar.oreilly.com/2014/03/crowdsourcing-feature-discovery.html
http://trac.mystic.cacr.caltech.edu/project/pathos
http://dengueforecasting.noaa.gov/docs/project_description.pdf
https://github.com/Chicago/food-inspections-evaluation
https://github.com/Chicago/food-inspections-evaluation

[35] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, November
2011.

[36] Santiago Perez De Rosso and Daniel Jackson. What’s wrong with git?: a concep-
tual design analysis. In Proceedings of the 2013 ACM international symposium
on New ideas, new paradigms, and reflections on programming & software, pages
37–52. ACM, 2013.

[37] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. Data programming: Creating large training sets, quickly. In Advances
in Neural Information Processing Systems, pages 3567–3575, 2016.

[38] Matthew Rocklin. Pangeo: Jupyterhub, dask, and xarray on the cloud. http:
//matthewrocklin.com/blog/work/2018/01/22/pangeo-2, 2018.

[39] Maria Rossi. Decoding the “free/open source (f/oss) software puzzle” a survey of
theoretical and empirical contributions. Università degli Studi di Siena Working
Paper No. 424, 2004.

[40] Matthew Salganik, Ian Lundberg, Alex Kindel, and Sara McLanahan. Fragile
families challenge. https://fragilefamilieschallenge.org.

[41] Akash Das Sarma, Ayush Jain, Arnab Nandi, Aditya Parameswaran, and Jennifer
Widom. Surpassing humans and computers with jellybean: Crowd-vision-hybrid
counting algorithms. In Third AAAI Conference on Human Computation and
Crowdsourcing, 2015.

[42] Benjamin Schreck and Kalyan Veeramachaneni. What would a data scientist
ask? automatically formulating and solving predictive problems. In Data Science
and Advanced Analytics (DSAA), 2016 IEEE International Conference on, pages
440–451. IEEE, 2016.

[43] MG Siegler. Eric schmidt: Every 2 days we create as much information as we
did up to 2003. TechCrunch. August, 4, 2010.

[44] Micah J. Smith, Roy Wedge, and Kalyan Veeramachaneni. Featurehub: Towards
collaborative data science. 2017 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 590–600, 2017.

[45] Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan. Chimera:
Large-scale classification using machine learning, rules, and crowdsourcing. Pro-
ceedings of the VLDB Endowment, 7(13):1529–1540, 2014.

106

http://matthewrocklin.com/blog/work/2018/01/22/pangeo-2
http://matthewrocklin.com/blog/work/2018/01/22/pangeo-2
https://fragilefamilieschallenge.org

[46] Thomas Swearingen, Will Drevo, Bennett Cyphers, Alfredo Cuesta-Infante, Arun
Ross, and Kalyan Veeramachaneni. Atm: A distributed, collaborative, scalable
system for automated machine learning. 2017 IEEE International Conference
on Big Data (Big Data), pages 151–162, 2017.

[47] Colin Taylor, Kalyan Veeramachaneni, and Una-May O’Reilly. Likely to stop?
predicting stopout in massive open online courses. CoRR, abs/1408.3382, 2014.

[48] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Com-
bined selection and hyperparameter optimization of classification algorithms. In
Proc. of KDD-2013, pages 847–855, 2013.

[49] Vernon Turner, John F Gantz, David Reinsel, and Stephen Minton. The digital
universe of opportunities: Rich data and the increasing value of the internet of
things. IDC Analyze the Future, page 5, 2014.

[50] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml:
Networked science in machine learning. SIGKDD Explorations, 15(2):49–60,
2013.

[51] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

107

108

Appendix A

Implementation of FeatureHub

In this appendix, I present implementation details of the FeatureHub platform. The

full source code is available on GitHub under the MIT License at https://github.

com/HDI-Project/FeatureHub.

A.1 Configuration

There are a variety of configuration settings that can be set by the app administrator.

This first set of configuration variables must be set to ensure proper functioning of

the app.

• FF_DOMAIN_NAME: Fully-qualified domain name of this server, used for Let’s

Encrypt SSL certificate.

• FF_DOMAIN_EMAIL: Email associated with domain name registration, used for

SSL certificate.

• MYSQL_ROOT_PASSWORD: Password for DB root user.

• EVAL_API_TOKEN: API token for eval server. The administrator should generate

a valid API token by executing openssl rand -hex 32.

• HUB_CLIENT_API_TOKEN: API token for Hub API client script.

109

https://github.com/HDI-Project/FeatureHub
https://github.com/HDI-Project/FeatureHub

• DISCOURSE_DOMAIN_NAME: Domain name of the Discourse forum.

• DISCOURSE_CLIENT_API_USERNAME: Username for Discourse admin, to use with

Discourse API client. The administrator must use the same username when

setting up the Discourse instance.

• DISCOURSE_CLIENT_API_TOKEN: API token for Discourse API client. The ad-

ministrator must use the same token when setting up the Discourse instance.

The app administrator can reset the following configuration variables if they desire,

but reasonable defaults are otherwise provided.

• DOCKER_NETWORK_NAME: Name for docker network used for networking contain-

ers.

• HUB_IMAGE_NAME: Name for Docker JupyterHub image.

• HUB_CONTAINER_NAME: Name for Docker JupyterHub container.

