
Vault: Fast Bootstrapping for Cryptocurrencies

by

Derek Leung

B.A., University of California, Berkeley (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

March 16, 2018

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nickolai B. Zeldovich

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Vault: Fast Bootstrapping for Cryptocurrencies

by

Derek Leung

Submitted to the Department of Electrical Engineering and Computer Science
on March 16, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Decentralized cryptocurrencies rely on participants to keep track of the state of the
system in order to verify new transactions. As the number of users and transactions
grows, this requirement places a significant burden on the users, as they need to
download, verify, and store a large amount of data in order to participate.

Vault is a new cryptocurrency designed to minimize these storage and bootstrapping
costs for participants. Vault builds on Algorand’s proof-of-stake consensus protocol
and uses several techniques to achieve its goals. First, Vault decouples the storage
of recent transactions from the storage of account balances, which enables Vault to
delete old account state. Second, Vault allows sharding state across participants in a
way that preserves strong security guarantees. Finally, Vault introduces the notion of
stamping certificates that allow a new client to catch up securely and efficiently in a
proof-of-stake system without having to verify every single block.

Experiments with a prototype implementation of Vault’s data structures show
that Vault reduces the bandwidth cost of joining the network as a full client by 99.7%
compared to Bitcoin and 90.5% compared to Ethereum when downloading a ledger
containing 500 million transactions.

Thesis Supervisor: Nickolai B. Zeldovich
Title: Associate Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to thank Georgios Vlachos for double-checking my analysis of the security

of Vault’s stamping certificate scheme. Our discussions on the nature of Algorand’s

sortition committees were immensely helpful.

I would like to thank Adam Suhl for helping develop many of the ideas in the

thesis. In particular, the many hours we spent discussing various Merkle sharding

schemes deepened my understanding of the problem. Additionally, his contributions

to the analysis of the Ethereum system provided valuable context to this work.

I would like to thank Yossi Gilad for acting as a mentor to me in this and other

projects. I have been able to take great advantage of his breadth of knowledge in

understanding prior work and the state of the art. I am thankful for his involvement

and his experience, and working with him has broadened my perspectives.

I would like to thank Anish Athalye, Jonathan Behrens, Tej Chajed, Jon Gjengset,

Albert Kwon, David Lazar, Akshay Narayan, and Malte Schwarzkopf for reading

drafts of this thesis. Their feedback was invaluable in improving this paper. I would

moreover like to thank them for acting as mentors, colleagues, and friends throughout

my time as a graduate student at MIT. They have taught me much and substantially

enriched my academic and personal experience.

I would especially like to thank my advisor Nickolai Zeldovich for his excellent

mentorship. This thesis has significantly benefited from his assistance in framing and

motivating the research challenges it solves—in addition to the many hours we spent

together revising it. More broadly, I have learned from him how to explore research

areas, to understand the key problems in a field, to generate approaches to these

problems, and to analyze and to explain the merits of various solutions. Working

5



with Nickolai has been a pleasure, and as a result I have immeasurably grown as a

researcher in systems security.

Finally, I would like to thank my family and friends for their dedication and

support. Without them this thesis would not be possible.

6



Contents

1 Introduction 13

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 17

2.1 Steady-State Savings: The “Width” Approach . . . . . . . . . . . . . 18

2.2 Short Proofs of State: The “Length” Approach . . . . . . . . . . . . . 20

3 Overview 23

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Algorand Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Efficient Double-Spending Detection 31

4.1 Transaction Expiration . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Efficient Balance Commitments . . . . . . . . . . . . . . . . . . . . . 34

5 Sharding Balance Storage 35

5.1 Secure Shard Witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Adaptive Sharding: Truncating Witnesses . . . . . . . . . . . . . . . 37

6 Succinct Ledger Certificates 39

7



6.1 Leapfrog Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Choosing 𝑏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Stamping Committees . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Proof Components . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Evaluation 47

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 End-to-end Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Balance Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4 Stamping Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Balance Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusion 55

A Stamping Certificate Security Analysis 57

B Stamping Certificate Algorithm 61

8



List of Figures

3-1 An overview of the authenticated data structures used in Vault. . . . 27

4-1 The format of a Vault transaction from Alice to Bob. . . . . . . . . . 33

5-1 An illustration of a single Vault shard and the balance Merkle tree. . 37

6-1 Two optimizations used to reduce the bandwidth needed to prove

validity of the latest state. . . . . . . . . . . . . . . . . . . . . . . . . 40

7-1 An end-to-end comparison of the bootstrapping costs of the Bitcoin,

Ethereum, Algorand, and Vault ledgers. . . . . . . . . . . . . . . . . 49

7-2 A comparison of steady-state storage costs in Vault and Ethereum. . 51

7-3 A comparison of the certificate chain sizes in Vault and Algorand. . . 52

7-4 Cost of storing sharded account balances and transaction sizes given

some setting of the witness length. . . . . . . . . . . . . . . . . . . . 53

A-1 Certificate sizes required to guarantee various liveness failure rates. . 59

9



10



List of Tables

2-1 A comparison of Vault to other cryptocurrencies. . . . . . . . . . . . 18

11



12



Chapter 1

Introduction

Cryptocurrencies are a promising approach for decentralized electronic payments,

smart contracts, and other applications. However, to support a large number of users

and transactions, cryptocurrencies must address two crucial and related bottlenecks:

storage (how much data every participant must store) and bootstrapping (how much

data every participant must download to join the system). For example, in Bitcoin [21],

a new client that wishes to join the network and verify that it received the correct

state must download about 150 GB of data as of January 2018 [3]. Storage and

bootstrapping costs are related because in a decentralized design, existing nodes must

store enough state to help new nodes join the system.

1.1 Challenges

Designing a cryptocurrency whose storage and bootstrapping costs scale well with the

number of users and transactions is difficult due to several challenges.

First, a cryptocurrency must prevent double-spending—that is, prevent a user from

spending the same money twice or issuing the same transaction multiple times. This

is typically done by keeping track of past transactions, but doing so is incompatible

with good scalability. For instance, Bitcoin stores all past transactions, which does not

scale well (costs grow linearly with the number of transactions). As another example,

Ethereum [9] does not store all transactions, but instead keeps track of the sequence

13



number (“nonce”) of the last transaction issued from a given account [28]. This nonce

must be stored even if the account has no remaining balance. As a result, this does

not scale well either (costs grow linearly with the number of old accounts) and has

caused problems for Ethereum (e.g., when a smart contract inadvertently created

many zero-balance accounts [6, 29]). We measure the Ethereum ledger (Chapter 7)

and find that 38% of Ethereum accounts have a balance of zero.

Second, a cryptocurrency relies on all participants to check the validity of transac-

tions. This requires the participants to have enough state to validate those transactions.

Storing all account balances allows a participant to validate any transaction but re-

quires storage space that grows with the number of accounts. On the other hand,

a scheme that does not store all account balances runs the risk of having fewer

participants vet transactions.

Third, proof-of-stake systems, such as Algorand [14], can provide high throughput

and low latency for transactions. However, such proof-of-stake systems present

particular challenges in terms of bootstrapping cost. Convincing a new participant of

the validity of a block in the blockchain requires first convincing them of the balances

(stakes) of all users in an earlier block. Convincing a new user of the validity of the

latest block thus requires convincing them of the balances of all users at all points in

time, starting with the initial genesis block.

Finally, an appealing way to reduce storage and bootstrapping costs is to delegate

the job of storing state and certifying future states to a committee whose participants

are trusted in aggregate. However, existing systems that take this approach [18, 22, 17]

rely on long-standing committees that are known to the adversary. As a result, an

adversary may be able to corrupt the committee members, leading to security or

availability attacks.

1.2 Approach

This thesis presents Vault, a new cryptocurrency that addresses the storage and

bootstrapping bottlenecks described above. In particular, Vault reduces the bandwidth

14



cost of joining the network as a full client by 99.7% compared to Bitcoin and 90.5%

compared to Ethereum when downloading a ledger containing 500 million transactions.

Vault borrows the underlying proof-of-stake consensus protocol from Algorand and

addresses the above challenges of storage and bootstrapping costs using several

techniques:

First, Vault decouples the tracking of account balances from the tracking of double-

spent transactions. Each Vault transaction is valid for a bounded window of time,

expressed in terms of the position in the blockchain where the transaction can appear.

This allows Vault nodes to keep track of just the transactions that appeared in recent

blocks and to forget about all older transactions. The account balance state, on the

other hand, is not directly tied to past transactions, and zero-balance accounts can be

safely evicted.

Second, Vault uses an adaptive sharding scheme that combines three properties:

(1) it allows sharding the account state across nodes, so that each node does not need

to store the state of all accounts; (2) it allows all transactions to be validated by all

nodes, using a Merkle tree to store the balance information; and (3) it adaptively

caches upper layers of the Merkle tree so that the bandwidth cost of transferring

Merkle proofs grows gradually with the number of accounts.

Finally, Vault introduces stamping certificates to reduce the cost of convincing new

users of a block’s validity. The insight lies in trading off the liveness parameter used

in selecting a committee to construct the certificate of a new block [14, 22].1 Vault

augments existing certificates in Algorand with its stamping certificates, which have

a much lower probability of liveness (e.g., in many cases, Vault fails to find enough

participants to construct a valid certificate) but requires fewer participants to form

the certificate (thus significantly reducing their size) while still preserving the same

safety guarantees (i.e., an adversary still has a negligible probability of corrupting the

system). Building an extra layer of stamping certificates allows us to relax liveness for

stamping without affecting the liveness of transaction confirmation. Vault’s stamping

1Vault avoids the use of long-standing committees by using Algorand’s cryptographic sortition
and player-replaceable consensus.

15



certificates are also generated in a way that allows new clients to skip over many

blocks in one verification step.

