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Abstract

This thesis consists of three essays on dynamic games with incomplete information. In Chapter 1, I
study reputation effects when individuals have persistent private information that matters for their
opponents’ payoffs. I examine a repeated game between a patient informed player and a sequence
of myopic uninformed players. The informed player privately observes a persistent state, and is
either a strategic type who can flexibly choose his actions or is one of the several commitment types
that mechanically plays the same action in every period. Unlike the canonical models on reputa-
tion effects, the uninformed players’ payoffs depend on the state. This interdependence of values
introduces new challenges to reputation building, namely, the informed player could face a trade-
off between establishing a reputation for commitment and signaling favorable information about
the state. My results address the predictions on the informed player’s payoff and behavior that
apply across all Nash equilibria. When the stage game payoffs satisfy a monotone-supermodularity
condition, I show that the informed long-run player can overcome the lack-of-commitment prob-
lem and secure a high payoff in every state and in every equilibrium. Under a condition on the
distribution over states, he will play the same action in every period and maintain his reputation
for commitment in every equilibrium. If the payoff structure is unrestricted and the probability of
commitment types is small, then the informed player’s return to reputation building can be low
and can provide a strict incentive to abandon his reputation.

In Chapter 2, I study the dynamics of an agent’s reputation for competence when the labor
market’s information about his performance is disclosed by an intermediary who cannot commit.
I show that this game admits a unique Markov Perfect Equilibrium (MPE). When the agent is
patient, his effort is inverse 𝑈 -shaped, while the rate of information disclosure is decreasing over
time. I illustrate the inefficiencies of the unique MPE by comparing it with the equilibrium in
the benchmark scenario where the market automatically observes all breakthroughs. I characterize
a tractable subclass of non-Markov Equilibria and explain why allowing players to coordinate
on payoff-irrelevant events can improve efficiency on top of the unique MPE and the exogenous
information benchmark. When the intermediary can commit, her optimal Markov disclosure policy
has a deadline, after which no breakthrough will be disclosed. However, deadlines are not incentive
compatible in the game without commitment, illustrating a time inconsistency problem faced by
the intermediary. My model can be applied to professional service industries, such as law and
consulting. My results provide an explanation to the observed wage and promotion patterns in
Baker, Gibbs and Holmström (1994).

In Chapter 3, I study repeated games in which a patient long-run player (e.g. a firm) wishes
to win the trust of some myopic opponents (e.g. a sequence or a continuum of consumers) but
has a strict incentive to betray them. Her benefit from betrayal is persistent over time and is her
private information. I examine the extent to which persistent private information can overcome this
lack-of-commitment problem. My main result characterizes the set of payoffs a patient long-run
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player can attain in equilibrium. Interestingly, every type’s highest equilibrium payoff only depends
on her true benefit from betrayal and the lowest possible benefit in the support of her opponents’
prior belief. When this lowest possible benefit vanishes, every type can approximately attain
her Stackelberg commitment payoff. My finding provides a strategic foundation for the (mixed)
Stackelberg commitment types in the reputation models, both in terms of the highest attainable
payoff and in terms of the commitment behaviors. Compared to the existing approaches that rely
on the existence of crazy types that are either irrational or have drastically different preferences,
there is common knowledge of rationality in my model, and moreover, players’ ordinal preferences
over stage game outcomes are common knowledge.

Thesis Supervisor: Daron Acemoglu
Title: Elizabeth and James Killian Professor of Economics

Thesis Supervisor: Drew Fudenberg
Title: Paul A. Samuelson Professor of Economics

Thesis Supervisor: Juuso Toikka
Title: Gary Loveman Career Development Associate Professor of Economics
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Chapter 1

Reputation Effects under

Interdependent Values

This chapter studies reputation effects when individuals have persistent private information that

matters for their opponents’ payoffs. I examine a repeated game between a patient informed player

and a sequence of myopic uninformed players. The informed player privately observes a persistent

state, and is either a strategic type who can flexibly choose his actions or is one of the several

commitment types that mechanically plays the same action in every period. Unlike the canonical

models on reputation effects, the uninformed players’ payoffs depend on the state. This interde-

pendence of values introduces new challenges to reputation building, namely, the informed player

could face a trade-off between establishing a reputation for commitment and signaling favorable

information about the state. My results address the predictions on the informed player’s pay-

off and behavior that apply across all Nash equilibria. When the stage game payoffs satisfy a

monotone-supermodularity condition, I show that the informed long-run player can overcome the

lack-of-commitment problem and secure a high payoff in every state and in every equilibrium. Un-

der a condition on the distribution over states, he will play the same action in every period and

maintain his reputation for commitment in every equilibrium. If the payoff structure is unrestricted

and the probability of commitment types is small, then the informed player’s return to reputation

building can be low and can provide a strict incentive to abandon his reputation.

I am indebted to Daron Acemoglu, Drew Fudenberg, Juuso Toikka and Alex Wolitzky for guidance and support.
I thank Jie Bai, Abhijit Banerjee, Vivek Bhattacharya, Alessandro Bonatti, Gonzalo Cisternas, Dan Clark, Jetlir
Duraj, Mehmet Ekmekci, Glenn Ellison, Chishio Furukawa, Bob Gibbons, Ben Golub, Yingni Guo, Kevin He,
Christian Hellwig, Daria Khromenkova, Annie Liang, Shuo Liu, Ben Roth, Bruno Strulovici, Jean Tirole, Birger
Wernerfelt, Muhamet Yildiz and my seminar participants at MIT, Princeton, Harvard, Northwestern, UC Berkeley,
Kellogg School of Management and USC for helpful comments. All errors are mine.
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1.1 Introduction

Economists have long recognized that good reputations can lend credibility to people’s threats and

promises. This intuition has been formalized in a series of works starting with Kreps and Wilson

(1982), Milgrom and Roberts (1982), Fudenberg and Levine (1989) and others, who show that

having the option to build a reputation dramatically affects a patient individual’s gains in long-

term relationships. Their reputation results are robust as they apply across all equilibria, which

enables researchers to make robust predictions in many decentralized markets where there is no

mediator helping participants to coordinate on a particular equilibrium.

However, previous works on robust reputation effects all restrict attention to private value en-

vironments. This excludes situations where reputation builders have persistent private information

that directly affects their opponents’ payoffs. For example in the markets for food and custom

software, merchants can benefit from a reputation for providing good customer service, but they

also want to signal their products have high quality. The latter directly affects consumers’ will-

ingness to pay and is usually the merchants’ private information (Banerjee and Duflo 2000, Bai

2016). In the pharmaceutical, cable TV and passenger airline industries, incumbent firms could

benefit from committing to fight potential entrants, but are also better informed about the market

demand curve, such as the price elasticities, the effectiveness and spillover of advertising (Ellison

and Ellison 2011, Seamans 2013, Sweeting, Roberts and Gedge 2016), etc. As a result, incumbent

firms’ choices of prices, quantities and the intensity of advertising not only show their resolve to

fight entrants but also signal their private information about demand. Understanding how the

interactions between reputation building and signalling affect economic agents’ reputational incen-

tives is important both for firms in designing business strategies and for policy makers in evaluating

the merits of quality-control programs and anti-trust regulations.

Motivated by these applications, this paper addresses the robust predictions in reputation games

where a player has persistent private information about his opponents’ payoffs. In my model, a

patient long-run player (player 1, he, seller, incumbent) interacts with a sequence of short-run

players (player 2, she/they, buyers, entrants). Unlike the canonical reputation models, I study

interdependent value environments in which player 1 privately observes a perfectly persistent state

(product quality, market demand) that directly affects player 2’s payoff. Player 1 is either one

of the strategic types who maximizes his discounted payoff and will be referred to by the state

he observes, or is committed to play a state-contingent stationary strategy. Player 2 updates her

belief by observing all the past actions. I show that (1) the robust reputation effects on player 1’s

payoffs extend to a class of interdependent value games despite the existence of a trade-off between

commitment and signalling, (2) reputation can also lead to robust and accurate predictions on

player 1’s equilibrium behavior.

To illustrate the challenges, consider an example of an incumbent firm (player 1) facing a

sequence of potential entrants. Every entrant chooses between staying out (𝑂) and entering the

market (𝐸). Her preference between 𝑂 and 𝐸 depends not only on the incumbent’s business

strategy, which is either fight (𝐹 ) or accommodate (𝐴), but also on the market demand curve (the

16



state 𝜃, can be price elasticity, market size, etc.), which is fixed over time and is either high (𝐻) or

low (𝐿). This is modeled as the following entry deterrence game:

𝜃 = High Out Enter

Fight 2, 0 0,−1

Accommodate 3, 0 1, 2

𝜃 = Low Out Enter

Fight 2 − 𝜂, 0 −𝜂,1
Accommodate 3, 0 1, 2

where 𝜂 ∈ R is a parameter. When 𝜃 = 𝐻 is common knowledge (call it the private value bench-

mark), the incumbent faces a lack-of-commitment problem in the stage game: His payoff from the

unique Nash equilibrium (𝐴,𝐸) is 1. This is strictly lower than his payoff by committing to fight,

which provides his opponent an incentive to stay out and he will receive his commitment payoff

equal to 2. Fudenberg and Levine (1989) show that reputation can solve this lack-of-commitment

problem by establishing the following commitment payoff theorem: if the incumbent is non-strategic

and fights in every period with positive probability, then a patient strategic incumbent can secure

his commitment payoff in every Nash equilibrium of the repeated game. Intuitively, if the strategic

incumbent imitates the non-strategic one, then he will eventually convince the entrants that 𝐹 will

be played with high enough probability and the latter will best respond by staying out.

The above logic no longer applies when 𝜃 is the incumbent’s private information. This is

because an entrant’s best reply to 𝐹 depends on 𝜃 (it is 𝑂 when 𝜃 = 𝐻 and 𝐸 when 𝜃 = 𝐿), which

is signalled through the incumbent’s past actions. In situations where fighting is interpreted as

a signal of state 𝐿,1 an entrant will have an incentive to play 𝐸 despite being convinced that 𝐹

will be played. As a result, the incumbent’s return from always fighting will be low. Furthermore,

obtaining robust and accurate predictions on the incumbent’s equilibrium behavior faces additional

challenges as he is repeatedly signalling the state. This could lead to multiple possible behaviors.

Even the commitment payoff theorem cannot imply that he will maintain his reputation for fighting

in every equilibrium, as a strategy that can secure himself a high payoff is not necessarily his optimal

strategy.

In Section 1.3, I examine when the commitment payoff theorem applies to every payoff func-

tion of the long-run player (i.e. it is fully robust) without any restrictions on the game’s payoff

structure.2 Theorem 1.1 provides a sufficient and (almost) necessary condition for full robustness,

which requires that the prior likelihood ratio between each bad strategic type and the commitment

type be below a cutoff.3 According to this result, securing the commitment payoff from a mixed

action occurs under more demanding conditions than that from a nearby pure action. This implies

that small trembles of pure commitment types can lead to a large decrease in the strategic long-run

1This is a serious concern since player 1’s action today can affect players’ future equilibrium play. Equilibria in
which player 2 attaches higher probability to state 𝐿 after observing 𝐹 are constructed in Appendix A.7.

2Full robustness is an important property of Fudenberg and Levine (1989)’s result, which ensures the validity
of the commitment payoff bound against (1) modeling misspecifications of the long-run player’s payoff function, (2)
short-run players entertaining incorrect beliefs about the long-run player’s payoff function. This includes, for example,
the incumbent’s cost of production and returns from advertising, the seller’s cost of exerting high effort, all of which
are hard to know from an outsider’s perspective.

3Formally, a strategic type is bad if player 2’s best reply to the commitment action under his state is different
from her best reply when she is facing the commitment type. My conditions are ‘almost necessary’ as they leave out
a degenerate set of beliefs.
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player’s guaranteed payoff. Another interesting observation is that playing some actions in the sup-

port of the mixed commitment action can increase the aforementioned likelihood ratios. Therefore,

mixed commitment payoffs cannot be guaranteed by replicating the commitment strategy, making

the existing techniques in Fudenberg and Levine (1989, 1992), Gossner (2011) inapplicable. To

overcome these difficulties, my proof of the sufficiency part makes use of martingale techniques and

the central limit theorem to construct a non-stationary strategy such that player 1 can achieve three

goals simultaneously: (1) avoiding negative inferences about the state, (2) matching the frequency

of his actions to the mixed commitment action, (3) player 2’s prediction about his actions is close

to the mixed commitment action in all but a bounded number of periods.

Theorem 1.1 has two interpretations. First, starting with the private value reputation game in

Fudenberg and Levine (1989), it evaluates the robustness of their main insight under a richer set of

perturbations. Namely, player 2 can entertain the possibility that her opponent is another strategic

type who has private information about her payoff. My result implies that their fully robust

reputation result extends when these interdependent value perturbations are unlikely compared

to the commitment types, and vice versa. Second, one can also start with a repeated incomplete

information game with interdependent values and perturb it with commitment types. According to

this view, every commitment type is arbitrarily unlikely compared to every strategic type. Theorem

1.1 then implies that in some equilibria, player 1’s return from reputation building is low, and in fact,

he will have a strict incentive to abandon his reputation. Therefore, reputation cannot guarantee

that player 1 can overcome the lack-of-commitment problem even when he is arbitrarily patient.

This second interpretation motivates the study of games with more specific payoff structures.

In Section 1.4, I focus on stage games with monotone-supermodular payoffs (MSM for short). This

requires that the states and every player’s actions be ranked such that (1) player 1’s payoff is strictly

increasing in player 2’s action but is strictly decreasing in his own action (or monotonicity), and

(2) the action profile and the state are complements in player 1’s stage game payoff function, and

player 2 has a stronger incentive to play a higher action when the state is higher or when player

1’s action is higher (or supermodularity). In the entry deterrence example, if we rank the states

and actions according to 𝐻 ≻ 𝐿, 𝐹 ≻ 𝐴 and 𝑂 ≻ 𝐸, then MSM translates into 𝜂 > 0, which is the

case when 𝜃 is the price elasticity of demand, the market size, the effectiveness of advertising, etc.

MSM is also satisfied in buyer-seller games where providing good service is less costly for the seller

when his product quality is high, which fits into the custom software industry and the restaurant

industry.

My results establish robust predictions on player 1’s equilibrium payoff and behavior when there

exists a commitment type that plays the highest action in every period. I consider two cases. When

the high states are relatively more likely compared to the low states (the optimistic prior case),

Theorem 1.2 shows that a patient player 1 can guarantee his commitment payoff from playing the

highest action in every state and in every equilibrium. In the example, when state 𝐻 is more likely

than state 𝐿, player 1 receives at least 2 in state 𝐻 and max{2−𝜂, 1} in state 𝐿. This payoff bound

applies even when every commitment type is arbitrarily unlikely relative to every strategic type. It

is also tight in the sense that no strategic type can guarantee himself a strictly higher equilibrium
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payoff by establishing a reputation for playing another pure commitment action.4

In the complementary scenario (the pessimistic prior case), Theorem 1.3 shows that when player

1 is patient and the probability of commitment is small (1) his equilibrium payoff equals to the

highest equilibrium payoff in the benchmark game without commitment types (Theorem 1.3 and

Proposition 1.2); (2) his on-path behavior is the same across all Nash equilibria.5 According to this

unique behavior, there exists a cutoff state (in the example, state 𝐿) such that the strategic player

1 plays the highest action in every period if the state is above this cutoff, plays the lowest action in

every period if the state is below this cutoff, and mixes between playing the highest action in every

period and playing the lowest action in every period at the cutoff state. That is to say, player 1

will behave consistently and maintain his reputation for commitment in all equilibria.

The intuition behind this behavioral uniqueness result is the following disciplinary effect : (1)

player 1 can obtain a high continuation payoff by playing the highest action, (2) but it is impossible

for him to receive a high continuation payoff after he has failed to do so, as player 2’s belief about the

state will become even more pessimistic than her prior. The first part is driven by the commitment

type and the second is because the low states are more likely. This contrasts with Fudenberg and

Levine (1989) and the optimistic prior case where deviating from the commitment action may lead

to an optimistic posterior, after which a patient player 1 can still receive a high continuation payoff.

As a result, player 1 can have multiple on-path behaviors, and in many sequential equilibria, he

may have a strict incentive to behave inconsistently and abandon his reputation.

Conceptually, the above comparison suggests that interdependent values can contribute to the

sustainability of reputation. This channel is novel compared to those proposed in the existing

literature, such as impermanent commitment types (Mailath and Samuelson 2001, Ekmekci, et

al. 2012), competition between informed players (Hörner 2002), incomplete information about the

informed player’s past behavior (Ekmekci 2011) and others.6

A challenge to prove Theorems 1.2 and 1.3 comes from the observation that a repeated super-

modular game is not supermodular. This is because player 1’s action today can have persistent

effects on future equilibrium play. I apply a result in a companion paper (Liu and Pei 2017) which

states that if a 1-shot signalling game has MSM payoffs, then the sender’s equilibrium action must

be non-decreasing in the state. In a repeated signalling game with MSM stage game payoffs, this

result implies that in equilibria where playing the highest action in every period is optimal for play-

er 1 in a low state (call them regular equilibria), then he must be playing the highest action with

probability 1 at every on-path history in every higher state. Therefore, in every regular equilibrium,

player 2’s posterior about the state will never decrease if player 1 has always played the highest

action. Nevertheless, there can also exist irregular equilibria where playing the highest action in

4This conclusion extends to any other mixed commitment action if in the stage game, the long-run player strictly
prefers the highest action profile to the lowest action profile in every state.

5Theorem 1.3 states the result when there is one commitment action. Theorem A.1 (Appendix A.4.2) allows for
multiple commitment actions and shows that when the total probability of commitment is small enough, player 1’s
payoff and on-path behavior are almost the same across all equilibria. If all commitment types are pure, then payoff
and on-path behavior are the same across all equilibria.

6In contrast to these papers and Cripps, Mailath and Samuelson (2004), I adopt a more robust standard for
reputation sustainability by requiring that it be sustained in every equilibrium.
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every period is not optimal in any low state, and it is possible that at some on-path histories, it

will lead to a deterioration of player 2’s belief about the state. To deal with this complication,

my proof shows that in every irregular equilibrium, if player 1 has never deviated from the highest

action, then player 2’s belief about the state can never fall below a cutoff.

To summarize, we know that in the optimistic prior case, player 2’s posterior cannot become

too pessimistic given that player 1 has always played the highest action, no matter whether the

equilibrium is regular or irregular. Therefore, if player 1 plays the highest action in every period, he

can convince player 2 that the highest action will be played in the future and at the same time, player

2’s posterior belief about the state will remain optimistic, which leads to the commitment payoff

theorem. However, due to the existence of irregular equilibria, player 1 has multiple equilibrium

behaviors. In the pessimistic prior case, the necessary condition for irregular equilibria is violated

in the first period. Therefore, irregular equilibria do not exist and every regular equilibrium will

lead to the same equilibrium payoff and on-path behavior.

My work contributes to the existing literature from several different angles. From a modeling

perspective, it unifies two existing approaches to the study of reputation, differing mainly in the

interpretation of the informed player’s private information. Pioneered by Fudenberg and Levine

(1989), the literature on reputation refinement focuses on private value environments and studies

how a reputation for commitment affects a patient informed player’s payoff in all equilibria.7 A

separate strand of works on dynamic signalling games, including Bar-Isaac (2003), Lee and Liu

(2013), Pei (2015) and Toxvaerd (2017), examines the effects of persistent private information about

payoff-relevant variables (such as talent, quality, market demand) on the informed player’s behavior.

However, these papers have focused on some particular equilibria rather than on the common

properties of all equilibria. In contrast, I introduce a framework that incorporates commitment

over actions and persistent private information about the uninformed players’ payoffs. In games

with MSM payoffs, I derive robust predictions on the informed player’s payoff and behavior that

apply across all Nash equilibria.

In the study of repeated Bayesian games with interdependent values,8 my reputation results

can be interpreted as an equilibrium refinement, just as Fudenberg and Levine (1989) did for the

repeated complete information games studied in Fudenberg, Kreps and Maskin (1990). By allow-

ing the informed long-run player to be non-strategic and mechanically playing a state-contingent

stationary strategy, Theorems 1.1 and 1.2 show that reputation effects can sharpen the predictions

7The commitment payoff theorem has been extended to environments with imperfect monitoring (Fudenberg and
Levine 1992, Gossner 2011), frequent interactions (Faingold 2013), long-lived uninformed players (Schmidt 1993a,
Cripps, Dekel and Pesendorfer 2005, Atakan and Ekmekci 2012), weaker solution concepts (Watson 1993), etc.
Another strand of works characterizes Markov equilibria (in infinite horizon games) or sequential equilibria (in finite
horizon games) in private value reputation games with a (pure) stationary commitment type, which includes Kreps
and Wilson (1982), Milgrom and Roberts (1982), Barro (1986), Schmidt (1993b), Phelan (2006), Liu (2011), Liu and
Skrzypacz (2014), etc. See Mailath and Samuelson (2006) for an overview.

8This is currently a challenging area and not much is known except for 0-sum games (Aumann and Maschler
1995, Pȩski and Toikka 2017), undiscounted games (Hart 1985), belief-free equilibrium payoff sets in games with two
equally patient players (Hörner and Lovo 2009, Hörner et al. 2011). In ongoing work (Pei 2016), I characterize the
limiting equilibrium payoff set in a repeated Bayesian game between a patient long-run player and a sequence of
short-run players when the stage game has MSM payoffs.
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on a patient player’s equilibrium payoff. Theorem 1.3 advances this research agenda one step fur-

ther by showing that reputation effects can also lead to accurate predictions on a patient player’s

equilibrium behavior, which is a distinctive feature of interdependent value models.

In terms of the applications, my result offers a robust explanation to Bain (1949)’s classical

observation that “...established sellers persistently ... forego high prices ... for fear of thereby

attracting new entry to the industry and thus reducing the demands for their outputs and their own

profit”. This will only happen in some non-renegotiation proof equilibria under private values,

but will happen in every equilibrium when the incumbent has private information about demand

and the potential entrants are optimistic about their prospects of entry. Similarly, in the study of

firm-consumer relationships, my result provides a robust foundation for Klein and Leffler (1981)’s

reputational capital theory, which assumes that consumers will coordinate and punish the firm

after observing low effort. This will happen in every equilibrium when consumers are skeptical

enough about the product quality, which the firm privately knows. I will elaborate more on these

in subsection 1.4.5.

1.2 The Model

Time is discrete, indexed by 𝑡 = 0, 1, 2.... An infinitely-lived long-run player (player 1, he) with

discount factor 𝛿 ∈ (0, 1) interacts with a sequence of short-run players (player 2, she), one in each

period. In period 𝑡, players simultaneously choose their actions (𝑎1,𝑡, 𝑎2,𝑡) ∈ 𝐴1 ×𝐴2. Both 𝐴1 and

𝐴2 are finite sets with |𝐴𝑖| ≥ 2 for 𝑖 ∈ {1, 2}. Players have access to a public randomization device,

with 𝜉𝑡 ∈ Ξ as the realization in period 𝑡.

States, Strategic Types & Commitment Types: Let 𝜃 ∈ Θ be the state of the world, which

is perfectly persistent and is player 1’s private information. I assume that Θ is a finite set. Player 1

is either strategic, in which case he can flexibly choose his action in every period, or he is committed

to play the same action in every period, which can be pure or mixed and can be state contingent.

I abuse notation by using 𝜃 to denote the strategic type who knows that the state is 𝜃 (or type

𝜃). As for commitment, every commitment type is defined based on the (mixed) action he plays.

Formally, let Ω𝑚 ⊂ ∆(𝐴1) be the set of actions player 1 could possibly commit to, which is assumed

to be finite. I use 𝛼1 ∈ Ω𝑚 to represent the commitment type that plays 𝛼1 in every period (or

commitment type 𝛼1). Let 𝜑𝛼1 ∈ ∆(Θ) be the distribution of 𝜃 conditional on player 1 being

commitment type 𝛼1, with 𝜑 ≡ {𝜑𝛼1}𝛼1∈Ω𝑚 .

Let Ω ≡ Θ ∪ Ω𝑚 be the set of types, with 𝜔 ∈ Ω a typical element. Let 𝜇 ∈ ∆(Ω) be player

2’s prior belief, which I assume has full support. The pair (𝜇, 𝜑) induces a joint distribution over 𝜃

and player 1’s characteristics (committed or strategic), which I call a distributional environment.

Note that the above formulation of commitment accommodates the one in which player 1

commits to play a state-contingent stationary strategy. To see this, let 𝛾 : Θ → ∆(𝐴1) be a state-

contingent commitment plan, with Γ the finite set of commitment plans. Player 2 has a prior over

Θ as well as the chances that player 1 is strategic or is committed to follow each plan in Γ. To
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convert this to my formulation, let

Ω𝑚 ≡ {𝛼1 ∈ ∆(𝐴1)| there exist 𝛾 ∈ Γ and 𝜃 ∈ Θ such that 𝛾(𝜃) = 𝛼1},

which is the set of actions that are played under (at least) one commitment plan. The probability

of every 𝛼1 ∈ Ω𝑚 and its correlation with the state 𝜑𝛼1 can be computed via player 2’s prior.

My formulation is more general, as it allows for arbitrary correlations between the state and the

probability of being committed.

Histories & Payoffs: All past actions are perfectly monitored. Let ℎ𝑡 = {𝑎1,𝑠, 𝑎2,𝑠, 𝜉𝑠}𝑡−1
𝑠=0 ∈ ℋ𝑡

be the public history in period 𝑡 with ℋ ≡ ∪+∞
𝑡=0ℋ𝑡. Let 𝜎𝜔 : ℋ → ∆(𝐴1) be type 𝜔’s strategy,

with the restriction that 𝜎𝛼1(ℎ𝑡) = 𝛼1 for every (𝛼1, ℎ
𝑡) ∈ Ω𝑚 ×ℋ. Let 𝜎1 ≡ (𝜎𝜔)𝜔∈Ω be player 1’s

strategy. Let 𝜎2 : ℋ → ∆(𝐴2) be player 2’s strategy. Let 𝜎 ≡ (𝜎1, 𝜎2) be a typical strategy profile,

and let Σ be the set of strategy profiles.

Player 𝑖’s stage game payoff in period 𝑡 is 𝑢𝑖(𝜃, 𝑎1,𝑡, 𝑎2,𝑡), with 𝑖 ∈ {1, 2}, which is naturally

extended to the domain ∆(Θ) × ∆(𝐴1) × ∆(𝐴2). Unlike Fudenberg and Levine (1989), my model

has interdependent values as player 2’s payoff depends on 𝜃, which is player 1’s private information.

Strategic type 𝜃 maximizes
∑︀∞

𝑡=0(1 − 𝛿)𝛿𝑡𝑢1(𝜃, 𝑎1,𝑡, 𝑎2,𝑡). The player 2 who arrives in period 𝑡

maximizes his expected stage game payoff.

Let BR2(𝛼1, 𝜋) ⊂ 𝐴2 be the set of player 2’s pure best replies when 𝑎1 and 𝜃 are independently

distributed with marginal distributions 𝛼1 ∈ ∆(𝐴1) and 𝜋 ∈ ∆(Θ), respectively. For every (𝛼*
1, 𝜃) ∈

Ω𝑚 × Θ, let

𝑣𝜃(𝛼
*
1) ≡ min

𝑎*2∈BR2(𝛼*
1,𝜃)

𝑢1(𝜃, 𝛼
*
1, 𝑎

*
2),

9 (1.1)

be type 𝜃’s (complete information) commitment payoff from playing 𝛼*
1. If 𝛼*

1 is pure, then 𝑣𝜃(𝛼
*
1)

is a pure commitment payoff. Otherwise, 𝛼*
1 is mixed and 𝑣𝜃(𝛼

*
1) is a mixed commitment payoff.

Solution Concept & Questions: The solution concept is Bayes Nash equilibrium (or equilib-

rium for short). The existence of equilibrium follows from Fudenberg and Levine (1983), as Θ, 𝐴1

and 𝐴2 are all finite sets and the game is continuous at infinity. Let NE(𝛿, 𝜇, 𝜑) ⊂ Σ be the set of

equilibria under parameter configuration (𝛿, 𝜇, 𝜑). Let 𝑉 𝜎
𝜃 (𝛿) be type 𝜃’s discounted average payoff

under strategy profile 𝜎 and discount factor 𝛿. Let 𝑉 𝜃(𝛿, 𝜇, 𝜑) ≡ inf𝜎∈NE(𝛿,𝜇,𝜑) 𝑉
𝜎
𝜃 (𝛿) be type 𝜃’s

worst equilibrium payoff.

I am interested in two sets of questions. First, can we find good lower bounds for a patient long-

run player’s guaranteed payoff, i.e. lim inf𝛿→1 𝑉 𝜃(𝛿, 𝜇, 𝜑)? In particular, can we extend Fudenberg

and Levine (1989)’s insights that reputation can overcome the lack-of-commitment problem (when

the reputation builder is patient) to interdependent value environments. Formally, for a given

9Abusing notation, I will use 𝜃 to denote the Dirac measure on 𝜃. The same rule applies to degenerate distributions
on 𝐴1 and 𝐴2.

22



(𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ, is it true that:

lim inf
𝛿→1

𝑉 𝜃(𝛿, 𝜇, 𝜑) ≥ 𝑣𝜃(𝛼
*
1)? (1.2)

Furthermore, when is the above commitment payoff bound fully robust, that is, inequality (1.2)

applies to every payoff function of the long-run player? Second, can we obtain robust predictions on

player 1’s equilibrium behavior? In particular, will he play the commitment strategy and maintain

his reputation in every equilibrium?

My first set of questions examines player 1’s guaranteed payoff when he can build a reputation.

When 𝑢2 does not depend on 𝜃, inequality (1.2) is implied by the results in Fudenberg and Levine

(1989, 1992) and player 1 can guarantee the payoff on the RHS by playing 𝛼*
1 in every period.

In interdependent value environments, however, player 1 may receive a low payoff by playing 𝛼*
1

in every period, as convincing player 2 that 𝛼*
1 will be played does not determine her best reply.

I address the robustness against equilibrium selection and against misspecifications of the long-

run player’s payoff function. Both are desirable properties of the results in Fudenberg and Levine

(1989, 1992) as (1) reputation models are often applied to decentralized markets where there are no

mediators helping participants to coordinate on a particular equilibrium, and (2) the modeler and

the short-run players may entertain incorrect beliefs about the long-run player’s payoff function.

My second set of questions advances the reputation literature one step further by examining the

robust predictions on the long-run player’s equilibrium behavior. Nevertheless, delivering robust

behavioral predictions in this infinitely-repeated signalling game is challenging, as the conventional

wisdom suggests that both infinitely-repeated games and signalling games have multiple equilibria

with diverging behavioral predictions. Note that the commitment payoff bound does not imply

that the long-run player will play his commitment strategy in every equilibrium, as a strategy that

can secure him a high payoff is not necessarily his optimal strategy.

1.3 Fully Robust Commitment Payoff Bounds

I characterize the set of distributional environments under which the commitment payoff bound is

fully robust. My conditions require that the likelihood ratios between some strategic types and the

commitment type be below some cutoffs. My result evaluates the robustness of the commitment

payoff bound in private value games against interdependent value perturbations. It also examines

the validity of the commitment payoff bound in interdependent value environments without any

restrictions on the long-run player’s payoff function.

Saturation Set & Strong Saturation Set Throughout this section, I make the generic as-

sumption that for every (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ, BR2(𝛼

*
1, 𝜃) is a singleton.10 Let 𝑎*2 be the unique

10BR2(𝛼
*
1, 𝜃) being a singleton is satisfied under generic 𝑢2(𝜃, 𝑎1, 𝑎2). This assumption will be relaxed in the Online

Appendix, where I develop generalized fully robust commitment payoff bounds.
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element in BR2(𝛼
*
1, 𝜃). For every (𝛼*

1, 𝜃) ∈ Ω𝑚 × Θ, let

Θ𝑏
(𝛼*

1,𝜃)
≡

{︀
𝜃 ∈ Θ

⃒⃒
𝑎*2 /∈ BR2(𝛼

*
1, 𝜃)

}︀
, (1.3)

be the set of bad states (with respect to (𝛼*
1, 𝜃)). Let 𝑘(𝛼*

1, 𝜃) ≡
⃒⃒
Θ𝑏

(𝛼*
1,𝜃)

⃒⃒
be its cardinality, with

all private value models satisfying 𝑘(𝛼*
1, 𝜃) = 0. If 𝜃 ∈ Θ𝑏

(𝛼*
1,𝜃)

, then type 𝜃 is a ‘bad’ strategic type.

For every �̃� ∈ ∆(Ω) with �̃�(𝛼*
1) > 0, let �̃�(𝜃) ≡ �̃�(𝜃)/�̃�(𝛼*

1) be the likelihood ratio between type 𝜃

and commitment type 𝛼*
1. Let �̃� ≡

(︁
�̃�(𝜃)

)︁
𝜃∈Θ𝑏

(𝛼*
1,𝜃)

∈ R𝑘(𝛼*
1,𝜃)

+ be the likelihood ratio vector. The

best response set for (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ is defined as:11

Λ(𝛼*
1, 𝜃) ≡

{︁
�̃� ∈ R𝑘(𝛼*

1,𝜃)
+

⃒⃒⃒
{𝑎*2} = arg max

𝑎2∈𝐴2

{︀
𝑢2(𝜑𝛼*

1
, 𝛼*

1, 𝑎2) +
∑︁

𝜃∈Θ𝑏
(𝛼*

1,𝜃)

�̃�(𝜃)𝑢2(𝜃, 𝛼
*
1, 𝑎2)

}︀}︁
. (1.4)

Intuitively, a likelihood ratio vector belongs to the best response set if 𝑎*2 is player 2’s strict best

reply to 𝛼*
1 when she only counts the bad strategic types and the commitment type 𝛼*

1 in her

calculations, while ignoring all the other strategic types and commitment types.

The saturation set for (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ is:

Λ(𝛼*
1, 𝜃) ≡

{︁̃︀𝜆⃒⃒⃒𝜆′ ∈ Λ(𝛼*
1, 𝜃) for every 0 ≪ 𝜆′ ≪ �̃�

}︁
, (1.5)

in which ‘≪’ denotes weak dominance in product order on R𝑘(𝛼*
1,𝜃) and 0 is the null vector in

R𝑘(𝛼*
1,𝜃). Intuitively, �̃� belongs to the saturation set if and only if every likelihood ratio vector equal

or below �̃� belongs to the best response set Λ(𝛼*
1, 𝜃). By definition, Λ(𝛼*

1, 𝜃) ̸= {∅} if and only if

0 ∈ Λ(𝛼*
1, 𝜃), or equivalently, BR2(𝛼

*
1, 𝜃) = BR2(𝛼

*
1, 𝜑𝛼*

1
) = {𝑎*2}.

If Λ(𝛼*
1, 𝜃) ̸= {∅}, then for every 𝜃 ∈ Θ𝑏

(𝛼*
1,𝜃)

, let 𝜓(𝜃) be the largest 𝜓 ∈ R+ such that:

𝑎*2 ∈ arg max
𝑎2∈𝐴2

{︁
𝑢2(𝜑𝛼*

1
, 𝛼*

1, 𝑎2) + 𝜓𝑢2(𝜃, 𝛼
*
1, 𝑎2)

}︁
.

By definition, 𝜓(𝜃) is the intercept of Λ(𝛼*
1, 𝜃) on the 𝜆(𝜃)-coordinate, which is strictly positive and

finite. The strong saturation set for (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ is:

Λ(𝛼*
1, 𝜃) ≡

⎧⎨⎩
{︁
�̃�
⃒⃒⃒∑︀

𝜃∈Θ𝑏
(𝛼*

1,𝜃)
�̃�(𝜃)/𝜓(𝜃) < 1

}︁
if Λ(𝛼*

1, 𝜃) ̸= {∅}

{∅} if Λ(𝛼*
1, 𝜃) = {∅}

(1.6)

Intuitively, the strong saturation set contains every non-negative vector that lies below the 𝑘(𝛼*
1, 𝜃)−

1 dimensional hyperplane that contains all the intersections between Λ(𝛼*
1, 𝜃) and the coordinates.

In general, when BR2(𝛼
*
1, 𝜃) may not be a singleton, Λ(𝛼*

1, 𝜃) is defined as

Λ(𝛼*
1, 𝜃) ≡ R𝑘(𝛼*

1,𝜃)
+

⃥︁
co
(︁
R𝑘(𝛼*

1,𝜃)
+

⧹︀
Λ(𝛼*

1, 𝜃)
)︁
,

11A relevant argument 𝜑𝛼*
1
is suppressed in the expression Λ(𝛼*

1, 𝜃) to simplify notation.
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𝜆(𝜃1)

𝜆(𝜃2)
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𝜓(𝜃2)

𝜓(𝜃1)

𝜆(𝜃1)

𝜆(𝜃2)

Λ

𝜓(𝜃2)

𝜓(𝜃1)

𝜆(𝜃1)

𝜆(𝜃2)

Λ

𝜓(𝜃2)

𝜓(𝜃1)

Figure 1-1: The best response set (left), the saturation set (middle) and the strong saturation set
(right).

where co(·) denotes the convex hull. I show in the Online Appendix that ̂︀𝜆 ∈ Λ(𝛼*
1, 𝜃) if and only

if there exists 𝜑 ∈ (0,+∞)𝑘(𝛼
*
1,𝜃) such that:

̂︀𝜆 ∈
{︁
�̃�
⃒⃒⃒ ∑︁
𝜃∈Θ𝑏

(𝛼*
1,𝜃)

�̃�(𝜃)/𝜑(𝜃) < 1 and �̃�(𝜃) ≥ 0, ∀ 𝜃 ∈ Θ𝑏
(𝛼*

1,𝜃)

}︁
⊂ Λ(𝛼*

1, 𝜃).

Figure 1-1 depicts the three sets in an example with two bad strategic types. I summarize some

geometric properties of these sets for future reference. First, despite Λ(𝛼*
1, 𝜃) can be unbounded,

both Λ(𝛼*
1, 𝜃) and Λ(𝛼*

1, 𝜃) are bounded sets. Furthermore, they are convex polyhedrons with

characterizations independent of both player 1’s payoff function and the probabilities of commitment

types other than 𝛼*
1. Second, as suggested by the notation, Λ(𝛼*

1, 𝜃) ⊂ Λ(𝛼*
1, 𝜃) ⊂ Λ(𝛼*

1, 𝜃). Third,

if there is only one bad strategic type, i.e. 𝑘(𝛼*
1, 𝜃) = 1 and Λ(𝛼*

1, 𝜃) ̸= {∅}, then there exists a

scalar 𝜓* ∈ (0,+∞) such that:

Λ(𝛼*
1, 𝜃) = Λ(𝛼*

1, 𝜃) = Λ(𝛼*
1, 𝜃) = {�̃� ∈ R|0 ≤ �̃� < 𝜓*}. (1.7)

When 𝑘(𝛼*
1, 𝜃) ≥ 2, however, these three sets can be different, as I show in Figure 1-1.

1.3.1 Statement of Result

My first result characterizes the set of (𝜇, 𝜑) under which the commitment payoff bound is fully

robust i.e. it applies to every 𝑢1. Let 𝜇𝑡 be player 2’s belief in period 𝑡. Let 𝜆 and 𝜆𝑡 be the

likelihood ratio vectors induced by 𝜇 and 𝜇𝑡, respectively. For a set 𝑋 ⊂ R𝑛, recall that co(𝑋) is

its convex hull and let cl(𝑋) be its closure.

Theorem 1.1. For every (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ with 𝛼*

1 being pure,

1. If 𝜆 ∈ Λ(𝛼*
1, 𝜃), then lim inf𝛿→1 𝑉 𝜃(𝛿, 𝜇, 𝜑) ≥ 𝑣𝜃(𝛼

*
1) for every 𝑢1.
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2. If 𝜆 /∈ cl
(︁

Λ(𝛼*
1, 𝜃)

)︁
and BR2(𝛼

*
1, 𝜑𝛼*

1
) is a singleton, then there exists 𝑢1 such that

lim sup𝛿→1 𝑉 𝜃(𝛿, 𝜇, 𝜑) < 𝑣𝜃(𝛼
*
1).

For every (𝛼*
1, 𝜃) ∈ Ω𝑚 × Θ with 𝛼*

1 being mixed,

3. If 𝜆 ∈ Λ(𝛼*
1, 𝜃), then lim inf𝛿→1 𝑉 𝜃(𝛿, 𝜇, 𝜑) ≥ 𝑣𝜃(𝛼

*
1) for every 𝑢1.

4. If 𝜆 /∈ cl
(︁

Λ(𝛼*
1, 𝜃)

)︁
, BR2(𝛼

*
1, 𝜑𝛼*

1
) is a singleton and 𝛼*

1 /∈ co
(︁

Ω𝑚
⃥︁
{𝛼*

1}
)︁
, then there exists

𝑢1 such that lim sup𝛿→1 𝑉 𝜃(𝛿, 𝜇, 𝜑) < 𝑣𝜃(𝛼
*
1).

According to Theorem 1.1, full robustness requires that the likelihood ratio between every bad

strategic type and the relevant commitment type be below some cutoff, while it does not depend

on the probabilities of the other strategic types and commitment types. Intuitively, this is because

type 𝜃 needs to come up with a history-dependent action plan under which the likelihood ratio

vector will remain low forever along every dimension. When the commitment payoff bound is fully

robust, such action plans should exist regardless of player 2’s belief about the other strategic types’

strategies. This includes the adverse belief in which all the good strategic types separate from,

while all the bad strategic types pool with, the commitment type.

However, unlike the private value benchmark, player 1 cannot guarantee his mixed commitment

payoff by replicating the mixed commitment strategy. This is because playing some actions in the

support of the mixed commitment strategy can increase some likelihood ratios, after which player

2’s belief about the persistent state becomes pessimistic and player 1 cannot guarantee a high

continuation payoff. Moreover, as Λ(𝛼*
1, 𝜃) ⊂ Λ(𝛼*

1, 𝜃), overcoming the lack-of-commitment problem

and securing the commitment payoff requires more demanding conditions when the commitment

strategy is mixed. This implies that small trembles by a pure commitment type can lead to a large

decrease in player 1’s guaranteed equilibrium payoff. This highlights another distinction between

private and interdependent values, which I formalize in the Online Appendix.

This theorem has two interpretations. First, it evaluates the robustness of reputation effects in

private value reputation games against a richer set of perturbations. Starting from Fudenberg and

Levine (1989) in which 𝜃 is common knowledge and there is a positive chance of a commitment

type, one can allow the short-run players to entertain the possibility that their opponent is another

strategic type who may have private information about their preferences. My result implies that

the fully-robust commitment payoff bound extends when these interdependent value perturbations

are relatively less likely compared to the commitment type, and vice versa.

Second, it points out the limitations of reputation effects in repeated incomplete information

games with interdependent values and unrestricted payoffs. According to this view, the modeler is

perturbing a repeated game with interdependent values with commitment types. Therefore, every

commitment type is arbitrarily unlikely compared to any strategic type. As a result, my conditions

fail whenever 𝑘(𝛼*
1, 𝜃) > 0. This motivates the study of games with specific payoff structures in

Section 1.4, which allows one to further explore the robust implications of reputation effects in

interdependent value environments.
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The proof of Theorem 1.1 appears in Appendices A.1 and A.2 as well as the Online Appendix.

I make several remarks on the conditions before explaining the proof. First, Theorem 1.1 left out

two degenerate sets of beliefs, which are the boundaries of Λ(𝛼*
1, 𝜃) and Λ(𝛼*

1, 𝜃). In these knife-

edge cases, the attainability of the commitment payoff bound depends on the presence of other

mixed strategy commitment types and their correlations with the state. Second, the assumption

that BR2(𝛼
*
1, 𝜑𝛼*

1
) is a singleton in statements 2 and 4 is satisfied under generic parameter values,

and is only required for the proof when Λ(𝛼*
1, 𝜃) = {∅}, which is used to rule out pathological

cases where 𝑎*2 ∈ BR2(𝛼
*
1, 𝜑𝛼*

1
) but {𝑎*2} ̸= BR2(𝛼

*
1, 𝜑𝛼*

1
). An example on this issue is presented

in Appendix A.2. Third, according to the separating hyperplane theorem, the requirement that

𝛼*
1 /∈ co

(︀
Ω𝑚∖{𝛼*

1}
)︀

guarantees the existence of a payoff function 𝑢1(𝜃, ·, ·) under which type 𝜃’s

commitment payoff from any alternative commitment action in Ω𝑚 is strictly below 𝑣𝜃(𝛼
*
1). This

convex independence assumption cannot be dispensed, as no restrictions are made on 𝜇(Ω𝑚∖{𝛼*
1})

and {𝜑𝛼1}𝛼1 ̸=𝛼*
1
. Therefore, commitment types other than 𝛼*

1 are allowed to occur with arbitrarily

high probability and can have arbitrary correlations with the state.

1.3.2 Proof Ideas of Statements 1 & 3

I start with the case in which 𝛼*
1 is pure and then move on to those in which 𝛼*

1 is mixed.

Pure Commitment Payoff: Since 𝛼*
1 is pure, 𝜆𝑡(𝜃) will not increase if player 2 observes 𝑎*1 for

every 𝜃 ∈ Θ𝑏
(𝑎*1,𝜃)

. Therefore, 𝜆𝑡(𝜃) ≤ 𝜆(𝜃) for every 𝑡 ∈ N if player 1 imitates the commitment type.

By definition, if 𝜆𝑡 ∈ Λ(𝛼*
1, 𝜃) and 𝑎*2 is not a strict best reply (call period 𝑡 a bad period), then the

strategic types must be playing actions other than 𝑎*1 in period 𝑡 with probability bounded from

below, after which they will be separated from the commitment type. As in Fudenberg and Levine

(1989), the number of bad periods is uniformly bounded from above, which implies that player 1

can secure his commitment payoff as 𝛿 → 1.

Mixed Commitment Payoff when 𝑘(𝛼*
1, 𝜃) = 1: Let Θ𝑏

(𝛼*
1,𝜃)

≡ {𝜃}. Recall from equation

(1.7) in subsection 3.1 that when Λ(𝛼*
1, 𝜃) ̸= {∅}, there exists 𝜓* > 0 such that Λ(𝛼*

1, 𝜃) = {�̃�|0 ≤
�̃� < 𝜓*}. The main difference from the pure commitment action case is that 𝜆𝑡 can increase

after player 2 observes some actions in the support of 𝛼*
1. As a result, type 𝜃 cannot secure his

commitment payoff by replicating 𝛼*
1 since he may end up playing actions that are more likely to

be played by type 𝜃, in which case 𝜆𝑡 will exceed 𝜓*.

The key step in my proof shows that for every equilibrium strategy of the short-run players,

one can construct a non-stationary strategy for the long-run player under which the following three

goals are achieved simultaneously: (1) To avoid negative inferences about the state, i.e. 𝜆𝑡 < 𝜓*

for every 𝑡 ∈ N. (2) In expectation, the short-run players believe that actions within a small

neighborhood of 𝛼*
1 will be played for all but a bounded number of periods. (3) Every 𝑎1 ∈ 𝐴1 will

be played with occupation measure close to 𝛼*
1(𝑎1).

12

12There is a remaining step after this to deal with correlations between action and state, with details shown in
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To understand why one can make such a construction, note that {𝜆𝑡}𝑡∈N is a non-negative

supermartingale conditional on 𝛼*
1. Since 𝜆0 < 𝜓*, the probability measure over histories (induced

by 𝛼*
1) in which 𝜆𝑡 never exceeds 𝜓* is bounded from below by the Doob’s Upcrossing Inequality.13

When 𝛿 is close to 1, the Lindeberg-Feller Central Limit Theorem (Chung 1974) ensures that the

set of player 1’s action paths, in which the discounted time average frequency of every 𝑎1 being

close to 𝛼*
1(𝑎1), occurs with probability close to 1 under the measure induced by 𝛼*

1. Each of

the previous steps defines a subset of histories, and the intersection between them occurs with

probability bounded from below. Then I derive a uniform upper bound on the expected sum of

relative entropy between 𝛼*
1 and player 2’s predicted action conditional on only observing histories

at the intersection. According to Gossner (2011), the unconditional expected sum is bounded from

above by a positive number that does not explode as 𝛿 → 1. Given that the intersection between the

two sets has probability bounded from below, the Markov Inequality implies that the conditional

expected sum is also bounded from above. Therefore, the expected number of periods that player

2’s predicted action is far away from 𝛼*
1 is bounded from above.

Mixed Commitment Payoff when 𝑘(𝛼*
1, 𝜃) ≥ 2: Let 𝑆𝑡 ≡

∑︀
𝜃∈Θ𝑏

(𝛼*
1,𝜃)

𝜆𝑡(𝜃)/𝜓(𝜃), which is a

non-negative supermartingale conditional on 𝛼*
1. The assumption that 𝜆 ∈ Λ(𝛼*

1, 𝜃) implies that

𝑆0 < 1. Doob’s Upcrossing Inequality provides a lower bound on the probability measure over

histories under which 𝑆𝑡 is always strictly below 1, i.e. 𝜆𝑡 ∈ Λ(𝛼*
1, 𝜃) for every 𝑡 ∈ N. The proof

then follows from the 𝑘(𝛼*
1, 𝜃) = 1 case.

To illustrate why 𝜆 ∈ Λ(𝛼*
1, 𝜃) is insufficient when 𝑘(𝛼*

1, 𝜃) ≥ 2 and 𝛼*
1 is mixed, I present an

example in Appendix A.7.8 where 𝜆 ∈ Λ(𝛼*
1, 𝜃) but type 𝜃’s equilibrium payoff is bounded below

his commitment payoff. The idea is to construct equilibrium strategies for the bad strategic types,

under which playing every action in the support of 𝛼*
1 will increase the likelihood ratio along some

dimensions. As a result, player 2’s belief in period 1 is bounded away from Λ(𝛼*
1, 𝜃) regardless of

the action played in period 0.

1.3.3 Proof Ideas of Statements 2 & 4

To prove statement 2, let 𝛼*
1 be the Dirac measure on 𝑎*1 ∈ 𝐴1. Let player 1’s payoff be given by:

𝑢1(̃︀𝜃, 𝑎1, 𝑎2) = 1{̃︀𝜃 = 𝜃, 𝑎1 = 𝑎*1, 𝑎2 = 𝑎*2}. (1.8)

I construct an equilibrium in which type 𝜃 obtains a payoff strictly bounded below 1 even when 𝛿

is arbitrarily close to 1. The key idea is to let the bad strategic types pool with the commitment

type (with high probability) and the good ones separate from the commitment type. As a result,

Appendix A.1.2 Part II.
13In private value reputation games with noisy monitoring, Fudenberg and Levine (1992) use the upcrossing in-

equality to bound the number of bad periods when player 1 imitates the commitment strategy. In contrast, I use the
upcrossing inequality to show that player 1 can cherry-pick actions in the support of his mixed commitment strategy
in order to prevent 𝜆(𝜃) from exceeding 𝜓(𝜃) while simultaneously making his opponents believe that actions close
to 𝛼*

1 will be played in all but a bounded number of periods.
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type 𝜃 cannot simultaneously build a reputation for commitment while separating away from the

bad strategic types.