• HUB_API_PORT: Port for JupyterHub REST API to listen on.

• FF_IMAGE_NAME: Name for Docker user Jupyter Notebook server image.

• FF_CONTAINER_NAME: Prefix for Docker user containers. Actual containers will

have the user’s username appended.

• FF_DATA_DIR: Path to data directory on host machine (deployment machine).

• FF_PROJECT_NAME: Name for docker-compose app.

• FF_IDLE_SERVER_TIMEOUT: Timeout interval for idle servers (i.e., user contain-

ers). If a server is idle for this amount of time, then it will be automatically

stopped. Due to some JupyterHub defaults, this value should be set to at least

5m 30s (330).

• FF_CONTAINER_MEMLIMIT:Memory limit for user containers. The value can ei-

ther be an integer (bytes) or a string with a K, M, G or T prefix.

110

• MYSQL_CONTAINER_NAME: Name for Docker DB container.

• MYSQL_ROOT_USERNAME: Username for DB root user.

• MYSQL_DATABASE: Competition database name in DB.

• MYSQL_DATA_VOLUME_NAME: Name for DB data volume.

• SECRETS_VOLUME_NAME: Name for JupyterHub secrets volume.

• USE_LETSENCRYPT_CERT: Flag (yes/no) to use Let’s Encrypt certificates. For

testing purposes, one can use openssl to issue a self-signed certificate.

• EVAL_IMAGE_NAME: Name for Docker eval server image.

• EVAL_CONTAINER_NAME: Name for Docker eval server container. Since there is

one eval container, this will be the exact name.

• EVAL_CONTAINER_PORT: Port for eval server to listen on.

• EVAL_FLASK_DEBUG: Whether eval server Flask app should be started with

DEBUG flag.

• DISCOURSE_FEATURE_GROUP_NAME: Group for new users to be added to on Dis-

course. This group will control the visibility of the feature category.

• DISCOURSE_FEATURE_CATEGORY_NAME: Category for new features to be posted

to on Discourse. Posts to this category will only be visible by members of the

feature group (above) and administrators.

• USE_DISCOURSE: Flag (yes/no) to use Discourse integration. If Discourse inte-

gration is enabled, then forum posts are created for each feature that is success-

fully added.

An example .env configuration file is shown in Listing D.3.

111

A.2 User interface

The user interacts with a FeatureHub application instance through a client object,

Session, created in their Jupyter Notebook session. The user imports a client that is

dynamically created for the data science problem. The client will be used to acquire

data, evaluated proposed features, and register them with the feature database. As

shown in Table 3.1, the user can interact via the following methods provided by the

client.

• get_sample_dataset: This method is used to load the training data into our

workspace. The result is a tuple where the first element is dataset, a dictio-

nary mapping table names to DataFrames, and the second element is target, a

DataFrame with one column. This one column is what we are trying to predict.

The dataset can then be explored inline within the notebook.

• evaluate: This method evaluates the proposed feature on the training dataset

and returns key performance metrics. The user first writes a candidate feature

for submission to the FeatureHub project. Then, they can evaluate it on training

data. The evaluation routine proceeds as follows.

The evaluate function takes a single argument: the candidate feature. An

evaluation client then runs the feature in an isolated environment to extract

the feature values. The isolated environment is used to ensure that the global

variables in the user’s working environment are not necessary for the feature’s

execution. Next, the feature values themselves are validated to make sure that

some constraints are satisfied, such as that the shape of the feature values is

correct and there are no null values. Then, a simple machine learning model is

built using the one feature and important cross-validated metrics are computed.

If the feature is valid, the results are printed a mapping is returned where the

keys are the metric name and the values are the metric values. If the feature

is invalid, the reason is printed (a list of validation failures) and an empty

dictionary is returned.

112

In the user’s workflow, this method may be run several times. At first, it may

reveal bugs or syntax errors to be fixed. Next, it may reveal that the feature

did not meet some of the FeatureHub requirements, such as returning a single

column of values or using function-scope imports. Finally, the user may find

that your feature’s performance, in terms of metrics like classification accuracy

or mean squared error, are not as good as hoped, and the feature may then be

modified or discarded.

• discover_features: This method allows the user to discover and filter features

in the database that have been added by the user and other workers. Alter-

nately, the user can call the wrapper method print_my_features to filter the

submitted features down to the ones submitted by the user themself.

• submit: This method submits feature to the evaluation server for evaluation

on test data. If successful, the feature is registered in the feature database and

key performance metrics are returned. The exact same steps as in evaluate

are repeated on the remote evaluation server, except using unseen test data.

This ensures that the user does not “self-report” local evaluation results that

are invalid.

A.3 Feature evaluation

Feature evaluation is tightly tied to automated modeling, in that our primary strategy

to evaluate proposed features is to build models and assess performance with and

without the proposed feature.

Feature evaluation is performed by an “eval server” running as a separate Hub-

managed service. This service is a Flask server that exposes log_evaluation_attempt

and submit endpoints. A lightly-edited implementation is shown in Listing D.1. The

submit endpoint re-purposes the same evaluation code that is used by the user locally

(EvaluatorServer, a subclass of EvaluatorClient). The main difference is that

with the test set available, we can compute metrics using a train/test split (rather

113

than via cross-validation). Upon success, the eval server will also insert results into

the feature database and post the source code to the integrated Discourse forum.