We implemented a prototype of Vault and used it to evaluate its design and

individual techniques. The results show that Vault’s storage and bootstrapping cost is

477 MB for 500 million transactions, compared to 5 GB for Ethereum and 143 GB for

Bitcoin. Individual microbenchmarks also demonstrate that each of Vault’s techniques

is important in achieving its performance goals.

1.3 Contributions

The contributions of this thesis are:

∙ The design of Vault, a cryptocurrency that reduces storage and bootstrapping

costs by 10.5–301× compared to Bitcoin and Ethereum and that allows sharding

without weakening security guarantees.

∙ Techniques for reducing storage costs in a cryptocurrency, including the de-

coupling of account balances from double-spending detection and the adaptive

sharding scheme.

∙ The stamping certificate technique for reducing bootstrapping costs in a proof-

of-stake cryptocurrency.

∙ An evaluation of Vault’s design that demonstrates its low storage and bootstrap-

ping costs, as well as the importance of individual techniques.

The rest of this thesis is organized as follows. We describe related work in Chapter 2.

Chapter 3 gives an overview of Vault’s design and operation. The next three chapters

cover Vault’s techniques in detail: Chapter 4 describes how Vault decouples account

state from recent transactions, Chapter 5 describes Vault’s adaptive sharding, and

Chapter 6 describes Vault’s stamping certificates. Chapter 7 evaluates Vault’s design

and techniques, and Chapter 8 concludes.

16



Chapter 2

Related Work

Vault’s goal is to reduce the cost of storage and bootstrapping in a cryptocurrency.

There are two significant aspects to this goal, corresponding to two broad classes of

prior work.

The first is what we call the “width” of the ledger: how much data does each

participant need to store in order to validate transactions (including detecting double-

spending)? In the case of Bitcoin, for example, the “width” is the set of all past

unspent transactions [21]. Techniques that address the width of a ledger focus on

managing the substantial storage costs of keeping the history of all transactions on

each client.

The second is what we call the “length” of the ledger: how much data must be

transmitted to a new participant as proof of the current state of the ledger? In Bitcoin’s

case, the proof consists of all block headers starting from the genesis block, chained

together by hashes in the block headers, as well as all of the corresponding block

contents (to prove which transactions have or have not been spent yet). Techniques

addressing the length of the ledger typically allow clients to skip entries when verifying

block headers, which reduces the total download cost.

Table 2-1 summarizes Vault’s characteristics and compares them against other

cryptocurrencies. Bitcoin and Ethereum fail to provide any formal guarantees on

the correctness of the latest state. Permissioned cryptocurrencies like Stellar have

low bootstrapping cost but are vulnerable to an adversary which compromises a

17



System Execution State Proof Size Bootstrap Security

Bitcoin [21] UTXOs Headers + TXs Probabilistic (heaviest chain wins)

Ethereum [9] All accounts Headers + All accounts Probabilistic (heaviest chain wins)

Permissioned
(e.g., Stellar [18])

Live accounts
Shards Majority of trust set’s signa-

tures
Cryptographic if majority never
compromised; none otherwise

OmniLedger [17]
+ Chainiac [22]

UTXOs
Shards

Headers+Certificates
Sparseness + UTXOs

Shards Cryptographic with static attacker;
none with adaptive attacker

Algorand [14] UTXOs Headers+Certificates+TXs Cryptographic

Vault Live accounts
Shards

Headers+Certificates
Sparseness + Live accounts

Shards Cryptographic

Table 2-1: A comparison of Vault to other cryptocurrencies. UTXO refers to unspent
transaction outputs; TX refers to transactions.

quorum of permissioned nodes at any point. A system combining OmniLedger and

Chainiac lacks single points of failure, but even then an adversary may adaptively

compromise a selected committee. Algorand provides strong security guarantees, but

its bootstrapping costs grow prohibitively quickly. Vault alone achieves cryptographic

security against an adversary that can adaptively compromise users while scaling in

both storage and bootstrapping costs.

2.1 Steady-State Savings: The “Width” Approach

Many cryptocurrencies observe that the transaction log becomes impractical to store

and to transmit over time. They seek to reduce the size of this log, which both reduces

the amount of bandwidth needed to join the protocol (as a verifier) and also the

amount of storage needed to run the protocol.

Ethereum [9] supports the succinct summarization of account balances and other

state into a short digest. In each block, ledger writers use Patricia Merkle Trees [16] to

commit to the current set of balances. A Merkle Tree [19] allows a party to efficiently

produce proofs of an object’s membership in some set. These Merkle “checkpoints”

allow new clients to obtain balance state from any untrusted node and then quickly

verify this state against a known Merkle root. To prevent an attacker from replaying a

transaction issued by a user, the users embed a sequence number (called the transaction

nonce) in each transaction. Ethereum clients must track the last nonce issued by

18



each account in the balance tree, even if the account is empty (i.e., its balance is 0);

otherwise, an old transaction could be replayed (e.g., if an empty account receives a

deposit in the future). This means that Ethereum’s storage cost grows with the number

of all accounts that ever existed, which leaves Ethereum vulnerable to denial-of-service

attacks that create many temporary accounts. By decoupling account balances from

tracking double-spent transactions (Chapter 4), Vault prevents storage costs from

growing with the number of old accounts. We believe that Vault’s decoupling can be

adopted by Ethereum to avoid unbounded storage for old accounts.

OmniLedger [17] shards its ledger by users’ public keys, running Byzantine agree-

ment rounds on many ledgers in parallel. OmniLedger performs load balancing across

each shard to improve throughput and reduce bandwidth and storage costs propor-

tional to the number of shards. Sharding allows OmniLedger to scale horizontally

under increased load. However, OmniLedger requires a long-standing committee to

run the PBFT [7] protocol to establish consensus on the ledger’s state; this leaves it

vulnerable to a strong adversary which may quickly corrupt validators. Moreover, its

shard size and thus scalability is sensitive to the proportion of malicious users. Vault’s

adaptive sharding (Chapter 5) reduces the storage cost per participant and remains

secure against an adversary that can quickly corrupt users, but its throughput per

unit of bandwidth cost does not increase with sharding.

An alternative approach to reduce the “width” of the ledger is to issue fewer transac-

tions on the ledger. The Lightning Network [26] establishes payment channels between

pairs of users which supports many off-ledger transactions, relying on incentives to

prevent them from cheating. Participants in the channel post amounts of their stake

as collateral and then exchange transactions off the ledger to record their debts. As a

result, by posting only two transactions on the Bitcoin ledger, a pair of participants

may process arbitrarily many off-ledger transactions in a payment channel as long

as it contains a sufficient amount of capacity to absorb them. One advantage of this

scheme is that participants do not need to broadcast transactions within a payment

channel. However, it remains difficult to generalize this scheme over non-pairwise

payment relationships, the amount of collateral that each participant posts limits

19



channel capacity, and its incentive scheme assumes that participants always act to

maximize their payout. In Vault, participants store account balances and a set of

recent transactions. This storage cost depends on the total number of accounts and

not the transaction rate, thus obviating the need for off-ledger transactions as a way

of reducing storage cost.

MimbleWimble [25] uses an accumulator-like signature sinking scheme to “compact”

blocks together according to the amount of work proved in the block header. Combined

blocks eliminate transaction outputs which have been spent, reducing the state a

verifier is required to download. Switching to a balance-based scheme like Vault’s may

allow MimbleWimble to further increase its compaction savings by committing not

just to the set of unspent transactions but also to the current set of balances.

2.2 Short Proofs of State: The “Length” Approach

Other cryptocurrencies focus more specifically on the bandwidth costs of bootstrapping.

They observe that a small block header is often sufficient evidence of a block’s validity.

Therefore, they reduce the cost of verifying the block header sequence by shortening

it. This allows clients to efficiently prove the validity of their state at any particular

point in time.

Like Vault’s stamping certificates, Chainiac’s [22] Collective Signing (CoSi) [27]

scheme allows a committee of verifiers to jointly produce a proof that a particular

block is correct. As in Vault, verifying committees for some block also certify the

correctness of blocks into the future; upon observing a block confirmation, committees

produce forward links to the block. Since these links are arranged in a skiplist-like

configuration, they allow verifiers to quickly bootstrap to the current state. However,

Chainiac’s scheme is inherently vulnerable to an adversary that can adaptively corrupt

users because its committees are not secret. Sometime after the protocol designates

a committee, an adversary which compromises this committee can forge a proof

that a false view of the ledger is valid and thus deceive new clients into accepting

a bogus state. Since the committees that produce Vault’s certificate signatures are

20



secretly selected and emit exactly one message, Vault’s certificates resist attacks from

adversaries that can adaptively corrupt clients.

MimbleWimble also reduces the length of the ledger. Blocks with more work

supersede prior blocks with less work; since an adversary must possess significant

processing power to attack these blocks, the proof of work requirements increase the

new verifiers’ confidence in these blocks. As in Bitcoin, this approach does not produce

a proof of blocks’ correctness, since an adversary that controls the network can prevent

a user from ever observing the block with the largest amount of work. Vault builds on

Algorand for reaching consensus, which ensures safety (no forks) even in the presence

of network partitions.

In a permissioned cryptocurrency, where a supermajority of ledger writers are

trusted, a signed checkpoint suffices to convince a new verifier that the state is

correct [7]. Stellar [18] can be thought of in similar terms, where a core node will

accept a checkpoint from nodes in its quorum set. Vault targets a permissionless

setting where users do not configure trusted sets of known writers or trusted core

nodes. As a result, Vault authenticates checkpoint signatures using cryptographic

sortition, based on techniques from Algorand.