However, the proof is complicated by the presence of other commitment types that are playing

mixed strategies. To understand this issue, consider an example where Θ = {𝜃, 𝜃} with 𝜃 ∈
Θ𝑏

(𝑎*1,𝜃)
, Ω𝑚 = {𝑎*1, 𝛼1} with 𝛼1 non-trivially mixed, attaching positive probability to 𝑎*1 and {𝑎*2} =

BR2(𝑎
*
1, 𝜑𝑎*1) = BR2(𝛼1, 𝜑𝛼1). The naive construction in which type 𝜃 plays 𝑎*1 all the time does

not work, as type 𝜃 can then obtain a payoff arbitrarily close to 1 by playing 𝑎1 ∈ supp(𝛼1)∖{𝑎*1}
in period 0 and 𝑎*1 in every subsequent period.

To circumvent this problem, I construct a sequential equilibrium in which type 𝜃’s action is

deterministic on the equilibrium path. Type 𝜃 plays 𝑎*1 in every period with probability 𝑝 ∈ (0, 1)

and plays strategy 𝜎(𝛼1) with probability 1−𝑝, with 𝑝 being large enough that 𝜆1 is bounded away

from Λ(𝛼*
1, 𝜃) after observing 𝑎*1 in period 0. The strategy 𝜎(𝛼1) is described as follows: At histories

that are consistent with type 𝜃’s equilibrium strategy, play 𝛼1; at histories that are inconsistent,

play a completely mixed action �̂�1(𝛼1) which attaches strictly higher probability to 𝑎*1 than to any

element in Ω𝑚∖{𝑎*1}.

To verify incentive compatibility, I keep track of the likelihood ratio between the fraction of

type 𝜃 who plays 𝜎(𝛼1) and the commitment type 𝛼1. If type 𝜃 has never deviated before, then

this ratio remains constant. If type 𝜃 has deviated before, then this ratio increases every time 𝑎*1
is observed. Therefore, once type 𝜃 has deviated from his equilibrium play, he will face a trade-off

between obtaining a high stage-game payoff (by playing 𝑎*1) and reducing the likelihood ratio. This

uniformly bounds his continuation payoff after any deviation from above, which is strictly below

1. Type 𝜃’s on-path strategy is then constructed such that his payoff is strictly between 1 and his

highest post-deviation continuation payoff. This can be achieved, for example, by using a public

randomization device that prescribes 𝑎*1 with probability less than 1 in every period.

The proof of statement 4 involves several additional steps, with details shown in the Online

Appendix. First, the payoff function in equation (1.8) is replaced by one that is constructed via the

separating hyperplane theorem, such that type 𝜃’s commitment payoff from every other action in

Ω𝑚 is strictly lower than his commitment payoff from playing 𝛼*
1. Second, I show that there exists

an integer 𝑇 (independent of 𝛿) and a 𝑇 -period strategy for the strategic types other than 𝜃 such

that the likelihood ratio vector in period 𝑇 is bounded away from Λ(𝛼*
1, 𝜃) regardless of player 1’s

behavior in the first 𝑇 periods. Third, the continuation play after period 𝑇 modifies the construction

in the proof of statement 2. The key step is to construct the bad strategic types’ strategies under

which type 𝜃’s continuation payoff after any deviation is bounded below his commitment payoff

from playing 𝛼*
1.

1.4 Games with Monotone-Supermodular Payoffs

Motivated by the discussions in Section 1.3, I study stage games where players’ payoffs satisfy a

monotone-supermodularity (or MSM) condition. I explore the robust predictions on the long-run

player’s equilibrium payoff and on-path equilibrium behavior. All the results in this section apply
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even when the commitment types are arbitrarily unlikely compared to any strategic type.

1.4.1 Monotone-Supermodular Payoff Structure

Let Θ, 𝐴1 and 𝐴2 be finite ordered sets. I use ‘≻’, ‘%’, ‘≺’ and ‘-’ to denote the rankings between

pairs of elements. The stage game has MSM payoffs if it satisfies the following pair of assumptions:

Assumption 1.1 (Monotonicity). 𝑢1(𝜃, 𝑎1, 𝑎2) is strictly decreasing in 𝑎1 and is strictly increasing

in 𝑎2.

Assumption 1.2 (Supermodularity). 𝑢1(𝜃, 𝑎1, 𝑎2) has strictly increasing differences (or SID) in

(𝑎1, 𝜃) and increasing differences (or ID) in (𝑎2, 𝜃). 𝑢2(𝜃, 𝑎1, 𝑎2) has SID in (𝑎1, 𝑎2) and (𝜃, 𝑎2).
14

I focus on games where player 2’s decision-making problem is binary, which have been a primary

focus of the reputation literature, for example, Kreps and Wilson (1982), Milgrom and Roberts

(1982), Mailath and Samuelson (2001), Ekmekci (2011), Liu (2011) and others.15

Assumption 1.3. |𝐴2| = 2.

I will discuss how my assumptions fit into the applications to business transactions (or product

choice game) and monopolistic competition (or entry deterrence game) in Subsection 1.4.5.

Preliminary Analysis: Let 𝑎𝑖 ≡ max𝐴𝑖 and 𝑎𝑖 ≡ min𝐴𝑖, with 𝑖 ∈ {1, 2}. For every 𝜋 ∈ ∆(Θ)

and 𝛼1 ∈ ∆(𝐴1), let

𝒟(𝜋, 𝛼1) ≡ 𝑢2(𝜋, 𝛼1, 𝑎2) − 𝑢2(𝜋, 𝛼1, 𝑎2). (1.9)

I classify the states into good, bad and negative by partitioning Θ into the following three sets:

Θ𝑔 ≡
{︀
𝜃
⃒⃒
𝒟(𝜃, 𝑎1) ≥ 0 and 𝑢1(𝜃, 𝑎1, 𝑎2) > 𝑢1(𝜃, 𝑎1, 𝑎2)

}︀
,

Θ𝑝 ≡
{︀
𝜃 /∈ Θ𝑔

⃒⃒
𝑢1(𝜃, 𝑎1, 𝑎2) > 𝑢1(𝜃, 𝑎1, 𝑎2)

}︀
and Θ𝑛 ≡

{︀
𝜃
⃒⃒
𝑢1(𝜃, 𝑎1, 𝑎2) ≤ 𝑢1(𝜃, 𝑎1, 𝑎2)

}︀
.

Intuitively, Θ𝑔 is the set of good states in which 𝑎2 is player 2’s best reply to 𝑎1 and player 1

strictly prefers the commitment outcome (𝑎1, 𝑎2) to his minmax outcome (𝑎1, 𝑎2). Θ𝑝 is the set of

bad states in which player 2 has no incentive to play 𝑎2 but player 1 strictly prefers (𝑎1, 𝑎2) to his

minmax outcome. Θ𝑛 is the set of negative states in which player 1 prefers his minmax outcome

to the commitment outcome. Lemma 1.4.1 shows that every good state is higher than every bad

state, and every bad state is higher than every negative state:

Lemma 1.4.1. If the stage game payoff satisfies Assumption 1.2, then:

14First, given Assumption 1.2, the case in which 𝑢1(𝜃, 𝑎1, 𝑎2) is strictly increasing in 𝑎1 and strictly decreasing in
𝑎2 can be analyzed similarly by reversing the orders of the states and each player’s actions. Second, I only require
𝑢1 to have ID in (𝑎2, 𝜃) in order to accommodate the classic separable case, in which player 1’s return from player
2’s action does not depend on the state. Assumption 1.2 can be further relaxed, which can be seen in the conclusion
(Assumption 1.4) and the Online Appendix.

15The results extend to games with |𝐴2| ≥ 3 under extra conditions on 𝑢1. The details can be found in the Online
Appendix.
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1. For every 𝜃𝑔 ∈ Θ𝑔, 𝜃𝑝 ∈ Θ𝑝 and 𝜃𝑛 ∈ Θ𝑛, 𝜃𝑔 ≻ 𝜃𝑝, 𝜃𝑝 ≻ 𝜃𝑛 and 𝜃𝑔 ≻ 𝜃𝑛.

2. If Θ𝑝,Θ𝑛 ̸= {∅}, then 𝒟(𝜃𝑛, 𝑎1) < 0 for every 𝜃𝑛 ∈ Θ𝑛.

Proof of Lemma 1.4.1: For statement 1, since 𝒟(𝜃𝑔, 𝑎1) ≥ 0 and 𝒟(𝜃𝑝, 𝑎1) < 0, SID of 𝑢2 with

respect to (𝜃, 𝑎2) implies that 𝜃𝑔 ≻ 𝜃𝑝. Since 𝑢1(𝜃𝑝, 𝑎1, 𝑎2) > 𝑢1(𝜃𝑝, 𝑎1, 𝑎2) and 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) ≤
𝑢1(𝜃𝑛, 𝑎1, 𝑎2), we know that 𝜃𝑝 ≻ 𝜃𝑛 due to the SID of 𝑢1 in (𝜃, 𝑎1) and ID of 𝑢1 in (𝜃, 𝑎2). If

Θ𝑝 ̸= {∅}, then statement 1 is proved. If Θ𝑝 = {∅}, then since 𝑢1(𝜃𝑔, 𝑎1, 𝑎2) > 𝑢1(𝜃𝑔, 𝑎1, 𝑎2) and

𝑢1(𝜃𝑛, 𝑎1, 𝑎2) ≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2), we have 𝜃𝑔 ≻ 𝜃𝑛. For statement 2, if Θ𝑝,Θ𝑛 ̸= {∅}, then 𝜃𝑛 ≺ 𝜃𝑝.

SID of 𝑢2 with respect to (𝜃, 𝑎2) implies that 𝒟(𝜃𝑛, 𝑎1) < 𝒟(𝜃𝑝, 𝑎1) < 0.

1.4.2 Statement of Results

My results in this section outline the robust implications on player 1’s payoff and behavior when

he has the option to build a reputation for playing the highest action. For this purpose, I assume

that 𝑎1 ∈ Ω𝑚 and 𝒟(𝜑𝑎1 , 𝑎1) > 0, i.e. there exists a commitment type that plays the highest action

in every period, and player 2 has a strict incentive to play 𝑎2 conditional on knowing that she is

facing commitment type 𝑎1.

The qualitative features of equilibria depend on the relative likelihood between the strategic

types who know that the state is good (call them good strategic types) and the ones who know that

the state is bad (call them bad strategic types). In particular, player 2’s prior belief is optimistic if:

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝜃∈Θ𝑔∪Θ𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1) > 0, (1.10)

and is pessimistic if:

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝜃∈Θ𝑔∪Θ𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1) ≤ 0. (1.11)

Notice that formulas (1.10) and (1.11) allow type 𝑎1 to be arbitrarily unlikely compared to every

strategic type. In my results, these inequalities can be replaced by
∑︀

𝜃∈Θ𝑔∪Θ𝑝
𝜇(𝜃)𝒟(𝜃, 𝑎1) ≥ 0 and∑︀

𝜃∈Θ𝑔∪Θ𝑝
𝜇(𝜃)𝒟(𝜃, 𝑎1) < 0, respectively, when the total probability of commitment types is small

enough. These expressions will be useful once we compare the reputation game to the benchmark

game without commitment types.

Equilibrium Payoff under Optimistic Priors: The main result in the optimistic prior case

is the commitment payoff bound for playing the highest action, which is stated as Theorem 1.2:

Theorem 1.2. If 𝑎1 ∈ Ω𝑚, 𝒟(𝜑𝑎1 , 𝑎1) > 0 and 𝜇 satisfies (1.10), then for every 𝜃 ∈ Θ, we have:

lim inf
𝛿→1

𝑉 𝜃(𝛿, 𝜇, 𝜑) ≥ max{𝑢1(𝜃, 𝑎1, 𝑎2), 𝑢1(𝜃, 𝑎1, 𝑎2)}. (1.12)

According to Theorem 1.2, a patient long-run player can overcome the lack-of-commitment

problem and guarantee his payoff from (𝑎1, 𝑎2) in every state and in every equilibrium. It implies,
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for example, that a firm can secure high returns by maintaining a reputation for exerting high effort

despite his customers’ skepticism about product quality; an incumbent who might have unfavorable

information about the market demand curve (say, demand elasticities are low) can guarantee high

profits by fighting entrants.

The key distinction between condition (1.10) and the distribution conditions in Theorem 1.1

is that the good strategic types can contribute to attaining the commitment payoff. As a result,

the commitment type is allowed to be arbitrarily unlikely compared to every bad strategic type.

Intuitively, this is driven by the following implication of MSM payoff: when player 1 has an incentive

to pool with the commitment type 𝑎1 in a lower state, he will then play 𝑎1 with probability 1 at

every on-path history in a higher state. According to Lemma 1.4.1, every good state is higher than

every bad state. The above property implies that in equilibria where some bad strategic types pool

with the commitment type, all the good strategic types will behave like the commitment type on

the equilibrium path, which can help to guarantee the commitment payoff.

Nevertheless, there also exist repeated game equilibria in which the commitment strategy is

not optimal for any bad strategic type. This undermines the implications of MSM and as a result,

the good strategic types will have a strict incentive not to play the commitment strategy in some

of those equilibria. Therefore, reputation effects cannot provide accurate predictions on player 1’s

equilibrium behavior in the optimistic prior case. Moreover, there can exist on-path histories at

which every bad strategic type plays 𝑎1 with strictly higher probability than every good strategic

type, so player 2’s belief can become more pessimistic after observing 𝑎1.

In order to establish the commitment payoff bound in those equilibria, I circumvent the afore-

mentioned complications by showing that player 2’s posterior cannot become too pessimistic con-

ditional on 𝑎1 is always being played. This implies that in every period where 𝑎2 is not player 2’s

strict best reply, the strategic types must be separating from the commitment type with probabil-

ity bounded from below. Hence, there can be at most a bounded number of such periods, which

validates the commitment payoff bound in those equilibria.

One may also wonder whether player 1 can guarantee a strictly higher payoff by establishing a

reputation for playing an alternative commitment action. In the Online Appendix, I adopt a notion

of tightness introduced by Cripps, Schmidt and Thomas (1996) and show that when there are bad

strategic types, i.e. Θ𝑝 ̸= {∅}, no type of player 1 can guarantee a strictly higher equilibrium

payoff by establishing a reputation for playing another pure commitment action. Furthermore, if

Θ𝑝 ̸= {∅} and Θ𝑛 = {∅}, then player 1 cannot guarantee a strictly higher equilibrium payoff by

taking any other (pure or mixed) commitment actions.

Equilibrium Payoff and Behavior under Pessimistic Priors: When 𝜇 satisfies condition

(1.11), there exists a unique pair of (𝜃*𝑝, 𝑞(𝜇)) ∈ Θ𝑝 × (0, 1] such that:

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) + 𝑞(𝜇)𝜇(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) +
∑︁
𝜃≻𝜃*𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1) = 0. (1.13)
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Since 𝜃*𝑝 ∈ Θ𝑝, the definition of Θ𝑝 and Assumption 1.1 imply the existence of 𝑟 ∈ (0, 1) such that:

𝑟𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2) +

(︀
1 − 𝑟

)︀
𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) = 𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2). (1.14)

Let

𝑣*𝜃 ≡

{︃
𝑢1(𝜃, 𝑎1, 𝑎2) if 𝜃 - 𝜃*𝑝
𝑟𝑢1(𝜃, 𝑎1, 𝑎2) +

(︀
1 − 𝑟

)︀
𝑢1(𝜃, 𝑎1, 𝑎2) if 𝜃 ≻ 𝜃*𝑝.

(1.15)

Let ℋ𝜎(𝜃) (⊂ ℋ) be the set of histories that occurs with strictly positive probability under strategy

profile 𝜎 conditional on player 1 being strategic type 𝜃. For the sake of exposition, I state the result

when Ω𝑚 = {𝑎1}, which will be generalized to the case with multiple commitment types in Theorem

A.1 (Appendix A.4.2) under the extra requirement that the total probability of commitment types,

𝜇(Ω𝑚), is small enough:

Theorem 1.3. If Ω𝑚 = {𝑎1} and 𝒟(𝜑𝑎1 , 𝑎1) > 0, then for every 𝜇 satisfying equation (1.11), there

exists 𝛿 ∈ (0, 1), such that for every 𝛿 > 𝛿 and 𝜎 ≡
(︁

(𝜎𝜔)𝜔∈Ω, 𝜎2

)︁
∈ NE(𝛿, 𝜇, 𝜑),

1. For every 𝜃 ≻ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

For every 𝜃 ≺ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

In period 0, type 𝜃*𝑝 plays 𝑎1 with probability 𝑞(𝜇) and 𝑎1 with probability 1 − 𝑞(𝜇).

For every ℎ𝑡 ∈ ℋ𝜎(𝜃*𝑝) with 𝑡 ≥ 1:

∙ If ℎ𝑡 contains 𝑎1, then at ℎ𝑡, type 𝜃*𝑝 plays 𝑎1.

∙ If ℎ𝑡 contains 𝑎1, then at ℎ𝑡, type 𝜃*𝑝 plays 𝑎1.

2. If 𝑞(𝜇) ̸= 1, then 𝑉 𝜎
𝜃 (𝛿) = 𝑣*𝜃 for every 𝜃 ∈ Θ.

According to Theorem 1.3, every strategic type’s equilibrium payoff and on-path behavior are

(generically) the same across all Nash equilibria when player 1 is patient. Furthermore, his behavior

and payoff are independent of the discount factor as long as it lies above some threshold 𝛿. On the

equilibrium path, every type strictly above 𝜃*𝑝 plays 𝑎1 in every period, every type strictly below

𝜃*𝑝 plays 𝑎1 in every period, type 𝜃*𝑝 randomizes (in period 0) between playing 𝑎1 in every period

and playing 𝑎1 in every period. This suggests that the long-run player will behave consistently over

time and maintain his reputation for commitment in every equilibrium. As implied by equation

(1.13), player 2 is indifferent between 𝑎2 and 𝑎2 starting from period 1 conditional on player 1’s

always having played 𝑎1 in the past. When the cutoff type 𝜃*𝑝 plays a non-trivial mixed strategy,

i.e. 𝑞(𝜇) ̸= 1,16 his indifference condition in period 0 pins down every strategic type’s equilibrium

payoff. In particular, it requires that the occupation measure of 𝑎2 be 𝑟 when 𝑎1 is played in every

period and 0 when 𝑎1 is played in every period, as can be seen from equations (1.14) and (1.15).

Intuitively, the uniqueness of player 1’s on-path behavior is driven by the following disciplinary

effect : he can obtain a high payoff by playing 𝑎1 in every period thanks to the commitment type,

16The condition that 𝑞(𝜇) ̸= 1 is satisfied for generic 𝜇. It is also satisfied if we fix the likelihood ratios between
the strategic types and focus on cases where the total probability of commitment types is small.
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but it is impossible for him to receive a high payoff in the continuation game if he has ever failed

to do so. To be more precise, I begin with the useful observation that under a pessimistic prior,

always playing 𝑎1 must be optimal for some bad strategic types. Since players’ payoffs are MSM,

the above statement implies that all the good strategic types will play 𝑎1 at every on-path history

and in every equilibrium. Therefore, player 2’s belief about 𝜃 deteriorates whenever player 1 fails to

play 𝑎1, after which his continuation payoff will be low. To see why playing the highest action for

some time and then switching to a lower action is suboptimal for every strategic type, notice that

(1) if his first deviation happened at an optimistic belief, then he could guarantee a strictly higher

payoff by playing the highest action in every period thanks to the commitment type; (2) if his first

deviation occurred after period 0 when player 2’s belief is pessimistic, then he could strictly save

the cost of playing 𝑎1 by playing 𝑎1 from period 0. The probabilities with which the cutoff type 𝜃*𝑝
mixes in period 0 can be uniquely pinned down due to the substitutability between his return from

playing 𝑎1 and the equilibrium probability with which he plays 𝑎1. In particular, if type 𝜃*𝑝 plays

𝑎1 with higher probability, then it reduces player 2’s incentive to play 𝑎2 after observing 𝑎1 and

hence reduces type 𝜃*𝑝’s return from playing 𝑎1.

In contrast, player 1 exhibits multiple on-path behaviors in Fudenberg and Levine (1989) and

behaving inconsistently is strictly optimal in some sequential equilibria. This is because deviating

from the commitment action only signals that player 1 is strategic, but cannot preclude him from

obtaining a high payoff in the continuation game according to Fudenberg et al. (1990). As a result,

he may have an incentive to separate from the commitment type in any given period, depending on

which equilibrium players coordinate on.17 Similarly in the optimistic prior case, deviating from

the commitment action can still lead to an optimistic posterior about the state, after which player

1’s continuation payoff can still be high, leading to multiple equilibrium behaviors.

For an overview of the extension to multiple commitment types (Theorem A.1 in Appendix

A.4.2): If there are only pure strategy commitment types and type 𝑎1 is the only commitment

type under which 𝑎2 is optimal, then all the conclusions in Theorem 1.3 apply without any further

qualifications. If there are only pure commitment types, but there are commitment types other than

𝑎1 under which player 2 has a strict incentive to play 𝑎2, then as long as 𝜇(Ω𝑚) is small enough,

player 1’s equilibrium payoff and behavior are the same across all equilibria. Every strategic type’s

equilibrium behavior is the same as described in Theorem 1.3 except for the cutoff type 𝜃*𝑝, who can

play actions other than 𝑎1 and 𝑎1 with positive probability. If there are mixed commitment types

and 𝜇(Ω𝑚) is small enough, then there exists a cutoff type 𝜃*𝑝 ∈ Θ𝑝 (which is the same across all

equilibria) such that all types above 𝜃*𝑝 play 𝑎1 all the time, all types below 𝜃*𝑝 play 𝑎1 all the time.

Type 𝜃*𝑝’s various on-path behaviors in different equilibria will coincide with (ex ante) probability

17The behavioral uniqueness conclusion will also fail in repeated incomplete information games where the state
only affects player 1’s payoff, regardless of how pessimistic the prior belief is. To see this, consider for example that
player 1 has persistent private information about his discount factor (Ghosh and Ray 1996) or his cost of taking a
higher action (Schmidt 1993b). In these cases, the strategic types who have low discount factors or high costs either
have no incentive to pool with the commitment type, in which case the disciplinary effect only works temporarily; or
if they play the commitment strategy in equilibrium, then they are equivalent to the commitment type in player 2’s
best-response problem, in which case they are no longer ‘bad’.
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of at least 1− 𝜖, and moreover, he will either play 𝑎1 all the time or 𝑎1 all the time with probability

of at least 1 − 𝜖, with 𝜖 vanishing as 𝜇(Ω𝑚) → 0.

I conclude this subsection by adding two caveats. To begin with, my behavior uniqueness result

requires that the long-run player be patient. I show by counterexample in Appendix A.7.7 that

he can have multiple possible equilibrium behaviors when 𝛿 is low. Intuitively, this is because

an impatient bad strategic type has no incentive to pay the cost of imitating the commitment

type. As a result, the disciplinary effect will disappear. Next, neither Theorem 3 nor its extension

(Theorem A.1) can imply the uniqueness of Nash equilibrium or Nash equilibrium outcome. This

is because first, Nash equilibrium places no restriction on players’ behaviors off the equilibrium

path. Second, player 2’s behavior on the equilibrium path is not necessarily unique. To see this,

assume for example, Ω𝑚 = {𝑎1}. Since player 2 is indifferent starting from period 1 conditional

on 𝑎1 always being played, her behavior is only restricted by two sets of constraints. The first is,

type 𝜃*𝑝’s indifference condition in period 0. The second constraint is, type 𝜃*𝑝’s incentives to play

𝑎1 in period 𝑡 ∈ N. The first one only pins down the occupation measure of 𝑎2 conditional on 𝑎1

being played in every period, and the second one only requires that 𝑎2 not be too front-loaded.

Under these constraints, there are still multiple ways to allocate the play of 𝑎2 over time, leading

to multiple equilibrium outcomes.

1.4.3 Proof Ideas of Theorems 1.2 and 1.3

The proofs of Theorem 1.2, Theorem 1.3 and Theorem A.1 can be found in Appendices A.3 and

A.4, and the counterexamples to my results in which each of my assumptions fails are in Appendices

A.7.1, A.7.2 and A.7.3.

To recall the challenges ahead, first, since values are interdependent and the commitment types

are allowed to be arbitrarily unlikely compared to every strategic type, Theorem 1.1 suggests that

the proofs need to exploit the properties of player 1’s payoff function. Therefore, the standard

learning-based arguments in Fudenberg and Levine (1989, 1992), Sorin (1999), Gossner (2011) and

others cannot be directly applied.

Second, a repeated supermodular game is not supermodular, as player 1’s action today can affect

future equilibrium play. Consequently, the monotone selection result on static supermodular games

(see Topkis 1998) is not applicable. Similar issues have been highlighted in complete information

extensive form games (Echenique 2004) and 1-shot signalling games (Liu and Pei 2017). For an

illustrative example, consider the following 1-shot signalling game where the sender is the row

player and the receiver is the column player:

𝜃 = 𝐻 𝑙 𝑟

𝑈 4, 8 0, 0

𝐷 2,4 0, 0

𝜃 = 𝐿 𝑙 𝑟

𝑈 −2,−2 2,0

𝐷 0,−4 5, 1

If we rank the states and players’ actions according to 𝐻 ≻ 𝐿, 𝑈 ≻ 𝐷 and 𝑙 ≻ 𝑟, one can verify that

both players’ payoffs are strict supermodular functions of the triple (𝜃, 𝑎1, 𝑎2). However, there exists

a sequential equilibrium in which the sender plays 𝐷 in state 𝐻 and 𝑈 in state 𝐿. The receiver
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plays 𝑙 after she observes 𝐷 and 𝑟 after she observes 𝑈 . Therefore, the sender’s equilibrium action

can be strictly decreasing in the state, despite all the complementarities between players’ actions

and the state.

The game studied in this paper is trickier than 1-shot signalling games, as the sender (or player

1) is repeatedly signalling his private information. The presence of intertemporal incentives provides

a rationale for many different behaviors and belief-updating processes that cannot be rationalized

in 1-shot interactions. For example, even when the stage game has MSM payoffs, there can still

exist equilibria in the repeated signalling game where at some on-path histories, player 1 plays

𝑎1 with higher probability in a lower state compared to a higher state. As a result, player 1’s

reputation could deteriorate even when he plays the highest action.

Proof Sketch in the Entry Deterrence Game: I illustrate the logic of the proof using the

entry deterrence game in the introduction. Recall that players’ stage game payoffs are given by:

𝜃 = 𝐻 𝑂 𝐸

𝐹 2, 0 0,−1

𝐴 3, 0 1, 2

𝜃 = 𝐿 𝑂 𝐸

𝐹 2 − 𝜂, 0 −𝜂, 1
𝐴 3, 0 1, 2

Let 𝐻 ≻ 𝐿, 𝐹 ≻ 𝐴 and 𝑂 ≻ 𝐸. One can check that Assumptions 1.1 and 1.3 are satisfied. I focus

on the case where 𝜂 ∈ (0, 1), which satisfies Assumption 1.2 and moreover, 𝐿 ∈ Θ𝑝. I make several

simplifying assumptions which are relaxed in Appendices A.3 and A.4. First, player 2 can only

observe player 1’s past actions, i.e. ℎ𝑡 = {𝑎1,𝑠}𝑡−1
𝑠=0. Second, there is only one commitment type,

i.e. Ω𝑚 ≡ {𝐹}. Third, let 𝜑𝐹 be the Dirac measure on state 𝐻.

Two Classes of Equilibria: I classify the set of equilibria into two classes, depending on whether

or not playing 𝐹 in every period is type 𝐿’s best reply. Formally, let ℎ𝑡𝐹 be the period 𝑡 history at

which all past actions were 𝐹 . For any given equilibrium 𝜎 ≡ ({𝜎𝜔}𝜔∈Ω, 𝜎2), 𝜎 is called a regular

equilibrium if playing 𝐹 at every history in {ℎ𝑡𝐹 }∞𝑡=0 is type 𝐿’s best reply to 𝜎2. Otherwise, 𝜎 is

called an irregular equilibrium.

Regular Equilibria: I use a monotone selection result on 1-shot signalling games (Liu and Pei

2017):

∙ If a 1-shot signalling game has MSM payoffs and the receiver’s action choice is binary, then

the sender’s action is non-decreasing in the state in every Nash equilibrium.

This result implies that in the repeated signalling game studied in this section, if playing the

highest action in every period is player 1’s best reply in a lower state, then he will play the highest

action with probability 1 at every on-path history in a higher state (see Lemma A.3.1 for a formal

statement). In the context of the entry deterrence game, if an equilibrium is regular, then playing

𝐹 in every period is type 𝐿’s best reply. Since 𝐻 ≻ 𝐿, the result implies that type 𝐻 will play 𝐹

with probability 1 at ℎ𝑡𝐹 for every 𝑡 ∈ N.
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Irregular Equilibria: I establish two properties of irregular equilibria. First, at every history

ℎ𝑡𝐹 where player 2’s belief attaches higher probability to type 𝐻 than to type 𝐿, either 𝑂 is her

strict best reply, or the strategic types will be separated from the commitment type at ℎ𝑡𝐹 with

significant probability. Next, I show that when 𝛿 is large enough, player 2’s posterior belief will

attach higher probability to type 𝐻 than to type 𝐿 at every ℎ𝑡𝐹 . Let 𝑞𝑡 be the ex ante probability

that player 1 is type 𝐿 and he has played 𝐹 from period 0 to 𝑡 − 1, and let 𝑝𝑡 be the ex ante

probability that player 1 is type 𝐻 and he has played 𝐹 from period 0 to 𝑡− 1.

Claim 1. For every 𝑡 ∈ N, if 𝑝𝑡 ≥ 𝑞𝑡 but 𝑂 is not a strict best reply at ℎ𝑡𝐹 , then:

(𝑝𝑡 + 𝑞𝑡) − (𝑝𝑡+1 + 𝑞𝑡+1) ≥ 𝜇(𝐹 )/2. (1.16)

Proof of Claim 1: Player 2 does not have a strict incentive to play 𝑂 at ℎ𝑡𝐹 if and only if:

𝜇(𝐹 ) + 𝑝𝑡+1 − (𝑝𝑡 − 𝑝𝑡+1) − 𝑞𝑡+1 − 2(𝑞𝑡 − 𝑞𝑡+1) ≤ 0, which implies that 𝜇(𝐹 ) + 2𝑝𝑡+1 + 2𝑞𝑡+1 ≤
𝑝𝑡 + 2𝑞𝑡 + 𝑞𝑡+1 ≤ 𝑝𝑡 + 3𝑞𝑡 ≤ 2𝑝𝑡 + 2𝑞𝑡, where the last inequality makes use of the assumption that

𝑝𝑡 ≥ 𝑞𝑡. If we rearrange the terms, the result is inequality (1.16).

Claim 2. If 𝛿 is large enough, then in every irregular equilibrium, 𝑝𝑡 ≥ 𝑞𝑡 for all 𝑡 ≥ 0.

Claim 2 establishes an important property of irregular equilibria, namely, despite the fact that

playing the highest action could lead to negative inferences about the state, player 2’s belief about

the strategic types cannot become too pessimistic. Intuitively, this is because type 𝐿’s continuation

payoff must be low if he separates from the commitment type in the last period with a pessimistic

belief, while he can guarantee himself a high payoff by continuing to play 𝐹 . This contradicts his

incentive to separate in that last period.

Proof of Claim 2: Suppose towards a contradiction that 𝑝𝑡 < 𝑞𝑡 for some 𝑡 ∈ N. Given that

playing 𝐹 in every period is not type 𝐿’s best reply, there exists 𝑇 ∈ N such that type 𝐿 has a

strict incentive to play 𝐴 at ℎ𝑇𝐹 .18 That is to say, 𝑝𝑠 ≥ 𝑞𝑠 = 0 for every 𝑠 > 𝑇 . Let 𝑡* ∈ N be the

largest integer 𝑡 such that 𝑝𝑡 < 𝑞𝑡. The definition of 𝑡* implies that (1) player 2’s belief at history

(ℎ𝑡
*
𝐹 , 𝐴) attaches probability strictly more than 1/2 to type 𝐿, (2) type 𝐿 is supposed to play 𝐴

with strictly positive probability at ℎ𝑡
*
𝐹 .

Let us examine type 𝐿’s incentives at ℎ𝑡
*
𝐹 . If he plays 𝐴, then his continuation payoff at

(ℎ𝑡
*
𝐹 , 𝐴) is 1. This is because player 2’s belief is a martingale, so there exists an action path played

with positive probability by type 𝐿 such that at every history along this path, player 2 attaches

probability strictly more than 1/2 to state 𝐿, which implies that she has a strict incentive to play

𝐸, and type 𝐿’s stage game payoff is at most 1.

If he plays 𝐹 at ℎ𝑡
*
𝐹 and in all subsequent periods, then according to Claim 1, there exists at

most 𝑇 ≡ ⌈2/𝜇(𝐹 )⌉ periods in which 𝑂 is not player 2’s strict best reply. This is because by

definition, 𝑝𝑠 ≥ 𝑞𝑠 for all 𝑠 > 𝑡*. Therefore, type 𝐿’s guaranteed continuation payoff is close to

18This is no longer true when player 2 can condition her actions on her predecessors’ actions and the realizations
of public randomization devices, in which case it can only imply that type 𝐿 has a strict incentive to play 𝐴 at some
on-path histories where he has always played 𝐹 before. These complications will be discussed in Remark II and will
be treated formally in Appendix A.3.
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2− 𝜂 when 𝛿 is large. This is strictly larger than 1. Comparing his continuation payoffs by playing

𝐴 versus playing 𝐹 reveals a contradiction.

Optimistic Prior Belief: When the prior belief is optimistic, i.e. 𝜇(𝐹 ) + 𝜇(𝐻) > 𝜇(𝐿), I

establish the commitment payoff theorem for the two classes of equilibria separately. For regular

equilibria, since type 𝐻 behaves in the same way as the commitment type 𝐹 , one can directly apply

statement 1 of Theorem 1.1 and obtain the commitment payoff bound for playing 𝐹 . For irregular

equilibria, Claims 1 and 2 imply that conditional on playing 𝐹 in every period, there exist at most

𝑇 periods in which 𝑂 is not player 2’s strict best reply. Therefore, type 𝐻 can guarantee a payoff

close to 2 and type 𝐿 can guarantee payoff close to 2 − 𝜂.

Pessimistic Prior Belief: When the prior belief is pessimistic, i.e. 𝜇(𝐹 ) + 𝜇(𝐻) ≤ 𝜇(𝐿), we

know that 𝑝0 = 𝜇(𝐻) < 𝜇(𝐿) = 𝑞0. According to Claim 2, there is no irregular equilibria. So every

equilibrium is regular, and therefore, type 𝐻 will play 𝐹 with probability 1 at every ℎ𝑡𝐹 .

Next, I pin down the probability with which type 𝐿 plays 𝐹 at every ℎ𝑡𝐹 . I start by introducing

a measure of optimism for player 2’s belief at ℎ𝑡𝐹 by letting

𝑋𝑡 ≡ 𝜇(𝐹 )𝒟(𝐻,𝐹 ) + 𝑝𝑡𝒟(𝐻,𝐹 ) + 𝑞𝑡𝒟(𝐿,𝐹 ). (1.17)

Note that {𝑋𝑡}∞𝑡=0 is a non-decreasing sequence as 𝒟(𝐻,𝐹 ) > 0, 𝒟(𝐿,𝐹 ) < 0, 𝑝𝑡 is constant and

𝑞𝑡 is non-increasing. The pessimistic prior assumption translates into 𝑋0 ≤ 0. The key step is to

show that:

Claim 3. If 𝛿 is large enough, then 𝑋𝑡 = 0 for all 𝑡 ≥ 1.19

Proof of Claim 3: Suppose towards a contradiction that 𝑋𝑡 < 0 for some 𝑡 ≥ 1, then let us

examine type 𝐿’s incentives at ℎ𝑡−1
𝐹 . Since 𝑋𝑡 < 0, type 𝐿 will play 𝐹 with positive probability at

ℎ𝑡−1
𝐹 . If he plays 𝐹 at ℎ𝑡−1

𝐹 , then his continuation payoff at ℎ𝑡𝐹 is 1. If he plays 𝐴 at ℎ𝑡−1
𝐹 , then

his continuation payoff at (ℎ𝑡−1
𝐹 , 𝐴) is 1, but he can receive a strictly higher stage game payoff in

period 𝑡− 1. This leads to a contradiction.

Suppose towards a contradiction that 𝑋𝑡 > 0 for some 𝑡 ≥ 1, then let 𝑡* be the smallest 𝑡

such that 𝑋𝑡 > 0. Since 𝑋𝑠 ≤ 0 for every 𝑠 < 𝑡*, we know that type 𝐿 will play 𝐴 with positive

probability at ℎ𝑡
*−1
𝐹 . In what follows, I examine type 𝐿’s incentives at ℎ𝑡

*−1
𝐹 . If he plays 𝐴, then his

continuation payoff at (ℎ𝑡
*−1
𝐹 , 𝐴) is 1. If he plays 𝐹 forever, then I will show below that 𝑂 is player

2’s strict best reply at ℎ𝑠𝐹 for every 𝑠 ≥ 𝑡*. Once this is shown, we know that type 𝐿’s guaranteed

continuation payoff at ℎ𝑡
*
𝐹 is 2 − 𝜂, which is strictly greater than 1 and leads to a contradiction.

I complete the proof by showing that 𝑂 is player 2’s strict best reply at ℎ𝑠𝐹 for every 𝑠 ≥ 𝑡*.

Suppose towards a contradiction that player 2 does not have a strict incentive to play 𝑂 at ℎ𝑠𝐹 for

19When there are other commitment types playing mixed strategies, 𝑋𝑡 is close to albeit not necessarily equal to
0. Nevertheless, the variation of 𝑋𝑡 across different equilibria vanishes as the total probability of commitment types
goes to 0. When there are no mixed commitment types under which player 2 has a strict incentive to play 𝑎2, the
sequence {𝑋𝑡}∞𝑡=0 is generically unique.
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some 𝑠 ≥ 𝑡*, then:

𝜇(𝐹 )𝒟(𝐻,𝐹 ) + 𝑝𝑠𝒟(𝐻,𝐹 ) + 𝑞𝑠+1𝒟(𝐿,𝐹 ) + (𝑞𝑠 − 𝑞𝑠+1)𝒟(𝐿,𝐴) ≤ 0, (1.18)

⇒ 𝑞𝑠 − 𝑞𝑠+1 ≥
𝑋𝑠

𝒟(𝐿,𝐹 ) −𝒟(𝐿,𝐴)
≥⏟ ⏞ 

since 𝑋𝑠≥𝑋𝑡*

𝑋𝑡*

𝒟(𝐿,𝐹 ) −𝒟(𝐿,𝐴)⏟  ⏞  
>0

≡ 𝑌. (1.19)

Hence, there exist at most ⌈𝑞0/𝑌 ⌉ such periods, which is a finite number. Let period 𝑡 be the last

of such periods. Let us examine type 𝐿’s incentive at ℎ𝑡𝐹 . On one hand, he plays 𝐴 with positive

probability at this history in equilibrium, which results in a continuation payoff close to 1. On

the other hand, his continuation payoff from playing 𝐹 in every period is 2 − 𝜂, which results in a

contradiction.

Remark I: When 𝐿 ∈ Θ𝑛, i.e. 𝜂 ≥ 1, Claim 1 as well as the conclusion on regular equilibria will

remain intact. What needs to be modified is Claim 2: despite the fact that 𝑝𝑡 can be less than

𝑞𝑡 for some 𝑡 ∈ N in some equilibria (think about for example, when the prior attaches very high

probability to state 𝐿 such that 𝑝0 < 𝑞0), type 𝐻 can still guarantee a payoff close to 2 in every

equilibrium.

To see this, in every irregular equilibrium where 𝑝𝑡 < 𝑞𝑡 for some 𝑡, let 𝑡* be the largest of such

𝑡 and let us examine type 𝐿’s incentives in period 0. For this to be an equilibrium, he must prefer

playing 𝐹 from period 0 to 𝑡* − 1 and then 𝐴 in period 𝑡*, compared to playing 𝐴 forever starting

from period 0. By adopting the first strategy, his continuation payoff is 1 after period 𝑡* + 1, his

stage game payoff from period 0 to 𝑡* − 1 is no more than 1 if 𝑂 is played, and is no more than

−𝜂 if 𝐸 is played. By adopting the second strategy, he can guarantee himself a payoff of at least 1.

For the first strategy to be better than the second, the occupation measure with which 𝐸 is played

from period 0 to 𝑡* − 1 needs to be arbitrarily close to 0 as 𝛿 → 1. That is to say, if type 𝐻 plays

𝐹 in every period, then the discounted average payoff he loses from period 0 to 𝑡*− 1 (relative to 2

in each period) vanishes as 𝛿 → 1. According to Claim 1, his guaranteed continuation payoff after

period 𝑡* is close to 2. Summing up, his guaranteed payoff in period 0 is at least 2 in the 𝛿 → 1

limit.

Remark II: In Appendices A.3 and A.4, I extend the above idea and provide full proofs to

Theorems 1.2 and 1.3, which incur two additional complications. First, there can be arbitrarily

many strategic types, and in particular, good, bad and negative types could co-exist. Second, player

2’s actions can be conditioned on the past realizations of public randomization devices as well as

on her predecessors’ actions, which could open up new equilibrium possibilities and therefore, can

potentially undermine the robust predictions on payoff and behavior.

In terms of the proof, the main difference occurs in the analysis of irregular equilibria, as there

may not exist a last history at which the probability of the bad strategic types is greater than the

probability of the good strategic types. This is because the predecessor-successor relationship is
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𝑣𝐻
1 + 𝜂 2

2

2 − 𝜂

𝑣𝐿

𝑣𝐻
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2 − 𝜂
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1 + 𝜂 2

2 − 𝜂

Figure 1-2: Limiting equilibrium payoff set in the interdependent value entry deterrence game
without commitment types (in gray) and the selected payoffs under reputation effects (in black)
when 𝜂 ∈ (0, 1). Left panel: �̂�(𝐻) > 1/2. Middle panel: �̂�(𝐻) = 1/2. Right panel: �̂�(𝐻) < 1/2.

incomplete on the set of histories where player 1 has always played 𝑎1 once {𝑎2,𝑠, 𝜉𝑠}𝑠≤𝑡−1 is also

included in ℎ𝑡.

My proof overcomes this difficulty by showing that every time a switch from a pessimistic to an

optimistic belief happens, the bad strategic types must be separating from the commitment type

with ex ante probability bounded from below. This implies that such switches can only happen

finitely many times conditional on every positive probability event. On the other hand, the bad

strategic types only have incentives to separate at those switching histories when their continuation

payoffs from imitating the commitment type are low, which implies that another such switch needs

to happen again in the future. This implies that such switches must happen infinitely many times

if it happens at least once, leading to a contradiction.

1.4.4 Implications for Equilibrium Refinement

In this subsection, I revisit a classic application of reputation results by studying how they refine

equilibrium payoffs and behaviors in repeated incomplete information games with long-run and

short-run players. To do this, I study a benchmark repeated Bayesian game without commitment

types, that is, player 1 is strategic with probability 1. I compare player 1’s equilibrium payoff

and behavior in the benchmark game and in the reputation game. This comparison addresses the

question of which repeated game equilibria are more plausible when the long-run player can build

reputations.

Let Θ be the set of states, which is also the set of player 1’s types in the benchmark game. Let̂︀𝜇 ∈ ∆(Θ) be player 2’s prior belief. Let 𝒱(𝛿, ̂︀𝜇) ⊂ R|Θ| be player 1’s equilibrium payoff set with

𝑣 ≡ (𝑣𝜃)𝜃∈Θ a typical element. I start with the optimistic prior case in which:∑︁
𝜃∈Θ𝑔∪Θ𝑝

̂︀𝜇(𝜃)𝒟(𝜃, 𝑎1) ≥ 0. (1.20)

To see the relationship between equations (1.20) and (1.10), notice that in the original reputation

game where 𝜇(Ω𝑚) is small, (1.10) implies (1.20). Moreover, when we perturb a benchmark game
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that satisfies (1.20), the reputation game will satisfy (1.10) given that 𝒟(𝜑𝑎1 , 𝑎1) > 0. Let

𝛿 ≡ max
𝛼2∈Δ(𝐴2)

{︁ 𝑢1(𝜃, 𝑎1, 𝛼2) − 𝑢1(𝜃, 𝑎1, 𝛼2)

𝑢1(𝜃, 𝑎1, 𝛼2) − 𝑢1(𝜃, 𝑎1, 𝛼2) + 𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

}︁
,

the result is stated as Proposition 1.1:

Proposition 1.1. If 𝑎1 is player 1’s pure Stackelberg action in state 𝜃, then for every 𝑣 ∈ 𝒱(𝛿, ̂︀𝜇),

we have 𝑣𝜃 ≤ 𝑢1(𝜃, 𝑎1, 𝑎2). Furthermore, if ̂︀𝜇 satisfies (1.20) and 𝛿 ≥ 𝛿, then

sup
𝑣∈𝒱(𝛿,̂︀𝜇) 𝑣𝜃 ∈

[︁
(1 − 𝛿)𝑢1(𝜃, 𝑎1, 𝑎2) + 𝛿𝑢1(𝜃, 𝑎1, 𝑎2), 𝑢1(𝜃, 𝑎1, 𝑎2)

]︁
.

The proof can be found in Appendix A.5. To summarize the role of reputation in refining

equilibrium payoffs, first, it rules out equilibria with bad payoffs (for example, those with payoff

𝑢1(𝜃, 𝑎1, 𝑎2)) and selects equilibria that deliver every strategic type 𝜃 a payoff no less than his

highest equilibrium payoff in a complete information repeated game where 𝜃 is common knowledge

(Fudenberg, Kreps and Maskin 1990).

Second, according to Proposition 1.1, reputation effects select the highest equilibrium payoff for

type 𝜃 in the benchmark incomplete information game. However, types lower than 𝜃 can obtain

payoff strictly higher than 𝑢1(𝜃, 𝑎1, 𝑎2) in the benchmark game even in the 𝛿 → 1 limit. Figure 2

depicts player 1’s limiting equilibrium payoff set in the entry deterrence game, with more details

coming in the Online Appendix.

Next, I analyze the pessimistic prior case in which∑︁
𝜃∈Θ𝑔∪Θ𝑝

̂︀𝜇(𝜃)𝒟(𝜃, 𝑎1) < 0. (1.21)

The above inequality translates equation (1.11) into the benchmark game without commitment

types, given that 𝜇(Ω𝑚) is small enough. Recall the definition of 𝑣*𝜃 in expression (1.15), I state

the result as Proposition 1.2:

Proposition 1.2. For every ̂︀𝜇 satisfying (1.21), there exists ̂︀𝛿 ∈ (0, 1) such that for every 𝛿 > ̂︀𝛿
and 𝜃 ∈ Θ, we have:

sup
𝑣∈𝒱(𝛿,̂︀𝜇) 𝑣𝜃 = 𝑣*𝜃 . (1.22)

The proof is detailed in Appendix A.6. Proposition 1.2 implies that reputation effects select the

highest equilibrium payoff for every strategic type in the benchmark incomplete information game.

Moreover, since the unique equilibrium play for player 1 in Theorem 1.3 constitutes an equilibrium

in the benchmark game as well, reputation effects also lead to the selection of a unique on-path

behavior for the long-run player.

Unlike Proposition 1.1, Proposition 1.2 does not require 𝑎1 to be player 1’s pure Stackelberg

action in state 𝜃. This is because under a pessimistic prior belief, playing actions other than 𝑎1

cannot induce player 2 to play 𝑎2, while under an optimistic prior belief, such possibilities cannot be
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ruled out unless we assume that 𝑎1 is type 𝜃’s pure Stackelberg action. Moreover, the equilibrium

selection result applies to all strategic types under a pessimistic belief but only applies to the highest

type under an optimistic belief, as the pessimistic prior belief condition implies tight upper bounds

on every bad strategic type’s equilibrium payoff.

1.4.5 Related Applications

I discuss two applications of reputation models as well as how they fit into my MSM assumptions:

the product choice game which highlights the lack-of-commitment problem in business transactions

(Mailath and Samuelson 2001, Liu 2011, Ekmekci 2011) and the entry deterrence game that studies

predatory pricing behaviors in monopolistic competition (Kreps and Wilson 1982, Milgrom and

Roberts 1982).

Limit Pricing & Predation with Unknown Price Elasticities: Player 1 is an incumbent

choosing between a low price (interpreted as limit pricing or predation) and a normal price, every

player 2 is an entrant choosing between out and enter. The incumbent has private information

about the demand elasticities 𝜃 ∈ R+, which measures the increase in his product’s demand when

he lowers the price. The payoff matrix is given by:

State is 𝜃 Out Enter

Low Price 𝑝𝐿(𝑄𝑀 + 𝜃), 0 𝑝𝐿(𝑄𝐷 + 𝛾𝜃),Π𝐿(𝜃) − 𝑓

Normal Price 𝑝𝑁𝑄𝑀 , 0 𝑝𝑁𝑄𝐷,Π𝑁 − 𝑓

where 𝑝𝐿 and 𝑝𝑁 are the low and normal prices, 𝑓 is the sunk cost of entry, 𝑄𝑀 and 𝑄𝐷 are the

incumbent’s monopoly and duopoly demands under a normal price, Π𝐿 and Π𝑁 are the entrant’s

profits when the incumbent’s price is low and normal, 𝛾 ∈ (0, 1) is a parameter measuring the effect

of price elasticity on the incumbent’s demand in duopoly markets relative to monopoly markets.

This parameter is less than 1 as the entrant captures part of the market, which offsets some of the

demand increase (of the incumbent’s product) from a price cut.

In this example, Assumptions 1.1 and 1.2 require that (1) setting a low price is costly for the

incumbent and he strictly prefers the entrant to stay out; (2) the entrant’s profit from entering the

market is lower when the incumbent sets a low price and when the demand elasticity is higher; (3)

it is less costly for the incumbent to set a low price when the demand elasticity is higher. The first

and third requirements are natural. The second one is reasonable, since lowering prices leaves the

entrant a smaller market share, and this effect is more pronounced when the demand elasticity is

higher.

Among other entry deterrence games, my assumptions also apply when the entrant faces un-

certainty about the market size or the elasticity of substitution between her product and the

incumbent’s. It is also valid when the incumbent uses non-pricing strategies to deter entry, such

as choosing the intensity of advertising in the pharmaceutical industry where advertising has pos-

itive spillovers to the entrant’s product (Ellison and Ellison 2011). However, my supermodularity

assumption fails in the entry deterrence model of Harrington (1986), in which the incumbent’s and
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the entrant’s production costs are positively correlated and the entrant does not know her own

production costs before entering the market.