A.4 Discussion forum

We tightly integrate a Discourse-based discussion forum to enable communication

and collaboration between users. The application administrator must follow several

simple steps to set up the forum. Afterwards, users can log into the forum to view and

discuss features, and the FeatureHub backend will automatically post new features

to the server for all to see.

1. Setup a mail server for the forum software to use. We use AWS Simple Email

Service (SES).

2. Provision a server and install Discourse, for example using the official cloud

installation instructions1.

3. Create accounts for each of your users and provide them with credentials. In

future engineering work, a SSO (single sign-on) service could be configured to

unify authentication for the FeatureHub app and the Discourse forum, possibly

through GitHub integration.

4. Create a category for new features to be posted to.

A.5 Automated machine learning

The modeling interface follows from Table 3.1 and includes the extract_features

and learn_model methods.

• extract_features: The project coordinator can compile all feature source

code and extract feature values on an arbitrary dataset using the function

featurehub.admin.build_feature_matrix.
1https://github.com/discourse/discourse/blob/master/docs/INSTALL-cloud.md

114

https://github.com/discourse/discourse/blob/master/docs/INSTALL-cloud.md

• learn_model: FeatureHub provides a flexible Model object which configures an

underlying estimator for the different problem types that can be handled by the

system, covering regression and classification, with different number of classes

and loss functions. By default, a simply decision tree estimator is fit using the

extracted feature values. The coordinator can also choose to use the extended

AutoModel class, which uses auto-sklearn to automatically select and tune a

model from the scikit-learn library.

A.6 Data management

The FeatureHub application uses a MySQL database to store both data and metadata

related to the collaboration. In one FeatureHub instance, many users can each be

working on many prediction problems. This motivates storing metadata about the

separate prediction problems as well, where the metadata consists of the type of

prediction problem (e.g. classification or regression), the locations of data files, and

more. The full entity-relationship diagram is shown in Figure A-1.

The database is also the central location for storing the features that have been

submitted by collaborators. We store the feature source code, the feature description,

and the MD5 hash of the feature source code. In addition, we serialize the Python

function using the dill library [29] and insert the serialized function directly into the

database (shown as function) for the benefit of faster feature extraction during the

modeling phase.

A.7 Deployment

A variety of resources facilitate easy deployment of FeatureHub. These include:

• Makefile, to manage all resources.

• Docker, to configure, create, and manage service containers.

• Docker Compose, for actual deployment of Hub, User, and DB containers.

115

id
name
problem_type
problem_type_details
data_dir_train
data_dir_test
files
table_names
entities_table_name
entities_featurized_table_name
target_table_name
created_at

Problem

id
name
created_at

User

id
user_id
problem_id
code
function
md5
description
created_at

Feature

id
user_id
problem_id
code
created_at

EvaluationAttempt

id
feature_id
name
scoring
value
created_at

Metric

Figure A-1: Entity-relationship diagram for FeatureHub database. The crow’s foot
arrow represents a one-to-many relationship; that is, each feature has many metrics
associated with it, and so on.

116

• Custom command-line utilities to create users, delete users, generate SSL cer-

tificates using LetsEncrypt, and more.

• Configuration files for JupyterHub, Jupyter Notebook, and the application itself

(.env).

This makes deployment as easy as the following:
1 $ make build
2 $ make up

For full control, the following Make targets are included:

• Application lifecycle management : up, down, start, stop

• Storage management : setup_files, teardown_files, kill_network, volumes,

kill_db_volumes, kill_secrets_volume

• Container management : build, build_static, build_services, kill_containers,

kill_images

• Network management : network, ssl

• Application resource monitoring : monitor_start, monitor_stop, monitor_delete

These leverage Docker Compose configuration files for application management

and container build management. The main Docker Compose configuration file is

reproduced in Listing D.2.

117

118

Appendix B

Prediction problem details

In this chapter, I provide further details on the prediction problems used in Feature-

Hub experiments.

B.1 Problem statement

We introduce users to the prediction problems by providing them with a problem

statement inspired by that accompanying the Kaggle competition.

For airbnb, we provided the following problem statement:

Instead of waking to overlooked “Do not disturb” signs, Airbnb trav-

elers find themselves rising with the birds in a whimsical treehouse,

having their morning coffee on the deck of a houseboat, or cooking a

shared regional breakfast with their hosts.

New users on Airbnb can book a place to stay in 34,000+ cities across

190+ countries. By accurately predicting where a new user will book

their first travel experience, Airbnb can share more personalized con-

tent with their community, decrease the average time to first booking,

and better forecast demand.

119

In this task, we aim to predict in which country a new user will make

his or her first booking.

You are challenged to identify and derive or generate the features

which would help the most in predicting in which country a new user

will make their first booking.

For sberbank, we provided the following problem statement:

Housing costs demand a significant investment from both consumers

and developers. And when it comes to planning a budgetâĂŤwhether

personal or corporateâĂŤthe last thing anyone needs is uncertainty

about one of their biggest expenses. Sberbank, RussiaâĂŹs oldest

and largest bank, helps their customers by making predictions about

realty prices so renters, developers, and lenders are more confident

when they sign a lease or purchase a building.