21



22



Chapter 3

Overview

Vault is a permissionless, proof-of-stake cryptocurrency that significantly reduces new

client bootstrapping costs relative to the state of the art by reducing both steady-state

storage costs and the sizes of proofs needed to verify the latest state.

3.1 Objectives

Suppose Alice is a new participant in Vault who holds the correct genesis block. She

wishes to catch up to the latest state and contacts Bob, an existing participant (or

perhaps a set of participants). Vault should achieve the following main goals:

∙ Bootstrap Efficiency : If Bob is honest, he should be able to convince Alice that

his state is correct and deliver this state using a minimal amount of bandwidth.

Moreover, once Alice synchronizes with the protocol, she should be able to help

other new clients catch up.

∙ Safety : If Bob is malicious, he should not be able to convince Alice that any

forged protocol state is correct.

∙ Storage Efficiency : Bob must store a small amount of data to execute the Vault

protocol correctly and to help Alice join the network.

Our design also confers additional benefits:

23



∙ Charging for Storage: Adversaries that wish to inflate the size of the protocol

state must acquire a significant amount of stake to do so.

∙ Availability : Vault continues to operate even when some users disconnect from

the network, despite sharding state across clients.

3.2 Threat Model

Vault should achieve its goals even in the face of adversarial conditions. However, many

properties are unachievable given an arbitrarily strong attacker [13]. We therefore limit

the attacker’s power with the following assumptions, inherited from Algorand [14]

(owing to the fact that Vault builds on Algorand’s consensus protocol):

∙ Bounded Malicious Stake: At least some proportion ℎ of the stake in Vault is

controlled by honest clients at any time, where ℎ > 2
3
. Stake sold off by any user

counts towards this threshold for some period 𝑑 (e.g., 48 hours) following the

sale.

∙ Cryptographic Security : The adversary has high but bounded computation power.

In particular, the adversary cannot break standard cryptographic assumptions.

∙ Adaptive Corruptions : The adversary may corrupt a particular user at any time

(given that at no point it controls more than 1− ℎ of the stake in Vault).

∙ Weak Synchrony : At all times, the adversary may reschedule any message in a

small window of time whose duration is fixed in advance (e.g., lasting 20 seconds)

and drop a small number of these messages. In addition, the adversary may

introduce network partitions lasting for a duration of at most 𝑏 (e.g., 24 hours).

During a network partition, the adversary may arbitrarily reschedule or drop

any message. The minimum time between network partitions is nontrivial (e.g.,

4 hours).

24



3.3 Algorand Background

Vault’s consensus protocol is based on Algorand, which we briefly review here. All

users’ clients in Vault agree on an ordered sequence of signed transactions, and this

sequence constitutes the cryptocurrency ledger. Vault is a permissionless proof-of-

stake system, meaning that any user’s client, identified by a cryptographic public key,

may join the system, and the client of any user holding any amount of money may

eventually be selected to append to the ledger. Honest clients listen for proposed

transactions and append recent valid transactions to the ledger.

The frequency at which a user’s client is selected is proportional to the user’s stake.

Ledger writers batch sets of transactions into blocks. Each block contains a block

header, which in turn contains a cryptographic commitment to the transaction set.

Block headers also contain the cryptographic hash of the previous block in the ledger.

Since block headers are small, these hashes allow clients to quickly verify historical

transaction data.

Additionally, block headers contain a special pseudorandom selection seed 𝑄.

Before a client proposes a block, it computes 𝑄 in secret, so 𝑄 is unpredictable by

the rest of the network and partially resistant to adversarial manipulation. As in

Algorand, Vault uses 𝑄 to seed Verifiable Random Functions (VRFs) [20] to implement

cryptographic sortition. Cryptographic sortition produces a sample of the users in

the system, weighted by the stake of their accounts. Each client’s membership in the

sample remains unknown to an adversary until the client emits a message because a

VRF allows the client to compute this membership privately; since VRFs produce a

proof of their correctness, any other client can verify this membership. To protect the

system against adversaries which corrupt a user after that user is selected, clients sign

their messages with ephemeral keys, which they delete before transmission.

Vault uses a Byzantine agreement scheme which operates in rounds. Each round,

the protocol selects some block proposer which assembles the transaction set and

header forming the block, which is broadcast via a peer-to-peer gossip network [12].

Subsequently, the protocol selects a committee which verifies the correctness of the

25



block. To sample users in a manner resistant to adversarial manipulation, committees

from round 𝑟 are seeded with the value of 𝑄 from round 𝑟− 1 and weighted by proofs

of stake from round 𝑟 − 𝑏.

Once clients become confident of a block’s confirmation, Vault uses sortition to

select a subset of clients to certify the block by signing its receipt (i.e., Algorand’s

“final” round). The aggregation of these signatures past some secure threshold, along

with proofs of stake for each signature, forms a final certificate which proves to any

client that a block is valid: the Byzantine agreement protocol guarantees that for each

round, at most one valid block (or an empty block if the proposer misbehaves) reliably

receives this certificate. Given knowledge of only the genesis (i.e., the first) block, a

new client is convinced that the block from round 𝑛 is correct if a peer can produce

𝑛− 1 block headers and the 𝑛− 1 corresponding certificates of validity.

3.4 System Design

Figure 3-1 gives an overview of Vault’s data structures, which are the key to Vault’s

lower storage and bootstrapping costs. The data structures are based around a chain

of block headers, shown in the middle of the figure. Each block header consists of four

elements: PrevBlock (the hash of the previous block), 𝑄 (the seed for cryptographic

sortition), TxRoot (a Merkle tree commitment [19] to the list of transactions in the

block), and BalRoot (a sparse Merkle tree commitment [8] to the balances of every

user after applying the block’s transactions).

Every block must follow certain rules in order to be considered valid:

1. Transactions in the block are not expired. Each transaction includes the first

and last block number (in the blockchain) where it can appear.

2. After all transactions in the block are executed, no account ends up with a

negative balance.

3. The transactions in the block have not been executed before (i.e., have not

appeared previously on the ledger).

26



$$

H(tx1) 
H(tx2) 

. . .

Q

$$

H(tx1) 
H(tx2) 

. . .

Q

$$

H(tx1) 
H(tx2) 

. . .

QQ

$$

H(tx1) 
H(tx2) 

. . .

…Q

$$

H(tx1) 
H(tx2) 

. . .

Q

$$

H(tx1) 
H(tx2) 

. . .

Q

$$

H(tx1) 
H(tx2) 

. . .

Q

H(tx1) 
H(tx2) 

. . .

Q

$$

H(tx1) 
H(tx2) 

. . .

…

$ $$

Chapter 4

Chapter 6

Figure 3-1: An overview of the authenticated data structures used in Vault. In this
figure, the objects each client stores locally on disk are outlined in solid black, while
the objects it may discard are outlined with faint dots. The triangles annotated with
“$$” represent the sparse Merkle trees containing account balances, while the bottom
row of rectangles annotated with “𝐻(tx)” represents the set of transaction hashes in
each block. Both the transaction hash set and the balance set are committed to in
block headers (the row of rectangles in the middle of the figure); the commitments
are represented as solid black dots. In addition, each block header contains 𝑄 (i.e.,
the selection seed), which is computed pseudorandomly and seeded with the previous
header’s 𝑄-value. The top row of rectangles and seals represent Vault’s small stamping
certificates and large final certificates; we draw arrows to illustrate how a particular
certificate is verified by two block headers. Not shown is Vault’s adaptive sharding
(Chapter 5).

4. BalRoot correctly reflects all users’ balances after applying the block’s trans-

actions to the previous block’s balances.

In order to check that a new block follows these rules, clients maintain two pieces of

state, shown in solid black (as opposed to grayed out) in the bottom half of Figure 3-1:

∙ The tree of account balances from the most recent block. This allows a client

to ensure that new transactions have sufficient funds (rule 2), and to verify the

correctness of the new balance tree (rule 4).

∙ The lists of transactions from the last few blocks. This allows a client to ensure

that a transaction has not appeared previously (rule 3) by checking that a new

transaction does not appear in any of the previous transaction lists. To minimize

the storage required by these lists, TxRoot commits to a list of transaction

hashes, rather than the transactions themselves.

27



Clients can discard transaction lists older than a certain threshold, correspond-

ing to the maximum validity interval of a transaction, which we denote 𝑇max.

Transactions that appeared more than 𝑇max blocks ago will be rejected by rule 1

and need not be tracked explicitly.

Chapter 4 describes in more detail how clients check these rules while using a

minimal amount of storage. Chapter 5 further describes Vault’s adaptive sharding,

which allows clients to store only a subset of the balance tree. These techniques

combine to reduce the “width” of Vault’s ledger.

Vault uses Algorand’s consensus protocol to decide which valid block will be next in

Vault’s blockchain. The consensus protocol produces a certificate confirming agreement

on that block, shown in the top half of Figure 3-1. These certificates allow a new

client to securely join the system and determine which chain of blocks is authentic.

Each certificate consists of a set of signatures (of the block header) by a committee

of clients chosen pseudorandomly using cryptographic sortition. In order to verify

a certificate, a new client must check that all of the signatures are valid (which is

straightforward) and check that the clients whose signatures appear in the certificate

were indeed members of the committee chosen by cryptographic sortition (which

requires state). Verifying committee membership requires two pieces of state: the

sortition seed 𝑄, used to randomize the selection, and the balance tree at BalRoot,

used to weigh clients by how much money their users have.

In Algorand’s certificates, BalRoot comes from 𝑏 blocks ago, while 𝑄 comes from

the immediately previous block. This means that to verify block 𝑛 the client must

first verify block 𝑛− 1, so that the client knows the correct 𝑄 for verifying block 𝑛’s

certificate. Furthermore, the committees used for Algorand’s certificates are relatively

large, so that with high probability there are enough committee members to form a

certificate for each block. These certificates are shown with a big rectangle at the top

of Figure 3-1.