Product Choice Games: Consider an example of a software firm (player 1) and a sequence

of clients (player 2). Every client chooses between the custom software (𝐶) and the standardized

software (𝑆). In response to his client’s request, the firm either exerts high effort (𝐻) which can

ensure a timely delivery and reduce the cost overruns, or exerts low effort (𝐿). A client’s willingness

to pay depends not only on the delivery time and the expected cost overruns, but also on the quality

of the software, which can be either good (𝐺) or bad (𝐵), and is the firm’s private information. Here,

quality is interpreted as the hidden running risks, the software’s adaptability to future generations

of operation systems, etc. Therefore, compared to delivery time and cost overruns, quality is much

harder to observe directly, so it is reasonable to assume that future clients learn about quality

mainly through the firm’s past behaviors. This is modeled as the following product choice game:

𝜃 = Good Custom Standardized

High Effort 1, 3 −1, 2

Low Effort 2, 0 0, 1

𝜃 = Bad Custom Standardized

High Effort 1 − 𝜂, 0 −1 − 𝜂, 1

Low Effort 2,−2 0, 0

MSM requires that (1) exerting high effort is costly for the firm but it can result in more profit

when the client purchases the custom software; (2) clients are more inclined to buy the custom

software if it can be delivered on-time and its quality is high; (3) firms that produce higher quality

software face lower effort costs. The first and second requirements are natural. The third one is

reasonable since both the cost of making timely deliveries and the software’s quality are positively

correlated with the talent of the firm’s employees. Indeed, Banerjee and Duflo (2000) provide

empirical evidence in the Indian software industry, showing that firms enhance their reputations

for competence via making timely deliveries and reducing cost overruns.

1.5 Concluding Remarks

A central theme of my analysis is that reputation building can be challenging when the uninformed

players’ learning is confounded. Even though the informed player can convince his opponents about

his future actions, he may still fail to teach them how to best reply since their payoffs depend on

the state. Similar in spirit is a contemporary work of Deb and Ishii (2017), which revisits the

commitment payoff theorem when the uninformed players face uncertainty about the monitoring

structure.20 Their paper is complementary to mine, with the main difference being: the state can

be identified through some exogenous public signals in their model (see Assumption 2.3 in their

paper), while it can only be learned through the informed player’s actions in my model. Under

20Related ideas also appear in Wolitzky (2011), who studies reputational bargaining with non-stationary commit-
ment types and shows the failure of the commitment payoff theorem. However, his negative result requires that the
uninformed player being long-lived and the commitment types playing non-stationary strategies, none of which are
needed for the counterexamples (see Appendix A.7) and negative results (See statements 2 and 4 of Theorem 1.1) in
my paper.
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their identification assumption, they show that the strategic long-run player cannot guarantee

his Stackelberg payoff when there are only stationary commitment types. They also construct

a countably-infinite set of non-stationary commitment types, under which the informed player

can guarantee his Stackelberg payoff. Their informational assumption fits in environments where

informative signals about the state arrive frequently (or, in every period), as for example, when the

state is the performance of vehicles, mobile phones, etc.

In contrast, my informational assumption fits into applications where exogenous signals are

unlikely to arrive for a long time, or the variations of their realizations are mostly driven by noise

orthogonal to the state. For example, when the state is the adaptability of a software to future

generations of operating systems, the resilience of an architectural design to earthquakes, the long-

run health impact of a certain type of food, the demand elasticity in markets with high sunk costs,

the effectiveness of advertising in the NBA Finals, the amount of connection traffic in the hub of

a major airline, and the like. My assumption has been adopted in many repeated Bayesian game

models with interdependent values, such as Hart (1985), Aumann and Maschler (1995), Hörner and

Lovo (2009), Kaya (2009), Hörner et al. (2011), Roddie (2012), Pȩski and Toikka (2017).

My work is also related to the papers on bad reputation, for example, Ely and Välimäki (2003),

Ely, Fudenberg and Levine (2008). These papers study a class of private value reputation games

with imperfect monitoring known as participation games. They show that a patient long-run player’s

equilibrium payoff is low when the bad commitment types (i.e. ones that commit to play actions

which discourage the short-run players from participating) are relatively more likely compared to

the Stackelberg commitment type.

Although both my Theorem 1.1 and their results underscore the possibilities of reputation fail-

ure, the economic forces behind them are very different. In their models, reputations are bad due

to the tension between the long-run player’s forward-looking incentives and the short-run players’

participation incentives. In particular, a patient long-run player has a strong incentive to take ac-

tions that can generate good signals but harm the participating short-run players. This discourages

the short-run players from participating, which prevents the long-run player from signalling and

leads to a bad reputation. In contrast, reputation failure occurs in my model as the short-run play-

ers’ learning is confounded. This is because the long-run player’s actions signal the payoff-relevant

state. In different equilibria, these signals are interpreted in different ways, which will affect the

short-run players’ best reply to the commitment action. If the bad strategic types are believed

to be pooling with the commitment type with high probability, then the strategic long-run player

cannot simultaneously build a reputation for commitment while separating from the bad strategic

types.

Extensions: I conclude by discussing several extensions of my results. First, players move se-

quentially in the stage game rather than simultaneously in some applications, such as a firm that

chooses its service standards after consumers decide which product to purchase; an incumbent sets

prices before or after observing the entrant’s entering decision. My results are robust when the

long-run player moves first. When the short-run players move first, my results are valid when every
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commitment type’s strategy is independent of the short-run players’ actions. This requirement is

not redundant, as the short-run players cannot learn the long-run player’s reaction following an

unchosen 𝑎2.

Along this line, my analysis can be applied to the following repeated bargaining problem, which

models conflict resolution between employers and employees, firms and clients and other contexts.

In every period, a long-run player bargains with a short-run player. The short-run player makes

a take-it-or-leave-it offer, which is either soft or tough, and the long-run player either accepts the

offer or chooses to resolve the dispute via arbitration. The long-run player has persistent private

information about both parties’ payoffs from arbitration, which can be interpreted as the quality of

his supporting evidence. The short-run players observe the long-run player’s bargaining postures

in the previous periods and update their beliefs about their payoffs from arbitration.21 In this

context, my results provide accurate predictions on the long-run player’s payoff and characterize

his unique Nash equilibrium behavior when his (ex ante) expected payoff from arbitration is below

a cutoff.

In some other applications where the uninformed players move first, the informed player cannot

take actions at certain information sets. For example, the firm cannot exert effort when its client

refuses to purchase, the incumbent cannot fight if the entrant stays out. My results in Section

1.4 apply to these scenarios as long as the informed long-run player can make an action choice in

period 𝑡 if 𝑎2,𝑡 ̸= 𝑎2. This condition allows for entry deterrence games but rules out participation

games defined in Ely, Fudenberg and Levine (2008).

Second, my results are robust against the presence of non-stationary commitment types given

that (1) all the non-stationary commitment types are pure, (2) different commitment strategies

behave differently on the equilibrium path. When there are non-stationary commitment types

playing mixed strategies, the attainability of the commitment payoff bound also depends on the

probabilities of these non-stationary commitment types and their correlations with the state. To

see this, consider the entry deterrence game. If there is a commitment type who plays 𝐹 in every

period and another one who plays strategy ̂︀𝜎1, which is defined as:

̂︀𝜎1(ℎ𝑡) ≡ {︃
1
2𝐹 + 1

2𝐴 if 𝑡 = 0

𝐹 otherwise.

Conditional on commitment type ̂︀𝜎1, state 𝐿 occurs with certainty. If the probability of type ̂︀𝜎1 is

three times larger than that of type 𝐹 , then the conclusions in Theorems 1.2 and 1.3 will fail. This

is because player 2 has no incentive to play 𝑂 even conditional on the event that 𝐹 will be played

in every future period and player 1 is committed.

Third, Assumption 1.2 can be replaced by the following weaker condition as players’ incentives

remain unchanged under affine transformations on player 1’s state contingent payoffs.

21Lee and Liu (2013) study a similar game without commitment types, but the short-run players observe their
realized payoffs in addition to the long-run player’s past actions. Their model applies to litigation, where the court’s
decisions are publicly available. My model applies to arbitration, as arbitration hearings are usually confidential and
the final decisions are not publicly accessible.
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Assumption 1.4. There exists 𝑓 : Θ → (0,+∞) such that ̃︀𝑢1(𝜃, 𝑎1, 𝑎2) ≡ 𝑓(𝜃)𝑢1(𝜃, 𝑎1, 𝑎2) has

SID in (𝑎1, 𝜃) and ID in (𝑎2, 𝜃). 𝑢2 has SID in (𝜃, 𝑎2) and (𝑎1, 𝑎2).

To see how this generalization expands the applicability of Theorems 1.2 and 1.3, consider for

example a repeated prisoner’s dilemma game between a patient long-run player (player 1) and a

sequence of short-run players (player 2s) in which players are reciprocal altruistic. As in Levine

(1998), every player maximizes a weighted average of his monetary payoff and his opponent’s

monetary payoff, with the weight on his opponent be a strictly increasing function of his belief about

his opponent’s level of altruism. This can be applied to a number of situations in development

economics, for example, a foreign firm, NGO or missionary (player 1) trying to cooperate with

different local villagers (player 2s) in different periods. When player 1’s level of altruism is his

private information, this game violates Assumption 1.2 as his cost from playing a higher action

(cooperate) and his benefit from player 2’s higher action (cooperate) are both decreasing with his

level of altruism. I show in the Online Appendix that the game satisfies Assumption 1.4 under

an open set of parameters. I also provide a full characterization of Assumption 1.4 based on the

primitives of the model.
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Chapter 2

Reputation with Strategic

Information Disclosure

This chapter studies the dynamics of an agent’s reputation for competence when the labor market’s

information about his performance is disclosed by an intermediary who cannot commit. I show that

this game admits a unique Markov Perfect Equilibrium (MPE). When the agent is patient, his effort

is inverse 𝑈 -shaped, while the rate of information disclosure is decreasing over time. I illustrate the

inefficiencies of the unique MPE by comparing it with the equilibrium in the benchmark scenario

where the market automatically observes all breakthroughs. I characterize a tractable subclass of

non-Markov Equilibria and explain why allowing players to coordinate on payoff-irrelevant events

can improve efficiency on top of the unique MPE and the exogenous information benchmark. When

the intermediary can commit, her optimal Markov disclosure policy has a deadline, after which no

breakthrough will be disclosed. However, deadlines are not incentive compatible in the game with-

out commitment, illustrating a time inconsistency problem faced by the intermediary. My model

can be applied to professional service industries, such as law and consulting. My results provide an

explanation to the observed wage and promotion patterns in Baker, Gibbs and Holmström (1994).

I am indebted to Daron Acemoglu, Drew Fudenberg and Juuso Toikka for guidance and support. For use-
ful comments, I thank Abhijit Banerjee, Sydnee Caldwell, Gonzalo Cisternas, Mira Frick, Robert Gibbons, Sinem
Hidir, Bengt Holmström, Johannes Hörner, Irina Kholodenko, Yucheng Liang, Jean Tirole, Muhamet Yildiz, semi-
nar participants at Harvard, MIT, Stanford SITE, Toulouse, Warwick, and in particular, Alessandro Bonatti, Daria
Khromenkova and Alexander Wolitzky. All errors are mine.
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2.1 Introduction

Reputation concern is an important driver of incentives in many professions, ranging from con-

sultants, lawyers, judges and fund managers, to scientists, scholars and professional athletes. In

particular, the incentive to establish a name is more substantial in the early stages of one’s career:

junior people work hard at entry-level jobs, hoping their professions will recognize their talents.

However, the labor market rarely receives information about the performance of these lower-level

people. Moreover, this information is mostly revealed by their current employers or direct su-

pervisors.1 This raises concerns that the latter might have incentives to manipulate the market’s

expectations by releasing information strategically.

Motivated by these phenomena, I analyze a reputation building model with the innovation that

the market’s information about an agent’s performance is released strategically by an informational

‘intermediary ’, who also has a private interest in the game. Different from other dynamic infor-

mation disclosure models, the intermediary cannot commit to disclosure policies.2 This generates

interesting dynamic interactions between the intermediary’s incentive to release information and

the agent’s incentive to build up his reputation.

Related circumstances abound, especially in professional service industries, where team work

among junior people makes it hard for the labor market to infer each individual’s contribution.

As a result, employers (or supervisors) enjoy substantive discretion in revealing information about

their subordinates. Consider the example of a law firm, where junior associates work hard on

cases but rarely have the opportunity to present their results in court. Their talents are recognized

only after they have been given such chances or being promoted. In European soccer clubs (or in

other professional sports), youth team players want to impress first team managers in order to gain

opportunities to play in higher level matches (such as the Premier League). But the person who

monitors their training and knows their abilities is a youth team coach. Similar stories happen

between junior consultants and consulting firms, research assistants and professors, judicial clerks

and judges, etc.

I examine a continuous time game between an agent (he), an intermediary (she) and a com-

petitive labor market. The agent’s wage is determined by the market’s willingness to pay for his

service, and the latter depends on his talent, which is his private information. Signals about his

performance take the form of conclusive good news (or ‘breakthroughs’) and arrive according to a

Poisson process, with arrival rate increasing in the agent’s talent as well as his unobserved effort.3

1Asymmetric learning between the current employers and the labor market about a worker’s ability is a well-known
fact documented in the labor economics literature, including the theoretical works of Waldman (1984), Milgrom and
Oster (1987) etc. In a recent paper, Kahn (2013) uses National Longitudinal Survey of Youth data and finds empirical
evidence supporting asymmetric learning.

2Examples where the intermediary can commit include Ekmekci (2011), Ely (2015), Halac et al.(2015), Kremer et
al.(2015), Che and Hörner (2015), Hörner and Lambert (2015), etc.

3As argued in Bonatti and Hörner (2015), learning via infrequently arrived good news is a distinctive feature of
‘creative industries’, in which ‘creativity and originality are essential for success’. This applies to professional service
industries, namely, law and consulting, R&D, academia, professional sports, etc. in which a reputation is established
at several defining moments of one’s career. This includes, for example, bringing in a new client to the firm, making
a breakthrough innovation, publishing a paper, scoring a hat-trick in an important match, etc.
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Moreover, talent and effort are complements (Dewatripont et al.1999).

The novelty of my model is that the market observes a breakthrough only after the intermediary

discloses it. Motivated by the aforementioned applications, I assume that the intermediary benefits

from the agent’s effort as well as from establishing him in front of the public.4 Since one break-

through is sufficient to convince the market about the agent’s competence, no interesting strategic

interaction takes place once a breakthrough is disclosed, after which both the intermediary and the

agent receive a fixed continuation value.

In Section 2.3, I characterize the unique Markov Perfect Equilibrium (MPE) of this game.

I find that when players are patient, the agent’s effort is inverse 𝑈 -shaped and the disclosure

rate is decreasing over time. Intuitively, since the intermediary cannot commit, her incentive to

disclose information only depends on the comparison between the future revenue she can milk from

the agent and the lump sum payoff from disclosure. Hence, she has more incentive to withhold

information when the agent’s future effort is higher. On the other hand, since the market learns

via infrequently arrived good news, the agent’s incentive to exert effort decreases with his current

continuation value (which is increasing in his reputation) and increases with the current disclosure

rate. As a result, the intermediary has an incentive to suppress information only when the market

becomes pessimistic and the rate of disclosure is decreasing over time. In response to this, the

agent’s effort eventually decreases. My result predicts that conditional on staying at the entry level

job, both the agent’s real wage as well as his chances of being promoted are inverse 𝑈 -shaped,

which echoes the empirical findings in Baker, Gibbs and Holmström (1994a,b).5

Comparing this with the unique equilibrium in the benchmark scenario in which the market

observes all breakthroughs automatically (or exogenous information benchmark), I find that in

both cases, the agent’s effort is too low at the beginning, relative to social first best, exhibiting a

procrastination inefficiency. Interestingly, the agent’s continuation value is not monotone in disclo-

sure rate. In particular, when effort cost is low, despite the intermediary will withhold information

when the market becomes pessimistic, the agent’s continuation value at optimistic beliefs can stil-

4The intermediary benefits from establishing her agent is a distinct and indispensable feature of my model, which
is relevant in the aforementioned applications. In professional sports, soccer clubs receive transfer fees by selling their
players to bigger clubs. In professional service industries, namely law and consulting, an established former employee
is more likely to work in-house for a potential client, rather than working for a competing firm in the same industry.
Once an alumni becomes an in-house attorney or counsel for a client, this also creates a network benefit for his former
law or consulting firm.

For example, a former Boston Consulting Group (BCG) employee, who now runs Red Hat, a big software company,
said that “I wouldn’t say I am blindly loyal, but I do use BCGmore than any other firm.”(excerpted from an Economist
article in 2014) An SRZ (a large law firm in NYC) alumni, who is now the General Counsel at Sterling Stamos Capital
Management, said in an interview that “so while you need to have great knowledge of the law, you also need great
resources. This is where SRZ comes in...” (excerpted from SRZ alumni website) Network benefits can also take
various other forms. For example, an article about professional service firms in The Economist suggests that “...
former employees are increasingly treated as assets, not turncoats... such firms are trying to stay in touch with
departed workers, hoping to turn them into brand ambassadors, recruiters and salespeople”.

5Baker, Gibbs and Holmström (1994a,b) use 20 years of personnel data of management employees from a large
US firm and find these two empirical facts. First, the real wage of a worker conditional on no promotion is first
increasing and then decreasing over time (Figure IV, page 951). Second, the promotion rate from level 2 (entry level
for management employees) to level 3 (intermediate level) is also an inverse 𝑈 -shaped function of time stayed in level
2 (Table IV, page 902).
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l be higher under endogenous information relative to the exogenous information benchmark, i.e.

withholding information can encourage procrastination.

Intuitively, this is because low disclosure rate has two effects on the agent’s payoff. A direct

effect which makes it hard for the agent to establish himself. An indirect effect which slows down

market learning. When effort cost is low, the intermediary’s equilibrium disclosure rate is also

low, and the agent can maintain a good reputation for a long time, although no breakthrough has

been disclosed. This is because the market attributes the lack of news to the low disclosure rate,

instead of the agent’s incompetence. As a result, the agent can sustain a high flow payoff, which

discourages him to exert effort.

In Section 2.4, I explore the possibility of mitigating the procrastination inefficiency by allow-

ing players’ strategies to depend on payoff irrelevant state variables, for example, whether break-

throughs have been concealed in the past or not. In particular, I characterize a tractable subclass

of (non-Markov) Perfect Bayesian Equilibrium, which I call Semi-Markov Equilibrium (SME), in

which players’ strategies are only required to be Markov on the equilibrium path. This solution

concept minimally departs from MPE and the equilibrium strategies have intuitive interpretations:

every SME is characterized by a cutoff belief, such that the intermediary withholds information on-

ly when the market’s belief falls below this cutoff. This cutoff can take any value within a compact

interval, with the unique MPE being the SME with the highest cutoff and the equilibrium under

exogenous information being the SME with the lowest cutoff.

Since the time at which the intermediary starts to withhold information matters for the agent’s

incentive, SME improves efficiency by offering flexibility in choosing this cutoff belief. For example,

when effort cost is low, in order to prevent the agent from receiving high flow payoffs before

establishing himself, withholding information should only happen at sufficiently pessimistic beliefs.

In Section 2.5, I characterize the optimal Markov policy when the intermediary can commit.

When the market’s prior belief is not too pessimistic,6 there exists a ‘deadline’ in the optimal

policy, after which no information is disclosed and the agent has no incentive to exert effort.

This is in sharp contrast to the no commitment case, in which the incentive to exert effort never

vanishes before a breakthrough is disclosed. This deadline minimizes the agent’s continuation value

upon reaching it, which facilitates incentive provision early on in the game. However, due to the

intermediary’s sequential rationality constraint, deadlines are never implementable in any Perfect

Bayesian Equilibrium in absence of commitment.

In Section 2.6, I examine the robustness of my result along several directions, including cases

in which the intermediary can disclose past breakthroughs, the market can also learn from public

signals in addition to the intermediary’s private signals, the intermediary is the agent’s direct

supervisor instead of his current employer, etc. I also discuss how to enrich my model in order to

incorporate more realistic features.

Related Literature: This paper contributes to a burgeoning literature on the dynamic provision

of incentives via information disclosure in principal-agent relationships. The majority of these

6Notice that the optimal Markov policy depends on the market’s prior belief.
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papers focus on how to motivate an agent by providing him informational feedback. Some prominent

examples include Campbell et al.(2014), Ely (2015), Kremer et al.(2015), Che and Hörner (2015),

Halac et al.(2015). Comparing with these papers, I ask a novel question, that is, how to motivate

an agent by releasing information to a third party (namely, the market).

Two papers that share a similar motivation with mine are Ekmekci (2011) and Hörner and

Lambert (2015). The former constructs a rating system that sustains reputation building incentives.

The latter studies the Holmström (1999) career concern model and examines the optimal design of

public information structure to maximize the agent’s effort in stationary equilibria.

The main differences are as follows. First, in terms of the modeling choice, the informational

intermediary can commit to dynamic disclosure policies in both of these papers, which assumes away

the strategic issues in information disclosure. In contrast, I focus on the complementary case in

which the intermediary cannot commit and is a strategic long run player. While the commitment

benchmark fits better into applications such as online platforms and credit rating agencies, the

non-commitment case is more coherent to disclosure problems in firms and organizations, where

employers enjoy substantive discretion in releasing information about their employees. Second, in

terms of the main result, I focus on the dynamics of effort and disclosure rate, instead of examining

the sustainability of reputation building incentives or the maximal stationary effort level.

My model builds on continuous time reputation models with Poisson good news, such as

Faingold and Sannikov (2011).7 The main difference is that there are two long run players, giving

rise to a multiplicity of equilibria. As a result, more restrictive solution concepts (MPE and SME)

are required to make sharp predictions. The intertemporal substitutability of effort is also reported

in the strategic experimentation literature as well as its applications in venture capital financing

(for example, Bergemann and Hege 1998, 2005, Hörner and Samuelson 2013). Common in these

papers, if an agent shirks today, he retains the option value of succeeding tomorrow, which causes

inefficient delays. These papers offer solutions when formal contracts are available: by making

the agent’s share of surplus a decreasing function of the elapsed time. My paper proposes a com-

plementary solution when output is not contractible: by decreasing the publicity of the agent’s

performance after the market’s belief falls below an endogenously chosen cutoff.8

2.2 The Baseline Model

I introduce a baseline model in this section, which highlights the mechanisms at work and will be

the main focus of this paper. I will discuss the robustness of my results as well as how to enrich

this model to incorporate more realistic features in Section 2.6.

7Other reputation models with Poisson good news include Board and Meyer-ter-Vehn (2013), Halac and Prat
(2015), etc. After removing the intermediary, my model can be viewed as a continuous time analogue of Mailath and
Samuelson (2001), in which the competent agent exerts effort to distinguish himself from the inept type.

8Another difference between these papers and mine is that the agent does not know his type in strategic experi-
mentation models, while in my reputation building model, he knows his type. I will discuss the ‘career concern’ case
in Section 2.6.
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Players & Actions: There is an agent (he, junior worker), an intermediary (she, current em-

ployer of the worker) and a competitive labor market (or ‘market’). Time 𝑡 ∈ [0,+∞) is continuous.

The agent’s type is denoted by 𝜃 ∈ {0, 1}, which is constant over time and is either high (𝜃 = 1)

or low (𝜃 = 0). At every time 𝑡, he chooses an effort level �̃�𝑡 ∈ [0, 1 − 𝜑], where 𝜑 ∈ (0, 1), and

produces outputs called ‘breakthroughs’, which are generated according to a Poisson process with

arrival rate 𝜇𝜃(�̃�𝑡+𝜑), where 𝜇 > 0 is a parameter. As we can see, effort and talent are complements

(Dewatripont et al.1999).

Whenever a breakthrough arrives, the intermediary decides at that instant between disclosing it

publicly and withholding it.9 Importantly, the intermediary cannot commit to dynamic disclosure

policies and cannot disclose when breakthroughs do not exist.10 Let 𝜒𝑡 ∈ [0, 1] be the probability

of disclosing a breakthrough conditional on its arrival at time 𝑡. Throughout the paper, I will be

focusing on the ‘informational intermediary ’ role of the employer while abstracting away from the

others.

Information Structure & History: The agent’s effort and his type are only known by himself,

i.e unbeknownst to the market and the intermediary. Let 𝜋0 ∈ (0, 1) be the probability that their

prior belief attaches to 𝜃 = 1. Let 𝜋𝑡 be the market’s posterior belief at time 𝑡, which I will

refer to as ‘the agent’s reputation’. Whenever a breakthrough arrives, it is automatically observed

by the agent and the intermediary. The novelty of my model is that the market can observe a

breakthrough if and only if the intermediary discloses it. Since the low type can never produce

any breakthroughs, the market knows 𝜃 = 1 after a disclosure. I say that the agent ‘establishes

himself ’ when 𝜋𝑡 reaches 1.

A public history, ℎ𝑡 ∈ [0, 𝑡], consists of a sequence of past disclosure dates 0 ≤ 𝑡1 < ... <

𝑡𝑛 ≤ 𝑡, with {∅} the history that no breakthrough has been disclosed. The intermediary’s private

history, ℎ𝑡𝑚 ≡ (ℎ𝑡, ℎ
𝑡
𝑚), consists of the public history, as well as ℎ

𝑡
𝑚 ⊂ [0, 𝑡], which is a sequence of

breakthrough arrival times. Since breakthroughs cannot be forged, ℎ𝑡 ⊂ ℎ
𝑡
𝑚. The agent’s private

history, ℎ𝑡𝑎 ≡ (ℎ𝑡𝑚, 𝑎
𝑡, 𝜃), consists of the intermediary’s private history, his past effort choices,

𝑎𝑡 ≡ {𝑎𝑡′}𝑡′∈[0,𝑡], as well as his type. Let ℎ𝑡−, ℎ𝑡−𝑚 and ℎ𝑡−𝑎 be the (public and private) histories up

to, but not including time 𝑡, and let 𝐻𝑡−, 𝐻𝑡−
𝑚 and 𝐻𝑡−

𝑎 be the set of histories up to time 𝑡. Let

𝐻 ≡
⋃︀∞

𝑡=0𝐻
𝑡, 𝐻𝑚 ≡

⋃︀∞
𝑡=0𝐻

𝑡
𝑚 and 𝐻𝑎 ≡

⋃︀∞
𝑡=0𝐻

𝑡
𝑎 be the entire set of histories. I use ‘≻’ to denote

the successor relationship between two histories.

Payoffs: Both the agent and the intermediary are risk neutral and discount their future payoffs

at rate 𝑟 > 0. For a player receiving flow payoffs {𝑈𝑡}𝑡≥0, his or her (normalized) continuation

9As I will explain later, the equilibrium in my baseline model remains robust when we allow for disclosing past
breakthroughs (or ‘delayed disclosure’). Moreover, in other equilibria that arise under delayed disclosure, several
important qualitative features of the equilibrium in the baseline model remain robust. I will discuss this in Section
2.6.

10Scenarios in which the intermediary cannot announce ‘forged breakthroughs’ include: when information is verifi-
able, or when she faces significant penalties (for example, in terms of reputation costs) for disclosing false information,
etc. See Milgrom (2008) for more discussions on the applications of disclosure models.
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value at 𝑡 is:

𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)𝑈𝑠𝑑𝑠.

As in other reputation or career concern models, for example, Holmström (1999), Mailath and

Samuelson (2001), I assume that the agent’s wage, 𝑤𝑡, is determined by the labor market’s expected

willingness to pay for his output produced at time 𝑡.

The agent’s flow payoff is 𝑤𝑡 − 𝑐�̃�𝑡, where 𝑐 ∈ (0, 1) is his marginal cost of effort. Since the low

type can never produce any breakthroughs, his effort is always 0. Hereafter, I will focus exclusively

on the high type. The market’s willingness to pay for each breakthrough is 1
𝜇 , which normalizes

the high type’s marginal product of effort to 1 and implies that it is always socially efficient for

him to exert effort. Let 𝑎𝑡 ≡ �̃�𝑡 + 𝜑 ∈ [𝜑, 1], we have 𝑤𝑡 = 𝜋𝑡𝑎𝑡.
11 Hereafter, I abuse terminology

and refer 𝑎𝑡 as the agent’s effort.

Next, I specify the intermediary’s payoff. According to the interpretation that she is the agent’s

current employer in professional service industries, she receives the agent’s output and pays his

wage when 𝜋𝑡 < 1, i.e. her flow payoff is 𝜃𝑎𝑡 − 𝑤𝑡 before the agent establishes himself.12 After

𝜋𝑡 = 1, the intermediary’s flow payoff is constantly 𝑏. In the law and consulting firm application,

the agent leaves the entry level job offered by the intermediary after establishing himself, and 𝑏 is

her network benefit for having one of her former employees working in-house for a potential client.

In what follows, I will focus on the case in which 𝑏 ∈ (𝜑, 1).13 I will discuss other values of 𝑏 as well

as alternative specifications of the intermediary’s payoff in Section 2.6.

Strategies: The agent chooses an effort plan, a ≡ {𝑎(ℎ𝑡𝑎)}ℎ𝑡
𝑎∈𝐻𝑎

. The intermediary chooses a

disclosure plan 𝜒 ≡ {𝜒(ℎ𝑡𝑚)}ℎ𝑡
𝑚∈𝐻𝑚

, with 𝜒(ℎ𝑡−𝑚 ) being the probability of disclosing information

at time 𝑡 conditional on 𝑡 ∈ ℎ𝑡𝑚. Truncating the effort plan and the disclosure plan at 𝑡, we

get {𝑎(ℎ𝑡
′
𝑎 ), 𝜒(ℎ𝑡

′
𝑚)}𝑡′≤𝑡. This together with the event {𝜃 = 1} induce a probability measure over

𝐻𝑡×𝐻𝑡
𝑚×𝐻𝑡

𝑎, which I denote by 𝒫a,𝜒
𝑡 . The projection of 𝒫a,𝜒

𝑡 on 𝐻𝑡 induces a probability measure

over the public histories, with Ea,𝜒
𝑡 [·] the expectation taken under this measure.

The market’s believed effort plan and disclosure plan are â ≡ {�̂�(ℎ𝑡𝑎)}ℎ𝑡
𝑎∈𝐻𝑎

and �̂� ≡ {�̂�(ℎ𝑡𝑚)}ℎ𝑡
𝑚∈𝐻𝑚

respectively. These together with 𝜋0 govern the joint distribution over 𝜃 and the public histo-

ries. Let 𝒫 â,�̂�,𝜋0
𝑡 be the probability measure over 𝐻𝑡 × 𝐻𝑡

𝑚 × 𝐻𝑡
𝑎 induced by â, �̂� and 𝜋0. Let

𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡] ∈ ∆(𝐻𝑡

𝑚 ×𝐻𝑡
𝑎) be the projection of 𝒫 â,�̂�,𝜋0

𝑡 on 𝐻𝑡
𝑚 ×𝐻𝑡

𝑎 conditional on the public his-

tory being ℎ𝑡, which is the market’s ‘conditional belief ’ over the private histories. Let Eâ,�̂�,𝜋0
𝑡 [·|ℎ𝑡]

be the expectation under 𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡]. Let 𝜋 : 𝐻 → ∆(Θ) be a ‘market belief system’, with 𝜋(ℎ𝑡)

being the probability the market attaches to 𝜃 = 1 after observing public history ℎ𝑡.

11As in other reputation or career concern models, 𝑤𝑡 depends on the market’s expected 𝑎𝑡, instead of the true
𝑎𝑡. I will distinguish between these two in the ‘Strategies’ paragraph, in which I formally introduce the notation for
‘believed effort’.

12Her valuation for the agent’s output (or breakthrough) is the same as the market’s.
13When 𝑏 ∈ (𝜑, 1), conditional on knowing 𝜃 = 1, the intermediary has a strict incentive to disclose information if

the agent’s future effort is constantly 𝜑 (at its minimum) and has a strict incentive to withhold information if the
agent’s future effort is constantly 1.
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Policies: A ‘policy ’, (a,𝜒), consists of an effort plan and a disclosure plan. I introduce two

classes of policies: Markov and Semi-Markov Policies.

Definition 2.1. A policy is Markov if for every (ℎ𝑡−𝑎 , ℎ𝑡−𝑚 ) and (ℎ̂𝑡−𝑎 , ℎ̂𝑡−𝑚 ), if 𝜋(ℎ𝑡−) = 𝜋(ℎ̂𝑡−), then(︁
𝑎(ℎ𝑡−𝑎 ), 𝜒(ℎ𝑡−𝑚 )

)︁
=

(︁
𝑎(ℎ̂𝑡−𝑎 ), 𝜒(ℎ̂𝑡−𝑚 )

)︁
.

When analyzing Markov policies, I use (𝑎(𝜋𝑡), 𝜒(𝜋𝑡)) or (𝑎𝑡, 𝜒𝑡) instead of (𝑎(ℎ𝑡−𝑎 ), 𝜒(ℎ𝑡−𝑚 )) for

notation simplicity, where 𝜋𝑡 is the market’s belief at 𝑡 when ℎ𝑡− = {∅}. Furthermore, Ea,𝜒
𝑡 [·] and

Eâ,�̂�,𝜋0
𝑡 [·|ℎ𝑡− = {∅}] are induced by Poisson processes with instantaneous arrival rates 𝜇𝑎𝑡𝜒𝑡 and

𝜇𝜋𝑡𝑎𝑡𝜒𝑡.

Next, I define Semi-Markov Policies.

Definition 2.2. A policy is Semi-Markov if for every (ℎ𝑡−𝑎 , ℎ𝑡−𝑚 ) and (ℎ̂𝑡−𝑎 , ℎ̂𝑡−𝑚 ), if 𝜋(ℎ𝑡−) = 𝜋(ℎ̂𝑡−)

and 𝒫a,𝜒
𝑡 (ℎ𝑡−𝑎 , ℎ𝑡−𝑚 ) > 0,𝒫a,𝜒

𝑡 (ℎ̂𝑡−𝑎 , ℎ̂𝑡−𝑚 ) > 0, then(︁
𝑎(ℎ𝑡−𝑎 ), 𝜒(ℎ𝑡−𝑚 )

)︁
=

(︁
𝑎(ℎ̂𝑡−𝑎 ), 𝜒(ℎ̂𝑡−𝑚 )

)︁
.

In a nutshell, a Semi-Markov policy only requires that a and 𝜒 to be Markov on the equilibrium

path, while allowing for non-Markov plans off-path. By definition, the set of Semi-Markov policies

contains the set of Markov policies.

Solution Concepts: A Perfect Bayesian Equilibrium (or PBE) consists of an equilibrium policy

{a,𝜒}, the market’s conditional belief over private histories, 𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡] (induced by the believed

policy {â, �̂�}) and a wage process w : 𝐻 → R+, such that:

1. w is consistent with the market’s belief, i.e. 𝑤𝑡 ≡ w(ℎ𝑡−) = Eâ,�̂�,𝜋0
𝑡 [𝜃𝑎(ℎ𝑡−𝑎 )|ℎ𝑡−].

2. 𝑎(ℎ𝑡−𝑎 ) is optimal for the agent for every ℎ𝑡−𝑎 given 𝜒, 𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡] and w.

3. 𝜒(ℎ𝑡−𝑚 ) is optimal for the intermediary for every ℎ𝑡−𝑚 given a, 𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡] and w.

4. For every ℎ𝑡 ∈ 𝐻, 𝒫 â,�̂�,𝜋0
𝑡 [ℎ𝑡] is derived from 𝒫 â,�̂�,𝜋0

𝑡 according to Bayes Rule.14

5. The market’s belief is correct, i.e. {a,𝜒} = {â, �̂�}.

Optimality requirements in 2 and 3 imply that at every private history, the agent and the interme-

diary choose 𝑎𝑡 and 𝜒𝑡 respectively to maximize their own expected continuation values, which are

given by:

Ea,𝜒
𝑡

[︁
𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)

(︁
𝑤𝑠 − 𝑐(𝑎𝑠 − 𝜑)

)︁
𝑑𝑠
⃒⃒⃒
ℎ𝑡−𝑎

]︁
and

Ea,𝜒
𝑡

[︁
𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)𝑈𝑚,𝑠𝑑𝑠

⃒⃒⃒
ℎ𝑡−𝑚

]︁
,

14Bayes Rule always applies since all public histories occur with strictly positive probability on the equilibrium
path.
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where 𝑈𝑚,𝑠 = 𝜃𝑎𝑠 −𝑤𝑠 if ℎ𝑠 = {∅} and 𝑈𝑚,𝑠 = 𝑏 otherwise. The intermediary’s payoff is evaluated

conditional on 𝜃 = 1 since she has no decision to make until she knows that 𝜃 = 1.15

Two PBEs are ‘outcome equivalent’ if they induce the same joint distribution over {𝜋𝑡, 𝑤𝑡, 𝑎𝑡}𝑡∈[0,+∞).

I introduce two refinements of PBE, which will be the solution concepts examined in this paper:

Definition 2.3. A Markov Perfect Equilibrium (or MPE) is a PBE in which the equilibrium policy

is Markov.16 A Semi-Markov Equilibrium (or SME) is a PBE in which the equilibrium policy is

Semi-Markov.

Let (â, �̂�) ≡ {�̂�(𝜋𝑡), �̂�(𝜋𝑡)}𝜋𝑡∈(0,1) be the believed policy in an MPE, or the believed on-path

policy in an SME. I make the technical restriction that both �̂�(𝜋𝑡) and �̂�(𝜋𝑡) are left-continuous

functions of 𝜋𝑡. This implies that 𝑎(𝜋𝑡) and 𝜒(𝜋𝑡) are also left-continuous since the market’s belief

is correct. Let A and X be the set of left-continuous Markov effort plans and disclosure plans.

2.3 Markov Perfect Equilibrium

In this section, I characterize the unique MPE of this game. I show that effort is inverse 𝑈 -shaped

and the disclosure rate is decreasing over time given that no breakthrough has been disclosed in

the past. I highlight the agent’s and the intermediary’s incentives through their best response

correspondences in Subsection 2.3.1. I characterize the unique equilibrium when the market can

automatically observe all breakthroughs (or the ‘exogenous information benchmark’) in Subsection

3.3.2. I state the main characterization result (Proposition 2.2) and discuss its implications in

Subsection 2.3.3, which is also compared with the exogenous information benchmark in subsection

2.3.5. I sketch the proof of Proposition 2.2 in Subsection 2.3.4.

2.3.1 Preliminaries

Belief Updating: The first step is to specify the evolution of 𝜋𝑡. Similar to Poisson bandit

models, for example Keller, Rady and Cripps (2005), if a breakthrough is disclosed, 𝜋𝑡 jumps to

1. Otherwise, the evolution of 𝜋𝑡 is characterized by the following ordinary differential equation

15Formally, since 𝑎𝑡 is unobservable to the intermediary, we also need to specify the intermediary’s believed effort
plan 𝑎(ℎ𝑡−

𝑎 ), and evaluate her payoff under the probability measure induced by {a,𝜒} and 𝜃 = 1. However, since
first, a = a in equilibrium; and second, the intermediary only moves when her private belief is 1, after which her
belief updating process is trivial, so omitting a and evaluating the intermediary’s payoff using a is without loss. I
hope this ‘inconsistency ’ will not cause confusion. However, I need to specify the market’s believed effort since it
matters for its belief updating process.

16Although there has been no agreed upon definition of MPE when actions are unobservable, my definition is in
the spirit of Maskin and Tirole (2001) in which players’ strategies are only conditioned on the coarsest information
partition such that if all other players use measurable strategies, each player’s decision-making problem is also
measurable. This is partly because the agent knows his own type and the intermediary only acts after knowing the
agent’s type, which shuts down the channel for private learning.
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(ODE):17

𝜋𝑡 = −𝜋𝑡(1 − 𝜋𝑡)𝑌𝑡, (2.1)

where 𝑌𝑡 ≡ 𝜇𝜒𝑡𝑎𝑡 is the arrival rate of publicly disclosed breakthroughs conditional on 𝜃 = 1.

The Agent’s Incentives: Let 𝑉𝑎(𝜋𝑡) be the agent’s (equilibrium) continuation value when his

reputation is 𝜋𝑡, which can be decomposed into a weighted average of his flow payoff in the time

interval (𝑡, 𝑡+ 𝑑𝑡] and his continuation value at 𝑡+ 𝑑𝑡:18

𝑉𝑎(𝜋𝑡) = 𝑟
(︁
𝜋𝑡𝑎𝑡−𝑐(𝑎𝑡−𝜑)

)︁
𝑑𝑡+(1−𝑟𝑑𝑡)

(︁
𝑌𝑡𝑑𝑡⏟ ⏞ 

prob. of disclosure

𝑉𝑎(1)+ (1 − 𝑌𝑡𝑑𝑡)⏟  ⏞  
prob. of no disclosure

𝑉𝑎(𝜋𝑡+𝑑𝑡)
)︁
. (2.2)

Expanding this equation and ignoring higher order terms, we get:

𝑉𝑎(𝜋𝑡) =
(︁
𝜋𝑡𝑎𝑡 − 𝑐(𝑎𝑡 − 𝜑)

)︁
+
𝑌𝑡
𝑟

(︁
𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡)

)︁
+

1

𝑟

𝑑𝑉𝑎(𝜋𝑡)

𝑑𝑡
. (2.3)

The law of motion of 𝜋𝑡 implies that when 𝑌𝑡 ̸= 0,

𝑑𝑉𝑎(𝜋𝑡)

𝑑𝑡
= −𝜋𝑡(1 − 𝜋𝑡)𝑌𝑡𝑉

′
𝑎(𝜋𝑡).

Next, suppose the agent deviates and chooses 𝑎𝑡 different from the market’s believed effort �̂�𝑡, his

continuation payoff at 𝜋𝑡 is:19

(︁
𝜋𝑡�̂�𝑡 − 𝑐(𝑎𝑡 − 𝜑)

)︁
+
𝑌𝑡
𝑟

(︁
𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡)

)︁
− 𝑌𝑡

𝑟
𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡), (2.4)

with 𝑌𝑡 ≡ 𝜇𝜒𝑡�̂�𝑡. This is because the agent’s effort is unobservable, deviations only affect his cost

of effort as well as the arrival rate of breakthroughs. But conditional on no disclosure, 𝜋𝑡 is still

updated according to the ‘believed effort’. Choosing 𝑎𝑡 to maximize (2.4) obtains the agent’s best

response correspondence:

𝑎𝑡

⎧⎪⎨⎪⎩
= 𝜑 when 𝜇𝜒𝑡

𝑟 (𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡)) < 𝑐

∈ [𝜑, 1] when 𝜇𝜒𝑡

𝑟 (𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡)) = 𝑐

= 1 when 𝜇𝜒𝑡

𝑟 (𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡)) > 𝑐

. (2.5)

The term 𝜇𝜒𝑡

𝑟 (𝑉𝑎(1)−𝑉𝑎(𝜋𝑡)) measures his ‘reputational incentive’, which is increasing in the public-

ity of his performance (𝜇𝜒𝑡); decreasing in the discount rate (𝑟) and increasing in the difference be-

tween his continuation value when 𝜋𝑡 = 1 and his current continuation value. After a breakthrough

17Admissibility requires that both 𝑎(𝜋𝑡) and 𝜒(𝜋𝑡) are left continuous, so is 𝜇𝑎(𝜋𝑡)𝜒(𝜋𝑡). In a good news model,
no news is bad news, i.e. 𝜋𝑡 ≤ 0, so according to Klein and Rady (2011), there exists a solution to ODE (2.1) for any
given 𝜋0. If there are multiple solutions to this initial value problem, I select the one that is consistent with discrete
time approximation, which is shown to be unique.

18The following ODE uses the fact that in equilibrium, the market’s belief is always correct, i.e.�̂�𝑡 = 𝑎𝑡.
19Expression (2.4) deals with the case in which 𝑌𝑡 ̸= 0. When 𝑌𝑡 = 0, the agent’s continuation payoff following a

deviation is (𝜋𝑡�̂�𝑡 − 𝑐(𝑎𝑡 − 𝜑)) + 𝑌𝑡
𝑟
(𝑉𝑎(1)− 𝑉𝑎(𝜋𝑡)).
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is disclosed, 𝜋𝑡 = 1 and the agent’s reputational incentive disappears. So 𝑎𝑡 = 𝑤𝑡 = 𝑉𝑎(1) = 𝜑.20

Since 𝜒𝑡 is bounded below 1, he has an incentive to work only if his continuation value is low

enough, i.e.

𝑉𝑎(𝜋𝑡) ≤ 𝑉 𝑎 ≡ 𝜑− 𝑐𝑟

𝜇
. (2.6)

The Intermediary’s Incentives: Let 𝑉𝑚(𝜋𝑡) be the intermediary’s continuation value condi-

tional on 𝜃 = 1. Similar to 𝑉𝑎(𝜋𝑡), 𝑉𝑚(𝜋𝑡) satisfies the following ODE:

𝑉𝑚(𝜋𝑡) = 𝑎𝑡(1 − 𝜋𝑡) +
𝑌𝑡
𝑟

(︁
𝑏− 𝑉𝑚(𝜋𝑡)

)︁
+

1

𝑟

𝑑𝑉𝑚(𝜋𝑡)

𝑑𝑡
. (2.7)

Since her deviations cannot be observed by the market either, her best response correspondence is:

𝜒𝑡

⎧⎪⎨⎪⎩
= 1 when 𝑉𝑚(𝜋𝑡) < 𝑏

∈ [0, 1] when 𝑉𝑚(𝜋𝑡) = 𝑏

= 0 when 𝑉𝑚(𝜋𝑡) > 𝑏

. (2.8)

From (2.8), the intermediary is more reluctant to disclose information when 𝑉𝑚(𝜋𝑡) is high and

vice versa. Intuitively, due to the lack of commitment, her incentive to disclose information only

depends on the revenue she can milk from the agent by continuing the relationship after she knows

that 𝜃 = 1.

Patience Level Conditions: As in other dynamic game models, the discount rate 𝑟 matters for

the equilibrium outcomes. Therefore, I introduce the following patience level condition:

Condition 2.1. Players’ patience level is high if 𝑟 < 𝜇𝜑
𝑐 (1 − 𝑐) and is low otherwise.

Patience level is high is equivalent to 𝑉 𝑎 > 𝑐𝜑. This condition is less demanding when the

talent premium 𝜑 is higher, the arrival rate 𝜇 is higher or the cost of effort 𝑐 is lower.

Indifference & Value Invariance Curves: I define two curves, which are of critical importance

in analyzing the long run players’ dynamic incentives. First, for a given time interval (𝑡0, 𝑡1),

suppose the intermediary is indifferent between disclosing and withholding information for all 𝑡 ∈
(𝑡0, 𝑡1), then 𝑉𝑚(𝜋𝑡) = 𝑏 and 𝑑𝑉𝑚(𝜋𝑡)

𝑑𝑡 = 0. Equation (2.7) implies that 𝑎𝑡(1 − 𝜋𝑡) = 𝑏. Let

𝑎*(𝜋𝑡) ≡ min
{︀

1,
𝑏

1 − 𝜋𝑡

}︀
(2.9)

be the intermediary’s ‘indifference curve’, which is increasing in 𝜋𝑡 and becomes flat once 𝜋𝑡 exceeds

1 − 𝑏.

20By replacing 𝑉𝑎(1) with any other constant 𝑉 *, it is straightforward to extend my result to the case in which
the agent receives continuation value 𝑉 * after a breakthrough is disclosed, which is assumed in Bonatti and Hörner
(2015).
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𝜑

𝑎**(𝜋𝑡)
𝑎*(𝜋𝑡)

Figure 2-1: Indifference Curve (solid) and Value Invariance Curve (dashed)

Second, when patience level is high i.e. 𝑉 𝑎 > 𝑐𝜑, let 𝑎**(𝜋𝑡) be defined as:

𝑎**(𝜋𝑡) ≡

⎧⎪⎪⎨⎪⎪⎩
1 when 𝜋𝑡 ≤ 𝜋
𝜑(1−𝑐)− 𝑟𝑐

𝜇

𝜋𝑡
when 𝜋𝑡 ∈ (𝜋, 𝜋]

𝜑 when 𝜋𝑡 > 𝜋,

(2.10)

in which 𝜋 ≡ 𝜑(1 − 𝑐) − 𝑐𝑟
𝜇 and 𝜋 ≡ (1 − 𝑐) − 𝑐𝑟

𝜇𝜑 . The high patience level condition ensures that

0 < 𝜋 < 𝜋 < 1. I call 𝑎**(𝜋𝑡) the agent’s ‘value invariance curve’, which is flat at both ends and is

strictly decreasing when 𝜋𝑡 ∈ [𝜋, 𝜋]. Intuitively, if 𝜋𝑡 ∈ [𝜋, 𝜋], 𝑉𝑎(𝜋𝑡) = 𝑉 𝑎 and 𝜒(𝜋𝑡) = 1, then the

agent’s continuation value remains unchanged (i.e. 𝑑𝑉𝑎(𝜋𝑡)
𝑑𝑡 = 0) if 𝑎(𝜋𝑡) = 𝑎**(𝜋𝑡). I depict the two

curves together in Figure 2-1.

2.3.2 Exogenous Information Benchmark

In this subsection, I consider the benchmark scenario in which 𝜒𝑡 = 1 for all 𝑡, i.e. the market

directly observes every breakthrough the agent has achieved.21 I call this the ‘exogenous informa-

tion’ benchmark, which will later be compared with the strategic disclosure case. Proposition 2.1

characterizes the unique MPE in this benchmark:

Proposition 2.1 (Exogenous Information). There exists a unique MPE. When patience level is

low, 𝑎(𝜋𝑡) = 𝜑 for all 𝜋𝑡 ∈ (0, 1]. When patience level is high, there exists 𝜋‡ ∈ (𝜋, 1) such that:

𝑎(𝜋𝑡) =

{︃
1 when 𝜋𝑡 ≤ 𝜋‡

𝑎**(𝜋𝑡) when 𝜋𝑡 > 𝜋‡.

The agent’s effort path when patience level is high is shown in Figure 2-2. Since this benchmark

scenario fits into the definition of ‘Poisson good news model’ in Faingold and Sannikov (2011), the

unique MPE is also the unique Nash Equilibrium. According to Proposition 2.1, the agent’s effort

is increasing over time when 𝑟 is low enough. As in other Poisson good news models, for example,

21Several alternative interpretations of this benchmark scenario include: when the agent can directly communicate
with the market, or when the intermediary is required to disclose all information.
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𝑎(𝜋𝑡)

𝜋𝑡

1

𝜑
𝜋‡ 𝜋

Figure 2-2: Effort Path under Exogenous Information (High Patience)

Board and Meyer-ter-Vehn (2013), the agent works too little when 𝜋𝑡 is high (relative to social first

best), leading to ‘procrastination inefficiencies’.