Although the housing market is relatively stable in Russia, the coun-

try’s volatile economy makes forecasting prices as a function of apart-

ment characteristics a unique challenge. Complex interactions between

housing features such as number of bedrooms and location are enough

to make pricing predictions complicated. Adding an unstable econ-

omy to the mix means Sberbank and their customers need more than

simple regression models in their arsenal.

In this task, we aim to predict realty prices by developing algorithms

which use a broad spectrum of features.

You are challenged to identify and derive or generate the features

which would help the most in predicting realty prices.

120

B.2 Data schemata

id
gender
age
language
signup_app
etc.

User

user_id
action
action_type
action_detail
device_type
secs_elapsed

Session

user_id
country_destination

Target

country_destination
lat_destination
lng_destination
distance_km
destination_km2
destination_language
language_levenshtein_distance

Country

country_destination
age_bucket
gender
population_in_thous
year

AgeGender

Figure B-1: Entity-relationship diagram for Kaggle airbnb prediction problem. The
entities table is users and the target table is target. The list of attributes is trun-
cated for users (15 total).

121

id
timestamp
full_sq
life_sq
floor
max_floor
material
build_year
num_room
kitch_sq
state
product_type
sub_area
etc.

Transaction
transaction_id
price_doc

Target

timestamp
oil_urals
gdp_quart
gdb_quart_growth
cpi
ppi
gdp_deflator
balance_trade
etc.

Macro

Figure B-2: Entity-relationship diagram for Kaggle sberbank prediction problem. The
entities table is transactions and the target table is target. The list of attributes
is truncated for transactions (291 total) and macro (100 total).

122

B.3 Pre-extracted features

For both problems, we pre-extracted simple features to initialize the feature engineer-

ing, as described in Section 3.2. Users were told that these pre-extracted features

would be joined with the features they write during evaluation.

For the airbnb problem, the following features were pre-extracted:

• date_account_created: Convert string date to days since August 11, 2008,

the launch of Airbnb (according to Wikipedia).

• timestamp_first_active: Convert integer timestamp to days since August

11, 2008.

• date_first_booking: Convert string date to days since August 11, 2008. Re-

place NaNs with 0 and add another column for missingness.

• gender: Convert to one-hot encoding.

• age: Replace NaNs with 0 and add another column for missingness.

• signup_method: Convert to one-hot encoding.

• signup_flow: Convert to one-hot encoding.

• language: Convert to one-hot encoding.

• affiliate_channel: Convert to one-hot encoding.

• affiliate_provider: Convert to one-hot encoding.

• first_affiliate_tracked: Convert to one-hot encoding.

• signup_app: Convert to one-hot encoding.

• first_device_type: Convert to one-hot encoding.

• first_browser: Convert to one-hot encoding.

123

Split Metric Value

Train Accuracy 0.79
Train Precision 0.79
Train Recall 0.79
Train ROC AUC 0.89
Test Accuracy 0.79
Test Precision 0.79
Test Recall 0.79
Test ROC AUC 0.89

Table B.1: Metrics for decision tree model training on pre-extracted feature matrix
for different splits.

The resulting feature matrix (before any feature engineering on the part of the

users) has 153 columns. We also informed the users that a model trained on just the

pre-extracted feature matrix yields the metrics in Table B.1.

For the sberbank problem, the following features were pre-extracted:

• full_sq: This column was extracted directly.

• floor: Replace NaNs with 0 and add another column to indicate missingness.

• build_year: Replace NaNs with 0 and add another column to indicate miss-

ingness.

• life_sq: Replace NaNs with 0 and add another column to indicate missingness.

• num_room: Replace NaNs with 0 and add another column to indicate missing-

ness.

• kitch_sq: Replace NaNs with 0 and add another column to indicate missing-

ness.

• material: Convert to one-hot encoding.

• state: Convert to one-hot encoding.

• product_type: Convert to one-hot encoding.

124

Split Metric Value

Train RMSE 4278266.78
Train R-squared 0.19
Test RMSE 3716072.47
Train R-squared 0.40

Table B.2: Metrics for decision tree model training on pre-extracted feature matrix
for different splits.

• sub_area: Convert to one-hot encoding.

The resulting feature matrix (before any feature engineering on the part of the

users) has 170 columns. We also informed the users that a model trained on just the

pre-extracted feature matrix yields the metrics in Table B.2.

125

126

Appendix C

User study survey

In the next section, the “Data Scientists for Feature Extraction” survey that was

given to participants of our user study is reproduced. Users were informed that

their responses would be completely anonymous, and no identifying information was

collected.

Per Section 4.1.3, we separated participants into three experiment groups for the

purpose of evaluating the effect of the explicit collaboration functionality. For Group

1, we did not provide access to the discover_features command nor the features

category on the forum, so we did not ask about these functionalities in the survey.

Thus, Appendix C.1.4 was only shown to Groups 2 and 3.

Then, in Appendix C.2, I provide summary statistics about all survey responses.

C.1 Survey questions

Thanks for participating in Data Scientists for Feature Extraction. We really appre-

ciate your answers to the following questions. This helps us evaluate and improve our

research. This survey should take less than 15 minutes. Your response is completely

anonymous.