Vault introduces a second kind of certificate, called a stamping certificate, which

helps speed up bootstrapping. The stamping certificate differs in two important ways.

First, instead of using 𝑄 from the immediately previous block, it uses 𝑄 from 𝑏 blocks

28



ago (for security, BalRoot must be chosen from 𝑏 blocks before 𝑄, so this means

BalRoot now comes from 2𝑏 blocks ago). This allows clients to “vault” forward by 𝑏

blocks at a time. Second, the stamping certificates use a smaller committee size. This

makes the certificate smaller since it contains fewer signatures. The smaller rectangles

at the top of Figure 3-1 represent these stamping certificates, along with the arrows

reflecting the 𝑄 and BalRoot values needed to verify them.

Vault sets parameters so that the stamping certificate is just as hard for an

adversary to forge as Algorand’s original certificates. The trade-off, however, is that in

some blocks, there may not be enough committee members to form a valid stamping

certificate. To help new clients join the system, every Vault client keeps the stamping

certificates for approximately every 𝑏th block since the start of the blockchain, along

with full Algorand-style certificates for the blocks since the last stamping certificate.

Other certificates are discarded (shown as grayed out in Figure 3-1). Chapter 6

describes Vault’s stamping certificates in more detail, which help Vault shrink the

“length” of its ledger.

29



30



Chapter 4

Efficient Double-Spending Detection

This chapter describes Vault’s design for minimizing the amount of storage required by

a client to verify new transactions. To understand the challenges in doing so, consider

the key problem faced by a cryptocurrency: double-spending. Suppose Alice possesses

a coin which she gives to both Bob and Charlie. A secure cryptocurrency must reject

one of these transactions, as if both are accepted, Alice has double-spent her coin.

In Bitcoin, each transaction has a set of inputs and outputs. The inputs collect

money from previous transactions’ outputs, which can then be used by this transaction.

The outputs define where the money goes (e.g., some may now be spendable by another

user, and the rest remains with the same user). To detect double-spending in this

scheme, Bitcoin must determine whether some output has been previously spent or

not. Thus, clients must store the set of all unspent transaction outputs.

A more space-efficient approach is to store the balance associated with each user,

rather than the set of unspent transactions. For example, Ethereum follows this

approach. The cost savings from storing just the balances may be significant: for

instance, there are ten times as many transactions in Bitcoin as there are addresses [4,

2].

Switching to a balance-based scheme introduces a subtle problem with transaction

replay. If Alice sends money to Bob, Bob may attempt to execute the same transaction

twice. In Bitcoin’s design, this would be rejected because the transaction already

spent its inputs. However, in a naïve design that tracked only account balances, this

31



transaction still appears to be valid (as long as Alice still has money in her account),

and Bob may be able to re-execute it many times to drain Alice’s account.

To distinguish between otherwise identical transactions, Ethereum tags each

account with a nonce, which acts as a sequence number. When an account issues a

transaction, it tags the transaction with the account’s current nonce, and when this

transaction is processed, the account increments its nonce. The transactions issued by

an account must have sequential nonces. Because of this design, Ethereum cannot

delete accounts with zero balance; all clients must track the nonces of old accounts to

prevent replay attacks, on the off chance that the account will receive money in the

future.

The storage of empty accounts significantly increases the storage overhead of

Ethereum. Our analysis of its ledger shows that approximately one-third of all

Ethereum addresses have zero balance (Chapter 7). Worse, the inability to garbage-

collect old accounts constitutes a serious denial-of-service vulnerability: an adversary

with a small amount of money may excessively increase the cryptocurrency’s storage

footprint by creating many accounts. In fact, in 2016 an Ethereum user inadver-

tently created many empty accounts (due to a bug in Ethereum’s smart contract

processing) [6], requiring the Ethereum developers to issue a hard fork to clean up the

ledger [29].1

At a high level, Vault avoids the problem of storing empty accounts by forcing

transactions to expire. The rest of this chapter describes Vault’s solution in more

detail.

4.1 Transaction Expiration

All transactions in Vault contain the fields 𝑡issuance and 𝑡expiry, which are round numbers

delineating the validity of a transaction: blocks older than 𝑡issuance or newer than 𝑡expiry

1Currently, Ethereum transaction fees are high enough to make such attacks unlikely. However,
proposed cryptocurrency designs like Algorand [14] aim to support orders of magnitude more
throughput, which would lead to lower transaction fees, and which would in turn make such attacks
worth considering.

32



Alice→Bob:       $30
Issuance:       550
Expiry:       574
Nonce:           8

Alice

Figure 4-1: The format of a Vault transaction from Alice to Bob. In addition to the
sender, receiver, and amount, the transaction contains 𝑡issuance, 𝑡expiry, and a nonce. A
valid transaction contains the sender’s digital signature.

may not contain the transaction. Moreover, we require that 0 ≤ 𝑡expiry−𝑡issuance ≤ 𝑇max

for some constant 𝑇max. This way, a verifying client may detect the replaying of a

transaction simply by checking for its presence in the last 𝑇max blocks. (Transactions

still contain a nonce to distinguish between otherwise identical transactions; however,

this nonce is ephemeral and needs not be stored.) As a result, clients do not need to

track account nonces and can delete empty accounts from the balance tree. Figure 4-1

shows the format of one transaction.

Requiring transaction lifetimes to be finite means that, if a transaction fails to enter

a block before it expires (e.g., because its transaction fee was lower than the current

clearing rate), the issuer must reissue the transaction in order for the transaction to

be executed. On the other hand, the expiration time ensures that old transactions

that failed to enter a block when they were originally issued cannot be re-entered into

a block at a much later time by an adversary; i.e., expiration limits the outstanding

liabilities of an account.

The choice of 𝑇max affects two considerations. The first is that clients must store

the last 𝑇max blocks’ worth of transactions to detect duplicates; a larger 𝑇max increases

client storage. (Clients store transaction hashes instead of the transactions themselves

to reduce this cost.) The second is that clients must reissue any transaction that

fails to enter a block within 𝑇max (if they still want to issue that transaction). In our

experiments, we set 𝑇max to the expected number of blocks in 4 hours (which, based

on Algorand’s throughput of ∼750 MB/hour [14], suggests at most a few hundred

33



megabytes of recent transaction hashes); we believe this strikes a balance between the

two constraints.

4.2 Efficient Balance Commitments

To efficiently commit to the large set of balances in BalRoot, Vault clients build

Merkle trees [19] over these sets. With a Merkle tree, clients may prove that some

object exists in a given set using a witness of size 𝒪(log 𝑛), where 𝑛 is the total number

of objects in the set. This allows them to efficiently construct proofs of stake. For

example, for a balance set containing 100 million accounts (4 GB of on-disk storage), it

suffices for a client to send 1 KB of data to prove its stake against a 32-byte BalRoot

in a block header. It is important for the proofs of stake in Vault to be small since a

certificate may contain thousands of these proofs (see Chapter 6).

For clients to verify the validity of BalRoot for a new block, BalRoot must be

deterministically constructed given a set of balances. As a result, the Merkle leaves are

sorted before they are hashed together to create the root. Since a leaf may be deleted

when an account balance reaches 0, Vault uses sparse Merkle trees [8] to perform

balance commitments. A sparse Merkle tree possesses the structure of a prefix trie,

which allows us to perform tree insertions and deletions with a Merkle path witness of

size 𝒪(log 𝑛).

In fact, a witness of size 𝒪(log 𝑛) is sufficient for a client to securely update

BalRoot without storing the corresponding Merkle tree. We exploit this self-verifying

property of Merkle witnesses in Chapter 5.

34



Chapter 5

Sharding Balance Storage

As the number of accounts in Vault grows, the cost of storing balances becomes the

primary bottleneck. Concretely, each account requires about 40 bytes (32 bytes for a

public key and 8 bytes for the balance). This means that if there were 100 million

accounts, every Vault client would need to store about 4 GB of data, which may be

acceptable (e.g., it is less than Bitcoin’s current storage cost). On the other hand, if

Vault grew to 10× or 100× more accounts, the storage cost would likely be too high

for many clients.

To address this problem, Vault implements sharding to split the tree of balances

across clients, pseudorandomly distributed by the client user’s key. Sharding allows

clients to deal with large ledger sizes. As an extreme example, consider a system with

100 billion accounts and 1 million online clients. Setting the number of shards to 1000

would require each client to store approximately 4 GB of data (i.e., 1/1000th of the

balances), rather than the full 4 TB balance tree. Even with a large number of shards

in this example, every shard’s data is held by about 1000 clients, ensuring a high

degree of availability.

One challenge in sharding is that fewer clients now have the necessary data to

verify any given new transaction. Existing proposals (like OmniLedger [17]) implement

sharding by restricting verifiers’ responsibility of preventing double-spending attacks to

their own shards. These proposals seem attractive because they reduce not just storage

costs but also bandwidth and latency costs, allowing the system to scale throughput

35



arbitrarily. Unfortunately, such schemes are vulnerable to adversaries which control a

fraction of the currency. As shard size decreases, so do shards’ replication factors, and

as a result, transactions in a given shard are verified by a small number of clients. An

adversary may own a critical fraction of the stake in a shard by chance, enabling it to

control the entire shard. Thus, these systems require an undesirable trade-off between

scaling and security, which in practice limits the degree of sharding.

Vault’s design allows sharding without any reduction in security because all

clients retain the ability to verify all transactions. The trade-off comes in terms of

increased bandwidth costs during normal operation (which may reduce the maximum

throughput): as we describe in the rest of this chapter, with Vault’s adaptive sharding,

each transaction must include a partial Merkle proof, which grows proportionally with

the size of the balance tree.