This is because under exogenous information, the agent’s marginal benefit from exerting effort

is 𝜇
𝑟 (𝜑 − 𝑉𝑎(𝜋𝑡)) and 𝑉𝑎(𝜋𝑡) is non-decreasing in 𝜋𝑡. The cutoff belief, 𝜋‡, is pinned down by

the ‘promise keeping condition’, i.e. his continuation value at 𝜋‡ is 𝑉 𝑎. Effort is interior when

𝜋𝑡 ∈ (𝜋‡, 𝜋) since the agent’s incentive to exert effort is decreasing with the market’s ‘believed

effort’. This uniquely pins down the equilibrium effort level.

2.3.3 Equilibrium Characterization

I characterize the unique MPE when information is strategically disclosed by an intermediary. The

main result is stated as Proposition 2.2.

Proposition 2.2. This game admits a unique MPE.

∙ When patience level is low, 𝜒(𝜋𝑡) = 1 and 𝑎(𝜋𝑡) = 𝜑 for all 𝜋𝑡 ∈ (0, 1].

∙ When patience level is high, there exists a cutoff belief 𝜋† ∈ (𝜋, 1), such that:

𝑎(𝜋𝑡) ≡

{︃
𝑎**(𝜋𝑡) when 𝜋𝑡 > 𝜋†

𝑎*(𝜋𝑡) when 𝜋𝑡 ≤ 𝜋†
, 𝜒(𝜋𝑡) ≡

{︃
1 when 𝜋𝑡 > min{1 − 𝑏, 𝜋†}

𝑐𝑟
𝜇(𝜑−𝑉𝑎(𝜋𝑡))

when 𝜋𝑡 ≤ min{1 − 𝑏, 𝜋†}
.

Moreover, 𝑎*(𝜋†) > 𝑎**(𝜋†) and 𝜒(𝜋𝑡) is strictly increasing in 𝜋𝑡 when 𝜋𝑡 ≤ min{1 − 𝑏, 𝜋†}.

From now on, I will focus on the high patience case, due to the presence of non-trivial reputation

building behavior, which is economically interesting. Effort and disclosure rate when patience level

is high are depicted in Figures 2-3 and 2-4 as functions of 𝜋𝑡, depending on whether 𝜋† is below

(interior case) or above (corner case) 1 − 𝑏. Common in both figures, effort is inverse 𝑈 -shaped

while the rate of disclosure decreases over time. Moreover, the equilibrium effort path coincides

with the intermediary’s indifference curve when the market is pessimistic and coincides with the

agent’s value invariance curve otherwise.
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𝑎(𝜋𝑡)
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𝜋𝑡𝜋† 1

1

0

𝑏

Figure 2-3: Effort and Disclosure Dynamics in the unique MPE: High Patience & Interior Case
(𝜋† ≤ 1 − 𝑏)

For some intuition, since the intermediary benefits from extracting the agent’s effort, she has

more incentive to disclose information when future effort is lower and vice versa. When patience

level is low, the agent has no incentive to exert effort and the intermediary cannot milk much revenue

from the agent. Because of this, she strictly prefers to disclose information. When patience level

is high, the agent has more incentive to work when 𝜋𝑡 is lower, as in the exogenous information

benchmark. Anticipating this, the intermediary will have an incentive to withhold information

when 𝜋𝑡 is low.

This gives rise to the following countervailing incentive structure: the agent has more incentive

to exert effort when his performance is more visible while the intermediary has more incentive to

disclose information when the agent shirks. When the intermediary is required to stochastically

withhold information, effort and disclosure rate must be chosen to make the other player indifferent,

which results in the described dynamic pattern. The cutoff belief 𝜋† is pinned down by the ‘promise

keeping condition’: the agent’s continuation value at 𝜋† must be 𝑉 𝑎, the highest continuation value

under which he can be motivated to exert effort.

Mapping this back into the application to professional service industries, my result speaks for

the anecdotal evidence that firms tend to establish their star employees early on in their careers.

But for those who fail to succeed in the beginning, their latter successes will be discounted more and

more heavily and are less visible to the outside market. This distinction is driven by the employer’s

strategic motives: the worker’s eagerness to build up his reputation enables his employer to milk

more revenue from his hard work, which explains why he is not being promoted for a long time.

This lack of transparency in performance will frustrate the worker in the long run and his effort

eventually decreases.

The predictions of my model in terms of wages (𝑤𝑡) and promotion rates (𝑎𝑡𝜒𝑡) match the

empirical findings in Baker, Gibbs and Holmström (1994a,b), who study the wage and promotion

dynamics empirically using 20 years of personnel data from a large US firm.22 First, the real wage

22The predictions of my model, that effort is inverse 𝑈 -shaped and the disclosure rate is decreasing are robust when
the market can also learn from infrequently arrived public signals, when the intermediary’s benefit from disclosure
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Figure 2-4: Effort and Disclosure Dynamics in the unique MPE: High Patience & Corner Case
(𝜋† > 1 − 𝑏)

of a worker conditional on remaining at the entry level job (level 2 in their paper) is first increasing

and then decreasing as a function of time (Figure IV on page 951). Second, the promotion rate

from level 2 to level 3 is also an inverse 𝑈 -shaped function of tenure (the number of years at level

2), which is documented in their Table IV (page 902). I provide a novel explanation for these facts

based on the dynamic interactions between the agent’s incentive to build up his reputation and the

intermediary’s incentive to release information to the labor market.23

Why MPE: The unique MPE is robust to private monitoring, i.e. when the agent cannot

perfectly observe the arrival of breakthroughs. Private monitoring is prevalent in applications

where performance evaluations are subjective (Fuchs 2007). In my model, MPE is attractive since

players’ strategies only depend on the public belief and their incentives do not rely on the fine

details of their private histories. As a result, their incentive constraints are still satisfied even when

breakthroughs are based on the intermediary’s subjective assessment.24

Furthermore, this unique MPE remains to be an equilibrium when the intermediary can disclose

past breakthroughs. This is because her incentive to withhold information is weakly increasing over

time, i.e. given she has an incentive to withhold information today, she also has an incentive to

withhold it in the future. Nonetheless, the possibility of disclosing past breakthroughs introduces

additional equilibria, which will be discussed in Section 2.6.

is low, i.e. 𝑏 ∈ (0, 𝜑], when the intermediary has different time preferences (for example, having a different discount
factor or is finitely lived), when the agent does not know 𝜃, etc. These will be discussed in Section 2.6. They are also
robust when we consider other PBEs that are non-Markov (Section 2.4).

23Alternative explanations in the existing literature include, for example, the inverse 𝑈 -shaped promotion rate can
also be explained by a combination of market learning and human capital accumulation.

24The robustness of equilibria under private monitoring has been discussed extensively in the repeated games
literature, for example, Mailath and Morris (2002), etc. The gist of this literature is: coordinating current play on
past histories becomes more challenging when monitoring is private and histories are not commonly known among
players.
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Remark: My result that effort is inverse 𝑈 -shaped is different from, albeit complementary to,

both career concern models with Gaussian learning and reputation building models with Poisson

good news.

In Holmström (1999), the agent’s effort is decreasing over time, which is driven by the Gaussian

information structure, i.e. the market’s signal is highly sensitive to effort. As time elapses, the

precision of market belief increases and the impact of current effort decreases.25 Contrary to

Holmström (1999), I examine cases in which the market receives information infrequently. This is

relevant to reputation building of junior people, as the market rarely knows about their performance

before they become famous.

In Poisson good news models, for example, Board and Meyer-ter-Vehn (2013), the agent’s effort

is increasing over time as the market’s belief deteriorates since 𝜑 − 𝑉𝑎(𝜋𝑡) is decreasing in 𝜋𝑡. In

my model, the agent’s effort is inverse 𝑈 -shaped.26 This is driven by the intermediary’s incentive

to release information: as the market becomes more pessimistic, the intermediary can capture a

larger share of the agent’s surplus once she knows that 𝜃 = 1. Effort is decreasing over time along

the intermediary’s indifference curve in order to motivate her to stochastically disclose information.

2.3.4 Proof of Proposition 2.2

I prove the result in seven steps, with proofs of the lemmas relegated to Appendix B.1 and the

Online Appendix. To approach the problem, I use the observation that changes in 𝑤𝑡 vanishes when

𝜋𝑡 goes to 0, that is, the agent’s problem becomes ‘approximately stationary ’ in the limit. I pin

down his limiting continuation value when 𝜋𝑡 → 0 and characterize players’ limiting equilibrium

behaviors. The agent’s continuation value at low enough 𝜋𝑡 is characterized by a limiting value

problem, which admits a unique solution. This solution is then used to compute 𝜋†.

Step 1: Market Learning First, I show that the market eventually learns about the agent’s

type. This result validates my approach of analyzing players’ values and behaviors at the limiting

belief.

Lemma 2.3.1. In every MPE, 𝜋𝑡(1 − 𝜋𝑡) converges to 0 in probability.27

25In a recent paper, Hörner and Lambert (2015) examine a variant of the Holmström model in which the agent’s
talent is changing over time, following a mean reverting process. In these ‘changing type’ models, the agent’s effort
level can be constant over time, which is the case in their stationary equilibria.

26Inverse 𝑈 -shaped effort is also reported in Bonatti and Hörner (2015), although the driving forces are very
different. In their model, the agent does not know his type, as in the strategic experimentation literature. His effort
decreases as his confidence in his own ability falls. In my model, declining effort is driven by the intermediary’s
incentives to suppress information, which comes from the strategic interaction between the intermediary and the
agent, not through the agent’s private learning.

27In my model, the unique MPE also coincides with the unique public equilibrium, i.e. players’ strategies depend
only on the public history. Aside from 𝜋𝑡, the market also observes calendar time. In the Online Appendix, I show
𝜒(𝜋𝑡) > 0 under a weaker assumption that players’ strategies are public, which implies the existence of a 1-to-1
mapping between 𝑡 and 𝜋𝑡. As a result, 𝑡 does not contain any extra information in addition to 𝜋𝑡.
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An implication is that 𝜒𝑡 ̸= 0 for all 𝑡 and hence, 𝑌𝑡 > 0. Therefore, we can re-write (2.3) as:

𝑉𝑎(𝜋𝑡) =
(︁
𝜋𝑡𝑎𝑡 − 𝑐(𝑎𝑡 − 𝜑)

)︁
+
𝑌𝑡
𝑟

(︁
𝑉𝑎(1) − 𝑉𝑎(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

)︁
.

Step 2: Continuation Value & Behavior at the Limiting Belief Let

𝑉𝑎(0) ≡

{︃
𝑐𝜑 when 𝑟 < 𝜇𝜑(1−𝑐)

𝑐
𝜇𝜑2

𝑟+𝜇𝜑 when 𝑟 ≥ 𝜇𝜑(1−𝑐)
𝑐

, 𝑉𝑚(0) ≡

{︃
𝑏 when 𝑟 < 𝜇𝜑(1−𝑐)

𝑐
𝑟𝜑+𝜇𝑏
𝑟+𝜇 when 𝑟 ≥ 𝜇𝜑(1−𝑐)

𝑐

.

Lemma 2.3.2 shows that the limits of players’ continuation values, lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) and lim𝜋𝑡→0 𝑉𝑚(𝜋𝑡),

exist. It also explicitly computes these values as well as players’ equilibrium behaviors at the limit:

Lemma 2.3.2. Players’ limiting continuation values exist. Furthermore, in every MPE,

lim
𝜋𝑡→0

𝑉𝑎(𝜋𝑡) = 𝑉𝑎(0) and lim
𝜋𝑡→0

𝑉𝑚(𝜋𝑡) = 𝑉𝑚(0),

and there exists 𝜀 > 0 such that for all 𝜋𝑡 ∈ (0, 𝜀),

∙ 𝜒(𝜋𝑡) = 1 and 𝑎(𝜋𝑡) = 𝜑 when patience level is low.

∙ 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) and 𝜒(𝜋𝑡) = 𝑐𝑟
𝜇(𝜑−𝑉𝑎(𝜋𝑡))

when patience level is high.

In what follows, I will focus on the high patience case. Lemma 2.3.2 implies that when patience

level is high and 𝜋𝑡 is close to 0, the intermediary must be indifferent between disclosing and

withholding information and the agent’s effort must be 𝑎*(𝜋𝑡). Hence, the agent’s continuation

value when 𝜋𝑡 is low enough is characterized by a solution to the following limiting value problem:

𝑉𝑎(𝜋𝑡) =
(︁
𝜋𝑡𝑎

*(𝜋𝑡) − 𝑐(𝑎*(𝜋𝑡) − 𝜑)
)︁

+
𝜇𝜒(𝜋𝑡)𝑎

*(𝜋𝑡)

𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

)︁
(2.11)

with lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) = 𝑐𝜑. Accordingly, 𝜒(𝜋𝑡) must be chosen to provide him an incentive to choose

an interior effort level, i.e.
𝜇𝜒(𝜋𝑡)

𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡)

)︁
= 𝑐. (2.12)

Plugging (2.12) into (2.11) results in the following ODE:

𝑉𝑎(𝜋𝑡) =
(︁
𝜋𝑡𝑎

*(𝜋𝑡) + 𝑐𝜑
)︁
− 𝑐𝑎*(𝜋𝑡)𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

𝜑− 𝑉𝑎(𝜋𝑡)
, (2.13)

with lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) = 𝑐𝜑. Lemma 2.3.3 shows that this problem admits a unique solution:

Lemma 2.3.3. The above limiting value problem admits a unique solution 𝑉 *
𝑎 (𝜋𝑡). When patience

level is high, there exists 𝜀 > 0 such that 𝑉𝑎(𝜋𝑡) = 𝑉 *
𝑎 (𝜋𝑡) for all 𝜋𝑡 ∈ (0, 𝜀).28

28The ODE in (2.13) can be transformed into a Bernoulli Equation, by letting 𝑍(𝜋𝑡) ≡ 𝜑− 𝑉𝑎(𝜋𝑡). This admits a
closed form solution in limiting form. However, this formula is inconvenient both for characterizing the equilibrium
as well as for doing comparative statics. Hence, throughout my analysis, I use an indirect approach to establish the
uniqueness as well as other properties of MPE.
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The proof uses the observation that different values of 𝑉𝑎(·) at any interior belief will lead to

diverging values when 𝜋𝑡 → 0. As a result, the limiting value uniquely pins down the value at every

interior belief.

Step 3: Value Invariance Curve The next Lemma exploits the implications of the agent’s

value invariance curve.

Lemma 2.3.4. Suppose 𝜒𝑡 = 1 and 𝑉𝑎(𝜋𝑡) = 𝑉 𝑎,

∙ If 𝜋𝑡 < 𝜋, then 𝑉 ′
𝑎(𝜋𝑡) < 0 for all 𝑎𝑡 ∈ [𝜑, 1]. If 𝜋𝑡 > 𝜋, then 𝑉 ′

𝑎(𝜋𝑡) > 0 for all 𝑎𝑡 ∈ [𝜑, 1].

∙ If 𝜋𝑡 ∈ [𝜋, 𝜋], then

𝑉 ′
𝑎(𝜋𝑡)

⎧⎪⎨⎪⎩
> 0 when 𝑎𝑡 > 𝑎**(𝜋𝑡)

= 0 when 𝑎𝑡 = 𝑎**(𝜋𝑡)

< 0 when 𝑎𝑡 < 𝑎**(𝜋𝑡).

The proof is straightforward from (2.3), which is omitted. Intuitively, fixing 𝑉𝑎(𝜋𝑡), higher

believed effort in (𝑡−𝑑𝑡, 𝑡] leads to higher wages in (𝑡−𝑑𝑡, 𝑡] and therefore, higher 𝑉𝑎(𝜋𝑡−𝑑𝑡)−𝑉𝑎(𝜋𝑡).

Since 𝜋𝑡 is decreasing over time, this implies that 𝑉 ′
𝑎(𝜋𝑡) is larger.

Step 4: Constructing an MPE I construct an MPE in the high patience case and later show

its uniqueness. Let

𝜋† ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝑉 *
𝑎 (𝜋) < 𝑉 𝑎 for all 𝜋 ∈ (0, 𝜋𝑡)

}︁
. (2.14)

By definition, if 𝜋† < 1,29 then 𝑉𝑎(𝜋†) = 𝑉 𝑎 and lim𝜋𝑡↑𝜋† 𝑉 ′
𝑎(𝜋𝑡) > 0. I claim that the strategy

profile displayed in Proposition 2.2 and its induced conditional belief constitute an MPE. This also

implies that the agent’s continuation value when 𝜋𝑡 < 𝜋† is 𝑉 *
𝑎 (𝜋𝑡), which is the unique solution to

the limiting value problem in Lemma 2.3.3.

I check players’ incentive constraints. The agent’s incentive constraints are satisfied when

𝜋𝑡 ≤ min{1 − 𝑏, 𝜋†} since the choice of 𝜒(𝜋𝑡) makes him indifferent between working and shirking.

When 𝜋𝑡 ∈ (min{1 − 𝑏, 𝜋†}, 𝜋†], the definition of 𝜋† implies that 𝑉𝑎(𝜋𝑡) ≤ 𝑉 𝑎 and the intermediary

fully discloses information, implying that he has a strict incentive to exert effort. When 𝜋𝑡 > 𝜋†,

∙ If 𝑎**(𝜋𝑡) > 𝜑, then his continuation value remains 𝑉 𝑎 and he is indifferent.

∙ If 𝑎**(𝜋𝑡) = 𝜑, then his continuation value is weakly above 𝑉 𝑎 and he weakly prefers to shirk.

The intermediary’s incentive constraint when 𝜋𝑡 ≤ min{1 − 𝑏, 𝜋†} is satisfied since her flow payoff

is constantly 𝑏 thereafter. To verify her incentive constraints when 𝜋𝑡 > min{1− 𝑏, 𝜋†}, I only need

to show:

𝑎*(𝜋†) > 𝑎**(𝜋†). (2.15)

Since lim𝜋𝑡↑𝜋† 𝑉 ′
𝑎(𝜋𝑡) > 0, (2.15) is then implied by Lemma 2.3.4.

29I will defer the proof of 𝜋† < 1 to Lemma 2.3.8, the proof of which does not rely on any of the previous Lemma.
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Step 5: Monotonicity of Disclosure Rates I show that 𝜒(𝜋𝑡) is strictly increasing in 𝜋𝑡 for all

𝜋𝑡 ≤ min{1− 𝑏, 𝜋†}. It is equivalent to show that 𝑉 *
𝑎 (𝜋𝑡) is strictly increasing in 𝜋𝑡, or equivalently,

the agent’s equilibrium continuation value is decreasing over time, conditional on no disclosure.

Lemma 2.3.5. When 𝜋𝑡 ≤ 𝜋†, 𝑉 *
𝑎 (𝜋𝑡) is strictly increasing in 𝜋𝑡.

Step 6: Uniqueness of MPE First, I show that if 𝜋𝑡 ≤ min{1− 𝑏, 𝜋†}, then 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) and

𝜒(𝜋𝑡) must be chosen to make the agent indifferent. Let

𝜋1 ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ∈ (0,min{1 − 𝑏, 𝜋†}], 𝑎(𝜋) = 𝑎*(𝜋) for all 𝜋 < 𝜋𝑡

}︁
.

I show the following Lemma:

Lemma 2.3.6. In every MPE, 𝜋1 = min{1 − 𝑏, 𝜋†}.

Next, I show that the intermediary always fully discloses information when 𝜋𝑡 > min{1− 𝑏, 𝜋†}.

If 𝜋† > 1− 𝑏 and 𝜋𝑡 ∈ (1− 𝑏, 𝜋†), then 𝑉 *
𝑎 (𝜋𝑡) ≤ 𝑉 𝑎 and the intermediary always strictly prefers to

disclose, so 𝑎(𝜋𝑡) = 𝜒(𝜋𝑡) = 1. When 𝜋𝑡 > 𝜋†, Lemma 2.3.7 shows that effort must be 𝑎**(𝜋𝑡) in

every MPE. Let

𝜋2 ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ∈ [𝜋†, 1) and 𝑎(𝜋) = 𝑎**(𝜋) for all 𝜋 ∈ [𝜋†, 𝜋𝑡)

}︁
.

Lemma 2.3.7. In every MPE, 𝜋2 = 1.

Step 7: Range of 𝜋† It is already known from Step 4 that 𝑎**(𝜋†) < 𝑎*(𝜋†), which gives a

strictly positive lower bound on 𝜋†, i.e. the lowest belief at which 𝑎*(·) and 𝑎**(·) intersect. In this

step, I establish an upper bound:

𝜋† ≤ 1 − 𝑐𝑟

𝜇𝜑
. (2.16)

I show the following claim which implies (2.16): when the agent’s reputation is 𝜋𝑡, given that the

market’s belief is correct, his continuation value is at least 𝜋𝑡𝜑 for any Markov disclosure plan. This

minimum is achieved when 𝜒(𝜋𝑡) = 0 and 𝑎(𝜋𝑡) = 𝜑, i.e. no information is disclosed and market’s

belief is 𝜋𝑡 forever. This result is also interesting by itself since it characterizes the harshest possible

punishment to the agent when the intermediary can commit to disclosure plans.

Formally, for all a, â ∈ A, 𝜒 ∈ X and 𝜋𝑡 ∈ (0, 1), let Πâ,𝜒(𝜋𝑡,a) be the agent’s continuation

payoff when he adopts effort plan a under disclosure rule 𝜒, believed effort process â and initial

reputation 𝜋𝑡. Let

𝑉 â,𝜒(𝜋𝑡) ≡ max
a∈A

Πâ,𝜒(𝜋𝑡,a)

be his continuation value. Consider the following program, which characterizes his lowest continu-

ation value under the restriction that â is optimal for the agent under â and 𝜒:

𝒱(𝜋𝑡) ≡ min
(â,𝜒)∈A×X

𝑉 â,𝜒(𝜋𝑡), (2.17)
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subject to:

𝑉 â,𝜒(𝜋𝑡) = Πâ,𝜒(𝜋𝑡, â).

Lemma 2.3.8. When patience level is high, 𝒱(𝜋𝑡) = 𝜋𝑡𝜑 for all 𝜋𝑡 ∈ (0, 1),

As a direct implication, 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎 when 𝜋𝑡 > 1 − 𝑐𝑟
𝜇𝜑 , which implies that 𝜋† ≤ 1 − 𝑐𝑟

𝜇𝜑 . This

result is not trivial since when 𝜒(𝜋𝑡) > 0, higher effort level becomes incentive compatible. When

the market anticipates this, 𝜋𝑡 also declines faster conditional on no disclosure.30 As a result,

playing the best response to 𝜒(𝜋𝑡) = 0 and �̂�(𝜋𝑡) = 𝜑, which is 𝑎(𝜋𝑡) = 𝜑, cannot guarantee him

payoff 𝜋𝑡𝜑.

2.3.5 Comparisons Between Exogenous and Endogenous Information

I compare the effort path in the unique MPE with the equilibrium effort path under the exogenous

information benchmark to assess the impact of strategic information disclosure. First, effort is in-

verse 𝑈 -shaped under endogenous information as opposed to monotone increasing under exogenous

information. This is because effort needs to be low enough in order to provide the intermediary an

incentive to disclose information. Second, the cutoffs at which effort jumps up, 𝜋† and 𝜋‡, are also

different.

The next result compares 𝜋† with 𝜋‡. To see why this is interesting, notice that the two effort

paths (as well as the paths of disclosure rates) coincide when 𝜋𝑡 > max{𝜋†, 𝜋‡}. Moreover, effort is

strictly lower under endogenous information when 𝜋𝑡 is small enough. The remaining question is:

whether strategic disclosure can lead to higher effort at some intermediate beliefs. This is only the

case when 𝜋† > 𝜋‡. If so, the presence of a strategic intermediary motivates the agent to front-load

effort.

Intuitively, one would expect that front-loading will always happen since 𝜒𝑡 is decreasing over

time, that is, the intermediary withholds information at a higher rate at more pessimistic beliefs.

This reduces the agent’s continuation value at optimistic beliefs. Anticipating this, he will work

harder early on since if he shirks today, his performance will be less visible tomorrow.

Unfortunately, the above logic is flawed, since it ignores the impact of equilibrium disclosure rate

on the speed of market learning, which affects the dynamics of wages. To see this, when 𝑐 is very

close to 0, 𝜒𝑡 is also very close to 0 even for fairly high 𝜋𝑡, so is 𝜇𝜒𝑡𝑎𝑡, the rate of market learning.

If this is the case, the market will attribute the absence of news to the intermediary’s low disclosure

rate, instead of the agent’s incompetence. As a result, the agent’s flow payoff, 𝑎𝑡𝜋𝑡 − 𝑐(𝑎𝑡 − 𝜑),

will remain high for a long time. In contrast, 𝜋𝑡 deteriorates much faster when information is

exogenous. So the agent’s short run payoff is higher under endogenous information albeit his long

run payoff is lower. Since 𝑟 > 0, for 𝑐 small enough, there exists an interior belief such that the

agent’s continuation value is higher under endogenous information when 𝜋𝑡 exceeds this belief and

vice versa. In this case, having a strategic intermediary censoring information can exacerbate the

30This effect is also discussed in Cisternas (2015) using a career concern model, in which the agent has more
incentive to exert higher effort when the market anticipates higher effort, albeit his equilibrium payoff can be lower.
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procrastination problem. This effect is more pronounced when 𝑟 and 𝜇 are high, 𝑐 and 𝜑 are low.

Proposition 2.3 provides a sufficient condition:

Proposition 2.3. For every 𝑟 and 𝜑, there exist 𝑐 > 0 and 𝜇 > 0 satisfying

𝜑− 𝑐𝜑− 𝑟𝑐

𝜇
> 0

such that for every 𝑐 < 𝑐 and 𝜇 > 𝜇, there exists an open subset 𝐵 ⊂ (𝜑, 1), such that 𝜋‡ > 𝜋† when

𝑏 ∈ 𝐵.

To summarize, the unique MPE exhibits two sources of inefficiencies. First, the agent’s effort

needs to be low enough to encourage the intermediary to disclose information, and the latter is

necessary to sustain reputation building incentives. Second, withholding information when 𝜋𝑡 < 𝜋†

does not necessarily lower the agent’s continuation value: when 𝑐 is low and withholding information

happens too early, it is actually encouraging the agent to procrastinate more.

Remark: It is worth clarifying that Proposition 2.3 is about the incentives to front-load effort

instead of welfare. Welfare comparisons are hard to obtain due to the inconvenience of expressing

the agent’s equilibrium continuation value and the intermediary’s equilibrium disclosure rate ex-

plicitly, which makes computing social surplus not tractable. Even when 𝜋† > 𝜋‡, despite effort

is front-loaded, there is no guarantee that endogenous disclosure can improve social welfare. This

is because first, welfare depends on the prior belief 𝜋0 at which to evaluate payoffs; and second,

welfare depends not only on the timing of effort, but also on its entire dynamics.

2.4 Semi-Markov Equilibria

In this section, I show that allowing players’ strategies to condition on additional payoff irrelevant

state variables can mitigate the inefficiencies of the unique MPE. In particular, I focus on a solution

concept that minimally departs from MPE, Semi-Markov Equilibrium (SME, see Definition 2.3),

which allows the intermediary and the agent to coordinate on payoff irrelevant variables off the

equilibrium path.

I characterize the set of SME outcomes, which turns out to be tractable and contains both the

unique MPE and the exogenous information equilibrium as special cases. To characterize this set,

I construct a subclass of SMEs that covers the entire set of SME outcomes.

Proposition 2.4. For every 𝜋S ∈ [0,min{1− 𝑏, 𝜋†}], there exist 𝜋* and 𝜋** ∈ [𝜋S, 1), such that the

following ‘three phase strategy profile’ forms an SME.

∙ Phase I: If 𝜋𝑡 ≤ 𝜋S, then 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) and 𝜒(𝜋𝑡) is chosen to make the agent indifferent.

∙ Phase II: If 𝜋𝑡 > 𝜋S and the intermediary has never concealed a breakthrough in the past,
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𝑎(𝜋𝑡)

𝜋𝑡

𝑏

1

𝜑
𝜋S 𝜋** 𝜋*

𝜒(𝜋𝑡)

𝜋𝑡𝜋S 𝜋** 𝜋*

Figure 2-5: Effort and disclosure rate in an SME (in three phase strategy profile) with cutoff 𝜋S,
with Phase I in blue, Phase II in green and Phase III in red.

then 𝜒(𝜋𝑡) = 1 and

𝑎(𝜋𝑡) ≡

{︃
1 when 𝜋𝑡 ∈ (𝜋S, 𝜋*]

𝑎**(𝜋𝑡) when 𝜋𝑡 > 𝜋*.

∙ Phase III: If 𝜋𝑡 > 𝜋S and the intermediary has concealed a breakthrough in the past, then

𝑎(𝜋𝑡) ≡

{︃
𝑎*(𝜋𝑡) when 𝜋𝑡 ∈ (𝜋S, 𝜋**]

𝜑 when 𝜋𝑡 > 𝜋**.

𝜒𝑡 = 1 when 𝜋𝑡 > min{1 − 𝑏, 𝜋**} and 𝜒𝑡 is chosen to make the agent indifferent when

𝜋𝑡 ≤ min{1 − 𝑏, 𝜋**}.

Moreover, every SME is outcome equivalent to an SME described above.31

Figure 2-5 depicts the effort and disclosure dynamics in a generic three phase strategy profile.

For some intuition, SME allows players’ strategies to condition on another state variable, that is,

whether the intermediary has concealed breakthroughs in the past or not. Every SME is character-

ized by a cutoff belief, 𝜋S, below which withholding information happens on the equilibrium path.

When 𝜋𝑡 ≤ 𝜋S (Phase I), the equilibrium play resembles that in the unique MPE in which effort and

disclosure rate are chosen to make both players indifferent. When 𝜋𝑡 > 𝜋S and the intermediary has

never deviated before (Phase II), the agent exerts high effort and the intermediary fully discloses

information. Suppose the intermediary has deviated before (Phase III), players coordinate on the

low effort low disclosure rate equilibrium. 𝜋* and 𝜋** are chosen such that the agent’s on-path con-

tinuation value at 𝜋* and off-path continuation value at 𝜋** are both 𝑉 𝑎. A formal characterization

of the pair (𝜋*, 𝜋**) is presented in Appendix B.3, along with the proof of Proposition 2.4.

Mapping back into the applications to law and consulting industries, SMEs capture the following

effect which is absent in the unique MPE: the agent becomes frustrated if his past successes have

31The set of three phase strategy profiles characterize all possible on-path behaviors in SMEs. However, there exist
other SMEs which differ in terms of their off-path play.
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been ignored and in response to that, his future effort will decrease. Suppressing information today

leads to lower effort in the future. This is reflected in the equilibrium behavior that effort jumps

downward once a breakthrough is concealed.32

In what follows, I discuss the properties of SMEs. First, notice that the unique MPE is the

SME with the highest 𝜋S, i.e. 𝜋S = min{1 − 𝑏, 𝜋†}, while the unique equilibrium in the exogenous

information benchmark is outcome equivalent to the SME with 𝜋S = 0. SME allows 𝜋S to take

any value between 0 and min{1 − 𝑏, 𝜋†}, which enables players to control the timing at which

withholding information starts and implies an efficiency gain when the optimal cutoff does not

coincide with the unique MPE cutoff. In particular, when 𝑐 is low, players can coordinate on a

low enough 𝜋S so that the market learns rapidly when 𝜋𝑡 is high. This circumvents the problem

identified in Proposition 2.3 since the agent cannot sustain high flow payoff at any interior belief.

Moreover, SME boosts effort to 1 when 𝜋𝑡 ∈ (𝜋S,min{1 − 𝑏, 𝜋†}]. This arrangement is incentive

compatible since the intermediary has no decision to make before the first breakthrough arrives,

so increasing the agent’s effort before that does not upset her incentive constraints. Some other

properties of SME are summarized below.

Front-loading Effort: Since the unique MPE and the equilibrium under exogenous information

are both special cases of SME, the optimal SME must (weakly) outperform both.

Corollary 2.1. There exists 𝜀 > 0 such that for all 𝜋S ∈ (0, 𝜀), 𝜋*(𝜋S) > 𝜋‡.

Corollary 2.1 says that SME with 𝜋S small enough strictly outperforms the unique equilibrium in

the exogenous information benchmark in terms of front-loading effort, i.e. the agent starts working

harder at a higher belief.

Simple Belief Updating Rule: SMEs have the attractive property that the market does not

need to compute the probability that a breakthrough has been withheld in the past in order to

formulate its posterior belief about 𝜃. This is because in every SME, the market always correctly

anticipates the agent’s on-path effort and the intermediary’s on-path disclosure rate.33

Robustness: Every SME induced by a three phase strategy profile remains robust when the

intermediary can disclose past breakthroughs. This is because her incentive to withhold information

is weakly increasing over time, both on and off the equilibrium path. However, SMEs (aside from

the unique MPE) are not robust to private monitoring, since they rely on the arrival times of

breakthroughs being common knowledge between the intermediary and the agent.

32To comment more on the jump, effort jumps from 1 to 𝑎*(𝜋𝑡) when 𝜋𝑡 ∈ (𝜋S, 𝜋**]; from 1 to 𝜑 when 𝜋𝑡 ∈ (𝜋**, 𝜋*];
from 𝑎**(𝜋𝑡) to 𝜑 when 𝜋𝑡 ∈ (𝜋*, 𝜋].

33Nevertheless, the set of PBEs in which players’ strategies can condition on 𝜋𝑡 as well as whether breakthrough
has been withheld in the past or not is much larger than the set of SMEs, since in general, future effort and disclosure
rate can differ whenever the intermediary has withheld a breakthrough in the past, regardless of whether play has
gone off-path or not. However, complicated market belief updating and wage formulas will occur, which are not
tractable to analyze.
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2.5 Optimal Markov Policy with Commitment

In this section, I examine the optimal Markov policy when the intermediary can commit to dynamic

disclosure plans: the intermediary designs a Markov policy, (a,𝜒) ∈ A ×X, to maximize her ex-

pected payoff evaluated at belief 𝜋0, subject to the market’s and the agent’s incentive constraints.34

Recall the definitions of 𝑉 a,𝜒(𝜋) and Πa,𝜒(𝜋,a) in Subsection 2.3.4. The intermediary’s maxi-

mization problem is:

sup
(a,𝜒)∈A×X

{︁
𝜋0

(︁
𝑟

∫︁ ∞

0
𝑒−𝑟𝑡−(𝑦𝑡−𝑦0)(𝑎𝑡 − 𝑤𝑡 − 𝑏)𝑑𝑡+ 𝑏

)︁
⏟  ⏞  

gain from high type

−(1 − 𝜋0) 𝑟

∫︁ ∞

0
𝑒−𝑟𝑡𝑤𝑡𝑑𝑡⏟  ⏞  

loss from low type

}︁
, (2.18)

subject to:

𝑉 a,𝜒(𝜋0) = Πa,𝜒(𝜋0,a)⏟  ⏞  
Effort plan a is optimal for the agent

, �̇�𝑡 = −𝜋𝑡(1 − 𝜋𝑡)𝜇𝑎(𝜋𝑡)𝜒(𝜋𝑡) and 𝑤(𝜋𝑡) = 𝜋𝑡𝑎(𝜋𝑡),

with 𝑦𝑡 ≡ ln 1−𝜋𝑡
𝜋𝑡

. Re-write the intermediary’s objective function as:

𝑟(1 − 𝜋0)

∫︁ ∞

0
𝑒−𝑟𝑡−𝑦𝑡(𝑎𝑡 − 𝑤𝑡 − 𝑏)𝑑𝑡− 𝑟(1 − 𝜋0)

∫︁ ∞

0
𝑒−𝑟𝑡𝑤𝑡𝑑𝑡+ 𝑏𝜋0. (2.19)

Plugging in the expression for 𝑤𝑡 and ignoring positive affine transformations, the intermediary’s

problem is to minimize: ∫︁ ∞

0
𝑒−𝑟𝑡 𝜋𝑡

1 − 𝜋𝑡
𝑑𝑡. (2.20)

subject to the agent’s and the market’s incentive constraints. The optimal policy is characterized

below:

Proposition 2.5. An optimal Markov policy exists. For every 𝜋0 ∈ (0, 1), there exists 0 ≤ 𝜋′ <

𝜋′′ ≤ 𝜋0 such that the optimal Markov policy with commitment has three phases:

∙ Shirking Phase: If 𝜋𝑡 > 𝜋′′, then 𝜒(𝜋𝑡) = 1 and 𝑎(𝜋𝑡) = 𝜑.

∙ Working Phase: If 𝜋𝑡 ∈ (𝜋′, 𝜋′′], then 𝑎(𝜋𝑡) = 𝜒(𝜋𝑡) = 1.

∙ Deadline: If 𝜋𝑡 ≤ 𝜋′, then 𝜒(𝜋𝑡) = 0 and 𝑎(𝜋𝑡) = 𝜑.

Moreover, 𝜋′ > 0 if and only if 𝜋0 > 𝜋‡.

The proof uses standard optimal control techniques, which is relegated to Online Appendix C.

As long as 𝜋0 is sufficiently large, the shirking phase is not degenerate (𝜋′′ < 𝜋0) and the deadline

is not trivial (𝜋′ > 0). The agent’s effort is still inverse 𝑈 -shaped, with no effort when the market’s

belief is extremely high or low and maximal effort when the market’s belief is intermediate.

34It is worth emphasizing that there is a loss of generality when focusing on Markov Policies. This is because
potentially, effort and disclosure rate can also depend on players’ private histories as well as calendar time, on top of
the public belief.
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Comparing with the unique MPE or the SMEs, the optimal commitment solution has three

interesting features. First, the intermediary commits to fully disclose information when 𝜋𝑡 is high.

Second, the agent’s effort is always bang-bang. Third, when the prior 𝜋0 is high enough, she

commits to a deadline. This reduces the agent’s continuation value and makes 𝑎𝑡 = 1 incentive

compatible at more optimistic beliefs.35

These features contrast sharply with the equilibria without commitment. Aside from the exoge-

nous information equilibrium (𝜋S = 0), information disclosure rate and effort must both be interior

when 𝜋𝑡 is low enough in every other SME. Moreover, the third feature (deadline) is not replicable

in any PBE in absence of commitment, as formally stated in the following Corollary:

Corollary 2.2. In every PBE, there exists no ℎ𝑡𝑚 ∈ 𝐻𝑚, such that 𝜒(ℎ𝑡
′
𝑚) = 0 for all ℎ𝑡

′
𝑚 ⪰ ℎ𝑡𝑚.

Intuitively, this is because the agent knows the intermediary’s private history, and he will shirk

forever after reaching ℎ𝑡𝑚. Anticipating this, the intermediary is tempted to disclose information

at ℎ𝑡𝑚. Lack of commitment unravels the deadline arrangement, making it harder to motivate the

agent when 𝜋𝑡 is high.

2.6 Discussions & Extensions

In this section, I enrich and extend the baseline model in several directions and examine the

robustness of my results. In Subsection 2.6.1, I discuss the properties of Markov Equilibria when

the intermediary can disclose past breakthroughs. In Subsection 2.6.2, I allow the market to learn

from a public signal in addition to the intermediary’s private signal. In Subsection 2.6.3, I discuss

several variants of the model, by investigating different preferences of the intermediary and the

agent, alternative informational assumptions, etc.

2.6.1 Disclosing Past Breakthroughs

In this subsection, I allow the intermediary to disclose past breakthroughs. Despite every SME

(including the unique MPE) remains robust to disclosing past breakthroughs, enriching the in-

termediary’s strategy space opens up new equilibrium possibilities. This is true even for Markov

solution concepts, since the possibility of disclosing past breakthroughs changes the set of payoff

relevant state variables.

Formally, when disclosing past breakthroughs is allowed, I adopt the ‘multi-stage game’ formu-

lation in Murto and Välimäki (2013). In what follows, I will proceed at an intuitive level and will

formally define the game in Online Appendix D.2. Let 𝑥𝑡 ∈ {0, 1} be defined as:

𝑥𝑡 ≡

{︃
1 when ℎ𝑡𝑚 ̸= {∅}
0 when ℎ𝑡𝑚 = {∅},

35As shown in Lemma 2.3.8, deadline is the harshest possible punishment.
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which determines the intermediary’s capability of disclosing information. Once 𝑥𝑡 = 1, whether the

breakthrough arrives at 𝑡 or before is payoff irrelevant. The market’s belief about 𝜃 as well as 𝑥𝑡

are both deterministic functions of 𝑡. Hence, 𝑡 and 𝑥𝑡 are the only payoff relevant state variables.

The solution concept is weak Markov Perfect Equilibrium (or wMPE), in which at time 𝑡, the

agent’s effort depends only on 𝑡 and 𝑥𝑡−, but the intermediary’s disclosure rate depends not only on

𝑡 and 𝑥𝑡−, but also on 𝜉𝑡 ≡ 1{𝑡 ∈ ℎ𝑡𝑚}, i.e. whether a signal has arrived at 𝑡 or not.36 By definition,

every SME constructed in Section 2.4 (therefore, also the unique MPE) is a wMPE. Despite the set

of wMPEs is much larger than the set of SMEs and is not tractable to analyze, the next Lemma

identifies some common properties of wMPEs:

Lemma 2.6.1. In every wMPE, there exists 𝜋¶ ∈ [0, 1), such that:

∙ The intermediary always fully discloses the first breakthrough when 𝜋𝑡 > 𝜋¶.

∙ The agent’s effort is 𝑎*(𝜋𝑡) after the first breakthrough is concealed when 𝜋𝑡 ≤ 𝜋¶.

There are multiple equilibria even under a given 𝜋¶ since effort and disclosure rate are not

uniquely pinned down when 𝜋𝑡 ≤ 𝜋¶ but before a breakthrough has been concealed.

Although the possibility of disclosing past breakthroughs generates additional equilibria, in

which the rate of learning, the cutoff beliefs and the effort paths are quantitatively different from

the SMEs in the baseline model, two qualitative features remain robust. First, the intermediary

only withholds information when 𝜋𝑡 is low. Second, if 𝜋𝑡 falls below the cutoff and a breakthrough

has been concealed, the agent’s effort is decreasing over time and coincides with 𝑎*(𝜋𝑡) in every

wMPE.

2.6.2 Learning from Public Signals

In this subsection, the market can also learn from public signals, arrive according to Poisson rate

𝜇0𝜃𝑎𝑡, in addition to the private signals disclosed by the intermediary, which arrive at Poisson rate

𝜇1𝜃𝑎𝑡, with parameters 𝜇0 ≥ 0, 𝜇1 > 0. The market automatically observes the public signal, but

can only observe the private signal after the intermediary discloses it. Let 𝜇 ≡ 𝜇0 + 𝜇1 be the ‘net

arrival rate’, I introduce the following condition, which measures the public signal arrival rate.

Condition 2.2. Public signal arrival rate is low if 𝜇0 ≤ 𝑐𝑟
𝜑(1−𝑐) .

Otherwise, we say that public signal arrival rate is high. Intuitively, the intermediary has less

control over the market’s information if public signal arrival rate is high and vice versa. The

patience level condition is re-defined as follows:

Condition 2.3. Patience level is high if 𝑟 < 𝜇𝜑
𝑐 (1 − 𝑐). Patience level is low if 𝑟 ≥ 𝜇𝜑

𝑐 (1 − 𝑐).

36If we insist on more restrictive solution concepts, for example, by requiring that the agent’s effort to depend only
on 𝑡 and 𝑥𝑡− and the intermediary’s disclosure rate to depend only on 𝑡 and 𝑥𝑡, only a trivial equilibrium exists, in
which the intermediary always discloses information. I will state and show this result in the Online Appendix.
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Figure 2-6: Effort and Disclosure Rate when Public Signals Arrive Frequently

Since 𝜇 > 𝜇0, patience level must be high when public signal arrival rate is high. I start with

the low arrival rate case, in which the unique MPE and the set of SME outcomes coincide with

those in the baseline model.

Lemma 2.6.2. When 𝜇0 ≤ 𝑐𝑟
𝜑(1−𝑐) ,

∙ The unique MPE with public signals is outcome equivalent to the unique MPE in the baseline

model.

∙ Every SME with public signals is outcome equivalent to an SME in the baseline model.

Intuitively, fixing the net arrival rate 𝜇 and given that 𝜇0 is small enough, the exact decompo-

sition between public and private signals has no impact on the equilibrium outcome since the net

disclosure rate 𝜇0 + 𝜇1𝜒𝑡 is unchanged: we can always find 𝜒𝑡 ∈ [0, 1] to match the equilibrium net

disclosure rate in the baseline model (𝜇0 = 0). In this case, public and private signals are perfect

substitutes.

Once 𝜇0 exceeds 𝑐𝑟
𝜑(1−𝑐) , there exists no 𝜒𝑡 that can match the net disclosure rate when 𝜋𝑡 is

small. Due to frequent arrival of public signals, the agent has a strict incentive to exert effort when

𝜋𝑡 is low even if the intermediary ceases to disclose private signals. As a result, 𝜒𝑡 → 0 and 𝑎𝑡 → 1

when 𝜋𝑡 is close to 0. Moreover, public and private signals are no longer perfect substitutes: an

increase in 𝜇0 increases the agent’s continuation value at some beliefs, which leads to an increase

in the net disclosure rate required to motivate the agent, so the disclosure rate of private signal

can increase with 𝜇0 through this indirect intertemporal effect. The equilibrium effort path and

disclosure rate are shown in Figure 2-6.37

2.6.3 Other Extensions & Discussions

In this subsection, I discuss several alternative specifications of the intermediary’s and the agent’s

payoffs, the robustness of my result to alternative informational assumptions as well as how to

enrich the baseline model to account for more realistic features.
37The proofs of these results are available upon request.
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The Intermediary’s Time Preference: The effort and disclosure dynamics in every SME

has nothing to do with the intermediary’s discount factor. As a result, it remains robust when the

intermediary faces a different discount rate. The unique MPE is robust even when the intermediary

is finitely lived. This is because whenever she is supposed to partially disclose information, her flow

payoff is 𝑏 from then on; whenever she is supposed to fully disclose information, her flow payoff is

weakly below 𝑏 at every instant.38

The Intermediary’s Disclosure Benefit is Low: When 𝑏 ∈ (0, 𝜑],39 withholding information

is the intermediary’s dominant strategy when 𝜋𝑡 is sufficiently low. The agent ceases to exert effort

and market learning stops when 𝜋𝑡 falls below the following cutoff: 𝜋* ≡ 1 − 𝑏
𝜑 , at which the

intermediary’s continuation payoff is 𝑏 and the agent’s continuation value is 𝜋𝑡𝜑. However, in the

unique MPE, effort is still inverse 𝑈 -shaped and the disclosure rate is still decreasing over time

(both reaching 0 when 𝜋𝑡 ≤ 𝜋*), which are qualitatively similar to the baseline model.

The Intermediary as a Supervisor: In academia and professional sports, the intermediary

who has private information about the junior agent’s performance is usually his direct supervisor,

instead of his current employer. Different from employers, although supervisors gain private benefits

from extracting her agent’s effort and can obtain a network benefit from establishing her agent in

front of the public, they do not pay their agent’s wages. As a result, their flow payoff when 𝜋𝑡 < 1

is 𝜃𝑎𝑡, instead of 𝜃𝑎𝑡 − 𝑤𝑡.

When patience level is high, the game still admits a unique MPE, in which the effort and

disclosure rate dynamics are shown in Figure 2-7, with the red dashed line being the agent’s value

invariance curve (same as the baseline model) and the blue dashed line being the intermediary’s

indifference curve. Similar to the baseline model, the intermediary’s disclosure rate is decreasing

over time and the agent’s effort coincides with the value invariance curve when 𝜋𝑡 > 𝜋† and

coincides with the intermediary’s indifference curve when 𝜋𝑡 ≤ 𝜋†. However, since the intermediary

only cares about the agent’s effort, her indifference curve is flat. As a result, the agent’s effort

remains unchanged when belief is low.

Convex Effort Cost: When the agent’s effort cost is convex instead of linear, the baseline model

still admits a unique MPE. Several features of the unique MPE under linear cost remain robust,

including inverse U-shaped effort and decreasing disclosure rate. However, there will be no ‘jump’

in effort under convex cost, which is the main difference from the linear cost model.40

Comments on Informational Assumptions: The qualitative features of the effort and dis-

closure dynamics identified in my baseline model are robust to other variants of informational

38All SMEs in three phase strategy profiles constructed in Section 2.4 remain robust to finitely lived intermediaries
if the next intermediary inherits all her predecessors’ information.

39Cases in which 𝑏 ≥ 1 and 𝑏 < 0 are trivial, since the intermediary always has a strict incentive to disclose or to
withhold information

40However, there will be kinks in the equilibrium effort path.
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Figure 2-7: Effort and Disclosure Rate when the Intermediary is the Agent’s Supervisor

assumptions. For example, even if the intermediary can observe effort or the agent cannot observe

the breakthrough, the unique MPE remains robust. When the agent does not know his type, as in

career concern models (for example, Holmström 1999), the agent’s equilibrium effort can condition

not only on the market’s belief, but also on his private belief as well as the market’s belief about

his private belief, all of these become payoff relevant.41 Despite characterizing the set of MPEs is a

formidable task, but nonetheless, the agent’s effort will still be inverse 𝑈 -shaped. To see this, if the

agent knows his type, his effort path will be the same as in the ‘reputation concern case’. If he does

not know his type, his effort is also inverse 𝑈 -shaped, as shown in Bonatti and Hörner (2015). This

is because the agent will become more pessimistic about his ability as no breakthrough has arrived

over time. Due to the complementarity between effort and ability, he has less incentive to exert

effort. To summarize, we would still anticipate inverse 𝑈 -shaped effort and decreasing disclosure

rate.

Multiple Job Levels: My model can be enriched to account for the fact that lots of ‘promising

future stars’ (especially in academia and professional sports) work hard despite having favourable

public beliefs. To see this, suppose there are three job levels: 1, 2 and 3, and three types: high,

medium and low. The high type and the medium type can produce breakthroughs in level 1 while

only the high type can produce breakthroughs in level 2. After a breakthrough in level 𝑘 is disclosed,

the intermediary in level 𝑘 receives a lump sum payoff and the agent is promoted to level 𝑘 + 1,

working for a new intermediary.

In this variation of my model, high type agents have stronger incentives to work hard in level

1 for two reasons.42 First, he can be further promoted after reaching level 2, thus his continuation

value of entering level 2 is higher than the medium type. Second, being promoted to level 2 at

an earlier date distinguishes himself from the medium type, leading to a higher market belief and

increases the intermediary’s information disclosure rate at level 2. As a result, high type agents

41The intermediary’s private belief is trivial, since she can only disclose information after her private belief is 1.
42As in the baseline model, the agent will eventually stop working hard once reaching the final level, i.e. level 3.
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work harder in level 1. In terms of predictions, those who have succeeded earlier in level 1 are more

likely to be promoted sooner in level 2, which is the well-known ‘fast track’ phenomena documented

in the personnel economics literature. Moreover, ‘fast tracks’ are more salient when information is

disclosed by a strategic intermediary, due to the decreasing disclosure rate over time.