127

C.1.1 Getting oriented

1. Before this task, were you familiar with the term “feature engineering”?

d No

d Yes

2. What did you think about the documentation and introduction materials (tu-

torial notebook, website, instructions in email)?

d These materials answered all of my questions.

d I was a bit confused at first, but eventually figured things out myself.

d I was a bit confused at first, but I received help from someone else that

answered my questions.

d I never completely figured out what to do.

3. How long did you spend, at the beginning, learning about the platform through

the documentation and introduction materials?

d 0-10 minutes

d 11-20 minutes

d 21-40 minutes

d 41-60 minutes

d More than 60 minutes

4. Do you have any feedback about the documentation and introduction materials?

C.1.2 FeatureHub Platform

1. How easy was the FeatureHub platform to use? (This includes logging in, using

the notebook, and evaluating and submitting features.)

1 2 3 4 5

Difficult to use d d d d d Easy to use

128

2. How long did it take to write and *evaluate* your first feature, starting when

you first logged in? (Not including the tutorial.)

d 0-15 minutes

d 16-30 minutes

d 31-60 minutes

d 1-2 hours

d 2-3 hours

d 3-5 hours

d I did not evaluate any features.

3. How long did it take to write and *submit* your first feature, starting when

you first logged in? (Not including the tutorial.)

d 0-15 minutes

d 16-30 minutes

d 31-60 minutes

d 1-2 hours

d 2-3 hours

d 3-5 hours

d I did not evaluate any features.

4. How easy was it to use FeatureHub commands including get_sample_dataset,

print_my_features, evaluate, and submit?

1 2 3 4 5

Difficult to use d d d d d Easy to use

5. Do you have any feedback about the FeatureHub commands?

6. How long did you spend, in total, writing features?

129

d 0-1 hours

d 1-2 hours

d 2-3 hours

d 3-4 hours

d 4-5 hours

d More than 5 hours

7. Do you have any feedback about the FeatureHub platform as a whole?

C.1.3 Forum

1. How helpful was the forum for the feature engineering task overall?

1 2 3 4 5

Not helpful at all d d d d d Very helpful

2. How easy was the forum to use?

1 2 3 4 5

Difficult to use d d d d d Easy to use

3. Do you have any feedback about the forum?

C.1.4 Collaboration

[This section was shown to Groups 2 and 3, i.e. those that were given explicit collab-

oration functionality.]

1. How many times did you use the discover_features command to discover

new features?

d Never

d 1-2 times

130

d 3-5 times

d 6-10 times

d 11-20 times

d More than 20 times

2. How helpful was the discover_features command for the feature engineering

task overall?
1 2 3 4 5

Not helpful at all d d d d d Very helpful

3. How many times did you browse features that were automatically posted to the

forum?

d Never

d 1-2 times

d 3-5 times

d 6-10 times

d 11-20 times

d More than 20 times

4. How much did using the discover_features command and browsing features

on the forum help to. . .

If you did not use these features at all, please leave these questions blank.

(a) . . . learn how to properly submit features?

1 2 3 4 5

Did not help at all d d d d d Helped quite a bit

(b) . . . learn new feature engineering techniques (such as joining/merging Data

Frames or using scikit-learn Encoders)?

1 2 3 4 5

Did not help at all d d d d d Helped quite a bit

131

(c) . . . see features written by others in order to avoid duplicating work?

1 2 3 4 5

Did not help at all d d d d d Helped quite a bit

(d) . . . see features written by others in order to modify and improve those

ideas?
1 2 3 4 5

Did not help at all d d d d d Helped quite a bit

(e) . . . see which columns in the data were most frequently used?

1 2 3 4 5

Did not help at all d d d d d Helped quite a bit

C.2 Survey responses

We asked about our introductory materials to help data scientists learn the Feature-

Hub platform, the usability of the platform, the helpfulness of the forum, and the

helpfulness and usability of the collaboration mechanisms. The results are shown

in Tables C.1 to C.4. Answers on a likert scale were converted to numerical 1 to 5

values. Answers to bucketed questions were set at the median point of the bucket or

the minimum for open-ended questions.

count Familiar with
feature eng.

Helpfulness of
intro Time spent on intro

mean median mean median mean std
group

1 6 0.67 3.00 3.17 50 39.17 18.55
2 12 0.83 3.50 3.25 30 32.08 14.53
3 10 1.00 3.00 3.30 30 36.00 15.60

Total 28 0.86 3.00 3.25 30 35.00 15.46

Table C.1: Summary of survey responses for intro questions (Appendix C.1.1),

132

count Usability of
platform

Time until first
evaluation

Time until first
submission

mean median mean median std mean median std
group

1 6 4.50 5 96.25 33.75 111.99 125.00 120.00 102.58
2 12 4.17 4 42.50 22.50 44.47 80.45 90.00 52.19
3 10 4.10 4 70.00 45.00 71.94 81.67 45.00 73.24
Total 28 4.21 4 63.61 22.50 72.85 91.15 90.00 72.58

(a)

count Usability of APIs Time spent writing features
mean median mean median std

group

1 6 4.50 5 285.00 285 16.43
2 12 4.25 5 257.50 270 50.29
3 10 4.60 5 264.00 270 62.93
Total 28 4.43 5 265.71 270 50.14

(b)

Table C.2: Summary of survey responses for platform questions (Appendix C.1.2).

count Helpfulness of forum Usability of forum
median mean std median mean std

group

1 6 4.00 4.17 0.75 5.00 4.83 0.41
2 12 4.00 3.42 1.24 4.50 4.17 1.03
3 10 3.50 3.40 0.97 4.00 4.20 0.79

Total 28 4.00 3.57 1.07 5.00 4.32 0.86

Table C.3: Summary of survey responses for forum questions (Appendix C.1.3).