5.1 Secure Shard Witnesses

Vault shards the tree of account balances into 2𝑁 pieces by assigning an account to

a shard according to the top 𝑁 bits of the account’s public key. A client stores a

shard by storing the balances for the accounts in that shard. Clients store the shard(s)

corresponding to their user’s public key(s). Clients that join the network, or create a

new account, download their accounts’ corresponding shards from existing peers.

The main challenge is to support sharding without a loss in security by ensuring

that all clients can verify all transactions. Recall that the balance set is stored in

a sparse Merkle tree (§4.2) whose root is committed to in the block header. These

trees support insertions, updates, and deletions with witnesses of size 𝒪(log 𝑛). To

allow a client to check the validity of any transaction in a proposed block (even if that

transaction operates on accounts outside of this client’s shard), Vault transactions

include Merkle witnesses for the source and destination accounts in the previous

block’s BalRoot. Any client that possesses the previous block’s BalRoot can use

the Merkle witnesses to confirm the source and destination account balances and thus

to verify the transaction.

36



$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

Figure 5-1: An illustration of a single Vault shard and the balance Merkle tree. Dots
in this image represent Merkle nodes, and the “$” symbols represent account balances.
The solid black dots and dark “$” symbols represent the balances which are part of
the shard (the shaded gray triangle), while those in gray represent the parts of the
tree which are not. The row of black dots in the middle represent the frontier of
Merkle nodes that is stored by all clients regardless of shard assignment. The jagged
line connecting one of these nodes to an unstored leaf represents the Merkle witness
necessary for performing a balance update.

Unfortunately, these witnesses increase transaction size. For example, if the

transaction size is 250 bytes (on par with Bitcoin), and there are 100 billion accounts

in the system, a single Merkle witness will hold 37 sibling nodes in expectation, which

is 1.2 KB. Two witnesses would introduce 2.4 KB of overhead per transaction—almost

an 11× increase. The next section describes Vault’s approach for mitigating this cost.

Note that the inclusion of Merkle witnesses increases bandwidth but not storage

costs: since all blocks are certified by an honest committee, verifiers discard the

witnesses after they recompute BalRoot. Thus, the trade-off applies only to the

bandwidth costs of broadcasting transactions during rounds.

5.2 Adaptive Sharding: Truncating Witnesses

To manage the overhead of larger witnesses, clients store (in addition to their shards)

an intermediate frontier that cuts across the Merkle tree—roughly speaking, the subset

of tree nodes at some depth. Storing this frontier allows clients to verify partial

witnesses, which prove the path from a leaf node to the frontier, rather than all the

way to BalRoot. Figure 5-1 illustrates one such partial witness.

We can quantify the trade-off between transaction size and the cost of storing

37



the frontier. First, we observe that moving the frontier up in the tree by one level

(i.e., going from the nodes in the frontier to their parents) increases the length of

a partial Merkle witness by a single sibling. Second, moving the frontier up in the

tree by one level halves its size. Vault can thus tune the trade-off between the size of

partial Merkle witnesses in each transaction and the amount of storage required for

the frontier.

If the frontier lies in the dense region of the Merkle prefix tree (i.e., towards the

top of the tree), the shape of the frontier is simple: it involves all the Merkle nodes

at a given level. However, if the frontier lies near the leaves of the Merkle prefix tree

(i.e., near the bottom), a client cannot simply store all the nodes at a given level, as

the layers are larger than the balance set itself (owing to the sparseness of the Merkle

tree). Instead, these frontiers assume a “jagged” shape; they are defined as the nodes

which sit at a fixed height from the bottom of the tree.

To update a node in the frontier, it suffices for a client to observe a witness and

follow these two rules: (1) if the witness increases the height of a frontier node, the

client replaces that frontier node with its children (which were present in the witness);

and (2) if the witness decreases the height of a frontier node, the client replaces that

frontier node with its parent (if it did not previously store the parent). Note that

the length of the witness alone is sufficient for determining whether an insertion, an

update, or a deletion occurred.

By application of the coupon collector’s problem [5], we see that if there are

approximately 𝑛 log 𝑛 account balances, then in expectation the last dense layer is of

depth 𝑛. For example, if there are 100 billion ≈ 237 accounts, then the 𝑛 = 32nd layer

is the last dense one.

38



Chapter 6

Succinct Ledger Certificates

Bootstrapping a new client in a proof-of-stake cryptocurrency, such as Algorand,

requires transferring a significant amount of data to the new client. This is due to

two factors. First, the selection of each block depends on the state of the system at

the time the block was selected. For instance, as mentioned in §3.3, the Algorand

committee that forms the final certificate of a block is selected based on the random

seed 𝑄 from the previous block. Thus, to verify the correctness of block 𝑛, a new

client must first verify the correctness of block 𝑛− 1 in order to obtain the correct 𝑄

value for verifying block 𝑛. Second, in Algorand’s design, the certificate confirming

a block consists of a large number of signatures, reflecting the large committee size.

This arrangement is shown at the top of Figure 6-1.

Vault addresses this problem using a combination of two techniques. First, Vault

introduces a stamping certificate that can be verified using state from 𝑏 and 2𝑏 blocks

ago rather than the state from 1 block ago. This allows clients to “leapfrog” by 𝑏 blocks

at a time instead of having to verify every single block in the blockchain. Vault uses

Algorand’s cryptographic sortition to privately select a committee for such stamping

certificates in a way that does not reveal the committee membership to an adversary

in advance. This ensures that an adversary cannot selectively corrupt members of

this committee to falsify a certificate. Certificate signatures use ephemeral keys of

each committee member, which are deleted by each committee member before they

broadcast their signature. This is shown in the middle of Figure 6-1 and described in

39



Q

§6.1

§6.2

Algorand

QQ QQQ QQQ

$ $$

QQQ Q QQQQ Q

$ $$

QQQQQQ QQQ

Dense tailCandidate
breadcrumbQ-breadcrumbBal-breadcrumb

$ $$

Figure 6-1: Two optimizations used to reduce the bandwidth needed to prove validity
of the latest state. In this figure, 𝑏 = 𝑐 = 3; as before, objects that clients can discard
are outlined with dots. The top figure depicts the basic ledger data structure without
any optimization: a large final certificate authenticates each block header, and each
certificate depends on the 𝑄 value immediately before it and the proofs of stake 𝑏
blocks ago. The next figure shows the additional stamping certificate chain with the
leapfrog optimization: each leapfrogging certificate depends on the value of 𝑄 from
𝑏 blocks ago and the balances from 2𝑏 blocks ago (§6.1). The bottom figure shows
stamping committee optimization used to reduce the size of certificates (§6.2). It
illustrates the candidate, Q-, and Bal-breadcrumbs which consist of a small stamping
certificate and block header along with a tail of block headers. It shows the dense tail
formed by the large final certificates that prove validity of the current block. (The
figure omits the frozen breadcrumbs, which are farther back in the chain.)

more detail in §6.1.

Second, Vault uses a smaller committee size to generate the stamping certificates,

which reduces the size of the certificates themselves (since they contain fewer signa-

40



tures).1 To ensure that a smaller committee does not give the adversary a higher

probability of corrupting the committee, Vault requires a much larger fraction of

expected committee members to vote in order for the stamping certificate to be valid.

This means that, with significant probability, the committee fails to gather enough

votes to form a stamping certificate. However, this is acceptable because new clients

have two fallback options: they can either verify Algorand’s full certificate, or they

can verify a stamping certificate for a later block and backtrack using PrevBlock

hashes in the block headers. This arrangement is shown at the bottom of Figure 6-1

and described in §6.2.

6.1 Leapfrog Protocol

To allow leapfrogging, Vault constructs a sortition committee for the stamping cer-

tificate of block 𝑛 using the seed 𝑄 from block 𝑛− 𝑐, where 𝑐 ≥ 1 is some constant.

For security, the proof-of-stake balances must be selected from 𝑏 blocks before the

seed 𝑄, so they are chosen from block 𝑛 − 𝑐 − 𝑏. Members of this committee wait

for consensus on block 𝑛, and once consensus is reached, they broadcast signatures

for that block (after deleting the corresponding ephemeral signing key), along with

proofs of their committee selection. The set of these signatures forms the stamping

certificate for BlockHeader𝑛.

As mentioned above, this committee is, in principle, known as soon as block

𝑛 − 𝑐 has been agreed upon. However, the committee is selected in private using

cryptographic sortition, and honest clients do not reveal their committee membership

until they vote for block 𝑛, which prevents an adversary from adaptively compromising

these committee members.

Now each certificate depends on two previous block headers: Certificate𝑛 de-

pends on 𝑄 from BlockHeader𝑛−𝑐 and BalRoot from BlockHeader𝑛−𝑐−𝑏. Moreover,

Certificate𝑛 validates BlockHeader𝑛, which itself contains the value of 𝑄 used for

1 Note that multi-signatures [1] would not significantly reduce the size of the certificates since the
certificate needs to include a proof of cryptographic sortition (VRF) and a partial Merkle proof for
each committee member whose signature appears in the certificate, which cannot be aggregated away.

41



Certificate𝑛+𝑐 and the value of BalRoot used for Certificate𝑛+𝑐+𝑏.

To optimize for the case of a new client catching up on a long sequence of blocks

starting with the genesis block, we set 𝑐 = 𝑏, so that the client does not need to validate

separate blocks for 𝑄s and BalRoots. This reduces the bootstrapping bandwidth by

a factor of 𝑏, since a new client needs to download and authenticate every 𝑏th block

header and certificate.

To ensure that any client can help a new peer bootstrap, all clients store the block

header and certificate for blocks at positions that are a multiple of 𝑏. Additionally,

to ensure that the base case is true, the first 2𝑏 blocks in Vault are predetermined

to be empty. Finally, to quickly catch up after momentarily disconnecting from the

network, clients keep the previous 2𝑏 block headers at all times.