2.7 Conclusion

This paper studies the impact of endogenous information disclosure by a strategic intermediary on

an agent’s incentive to build up his reputation. In the unique MPE, the agent’s effort is inverse

𝑈 -shaped and the information disclosure rate is decreasing over time. Surprisingly, the agent’s

continuation value can be higher and can have more incentives to procrastinate in the unique MPE

comparing with the exogenous information benchmark. This is because withholding information

also slows down the rate of market learning, which allows the agent to enjoy high flow payoff for

a long time, even without producing any breakthroughs. Relaxing the Markov restriction and

allowing players to coordinate on payoff irrelevant events such as whether breakthroughs have been

withheld in the past or not, can mitigate this inefficiency. This is because it enables players to

flexibly choose the cutoff belief, below which the intermediary starts to withhold information.
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Chapter 3

Repeated Interactions without

Commitment

This chapter studies repeated games in which a patient long-run player (e.g. a firm) wishes to

win the trust of some myopic opponents (e.g. a sequence or a continuum of consumers) but has a

strict incentive to betray them. Her benefit from betrayal is persistent over time and is her private

information. I examine the extent to which persistent private information can overcome this lack-

of-commitment problem. My main result characterizes the set of payoffs a patient long-run player

can attain in equilibrium. Interestingly, every type’s highest equilibrium payoff only depends on

her true benefit from betrayal and the lowest possible benefit in the support of her opponents’

prior belief. When this lowest possible benefit vanishes, every type can approximately attain

her Stackelberg commitment payoff. My finding provides a strategic foundation for the (mixed)

Stackelberg commitment types in the reputation models, both in terms of the highest attainable

payoff and in terms of the commitment behaviors. Compared to the existing approaches that rely

on the existence of crazy types that are either irrational or have drastically different preferences,

there is common knowledge of rationality in my model, and moreover, players’ ordinal preferences

over stage game outcomes are common knowledge.

3.1 Introduction

Imagine a politician running for president pledging for massive tax cuts. Once elected, he might be

tempted to breach his promise due to the growth in mandatory spending and rising budget deficits.

Anticipating such possibilities of future betrayal, should the electorate vote for this candidate in

the first place?1 Alternatively, firms would like to convince consumers about their high quality

I thank Daron Acemoglu, Mehmet Ekmekci, Drew Fudenberg, Jean Tirole, Juuso Toikka and Alex Wolitzky for
helpful conversations. All errors are mine.

1A classic example is ex-president George H.W. Bush’s 1988 acceptance speech at the New Orleans convention
“Read my lips, no new taxes.” But after becoming president, he agreed to increase several existing taxes in order to
reach a compromise with the Democrat-controlled Congress. Breaching this promise has hurt Bush politically during
his 1992 campaign, as both Pat Buchanan and Bill Clinton cited his quotation and questioned his trustworthiness.
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standards. But after receiving the upfront payments, they are tempted to undercut quality, espe-

cially on aspects that are hard to verify. Similar plights happen to central banks when showing

their resolve to fight hyperinflation and to entrepreneurs when persuading venture capitalists to

fund their projects.

An important feature shared by these examples is a lack-of-commitment problem faced by the

politicians, firms, central banks, entrepreneurs, etc. This problem is prevalent in many economic

activities and has significant impact on social welfare. For example, it can block profitable trade,

cause capital mis-allocation and limit the effectiveness of public policies. As a result, exploring

ways to lend credibility to promises and threats has become a central question in non-cooperative

game theory. One prominent idea dates back to Thomas Schelling (1960), who argues that an

individual’s problem of commitment can be solved by a so-called reputational equilibrium, in which

she could lose her favorable reputation by deviating from expected norms of behavior. This intuition

is formalized in a series of papers starting from Kreps and Wilson (1982), Milgrom and Roberts

(1982), Fudenberg and Levine (1989, 1992) in which a player’s behavior in the current stage is linked

to her future benefits through others’ perceptions about her type. Importantly, this reputation

building player is crazy with strictly positive probability, in which case she is either irrational or

having non-standard payoff functions.

This chapter revisits Thomas Schelling’s classic argument by exploring the extent to which

persistent private information can overcome these lack-of-commitment problems in repeated in-

teractions. Compared to the aforementioned models with crazy types, I adopt a complementary

approach by requiring all types of the reputation building player to be rational and to have reason-

able stage game payoff functions. The way I interpret ‘reasonableness’ in this paper is that all types

of the reputation building player sharing the same ordinal preference over stage-game outcomes.2

This has the advantage of maintaining the sensible assumptions on the game’s payoffs (such as

providing high quality is costly for the firm), which are likely to be common knowledge in reality.

It can also evaluate whether the insights from the canonical reputation models rely on the presence

of those crazy types.

To capture the key economic forces in the aforementioned applications, I study stage games with

one-sided lack-of-commitment (or trust games), which is played repeatedly over the infinite horizon

between a patient long-run player (e.g. a firm) and a sequence of myopic short-lived opponents (e.g.

consumers).3 In every period, the long-run player wishes to win her opponent’s trust by promising

high effort, but has a strict incentive to exert low effort and betray them once trust is granted. Her

2Nevertheless, the exact notion of reasonableness should depend on the application. The notion I adopt in this
paper fits well into the leading application of my model, namely, interactions between firms and consumers. In that
scenario, it is likely to be common knowledge that providing high quality is costly for the firm, but the fine details of
its production cost tends to be the firm’s private information.

3This assumption on myopia only affects the upper bound result on the long-run player’s equilibrium payoff set, but
the result on the attainability of Stackelberg commitment payoff (i.e. overcoming the lack-of-commitment problem)
applies regardless of the uninformed players’ discount factor(s). In the applications, the uninformed players are close
to being myopic either because they are sufficiently small (such as citizens interacting with the government, a large
firm serving a large pool of clients) or when they interact with the informed player only once (such as a sequence of
consumers purchasing a durable good).
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cost of high effort is persistent over time and is her private information. Every short-run player

perfectly observes the entire sequence of past plays, and is willing to trust the long-run player if

and only if he expects effort to be high with probability above some cutoff.

For some useful benchmarks, first, when the long-run player can commit, her payoff is maximized

when committing to a mixed action that makes her opponents indifferent between trust and not

trust. The resulting payoff is called her Stackelberg commitment payoff. Second, if the long-run

player cannot commit and her cost of effort is common knowledge, then her highest payoff in the

repeated complete information game is strictly bounded below her Stackelberg commitment payoff.4

This is because her opponents’ myopia imposes constraints on the action profiles that can be played

in every period, and consequently, some feasible and individually rational payoffs are not attainable

in any equilibrium regardless of the long-run player’s discount factor. In another word, repeated

interactions under complete information cannot fully solve the lack-of-commitment problem.

My main result (Theorem 3.1) characterizes the set of equilibrium payoffs the patient long-run

player can attain in the repeated incomplete information game. I provide a tractable formula for

every type’s highest equilibrium payoff, which equals to the product of her (complete information)

Stackelberg commitment payoff and an incomplete information multiplier. The latter is a decreasing

function of the lowest possible cost in the support of her opponents’ prior belief which is a sufficient

statistic for the effect of incomplete information. When this lowest possible cost vanishes to 0, the

multiplier converges to 1, or equivalently, every type of the long-run player can approximately

attain her Stackelberg commitment payoff.

Theorem 3.1 has the following set of implications. First, it identifies the aspect of the type

distribution that matters for a patient long-run player’s payoff. According to my characterization,

the equilibrium payoff set only depends on the lowest possible cost in the support. Intuitively, this

is because the lowest cost type has no good candidate to imitate, so the uninformed players’ myopia

introduces an upper bound on her equilibrium payoff in the repeated incomplete information game,

same as the one in the repeated complete information game where her type is common knowledge.

This in turn leads to an upper bound for every other type’s equilibrium payoff, the exact value of

which only depends on the maximal frequency with which low effort can be played to induce the

uninformed players’ trust and has nothing to do with other details of the distribution. Intuitively,

this is because exerting low effort as frequently as possible minimizes the disadvantage of the high-

cost types relative to the lowest cost type, leading to higher equilibrium payoffs for the former.

Second, it implies that incomplete information can help the patient long-run player overcome

her lack-of-commitment problem and (approximately) attain her Stackelberg commitment payoff.

Different from the existing reputation results, I obtain this insight without relying on the presence

of crazy types that are mechanically playing mixed commitment strategies, which are hard to ra-

tionalize via standard payoff functions. My approach addresses the concerns raised by Weinstein

and Yildiz (2007, 2013, 2016) that when all the incomplete information perturbations are allowed,

one can rationalize almost every outcome by constructing crazy types that have qualitatively dif-

4The highest payoff in the complete information repeated game is the long-run player’s pure Stackelberg commit-
ment payoff, which in generic games, is strictly less than her Stackelberg commitment payoff.
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ferent payoff functions and well-calibrated belief hierarchies.5 Their results call for a more careful

selection of perturbations, and ideally, the perturbed types should also have reasonable payoffs and

beliefs.6 In context of trust games, I show that the Stackelberg commitment payoffs are attainable

even when these aspects of the stage-game payoff are required to be common knowledge: (1) the

long-run player values her opponents’ trust; (2) she faces strictly positive cost to exert effort. Nev-

ertheless, her exact cost of effort, which depends on the fine details of her production technology,

talent, etc. is still assumed to be her private information.

Third, my result provides a partial strategic foundation for the crazy types that are playing

(mixed) Stackelberg strategies, the presence of which is a key component of the canonical reputation

models. Theorem 3.1 implies that in terms of attaining the Stackelberg commitment payoff, these

types can be replaced by a strategic type that has the same ordinal preference over stage game

outcomes but has a low cost to exert high effort.7

Along this line of inquiry, I then study the behavior of the lowest cost type in equilibria that

attain the Stackelberg commitment payoff. This also evaluates which of the many Stackelberg

commitment strategies can be rationalized by low-cost types. Somewhat surprisingly, I show that

in every such equilibrium, any type that has sufficiently low cost will not play a (non-trivial)

mixed action at every history. This implies that the stationary commitment strategy of playing

the Stackelberg action at every history cannot be rationalized by low-cost types. To understand

why, suppose towards a contradiction that such equilibria exist, then the highest cost type can

exert low effort in every period and attain the same payoff as the lowest cost type. Applying the

upper bound result in Fudenberg and Levine (1992) that every type’s payoff cannot exceed her

Stackelberg commitment payoff, one can obtain a contradiction when the lowest possible cost is

sufficiently small relative to the highest possible cost.

The above finding also suggests that equilibrium behaviors of the low-cost types exhibit the

following features: (1) along every action path played by the low-cost types, the discounted average

frequency of high effort is no less than the probability of high effort in the Stackelberg commitment

action; (2) with probability close to 1, the discounted average frequency of high effort is close to the

probability of high effort in the Stackelberg commitment action. Intuitively, this is to say that the

low-cost types cherry-pick their actions in order to avoid exerting low effort with frequency above

5Weinstein and Yildiz (2007, 2013, 2016) show in various settings (e.g. static games, infinitely repeated games,
finitely repeated games) that every outcome within some large sets (e.g. interim correlated rationalizable outcomes,
Bayes Nash Equilibrium payoffs, pure strategy non-stationary commitment behaviors, etc.) is uniquely rationalizable
in some nearby games according to the product topology if all incomplete information perturbations are allowed.

6In this spirit, I adopt an alternative interpretation of the well-known critique in Wilson (1987) that:

Game theory has a great advantage in explicitly analyzing the consequences of trading rules that pre-
sumably are really common knowledge; it is deficient to the extent that it assumes other features to be
common knowledge, such as one agent’s assessment about another’s preferences or information.

Namely, one should relax the stringent informational assumptions that are poor descriptions of the real world while
maintaining the common knowledge assumptions on aspects that are likely to be common knowledge in reality.

7This is only a partial foundation as there are equilibria in which the long-run player’s payoff is strictly bounded
below her Stackelberg commitment payoff. In reputation models with crazy types that are mechanically playing
Stackelberg actions, the long-run player can approximately attain her Stackelberg commitment payoff in every Nash
equilibrium.
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some cutoff. Achieving this objective requires their strategies to be non-stationary and to exhibit

non-trivial history dependence.

The rest of the chapter is organized as follows. I will setup the baseline model and will analyze

several useful benchmarks in section 3.2. I will state the main result and outline its key economic

implications in section 3.3. I will sketch a proof of the theorem in section 3.4 and review several

related ideas in the existing literature. Section 3.5 concludes and examines some natural extensions

of the baseline model.

3.2 The Baseline Model

In this section, I introduce a repeated trust game which can capture the lack-of-commitment prob-

lem in many socioeconomic interactions. Different from the existing approaches that introduce crazy

types to show that incomplete information can lend credibility to the long-run player’s promises,

my model features common knowledge of rationality and moreover, there is no type that has a dras-

tically different stage game payoff in the sense that players’ ordinal preferences over stage game

outcomes are common knowledge.

The Stage Game: In every period, a firm (player 1, she) interacts with a client (or player 2,

he). The client moves first, deciding whether to purchase a product from the firm (i.e. trusting

the firm, taking action 𝑇 ) or not (i.e. not trusting the firm, taking action 𝑁). If he takes action

𝑁 , then both players’ stage game payoffs are 0 and play moves on to the next period. If he takes

action 𝑇 , then the firm chooses between high effort (action 𝐻) and low effort (action 𝐿). If the

firm chooses 𝐿, then her game payoff is normalized to 1 and the client’s payoff is −𝑐; if the firm

chooses 𝐻, then her stage game payoff is 1 − 𝜃 and the client’s payoff is 𝑏, where:

∙ 𝑐 > 0 is the client’s loss from the firm’s betrayal;

∙ 𝑏 > 0 is the client’s net benefit from the firm’s high effort;

∙ 𝜃 ∈ Θ ≡ {𝜃1, ...𝜃𝑚} ⊂ (0, 1) is the firm’s cost of exerting high effort, or under more general

interpretations, the long-run player’s temptation to betray or her cost to honor promises.

Without loss of generality, I assume that 0 < 𝜃1 < 𝜃2 < ... < 𝜃𝑚 < 1.

The benefit and cost parameters, 𝑏 and 𝑐, are common knowledge. The cost of exerting high effort

is the firm’s private information.8 The firm is of type 𝜃𝑖 if she knew that 𝜃 = 𝜃𝑖.

The Repeated Game: Consider an infinitely repeated version of the above stage game. Time

is discrete, indexed by 𝑡 = 0, 1, 2, .... The firm is interacting with an infinite sequence of clients,

arriving one in each period and plays the game only once. In period 𝑡, players choose their actions

8This assumption is relevant in many industries as firms usually have private information about their production
technologies, see for example, the seminal work of Baron and Myerson (1982).
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according to the pre-specified order. They also have access to a public randomization device, with

𝜉𝑡 ∈ [0, 1] a typical realization.

The firm’s cost of high effort, 𝜃, is her private information and is perfectly persistent over time.

The client’s prior belief over 𝜃 is 𝜋0 ∈ ∆(Θ), which is assumed to have full support. Both players’

actions choices in the past can be perfectly monitored. Let 𝑎𝑡 ∈ {𝑁,𝐻,𝐿} be outcome (or the

realized terminal node) in period 𝑡. Let ℎ𝑡 = {𝑎𝑠, 𝜉𝑠}𝑡−1
𝑠=0 ∈ ℋ𝑡 be the public history in period 𝑡 with

ℋ ≡
⋃︀+∞

𝑡=0 ℋ𝑡 the set of public histories.

Let 𝜎2 : ℋ → ∆{𝑇,𝑁} be the client’s strategy, which maps the set of public histories to his

(mixed) actions. Let 𝜎𝜃 : ℋ → ∆{𝐻,𝐿} be type 𝜃 firm’s strategy, which specifies her (mixed)

actions after receiving her client’s trust conditional on the public history. Let 𝜎1 ≡ (𝜎𝜃)𝜃∈Θ be the

firm’s strategy.

The firm discounts future payoffs by factor 𝛿 ∈ (0, 1). Type 𝜃𝑖 firm maximizes her (expected)

discounted average payoff, given by:

E(𝜎𝜃,𝜎2)
[︁ ∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡𝑢1(𝜃𝑖, 𝑎𝑡)
]︁
, (3.1)

with E(𝜎𝜃,𝜎2)[·] the expectation over ℋ under the probability measure induced by (𝜎𝜃, 𝜎2).

Equilibrium Payoffs: To make the results more convincing, I study the firm’s equilibrium pay-

offs under two solution concepts: Nash equilibrium and sequential equilibrium (Kreps and Wilson

1982), and will later show in Theorem 3.1 that the resulting payoff sets coincide. This implies that

my characterization provides a consistent description of a patient firm’s equilibrium returns, in the

sense that it is not sensitive to the choice of solution concepts.

Formally, let 𝑣 ∈ R𝑚 be a generic payoff vector for the firm, with the 𝑖th coordinate being the

discounted average payoff of the type 𝜃𝑖. Let 𝑉 (𝜋0, 𝛿) and 𝑉 (𝜋0, 𝛿) ⊂ R𝑚 be the firm’s sequential

equilibrium and Nash equilibrium payoff sets under parameter configuration (𝜋0, 𝛿) ∈ ∆(Θ)×(0, 1),

respectively. Let

𝑉 (𝜋0) ≡ clo
(︁

lim inf
𝛿→1

𝑉 (𝜋0, 𝛿)
)︁

(3.2)

and

𝑉 (𝜋0) ≡ clo
(︁

lim sup
𝛿→1

𝑉 (𝜋0, 𝛿)
)︁
, (3.3)

with clo(·) being the closure of a set. By definition, 𝑉 (𝜋0, 𝛿) ⊂ 𝑉 (𝜋0, 𝛿) for every (𝜋0, 𝛿), which

implies that 𝑉 (𝜋0) ⊂ 𝑉 (𝜋0) for every 𝜋0. Let 𝑉 𝑖(𝜋0) and 𝑉 𝑖(𝜋0) be the projections of 𝑉 (𝜋0) and

𝑉 (𝜋0) on the 𝑖-th coordinate. By definition, when the firm is arbitrarily patient, her highest payoff

under Nash equilibrium when her effort cost is 𝜃𝑖 is max𝑉 𝑖(𝜋0), her highest payoff under sequential

equilibrium is max𝑉 𝑖(𝜋0).
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3.2.1 Two Benchmarks

I start from two benchmark scenarios: the commitment benchmark and the complete information

benchmark. Both benchmarks will yield interesting comparisons with my main result (Theorem

3.1), which characterizes a patient firm’s equilibrium payoffs in a repeated incomplete information

game without commitment.

Stackelberg Commitment Payoff: First, let us consider the benchmark scenario in which the

firm can commit to an (possibly mixed) action 𝛼1 ∈ ∆{𝐻,𝐿} before the client chooses between 𝑇

and 𝑁 . Every type would optimally commit to play 𝐻 with probability 𝛾* and 𝐿 with complemen-

tary probability, with

𝛾* ≡ 𝑐

𝑏+ 𝑐
. (3.4)

Type 𝜃𝑖’s payoff under her optimal commitment is:

𝑣**𝑖 ≡ 1 − 𝜃𝑖𝛾
*, (3.5)

which is her Stackelberg commitment payoff and 𝛾*𝐻 + (1 − 𝛾*)𝐿 is her Stackelberg commitment

action.9

Complete Information Benchmark: Next, let us consider a complete information benchmark

in which 𝜃 is common knowledge. The unique equilibrium outcome in the stage game 𝑁 and the

firm’s payoff is 0. This is because 𝐿 is the firm’s dominant strategy after the client chooses 𝑇 . This

illustrates a lack-of-commitment/time inconsistency problem once compared to the commitment

benchmark, which is of first order importance in business transactions (Mailath and Samuelson

2001, Ely and Välimäki 2003, Ekmekci 2011) as well as other economic applications such as fiscal

and monetary policies (Barro and Gordon 1983, Barro 1986, Phelan 2006), sovereign debt default

(Cole, Dow and English 1995), etc.

Next, suppose the complete information stage game is played repeatedly and future clients can

perfectly observe the firm’s past action choices. When 𝛿 is above some cutoff, outcome (𝑇,𝐻) can

be enforced in equilibrium via the following grim-trigger strategy: a client trusts the firm if and

only if the latter has never played 𝐿 before, and at every history on the equilibrium path, the firm

exerts high effort. Furthermore, as shown in Fudenberg, Kreps and Maskin (1990), a patient firm’s

equilibrium payoff set in this complete information repeated game is [0, 1 − 𝜃].

The payoff upper bound in the complete information repeated game, 1− 𝜃, is type 𝜃 firm’s pure

Stackelberg commitment payoff, i.e. her payoff when she can only commit to play pure actions. In

general, this is strictly lower than her Stackelberg commitment payoff, which implies that the firm’s

patience together with repeated interactions cannot overcome the lack-of-commitment problem

9This commitment payoff is also the unique equilibrium payoff in the private value informed principal game a là
Maskin and Tirole (1990), in which the firm announces a mechanism and the client decides whether to participate
(playing 𝑇 ) or not (playing 𝑁).

83



when her opponents cannot be motivated by intertemporal incentives.10

3.2.2 Alternative Applications & Interpretations

In this subsection, I provide several alternative interpretations of the baseline model. Readers can

skip this subsection and proceed to Section 3.3 for the main result. The common features shared

by these examples are (1) a patient long-run player faces a lack-of-commitment problem and (2)

she has persistent private information about her temptation to betray her opponents’ trust. Other

aspects of the game can be different across applications, which include the timing of moves in

the stage game, whether player 2 is a sequence of short-lived players or a continuum of long-lived

players, whether player 1’s action choices are perfectly monitored or not, etc. I will address the

validity of my results in these variations in Section 3.5.

Relational Contracts: Player 1 is an agent, for example, a worker, supplier or private contractor.

In every period, a principal (player 2, e.g. employer, final good producer) is randomly matched

with the agent and decides whether to contract with her or skip the interaction. The principal

incurs a fixed cost if he chooses to contract with the agent.11 The agent can either be reciprocal

by providing high quality or shirk and offer low quality. In line with the literature on incomplete

contracts, the quality of the agent’s service is not verifiable by court but can be observed by all the

subsequent principals before they decide whether to contract with her or not. The cost of providing

high quality is the agent’s persistent private information, as it depends on her talent, production

technology, etc.12

My main result extends to a variant of the baseline model when the agent’s effort choice is a

continuum and her past action choices are imperfectly monitored. By choosing effort level 𝑒 ∈ [0, 1],

the realized quality is high with probability 𝑒 in that period, and qualities across different periods

are independent random variables. The subsequent principals can observe the past realizations of

qualities, but not the agent’s effort choices. My main result extends when the agent’s cost of effort

is linear and she has persistent private information about her marginal cost of effort.

Fiscal & Monetary Policies: Consider the following game adapted from Phelan (2006). There

is a continuum of investors (player 2s) deciding whether to invest a unit of capital in a developing

10As shown in Fudenberg and Maskin (1986), the firm can attain her Stackelberg commitment payoff in repeated
complete information games where both players are patient. Nevertheless, in many applications where there are serious
lack-of-commitment problems, such as experience good markets, fiscal and monetary policies, sovereign debt default,
etc. it is unreasonable to assume that the buyers, citizens, investors or creditors, etc. have strong intertemporal
incentives when they are interacting with firms and governments. This is either because each of them only purchases
the good once, or because they are anonymous and each one of them has negligible mass and has no impact on
aggregate variables.

11The literature on organizational economics has provided several interpretations of this fixed cost, which includes
an upfront payment the final good producer made to his supplier, a relationship specific investment the principal
needs to make, etc. See Gibbons and Roberts (2013) for more details.

12Chassang (2010) studies a game with similar incentive structures, besides that the agent’s cost of effort is common
knowledge but the set of actions that are available in each period (which is i.i.d. across different periods) is the agent’s
private information. Tirole (1996) uses a similar model with commitment types to study the collective reputations
for commercial firms and the corruption of bureaucrats.
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country (action 𝑇 ) or not (action 𝑁). Player 1 is the government of that country, deciding between

expropriate the proceeds (e.g. levying high taxes, action 𝐿) or not (action 𝐻). The government’s

benefit from expropriation is her private information. This is because the cost of collecting taxes

depends on the state capacity and other factors, which cannot be perfectly observed by the citizens

and tend to be persistent over time.

Next, consider a game between a central bank (player 1) and a continuum of households (player

2s). In every period, the central bank chooses the inflation level and at the same time, households

form their expectations about inflation. To simplify matters, I assume both the actual and expected

inflation are binary. Following Barro and Gordon (1983) and Barro (1986), players’ stage game

payoffs are given by:

- Low Expectation High Expectation

Low Inflation 0, 𝑏 −1 − 𝑑(𝜃),−𝑐
High Inflation 𝜃,−𝑐 −1, 𝑏

where 𝜃 > 0 is the central bank’s private information. To interpret this payoff matrix, households

want to match their expectations with the actual inflation. The central bank’s payoff decreases

with the actual inflation and increases with the amount of surprised inflation (equals to actual

inflation minus expected inflation). As argued in Barro and Gordon (1983), the central bank’s

benefit from surprised inflation originates from the increase in real economic activities, decrease in

unemployment rate and increase in governmental revenue. How the central bank trades-off these

benefits with the costs of inflation, which is captured by 𝜃, depends on the central banker’s ideology

and tends to be her persistent private information.

Different from the extensive form stage game in the baseline model, players move simultaneously

in this application. I will show in Section 3.5 that every type’s highest limiting equilibrium payoff

remains the same as in the baseline model. But the limiting equilibrium payoff set expands due to

the feasibility of the bad outcome with payoff −1 − 𝑑(𝜃).

3.3 Main Result

In this section, I characterize a patient firm’s equilibrium payoff set in this repeated incomplete

information game. My theorem provides a clean formula for every type’s highest attainable payoff.

It clarifies the role of incomplete information in repeated games by highlighting the aspects of the

type distribution that matter for a patient player’s payoffs. My result also provides a (partial)

strategic foundation for the Stackelberg commitment types in the reputation literature, both in

terms of the patient long-run player’s highest attainable payoff and in terms of her behavior in

equilibria that approximately attain her Stackelberg commitment payoff.
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Payoff of Type 𝜃1

Payoff of Type 𝜃2

1 − 𝜃2

1 − 𝜃1

(1, 1)

(1 − 𝛾*𝜃1, 1 − 𝛾*𝜃2)
𝑣*

Figure 3-1: Set 𝑉 * (in yellow) when |Θ| = 2.

3.3.1 Statement of Result

I start from providing the formula for every type’s highest limiting equilibrium payoff. For every

𝜃𝑖 ∈ Θ, let

𝑣*𝑖 ≡ (1 − 𝛾*𝜃𝑖)⏟  ⏞  
Type 𝜃𝑖’s Stackelberg commitment payoff

1 − 𝜃1
1 − 𝛾*𝜃1⏟  ⏞  

incomplete information multiplier

, (3.6)

which is the product of type 𝜃𝑖’s complete information Stackelberg commitment payoff and an

incomplete information multiplier. Let 𝑣* ≡ (𝑣*1, ..., 𝑣
*
𝑚). Let 𝑉 * be the triangular set with vertices

(0, 0, ..., 0), (1−𝜃1, ..., 1−𝜃𝑚) and 𝑣*. Figure 3-1 depicts 𝑉 * in a two-type example. My main result

claims that 𝑉 * is the firm’s limiting equilibrium payoff set.13

Theorem 3.1. If 𝜋0 has full support, then 𝑉 (𝜋0) = 𝑉 (𝜋0) = 𝑉 *.

The proof of this result is in Appendices C.1 and C.2, with the intuition and ideas behind

summarized in Section 3.4. The statement of Theorem 3.1 can be decomposed into a lower bound

part and an upper bound part: (1) every payoff vector in the interior of 𝑉 * is attainable in sequential

equilibria when 𝛿 is above some cutoff, or formally, 𝑉 (𝜋0) ⊃ 𝑉 *; (2) every payoff vector that is

bounded away from 𝑉 * is not attainable in Nash equilibria when 𝛿 exceeds some cutoff, or formally,

𝑉 (𝜋0) ⊂ 𝑉 *. The proof of the first statement constructs equilibria that approximately attains 𝑣*

when 𝛿 is large enough. In these equilibria, the clients gradually learn about the firm’s type and

are playing myopic best replies. Therefore, 𝑣* is also approximately attainable when the clients are

forward looking. Nevertheless, the exact upper bound of the payoff set, namely the payoff upper

bound part, depends on the clients’ myopia.

To better understand 𝑉 *, it is instructive to write every feasible payoff vector 𝑣 ∈ R𝑚 as a

convex combination of the payoff vectors from every stage game outcome: 𝑁 , (𝑇,𝐻) and (𝑇, 𝐿).

13Despite the theorem is stated in the context of the sequential move stage game with perfect monitoring, it can
be generalized to stage games in which players move simultaneously, or the informed long-run player is choosing from
a continuum of effort levels and her effort is observed with noise. Both extensions will be addressed in Section 3.5.
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The set 𝑉 * is characterized by two constraints: (1) The equilibrium payoff of type 𝜃1 (the lowest

cost type) cannot exceed 1 − 𝜃1, her pure Stackelberg payoff; (2) The ratio between the convex

weight of (𝑇,𝐻) and the convex weight of (𝑇, 𝐿) is no less than 𝛾*/(1 − 𝛾*). The necessity and

sufficiency of both constraints as well as the intuitions behind them will be explained in Section

3.4.

3.3.2 Economic Implications of Theorem 3.1

In this subsection, I outline the economic implications of my result. To draw connections with

the reputation literature, I replace firm and clients with long-run player and short-run players,

respectively.

First, the formula for 𝑣* implies that aside from type 𝜃1 (the lowest cost type), every other

type can strictly benefit from her persistent private information in terms of her highest equilibrium

payoff. A sufficient statistics for the impact of incomplete information is the multiplier (1−𝜃1)
⧸︀

(1−
𝛾*𝜃1), which only depends on the lowest possible cost in the support of her opponents’ prior belief.

In another word, it is independent of the other realizations of 𝜃 and the details of the probability

distribution.

Second, the incomplete information multiplier converges to 1 as 𝜃1 vanishes to 0. This implies

that the long-run player can overcome her lack-of-commitment problem and can approximately

attain her Stackelberg commitment payoff in every state of the world. This observation is formally

stated as Corollary 3.1, which is a straightforward implication of Theorem 3.1:

Corollary 3.1. For every 𝜖 > 0, there exist 𝛿 ∈ (0, 1) and 𝜃1 > 0 such that when 𝛿 > 𝛿, 𝜃1 < 𝜃1

and 𝜋0(𝜃1) > 𝜖, there exists a sequential equilibrium in which type 𝜃𝑖’s equilibrium payoff is no less

than 𝑣*𝑖 − 𝜖 for every 𝑖 ∈ {1, 2, ...,𝑚}.

This corollary is reminiscent of a well-known result in the reputation literature, à la Fudenberg

and Levine (1989, 1992), which claims that a patient long-run player can approximately attain her

Stackelberg commitment payoff if with positive probability, she is irrational and mechanically plays

her Stackelberg commitment strategy.

Formally, let 𝜎*𝜃 : ℋ → ∆(𝐴1) be a commitment strategy for the long-run player and let Σ*
2(𝜎

*
𝜃)

be the set of complete information best replies to 𝜎*𝜃 .14 Type 𝜃’s commitment payoff from 𝜎*𝜃 is:

𝑈(𝜎*𝜃) ≡ inf
𝜎*
2∈Σ*

2(𝜎
*
𝜃 )

{︁
E(𝜎*

𝜃 ,𝜎
*
2)
[︁ ∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡𝑢1(𝜃, 𝑎𝑡)
]︁}︁
. (3.7)

I say that 𝜎*1 is type 𝜃𝑖’s 𝜖-Stackelberg commitment strategy if 𝑈(𝜎*1) ≥ 1 − 𝛾*𝜃 − 𝜖. The canonical

example of an 𝜖-Stackelberg commitment strategy is the stationary Stackelberg strategy in which

𝜎*𝜃(ℎ𝑡)[𝐻] = 𝛾′ for every ℎ𝑡 ∈ ℋ, with 𝛾′ ∈ (𝛾*, 𝛾* + 𝜖/𝜃].15

14The state 𝜃 and player 2’s belief about 𝜃 are irrelevant for player 2s’ best reply against 𝜎*
𝜃 as the game is of

private values.
15In an incomplete information private value environment, the stationary Stackelberg strategy for every type is to

play 𝛾′𝐻 + (1− 𝛾′)𝐿 at every history, with 𝛾′ ∈ (𝛾*, 𝛾* + 𝜖/𝜃𝑚], where 𝜃𝑚 is the greatest element in Θ.
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Fudenberg and Levine (1992) show that if the short-run players’ prior attaches strictly positive

probability to an irrational type who mechanically plays some 𝜖-Stackelberg commitment strategy,

then in a simultaneous move stage game where the long-run player’s actions can be statistically

identified, a sufficiently patient long-run player can guarantee herself payoff 1 − 𝛾*𝜃 − 2𝜖 in every

Nash equilibrium. When players move sequentially as in the baseline model, one can show that

there exist Nash equilibria in which the patient long-run player obtains payoff at least 1− 𝛾*𝜃− 2𝜖

when the stage game outcomes are perfectly monitored. These results point out the following

reputation effects, that incomplete information can help a patient long-run player overcome her

lack-of-commitment problem and attain her commitment payoff.

Can those irrational types that are playing mixed commitment strategies be rationalized?16 This

question is economically important in assessing whether these reputation effects can arise under

common knowledge of rationality or they rely on the long-run player’s irrationality. Different from

the conventional approach of using crazy types that have qualitatively different payoff functions,

I maintain the realistic assumptions on the long-run player’s stage game payoffs by requiring all

types to share the same ordinal preferences over stage game outcomes.17 In context of the trust

game, it implies that the following aspects are common knowledge, which are reasonable in the

applications to business transactions and public policies:

1. The long-run player can (strictly) benefit from the short-run players’ trust.

2. Conditional on being trusted, she finds it strictly beneficial to betray them (such as providing

low quality, shirking, expropriating returns from investments, setting high inflation rates,

etc).

The above requirement makes the conclusion more convincing yet also create new challenges in

answering the above question. This is because the long-run player’s 𝜖-Stackelberg commitment

strategies are non-trivially mixed and motivating her to randomize between actions is difficult as

she has strict preferences over outcomes.18

Corollary 3.1 implies that the irrational types that are playing 𝜖-Stackelberg commitment s-

trategies can be partially rationalized by a strategic type that (1) has a standard stage game payoff

function; (2) her cost of honoring her commitment is sufficiently low compared to her benefit from

16This distinguishes the research question in my paper with that of Weinstein and Yildiz (2016), in which they
seek to rationalize irrational types that are playing pure but non-stationary commitment strategies.

17This conventional approach is adopted by Weinstein and Yildiz (2007), who show under a richness assumption
(i.e. every action is strictly dominant for some types) that if all payoffs and hierarchies of beliefs are allowed, then
every interim correlated rationalizable outcome is uniquely rationalizable in some nearby games according to the
product topology. Weinstein and Yildiz (2013,2016) extend this approach to show an unrefineable folk theorem
in repeated Bayesian games and to rationalize non-stationary commitment strategies in reputation games. These
aforementioned results all rely on the existence of some crazy types that have non-standard stage game payoffs and
well-calibrated hierarchies of beliefs.

18The standard techniques to construct mixed strategy equilibria in repeated games, such as the belief-free equi-
librium approach in Ely, Hörner and Olzewski (2005), Hörner and Lovo (2009) cannot be applied in this context.
This is because the uninformed players are myopic, so in every equilibrium that attains payoff close enough to 𝑣*,
different types of long-run players are mixing between 𝐻 and 𝐿 with different probabilities, i.e. these equilibria are
not belief-free.
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her opponents’ trust. By partially rationalized, I mean that the patient long-run player can at-

tain her Stackelberg commitment payoff in some equilibria of the repeated game without irrational

types. Nevertheless, the limiting equilibrium payoff sets in the repeated game with and without

irrational types may not coincide.

But how will the lowest cost type behave in equilibria that approximately attain the Stackelberg

commitment payoff? In particular, which of the 𝜖-Stackelberg commitment strategies will she play?

This question is motivated by the fact that are many 𝜖-Stackelberg commitment strategies. So it is

important to know which commitment strategies are more likely to arise when the long-run player

is rational. Contrary to the conventional practice of focusing on stationary commitment strategies,

I show in Corollary 3.2 that in every equilibrium that approximately attains 𝑣*, the lowest cost type

cannot play a non-trivial mixed action at every history (where she can make moves). This implies

that irrational types that are playing stationary Stackelberg strategies cannot be rationalized by a

rational type that has arbitrarily low cost to honor her commitment.

Corollary 3.2. Suppose 𝜃1 < 𝛾*𝜃𝑚. For every full support 𝜋0 ∈ ∆(Θ), there exist 𝜖 > 0 and

𝛿 ∈ (0, 1) such that for every 𝛿 > 𝛿, there exists no Nash equilibrium in which (1) player 1’s

equilibrium payoff is within 𝜖 of 𝑣*; (2) type 𝜃1 plays a non-trivially mixed action at every history.

Proof of Corollary 3.2: Suppose towards a contradiction that such an equilibrium (𝜎1, 𝜎2) ex-

ists, then playing 𝐿 at every history is type 𝜃1’s best reply to 𝜎2. Since her equilibrium payoff is

at least 1 − 𝜃1 − 𝜖, the occupation measure of stage game outcome (𝑇, 𝐿) induced by playing 𝐿 at

every history is at least 1 − 𝜃1 − 𝜖. This implies that by playing 𝐿 in every period, type 𝜃𝑚 (the

highest cost type) can obtain payoff at least 1 − 𝜃1 − 𝜖, which is no greater than her equilibrium

payoff.

When 𝜃1 < 𝛾*𝜃𝑚, let 𝜖 ≡ (𝛾*𝜃𝑚 − 𝜃1)/3. The payoff upper bound result in Fudenberg and

Levine (1992) implies the existence of 𝛿 ∈ (0, 1) such that for every 𝛿 > 𝛿, type 𝜃𝑚’s equilibrium

payoff cannot exceed 1 − 𝛾*𝜃𝑚 + 𝜖. According to the choice of 𝜖, we have:

1 − 𝛾*𝜃𝑚 + 𝜖 < 1 − 𝜃1 − 𝜖, (3.8)

with the right-hand-side being no greater than type 𝜃𝑚’s equilibrium payoff. This leads to a

contradiction.

As has become clear in the proof, the conclusion in Corollary 3.2 remains valid when 𝜃1 = 0.

This is somewhat surprising as player 1 cannot be mixing at every history despite her cost of

exerting high effort being 0. Intuitively, this is because despite her being indifferent between 𝐻 and

𝐿 in the stage game, her action choices will affect the (discounted average) frequency with which

player 2 trusts her in the future.19 If the zero-cost type is always indifferent between 𝐻 and 𝐿, then

playing 𝐿 at every history as well as playing 𝐻 at every history will result in the same frequency

with which player 2 plays 𝑇 . Both of which are arbitrarily close to 1. As a result, all other types will

19Conceptually, this distinguishes a zero-cost type with types that are completely indifferent between all stage-game
outcomes.
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strictly prefer to play 𝐿 at every history. According to the standard Bayesian learning argument in

Fudenberg and Levine (1989,1992), the short-run players will learn that 𝐿 will be played with very

high probability after observing 𝐿 in the first 𝑇 periods (with 𝑇 a bounded number), after which

they will play 𝑁 in all subsequent periods. This contradicts the previous claim that they will play

𝑇 with frequency close to 1.

Given the conclusion in Corollary 3.2, which 𝜖-Stackelberg commitment strategies are played

by the lowest-cost type in equilibrium? Let 𝜎𝜃1 be the lowest-cost type’s strategy in an equilibrium

that attains payoff close to 𝑣*. For some necessary conditions on 𝜎𝜃1 , notice that first, type 𝜃𝑚’s

equilibrium payoff cannot exceed 1 − 𝛾*𝜃𝑚 + 𝜖 according to the payoff upper bound result in

Fudenberg and Levine (1992). This implies that the occupation measure of outcome (𝑇,𝐻) along

every action path that occurs with positive probability under (𝜎𝜃1 , 𝜎2) is no less than 𝛾*. Second, if

𝜎𝜃1 is an 𝜖-Stackelberg commitment strategy, then the expected occupation measure of (𝑇, 𝐿) must

be close to 1 − 𝛾*. To summarize, when 𝛿 is large enough, the distribution over equilibrium action

paths induced by (𝜎𝜃1 , 𝜎2) satisfies:

∙ This distribution only attaches strictly positive probability to action paths in which (𝑇,𝐻)

has occupation measure no less than 𝛾*.

∙ For every 𝜏 > 0, the probability measure of action paths in which the occupation measure of

(𝑇,𝐻) exceeds 𝛾* + 𝜏 vanishes to 0 as 𝛿 → 1 and 𝜖→ 0.

3.4 Proof of Theorem 3.1: Intuition and Ideas

The proof hinges on understanding the sufficiency and necessity of the constraints characterizing

the limiting equilibrium payoff set 𝑉 *:

1. The equilibrium payoff of type 𝜃1 cannot exceed 1 − 𝜃1.

2. The ratio between the convex weight of (𝑇,𝐻) and the convex weight of (𝑇, 𝐿) is no less than

𝛾*/(1 − 𝛾*).

For illustration purposes, I focus on an example with two types, i.e. Θ = {𝜃1, 𝜃2}. In subsec-

tion 3.4.1, I explain the necessity of these constraints and relate them to the uninformed player’s

incentives. In subsection 3.4.2, I explain the ideas behind the constructed equilibria that can ap-

proximately attain 𝑣*. In subsection 3.4.3, I compare the equilibrium dynamics in my construction

to the related ones in the existing literature.

3.4.1 Necessity

Let 𝜎 ≡ (𝜎𝜃1 , 𝜎𝜃2 , 𝜎2) be a generic Nash equilibrium. To understand the necessity of the first

constraint, it is instructive to introduce the highest action path. Formally, let ℋ(𝜎) be the set of

on-path histories. For every ℎ𝑡 ∈ ℋ(𝜎) such that 𝜎2(ℎ
𝑡)[𝑇 ] > 0, let Θ(ℎ𝑡) be the support of player
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2’s posterior belief at ℎ𝑡. The highest action path 𝜎1 : ℋ(𝜎) → {𝐻,𝐿} is defined as:

𝜎1(ℎ
𝑡) ≡

{︃
𝐻 if 𝐻 ∈

⋃︀
𝜃∈Θ(ℎ𝑡) supp

(︀
𝜎𝜃(ℎ

𝑡)
)︀

𝐿 otherwise .
(3.9)

Since player 2 is myopic, he has an incentive to play 𝑇 at ℎ𝑡 only when 𝜎1(ℎ
𝑡) = 𝐻. By construction,

𝜎1 is at least one type’s best reply to 𝜎2. Consider two cases separately: (1) Suppose it is type

𝜃1’s best reply, then type 𝜃1’s payoff in every period cannot exceed 1 − 𝜃1, which implies that her

discounted average payoff is no more than 1 − 𝜃1. (2) Suppose it is type 𝜃2’s best reply, then type

𝜃2’s payoff in every period cannot exceed 1−𝜃2. Since the differences between type 𝜃1 and type 𝜃2’s

payoff is at most 𝜃2 − 𝜃1, type 𝜃1’s discounted average payoff cannot exceed 1 − 𝜃1. The necessity

of the first constraint is obtained by summing up the two cases.20

To understand the second constraint, I introduce an alternative version of the highest action

path based on 𝜎𝜃2 . Let 𝜎𝜃2 : ℋ → {𝐻,𝐿} be defined as:

𝜎𝜃2(ℎ𝑡) ≡

{︃
𝐻 if 𝐻 ∈ supp

(︀
𝜎𝜃2(ℎ𝑡)

)︀
𝐿 otherwise,

(3.10)

which by construction, is type 𝜃2’s best reply to 𝜎2.

Suppose type 𝜃2’s payoff from 𝜎 is strictly greater than 1−𝜃2. If player 2 plays according to 𝜎𝜃2 ,

then she can receive stage game payoff strictly greater than 1 − 𝜃2 only at histories where player

2 plays 𝑇 but 𝜎𝜃2 prescribes 𝐿 with probability 1. Player 2’s incentive constraints imply that at

those histories, 𝜎𝜃1 prescribes 𝐻 with sufficiently high probability. Let 𝜂(ℎ𝑡) be the probability of

type 𝜃1 at ℎ𝑡. The above argument implies that if type 𝜃2 plays 𝐿, then she can extract information

rent at the expense of revealing information about her type (i.e. 𝜂(ℎ𝑡, 𝐿) < 𝜂(ℎ𝑡)); if she plays 𝐻,

then she will sacrifice her current stage payoff in exchange for a more favorable belief in the future

(i.e. 𝜂(ℎ𝑡, 𝐻) > 𝜂(ℎ𝑡)).

Now comes the key question: What is the maximal frequency with which (𝑇, 𝐿) occurs according

to (𝜎𝜃2 , 𝜎2)? Player 2’s incentive to play 𝑇 implies the following upper bound on the relative speed

with which 𝜂 increases after observing 𝐻 to the speed with which it decreases after observing 𝐿:

𝜂(ℎ𝑡, 𝐻) − 𝜂(ℎ𝑡)

𝜂(ℎ𝑡) − 𝜂(ℎ𝑡, 𝐿)
≤ 1 − 𝛾*

𝛾*
. (3.11)

Inequality (3.11) implies that in order to provide player 2s the incentives to play 𝑇 in the long-run,

the ratio between the frequencies of 𝐿 and 𝐻 according to (𝜎𝜃2 , 𝜎2) cannot exceed (1 − 𝛾*)/𝛾*.

Nevertheless, the first constraint implies that as long as 𝜃1 > 0, the occupation measure with

which player 2 plays 𝑇 must be bounded away from 1 when play proceeds according to (𝜎𝜃2 , 𝜎2). For

example, in the equilibrium constructed in Appendix C.1, the play according to (𝜎𝜃2 , 𝜎2) consists

of three phases: it starts from a reputation building phase in which the outcome is (𝑇,𝐻), followed

by a reputation manipulation phase in which the outcome alternates between (𝑇,𝐻) and (𝑇, 𝐿),

20This insight extends whenever there is complementarity between 𝜃 and (𝑎1, 𝑎2) in player 1’s payoff function.

91



Payoff of Type 𝜃1

Payoff of Type 𝜃2

1 − 𝜃2

1 − 𝜃1

(1, 1)

(1 − 𝛾*𝜃1, 1 − 𝛾*𝜃2)

𝑣(𝛾)

𝑣*

Figure 3-2: 𝑉 * in yellow and 𝑣(𝛾) in blue for some 𝛾 ∈ (𝛾*, 1).

with the fraction of (𝑇, 𝐿) being no more than 1 − 𝛾*, followed by a punishment phase in which

the outcome is 𝑁 . The occupation measure of the first phase goes to 0 as 𝛿 → 1, but the second

and third phases have strictly positive occupation measures in the limit.

3.4.2 Sufficiency

In this subsection, I construct a class of sequential equilibria that can approximately attain payoff

𝑣* when 𝛿 is large enough. In these equilibria, the long-run player can extract information rent

only when her actions are informative about her type and her reputation is gradually gained and

lost in periods when there is learning.

For every 𝑖 ∈ {1, 2, ...,𝑚} and 𝛾 ∈ [𝛾*, 1], let

𝑣𝑖(𝛾) ≡ (1 − 𝛾𝜃𝑖)
1 − 𝜃1

1 − 𝛾𝜃1
(3.12)

and 𝑣(𝛾) ≡
(︁
𝑣𝑖(𝛾)

)︁𝑚

𝑖=1
. An example of 𝑣(𝛾) is shown in Figure 3-2. By definition, 𝑣𝑖(𝛾

*) = 𝑣*𝑖
and 𝑣𝑖(1) = 1 − 𝜃𝑖. Proposition 3.1 claims that every 𝑣(𝛾) with 𝛾 > 𝛾* is attainable in sequential

equilibrium when the long-run player is sufficiently patient. Given that other two extreme points of

𝑉 * are trivially attainable, namely (0, 0, ..., 0) and (1 − 𝜃1, ..., 1 − 𝜃𝑚), Proposition 3.1 also implies

that every payoff vector in the interior of 𝑉 * is attainable when 𝛿 is large enough.

Proposition 3.1. For every 𝜂 ∈ (0, 1) and 𝛾 ∈ (𝛾*, 1), there exists 𝛿 ∈ (0, 1), such that for every

𝛿 > 𝛿 and 𝜋0 ∈ ∆(Θ) with 𝜋0(𝜃1) ≥ 𝜂, there exists a sequential equilibrium in which player 1’s

payoff is 𝑣(𝛾).

The rest of this subsection has two parts. In Part I, I provide an overview of the equilibrium

construction, and in particular, players’ strategies and belief updating process. In Part II, I explain

the motivation of the construction and the ideas to overcome the underlying challenges. The details

can be found in Appendix C.1.
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Overview of Equilibrium Construction: The equilibrium play consists of three phases: a nor-

mal phase and two absorbing phases. I keep track of four state variables, namely, the probability

with which player 2’s posterior belief attaches to type 𝜃1, denoted by 𝜂(ℎ𝑡), and the remaining oc-

cupation measure of each stage game outcome, denoted by 𝑝𝑁 (ℎ𝑡), 𝑝𝐻(ℎ𝑡) and 𝑝𝐿(ℎ𝑡), respectively.

The initial values of these state variables are given by:

𝜂(ℎ0) = 𝜋0(𝜃1) , 𝑝𝑁 (ℎ0) =
𝜃1(1 − 𝛾)

1 − 𝛾𝜃1
, 𝑝𝐻(ℎ0) =

(1 − 𝜃1)𝛾

1 − 𝛾𝜃1
and 𝑝𝐿(ℎ0) =

(1 − 𝜃1)(1 − 𝛾)

1 − 𝛾𝜃1
.

One can verify that for every 𝑖 ∈ {1, 2, ...,𝑚},

𝑣𝑖(𝛾) = 𝑝𝐻(ℎ0)(1 − 𝜃𝑖) + 𝑝𝐿(ℎ0),

i.e. the initial value of 𝑝𝑎 is the convex weight of outcome 𝑎 under the target payoff 𝑣(𝛾).

Play starts from the normal phase, in which player 2 plays 𝑇 in every period and player 1

is mixing between 𝐻 and 𝐿 with every type’s mixing probabilities pinned down by the following

belief-updating formulas:

𝜂(ℎ𝑡, 𝐿) − 𝜂* = (1 − 𝜆𝛾*)(𝜂(ℎ𝑡) − 𝜂*) (3.13)

and

𝜂(ℎ𝑡, 𝐻) − 𝜂* = min
{︁

1 − 𝜂*,
(︀
1 + 𝜆(1 − 𝛾*)

)︀(︀
𝜂(ℎ𝑡) − 𝜂*

)︀}︁
, (3.14)

where 𝜂* is an arbitrary number within
(︁
𝛾*𝜂(ℎ0), 𝜂(ℎ0)

)︁
and 𝜆 > 0. Intuitively, 𝜆 measures the

speed of learning and 𝜂* is a lower bound on player 2’s normal phase posterior belief. The role of 𝜂*

is to satisfy player 2’s incentive constraint by the end of the normal phase, with details explained

in Part I of Appendix C.1.3. The restriction on 𝜆 is specified in (C.5). Intuitively, if the frequency

of 𝐻 is slightly more than 𝛾*

1−𝛾* times the frequency of 𝐿, then player 2’s long-run posterior will

attach higher probability to type 𝜃1 compared to his prior given that 𝜆 is small enough.