133

count Times used
discover_features

Helpfulness of
discover_features

mean median std mean median std
group

2 12 4.88 1.50 5.65 2.92 3.00 1.44
3 10 4.65 1.50 5.85 3.40 4.00 1.17

Total 28 4.77 1.50 5.60 3.14 3.00 1.32

(a)

count Times browsed
forum

Helpfulness overall
for submit

mean median std mean median std
group

2 12 5.71 4.00 6.82 3.45 3.00 1.51
3 10 5.60 2.75 6.91 3.43 4.00 1.51

Total 28 5.66 4.00 6.69 3.44 3.50 1.46

(b)

count Helpfulness overall
learn feature eng.

Helpfulness overall
to avoid dup.

mean median std mean median std
group

2 12 2.90 3.00 1.29 3.30 3.50 1.42
3 10 3.67 4.00 1.51 4.00 4.00 1.15

Total 28 3.19 3.00 1.38 3.59 4.00 1.33

(c)

count Helpfulness overall
to improve ideas

Helpfulness overall
to see used cols

mean median std mean median std
group

2 12 3.00 3.00 1.15 2.67 3.00 1.50
3 10 3.17 3.00 1.17 3.43 3.00 1.51

Total 28 3.06 3.00 1.12 3.00 3.00 1.51

(d)

Table C.4: Summary of survey responses for collaboration questions (Ap-
pendix C.1.4).

134

Appendix D

Listings

""" Evaluation server for FeatureHub user notebooks."""

import os
from functools import wraps
from urllib.parse import unquote_to_bytes

import dill
from flask import Flask , Response , redirect , request
from sqlalchemy.orm.exc import (

10 MultipleResultsFound , NoResultFound)

from featurehub.admin.sqlalchemy_declarative import (
EvaluationAttempt , Feature , Metric , Problem , User)

from featurehub.admin.sqlalchemy_main import ORMManager
from featurehub.evaluation import (

EvaluationResponse , EvaluatorServer)
from featurehub.evaluation.discourse import DiscourseFeatureTopic
from featurehub.evaluation.future import HubAuth
from featurehub.evaluation.util import authenticated

20 from featurehub.util import get_function , is_positive_env , myhash

setup
prefix = "/services/eval -server"
hub_api_token = os.environ.get("EVAL_API_TOKEN")
hub_api_url = "http ://{}:{}/ hub/api".format(

os.environ.get("HUB_CONTAINER_NAME"),
os.environ.get("HUB_API_PORT")

)
auth = HubAuth(

30 api_token=hub_api_token ,
api_url=hub_api_url ,
cookie_cache_max_age =60,

)

DEMO_PROBLEM_NAME = "demo"

app
app = Flask("eval -server")

40
@app.route(prefix + "/log -evaluation -attempt", methods =["POST"])
@authenticated
def log_evaluation_attempt(user):

""" Log user evaluation of feature.

135

Extracts 'database ', 'problem_id ', and 'code' from POST body.
"""

try:
50 # read parameters from form

database = request.form["database"]
problem_id = request.form["problem_id"]
code = request.form["code"]

insert evaluation attempt into database
user_name = user["name"]
orm = ORMManager(database , admin=True)
with orm.session_scope () as session:

user_obj = (session
60 .query(User)

.filter(User.name == user_name)

.one())
problem_obj = (session

.query(Problem)

.filter(Problem.id == problem_id)

.one())
evaluation_attempt_obj = EvaluationAttempt(

user=user_obj , problem=problem_obj , code=code)
session.add(evaluation_attempt_obj)

70 finally:
return Response ()

@app.route(prefix + "/submit", methods =["POST"])
@authenticated
def submit(user):

""" Process user request to submit feature.

Extracts 'database ', 'problem_id ', 'code ', and 'description '
80 from POST body.

"""

read parameters from form
try:

database = request.form["database"]
problem_id = request.form["problem_id"]
feature_dill = request.form["feature_dill"]
code = request.form["code"]
description = request.form["description"]

90 except Exception:
return EvaluationResponse(

status_code=EvaluationResponse
.STATUS_CODE_BAD_REQUEST)

preprocessing
orm = ORMManager(database , admin=True)
with orm.session_scope () as session:

look up the problem in the databasse
try:

100 problem_obj = (session
.query(Problem)
.filter(Problem.id == problem_id)
.one())

except (NoResultFound , MultipleResultsFound) as e:
return EvaluationResponse(

status_code=EvaluationResponse
.STATUS_CODE_BAD_REQUEST)

except Exception:
return EvaluationResponse(

110 status_code=EvaluationResponse

136

.STATUS_CODE_SERVER_ERROR)

look up the user in the database
user_name = user["name"]
try:

user_obj = (session
.query(User)
.filter(User.name == user_name)
.one()