6.1.1 Choosing 𝑏

Vault’s choice of 𝑏 trades off the weak synchrony assumption (i.e., partitions may not

last for periods longer than 𝑏) against 𝑑, the speed at which stake that is sold becomes

malicious. We briefly justify our choice of 𝑏 below; we refer the reader to Algorand’s

security analysis [15] for a formal treatment.

On the one hand, suppose the adversary partitions the network for more than 𝑏

blocks starting at round 𝑟′. Then the adversary may manipulate its public keys at

round 𝑟′ and the value of 𝑄 at round 𝑟′ + 𝑏 such that at round 𝑟′ + 𝑏 + 1, it engineers

a proposer along with a committee whose members it wholly controls. In this way,

the adversary gains total control of the ledger. Therefore, 𝑏 must be large enough to

tolerate complete partitions.

On the other hand, suppose a rich, honest user sells off 50% of the stake in Vault

at round 𝑟′. A few rounds after the user completes the sale, a poor adversary corrupts

this user, who by chance controls a supermajority of the committee at round 𝑟′ + 𝑏+ 1.

Then again the adversary gains control of the ledger. Although this adversary controls

little of the system’s current stake, it controls much of the system’s past stake. As a

result, 𝑏 must be small enough to allow honest users to finish participating in Vault

after selling off their stake.

42



Since 𝑐 introduces an extra delay to certificate creation, for security we require

that not 𝑏 ≤ 𝑑 but instead 𝑏 + 𝑐 ≤ 𝑑, and since we set 𝑐 = 𝑏 we require that 2𝑏 ≤ 𝑑.

At Vault’s highest level of throughput, 2𝑏 = 𝑑 = 2880 corresponds to about two days’

worth of blocks.

6.2 Stamping Committees

Algorand’s consensus protocol requires thousands or tens of thousands of signatures

to produce a final certificate for a block. This threshold is very high because Algorand

guarantees a very low rate of failure in terms of liveness and safety. A failure in

liveness prevents a block from being confirmed, while a failure in safety may produce

a ledger fork.

As with final certificates, a stamping committee threshold should be set sufficiently

high such that an adversary cannot gather the signatures required to trick a new client

into accepting a forged ledger fork with high probability. Since adversaries know when

they are selected for a leadership in advance, and a certificate must be secure for all

time, we must keep a strict safety threshold.

Although we cannot relax safety, we can greatly relax the liveness property. Suppose

a new client has already verified the block headers for blocks 𝑟 and 𝑟+𝑏, using stamping

certificates, but there was no stamping certificate produced for block 𝑟 + 2𝑏 due to

relaxed liveness requirements. If there was a stamping certificate produced for block

𝑟 + 2𝑏 − 1, the new client can efficiently verify that stamping certificate and block

instead.

Specifically, the new client can ask an existing peer for the headers of blocks 𝑟 − 1

and 𝑟 + 𝑏− 1 and efficiently verify them by checking PrevBlock hashes in blocks 𝑟

and 𝑟 + 𝑏 respectively. Since headers are relatively small, this costs the client little

bandwidth. We use the term breadcrumb to denote this chain of PrevBlock pointers

from a stamping certificate to an earlier block header. Figure 6-1’s bottom row shows

two such breadcrumbs: one that required backtracking by one block (for BalRoot),

and one that did not require any backtracking (for 𝑄).

43



If the stamping certificate at 𝑟 + 2𝑏 − 1 also failed to form, Vault repeats this

process to find the highest block below 𝑟 + 2𝑏 that did have a stamping certificate. If

no such block exists in a 𝑏-block interval, Vault falls back to a full Algorand certificate.

While 𝑄 is usually unpredictable and random, an adversary may introduce bias

into its value during network partitions. Given this bias, Vault requires a safety failure

rate of 2−100 for both its final and stamping certificates. However, with a relaxed

liveness assumption, we can decrease certificate size by at least an order of magnitude.

For example, with an honesty rate of ℎ = 80%, a final certificate requires a

threshold of 7,400 signatures. If we allow stamping certificates to fail to form 65%

of the time, then it suffices to have a threshold of 100 signatures (out of a suitably

smaller committee). Applying the stamping optimizations allows clients in Vault to

verify the latest block header in a 10-year old ledger by downloading 365 MB or less.

Appendix A analyzes stamping certificate size given other settings of the honesty and

liveness failure rates.

Given that stamping certificate creation may occasionally fail, each breadcrumb

must contain a small “tail” of block headers which are required to certify the two

subsequent breadcrumbs produced at most 𝑏 and 2𝑏 blocks ahead, respectively. Since

block headers are relatively small (less than 256 bytes), the cost of storage here is low

(less than 1.3 MB for 𝑏 = 1440). As clients observe the confirmation of new blocks

and the successful creation of new stamping certificates, they update their state so

as to minimize the sizes of these tails. Clients must also hold a dense tail of block

headers and final certificates at the end of the ledger for each block after the last

header for which a stamping certificate was produced. Vault clients discard this dense

tail whenever new stamping certificates are successfully created.

6.2.1 Proof Components

For completeness, we describe the components of the proof sent to a new client to

convince it that the ledger state is valid, and we describe the invariants that apply

to each component of this proof. See Appendix B for a description of one algorithm

which achieves these invariants.

44



∙ Dense tail : The set of all headers and full final certificates since the candidate

breadcrumb.

∙ Candidate breadcrumb: The breadcrumb with the last-observed stamping cer-

tificate. The candidate breadcrumb is tentative and may be overwritten by a

“better” breadcrumb (i.e., a more recent breadcrumb which makes the candidate

breadcrumb obsolete). This breadcrumb is never more than 𝑏 blocks ahead of

the Q-breadcrumb.

∙ Q-breadcrumb: The breadcrumb with the stamping certificate immediately

preceding the candidate breadcrumb. This breadcrumb’s certificate has been

fixed as no subsequent certificate may be better than this. However, its tail of

block headers may not yet be trimmed.

∙ Bal-breadcrumb: The breadcrumb with the stamping certificate immediately

preceding the Q-breadcrumb. Like the Q-breadcrumb, its certificate is final and

unchanging. Moreover, its tail remains “minimal” as new certificates are seen.

In other words, it maintains the shortest tail such that the following conditions

are true:

1. It contains the block header needed to authenticate the Q-breadcrumb’s

certificate’s 𝑄-value.

2. It contains the block header needed to authenticate the candidate bread-

crumb’s certificate’s proofs of stake.

∙ Frozen breadcrumbs : The set of the rest of the breadcrumbs. These breadcrumbs

have finalized both their certificates and tails. This set expands and absorbs

the Bal-breadcrumb when the candidate breadcrumb “graduates” into a Q-

breadcrumb, which in turn “graduates” into a Bal-breadcrumb.

45



46



Chapter 7

Evaluation

The primary question that our evaluation attempts to answer is, “How effective is

Vault at reducing the bandwidth cost of helping a new client join the network?” §7.2

presents the results.

To understand why Vault achieves a reduction in bandwidth, we further answer

three questions targeted at each of Vault’s techniques, as follows. Recall that two

components contribute to bootstrapping costs: the state needed to execute the protocol

and the bandwidth required to convince a new client that this state is correct.

∙ Balance Pruning : How much does transaction expiration reduce storage cost

by? (§7.3)

∙ Stamping Certificates : What are the cost savings of using Vault’s sparse sequence

of stamping certificates for bootstrapping? (§7.4)

∙ Balance Sharding : What are the trade-offs involved in sharding Vault’s balance

sets? (§7.5)

7.1 Experimental Setup

To answer the above questions, we implemented the data structures needed to exe-

cute the Bitcoin, Ethereum, Algorand, and Vault protocols. However, we have not

integrated these data structures into their respective systems. We vary transaction

47



volumes between 50 and 500 million transactions, and we fill all blocks with the maxi-

mum number of transactions given some fixed block size. (As of February 2018, there

are around 300 million transactions in Bitcoin [4] and around 150 million transactions

in Ethereum [10].) We ignore the storage cost of auxiliary data structures required

to efficiently update a protocol’s state; for example, we do not implement database

indexes.

Algorand uses a transaction format similar to Bitcoin’s. We consider only simple

transactions with the form of one input and two outputs (one to the receiver and the

other to self).

The ratio of unique accounts to transactions on Ethereum is around 15% [11, 10]

as of January 1, 2018. Additionally, we obtained the Ethereum ledger up to this date

by synchronizing a Parity [23, 24] Ethereum client (in fatdb mode). Our analysis of

the Ethereum state indicates that around 38% of all accounts have no funds and no

storage/contract data (i.e., only an address and a nonce). For Ethereum and Vault,

we fix the account creation rate at 15% and the churn rate at 38%. Other than to

count the number of empty accounts, we do not consider the costs in Ethereum which

result from per-account data storage or from smart contracts.

We instantiate the following parameters both in Algorand and in Vault:

∙ 80% of the stake in the system is honest (ℎ = 0.8).

∙ Stake sold off by a later-corrupted user counts towards ℎ for 𝑑 = 48 hours.

∙ Network partitions last for at most 2 days. (Recall that during a network

partition, an adversary may arbitrarily reschedule and drop any message.) This

implies that the leapfrogging interval is 𝑏 = 1440 rounds.

∙ The maximum transaction lifetime is 𝑇𝑚𝑎𝑥 = 4 hours. This keeps the cost of

storing the hashes of recent transactions to the hundreds of megabytes.

∙ Stamping certificates fail to form at a rate of 65%. This implies that a certificate

contains 𝑇stamping = 100 signatures, and a stamping sortition produces 𝜏stamping =

120 committee members in expectation.