Based on the realized stage game outcome, 𝑝𝑎(ℎ𝑡) evolves according to:

𝑝𝑎(ℎ𝑡, 𝑎𝑡) ≡

{︃
𝑝𝑎(ℎ𝑡) if 𝑎𝑡 ̸= 𝑎

𝑝𝑎(ℎ𝑡) − (1 − 𝛿)𝛿𝑡 if 𝑎𝑡 = 𝑎
(3.15)

with 𝑎, 𝑎𝑡 ∈ {𝑁,𝐻,𝐿}. Intuitively, player 1 has three separate accounts, each representing the occu-

pation measure of an individual stage game outcome. The state variable 𝑝𝑎(ℎ𝑡) is then interpreted

as the remaining credit in the account for outcome 𝑎.

Play transits to the first absorbing phase when 𝜂(ℎ𝑡) reaches 1, after which the continuation

value of type 𝜃𝑖 equals to 𝑣1(ℎ
𝑡) 1−𝜃𝑖

1−𝜃1
, with

𝑣1(ℎ
𝑡) ≡ 𝑝𝐻(ℎ𝑡)(1 − 𝜃1) + 𝑝𝐿(ℎ𝑡)

𝑝𝐻(ℎ𝑡) + 𝑝𝐿(ℎ𝑡) + 𝑝𝑁 (ℎ𝑡)
. (3.16)

The resulting payoff vector can be delivered by randomizing between stage game outcomes 𝑁 and

93



(𝑇,𝐻).

Play transits to the second absorbing phase when 𝑝𝐿(ℎ𝑡) is between 0 and (1−𝛿)𝛿𝑡, or intuitively,

𝑝𝐿(ℎ𝑡) is close to 0. For illustration purposes, let us focus on the ideal situation in which 𝑝𝐿(ℎ𝑡) =

(1−𝛿)𝛿𝑡.21 If player 1 plays 𝐿, then play transits to the second absorbing phase and the continuation

payoff for type 𝜃𝑖 equals to:

𝑣𝑖(ℎ
𝑡) ≡ 𝑝𝐻(ℎ𝑡)(1 − 𝜃𝑖) + 𝑝𝐿(ℎ𝑡)

𝑝𝐻(ℎ𝑡) + 𝑝𝐿(ℎ𝑡) + 𝑝𝑁 (ℎ𝑡)
(3.17)

This payoff vector can also be delivered by randomizing between stage game outcomes 𝑁 and

(𝑇,𝐻).

Ideas & Intuitions Behind the Construction: The equilibrium construction is designed to

achieve the following objective, namely, making outcome (𝑇, 𝐿) incentive compatible for the myopic

uninformed players while at the same time, providing incentives for all types of the informed player

to mix.

For this purpose, the constructed equilibrium has two defining features (1) the rent extraction

outcome (𝑇, 𝐿) only occurs at histories where the uninformed players can learn about 𝜃 (i.e. in the

normal phase); (2) the informed player is facing a trade-off between extracting information rent (by

playing 𝐿) and building up her reputation (by playing 𝐻) throughout the normal phase. As argued

before, learning is necessary for rent extraction due to the uninformed players’ myopia. Introducing

the trade-off between reputation and rent extraction at all histories (of the normal phase) makes

the informed player indifferent to the timing of rent extraction, which holds irrespective of her

previous play. This motivates her to play according to the highest action path at every normal

phase history, which by construction, backloads the outcome (𝑇, 𝐿) by as much as possible.

My construction of the normal phase raises two issues, which motivate the design of the two

absorbing phases. The first concern is that the play of 𝐻 can be too front-loaded, after which there

is too much 𝐿 remaining in player 1’s account (relative to 𝐻) and the resulting continuation payoff

cannot be delivered in an incentive compatible way. The first absorbing phase is designed to address

this issue: if player 1 front-loads the play of 𝐻, then play will transit to the first absorbing phase,

after which type 𝜃2’s continuation payoff is strictly less compared to her payoff from playing 𝐿 at

the transition history. In general, the presence of the first absorbing phase ensures that at every

history of the normal phase, player 1’s continuation value is always within some proper subsets of

𝑉 *, and in particular, the ratio between the remaining occupation measures of 𝐿 and 𝐻 cannot

exceed some endogenous cutoff. This is stated as Lemma C.1.1. The challenges to prove this result

are explained in Appendix C.1.

The second concern is that type 𝜃2 may have incentives to front-load rent extraction by rarely

21Notice that due to integer constraints, 𝑝𝐿(ℎ𝑡) could be strictly between 0 and (1 − 𝛿)𝛿𝑡 in period 𝑡. If this is
the case, then playing 𝐿 in period 𝑡 will result in 𝑝𝐿(ℎ𝑡+1) being strictly negative and the continuation payoff vector
being outside 𝑉 *. I introduce the reshuffling phase in Appendix A to deal with this complication. The idea is: the
continuation payoff vector can be written as a convex combination of three other payoff vectors in 𝑉 *, all of which
satisfy the integer constraints.
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playing 𝐻. This explains the presence of the second absorbing phase. In particular, if she plays 𝐿

too frequently, then she will reach the second absorbing phase at an earlier date after which player

2 will always play 𝑁 and no information can be extracted any more in the future.

3.4.3 Comparisons

In this subsection, I compare the equilibrium dynamics in my model to the related ones in the ex-

isting literature. This includes the reputation models with behavioral biases (Jehiel and Samuelson

2012), reputation cycles (Phelan 2006, Liu and Skryzpacz 2014) and models of repeated incomplete

information games with two patient players (Hart 1985, Aumann and Maschler 1995, Pȩski 2014).

Analogical-Based Reasoning Equilibria: The behavioral patterns suggested by type 𝜃2’s

highest action path, 𝜎𝜃2 (previously defined in subsection 3.4.1), is reminiscent of the analogi-

cal reasoning equilibria in reputation games studied by Jehiel and Samuelson (2012), in which

the long-run player switches between her two actions systematically to manipulate her opponents’

beliefs about her type.

In their model, there are multiple irrational types of the long-run player that are playing sta-

tionary mixed strategies and one rational type. The short-run players’ adopt an analogical based

reasoning process, i.e. they mistakenly believe that the rational long-run player is playing a s-

tationary strategy. Their results imply, in context of the trust game, that the rational long-run

player can attain her Stackelberg commitment payoff and her equilibrium behavior will experience

a reputation building (or reputation consumption) phase in which she plays 𝐻 (or 𝐿) for a bounded

number of periods, followed by a reputation manipulation phase, in which she alternates between

𝐻 and 𝐿 so that her opponents are close to being indifferent. Moreover, the short-run players’

posterior will fluctuate within a small neighborhood of the cutoff belief, implying that they will

never fully learn about the long-run player’s type.

In my model, despite type 𝜃2’s behavior following her highest action path exhibits a similar

pattern, there are two qualitative differences that highlight the distinctions between rational and

analogical-based uninformed players. First, the reputation manipulation phase cannot last forever

in my model due to the constraint that type 𝜃1’s equilibrium payoff cannot exceed 1 − 𝜃1. This

constraint is driven by the uninformed players’ ability to correctly predict the informed player’s

average action in every period, while analogy-based uninformed players can only correctly forecast

the informed player’s average action across different periods. Second, the uninformed players can

perfectly learn the state with positive probability in the manipulation phase of my model. In

particular, if type 𝜃2 plays according to 𝜎𝜃2 , she can only extract information rent at histories

where player 2 can learn 𝜃 = 𝜃1 perfectly with positive probability. In contrast, the analogy-based

agents in Jehiel and Samuelson (2012) can never learn the state perfectly as their posterior beliefs

are not responsive enough to the actions they observe.

Reputation Cycles: The equilibrium dynamics of my model are also related to the phenomena

called reputation cycles, which have been identified in a number of papers when the informed player’s
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Figure 3-3: The horizontal axis represents the timeline and the vertical axis measures the informed
player’s reputation, i.e. probability of the commitment type or lowest cost type. Left: Reputation
cycles in Phelan (2006). Right: A sample path of the reputation cycle in my model.

type (irrational or rational) is changing over time (Phelan 2006) or when the uninformed players

have limited memories (Liu 2011, Liu and Skrzypacz 2014). Nevertheless, there are two important

differences in the modeling choices and the resulting dynamics. First, all types of the long-run

player are rational and have standard stage game payoff functions in my model, while the papers

on reputation cycles require the presence of an irrational type, or types that have qualitatively

different stage game payoff functions compared to the normal one.

Second and more importantly, reputations are built and lost gradually in my model (captured

by a small 𝜆), while in Phelan (2006), Liu (2011), Liu and Skrzypacz (2014), etc. the informed

player’s reputation will drop to its lower bound whenever she betrays the uninformed players’ trust.

This gradual reputation building and milking featured in my model is supported empirically from

various studies of online markets (Dellarocas 2006). Intuitively, this is because when all types of the

long-run player are rational and have strictly positive temptation to renege, even the lowest cost

type will shirk with strictly positive probability in the optimal equilibrium, whereas in the canonical

reputation models, the irrational types are mechanically playing some stationary strategies which

do not exhibit the flexibility of conditioning action choices on the short-run players’ belief.

Third, similar to the comparisons to Jehiel and Samuelson (2012), the reputation cycle can last

forever in Phelan (2006), Liu (2011) and Liu and Skrzpacz (2014), while it will stop in finite time in

my model (after which player 2 will play 𝑁 forever). To be more precise, the expected occupation

measure of the reputation manipulation phase (one that features cycles) will be strictly bounded

away from 1, but the expected number of periods of this phase will go to infinity as 𝛿 → 1. These

differences are shown in Figure 3-3.

Repeated Incomplete Information Games: A feature of the equilibrium distinguishes my

model from the undiscounted or zero-sum repeated incomplete information games (for example,

Hart 1985, Aumann and Maschler 1995 Cripps and Thomas 2003), namely, the informed player

can only extract information rent in the learning process. In those papers, the patient informed

player’s equilibrium payoff only depends on the uninformed player’s posterior belief after learning
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stops but the learning phase itself has negligible payoff consequences. In my model, the normal

phase’s occupation measure is bounded away from 0 even in the 𝛿 → 1 limit and moreover, the

informed player’s information rent can only be delivered in the learning process.

The equilibrium dynamics in my model also contrasts to the ones in discounted non zero-sum

repeated games with two patient players (for example, Pȩski 2014). In games with two patient

players, it is possible for some types of informed players to extract information rent (i.e. obtaining

payoff strictly higher than her complete information level) without revealing information about

her type, while in my model when the uninformed players are myopic, rent extraction must be

accompanied by learning. The uninformed players’ lack of intertemporal incentives also introduces

a novel constraint on the informed player’s equilibrium payoff set, namely, the lowest cost type’s

equilibrium payoff cannot exceed her pure Stackelberg commitment payoff.

3.5 Extensions & Concluding Remarks

This paper explores the role of incomplete information in repeated interactions when a patient

long-run player faces a lack-of-commitment problem. In context of trust games, including the

product choice game in Mailath and Samuelson (2001), the capital taxation game in Phelan (2006),

the monetary policy game in Barro (1986), etc. a patient long-run player can overcome her lack-

of-commitment problem and attain her Stackelberg commitment payoff when she has persistent

private information about her cost of honoring her commitment.

Compared to the existing reputation models, my model features common knowledge of ratio-

nality and does not require any type to have a drastically different stage game payoff function or

complicated hierarchies of beliefs and higher order beliefs, i.e. all types share the same belief as well

as the same ordinal preference over stage game outcomes. According to this perspective, my result

provides a partial strategic foundation for the (mixed strategy) Stackelberg commitment types in

the reputation literature and helps to evaluate which of the Stackelberg commitment behaviors are

more plausible in strategic environments.

Despite my results are stated when players move sequentially in the stage game and the outcomes

in every period can be perfectly monitored, the main insights extend to a number of alternative

modeling specifications.

Simultaneous Move Stage Games: Consider the following simultaneous-move stage game:

𝜃 = 𝜃𝑖 𝑇 𝑁

𝐻 1 − 𝜃𝑖, 𝑏 −𝑑(𝜃𝑖), 0

𝐿 1,−𝑐 0, 0

with 𝑑(𝜃𝑖) ≥ 0 for every 𝜃𝑖 ∈ Θ.

Suppose the above simultaneous-move stage game is played repeatedly in discrete time. Players’

past action choices are perfectly monitored and the public history ℎ𝑡 ≡ {𝑎1,𝑠, 𝑎2,𝑠, 𝜉𝑠}𝑡−1
𝑠=0 consists

of players’ past action choices and the past realizations of the public randomization device. Other
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features of the game remain the same as in the baseline model. Recall the definition of 𝑣* ≡ (𝑣*𝑖 )𝑚𝑖=1

in (3.6) and 𝑉 (𝜋0) in (3.2), we have the following result on the attainability of 𝑣* when player 1 is

sufficiently patient.

Theorem 3.2. If 𝜋0 has full support, then 𝑣* ∈ 𝑉 (𝜋0).

The proof of Theorem 3.2 follows from that of the payoff lower bound part in Theorem 3.1, which

can be found in Appendix C.1. An implication of this theorem is that when the lowest possible cost

𝜃1 vanishes to 0, then every type can approximately attain her Stackelberg commitment payoff in

sequential equilibrium. Furthermore, under a supermodularity condition on player 1’s stage game

payoff function, i.e. an assumption on the function 𝑑(·), one can provide a full characterization on

the game’s limiting equilibrium payoff set.

Condition 3.1. 𝑢1 is supermodular if 0 ≤ 𝑑(𝜃𝑗) − 𝑑(𝜃𝑖) ≤ 𝜃𝑗 − 𝜃𝑖 for every 𝑗 < 𝑖.

Intuitively, when we rank the types and players’ actions according to 𝜃1 ≻ 𝜃2 ≻ ... ≻ 𝜃𝑚, 𝐻 ≻ 𝐿

and 𝑇 ≻ 𝑁 , Condition 3.1 implies that 𝑢1 is supermodular in 𝜃 and (𝑎1, 𝑎2). In particular, when

𝑑(𝜃𝑗) − 𝑑(𝜃𝑖) = 0 for every 𝑖 and 𝑗, then the stage game payoff function is the same as in the

sequential move game. When 𝑑(𝜃𝑗) − 𝑑(𝜃𝑖) = 𝜃𝑗 − 𝜃𝑖 for every 𝑖 and 𝑗, then the stage game payoff

is separable, i.e. the cost for player 1 to play 𝐻 is independent of player 2’s action choice. This

leads to the following payoff upper bound result

Theorem 3.3. If 𝑢1 is supermodular, then max𝑉 𝑖(𝜋0) ≤ 𝑣*𝑖 for every 𝑖 ∈ {1, 2, ...,𝑚}.

Theorem 3.3 will be shown together with the payoff upper bound part of Theorem 3.1 in

Appendix B. Under the supermodularity condition on player 1’s stage game payoff, one can also

provide the following characterization of player 1’s limiting equilibrium payoff set. To begin with,

I say that a payoff vector 𝑣 ∈ R𝑚 is incentive compatible if there exists (𝛼1, 𝑎2) ∈ ∆(𝐴1)×𝐴2 such

that

𝑎2 ∈ arg max
𝑎′2∈𝐴2

𝑢2(𝛼1, 𝑎
′
2) (3.18)

and 𝑢1(𝜃𝑖, 𝛼1, 𝑎2) = 𝑣𝑖 for every 𝑖 ∈ {1, 2, ...,𝑚}. Player 1’s limiting equilibrium payoff set 𝑉 ** can

be obtained via the following procedure:

1. Take the convex hull of the set of incentive compatible payoff vectors.

2. Truncate this set with two constraints, namely, 𝑣1 ≤ 1 − 𝜃1 and 𝑣𝑖 ≥ 0 for every 𝑖.

An example of this set is depicted in Figure 3-4. The proof is similar to that of Theorem 3.1,

and in particular, the attainability of the payoff vector marked as the black dot. The details are

available upon request.

Stage Games with Continuum of Actions and Noisy Monitoring: The stage game is of

sequential-move as in the baseline model, with the difference that if player 2 chooses 𝑇 , then player

1 chooses between a continuum of effort levels 𝑒 ∈ [0, 1] and the output she produces (𝑦 ∈ {𝐺,𝐵})
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Payoff of Type 𝜃1

Payoff of Type 𝜃2

(1, 1)

(1 − 𝜃1, 1 − 𝜃2)

(−𝑑(𝜃1),−𝑑(𝜃2))

𝑣*(𝑐2)

Figure 3-4: In Yellow: A patient player 1’s equilibrium payoff set when the stage game is of
simultaneous-move and |Θ| = 2.

is good (𝑦 = 𝐺) with probability 𝑒. The cost of effort for type 𝜃𝑖 is 𝜃𝑖𝑒. Her benefit from player 2’s

trust is normalized to 1, so her stage game payoff under outcome 𝑁 is 0 and that under outcome

(𝑇, 𝑒) is 1 − 𝜃𝑖𝑒. Player 2’s payoff is 0 if he chooses 𝑁 . His benefit from good output is 𝑏 while his

loss from bad output is 𝑐, with 𝑏, 𝑐 > 0. Therefore, player 2 is willing to trust player 1 only when

his expectation of effort is no less than 𝛾*, which has been defined in (3.4).

Next, consider the repeated version of this game in which the public history consists of player

2’s actions, the realized outputs and the realizations of public randomization devices in the past,

but not the exact effort level. Formally, let 𝑎1,𝑡, 𝑎2,𝑡 and 𝑦𝑡 be player 1’s action, player 2’s action

and the realization of public signal in period 𝑡, respectively. Let ℎ𝑡 = {𝑎2,𝑠, 𝑦𝑠, 𝜉𝑠}𝑡−1
𝑠=0 ∈ ℋ𝑡 be

the public history with ℋ ≡
⋃︀+∞

𝑡=0 ℋ𝑡 the set of public histories. Player 2’s strategy is measurable

with respect to the public history and player 1’s strategy is measurable with respect to the public

history, her type and her past action choices.

In this setting, player 1’s Stackelberg commitment payoff, 1 − 𝛾*𝜃, has two interpretations.

First, as in the baseline model, it is her equilibrium payoff when she can commit. Second, it is her

highest equilibrium payoff in the repeated complete information game when her past action choices

are perfectly monitored. In contrast, in the complete information repeated game (i.e. 𝜃 is common

knowledge) with imperfect monitoring of past actions, her highest equilibrium payoff is 1−𝜃, which

is strictly lower.

The characterization of the patient long-run player’s equilibrium payoffs in Theorem 3.1 also

applies in this setting. Intuitively, this is because one can substitute player 1’s mixed action in the

baseline model with a deterministic effort level (equals to the probability of high effort). Given the

two interpretations of the Stackelberg commitment payoff, my characterization result implies that
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persistent private information can overcome the lack-of-commitment problem and/or the imperfect

monitoring problem, which enables the patient long-run player to achieve the same payoff as if she

can commit or when her actions are perfectly monitored.
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Appendix A

Appendix to Chapter 1

A.1 Proof of Theorem 1.1, Statements 1 & 3

I use 𝑎*1 ∈ 𝐴1 to denote the Dirac measure on 𝑎*1, so when 𝛼*
1 is pure, I will replace 𝛼*

1 with 𝑎*1.

Recall that BR2(𝑎
*
1, 𝜃) ≡ {𝑎*2} (or BR2(𝛼

*
1, 𝜃) ≡ {𝑎*2}). Since Λ(𝑎*1, 𝜃) = {∅} (or Λ(𝛼*

1, 𝜃) = {∅}) if

BR2(𝑎
*
1, 𝜑𝑎*1) ̸= {𝑎*2} (or BR2(𝛼

*
1, 𝜑𝛼*

1
) ̸= {𝑎*2}), in which case statement 1 (or statement 3) is void.

Therefore, it is without loss of generality to assume that BR2(𝑎
*
1, 𝜑𝑎*1) = {𝑎*2} (or BR2(𝛼

*
1, 𝜑𝛼*

1
) =

{𝑎*2}).

A.1.1 Proof of Statement 1

When Ω𝑚 = {𝑎*1} and 𝜆 ∈ Λ(𝑎*1, 𝜃), for every �̃� with �̃�(𝜃) ∈ [0, 𝜇(𝜃)] for all 𝜃 ∈ Θ, we have:

{𝑎*2} = arg max
𝑎2∈𝐴2

{︁
𝜇(𝑎*1)𝑢2(𝜑𝑎*1 , 𝑎

*
1, 𝑎2) +

∑︁
𝜃∈Θ

�̃�(𝜃)𝑢2(𝜃, 𝑎
*
1, 𝑎2)

}︁
.

Let ℎ𝑡* be the period 𝑡 public history such that 𝑎*1 is always played. Let 𝑞𝑡(𝜔) be the (ex ante)

probability that the history is ℎ𝑡* and player 1’s type is 𝜔 ∈ Ω. By definition, 𝑞𝑡(𝑎
*
1) = 𝜇(𝑎*1) for all

𝑡. Player 2’s maximization problem at ℎ𝑡* is:

max
𝑎2∈𝐴2

{︁
𝜇(𝑎*1)𝑢2(𝜑𝑎*1 , 𝑎

*
1, 𝑎2) +

∑︁
𝜃∈Θ

[︁
𝑞𝑡+1(𝜃)𝑢2(𝜃, 𝑎

*
1, 𝑎2) + (𝑞𝑡(𝜃) − 𝑞𝑡+1(𝜃))𝑢2(𝜃, 𝛼1,𝑡(𝜃), 𝑎2)

]︁}︁

where 𝛼1,𝑡(𝜃) ∈ ∆(𝐴1∖{𝑎*1}) is the distribution of type 𝜃’s action at ℎ𝑡* conditional on it is not 𝑎*1.

Fixing 𝜇(𝑎*1) and given the fact that 𝜆 ∈ Λ(𝑎*1, 𝜃), there exists 𝜌 > 0 such that 𝑎*2 is player 2’s

strict best reply if ∑︁
𝜃∈Θ

𝑞𝑡+1(𝜃) >
∑︁
𝜃∈Θ

𝑞𝑡(𝜃) − 𝜌.

Let 𝑇 ≡
⌈︀
1/𝜌

⌉︀
, which is independent of 𝛿. There exist at most 𝑇 periods in which 𝑎*2 fails to be a

strict best reply conditional on 𝑎*1 has always been played. Therefore, type 𝜃’s payoff is bounded
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from below by:

(1 − 𝛿𝑇 ) min
𝑎∈𝐴

𝑢1(𝜃, 𝑎) + 𝛿𝑇 𝑣𝜃(𝑎
*
1),

which converges to 𝑣𝜃(𝑎
*
1) as 𝛿 → 1.

When there are other commitment types, let 𝑝 ≡ max𝛼1∈Ω𝑚∖{𝑎*1} 𝛼1(𝑎
*
1). which is strictly below

1. There exists 𝑇 ∈ N, such that for every 𝑡 ≥ 𝑇 , 𝑎*2 is player 2’s strict best reply at ℎ𝑡* if:∑︀
𝜃∈Θ 𝑞𝑡+1(𝜃) ≥

∑︀
𝜃∈Θ 𝑞𝑡(𝜃) − 𝜌/2. Consider the subgame starting from history ℎ𝑇* , we obtain the

commitment payoff bound.

A.1.2 Proof of Statement 3

Notation: For every 𝛼1 ∈ Ω𝑚∖{𝛼*
1}, 𝜃 ∈ Θ and �̃� ∈ ∆(Ω) with �̃�(𝛼*

1) ̸= 0, let

�̃�(𝛼1) ≡ �̃�(𝛼1)/�̃�(𝛼*
1) and �̃�(𝜃) ≡ �̃�(𝜃)/�̃�(𝛼*

1)

Abusing notation, let �̃� ≡
(︁(︀
�̃�(𝛼1)

)︀
𝛼1∈Ω𝑚∖{𝛼*

1}
,
(︀
�̃�(𝜃)

)︀
𝜃∈Θ

)︁
be the (expanded) likelihood ratio

vector. Let 𝑛 ≡ |𝐴1| and 𝑚 ≡ |Ω| − 1. For convenience, I write Ω∖{𝛼*
1} ≡ {𝜔1, ..., 𝜔𝑚} and

�̃� ≡ (�̃�1, ..., �̃�𝑚). The proof is divided into two parts.

Part I

Let Σ2 be the set of player 2’s strategies with 𝜎2 a typical element. Let NE2(𝜇, 𝜑) ⊂ Σ2 be the set

of player 2’s Nash equilibrium strategies for some 𝛿 ∈ (0, 1), i.e.

NE2(𝜇, 𝜑) ≡
{︁
𝜎2

⃒⃒⃒
∃ 𝛿 ∈ (0, 1) such that (𝜎1, 𝜎2) ∈ NE(𝛿, 𝜇, 𝜑)

}︁
.

For every 𝜎𝜔 : ℋ → ∆(𝐴1) and player 2’s strategy 𝜎2, let 𝒫(𝜎𝜔 ,𝜎2) be the probability measure over

ℋ induced by (𝜎𝜔, 𝜎2), let ℋ(𝜎𝜔 ,𝜎2) be the set of histories that occur with positive probability under

𝒫(𝜎𝜔 ,𝜎2) and let E(𝜎𝜔 ,𝜎2) be its expectation operator. Abusing notation, I use 𝛼*
1 to denote the

strategy of always playing 𝛼*
1.

For every 𝜓 ≡ (𝜓1, ...𝜓𝑚) ∈ R𝑚
+ and 𝜒 ≥ 0, let

Λ(𝜓, 𝜒) ≡
{︀
�̃�
⃒⃒ 𝑚∑︁
𝑖=1

�̃�𝑖/𝜓𝑖 = 𝜒
}︀

Let 𝜆 be the likelihood ratio vector induced by player 2’s prior belief 𝜇. Let 𝜆(ℎ𝑡) ≡ (𝜆1(ℎ
𝑡), ..., 𝜆𝑚(ℎ𝑡))

be the likelihood ratio vector following history ℎ𝑡. For every infinite history ℎ∞, let ℎ∞𝑡 be its pro-

jection on 𝑎1,𝑡. Let 𝛼1(·|ℎ𝑡) be player 2’s conditional expectation over player 1’s next period action

at history ℎ𝑡. I show the following Proposition:

Proposition A.1. For every 𝜒 > 0, 𝜆 ∈ Λ(𝜓, 𝜒), 𝜎2 ∈ NE2(𝜇, 𝜑) and 𝜖 > 0, there exist 𝛿 ∈ (0, 1)

and 𝑇 ∈ N such that for every 𝛿 > 𝛿, there exists 𝜎𝜔 : ℋ → ∆(𝐴1) that satisfies:

1. 𝜆(ℎ𝑡) ∈
⋃︀

�̃�∈[0,𝜒+𝜖) Λ(𝜓, �̃�) for every ℎ𝑡 ∈ ℋ(𝜎𝜔 ,𝜎2).
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2. For every ℎ∞ ∈ ℋ(𝜎𝜔 ,𝜎2) and every 𝑎1 ∈ 𝐴1,⃒⃒⃒ ∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡1{ℎ∞𝑡 = 𝑎1} − 𝛼*
1(𝑎1)

⃒⃒⃒
<

𝜖

2(2𝜒+ 𝜖)
(A.1)

3.

E(𝜎𝜔 ,𝜎2)
[︁
#
{︁
𝑡
⃒⃒⃒
𝑑
(︀
𝛼*
1

⃦⃦
𝛼1(·|ℎ𝑡)

)︀
> 𝜖2/2

}︁]︁
< 𝑇 (A.2)

Intuitively, Proposition A.1 demonstrates the existence of a strategy for player 1 (for every

equilibrium strategy of player 2) such that the following three goals can be achieved simultaneously:

first, inducing favorable beliefs about the state; second, the occupation measure of actions is closely

matched to 𝛼*
1; and third, the expected number of periods in which player 2’s believed action differs

significantly from 𝛼*
1 is uniformly bounded from above by an integer independent of 𝛿. My proof

follows three steps, which is the same as the description in Subsection 1.4.3.

Step 1: Let 𝐴*
1 ≡ supp(𝛼*

1). Recall that 𝒫(𝛼*
1,𝜎2) is the probability measure over ℋ induced by

the commitment type that always plays 𝛼*
1.

Let 𝜒(ℎ𝑡) ≡
∑︀𝑚

𝑖=1 𝜆𝑖(ℎ
𝑡)/𝜓𝑖. Since 𝜆 ∈ Λ(𝜓, 𝜒), we have 𝜒(ℎ0) = 𝜒. Using the observation

that {𝜆𝑖(ℎ𝑡),𝒫(𝛼*
1,𝜎2),ℱ 𝑡}𝑡∈N is a non-negative supermartingale for every 𝑖 ∈ {1, 2, ...,𝑚}, where

{ℱ 𝑡}𝑡∈N is the filtration induced by the public history,1 we know that {𝜒𝑡,𝒫(𝛼*
1,𝜎2),ℱ 𝑡}𝑡∈N is also

a non-negative supermartingale. For every 𝑎 < 𝑏, let 𝑈(𝑎, 𝑏) be the number of upcrossings from 𝑎

to 𝑏. According to the Doob’s Upcrossing Inequality (Chung 1974),

𝒫(𝛼*
1,𝜎2)

{︁
𝑈(𝜒, 𝜒+

𝜖

2
) ≥ 1

}︁
≤ 2𝜒

2𝜒+ 𝜖
. (A.3)

Let ℋ̃∞ be the set of infinite histories that 𝜒(ℎ𝑡) is always below 𝜒 + 𝜖
2 . According to (A.3), it

occurs with probability at least 𝜖
2𝜒+𝜖 .

Step 2: In this step, I show that for large enough 𝛿, there exists a subset of ℋ∞, which occurs

with probability bounded from below by a positive number, such that the occupation measure over

𝐴1 induced by every history in this set is 𝜖−close to 𝛼*
1. For every 𝑎1 ∈ 𝐴*

1, let {𝑋𝑡} be a sequence

of i.i.d. random variables such that:

𝑋𝑡 =

{︃
1 when 𝑎1,𝑡 = 𝑎1

0 otherwise .

Under 𝒫(𝛼*
1,𝜎2), 𝑋𝑡 = 1 with probability 𝛼*

1(𝑎1), so𝑋𝑡 has mean 𝛼*
1(𝑎1) and variance 𝜎2 ≡ 𝛼*

1(𝑎1)(1−
𝛼*
1(𝑎1)). Recall that 𝑛 = |𝐴1|. I start with the following Lemma:

1When 𝛼*
1 has full support, {𝜆𝑖(ℎ

𝑡),𝒫(𝛼*
1 ,𝜎2),ℱ 𝑡}𝑡∈N is a martingale. However, when 𝐴*

1 ̸= 𝐴1 and type 𝜔𝑖 plays
action 𝑎′1 /∈ 𝐴*

1 with positive probability, then the expected value of 𝜆𝑖(ℎ
𝑡) can strictly reduce.
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Lemma A.1.1. For any 𝜀 > 0, there exists 𝛿 ∈ (0, 1), such that for all 𝛿 ∈ (𝛿, 1),

lim sup
𝛿→1

𝒫(𝛼*
1,𝜎2)

(︁⃒⃒⃒ +∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡𝑋𝑡 − 𝛼*
1(𝑎1)

⃒⃒⃒
≥ 𝜀

)︁
≤ 𝜀

𝑛
. (A.4)

Proof of Lemma A.1.1: For every 𝑛 ∈ N, let �̂�𝑛 ≡ 𝛿𝑛(𝑋𝑛 − 𝛼*
1(𝑎1)). Define a triangular

sequence of random variables {𝑋𝑘,𝑛}0≤𝑛≤𝑘,𝑘,𝑛∈N, such that 𝑋𝑘,𝑛 ≡ 𝜉𝑘�̂�𝑛, where

𝜉𝑘 ≡
√︂

1

𝜎2
1 − 𝛿2

1 − 𝛿2𝑘
.

Let 𝑍𝑘 ≡
∑︀𝑘

𝑛=1𝑋𝑘,𝑛 = 𝜉𝑘
∑︀𝑛

𝑘=1 �̂�𝑛. By the Lindeberg-Feller Central Limit Theorem (Chung

1974), 𝑍𝑘 converges in law to 𝑁(0, 1). By construction,

∑︀𝑘
𝑛=1 �̂�𝑛

1 + 𝛿 + ...+ 𝛿𝑘−1
= 𝜎

√︃
1 − 𝛿2𝑘

1 − 𝛿2
1 − 𝛿

1 − 𝛿𝑘
𝑍𝑘,

the RHS of this expression converges (in distribution) to a normal distribution with mean 0 and

variance

𝜎2
1 − 𝛿2𝑘

1 − 𝛿2
(1 − 𝛿)2

(1 − 𝛿𝑘)2
.

The variance term converges to 𝒪
(︁

(1 − 𝛿)
)︁

as 𝑘 → ∞. Using Theorem 7.4.1 in Chung (1974), we

have:

sup
𝑥∈R

|𝐹𝑘(𝑥) − Φ(𝑥)| ≤ 𝐴0

𝑘∑︁
𝑛=1

|𝑋𝑘,𝑛|3 ∼ 𝐴1(1 − 𝛿)
3
2 ,

where 𝐴0 and 𝐴1 are constants, 𝐹𝑘 is the empirical distribution of 𝑍𝑘 and Φ(·) is the standard

normal distribution. Both the variance and the approximation error goes to 0 as 𝛿 → 1.

Using the properties of normal distribution, we know that for every 𝜀 > 0, there exists 𝛿 ∈ (0, 1)

such that for every 𝛿 > 𝛿, there exists 𝐾 ∈ N, such that for all 𝑘 > 𝐾,

𝒫(𝛼*
1,𝜎2)

(︁⃒⃒⃒ ∑︀𝑘
𝑖=1 �̂�𝑛

1 + 𝛿 + ...+ 𝛿𝑘−1

⃒⃒⃒
≥ 𝜀

)︁
<
𝜀

𝑛
.

Taking the 𝑘 → +∞ limit, one can obtain the conclusion in Lemma A.1.1.

Step 3: According to Lemma A.1.1, for every 𝑎1 ∈ 𝐴1 and 𝜖 > 0, there exists 𝛿 ∈ (0, 1), such

that for all 𝛿 > 𝛿, there exists ℋ∞
𝜖,𝑎1(𝛿) ⊂ ℋ∞, such that

𝒫(𝛼*
1,𝜎2)(ℋ∞

𝜀,𝑎1(𝛿)) ≥ 1 − 𝜀/𝑛, (A.5)
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and for every ℎ∞ ∈ ℋ∞
𝜀,𝑎1(𝛿), the occupation measure of 𝑎1 is 𝜀-close to 𝛼*

1(𝑎1). Let ℋ∞
𝜀 (𝛿) ≡⋂︀

𝑎1∈𝐴1
ℋ∞

𝜀,𝑎1(𝛿). According to (A.5), we have:

𝒫(𝛼*
1,𝜎2)(ℋ∞

𝜀 (𝛿)) ≥ 1 − 𝜀. (A.6)

Take 𝜀 ≡ 𝜖
2(2𝜒+𝜖) and let ̂︀ℋ∞ ≡ ℋ̃∞ ∩ℋ∞

𝜀 (𝛿), (A.7)

we have:

𝒫(𝛼*
1,𝜎2)(ℋ̂∞) ≥ 𝜖

2(2𝜒+ 𝜖)
(A.8)

According to Gossner (2011), we have

E(𝛼*
1,𝜎2)

[︁ +∞∑︁
𝜏=0

𝑑(𝛼*||𝛼(·|ℎ𝜏 ))
]︁
≤ − log𝜇(𝛼*

1). (A.9)

The Markov Inequality implies that:

E(𝛼*
1,𝜎2)

[︁ +∞∑︁
𝜏=0

𝑑(𝛼*||𝛼(·|ℎ𝜏 ))
⃒⃒⃒
ℋ̂∞

]︁
≤ −2(2𝜒+ 𝜖) log𝜇(𝛼*

1)

𝜖
. (A.10)

Let 𝒫* be the probability measure over ℋ∞ such that for every ℋ∞
0 ⊂ ℋ∞,

𝒫*(ℋ∞
0 ) ≡ 𝒫(𝛼*

1,𝜎2)(ℋ∞
0 ∩ ℋ̂∞)

𝒫(𝛼*
1,𝜎2)(ℋ̂∞)

.

Let 𝜎𝜔 : ℋ → ∆(𝐴1) be player 1’s strategy that induces 𝒫*. The expected number of periods in

which 𝑑(𝛼*
1||𝛼(·|ℎ𝑡)) > 𝜖2/2 is bounded from above by:

𝑇 ≡
⌈︁
− 4(2𝜒+ 𝜖) log𝜇(𝛼*

1)

𝜖3

⌉︁
, (A.11)

which is an integer independent of 𝛿. The three steps together establish Proposition A.1.

Part II

Proposition A.1 and 𝜆 ∈ Λ(𝛼*
1, 𝜃) do not imply that player 1 can guarantee himself his commitment

payoff. This is because player 2 may not have an incentive to play 𝑎*2 despite 𝜆 ∈ Λ(𝛼*
1, 𝜃) and the

average action is close to 𝛼*
1. My proof overcomes this challenge using two observations, which are

the two steps of my proof.

1. If 𝜆 ∈ Λ(𝛼*
1, 𝜃), is small in all but at most one entry and player 1’s average action is close to

𝛼*
1, then player 2 has a strict incentive to play 𝑎*2 regardless of the correlation. Let Λ0 be the

set of beliefs that has the above feature.

2. If 𝜆 ∈ Λ(𝛼*
1, 𝜃) and player 1’s average action is close to 𝛼*

1 but player 2 does not have a strict
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incentive to play 𝑎*2, then different types of player 1’s actions must be sufficiently different.

This implies that there is significant learning about player 1’s type after observing his action.

I show that for every 𝜆 ∈ Λ(𝛼*
1, 𝜃), there exists an integer 𝑇 and a strategy such that if player

1 picks his action according to this strategy in periods with the above feature, then after at

most 𝑇 such periods, player 2’s belief about his type will be in Λ0, which concludes the proof.

Recall that 𝑚 ≡ |Ω𝑚| + |Θ| − 1. Let 𝜓 ≡ {𝜓𝑖}𝑚𝑖=1 ∈ R𝑚
+ be defined as:

∙ If 𝜔𝑖 ∈ Θ𝑏
(𝛼*

1,𝜃)
, then 𝜓𝑖 equals to the intercept of Λ(𝛼*

1, 𝜃) on dimension 𝜔𝑖.

∙ Otherwise, 𝜓𝑖 > 0 is chosen to be large enough such that

𝑚∑︁
𝑖=1

𝜆𝑖/𝜓𝑖 < 1. (A.12)

Such 𝜓 exists given that 𝜆 ∈ Λ(𝛼*
1, 𝜃). Let 𝜓 ≡ max{𝜓𝑖|𝑖 = 1, 2, ...,𝑚}. Recall that Part I has

established the existence of a strategy for player 1 under which:

∙ Player 2’s belief always satisfies (A.12), or more precisely, bounded from above by some 𝜒 < 1.

∙ The occupation measure over 𝐴1 at every on-path infinite history is 𝜖-close to 𝛼*
1.

∙ In expectation, there exists at most 𝑇 periods in which player 2’s believed action differs

significantly from 𝛼*
1, where 𝑇 is independent of 𝛿.

Step 1: For every 𝜉 > 0, a likelihood ratio vector 𝜆 is of ‘size 𝜉’ if there exists 𝜓 ≡ (𝜓1, ..., 𝜓𝑚) ∈
R𝑚
+ such that: 𝜓𝑖 ∈ (0, 𝜓𝑖) for all 𝑖 and

𝜆 ∈
{︁
�̃� ∈ R𝑚

+

⃒⃒⃒ 𝑚∑︁
𝑖=1

�̃�𝑖/𝜓𝑖 < 1
}︁
⊂

{︁
�̃� ∈ R𝑚

+

⃒⃒⃒
#{𝑖|�̃�𝑖 ≤ 𝜉} ≥ 𝑚− 1

}︁
. (A.13)

Intuitively, 𝜆 is of size 𝜉 if there exists a downward sloping hyperplane such that all likelihood ratio

vectors below this hyperplane have at least 𝑚 − 1 entries that are no larger than 𝜉. Therefore,

for every 𝜉 > 𝜉′ > 0, if 𝜆 is of size 𝜉′, then it is also of size 𝜉. Proposition A.2 establishes the

commitment payoff bound when 𝜆 is of size 𝜉 for 𝜉 small enough.

Proposition A.2. There exists 𝜉 > 0, such that if 𝜆 is of size 𝜉, then

lim inf
𝛿→1

𝑉 𝜃(𝜇, 𝛿, 𝜑) ≥ 𝑢1(𝜃, 𝛼
*
1, 𝑎

*
2).

In the proof, I show that using the strategy constructed in Proposition A.1, we can ensure that 𝑎*2
is player 2’s strict best reply at every ℎ𝑡 where 𝑑(𝛼*

1||𝛼1(·|ℎ𝑡)) < 𝜖2/2. This implies Proposition A.2.
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Proof of Proposition A.2: Let 𝛼1(·|ℎ𝑡, 𝜔𝑖) ∈ ∆(𝐴1) be the equilibrium action of type 𝜔𝑖 at

history ℎ𝑡. Let

𝐵𝑖,𝑎1(ℎ𝑡) ≡ 𝜆𝑖(ℎ
𝑡)
(︁
𝛼*
1(𝑎1) − 𝛼1(𝑎1|ℎ𝑡, 𝜔𝑖)

)︁
. (A.14)

Recall that

𝛼1(·|ℎ𝑡) ≡
𝛼*
1 +

∑︀𝑚
𝑖=1 𝜆𝑖(ℎ

𝑡)𝛼1(·|ℎ𝑡, 𝜔𝑖)

1 +
∑︀𝑚

𝑖=1 𝜆𝑖(ℎ
𝑡)

.

is the average action anticipated by player 2. For any 𝜆 ∈ Λ(𝛼*
1, 𝜃) and 𝜖 > 0, there exists 𝜀 > 0

such that at every likelihood ratio vector ̃︀𝜆 satisfying:

𝑚∑︁
𝑖=1

̃︀𝜆𝑖/𝜓𝑖 <
1

2

(︁
1 +

𝑚∑︁
𝑖=1

𝜆𝑖/𝜓𝑖

)︁
, (A.15)

𝑎*2 is player 2’s strict best reply to every {𝛼1(·|ℎ𝑡, 𝜔𝑖)}𝑚𝑖=1 satisfying the following two conditions

∙ |𝐵𝑖,𝑎1(ℎ𝑡)| < 𝜀 for all 𝑖 and 𝑎1.

∙
⃦⃦
𝛼*
1 − 𝛼1(·|ℎ𝑡)

⃦⃦
≤ 𝜖.

This is because when the prior belief satisfies (A.15), 𝑎*2 is player 2’s strict best reply when all types

of player 1 are playing 𝛼*
1. When 𝜖 and 𝜀 are both small enough, an 𝜖-deviation of the average

action together with an 𝜀 correlation between types and actions cannot overturn this strictness.

According to the Pinsker’s Inequality,
⃦⃦
𝛼*
1 − 𝛼1(·|ℎ𝑡)

⃦⃦
≤ 𝜖 is implied by 𝑑(𝛼*

1||𝛼1(·|ℎ𝑡)) ≤ 𝜖2/2.

Pick 𝜖 and 𝜉 small enough such that:

𝜖 <
𝜀

2(1 + 𝜓)
(A.16)

and

𝜉 <
𝜀

(𝑚− 1)(1 + 𝜀)
. (A.17)

Suppose 𝜆𝑖(ℎ
𝑡) ≤ 𝜉 for all 𝑖 ≥ 2, since

⃦⃦
𝛼*
1 − 𝛼1(·|ℎ𝑡)

⃦⃦
≤ 𝜖, we have:

⃦⃦⃦
𝜆1(𝛼

*
1 − 𝛼1(𝑎1|ℎ𝑡, 𝜔1)) +

𝑚∑︁
𝑖=2

𝜆𝑖
(︀
𝛼*
1 − 𝛼1(𝑎1|ℎ𝑡, 𝜔𝑖)

)︀⃦⃦⃦
1 + 𝜆1 + 𝜉(𝑚− 1)

≤ 𝜖.

The triangular inequality implies that:

⃦⃦⃦
𝜆1(𝛼

*
1 − 𝛼1(𝑎1|ℎ𝑡, 𝜔1))

⃦⃦⃦
≤

𝑚∑︁
𝑖=2

⃦⃦⃦
𝜆𝑖(𝛼

*
1 − 𝛼1(𝑎1|ℎ𝑡, 𝜔𝑖))

⃦⃦⃦
+ 𝜖

(︁
1 + 𝜆1 + 𝜉(𝑚− 1)

)︁
≤ 𝜉(𝑚− 1) + 𝜖

(︁
1 + 𝜓 + 𝜉(𝑚− 1)

)︁
≤ 𝜀. (A.18)

where the last inequality uses (A.16) and (A.17). Inequality (A.18) implies that ||𝐵1,𝑎1(ℎ𝑡)|| ≤
𝜀, and therefore, when 𝜆 is of size 𝜉, 𝑎*2 is player 2’s strict best reply at every history where

𝑑(𝛼*
1||𝛼1(·|ℎ𝑡)) ≤ 𝜖2/2. This further implies that the commitment payoff bound is guaranteed.
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Step 2: In this step, I use Proposition A.2 to show that the mixed commitment payoff is guaran-

teed for every 𝜆 satisfying (A.12). Recall the definition of 𝐵𝑖,𝑎1(ℎ𝑡) in (A.14). According to Bayes

Rule, if 𝑎1 ∈ 𝐴*
1 is observed at ℎ𝑡, then

𝜆𝑖(ℎ
𝑡) − 𝜆𝑖(ℎ

𝑡, 𝑎1) =
𝐵𝑖,𝑎1(ℎ𝑡)

𝛼*
1(𝑎1)

and
∑︁

𝑎1∈𝐴*
1

𝛼*
1(𝑎1)

(︁
𝜆𝑖(ℎ

𝑡) − 𝜆𝑖(ℎ
𝑡, 𝑎1)

)︁
≥ 0.

Let

𝐷(ℎ𝑡, 𝑎1) ≡
(︁
𝜆𝑖(ℎ

𝑡) − 𝜆𝑖(ℎ
𝑡, 𝑎1)

)︁𝑚

𝑖=1
∈ R𝑚.

Suppose 𝐵𝑖,𝑎1(ℎ𝑡) ≥ 𝜀 for some 𝑖 and 𝑎1 ∈ 𝐴*
1, then ||𝐷(ℎ𝑡, 𝑎1)|| ≥ 𝜀 where || · || denotes the ℒ2-

norm. Pick 𝜉 > 0 small enough to meet the requirement in Proposition A.2. Define two sequences

of sets, {Λ𝑘}∞𝑘=0 and {̂︀Λ𝑘}∞𝑘=1, which satisfy Λ𝑘, ̂︀Λ𝑘 ⊂ Λ(𝛼*
1, 𝜃) for all 𝑘 ∈ N, recursively as follows:

∙ Let Λ0 be the set of likelihood ratio vectors that are of size 𝜉,

∙ For every 𝑘 ≥ 1, let ̂︀Λ𝑘 be the set of likelihood ratio vectors in Λ(𝛼*
1, 𝜃) such that if 𝜆(ℎ𝑡) ∈ ̂︀Λ𝑘,

then either 𝜆(ℎ𝑡) ∈ Λ𝑘−1 or, For every {𝛼1(·|ℎ𝑡, 𝜔𝑖)}𝑚𝑖=1 such that ||𝐷(ℎ𝑡, 𝑎1)|| ≥ 𝜀 for some

𝑎1 ∈ 𝐴*
1, there exists 𝑎*1 ∈ 𝐴*

1 such that 𝜆(ℎ𝑡, 𝑎*1) ∈ Λ𝑘−1.

∙ Let Λ𝑘 be the set of likelihood ratio vectors in Λ(𝛼*
1, 𝜃) such that for every �̃� ∈ Λ𝑘, there

exists 𝜓 ≡ (𝜓1, ..., 𝜓𝑚) ∈ R𝑚
+ such that: 𝜓𝑖 ∈ (0, 𝜓𝑖) for all 𝑖 and

𝜆 ∈
{︁
�̃� ∈ R𝑚

+

⃒⃒⃒ 𝑚∑︁
𝑖=1

�̃�𝑖/𝜓𝑖 < 1
}︁
⊂

(︁ 𝑘−1⋃︁
𝑗=0

Λ𝑗
)︁⋃︁ ̂︀Λ𝑘. (A.19)

By construction, we know that:

{︁
�̃� ∈ R𝑚

+

⃒⃒⃒ 𝑚∑︁
𝑖=1

�̃�𝑖/𝜓𝑖 < 1
}︁
⊂

𝑘⋃︁
𝑗=0

Λ𝑗 = Λ𝑘. (A.20)

Since (0, ..., 𝜓𝑖 − 𝜐, ..., 0) ∈ Λ0 for any 𝑖 ∈ {1, 2, ...,𝑚} and 𝜐 > 0, so co(Λ0) = Λ(𝛼*
1, 𝜃). By

definition, {Λ𝑘}𝑘∈N is an increasing sequence with Λ𝑘 ⊂ Λ(𝛼*
1, 𝜃) = co(Λ𝑘) for any 𝑘 ∈ N, i.e. it is

bounded from above by a compact set. Therefore lim𝑘→∞
⋃︀𝑘

𝑗=0 Λ𝑗 ≡ Λ∞ exists and is a subset of

clo
(︁

Λ(𝛼*
1, 𝜃)

)︁
. The next Lemma shows that clo(Λ∞) coincides with clo

(︁
Λ(𝛼*

1, 𝜃)
)︁

.

Lemma A.1.2. clo(Λ∞) = clo
(︁

Λ(𝛼*
1, 𝜃)

)︁
Proof of Lemma A.1.2: Since Λ𝑘 ⊂ Λ(𝛼*

1, 𝜃) for every 𝑘 ∈ N, it is obvious that clo(Λ∞) ⊂
clo

(︁
Λ(𝛼*

1, 𝜃)
)︁

. Suppose towards a contradiction that

clo(Λ∞) ( clo
(︁

Λ(𝛼*
1, 𝜃)

)︁
(A.21)

∙ Let ̂︀Λ ⊂ Λ(𝛼*
1, 𝜃) be such that if 𝜆(ℎ𝑡) ∈ ̂︀Λ, then either 𝜆(ℎ𝑡) ∈ Λ∞ or:
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– For every {𝛼1(·|ℎ𝑡, 𝜔𝑖)}𝑚𝑖=1 such that ||𝐷(ℎ𝑡, 𝑎1)|| ≥ 𝜀 for some 𝑎1 ∈ 𝐴*
1, there exists

𝑎*1 ∈ 𝐴*
1 such that 𝜆(ℎ𝑡, 𝑎*1) ∈ Λ∞.