120 except (NoResultFound , MultipleResultsFound) as e:
return EvaluationResponse(

status_code=EvaluationResponse
.STATUS_CODE_BAD_REQUEST)

compute the md5 hash of the feature code
md5 = myhash(code)

check for duplicate feature code
evaluator = EvaluatorServer(problem_id , user_name , orm)

130 try:
is_registered = evaluator.check_if_registered(code)
if is_registered:

return EvaluationResponse(
status_code=EvaluationResponse

.STATUS_CODE_DUPLICATE_FEATURE)
except Exception:

return EvaluationResponse(
status_code=EvaluationResponse

.STATUS_CODE_SERVER_ERROR)
140

convert the feature code into a function
try:

feature = dill.loads(unquote_to_bytes(feature_dill))
except Exception:

return EvaluationResponse(
status_code=EvaluationResponse

.STATUS_CODE_BAD_FEATURE)

processing
150 # evaluate feature

try:
metrics = evaluator.evaluate(feature)

except ValueError:
feature is invalid
return EvaluationResponse(

status_code=EvaluationResponse
.STATUS_CODE_BAD_FEATURE)

except Exception:
return EvaluationResponse(

160 status_code=EvaluationResponse
.STATUS_CODE_SERVER_ERROR)

try:
write to db
feature_obj = Feature(

description=description ,
feature_dill_quoted=feature_dill ,
code=code ,
md5=md5 ,

170 user=user_obj ,
problem=problem_obj

)
session.add(feature_obj)
for metric in metrics:

metric_db = metric.convert(kind="db")
metric_obj = Metric(

137

feature=feature_obj ,
name=metric_db["name"],
scoring=metric_db["scoring"],

180 value=metric_db["value"]
)
session.add(metric_obj)

except Exception:
return EvaluationResponse(

status_code=EvaluationResponse
.STATUS_CODE_DB_ERROR)

post to forum
problem_name = problem_obj.name

190 if (is_positive_env(os.environ.get("USE_DISCOURSE")) and
problem_name != DEMO_PROBLEM_NAME):

try:
topic_obj = DiscourseFeatureTopic(

feature_obj , metrics)
topic_url = topic_obj.post_feature ()

except Exception:
topic_url = ""

else:
topic_url = ""

200
return status code and metrics dict
return EvaluationResponse(

status_code=EvaluationResponse.STATUS_CODE_OKAY ,
metrics=metrics ,
topic_url=topic_url ,

)

if __name__ == "__main__":
210 # run app

host = "0.0.0.0"
port = int(os.environ.get("EVAL_CONTAINER_PORT", 5000))
debug = is_positive_env(

os.environ.get("EVAL_FLASK_DEBUG", False))
app.run(host=host , port=port , debug=debug)

Listing D.1: FeatureHub eval server. The exposed endpoints include
log_evaluation_attempt and submit. Some logging and authentication-related
code has been removed for brevity.

138

version: '2'

networks:
default:

external:
name: ${DOCKER_NETWORK_NAME}

volumes:
db -data:

10 external:
name: ${MYSQL_DATA_VOLUME_NAME}

secrets:
external:

name: ${SECRETS_VOLUME_NAME}

services:
hub:

build:
context: .

20 dockerfile: ./Dockerfile -hub
image: ${HUB_IMAGE_NAME}
container_name: ${HUB_CONTAINER_NAME}
volumes:

- /var/run/docker.sock:/var/run/docker.sock:rw
- ${FF_DATA_DIR }:${FF_DATA_DIR }:rw
- secrets :/etc/letsencrypt

ports:
- 443:443
- ${HUB_API_PORT }:${HUB_API_PORT}

30 environment:
DOCKER_NETWORK_NAME: ${DOCKER_NETWORK_NAME}
FF_DATA_DIR: ${FF_DATA_DIR}
FF_IMAGE_NAME: ${FF_IMAGE_NAME}
FF_CONTAINER_NAME: ${FF_CONTAINER_NAME}
FF_IDLE_SERVER_TIMEOUT: ${FF_IDLE_SERVER_TIMEOUT}
FF_CONTAINER_MEMLIMIT: ${FF_CONTAINER_MEMLIMIT}
HUB_CONTAINER_NAME: ${HUB_CONTAINER_NAME}
HUB_API_PORT: ${HUB_API_PORT}
MYSQL_CONTAINER_NAME: ${MYSQL_CONTAINER_NAME}

40 EVAL_CONTAINER_NAME: ${EVAL_CONTAINER_NAME}
EVAL_CONTAINER_PORT: ${EVAL_CONTAINER_PORT}
EVAL_API_TOKEN: ${EVAL_API_TOKEN}
SSL_KEY: "/etc/letsencrypt/privkey.pem"
SSL_CERT: "/etc/letsencrypt/cert.pem"
HUB_CLIENT_API_TOKEN: ${HUB_CLIENT_API_TOKEN}

command: >
jupyterhub -f ${FF_DATA_DIR }/ config/jupyterhub/ ←˒

jupyterhub_config.py
db:

image: mysql :5.7
50 container_name: ${MYSQL_CONTAINER_NAME}

ports:
- 3306:3306

environment:
MYSQL_DATABASE: ${MYSQL_DATABASE}
MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}

volumes:
- db-data:/var/lib/mysql

eval -server:
build:

60 context: .
dockerfile: ./Dockerfile -eval

image: ${EVAL_IMAGE_NAME}
container_name: ${EVAL_CONTAINER_NAME}
volumes:

139

- ${FF_DATA_DIR }:${FF_DATA_DIR }:rw
- ${FF_DATA_DIR }/data:/data:ro

ports:
- ${EVAL_CONTAINER_PORT }:${EVAL_CONTAINER_PORT}

environment:
70 FF_DATA_DIR: ${FF_DATA_DIR}

HUB_CONTAINER_NAME: ${HUB_CONTAINER_NAME}
HUB_API_PORT: ${HUB_API_PORT}
MYSQL_CONTAINER_NAME: ${MYSQL_CONTAINER_NAME}
EVAL_CONTAINER_PORT: ${EVAL_CONTAINER_PORT}
EVAL_API_TOKEN: ${EVAL_API_TOKEN}
EVAL_FLASK_DEBUG: ${EVAL_FLASK_DEBUG}
MYSQL_ROOT_USERNAME: ${MYSQL_ROOT_USERNAME}
MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
DISCOURSE_DOMAIN_NAME: ${DISCOURSE_DOMAIN_NAME}

80 DISCOURSE_CLIENT_API_USERNAME: ${ ←˒
DISCOURSE_CLIENT_API_USERNAME}

DISCOURSE_CLIENT_API_TOKEN: ${ ←˒
DISCOURSE_CLIENT_API_TOKEN}

DISCOURSE_FEATURE_GROUP_NAME: ${ ←˒
DISCOURSE_FEATURE_GROUP_NAME}

DISCOURSE_FEATURE_CATEGORY_NAME: ${ ←˒
DISCOURSE_FEATURE_CATEGORY_NAME}

USE_DISCOURSE: ${USE_DISCOURSE}

Listing D.2: Docker Compose configuration file for FeatureHub application.

140

DOCKER_NETWORK_NAME=featurehub -network
HUB_IMAGE_NAME=featurehubhub
HUB_CONTAINER_NAME=featurehubhub
HUB_API_PORT =8081
FF_IMAGE_NAME=featurehubuser
FF_CONTAINER_NAME=featurehubuser
FF_DATA_DIR =/var/lib/featurehub
FF_PROJECT_NAME=featurehub
FF_DOMAIN_NAME=

10 FF_DOMAIN_EMAIL=
FF_IDLE_SERVER_TIMEOUT =3600
FF_CONTAINER_MEMLIMIT =4G
MYSQL_CONTAINER_NAME=featurehubmysql
MYSQL_ROOT_USERNAME=root
MYSQL_ROOT_PASSWORD=
MYSQL_DATABASE=featurehub
MYSQL_DATA_VOLUME_NAME=db -data
SECRETS_VOLUME_NAME=secrets
USE_LETSENCRYPT_CERT=yes

20 EVAL_IMAGE_NAME=featurehubeval
EVAL_CONTAINER_NAME=featurehubeval
EVAL_CONTAINER_PORT =5000
EVAL_API_TOKEN=
EVAL_FLASK_DEBUG=
HUB_CLIENT_API_TOKEN=
DISCOURSE_DOMAIN_NAME=
DISCOURSE_CLIENT_API_USERNAME=featurehub
DISCOURSE_CLIENT_API_TOKEN=
DISCOURSE_FEATURE_GROUP_NAME=writers

30 DISCOURSE_FEATURE_CATEGORY_NAME=features
USE_DISCOURSE=yes

Listing D.3: Template .env configuration file for FeatureHub application.

141

	Introduction
	Motivating open data science
	The modern data science process
	The state of collaboration
	Shared notebooks
	Vanilla software engineering
	Hosted platforms
	Data science competitions
	Challenges of open data science

	Data science abstractions

	Background and Related Work
	Crowdsourcing methods in machine learning
	Crowdsourced data labeling
	Crowdsourced data cleaning
	Crowdsourced feature engineering

	Automated methods in machine learning
	Automated machine learning
	Automated feature engineering

	Programming and data science competitions
	Collaborative software development

	A collaborative data science platform
	Overview
	Launching a project
	Creating new features
	Load and explore
	Write features
	Evaluate and submit
	Collaborate

	Combining contributions
	Design

	Assessment
	Experimental conditions
	Study participants
	Prediction problems
	Experiment groups
	Performance evaluation

	Modeling performance
	Evaluating collaboration
	Analysis of contributors
	Worker attributes and output
	Contributions in source code
	Educational opportunities

	Discussion
	Opportunities
	Flexible data science abstractions
	Automated methods to augment collaboration
	Creating interpretable models

	Challenges we faced
	Maintaining platforms
	Administering user studies
	Motivating contributions
	Adversarial behavior

	The future of collaborative data science
	The problem with platforms
	A turn towards platformless collaboration
	Lightweight collaborative systems

	Implementation of FeatureHub
	Configuration
	User interface
	Feature evaluation
	Discussion forum
	Automated machine learning
	Data management
	Deployment

	Prediction problem details
	Problem statement
	Data schemata
	Pre-extracted features

	User study survey
	Survey questions
	Getting oriented
	FeatureHub Platform
	Forum
	Collaboration

	Survey responses

	Listings