48



50 100 150 200 250 300 350 400 450 500

Number of Transactions (Millions)

10-1

100

101

102

103

N
e
w

 C
lie

n
t 

B
a
n
d
w

id
th

 C
o
st

 (
G

B
)

Algorand

Bitcoin

Ethereum

Vault S=1

Vault S=1000

Figure 7-1: An end-to-end comparison of the bootstrapping costs of the Bitcoin,
Ethereum, Algorand, and Vault ledgers (with sharding factors of 1 and 1000). Com-
pared to Bitcoin and Algorand, Vault and Ethereum reduce storage costs by one to
two orders of magnitude. Vault outperforms Ethereum at 150 million transactions
because it can delete old accounts. Sharding Vault with a factor of 1000 reduces the
costs of storing balances to a negligible amount, and the total storage cost remains
low (below 500 MB) even with 500 million transactions on the ledger. Note that the
y-axis is logarithmic.

∙ The size of a block is 10 MB. (Lower block sizes are possible; these reduce latency

but decrease throughput.)

We use 𝑆 in the rest of this chapter to denote the number of shards in Vault.

7.2 End-to-end Evaluation

Figure 7-1 presents the results of an end-to-end evaluation of Bitcoin, Ethereum,

Algorand, and Vault (with sharding factors of 𝑆 = 1 and 𝑆 = 1000).

Algorand’s storage cost exceeds that of Bitcoin. Every transaction that Bitcoin

stores must also be stored by Algorand. In addition, being able to execute secure

49



bootstrapping in Algorand incurs an additional cost ranging from 4 to 47 GB, growing

linearly with the number of confirmed transactions in the system.

Figure 7-1 shows clear gains in storing the set of account balances rather than

the set of transactions. Vault and Ethereum, which both store account balances,

outperform Algorand and Bitcoin by 1 to 2 orders of magnitude. This holds both

because the set of balances is much smaller than the set of all transactions, and also

because an individual balance entry is smaller than a transaction itself. Given that

we only consider simple transactions with one input and two outputs, we expect more

complex transactions to amplify this effect.

Moreover, we see that after 150 million transactions, Vault outperforms Ethereum

even without sharding. This follows from the fact that Vault may delete accounts

with no balance, which reduces overall storage cost by about 38%. However, before

150 million transactions, the cost of storing the recent transaction log imposes a fixed

cost. We note that throttling the throughput of Vault or reducing 𝑇𝑚𝑎𝑥 can easily

decrease this cost.

Finally, we observe that sharding Vault reduces storage even more significantly.

However, sharding is no “free lunch”; it increases the sizes of transactions and thus the

steady-state bandwidth cost of propagating them to the entire network (§7.5).

7.3 Balance Pruning

To evaluate the efficiency of Vault’s balance pruning technique, we compare the

storage footprint of Vault’s balance set (again sharded at factors of 1 and 1000) against

Ethereum’s. Since Vault also requires a log of the recent transaction history to detect

double-spending, we include these costs as well.

Figure 7-2 shows that the ability to prune the balance tree significantly reduces the

ledger’s storage costs at scale. Initially, Vault clients must hold the past 9.6 million

transaction hashes to enforce transaction expiration, which costs around 307 MB of

overhead (if transaction expiration 𝑇𝑚𝑎𝑥 is set to correspond to 4 hours). However,

past 150 million transactions, holding the set of account balances dominates the cost

50



50 100 150 200 250 300 350 400 450 500

Number of Transactions (Millions)

0

1

2

3

4

5

6

S
ta

te
 S

iz
e
 (

G
B

)

Ethereum
Vault S= 1

Vault S= 1000

Figure 7-2: A comparison of steady-state storage costs in Vault and Ethereum, given
an account churn rate of 38%. Observe that the ability to prune empty balances
allows Vault to keep a smaller balance tree than Ethereum past around 100 million
transactions, even as Vault must pay the cost of storing its recent transaction log.

of detecting double-spending. Since Ethereum clients cannot garbage collect the 38%

of empty accounts in their balance trees, they must store these accounts in perpetuity.1

Maintaining a log of recent transactions constitutes a constant storage cost, while the

overhead of storing empty accounts grows linearly as the system continually processes

new transactions.

7.4 Stamping Certificates

Next, we evaluate how efficiently a client can prove the validity of its state to a new

peer. We measure the amount of data transferred for the stamping certificate chain

in Vault and compare it against the data transferred for the final certificate chain in

Algorand. Since the creation of stamping certificates in Vault is non-deterministic, we
1 We speculate that the use of Ethereum’s smart contracts to programmatically create temporary

accounts exacerbates this problem. Efficient garbage collection implies cheap temporary account
creation.

51



50 100 150 200 250 300 350 400 450 500

Number of Transactions (Millions)

10-3

10-2

10-1

100

101

102

P
ro

o
f 

S
iz

e
 (

G
B

)
Algorand

Vault 

Figure 7-3: A comparison of the certificate chain sizes in Vault and Algorand. The
proof size is 2–4 orders of magnitude smaller in Vault, and its size does not exceed
1 GB up to 500 million transactions. Usually, the size of this proof remains under
100 MB. In the plot, proof sizes cluster around several bands, which correspond to the
number of final certificates present in the dense tail. The lowest band grows linearly
with the number of stamping certificates that were formed. Note that the y-axis is
logarithmic.

evaluate the amount of data transferred using fine-grained steps on the x-axis (number

of transactions processed) to illustrate these effects.

Figure 7-3 reveals that the overhead of the certificate and header storage cost

becomes significant in Algorand. To catch up to a ledger with 500 million transactions,

a client must download around 47 GB of data.

In contrast, Vault’s proofs are much smaller even though the use of a balance-based

ledger increases the size of certificates (by including partial Merkle proofs); these

proofs are almost always less than 100 MB in size. Two factors decrease the size of

these proofs. First, the chain of certificates is much sparser. Downloading an extra

stamping certificate allows a client to validate almost an additional 𝑏 = 1440 blocks.

Second, each individual stamping certificate is small. Instead of 7,400 signatures, each

certificate is made up of 100 signatures.

52



0 5 10 15 20 25

Witness Length

0

100

200

300

400

500

600

700

800

900

B
a
la

n
ce

 T
re

e
 S

iz
e
 (

G
B

)

0

500

1000

1500

2000

2500

3000

T
ra

n
sa

ct
io

n
 S

iz
e
 (

b
y
te

s)

Tree Size

Transaction Size

Figure 7-4: Cost of storing sharded account balances and transaction sizes given
some setting of the witness length. The tree here stores 10 billion accounts, divided
into 𝑆 = 1000 shards. Increasing transaction size linearly (i.e. extending the Merkle
witness) enables clients to decrease their storage overhead by a factor of 2, which
illustrates an exponential relationship between transaction size and storage cost. Note
that the figure contains a shared x-axis but two y-axes: the left axis shows storage
size while the right axis shows transaction size.

Finally, this experiment demonstrates that, without the stamping certificate opti-

mization, certificates would dominate the data required for bootstrapping. A 3.4 GB

state size for balances matters little if 47 GB is necessary to prove its validity. Reducing

the proof overhead to less than 100 MB allows Vault to securely bootstrap new clients

with modest bandwidth cost.

7.5 Balance Sharding

Under sharding, we would like to determine how decreasing the overhead of storing the

intermediate frontier in the balance tree (§5.2) increases the size of transactions. We

fix the number of accounts to be 10 billion and the number of shards to be 𝑆 = 1000.

Figure 7-4 illustrates this interaction.

53



We see that shard size is not the limiting factor. With 𝑆 = 1000, each client

stores only 10 million accounts per shard, which costs less than 500 MB each. Instead,

sharding costs are dwarfed by the overhead of keeping the internal Merkle nodes on the

frontier. (Recall that the frontier allows clients to verify transactions in other shards

without needing to receive the entire Merkle path as part of the transaction.) On the

one hand, all clients may simply store all leaf Merkle nodes, which adds nothing to

transaction overhead but also reduces storage cost by only a small amount: storing

the set of balance along with the Merkle frontier costs each client almost 1 TB. On

the other hand, the exponential fanout of the sparse Merkle tree provides diminishing

returns on storing each subsequent layer; extending the Merkle witness by one hash

halves the storage footprint of the Merkle nodes. Eventually, storage costs converge

to the size of a shard.

54



Chapter 8

Conclusion

Vault is a new cryptocurrency designed to reduce storage and bootstrapping costs.

It achieves its goals using three techniques: (1) transaction expiration, which allows

clients to decouple storage of account balances from recent transactions and thus

to delete old account state; (2) adaptive sharding, which allows Vault to securely

distribute the storage of account balances across participants; and (3) stamping

certificates, which allow new clients to avoid verifying every single block header, and

which reduce the size of the certificate. Experiments demonstrate that Vault achieves

its goals, reducing the storage and bootstrapping cost for 500 million transactions to

477 MB, compared to 5 GB for Ethereum and 143 GB for Bitcoin.

55



56



Appendix A

Stamping Certificate Security

Analysis

This appendix presents an analysis of the security of Vault’s stamping certificates.

Recall that the security of a certificate is equivalent to the security of the committee

that produced it. We first define two desirable properties of certificates.

Definition. A certificate has a safety failure rate of 𝑓𝑠 if for all committees produced

by cryptographic sortition, the probability that an adversary can obtain two distinct

and validating certificates for a given block is 𝑓𝑠.

Definition. A certificate has a liveness failure rate of 𝑓𝑙 if for all committees produced

by cryptographic sortition, the probability that the honest users fail to produce a

certificate for a given block is 𝑓𝑙.