∙ Let Λ̆ be the set of likelihood ratio vectors in Λ(𝛼*
1, 𝜃) such that for every �̃� ∈ Λ̆, there exists

𝜓 ≡ (𝜓1, ..., 𝜓𝑚) ∈ R𝑚
+ such that: 𝜓𝑖 ∈ (0, 𝜓𝑖) for all 𝑖 and

𝜆 ∈
{︁
�̃� ∈ R𝑚

+

⃒⃒⃒ 𝑚∑︁
𝑖=1

�̃�𝑖/𝜓𝑖 < 1
}︁
⊂

(︁
Λ∞

⋃︁̂︀Λ)︁
. (A.22)

Since Λ∞ is defined as the limit of the above operator, so in order for (C.21) to be true, it has to

be the case that Λ̆ = Λ∞, or Ξ ∩ Λ̆ = {∅} where

Ξ ≡ clo
(︁

Λ(𝛼*
1, 𝜃)

)︁⃥︁
clo(Λ∞). (A.23)

One can check that Ξ is convex and has non-empty interior. For every 𝜚 > 0, there exists 𝑥 ∈ Ξ,

𝜃 ∈ (0, 𝜋/2) and a halfspace: 𝐻(𝜒) ≡
{︁
�̃�
⃒⃒⃒∑︀𝑚

𝑖=1 �̃�𝑖/𝜒𝑖 ≤ 𝜒
}︁

with 𝜑 > 0 satisfying:

1.
∑︀𝑚

𝑖=1 𝑥𝑖/𝜓𝑖 = 𝜒.

2. 𝜕𝐵(𝑥, 𝑟)
⋂︀
𝐻(𝜒)

⋂︀
Λ(𝛼*

1, 𝜃) ⊂ Λ∞ for every 𝑟 ≥ 𝜚.

3. For every 𝑟 ≥ 𝜌 and 𝑦 ∈ 𝜕𝐵(𝑥, 𝑟) ∩ Λ(𝛼*
1, 𝜃), either 𝑦 ∈ Λ∞ or 𝑑(𝑦,𝐻(𝜒)) > 𝑟 sin 𝜃, where

𝑑(·, ·) denotes the Hausdorff distance.

The second and third property used the non-convexity of clo(Λ∞). Suppose 𝜆(ℎ𝑡) = 𝑥 for some ℎ𝑡

and there exists 𝑎1 ∈ 𝐴*
1 such that ||𝐷(ℎ𝑡, 𝑎1)|| ≥ 𝜀,

∙ Either 𝜆(ℎ𝑡, 𝑎1) ∈ Λ∞, in which case 𝑥 ∈ Λ̆ but 𝑥 ∈ Ξ, leading to a contradiction.

∙ Or 𝜆(ℎ𝑡, 𝑎1) /∈ Λ∞. Requirement 3 implies that 𝑑(𝜆(ℎ𝑡, 𝑎1), 𝐻(𝜒)) > 𝜀 sin 𝜃. On the other

hand, ∑︁
𝑎′1∈𝐴*

1

𝛼*
1(𝑎

′
1)𝜆𝑖(ℎ

𝑡, 𝑎′1) ≤ 𝜆𝑖(ℎ
𝑡) (A.24)

for every 𝑖. Requirement 1 then implies that
∑︀

𝑎′1∈𝐴*
1
𝛼*
1(𝑎

′
1)𝜆𝑖(ℎ

𝑡, 𝑎′1) ∈ 𝐻(𝜒), which is to

say: ∑︁
𝑎′1∈𝐴*

1

𝛼*
1(𝑎

′
1)

𝑚∑︁
𝑖=1

𝜆𝑖(ℎ
𝑡, 𝑎′1)/𝜓𝑖 ≤ 𝜒. (A.25)

According to Requirement 2, 𝜆(ℎ𝑡, 𝑎1) /∈ 𝐻(𝜒), i.e.
∑︀𝑚

𝑖=1 𝜆𝑖(ℎ
𝑡, 𝑎1)/𝜓𝑖 > 𝜒 + 𝜀𝜅 for some

constant 𝜅 > 0. Take

𝜌 ≡ 1

2
min
𝑎1∈𝐴*

1

{𝛼*
1(𝑎1)}𝜀𝜅,

(A.24) implies the existence of 𝑎*1 ∈ 𝐴*
1∖{𝑎1} such that 𝜆(ℎ𝑡, 𝑎*1) ∈ 𝐻(𝜒) ∩ 𝐵(𝑥, 𝜌). Require-

ment 2 then implies that 𝑥 = 𝜆(ℎ𝑡) ∈ Λ̆. Since 𝑥 ∈ Ξ, this leads to a contradiction.
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Therefore, (A.21) cannot be true, which validates the conclusion of Lemma A.1.2.

Lemma A.1.2 implies that for every 𝜆 ∈ Λ(𝛼*
1, 𝜃), there exists an integer 𝐾 ∈ N independent of

𝛿 such that 𝜆 ∈ Λ𝐾 . Statement 3 can then be shown by induction on 𝐾. According to Proposition

A.2, the statement holds when 𝐾 = 0. Suppose the statement applies to every 𝐾 ≤ 𝐾* − 1, let

us consider the case when 𝐾 = 𝐾*. According to the construction of Λ𝐾*
, there exists a strategy

for player 1 such that whenever 𝑎*2 is not player 2’s best reply despite 𝑑(𝛼*
1‖𝛼1(·|ℎ𝑡)) < 𝜖2/2, then

the posterior belief after observing 𝑎1,𝑡 is in Λ𝐾*−1, under which the commitment payoff bound is

attained by the induction hypothesis.

A.2 Proof of Theorem 1.1, Statement 2

In this Appendix, I prove statement 2. The proof of statement 4 involves some additional technical

complication, which is relegated to Online Appendix B. The key intuition behind the distinction of

pure and mixed commitment strategies in the construction of low payoff equilibria is summarized

in Proposition B.3 and Proposition B.6 in Online Appendix B.

In this section, I replace 𝛼*
1 with 𝑎*1. Let Π(𝑎*1, 𝜃), Π(𝑎*1, 𝜃) and Π(𝑎*1, 𝜃) be the exteriors of

Λ(𝑎*1, 𝜃), Λ(𝑎*1, 𝜃) and Λ(𝑎*1, 𝜃), respectively. I start with the following Lemma, which clarifies the

restriction that BR2(𝑎
*
1, 𝜑𝑎*1) being a singleton.

Lemma A.2.1. For every 𝜆 ∈ Π(𝑎*1, 𝜃), there exist 0 ≪ 𝜆′ ≪ 𝜆 and 𝑎′2 ̸= 𝑎*2 such that 𝜆′ ∈ Π(𝑎*1, 𝜃)

and ∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)
(︁
𝑢2(𝜃, 𝑎

*
1, 𝑎

′
2) − 𝑢2(𝜃, 𝑎

*
1, 𝑎

*
2)
)︁
> 0 (A.26)

if either one the following three conditions hold:

1. Λ(𝑎*1, 𝜃) ̸= {∅}.

2. Λ(𝑎*1, 𝜃) = {∅} and BR2(𝑎
*
1, 𝜑𝑎*1) is a singleton.

3. Λ(𝑎*1, 𝜃) = {∅} and 𝑎*2 /∈ BR2(𝑎
*
1, 𝜑𝑎*1).

Proof of Lemma A.2.1: When Λ(𝑎*1, 𝜃) ̸= {∅}, by definition of Π(𝑎*1, 𝜃), there exists 0 ≪ 𝜆′ ≪ 𝜆

and 𝑎′2 ̸= 𝑎*2 such that:(︁
𝑢2(𝜑𝑎*1 , 𝑎

*
1, 𝑎

′
2) − 𝑢2(𝜑𝑎*1 , 𝑎

*
1, 𝑎

*
2)
)︁

+
∑︁

𝜃∈Θ𝑏
(𝑎*1,𝜃)

𝜆′(𝜃)
(︁
𝑢2(𝜃, 𝑎

*
1, 𝑎

′
2) − 𝑢2(𝜃, 𝑎

*
1, 𝑎

*
2)
)︁
> 0. (A.27)

But Λ(𝑎*1, 𝜃) ̸= {∅} implies that {𝑎*2} = BR2(𝑎
*
1, 𝜑𝑎*1), so (A.27) implies (A.26).

When Λ(𝑎*1, 𝜃) = {∅}, if BR2(𝑎
*
1, 𝜑𝑎*1) is a singleton, then BR2(𝑎

*
1, 𝜑𝑎*1) ̸= {𝑎*2}. Therefore,

under condition 2 or 3, 𝑎*2 /∈ BR2(𝑎
*
1, 𝜑𝑎*1), which implies the existence of 𝜃′ ̸= 𝜃 and 𝑎′2 ̸= 𝑎*2 such
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that 𝑢2(𝜃
′, 𝑎*1, 𝑎

′
2) > 𝑢2(𝜃

′, 𝑎*1, 𝑎
*
2). By definition, 𝜃′ ∈ Θ𝑏

(𝑎*1,𝜃)
. Let

𝜆′(𝜃) ≡

{︃
𝜆(𝜃) if 𝜃 = 𝜃′

0 otherwise

𝜆′ satisfies (A.26) since 𝜇(𝜔) > 0 for every 𝜔 ∈ Ω.

Remark: Lemma A.2.1 leaves out the case in which Λ(𝑎*1, 𝜃) = {∅} and 𝑎*2 ∈ BR2(𝑎
*
1, 𝜑𝑎*1).

In this pathological case, whether player 1 can guarantee his commitment payoff or not depends

on the presence of other commitment types. For example, when Θ = {𝜃, 𝜃′}, 𝐴1 = {𝑎*1, 𝑎′1},

𝐴2 = {𝑎*2, 𝑎′2} and Ω𝑚 = {𝑎*1, (1 − 𝜖)𝑎*1 + 𝜖𝑎′1} with 𝜑𝑎*1(𝜃′) = 1 and 𝜑(1−𝜖)𝑎*1+𝜖𝑎′1
(𝜃) = 1. Suppose

{𝑎*2} = BR2(𝑎
*
1, 𝜃) = BR2(𝑎

′
1, 𝜃) and {𝑎*2, 𝑎′2} = BR2(𝑎

*
1, 𝜃

′) = BR2(𝑎
′
1, 𝜃

′). Then type 𝜃 can

guarantee himself payoff 𝑢1(𝜃, 𝑎
*
1, 𝑎

*
2) by always playing 𝑎*1 even though 𝜆 ∈ Π(𝑎*1, 𝜃) since 𝑎′1 is

always player 2’s strictly best reply given the presence of commitment type playing (1− 𝜖)𝑎*1 + 𝜖𝑎′1.

Overview of Two Phase Construction: Let player 1’s payoff function be:

𝑢1(𝜃, 𝑎1, 𝑎2) ≡ 1{𝜃 = 𝜃, 𝑎1 = 𝑎*1, 𝑎2 = 𝑎*2}. (A.28)

By definition, 𝑣𝜃(𝑎
*
1) = 1. The sequential equilibrium I construct has a ‘normal phase’ and an

‘abnormal phase’. Type 𝜃’s equilibrium action is pure at every history occurring with positive

probability under (𝜎𝜃, 𝜎2). Play starts from the normal phase and remains in it as long as all past

actions equal to type 𝜃’s equilibrium actions. Otherwise, play switches to the abnormal phase and

stays there forever.

Let 𝐴1 ≡ {𝑎01, ..., 𝑎
𝑛−1
1 }. I show there exists a constant 𝑞 ∈ (0, 1) (independent of 𝛿) such that:

∙ After a bounded number of periods (uniform for all 𝛿), type 𝜃 obtains expected payoff 1 − 𝑞

in every period in the normal phase, i.e. his payoff is approximately 1 − 𝑞 when 𝛿 → 1.

∙ Type 𝜃’s continuation payoff is bounded below 1−2𝑞 in the beginning of the abnormal phase.

Strategies in the Normal Phase: Let Θ(𝑎*1,𝜃)
≡ Θ∖Θ𝑏

(𝑎*1,𝜃)
, which are the set of good strategic

types.

∙ ‘Mechanical’ Strategic Types: Every strategic type in Θ(𝑎*1,𝜃)
∖{𝜃} plays 𝛼1 ∈ Ω𝑚∖{𝑎*1}

forever, with 𝛼1 being arbitrarily chosen.2 For every strategic type 𝜃 ∈ Θ𝑏
(𝑎*1,𝜃)

, he plays 𝛼1

forever with probability 𝑥(𝜃) ∈ [0, 1] such that conditional on player 2 knowing that

– player 1 is either a bad strategic type who is not always playing 𝛼1; or he is the com-

mitment type that is always playing 𝑎*1.

2If Ω𝑚 = {𝑎*1}, then all types in Θ(𝑎*
1 ,𝜃)

∖{𝜃} play some arbitrarily chosen 𝑎′1 ̸= 𝑎*1.
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the likelihood ratio vector induced by her belief equals to 𝜆′, with 𝜆′ being defined in Lemma

A.2.1.

In what follows, I treat the strategic types that are always playing 𝛼1 as the commitment

type that is playing 𝛼1. Formally, let

Ω̃𝑚 ≡

{︃
{𝑎′1} if |Ω𝑚| = 1

Ω𝑚∖{𝑎*1} otherwise .

Let 𝑙 ≡ |Ω̃𝑚|. By construction, we have 𝑙 ≥ 1. Let 𝜑𝛼1 ∈ ∆(Θ) be the adjusted distribution

conditional on player 1 being either commitment type 𝛼1 or strategic type 𝜃 ∈ Θ(𝑎*1,𝜃)
∖{𝜃}

that always plays 𝛼1.

∙ Other Bad Strategic Types: Conditional on not always playing 𝛼1, type 𝜃 ∈ Θ𝑏
(𝑎*1,𝜃)

plays

𝑎*1 forever with probability 𝑝 ∈ [0, 1), with 𝑝 chosen such that there exists 𝑎′2 ̸= 𝑎*2 with

𝑢2(𝜑𝑎*1 , 𝑎
*
1, 𝑎

′
2) + 𝑝

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝑎
*
1, 𝑎

′
2) > 𝑢2(𝜑𝑎*1 , 𝑎

*
1, 𝑎

*
2) + 𝑝

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝑎
*
1, 𝑎

*
2)

(A.29)

for all 𝑝 ∈ [𝑝, 1]. According to the construction of 𝜆′, Lemma A.2.1 also implies that∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝑎
*
1, 𝑎

′
2) >

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝑎
*
1, 𝑎

*
2). (A.30)

For every 𝜃 ∈ Θ𝑏
(𝑎*1,𝜃)

, type 𝜃 plays 𝑎*1 forever with probability 𝑝, he plays 𝛼1 ∈ Ω̃𝑚 in the

normal phase with probability 1−𝑝
𝑙 .

Call the bad strategic type(s) who always play 𝛼1 ∈ Ω̃𝑚∪{𝑎*1} in the normal phase type 𝜃(𝛼1).

Let 𝜇𝑡(𝜃(𝛼1)) be the total probability of such type in period 𝑡. By construction, throughout

the normal phase, if 𝜇𝑡(𝛼1) = 0, then 𝜇𝑡(𝜃(𝛼1)) = 0; if 𝜇𝑡(𝛼1) ̸= 0, then 𝜇𝑡(𝜃(𝛼1))/𝜇𝑡(𝛼1) =

𝜇0(𝜃(𝛼1))/𝜇0(𝛼1).

Next, I describe type 𝜃’s normal phase strategy:

1. Preparation Sub-Phase: This phase lasts from period 0 to 𝑛−1. Type 𝜃 plays 𝑎𝑖1 in period

𝑖 for all 𝑖 ∈ {0, 1, ..., 𝑛− 1}. This is to rule out all pure strategy commitment types.

2. Value Delivery Sub-Phase: This phase starts from period 𝑛. Type 𝜃 plays either 𝑎*1 or

some 𝑎′1 ̸= 𝑎*1, depending on the realization of 𝜉𝑡. The probability that 𝑎*1 being prescribed is

𝑞.

I claim that type 𝜃’s expected payoff is close to 1− 𝑞 if he plays type 𝜃’s equilibrium strategy when

𝛿 is sufficiently close to 1. This is because in the normal phase:

∙ After period 𝑛, player 2 attaches probability 0 to all pure strategy commitment types.
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∙ Starting from period 𝑛, whenever player 2 observes player 1 playing his equilibrium action,

there exists 𝜚 > 1 such that:

𝜇𝑡+1(𝜃)
⧸︁(︁

𝜇𝑡+1(𝛼1) + 𝜇𝑡+1(𝜃(𝛼1))
)︁
≥ 𝜚𝜇𝑡(𝜃)

⧸︁(︁
𝜇𝑡(𝛼1) + 𝜇𝑡(𝜃(𝛼1))

)︁
. (A.31)

for every 𝛼1 ∈ Ω̃𝑚 satisfying 𝜇𝑡(𝛼1) ̸= 0.

So there exists 𝑇 ∈ N independent of 𝛿 such that in period 𝑡 ≥ 𝑇 , 𝑎*2 is player 2’s strict

best reply conditional on 𝜉𝑡 prescribing 𝑎*1 and play remains in the normal phase. Therefore,

type 𝜃’s expected payoff at every normal phase information set must be within the following

interval: [︁
(1 − 𝛿𝑇 )0 + 𝛿𝑇 (1 − 𝑞), (1 − 𝛿𝑇 ) + 𝛿𝑇 (1 − 𝑞)

]︁
.

Both the lower and the upper bound of this interval will converge to 1 − 𝑞 as 𝛿 → 1.

Strategies in the Abnormal Phase: In the abnormal phase, player 2 has ruled out the pos-

sibility that player 1 is type 𝜃. Type 𝜃(𝑎*1)’s strategy also remains the same. For every 𝛼1 ∈ Ω̃𝑚,

type 𝜃(𝛼1) plays:

�̂�1(𝛼1) ≡ (1 − 𝜂

2
)𝑎*1 +

𝜂

2
�̃�1(𝛼1)

where:

�̃�1(𝛼1)[𝑎1] ≡

{︃
0 when 𝑎1 = 𝑎*1
𝛼1(𝑎1)/(1 − 𝛼1(𝑎

*
1)) otherwise .

I choose 𝜂 > 0 such that max𝛼1∈Ω̃𝑚 𝛼1(𝑎
*
1) < 1 − 𝜂, and for every 𝛼′

1 ∈ ∆(𝐴1) satisfying 𝛼′
1(𝑎

*
1) ≥

1 − 𝜂, we have: ∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝛼
′
1, 𝑎

′
2) >

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝛼
′
1, 𝑎

*
2).

Such 𝜂 exists according to (A.30).

Next, I verify that type 𝜃 has no incentive to trigger the abnormal phase. Instead of explicitly

constructing his abnormal phase strategy, I compute an upper bound on his payoff in the beginning

of the abnormal phase. Let 𝛽(𝛼1) ≡ 𝜇𝑡(𝜃(𝛼1))/𝜇𝑡(𝛼1). Since max𝛼1∈Ω̃𝑚 𝛼1(𝑎
*
1) < 1 − 𝜂, so if 𝑎*1 is

observed in period 𝑡,

𝛽𝑡+1(𝛼1) ≥
1 − 𝜂/2

1 − 𝜂
𝛽𝑡(𝛼1),

for every 𝛼1 ∈ Ω̃𝑚. Let 𝛾 ≡ 1 − min𝛼1∈Ω̃𝑚 𝛼1(𝑎
*
1). If 𝑎1 ̸= 𝑎*1 is observed in period 𝑡, by definition

of �̃�1(𝛼1),

𝛽𝑡+1(𝛼1) ≥
𝜂

2𝛾
𝛽𝑡(𝛼1).
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Let 𝑘 ≡
⌈︁

log 2𝛾
𝜂

⧸︁
log 1−𝜂/2

1−𝜂

⌉︁
. For every 𝛼1 ∈ Ω̃𝑚, let 𝛽(𝛼1) be the smallest 𝛽 ∈ R+ such that:

𝑢2(𝜑𝛼1 , 𝛼1, 𝑎
′
2)+𝛽

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, �̂�1(𝛼1), 𝑎
′
2) ≥ 𝑢2(𝜑𝛼1 , 𝛼1, 𝑎

*
2)+𝛽

∑︁
𝜃∈Θ𝑏

(𝑎*1,𝜃)

𝜆′(𝜃)𝑢2(𝜃, 𝛼1(𝛼1), 𝑎
*
2)

The choice of 𝜂 and (A.30) ensures the existence of such 𝛽(𝛼1). Let 𝛽 ≡ 2 max𝛼1∈Ω̃𝑚 𝛽(𝛼1) and

𝛽 ≡ min𝛼1∈Ω̃𝑚
𝜇(𝜃(𝛼1))
𝜇(𝛼1)

. Let 𝑇1 ≡
⌈︁

log 𝛽
𝛽

⧸︁
log 1−𝜂/2

1−𝜂

⌉︁
. In the beginning of the abnormal phase

(regardless of when it is triggered), 𝛽𝑡(𝛼1) ≥ 𝛽 for all 𝛼1 ∈ Ω̃𝑚. After player 2 observing 𝑎*1 for 𝑇1

consecutive periods, 𝑎*2 is being strictly dominated by 𝑎′2 until he observes some 𝑎′1 ̸= 𝑎*1. Every

time player 1 plays any 𝑎′1 ̸= 𝑎*1, he can trigger outcome (𝑎*1, 𝑎
*
2) for at most 𝑘 consecutive periods

before 𝑎*2 is being strictly dominated by 𝑎′2 again. Therefore, type 𝜃’s payoff in the abnormal phase

is at most:

(1 − 𝛿𝑇1) + 𝛿𝑇1

{︁
(1 − 𝛿𝑘−1) + 𝛿𝑘(1 − 𝛿𝑘−1) + 𝛿2𝑘(1 − 𝛿𝑘−1) + ...

}︁
The term in the curly bracket converges to 𝑘

1+𝑘
as 𝛿 → 1. Let 𝑞 ≡ 𝑘

2(𝑘+1)+1
, type 𝜃’s payoff in

beginning of the abnormal phase cannot exceed 1 − 2𝑞.

Remark: My construction in the abnormal phase is reminiscent of Jehiel and Samuelson (2012),

in which the short-run players mistakenly believe that the strategic long-run player is using a

stationary strategy. In the abnormal phase of my construction, player 2’s belief attaches positive

probability only to types that are playing stationary strategies. This leads to a similar reputation

manipulation procedure: Type 𝜃 faces a trade-off between playing 𝑎*1 at the expense of his reputation

and playing other actions to build-up his reputation in the abnormal phase. My construction

ensures that the speed of reputation building is bounded from above while the speed of reputation

deterioration is bounded from below. When player 1’s reputation is sufficiently bad, player 2 has a

strict incentive to play 𝑎′2, which punishes type 𝜃 for at least one period.

A.3 Proof of Theorem 1.2

I prove Theorem 1.2 for all games satisfying Assumptions 1.1, 1.2 and 1.3 while allowing 𝑎2,𝑡 to

depend on ℎ𝑡 ≡ {𝑎1,𝑠, 𝑎2,𝑠, 𝜉𝑠}𝑠≤𝑡−1. To avoid cumbersome notation, I focus on the case where 𝜉𝑡 has

a finite number of realizations and there are no other commitment types, i.e. Ω𝑚 = {𝑎1}. This is

without loss of generality since when player 1 always plays 𝑎1, the probability of other commitment

types becomes negligible relative to type 𝑎1 after a bounded number of periods, and those periods

have negligible payoff consequences as 𝛿 → 1.
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A.3.1 Several Useful Constants

I start with defining several useful constants which depend only on 𝜇, 𝑢1 and 𝑢2, while making no

reference to 𝜎 and 𝛿. Let 𝑀 ≡ max𝜃,𝑎1,𝑎2 |𝑢1(𝜃, 𝑎1, 𝑎2)| and

𝐾 ≡ max
𝜃∈Θ

{︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

}︁⧸︁
min
𝜃∈Θ

{︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

}︁
.

Since 𝒟(𝜑𝑎1 , 𝑎1) > 0, expression (1.10) implies the existence of 𝜅 ∈ (0, 1) such that:

𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝜇(𝜃)𝒟(𝜃, 𝑎1) > 0.

For any 𝜅 ∈ (0, 1), let

𝜌0(𝜅) ≡ (1 − 𝜅)𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1)

2 max(𝜃,𝑎1) |𝒟(𝜃, 𝑎1)|
> 0 (A.32)

and

𝑇 0(𝜅) ≡ ⌈1/𝜌0(𝜅)⌉. (A.33)

Let

𝜌1(𝜅) ≡ 𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1)

max(𝜃,𝑎1) |𝒟(𝜃, 𝑎1)|
. (A.34)

and

𝑇 1(𝜅) ≡ ⌈1/𝜌1(𝜅)⌉. (A.35)

Let 𝛿 ∈ (0, 1) be close enough to 1 such that for every 𝛿 ∈ [𝛿, 1) and 𝜃𝑝 ∈ Θ𝑝,

(1 − 𝛿𝑇 0(0))𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑇 0(0)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) >
1

2

(︁
𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝑢1(𝜃𝑝, 𝑎1, 𝑎2)

)︁
. (A.36)

A.3.2 Random History & Random Path

Let ℎ𝑡 ≡ (𝑎𝑡, 𝑟𝑡), with 𝑎𝑡 ≡ (𝑎1,𝑠)𝑠≤𝑡−1 and 𝑟𝑡 ≡ (𝑎2,𝑠, 𝜉𝑠)𝑠≤𝑡−1. Let 𝑎𝑡* ≡ (𝑎1, ..., 𝑎1). I call ℎ𝑡 a

public history, 𝑟𝑡 a random history and 𝑟∞ a random path.

Let ℋ and ℛ be the set of public histories and random histories, respectively, with ≻, %, ≺ and

- naturally defined. Recall that a strategy profile 𝜎 consists of (𝜎𝜔)𝜔∈Ω with 𝜎𝜔 : ℋ → ∆(𝐴1) and

𝜎2 : ℋ → ∆(𝐴2). Let 𝒫𝜎(𝜔) be the probability measure over public histories induced by (𝜎𝜔, 𝜎2).

Let 𝒫𝜎 ≡
∑︀

𝜔∈Ω 𝜇(𝜔)𝒫𝜎(𝜔). Let 𝑉 𝜎(ℎ𝑡) ≡ (𝑉 𝜎
𝜃 (ℎ𝑡))𝜃∈Θ ∈ R|Θ| be the continuation payoff vector

for strategic types at ℎ𝑡.

Let ℋ𝜎 ⊂ ℋ be the set of histories ℎ𝑡 such that 𝒫𝜎(ℎ𝑡) > 0, and let ℋ𝜎(𝜔) ⊂ ℋ be the set of

histories ℎ𝑡 such that 𝒫𝜎(𝜔)(ℎ𝑡) > 0. Let

ℛ𝜎
* ≡

{︁
𝑟∞

⃒⃒⃒
(𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎 for all 𝑡 and 𝑟𝑡 ≺ 𝑟∞
}︁

be the set of random paths consistent with player 1 always playing 𝑎1. For every ℎ𝑡 = (𝑎𝑡, 𝑟𝑡),

let 𝜎1[ℎ
𝑡] : ℋ → 𝐴1 be a continuation strategy at ℎ𝑡 satisfying 𝜎1[ℎ

𝑡](ℎ𝑠) = 𝑎1 for all ℎ𝑠 % ℎ𝑡
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with ℎ𝑠 = (𝑎𝑡, 𝑎1, ..., 𝑎1, 𝑟
𝑠) ∈ ℋ𝜎. Let 𝜎1[ℎ

𝑡] : ℋ → 𝐴1 be a continuation strategy that satisfies

𝜎1[ℎ
𝑡](ℎ𝑠) = 𝑎1 for all ℎ𝑠 % ℎ𝑡 with ℎ𝑠 = (𝑎𝑡, 𝑎1, ..., 𝑎1, 𝑟

𝑠) ∈ ℋ𝜎. For every 𝜃 ∈ Θ, let

ℛ𝜎
(𝜃) ≡

{︁
𝑟𝑡
⃒⃒⃒
𝜎1[𝑎

𝑡
*, 𝑟

𝑡] is type 𝜃’s best reply to 𝜎2

}︁
and ℛ𝜎(𝜃) ≡

{︁
𝑟𝑡
⃒⃒⃒
𝜎1[𝑎

𝑡
*, 𝑟

𝑡] is type 𝜃’s best reply to 𝜎2

}︁
.

A.3.3 Beliefs & Best Response Sets

Let 𝜇(𝑎𝑡, 𝑟𝑡) ∈ ∆(Ω) be player 2’s posterior belief at (𝑎𝑡, 𝑟𝑡) and specifically, let 𝜇*(𝑟𝑡) ≡ 𝜇(𝑎𝑡*, 𝑟
𝑡).

Let

ℬ𝜅 ≡
{︁
�̃� ∈ ∆(Ω)

⃒⃒⃒
𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +

∑︁
𝜃∈Θ

�̃�(𝜃)𝒟(𝜃, 𝑎1) ≥ 0
}︁
. (A.37)

By definition, only {�̃�(𝜃)}𝜃∈Θ matters for whether �̃� belongs to ℬ𝜅 or not. Moreover, ℬ𝜅′ ( ℬ𝜅 for

every 𝜅, 𝜅′ ∈ [0, 1] with 𝜅′ < 𝜅.

Let 𝑞*(𝑟𝑡)(𝜔) be the (ex ante) probability that player 1’s type being 𝜔 and his past actions

being 𝑎𝑡* conditional on 𝑟𝑡. Let 𝑞*(𝑟𝑡) ∈ R|Ω|
+ be the corresponding vector of probabilities. For any

𝛿 and 𝜎 ∈ NE(𝜇, 𝛿), Bayes Rule implies that:

∙ For any 𝑎𝑡 and 𝑟𝑡, 𝑟𝑡 ≻ 𝑟𝑡−1 satisfying (𝑎𝑡, 𝑟𝑡), (𝑎𝑡, 𝑟𝑡) ∈ ℋ𝜎, we have 𝜇(𝑎𝑡, 𝑟𝑡) = 𝜇(𝑎𝑡, 𝑟𝑡).

∙ For any 𝑟𝑡, 𝑟𝑡 ≻ 𝑟𝑡−1 with (𝑎𝑡*, 𝑟
𝑡), (𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎, we have 𝑞*(𝑟𝑡) = 𝑞*(𝑟𝑡).

This is because player 1’s action in period 𝑡−1 depends on 𝑟𝑡 only through 𝑟𝑡−1, so is player 2’s belief

at every on-path history. Since the commitment type always plays 𝑎1, we have 𝑞*(𝑟𝑡)(𝑎1) = 𝜇0(𝑎1).

For future reference, I introduce two set of random histories based on player 2’s posterior beliefs.

Let

ℛ𝜎
𝑔 ≡

{︁
𝑟𝑡
⃒⃒⃒
(𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎 and 𝜇*(𝑟𝑡)
(︀
Θ𝑝 ∪ Θ𝑛

)︀
= 0

}︁
, (A.38)

and let

ℛ̂𝜎
𝑔 ≡

{︁
𝑟𝑡
⃒⃒⃒
∃𝑟𝑇 % 𝑟𝑡 such that 𝑟𝑇 ∈ ℛ𝜎

𝑔

}︁
. (A.39)

A.3.4 A Few Useful Observations

I present four Lemmas, which are useful preliminary results towards the final proof. Recall that

𝜎𝜃 : ℋ → ∆(𝐴1) is type 𝜃’s strategy. The first one shows the implications of MSM on player 1’s

equilibrium strategy:

Lemma A.3.1. Suppose 𝜎 ∈ NE(𝛿, 𝜇, 𝜑), 𝜃 ≻ 𝜃 and ℎ𝑡* = (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎(𝜃) ∩ℋ𝜎(𝜃),

∙ if 𝑟𝑡 ∈ ℛ𝜎
(𝜃), then 𝜎𝜃(𝑎

𝑠
*, 𝑟

𝑠)(𝑎1) = 1 for every (𝑎𝑠*, 𝑟
𝑠) ∈ ℋ(𝜎1(ℎ𝑡

*),𝜎2)(𝜃) with 𝑟𝑠 % 𝑟𝑡.

∙ if 𝑟𝑡 ∈ ℛ𝜎(𝜃), then 𝜎𝜃(𝑎
𝑠, 𝑟𝑠)(𝑎1) = 1 for every (𝑎𝑠, 𝑟𝑠) ∈ ℋ(𝜎1(ℎ

𝑡
*),𝜎2)(𝜃) with (𝑎𝑠, 𝑟𝑠) %

(𝑎𝑡*, 𝑟
𝑡).

Proof of Lemma A.3.1: I only prove first part, since the second part can be shown similarly

by switching signs. Without loss of generality, I focus on history ℎ0. For notation simplicity, let
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𝜎1[ℎ
0] = 𝜎1. For every 𝜎𝜔 and 𝜎2, let 𝑃 (𝜎𝜔 ,𝜎2) : 𝐴1 ×𝐴2 → [0, 1] be defined as:

𝑃 (𝜎𝜔 ,𝜎2)(𝑎1, 𝑎2) ≡
+∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡𝑝
(𝜎𝜔 ,𝜎2)
𝑡 (𝑎1, 𝑎2)

where 𝑝
(𝜎𝜔 ,𝜎2)
𝑡 (𝑎1, 𝑎2) is the probability of (𝑎1, 𝑎2) occurring in period 𝑡 under (𝜎𝜔, 𝜎2). Let 𝑃

(𝜎1,𝜎2)
𝑖 ∈

∆(𝐴2) be 𝑃 (𝜎1,𝜎2)’s marginal distribution on 𝐴𝑖.

Suppose towards a contradiction that 𝜎1 is type 𝜃’s best reply and there exists 𝜎𝜃 with 𝑃
(𝜎𝜃,𝜎2)
1 (𝑎1) <

1 such that 𝜎𝜃 is type 𝜃’s best reply, then type 𝜃 and 𝜃’s incentive constraints require that:∑︁
𝑎2∈𝐴2

(︁
𝑃

(𝜎1,𝜎2)
2 (𝑎2) − 𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2)

)︁
𝑢1(𝜃, 𝑎1, 𝑎2)

≥
∑︁

𝑎2∈𝐴2,𝑎1 ̸=𝑎1

𝑃 (𝜎𝜃,𝜎2)(𝑎1, 𝑎2)
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁
,

and ∑︁
𝑎2∈𝐴2

(︁
𝑃

(𝜎1,𝜎2)
2 (𝑎2) − 𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2)

)︁
𝑢1(𝜃, 𝑎1, 𝑎2)

≤
∑︁

𝑎2∈𝐴2,𝑎1 ̸=𝑎1

𝑃 (𝜎𝜃,𝜎2)(𝑎1, 𝑎2)
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁
.

Since 𝑃
(𝜎𝜃,𝜎2)
1 (𝑎1) < 1 and 𝑢1 has SID in 𝜃 and 𝑎1, we have:∑︁

𝑎2∈𝐴2,𝑎1 ̸=𝑎1

𝑃 (𝜎𝜃,𝜎2)(𝑎1, 𝑎2)
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁

>
∑︁

𝑎2∈𝐴2,𝑎1 ̸=𝑎1

𝑃 (𝜎𝜃,𝜎2)(𝑎1, 𝑎2)
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁
which implies that:∑︁

𝑎2∈𝐴2

(︁
𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2) − 𝑃

(𝜎1,𝜎2)
2 (𝑎2)

)︁(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁
> 0. (A.40)

On the other hand, since 𝑢1 is strictly decreasing in 𝑎1, we have:∑︁
𝑎2∈𝐴2,𝑎1 ̸=𝑎1

𝑃 (𝜎𝜃,𝜎2)(𝑎1, 𝑎2)
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2)

)︁
> 0

Type 𝜃’s incentive constraint implies that:∑︁
𝑎2∈𝐴2

(︁
𝑃

(𝜎1,𝜎2)
2 (𝑎2) − 𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2)

)︁
𝑢1(𝜃, 𝑎1, 𝑎2) > 0. (A.41)
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Since 𝑃
(𝜎𝜃,𝜎2)
2 and 𝑃

(𝜎1,𝜎2)
2 are both probability distributions,∑︁

𝑎2∈𝐴2

(︁
𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2) − 𝑃

(𝜎1,𝜎2)
2 (𝑎2)

)︁
= 0.

Since 𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝑎2) is weakly increasing in 𝑎2, (A.40) implies that 𝑃
(𝜎𝜃,𝜎2)
2 (𝑎2) −

𝑃
(𝜎1,𝜎2)
2 (𝑎2) > 0. Since 𝑢1(𝜃, 𝑎1, 𝑎2) is strictly increasing in 𝑎2, (A.41) implies that 𝑃

(𝜎𝜃,𝜎2)
2 (𝑎2) −

𝑃
(𝜎1,𝜎2)
2 (𝑎2) < 0, leading to a contradiction.

The next Lemma places a uniform upper bound on the number of ‘bad periods’ in which 𝑎2 is

not player 2’s best reply despite 𝑎1 has always been played and 𝜇*(𝑟𝑡) ∈ ℬ𝜅.

Lemma A.3.2. If 𝜇*(𝑟𝑡) ∈ ℬ𝜅 and 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟
𝑡), then:∑︁

𝜃∈Θ

(︁
𝑞*(𝑟𝑡)(𝜃) − 𝑞*(𝑟𝑡+1)(𝜃)

)︁
≥ 𝜌0(𝜅). (A.42)

Proof of Lemma A.3.2: If 𝜇*(𝑟𝑡) ∈ ℬ𝜅, then:3

𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) ≥ 0.

Suppose 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟
𝑡), then,

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡+1)(𝜃)𝒟(𝜃, 𝑎1) +
∑︁
𝜃∈Θ

(︁
𝑞*(𝑟𝑡)(𝜃) − 𝑞*(𝑟𝑡+1)(𝜃)

)︁
𝒟(𝜃, 𝑎1) ≤ 0,

or equivalently,

𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1)⏟  ⏞  
≥0

+ (1 − 𝜅)𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1)⏟  ⏞  
>0

+
∑︁
𝜃∈Θ

(︁
𝑞*(𝑟𝑡+1)(𝜃) − 𝑞*(𝑟𝑡)(𝜃)

)︁
𝒟(𝜃, 𝑎1) +

∑︁
𝜃∈Θ

(︁
𝑞*(𝑟𝑡)(𝜃) − 𝑞*(𝑟𝑡+1)(𝜃)

)︁
𝒟(𝜃, 𝑎1) ≤ 0,

According to (A.32), we have:

∑︁
𝜃∈Θ

(︁
𝑞*(𝑟𝑡)(𝜃) − 𝑞*(𝑟𝑡+1)(𝜃)

)︁
≥ (1 − 𝜅)𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1)

2 max𝜃,𝑎1 |𝒟(𝜃, 𝑎1)|
= 𝜌0(𝜅).

Lemma A.3.2 implies that for any 𝜎 ∈ NE(𝛿, 𝜇, 𝜑) and along any 𝑟∞ ∈ ℛ𝜎
* , the number of 𝑟𝑡

such that 𝜇*(𝑟𝑡) ∈ ℬ𝜅 but 𝑎2 is not a strict best reply is at most 𝑇 0(𝜅). The next Lemma obtains

an upper bound for player 1’s drop-out payoff at any unfavorable belief.

3According to Bayes Rule, 𝜇*(𝑟𝑡)(𝜃) ≥ 𝑞*(𝑟𝑡)(𝜃) for all 𝜃 ∈ Θ and 𝜇*(𝑟𝑡)(𝜃)
𝑞*(𝑟𝑡)(𝜃) is independent of 𝜃 as long as

𝑞*(𝑟𝑡)(𝜃) ̸= 0.
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Lemma A.3.3. For every 𝜎 ∈ NE(𝛿, 𝜇, 𝜑) and ℎ𝑡 ∈ ℋ𝜎 with

𝜇(ℎ𝑡)(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃

𝜇(ℎ𝑡)(𝜃)𝒟(𝜃, 𝑎1) < 0. (A.43)

Let 𝜃 ≡ min
{︁
supp

(︀
𝜇(ℎ𝑡)

)︀}︁
, then:

𝑉𝜃(ℎ
𝑡) = 𝑢1(𝜃, 𝑎1, 𝑎2).

Proof of Lemma A.3.3: Let

Θ* ≡
{︁
𝜃 ∈ Θ𝑝 ∪ Θ𝑛

⃒⃒⃒
𝜇(ℎ𝑡)(𝜃) > 0

}︁
.

According to (A.43), Θ* ̸= {∅}. The rest of the proof is done via induction on |Θ*|. When |Θ*| = 1,

there exists a pure strategy 𝜎*𝜃 : ℋ → 𝐴1 in the support of 𝜎𝜃 such that (A.43) holds for all ℎ𝑠

satisfying ℎ𝑠 ∈ ℋ(𝜎*
𝜃 ,𝜎2) and ℎ𝑠 % ℎ𝑡. At every such ℎ𝑠, 𝑎2 is player 2’s strict best reply. When

playing 𝜎*𝜃 , type 𝜃’s stage game payoff is no more than 𝑢1(𝜃, 𝑎1, 𝑎2) in every period.

Suppose towards a contradiction that the conclusion holds when |Θ*| ≤ 𝑘 − 1 but fails when

|Θ*| = 𝑘, then there exists ℎ𝑠 ∈ ℋ𝜎(𝜃) with ℎ𝑠 % ℎ𝑡 such that

∙ 𝜇(ℎ𝜏 ) /∈ ℬ𝜅 for all ℎ𝑠 % ℎ𝜏 % ℎ𝑡.

∙ 𝑉𝜃(ℎ
𝑠) > 𝑢1(𝜃, 𝑎1, 𝑎2).

∙ For all 𝑎1 such that 𝜇(ℎ𝑠, 𝑎1) /∈ ℬ𝜅, 𝜎𝜃(ℎ
𝑠)(𝑎1) = 0.4

According to the martingale property of beliefs, there exists 𝑎1 such that (ℎ𝑠, 𝑎1) ∈ ℋ𝜎 and 𝜇(ℎ𝑠, 𝑎1)

satisfies (A.43). Since 𝜇(ℎ𝑠, 𝑎1)(𝜃) = 0, there exists 𝜃 ∈ Θ*∖{𝜃} such that (ℎ𝑠, 𝑎1) ∈ ℋ𝜎(𝜃). Our

induction hypothesis suggests that:

𝑉𝜃(ℎ
𝑠) = 𝑢1(𝜃, 𝑎1, 𝑎2).

The incentive constraints of type 𝜃 and type 𝜃 at ℎ𝑠 require the existence of (𝛼1,𝜏 , 𝛼2,𝜏 )∞𝜏=0 with

𝛼𝑖,𝜏 ∈ ∆(𝐴𝑖) such that:

E
[︁ ∞∑︁
𝜏=0

(1−𝛿)𝛿𝜏
(︁
𝑢1(𝜃, 𝛼1,𝜏 , 𝛼2,𝜏 )−𝑢1(𝜃, 𝑎1, 𝑎2)

)︁]︁
> 0 ≥ E

[︁ ∞∑︁
𝜏=0

(1−𝛿)𝛿𝜏
(︁
𝑢1(𝜃, 𝛼1,𝜏 , 𝛼2,𝜏 )−𝑢1(𝜃, 𝑎1, 𝑎2)

)︁]︁
,

where E[·] is taken over probability measure 𝒫𝜎. However, the supermodularity condition implies

that,

𝑢1(𝜃, 𝛼1,𝜏 , 𝛼2,𝜏 ) − 𝑢1(𝜃, 𝑎1, 𝑎2) ≤ 𝑢1(𝜃, 𝛼1,𝜏 , 𝛼2,𝜏 ) − 𝑢1(𝜃, 𝑎1, 𝑎2),

leading to a contradiction.

4I omit (𝑎2,𝑠, 𝜉𝑠) in the expression for histories since they play no role in the posterior belief on Ω at every on-path
history.
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The next Lemma outlines an important implication of 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 .

Lemma A.3.4. If 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 and (𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎, then there exists

𝜃 ∈
(︀
Θ𝑝 ∪ Θ𝑛

)︀⋂︁
supp

(︀
𝜇*(𝑟𝑡)

)︀
such that 𝑟𝑡 ∈ 𝑅

𝜎
(𝜃).

Proof of Lemma A.3.4: Suppose towards a contradiction that 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 but no such 𝜃 exists.

Let

𝜃1 ≡ max
{︁(︀

Θ𝑝 ∪ Θ𝑛

)︀⋂︁
supp

(︀
𝜇*(𝑟𝑡)

)︀}︁
.5

Let (𝑎𝑡1* , 𝑟
𝑡1) % (𝑎𝑡*, 𝑟

𝑡) be the history at which type 𝜃1 has a strict incentive not to play 𝑎1 with

(𝑎𝑡1* , 𝑟
𝑡1) ∈ ℋ𝜎. For any (𝑎𝑡1+1

* , 𝑟𝑡1+1) ≻ (𝑎𝑡1* , 𝑟
𝑡1) with (𝑎𝑡1+1

* , 𝑟𝑡1+1) ∈ ℋ𝜎, on one hand, we have

𝜇*(𝑟𝑡1+1)(𝜃1) = 0. On the other hand, the fact that 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 implies that 𝜇*(𝑟𝑡1+1)(Θ𝑛 ∪ Θ𝑝) > 0.

Let

𝜃2 ≡ max
{︁(︀

Θ𝑝 ∪ Θ𝑛

)︀⋂︁
supp

(︀
𝜇*(𝑟𝑡1+1)

)︀}︁
.

Examine type 𝜃1 and 𝜃2’s incentive constraints at (𝑎𝑡1* , 𝑟
𝑡1). According to Lemma A.3.1, there exists

𝑟𝑡2 ≻ 𝑟𝑡1 such that type 𝜃2 has a strict incentive not to play 𝑎1 at (𝑎𝑡2* , 𝑟
𝑡2) ∈ ℋ𝜎.

Therefore, we can iterate this process and obtain 𝑟𝑡3 ≻ 𝑟𝑡4 ... Since⃒⃒⃒
supp

(︁
𝜇*(𝑟𝑡𝑘+1)

)︁⃒⃒⃒
≤

⃒⃒⃒
supp

(︁
𝜇*(𝑟𝑡𝑘)

)︁⃒⃒⃒
− 1,

for any 𝑘 ∈ N, there exists𝑚 ≤ |Θ𝑝∪Θ𝑛| such that (𝑎𝑡𝑚* , 𝑟𝑡𝑚) ∈ ℋ𝜎, 𝑟𝑡𝑚 % 𝑟𝑡 and 𝜇*(𝑟𝑡𝑚)(Θ𝑛∪Θ𝑝) =

0, which contradicts 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 .

A.3.5 Positive Types

In this part, I show the following Proposition:

Proposition A.3. If Θ𝑛 = {∅} and 𝜇 ∈ ℬ𝜅, then for every 𝜃, we have:

𝑉𝜃(𝑎
0
*, 𝑟

0) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) − 2𝑀(1 − 𝛿𝑇 0(𝜅)).

Despite Proposition A.3 is stated in terms of the prior belief, the conclusion applies to all 𝑟𝑡

and 𝜃 ∈ Θ𝑔 ∪Θ𝑝 when 𝜇*(𝑟𝑡) ∈ ℬ𝜅 and (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎(𝜃)∖ ∪𝜃𝑛∈Θ𝑛 ℋ𝜎(𝜃𝑛). The proof is decomposed

into Lemma A.3.5 and Lemma A.3.6, which together imply Proposition A.3. Let 𝜎 ∈ NE(𝛿, 𝜇, 𝜑).

Lemma A.3.5. If 𝜇*(𝑟𝑡) ∈ ℬ𝜅 for all 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 , then for any 𝑟∞ ∈ ℛ𝜎

* ,⃒⃒⃒{︁
𝑡 ∈ N

⃒⃒⃒
𝑟∞ ≻ 𝑟𝑡 and 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟

𝑡)
}︁⃒⃒⃒

≤ 𝑇 0(𝜅). (A.44)

5When 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 , then the intersection of Θ𝑝 ∪Θ𝑛 and supp

(︀
𝜇*(𝑟𝑡)

)︀
cannot be empty by definition.
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Proof of Lemma A.3.5: Pick any 𝑟∞ ∈ ℛ𝜎
* , if 𝑟0 /∈ ℛ̂𝜎

𝑔 , then let 𝑡* = −1. Otherwise, let

𝑡* ≡ max
{︁
𝑡 ∈ N ∪ {+∞}

⃒⃒⃒
𝑟𝑡 ∈ ℛ̂𝜎

𝑔 and 𝑟∞ ≻ 𝑟𝑡
}︁
.

Using the argument in Lemma A.3.2, for any 𝑡 ≤ 𝑡*, if 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟
𝑡),

inequality (A.42) holds.

Next, I show that 𝜇*(𝑟𝑡
*+1) ∈ ℬ𝜅. If 𝑡* = −1, this is a direct implication of (1.10). If 𝑡* ≥ 0,

then there exists 𝑟𝑡
*+1 ≻ 𝑟𝑡

*
such that 𝑟𝑡

*+1 ∈ ℛ̂𝜎
𝑔 . Let 𝑟𝑡

*+1 ≺ 𝑟∞, we have 𝑞*(𝑟𝑡
*+1) = 𝑞*(𝑟𝑡

*+1).

Moreover, since 𝜇*(𝑟𝑡) ∈ ℬ𝜅 for every 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 , we have 𝜇*(𝑟𝑡

*+1) = 𝜇*(𝑟𝑡
*+1) ∈ ℬ𝜅.

Since 𝑟𝑡
*+1 /∈ ℛ̂𝜎

𝑔 , Lemma A.3.4 implies the existence of

𝜃 ∈
(︀
Θ𝑝 ∪ Θ𝑛

)︀⋂︁
supp

(︀
𝜇*(𝑟𝑡

*+1)
)︀

such that 𝑟𝑡
*+1 ∈ 𝑅

𝜎
(𝜃). Since 𝜃𝑔 ≻ 𝜃 for all 𝜃𝑔 ∈ Θ𝑔, Lemma A.3.1 implies that for every 𝜃𝑔 and

𝑟∞ ≻ 𝑟𝑡 % 𝑟𝑡
*+1, we have 𝜎𝜃𝑔(𝑎𝑡*, 𝑟

𝑡) = 1, and therefore, 𝑞*(𝑟𝑡)(𝜃𝑔) = 𝑞*(𝑟𝑡+1)(𝜃𝑔). This implies

that 𝜇*(𝑟𝑡) ∈ ℬ𝜅 for every 𝑟∞ ≻ 𝑟𝑡 % 𝑟𝑡
*+1. If 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟

𝑡) for any 𝑡 > 𝑡*,

inequality (A.42) again applies.