Vault’s stamping committees are secure if they satisfy the properties of safety

and liveness. In Vault’s stamping committees, an honest verifier does not release its

signature until it sees a block confirmation. Because confirmed blocks are fork-safe,

we are guaranteed that if one honest verifier sees a block, all other honest verifiers

will eventually see that block. Thus, we have the following observation:

Theorem. In Vault, it suffices to have one honest signature in a stamping certificate

to prove that it is valid.

57



Now let 𝑇stamping be the threshold of signatures needed to produce a valid stamping

certificate, and let 𝜏stamping be the number of committee members elected in expectation

to produce this certificate. Moreover, let 𝛾 and 𝛽 be the actual number of honest and

malicious users elected to some committee. We can translate the theorem into two

desirable properties, as follows:

Corollary. For Vault to produce certificates with a safety failure rate of 𝑓𝑠 and liveness

failure rate of 𝑓𝑙, we must set 𝜏stamping as follows:

Pr[𝛾 < 𝑇stamping] ≤ 𝑓𝑙 (A.1)

Pr[𝛽 ≥ 𝑇stamping] ≤ 𝑓𝑠 (A.2)

Suppose that the number of currency units in the system is 𝑈 . For simplicity, let

each user in the system own one unit of currency. If ℎ is the proportion of honest users

in the system, 𝜏 is the expected number of selected users following a cryptographic

sortition, and 𝑈 is arbitrarily large, we have that the chance of sampling exactly 𝑘

honest users is

Pr[𝛾 = 𝑘] =
(ℎ𝜏)𝑘

𝑘!
𝑒ℎ𝜏

while the chance of sampling exactly 𝑘 malicious users is

Pr[𝛽 = 𝑘] =
((1− ℎ)𝜏)𝑘

𝑘!
𝑒ℎ𝜏 .

(This analysis follows from the application of the binomial theorem.)

From (Equation A.1) and (Equation A.2) it follows that the following conditions

must both hold:

𝑇stamping−1∑︁
𝑘=0

(ℎ𝜏stamping)
𝑘

𝑘!
𝑒ℎ𝜏stamping ≤ 𝑓𝑙 (A.3)

∞∑︁
𝑘=𝑇stamping

((1− ℎ)𝜏stamping)
𝑘

𝑘!
𝑒(1−ℎ)𝜏stamping ≤ 𝑓𝑠 (A.4)

58



1 10 25 33 50 66 7580 9095

Failure Rate fl (%)

0

50

100

150

200

250
C

e
rt

if
ic

a
te

 S
iz

e
 T

S
ta

m
p
in

g
 (

#
 m

e
m

b
e
rs

)
75%

80%

85%

90%

95%

Figure A-1: Certificate sizes required to guarantee various liveness failure rates for a
fixed safety failure rate of 2−100, given assumptions on the amount of honest stake in
the system. Honesty assumptions have a significant effect on certificate size, which in
turn has a significant influence on the liveness failure rate.

Then it is evident that 𝜏stamping = 120, 𝑇stamping = 100 satisfy these conditions with

ℎ = 0.8, 𝑓𝑠 = 2−100, 𝑓𝑙 = 0.65. Figure A-1 illustrates the effects of changing 𝑓𝑙 for

various values of ℎ, fixing 𝑓𝑠 = 2−100.

59



60



Appendix B

Stamping Certificate Algorithm

This appendix describes an algorithm which maintains the invariants required for a

valid proof of the ledger’s latest state.

All clients maintain a proof of the ledger’s latest block. A client mutates its proof

on observing two events from the cryptocurrency network:

∙ When a client observes a block and a full final certificate, it appends it to its

dense tail.

∙ When a client observes a new stamping certificate later than its candidate

breadcrumb, it deletes the final certificates in its dense tail up to and including

this certificate. Moreover, it moves ownership of these block headers to the new

stamping certificate, which becomes the new breadcrumb. Next,

– If the breadcrumb index is not more than 𝑏 blocks greater than the Q-

breadcrumb, the client replaces its candidate breadcrumb with the new

breadcrumb, transferring over the block headers of the tail.

– Otherwise, the client:

1. Freezes the Bal-breadcrumb, adding it to the set of frozen breadcrumbs.

2. Sets the Q-breadcrumb as the new Bal-breadcrumb. This breadcrumb’s

tail becomes trimmable.

61



3. Sets the candidate breadcrumb as the new Q-breadcrumb. This bread-

crumb’s position is now optimal and fixed (assuming that stamping

certificates are received in order).

4. Sets the new breadcrumb as the candidate breadcrumb.

Finally, it “trims” the tail of the Bal-breadcrumb to keep its length minimal.

We summarize these procedures in pseudocode below.

function OnBlockReceive(block, finalCert)
balances.Apply(block.transactions)
denseTail.Append((block.header, finalCert))

end function
function OnStampReceive(stampCert)

if stampCert.index− 𝑏 ≤ qBreadcrumb.index then
lastBreadcrumb.Update(stampCert, denseTail)

else
frozen.Append(balBreadcrumb)
balBreadcrumb ← qBreadcrumb
qBreadcrumb ← lastBreadcrumb
lastBreadcrumb ← Combine(stampCert, denseTail)

end if
denseTail.Clear()
balBreadcrumb.Trim(qBreadcrumb, lastBreadcrumb)

end function

62



Bibliography

[1] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS), pages 390–399, Alexandria, VA,
October–November 2006.

[2] BitInfoCharts. Bitcoin rich list. https://bitinfocharts.com/
top-100-richest-bitcoin-addresses.html, 2018.

[3] Blockchain Luxembourg S.A. Blockchain size. https://blockchain.info/
charts/blocks-size, 2018.

[4] Blockchain Luxembourg S.A. Total number of transactions. https://blockchain.
info/charts/n-transactions-total, 2018.

[5] Gunnar Blom, Lars Holst, and Dennis Sandell. Problems and Snapshots from the
World of Probability. Springer Science & Business Media, 2012.

[6] Vitalik Buterin. Security alert [11/24/2016]: Consensus bug in
geth v1.4.19 and v1.5.2. https://blog.ethereum.org/2016/11/25/
security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/, 2016.

[7] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems, 20(4), November
2002.

[8] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse Merkle trees:
Caching strategies and secure (non-)membership proofs. In Proceedings of the
21st Nordic Conference on Secure IT Systems, pages 199–215, November 2016.

[9] Ethereum Foundation. Ethereum, 2016. https://www.ethereum.org/.

[10] Etherscan. Ethereum transaction chart. https://etherscan.io/chart/tx,
2018.

[11] Etherscan. Ethereum unique address growth rate. https://etherscan.io/
chart/address, 2018.

[12] Kevin R Fall and W Richard Stevens. TCP/IP Illustrated, Volume 1: The
Protocols. Addison-Wesley, 2011.

63

https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/n-transactions-total
https://blockchain.info/charts/n-transactions-total
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://www.ethereum.org/
https://etherscan.io/chart/tx
https://etherscan.io/chart/address
https://etherscan.io/chart/address


[13] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. In Proceedings of the 2nd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS), pages
1–7, Atlanta, GA, March 1983.

[14] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling Byzantine agreements for cryptocurrencies. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles (SOSP), pages 51–68,
Shanghai, China, October 2017.

[15] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling Byzantine agreements for cryptocurrencies. Cryptology ePrint
Archive, Report 2017/454, May 2017. http://eprint.iacr.org/.

[16] Donald Ervin Knuth. The art of computer programming, volume 3. Pearson
Education, 1997.

[17] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and
Bryan Ford. OmniLedger: A secure, scale-out, decentralized ledger. Cryptology
ePrint Archive, Report 2017/406, February 2018. http://eprint.iacr.org/.

[18] David Mazières. The Stellar consensus protocol: A federated model
for internet-level consensus. https://www.stellar.org/papers/
stellar-consensus-protocol.pdf, 2014.

[19] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Proceedings of the 7th Annual International Cryptology Conference (CRYPTO),
pages 369–378, Santa Barbara, CA, August 1987.

[20] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), New York, NY, October 1999.

[21] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

[22] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Li-
nus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. Chainiac: Proactive
software-update transparency via collectively signed skipchains and verified builds.
In Proceedings of the 26th USENIX Security Symposium, pages 1271–1287, Van-
couver, Canada, August 2017.

[23] Parity Technologies. Parity. https://www.parity.io/, 2017.

[24] Parity Technologies. Github - paritytech/parity: Fast, light, robust Ethereum
implementation. https://github.com/paritytech/parity, 2018.

[25] Andrew Poelstra. Mimblewimble, October 2016. https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf.

64

http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.parity.io/
https://github.com/paritytech/parity
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf


[26] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning network: Scal-
able off-chain instant payments, January 2016. https://lightning.network/
lightning-network-paper.pdf.

[27] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities
“honest or bust” with decentralized witness cosigning. In Proceedings of the 37th
IEEE Symposium on Security and Privacy, pages 526–545, San Jose, CA, May
2016.

[28] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

[29] Gavin Wood. State trie clearing (invariant-preserving alternative). https://
github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md, 2016.

65

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md

	Introduction
	Challenges
	Approach
	Contributions

	Related Work
	Steady-State Savings: The ``Width'' Approach
	Short Proofs of State: The ``Length'' Approach

	Overview
	Objectives
	Threat Model
	Algorand Background
	System Design

	Efficient Double-Spending Detection
	Transaction Expiration
	Efficient Balance Commitments

	Sharding Balance Storage
	Secure Shard Witnesses
	Adaptive Sharding: Truncating Witnesses

	Succinct Ledger Certificates
	Leapfrog Protocol
	Choosing b

	Stamping Committees
	Proof Components


	Evaluation
	Experimental Setup
	End-to-end Evaluation
	Balance Pruning
	Stamping Certificates
	Balance Sharding

	Conclusion
	Stamping Certificate Security Analysis
	Stamping Certificate Algorithm