To sum up, for every 𝑡 ∈ N, if 𝑎2 is not a strict best reply at (𝑎𝑡*, 𝑟
𝑡), then:∑︁

𝜃∈Θ

(︁
𝑞*(𝑟𝑡)(𝜃) − 𝑞*(𝑟𝑡+1)(𝜃)

)︁
≥ 𝜌0(𝜅),

from which we obtain (A.44).

The next result shows that the condition in Lemma A.3.5 holds in every equilibrium when 𝛿 is

large enough.

Lemma A.3.6. If 𝛿 > 𝛿, then 𝜇*(𝑟𝑡) ∈ ℬ0 for every 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 with 𝜇*(𝑟𝑡)(Θ𝑛) = 0.

Proof of Lemma A.3.6: For any given 𝛿 > 𝛿, according to (A.36), there exists 𝜅* ∈ (0, 1) such

that:

(1 − 𝛿𝑇 0(𝜅*))𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑇 0(𝜅*)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) >
1

2

(︁
𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝑢1(𝜃𝑝, 𝑎1, 𝑎2)

)︁
. (A.45)

Suppose towards a contradiction that there exist 𝑟𝑡1 and 𝑟𝑇1 such that:

∙ 𝑟𝑇1 ≻ 𝑟𝑡1 , 𝑟𝑇1 ∈ ℛ𝜎
𝑔 and 𝜇*(𝑟𝑡1) /∈ ℬ0.

Since 𝜇*(𝑟𝑇1) ∈ ℬ0, let 𝑡*1 be the largest 𝑡 ∈ N such that 𝜇*(𝑟𝑡) /∈ ℬ0 for 𝑟𝑇1 ≻ 𝑟𝑡 % 𝑟𝑡1 . Then there

exists 𝑎1 ̸= 𝑎1 and 𝑟𝑡
*
1+1 ≻ 𝑟𝑡

*
1 such that 𝜇

(︀
(𝑎

𝑡*1
* , 𝑎1), 𝑟

𝑡*1+1
)︀
/∈ ℬ0 and

(︀
(𝑎

𝑡*1
* , 𝑎1), 𝑟

𝑡*1+1
)︀
∈ ℋ𝜎. This

also implies the existence of 𝜃𝑝 ∈ Θ𝑝 ∩ supp
(︁
𝜇
(︀
(𝑎

𝑡*1
* , 𝑎1), 𝑟

𝑡*1+1
)︀)︁

.

According to Lemma A.3.3, type 𝜃𝑝’s continuation payoff at (𝑎
𝑡*1
* , 𝑟

𝑡*1) by playing 𝑎1 is at most

(1 − 𝛿)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑢1(𝜃𝑝, 𝑎1, 𝑎2). (A.46)
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His incentive constraint at (𝑎
𝑡*1
* , 𝑟

𝑡*1) requires that his expected payoff from 𝜎1 is weakly lower than

(A.46), i.e. there exists 𝑟𝑡
*
1+1 ≻ 𝑟𝑡

*
1 satisfying (𝑎

𝑡*1+1
* , 𝑟𝑡

*
1+1) ∈ ℋ𝜎 and type 𝜃𝑝’s continuation payoff

at (𝑎
𝑡*1+1
* , 𝑟𝑡

*
1+1) is no more than:

1

2

(︁
𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝑢1(𝜃𝑝, 𝑎1, 𝑎2)

)︁
. (A.47)

If 𝜇*(𝑟𝑡) ∈ ℬ𝜅* for every 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 ∩ {𝑟𝑡 % 𝑟𝑡

*
1}, then according to Lemma A.3.5, his continuation

payoff at (𝑎
𝑡*1
* , 𝑟

𝑡*1) by playing 𝜎1 is at least:

(1 − 𝛿𝑇 0(𝜅*))𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑇 0(𝜅*)𝑢1(𝜃𝑝, 𝑎1, 𝑎2),

which is strictly larger than (A.47) by the definition of 𝜅* in (A.45), leading to a contradiction.

Suppose on the other hand, there exists 𝑟𝑡2 ≻ 𝑟𝑡
*
1 such that:

∙ 𝑟𝑡2 ∈ ℛ̂𝜎
𝑔 while 𝜇*(𝑟𝑡2) /∈ ℬ𝜅* .

There exists 𝑟𝑇2 ≻ 𝑟𝑡2 such that 𝑟𝑇2 ∈ ℛ𝜎
𝑔 and 𝑟𝑇2 ≻ 𝑟𝑡2 . Again, we can find 𝑟𝑡

*
2 such that 𝑡*2 be

the largest 𝑡 ∈ [𝑡2, 𝑇2] such that 𝜇*(𝑟𝑡) /∈ ℬ0 for 𝑟𝑇2 ≻ 𝑟𝑡 % 𝑟𝑡2 . Then there exists 𝑎1 ̸= 𝑎1 and

𝑟𝑡
*
2+1 ≻ 𝑟𝑡

*
2 such that 𝜇

(︀
(𝑎

𝑡*2
* , 𝑎1), 𝑟

𝑡*2+1
)︀
/∈ ℬ0 and

(︀
(𝑎

𝑡*2
* , 𝑎1), 𝑟

𝑡*2+1
)︀
∈ ℋ𝜎.

Repeating this argument by iterating the above process, for every 𝑘 ≥ 1, in order to satisfy

player 1’s incentive constraint to play 𝑎1 ̸= 𝑎1 at (𝑎
𝑡*𝑘
* , 𝑟

𝑡*𝑘), we can find the triple (𝑟𝑡𝑘+1 , 𝑟𝑡
*
𝑘+1 , 𝑟𝑇𝑘+1),

i.e. this process cannot stop after finite rounds of iteration. Since 𝜇*(𝑟𝑡𝑘) /∈ ℬ𝜅* but 𝜇*(𝑟𝑡
*
𝑘+1) ∈ ℬ0

as well as 𝑟𝑡𝑘+1 ≻ 𝑟𝑡
*
𝑘+1, we have:∑︁

𝜃∈Θ
𝑞*(𝑟𝑡𝑘)(𝜃) − 𝑞*(𝑟𝑡𝑘+1)(𝜃) ≥

∑︁
𝜃∈Θ

𝑞*(𝑟𝑡𝑘)(𝜃) − 𝑞*(𝑟𝑡
*
𝑘+1)(𝜃) ≥ 𝜌1(𝜅

*) (A.48)

for every 𝑘 ≥ 2. (A.48) and (A.35) together suggest that this iteration process cannot last for more

than 𝑇 1(𝜅
*) rounds, which is an integer independent of 𝛿, leading to a contradiction.

The next Lemma is not needed for the proof of Proposition C.1 but will be useful for future

reference.

Lemma A.3.7. For any 𝛿 ≥ 𝛿 and any 𝜎 ∈ NE(𝛿, 𝜇, 𝜑), for every 𝑟𝑡 such that (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎,

𝜇*(𝑟𝑡)(Θ𝑛) = 0, 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 and

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) > 0, (A.49)

𝑎2 is player 2’s strict best reply at every (𝑎𝑠*, 𝑟
𝑠) % (𝑎𝑡*, 𝑟

𝑡) with (𝑎𝑠*, 𝑟
𝑠) ∈ ℋ𝜎.

Proof of Lemma A.3.7: Since 𝜇*(𝑟𝑡)(Θ𝑛) = 0 and 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 , Lemma A.3.4 implies the existence

of 𝜃𝑝 ∈ Θ𝑝 ∩ supp(𝜇*(𝑟𝑡)) such that 𝑟𝑡 ∈ 𝑅
𝜎
(𝜃𝑝). According to Lemma A.3.1, 𝜎𝜃(𝑎

𝑠
*, 𝑟

𝑠)(𝑎1) = 1 for

every (𝑎𝑠*, 𝑟
𝑠) ∈ ℋ𝜎(𝜃) with 𝑟𝑠 % 𝑟𝑡. From (A.49), we know that 𝑎2 is not a strict best reply only if

there exists type 𝜃𝑝 ∈ Θ𝑝 who plays 𝑎1 ̸= 𝑎1 with positive probability. In particular, (A.49) implies
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the existence of 𝜅 ∈ (0, 1) such that:6

𝜅𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) > 0.

According to (A.42), we have:∑︁
𝜃∈Θ𝑝

(︁
𝑞*(𝑟𝑠)(𝜃) − 𝑞*(𝑟𝑠+1)(𝜃)

)︁
≥ 𝜌0(𝜅)

whenever 𝑎2 is not a strict best reply at (𝑎𝑠*, 𝑟
𝑠) % (𝑎𝑡*, 𝑟

𝑡). Therefore, there can be at most 𝑇 0(𝜅)

such periods. Hence, there exists 𝑟𝑁 with (𝑎𝑁* , 𝑟
𝑁 ) ∈ ℋ𝜎 such that:

∙ 𝑎2 is not a strict best reply at (𝑎𝑁* , 𝑟
𝑁 ).

∙ 𝑎2 is a strict best reply for all (𝑎𝑠*, 𝑟
𝑠) ≻ (𝑎𝑁* , 𝑟

𝑁 ) with (𝑎𝑠*, 𝑟
𝑠) ∈ ℋ𝜎.

Then there exists 𝜃𝑝 ∈ Θ𝑝 that plays 𝑎1 ̸= 𝑎1 in equilibrium at (𝑎𝑁* , 𝑟
𝑁 ), his continuation payoff by

always playing 𝑎1 is at least (1− 𝛿)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑢1(𝜃𝑝, 𝑎1, 𝑎2) while his equilibrium continuation

payoff from playing 𝑎1 is at most (1 − 𝛿)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑢1(𝜃𝑝, 𝑎1, 𝑎2) according to Lemma A.3.3.

The latter is strictly less than the former when 𝛿 > 𝛿, leading to a contradiction.

A.3.6 Incorporating Negative Types

Next, we extend the proof by allowing for Θ𝑛 ̸= {∅}. Lemmas A.3.5 and A.3.6 imply the following

result in this general environment:

Proposition A.4. For any 𝛿 > 𝛿 and 𝜎 ∈ NE(𝛿, 𝜇, 𝜑), there do not exist 𝜃𝑝 ∈ Θ𝑝, 𝑟
𝑡+1 ≻ 𝑟𝑡 and

𝑎1 ̸= 𝑎1 that simultaneously satisfy:

1. 𝑟𝑡+1 ∈ ℛ̂𝜎
𝑔 .

2.
(︀
(𝑎𝑡*, 𝑎1), 𝑟

𝑡+1
)︀
∈ ℋ𝜎(𝜃𝑝).

3. 𝑉𝜃𝑝

(︁(︀
(𝑎𝑡*, 𝑎1), 𝑟

𝑡+1
)︀)︁

= 𝑢1(𝜃𝑝, 𝑎1, 𝑎2) for all 𝑟𝑡+1 ≻ 𝑟𝑡.

Proof of Proposition A.4: Suppose towards a contradiction that such 𝜃𝑝 ∈ Θ𝑝, 𝑟
𝑡, 𝑟𝑡+1 and

𝑎1 exist. From requirement 3, we know that 𝑟𝑡 ∈ ℛ𝜎(𝜃𝑝). According to Lemma 1.4.1, 𝜃𝑛 ≺ 𝜃𝑝 for

all 𝜃𝑛 ∈ Θ𝑛. The second part of Lemma A.3.1 then implies that 𝜇*(𝑟𝑡+1)(Θ𝑛) = 0 for all 𝑟𝑡+1 ≻ 𝑟𝑡

with (𝑎𝑡+1
* , 𝑟𝑡+1) ∈ ℋ𝜎.

If 𝜇*(𝑟𝑡+1) ∈ ℬ𝜅, then requirement 2 and Proposition A.3 together lead to a contradiction when

examining type 𝜃𝑝’s incentive at (𝑎𝑡*, 𝑟
𝑡) to play 𝑎1 as opposed to 𝑎1. If 𝜇*(𝑟𝑡+1) /∈ ℬ𝜅, since 𝛿 > 𝛿

and 𝑟𝑡+1 ∈ ℛ̂𝜎
𝑔 , we obtain a contradiction from Lemma A.3.6.

6The reasons why we cannot directly apply Lemma A.3.2 are, first, stronger conclusion is required for Lemma
A.3.7, and second, 𝜅 can be arbitrarily close to 1, while 𝜅 is uniformly bounded below 1 for any given 𝜇.
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The rest of the proof is decomposed into several steps by considering any 𝜎 ∈ NE(𝜇, 𝛿) when 𝛿

is large enough. First,7

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) ≥ 0 (A.50)

for all 𝑡 ≥ 1 and 𝑟𝑡 satisfying (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎. This is because otherwise, according to Lemma

A.3.3, there exists 𝜃 ∈ supp(𝜇*(𝑟𝑡)) such that 𝑉𝜃(𝑎
𝑡
*, 𝑟

𝑡) = 𝑢1(𝜃, 𝑎1, 𝑎2). But then, at (𝑎𝑡−1
* , 𝑟𝑡−1)

with 𝑟𝑡−1 ≺ 𝑟𝑡, he could obtain strictly higher payoff by playing 𝑎1 instead of 𝑎1, leading to a

contradiction.

Next comes the following Lemma:

Lemma A.3.8. 𝑉𝜃(𝑎
𝑡
*, 𝑟

𝑡) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) − 2𝑀(𝐾 + 1)(1 − 𝛿) for every 𝜃 and 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 satisfying:

∙ (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎.

∙ Either 𝑡 = 0 or 𝑡 ≥ 1 but there exists 𝑟𝑡 such that 𝑟𝑡, 𝑟𝑡 ≻ 𝑟𝑡−1, (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎 and 𝑟𝑡 ∈ ℛ̂𝜎

𝑔 .

Proof of Lemma A.3.8: If 𝜇*(𝑟𝑡) ∈ ℬ𝜅 and 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 , then Lemmas A.3.1 and A.3.4 suggest that

𝜇*(𝑟𝑠) ∈ ℬ𝜅 for all 𝑟𝑠 % 𝑟𝑡 and the conclusion is straightforward from Lemma A.3.2.

Therefore, for the rest of the proof, I assume that 𝜇*(𝑟𝑡) /∈ ℬ𝜅. I consider two cases. First,

when 𝜇*(𝑟𝑡)(Θ𝑛) > 0, then according to (A.48),8

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝜃∈Θ𝑝∪Θ𝑔

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) > 0.

Since 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 , according to Lemma A.3.4, there exists 𝜃 ∈ Θ𝑝 ∪ Θ𝑛 with (𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎(𝜃) such

that 𝑟𝑡 ∈ ℛ𝜎
(𝜃). According to Lemma A.3.1, for all 𝜃𝑔 ∈ Θ𝑔 with (𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎(𝜃𝑔) and every

(𝑎𝑠*, 𝑟
𝑠) ∈ ℋ𝜎(𝜃) with 𝑟𝑠 % 𝑟𝑡, we have 𝜎𝜃𝑔(𝑎𝑠*, 𝑟

𝑠)(𝑎1) = 1.

This implies that for every ℎ𝑠 = (𝑎𝑠, 𝑟𝑠) ≻ (𝑎𝑡*, 𝑟
𝑡) with 𝑎𝑠 ̸= 𝑎𝑠* and ℎ𝑠 ∈ ℋ𝜎, we have

𝜇(ℎ𝑠)(Θ𝑔) = 0, so for every 𝜃,

𝑉𝜃(ℎ
𝑠) = 𝑢1(𝜃, 𝑎1, 𝑎2). (A.51)

Let 𝜏 : ℛ𝜎
* → N ∪ {+∞} be such that for 𝑟𝜏 ≺ 𝑟𝜏+1 ≺ 𝑟∞, we have:

∙ 𝜇*(𝑟𝜏 )(Θ𝑛) > 0 while 𝜇*(𝑟𝜏+1)(Θ𝑛) = 0.

Let

𝜃𝑛 ≡ max
{︁

supp(𝜇*(𝑟𝑡))
⋂︁

Θ𝑛

}︁
.

The second part of Lemma A.3.1 and (A.51) together imply that 𝜇*(𝑟𝜏 )(𝜃𝑛) > 0. Let us examine

type 𝜃𝑛’s incentive at (𝑎𝑡*, 𝑟
𝑡) to play his equilibrium strategy as opposed to play 𝑎1 all the time.

7Inequality (A.50) trivially applies to 𝑟0 due to (1.10).
8To see this, consider three cases. If Θ𝑝 = {∅}, then this inequality is obvious. If Θ𝑝 ̸= {∅}, then 𝒟(𝜃𝑛, 𝑎1) ≤ 0 for

all 𝜃𝑛 ∈ Θ𝑛 according to Lemma 1.4.1. When 𝒟(𝜃𝑛, 𝑎1) < 0 for all 𝜃𝑛, then the inequality follows from (A.50). When
𝒟(𝜃𝑛, 𝑎1) = 0 for some 𝜃𝑛 ∈ Θ𝑛, then 𝒟(𝜃𝑝, 𝑎1) = 0 for all 𝜃𝑝 ∈ Θ𝑝. The inequality then follows from 𝒟(𝜃𝑔, 𝑎1) > 0
for all 𝜃𝑔 ∈ Θ𝑔 as well as 𝜃 ∈ Θ𝑔.
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This requires that:

E
[︁ 𝜏−1∑︁

𝑠=𝑡

(1−𝛿)𝛿𝑠−𝑡𝑢1(𝜃𝑛, 𝑎1, 𝛼2,𝑠)+(𝛿𝜏−𝑡−𝛿𝜏+1−𝑡)𝑢1(𝜃𝑛, 𝑎1,𝜏 , 𝛼2,𝜏 )+𝛿𝜏+1−𝑡𝑢1(𝜃𝑛, 𝑎1, 𝑎2)
]︁
≥ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2).

where E[·] is taken over 𝒫𝜎 and 𝛼2,𝑠 ∈ ∆(𝐴2) is player 2’s action in period 𝑠.

Using the fact that 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) ≥ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2), the above inequality implies that:

E
[︁ 𝜏−1∑︁

𝑠=𝑡

(1−𝛿)𝛿𝑠−𝑡
(︁
𝑢1(𝜃𝑛, 𝑎1, 𝛼2,𝑠)−𝑢1(𝜃𝑛, 𝑎1, 𝑎2)

)︁
+(𝛿𝜏−𝑡−𝛿𝜏+1−𝑡)

(︁
𝑢1(𝜃𝑛, 𝑎1, 𝛼2,𝜏 )−𝑢1(𝜃𝑛, 𝑎1, 𝑎2)

)︁]︁
≤ 0.

According to the definitions of 𝐾 and 𝑀 , we know that for all 𝜃,

E
[︁ 𝜏∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡
(︁
𝑢1(𝜃𝑛, 𝑎1, 𝛼2,𝑠) − 𝑢1(𝜃𝑛, 𝑎1, 𝑎2)

)︁]︁
≤ 2𝑀(𝐾 + 1)(1 − 𝛿). (A.52)

For every 𝑟∞ ∈ ℛ𝜎
* , since 𝑟𝑡 /∈ ℛ̂𝜎

𝑔 , we have:

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝜏(𝑟
∞)+1)(𝜃)𝒟(𝜃, 𝑎1) ≥ 𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +

∑︁
𝜃∈Θ𝑝∪Θ𝑔

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1)

> 𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁
𝜃∈Θ

𝑞*(𝑟𝑡)(𝜃)𝒟(𝜃, 𝑎1) ≥ 0

According to Lemma A.3.7, we know that 𝑉𝜃(𝑎
𝜏(𝑟∞)+1
* , 𝑟𝜏(𝑟

∞)+1) = 𝑢1(𝜃, 𝑎1, 𝑎2) for all 𝜃 ∈ Θ𝑔 ∪Θ𝑝

and 𝑟∞ ∈ ℛ𝜎
* . This together with (A.52) gives the conclusion.

Second, when 𝜇*(𝑟𝑡)(Θ𝑛) = 0. If 𝑡 = 0, the conclusion directly follows from Proposition C.1. If

𝑡 ≥ 1 and there exists 𝑟𝑡 such that 𝑟𝑡, 𝑟𝑡 ≻ 𝑟𝑡−1, (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎 and 𝑟𝑡 ∈ ℛ̂𝜎

𝑔 . Then, since

𝜇*(𝑟𝑡) = 𝜇*(𝑟𝑡),

we have 𝜇*(𝑟𝑡)(Θ𝑛) = 0. Since 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 , according to Lemma A.3.6, 𝜇*(𝑟𝑡) = 𝜇*(𝑟𝑡) ∈ ℬ𝜅. The

conclusion then follows from Lemma A.3.7.

The next Lemma puts an upper bound on type 𝜃𝑛 ∈ Θ𝑛’s continuation payoff at (𝑎𝑡*, 𝑟
𝑡) with

𝑟𝑡 /∈ ℛ̂𝜎
𝑔 .

Lemma A.3.9. For every 𝜃𝑛 ∈ Θ𝑛 such that 𝑎2 /∈ BR2(𝑎1, 𝜃𝑛) and 𝑟𝑡 /∈ ℛ̂𝜎
𝑔 with (𝑎𝑡*, 𝑟

𝑡) ∈ ℋ𝜎
𝜃𝑛

and 𝜇*(𝑟𝑡) /∈ ℬ𝜅, we have:

𝑉𝜃𝑛(𝑎𝑡*, 𝑟
𝑡) ≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀. (A.53)

The proof is contained in the proof for the first case in Lemma A.3.8. Let

𝐴(𝛿) ≡ 2𝑀(𝐾 + 1)(1 − 𝛿), 𝐵(𝛿) ≡ 2𝑀(1 − 𝛿𝑇 0(𝜅))
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and

𝐶(𝛿) ≡ 2𝑀𝐾|Θ𝑛|(1 − 𝛿).

Notice that when 𝛿 → 1, all three functions converge to 0. The next Lemma puts a uniform upper

bound on player 1’s payoff when 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 .

Lemma A.3.10. When 𝛿 > 𝛿 and 𝜎 ∈ NE(𝛿, 𝜇, 𝜑), for every 𝑟𝑡 ∈ ℛ̂𝜎
𝑔 ,

𝑉𝜃(𝑎
𝑡
*, 𝑟

𝑡) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) −
(︁
𝐴(𝛿) +𝐵(𝛿)

)︁
− 2𝑇 1(𝜅)

(︁
𝐴(𝛿) +𝐵(𝛿) + 𝐶(𝛿)

)︁
.9 (A.54)

for all 𝜃 such that (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎(𝜃).

Proof of Lemma A.3.10: The non-trivial part of the proof deals with situations where 𝜇*(𝑟𝑡) /∈
ℬ𝜅. Since 𝑟𝑡 ∈ ℛ̂𝜎

𝑔 , Lemma A.3.6 implies that 𝜇*(𝑟𝑡)(Θ𝑛) ̸= 0. Without loss of generality, assume

Θ𝑛 ⊂ supp
(︁
𝜇*(𝑟𝑡)

)︁
. Let me introduce |Θ𝑛| + 1 integer valued random variables on the space ℛ𝜎

* .

∙ 𝜏 : ℛ𝜎
* → N ∪ {+∞} be the first period 𝑠 along random path 𝑟∞ such that either one of the

following two conditions is met.

1. 𝜇*(𝑟𝑠+1) ∈ ℬ𝜅/2 for 𝑟𝑠+1 ≻ 𝑟𝑠 with (𝑎𝑠+1
* , 𝑟𝑠+1) ∈ ℋ𝜎.

2. 𝑟𝑠 /∈ ℛ̂𝜎
𝑔 .

In the first case, there exists 𝑎1 ̸= 𝑎1 and 𝑟𝜏+1 ≻ 𝑟𝜏 such that

–
(︀
(𝑎𝜏* , 𝑎1), 𝑟

𝜏+1
)︀
∈ ℋ𝜎(𝜃) for some 𝜃 ∈ Θ𝑝 ∪ Θ𝑛.

– 𝜇
(︀
(𝑎𝜏* , 𝑎1), 𝑟

𝜏+1
)︀
/∈ ℬ0.

Lemma A.3.3 implies the existence of 𝜃 ∈ Θ𝑝 ∪ Θ𝑛 with
(︀
(𝑎𝜏* , 𝑎1), 𝑟

𝜏+1
)︀
∈ ℋ𝜎(𝜃) such that

𝑉𝜃
(︀
(𝑎𝜏* , 𝑎1), 𝑟

𝜏+1
)︀

= 𝑢1(𝜃, 𝑎1, 𝑎2).

Suppose towards a contradiction that 𝜃 ∈ Θ𝑝, then Lemma A.3.1 implies that 𝜇*(𝑟𝜏+1)(Θ𝑛) =

0. Since 𝜇*(𝑟𝜏+1) ∈ ℬ𝜅/2, Proposition A.3 implies that type 𝜃’s continuation payoff by always

playing 𝑎1 is at least

(1 − 𝛿𝑇 0(𝜅/2))𝑢1(𝜃, 𝑎1, 𝑎2) + 𝛿𝑇 0(𝜅/2)𝑢1(𝜃, 𝑎1, 𝑎2),

which is strictly larger than his payoff from playing 𝑎1, which is at most 2𝑀(1 − 𝛿) +

𝑢1(𝜃, 𝑎1, 𝑎2), leading to a contradiction.

Hence, there exists 𝜃𝑛 ∈ Θ𝑛 such that 𝑉𝜃𝑛
(︀
(𝑎𝜏* , 𝑎1), 𝑟

𝜏+1
)︀

= 𝑢1(𝜃𝑛, 𝑎1, 𝑎2), which implies that

𝑉𝜃𝑛
(︀
𝑎𝜏* , 𝑟

𝜏
)︀
≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀 .

In the second case, Lemma A.3.9 implies that 𝑉𝜃𝑛
(︀
𝑎𝜏* , 𝑟

𝜏
)︀
≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1− 𝛿)𝑀 for all

𝜃𝑛 ∈ Θ𝑛 with 𝑟𝜏 ∈ ℋ𝜎(𝜃𝑛).

9One can further tighten this bound. However, (A.54) is sufficient for the purpose of proving Theorem 1.2.
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∙ For every 𝜃𝑛 ∈ Θ𝑛, let 𝜏𝜃𝑛 : ℛ𝜎
* → N ∪ {+∞} be the first period 𝑠 along random path 𝑟∞

such that either one of the following three conditions is met.

1. 𝜇*(𝑟𝑠+1) ∈ ℬ𝜅/2 for 𝑟𝑠+1 ≻ 𝑟𝑠 with (𝑎𝑠+1
* , 𝑟𝑠+1) ∈ ℋ𝜎.

2. 𝑟𝑠 /∈ ℛ̂𝜎
𝑔 .

3. 𝜇*(𝑟𝑠+1)(𝜃𝑛) = 0 for 𝑟𝑠+1 ≻ 𝑟𝑠 with (𝑎𝑠+1
* , 𝑟𝑠+1) ∈ ℋ𝜎, .

By definition, 𝜏 ≥ 𝜏𝜃𝑛 , so 𝜏 ≥ max𝜃𝑛∈Θ𝑛{𝜏𝜃𝑛}. Next, I show that

𝜏 = max
𝜃𝑛∈Θ𝑛

{𝜏𝜃𝑛}. (A.55)

Suppose on the contrary that 𝜏 > max𝜃𝑛∈Θ𝑛{𝜏𝜃𝑛} for some 𝑟∞ ∈ ℛ𝜎
* . Then there exists (𝑎𝑠*, 𝑟

𝑠) %

(𝑎𝑡*, 𝑟
𝑡) such that 𝑟𝑠 ∈ ℛ̂𝜎

𝑔 , 𝜇*(𝑟𝑠) /∈ ℬ𝜅 and 𝜇*(𝑟𝑠)(Θ𝑛) = 0, which contradicts Lemma A.3.6 when

𝛿 > 𝛿.

Next, I show by induction over |Θ𝑛| that

E
[︁ 𝜏∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝜏−𝑡
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, �̂�2,𝑠)

)︁]︁
≤ 2𝑀𝐾|Θ𝑛|(1 − 𝛿), (A.56)

for all 𝜃 ∈ Θ and

𝑉𝜃𝑛(𝑎
𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ) ≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀, (A.57)

for

𝜃 ≡ min
{︁

Θ𝑛 ∩ supp
(︁
𝜇*(𝑟𝜏𝜃𝑛+1)

)︁}︁
with 𝜃𝑛, 𝜃𝑛 ∈ Θ𝑛, where E[·] is taken over 𝒫𝜎 and �̂�2,𝑠 ∈ ∆(𝐴2) is player 2’s (mixed) action at

(𝑎𝑠*, 𝑟
𝑠).

When |Θ𝑛| = 1, let 𝜃𝑛 be its unique element. Consider player 1’s pure strategy of playing 𝑎1

until 𝑟𝜏 and then play 𝑎1 forever. This is one of type 𝜃𝑛’s best responses according to (A.55), which

results in payoff at most:

E
[︁ 𝜏−1∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡𝑢1(𝜃𝑛, 𝑎1, �̂�2,𝑠) + 𝛿𝜏−𝑡
(︁
𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀

)︁]︁
.

The above expression cannot be smaller than 𝑢1(𝜃𝑛, 𝑎1, 𝑎2), which is the payoff he can guarantee

by always playing 𝑎1. Since 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) ≥ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2), and from the definition of 𝐾, we get for

all 𝜃,

E
[︁ 𝜏−1∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, �̂�2,𝑠)

)︁]︁
≤ 2𝑀𝐾(1 − 𝛿).

We can then obtain (A.57) for free since 𝜏 = 𝜏𝜃𝑛 and type 𝜃𝑛’s continuation value at (𝑎𝜏* , 𝑟
𝜏 ) is at

most 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀 by Lemma A.3.3.

Suppose the conclusion holds for all |Θ𝑛| ≤ 𝑘− 1, consider when |Θ𝑛| = 𝑘 and let 𝜃𝑛 ≡ min Θ𝑛.

If (𝑎𝜏* , 𝑟
𝜏 ) /∈ ℋ𝜎(𝜃𝑛), then there exists (𝑎

𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ) ≺ (𝑎𝜏* , 𝑟

𝜏 ) with (𝑎
𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ) ∈ ℋ𝜎(𝜃𝑛) at which
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type 𝜃𝑛 plays 𝑎1 with probability 0. I put an upper bound on type 𝜃𝑛’s continuation payoff at

(𝑎
𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ) by examining type 𝜃𝑛 ∈ Θ𝑛∖{𝜃𝑛}’s incentive to play 𝑎1 at (𝑎

𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ), where

𝜃 ≡ min
{︁

Θ𝑛 ∩ supp
(︁
𝜇*(𝑟𝜏𝜃𝑛+1)

)︁}︁
This requires that:

E
[︁ ∞∑︁
𝑠=0

(1 − 𝛿)𝛿𝑠𝑢1(𝜃𝑛, 𝛼1,𝑠, 𝛼2,𝑠)
]︁
≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀⏟  ⏞  

by induction hypothesis

.

where {(𝛼1,𝑠, 𝛼2,𝑠)}𝑠∈N is the equilibrium continuation play following (𝑎
𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ). By definition,

𝜃𝑛 ≻ 𝜃𝑛, so the supermodularity condition implies that:

𝑢1(𝜃𝑛, 𝑎1, 𝑎2) − 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) ≥ 𝑢1(𝜃𝑛, 𝛼1,𝑠, 𝛼2,𝑠) − 𝑢1(𝜃𝑛, 𝛼1,𝑠, 𝛼2,𝑠).

Therefore, we have:

𝑉𝜃𝑛(𝑎
𝜏𝜃𝑛
* , 𝑟𝜏𝜃𝑛 ) = E

[︁ ∞∑︁
𝑠=0

(1 − 𝛿)𝛿𝑠𝑢1(𝜃𝑛, 𝛼1,𝑠, 𝛼2,𝑠)
]︁

≤ E
[︁ ∞∑︁
𝑠=0

(1 − 𝛿)𝛿𝑠
(︁
𝑢1(𝜃𝑛, 𝛼1,𝑠, 𝛼2,𝑠) + 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) − 𝑢1(𝜃𝑛, 𝑎1, 𝑎2)

)︁]︁
≤ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀.

Back to type 𝜃𝑛’s incentive constraint. Since it is optimal for him to play 𝑎1 until 𝑟𝜏𝜃𝑛 and then

play 𝑎1 forever, doing so must give him a higher payoff than playing 𝑎1 forever starting from 𝑟𝑡,

which gives:

E
[︁ 𝜏𝜃𝑛−1∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡𝑢1(𝜃𝑛, 𝑎1, �̂�2,𝑠) + 𝛿𝜏𝜃𝑛
(︁
𝑢1(𝜃𝑛, 𝑎1, 𝑎2) + 2(1 − 𝛿)𝑀

)︁]︁
≥ 𝑢1(𝜃𝑛, 𝑎1, 𝑎2).

This implies that:

E
[︁ 𝜏𝜃𝑛−1∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡
(︁
𝑢1(𝜃𝑛, 𝑎1, 𝑎2) − 𝑢1(𝜃𝑛, 𝑎1, �̂�2,𝑠)

)︁]︁
≤ 2𝑀(1 − 𝛿),

which also implies that for every 𝜃 ∈ Θ,

E
[︁ 𝜏𝜃𝑛−1∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝑠−𝑡
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, �̂�2,𝑠)

)︁]︁
≤ 2𝑀𝐾(1 − 𝛿). (A.58)
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When 𝜏 > 𝜏𝜃𝑛 , the induction hypothesis implies that:

E
[︁ 𝜏𝜃−1∑︁
𝑠=𝜏𝜃𝑛

(1 − 𝛿)𝛿𝑠−𝜏𝜃𝑛

(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, 𝛼2,𝑠)

)︁]︁
≤ 2𝑀𝐾(𝑘 − 1)(1 − 𝛿). (A.59)

According to (A.58) and (A.59).

E
[︁ 𝜏∑︁

𝑠=𝑡

(1 − 𝛿)𝛿𝜏−𝑡
(︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(𝜃, 𝑎1, �̂�2,𝑠)

)︁]︁
≤ 2𝑀𝐾𝑘(1 − 𝛿),

which shows (A.56) when |Θ𝑛| = 𝑘. (A.57) can be obtained directly from the induction hypothesis.

Next, I examine player 1’s continuation payoff at on-path histories following (𝑎𝜏+1
* , 𝑟𝜏+1) ∈ ℋ𝜎.

I consider three cases:

1. If 𝑟𝜏+1 /∈ ℛ̂𝜎
𝑔 , by Lemma A.3.8, then for every 𝜃,

𝑉𝜃(𝑎
𝜏+1
* , 𝑟𝜏+1) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) −𝐴(𝛿).

2. If 𝑟𝜏+1 ∈ ℛ̂𝜎
𝑔 and 𝜇*(𝑟𝑠) ∈ ℬ𝜅 for all 𝑟𝑠 satisfying 𝑟𝑠 % 𝑟𝜏+1 and 𝑟𝑠 ∈ ℛ̂𝜎

𝑔 , then for every 𝜃,

𝑉𝜃(𝑎
𝜏+1
* , 𝑟𝜏+1) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) −𝐵(𝛿).

3. If there exists 𝑟𝑠 such that 𝜇*(𝑟𝑠) /∈ ℬ𝜅 with 𝑟𝑠 % 𝑟𝜏+1 and 𝑟𝑠 ∈ ℛ̂𝜎
𝑔 , then repeat the procedure

in the beginning of this proof by defining random variables

∙ 𝜏 ′ : ℛ𝜎
* → {𝑛 ∈ N ∪ {+∞}|𝑛 ≥ 𝑠}

∙ 𝜏 ′𝜃𝑛 : ℛ𝜎
* → {𝑛 ∈ N ∪ {+∞}|𝑛 ≥ 𝑠}

similarly as we have defined 𝜏 and 𝜏𝜃𝑛 , and then examine continuation payoffs at 𝑟𝜏
′+1...

Since 𝜇*(𝑟𝜏+1) ∈ ℬ𝜅/2 but 𝜇*(𝑟𝑠) /∈ ℬ𝜅, then

∑︁
𝜃∈Θ

(︁
𝑞*(𝑟𝜏+1)(𝜃) − 𝑞*(𝑟𝑠)(𝜃)

)︁
≥ 𝜌1(𝜅)

2
. (A.60)

Therefore, such iterations can last for at most 2𝑇 1(𝜅) rounds.

Next, I establish the payoff lower bound in case 3. I introduce a new concept called ‘trees’. Let

ℛ𝜎
𝑏 ≡

{︁
𝑟𝑡
⃒⃒⃒
𝜇*(𝑟𝑡) /∈ ℬ𝜅 and 𝑟𝑡 ∈ ℛ̂𝜎

𝑔

}︁
Define set ℛ𝜎(𝑘) ⊂ ℛ for all 𝑘 ∈ N recursively as follows. Let

ℛ𝜎(1) ≡
{︁
𝑟𝑡
⃒⃒⃒
𝑟𝑡 ∈ ℛ𝜎

𝑏 and there exists no 𝑟𝑠 ≺ 𝑟𝑡 such that 𝑟𝑠 ∈ ℛ𝜎
𝑏

}︁
.
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For every 𝑟𝑡 ∈ ℛ𝜎(1), let 𝜏 [𝑟𝑡] : ℛ𝜎
* → N ∪ {+∞} as the first period 𝑠 > 𝑡 (starting from 𝑟𝑡) such

that either one of the following two conditions is met:

1. 𝜇*(𝑟𝑠+1) ∈ ℬ𝜅/2 for 𝑟𝑠+1 ≻ 𝑟𝑠 with (𝑎𝑠+1
* , 𝑟𝑠+1) ∈ ℋ𝜎.

2. 𝑟𝑠 /∈ ℛ̂𝜎
𝑔 .

I call

𝒯 (𝑟𝑡) ≡
{︁
𝑟𝑠
⃒⃒⃒
𝑟𝜏 [𝑟

𝑡1 ] % 𝑟𝑠 % 𝑟𝑡
}︁

a ‘tree’ with root 𝑟𝑡. For any 𝑘 ≥ 2, let

ℛ𝜎(𝑘) ≡
{︁
𝑟𝑡
⃒⃒⃒
𝑟𝑡 ∈ ℛ𝜎

𝑏 , 𝑟
𝑡 ≻ 𝑟𝜏 [𝑟

𝑠] for some 𝑟𝑠 ∈ ℛ𝜎(𝑘 − 1)

and there exists no 𝑟𝑠 ≺ 𝑟𝑡 that satisfy these two conditions
}︁
.

Let 𝑇 be the largest integer such that ℛ𝜎(𝑇 ) ̸= {∅}. According to (A.60), we know that 𝑇 ≤
2𝑇 1(𝜅). Similarly, we can define trees with roots in ℛ(𝑘) for every 𝑘 ≤ 𝑇 .

In what follows, I show that for every 𝜃 and every 𝑟𝑡 ∈ ℛ𝜎(𝑘),

𝑉𝜃(𝑎
𝑡
*, 𝑟

𝑡) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) − (𝑇 + 1 − 𝑘)
(︁
𝐴(𝛿) +𝐵(𝛿) + 𝐶(𝛿)

)︁
. (A.61)

The proof is done by inducting on 𝑘 from backwards. When 𝑘 = 𝑇 , player 1’s continuation value

at (𝑎
𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1) is at least 𝑢1(𝜃, 𝑎1, 𝑎2) − 𝐴(𝛿) − 𝐵(𝛿) according to Lemma A.3.2 and Lemma

A.3.8. His continuation value at 𝑟𝑡 is at least:

𝑢1(𝜃, 𝑎1, 𝑎2) −𝐴(𝛿) −𝐵(𝛿) − 𝐶(𝛿).

Suppose the conclusion holds for all 𝑘 ≥ 𝑛 + 1, then when 𝑘 = 𝑛, type 𝜃’s continuation payoff at

(𝑎𝑡*, 𝑟
𝑡) is at least:

E
[︁
(1 − 𝛿𝜏 [𝑟

𝑡]−𝑡)𝑢1(𝜃, 𝑎1, 𝑎2) + 𝛿𝜏 [𝑟
𝑡]−𝑡𝑉𝜃(𝑎

𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1)
]︁
− 𝐶(𝛿)

Pick any (𝑎
𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1), consider the set of random paths 𝑟∞ that it is consistent with, let this

set be ℛ∞(𝑎
𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1). Partition it into two subsets:

∙ ℛ∞
+ (𝑎

𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1) consists of 𝑟∞ such that for all 𝑠 ≥ 𝜏 [𝑟𝑡] + 1 and 𝑟𝑠 ≺ 𝑟∞, we have

𝑟𝑠 /∈ ℛ𝜎
𝑏 .

∙ ℛ∞
− (𝑎

𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1) consists of 𝑟∞ such that there exists 𝑠 ≥ 𝜏 [𝑟𝑡] + 1 and 𝑟𝑠 ≺ 𝑟∞ at which

𝑟𝑠 ∈ ℛ𝜎(𝑛+ 1).

Conditional on 𝑟∞ ∈ ℛ∞
+ (𝑎

𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1), we have:

𝑉𝜃(𝑎
𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) −𝐴(𝛿) −𝐵(𝛿).
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Conditional on 𝑟∞ ∈ ℛ∞
− (𝑎

𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1), type 𝜃’s continuation payoff is no less than

𝑉𝜃(𝑎
𝑠
*, 𝑟

𝑠) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) − (𝑇 − 𝑛)
(︁
𝐴(𝛿) +𝐵(𝛿) + 𝐶(𝛿)

)︁
after reaching 𝑟𝑠 ∈ ℛ𝜎(𝑛) according to the induction hypothesis. Moreover, since can he lose at

most 𝐴(𝛿) +𝐵(𝛿) before reaching 𝑟𝑠 (according to Lemmas A.3.2 and A.3.8), we have:

𝑉𝜃(𝑎
𝜏 [𝑟𝑡]+1
* , 𝑟𝜏 [𝑟

𝑡]+1) ≥ 𝑢1(𝜃, 𝑎1, 𝑎2) − (𝑇 + 1 − 𝑛)
(︁
𝐴(𝛿) +𝐵(𝛿) + 𝐶(𝛿)

)︁
.

which obtains (A.61). (A.54) is implied by (A.61) since player 1’s loss is bounded above by 𝐴(𝛿) +

𝐵(𝛿) from 𝑟0 to any 𝑟𝑡 ∈ ℛ𝜎(0).

Theorem 1.2 is then implied by the conclusions of Lemma A.3.8, A.3.9 and A.3.10.

A.4 Proof of Theorem 1.3 & Extensions

In this Appendix, I show Theorem 1.3. I also generalize the result by allowing for multiple com-

mitment types. Recall the definitions of ℋ𝜎 and ℋ𝜎(𝜔) in the previous section.

A.4.1 Proof of Theorem 1.3

Step 1: Let

𝑋(ℎ𝑡) ≡ 𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝜃∈Θ𝑔∪Θ𝑝

𝑞(ℎ𝑡)(𝜃)𝒟(𝜃, 𝑎1). (A.62)

According to (1.11), 𝑋(ℎ0) < 0. Moreover, at every ℎ𝑡 ∈ ℋ𝜎 with 𝑋(ℎ𝑡) < 0, player 2 has a strict

incentive to play 𝑎2. Applying Lemma A.3.3, there exists 𝜃𝑝 ∈ Θ𝑝 with ℎ𝑡 ∈ ℋ(𝜃𝑝) such that type

𝜃𝑝’s continuation value at ℎ𝑡 is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), which further implies that always playing 𝑎1 is his

best reply. According to Lemma A.3.1 and using the fact that 𝑋(ℎ0) < 0, every 𝜃𝑛 ∈ Θ𝑛 plays 𝑎1
for sure at every ℎ𝑡 ∈ ℋ(𝜃𝑛).

Step 2: Let us examine the equilibrium behaviors of the types in Θ𝑝 ∪Θ𝑔. I claim that for every

ℎ1 = (𝑎1, 𝑟
1) ∈ ℋ𝜎, ∑︁

𝜃∈Θ𝑔∪Θ𝑝

𝑞(ℎ1)(𝜃)𝒟(𝜃, 𝑎1) < 0. (A.63)

Suppose towards a contradiction that
∑︀

𝜃∈Θ𝑔∪Θ𝑝
𝑞(ℎ1)(𝜃)𝒟(𝜃, 𝑎1) ≥ 0, then𝑋(ℎ1) ≥ 𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1).

According to Proposition ??, there exists 𝐾 ∈ R+ independent of 𝛿 such that type 𝜃’s continuation

payoff is at least 𝑢1(𝜃, 𝑎1, 𝑎2)− (1−𝛿)𝐾 at every ℎ1* ∈ ℋ𝜎. When 𝛿 is large enough, this contradicts

the conclusion in the previous step that there exists 𝜃𝑝 ∈ Θ𝑝 such that type 𝜃𝑝’s continuation value

at ℎ0 is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), as he can profitably deviate by playing 𝑎1 in period 0.

Step 3: According to (A.63), we have 𝜇*(𝑟1) /∈ ℬ0. So Lemma A.3.6 implies that 𝑟1 /∈ ℛ̂𝜎
𝑔 .

According to Lemma A.3.1, type 𝜃𝑔 plays 𝑎1 at every ℎ𝑡 ∈ ℋ(𝜃𝑔) with 𝑡 ≥ 1 for every 𝜃𝑔 ∈ Θ𝑔.
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Next, I show that 𝑟0 /∈ ℛ̂𝜎
𝑔 . Suppose towards a contradiction that 𝑟0 ∈ ℛ̂𝜎

𝑔 , then there exists

ℎ𝑇 = (𝑎𝑇* , 𝑟
𝑇 ) ∈ ℋ𝜎 such that 𝜇(ℎ𝑇 )(Θ𝑝∪Θ𝑛) = 0. If 𝑇 ≥ 2, it contradicts our previous conclusion

that 𝑟1 /∈ ℛ̂𝜎
𝑔 . If 𝑇 = 1, then it contradicts (A.63). Therefore, we have 𝑟0 /∈ ℛ̂𝜎

𝑔 and we have shown

that type 𝜃𝑔 plays 𝑎1 at every ℎ𝑡 ∈ ℋ(𝜃𝑔) with 𝑡 ≥ 0 for every 𝜃𝑔 ∈ Θ𝑔.

Step 4: In the last step, I pin down the strategies of type 𝜃𝑝 by showing that 𝑋(ℎ𝑡) = 0 for every

ℎ𝑡 = (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎 with 𝑡 ≥ 1. First, I show that 𝑋(ℎ1) = 0. The argument at other histories

follows similarly.

Suppose first that 𝑋(ℎ1) > 0, then according to Lemma A.3.7, type 𝜃𝑝’s continuation payoff

at (𝑎𝑡+1
* , 𝑟𝑡+1) is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2) by always playing 𝑎1, while his continuation payoff at (𝑎𝑡*, 𝑎1, 𝑟

𝑡+1)

is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), leading to a contradiction. Suppose next that 𝑋(ℎ1) < 0, similar to the previous

paragraph, there exists type 𝜃𝑝 ∈ Θ𝑝 with ℎ1 ∈ ℋ(𝜃𝑝) such that his incentive constraint is violated.

Similarly, one can show that 𝑋(ℎ𝑡) = 0 for every 𝑡 ≥ 1, ℎ𝑡 = (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎. Hence, we have

established the uniqueness of player 1’s equilibrium play.

A.4.2 Generalizations to Multiple Commitment Types

Next, I generalize Theorem 1.3 by accommodating multiple commitment types. For every 𝜃 ∈ Θ,

let 𝜆(𝜃) be the likelihood ratio between strategic type 𝜃 and the lowest strategic type 𝜃 ≡ min Θ

and let 𝜆 ≡ {𝜆(𝜃)}𝜃∈Θ be the likelihood ratio vector between strategic types. I use this likelihood

ratio vector to characterize the sufficient conditions for behavioral uniqueness as the result under

multiple commitment type requires that the total probability of commitment types being small

enough. The upper bound of this probability depends on the distribution of strategic types. Let

Ω𝑔 ≡ {𝛼1 ∈ Ω𝑚∖{𝑎1}|𝒟(𝛼1, 𝜑𝛼1) > 0}

which are the set of commitment types under which player 2 has a strict incentive to play 𝑎2.

For every 𝑡 ≥ 1 and ℎ𝑡 ∈ ℋ𝑡, let ℎ𝑡1 ≡ {𝑎1,0, ..., 𝑎1,𝑡−1} be the projection of ℎ𝑡 on ×𝑡−1
𝑠=0𝐴1,𝑠. Let

ℋ𝑡
1 be the set of ℎ𝑡1. Let ℋ𝑡

1 ≡ {(𝑎1, ...𝑎1), (𝑎1, ...𝑎1)}. For every probability measure 𝒫 over ℋ, let

𝒫1,𝑡 be its projection on ℋ𝑡
1. Recall that 𝒫𝜎(𝜃) is the probability measure over ℋ under strategy

profile 𝜎 conditional on player 1 being strategic type 𝜃. For every 𝛾 ≥ 0 and two Nash equilibria 𝜎

and 𝜎′, strategic type 𝜃’s on-path behavior is 𝛾-close between these equilibria if for every 𝑡 ≥ 1,

𝐷𝐵

(︁
𝒫𝜎
1,𝑡(𝜃),𝒫𝜎′

1,𝑡(𝜃)
)︁
≤ 𝛾,

where 𝐷𝐵(𝑝, 𝑞) denotes the Bhattacharyya distance between distributions 𝑝 and 𝑞.10 If 𝛾 = 0, then

10One can replace the Bhattacharyya distance with the Rényi divergence or Kullback-Leibler divergence in the
following way: strategic type 𝜃’s on-path behavior is 𝛾-close between 𝜎 and 𝜎′ if there exists a probability measure
𝒫 on ℋ such that for every 𝑡 ≥ 1,

max
{︁
𝐷
(︁
𝒫1,𝑡

⃒⃒⃒⃒⃒⃒
𝒫𝜎

1,𝑡(𝜃)
)︁
, 𝐷

(︁
𝒫1,𝑡

⃒⃒⃒⃒⃒⃒
𝒫𝜎

1,𝑡(𝜃
′)
)︁}︁

≤ 𝛾,

where 𝐷(·||·) is either the Rényi divergence of order greater than 1 or the Kullback-Leibler divergence.
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type 𝜃*𝑝’s on-path behavior is the same between these equilibria. Intuitively, the above distance

measures the difference between the ex ante distributions over player 1’s action paths across different

equilibria. The generalization of Theorem 1.3 to multiple commitment types is stated below as

Theorem A.1:

Theorem A.1. Suppose 𝑎1 ∈ Ω𝑚 and 𝒟(𝜑𝑎1 , 𝑎1) > 0, then for every 𝜆 ∈ [0,+∞)|Θ| satisfying:∑︁
𝜃∈Θ𝑝∪Θ𝑔

𝜆(𝜃)𝒟(𝜃, 𝑎1) < 0, (A.64)

1. There exist 𝜖 > 0 and a function 𝛾 : (0, 𝜖) → R+ satisfying lim𝜖↓0 𝛾(𝜖) = 0, such that for every

𝜇 ∈ ∆(Ω) with {𝜇(𝜃)/𝜇(𝜃)}𝜃∈Θ = 𝜆 and 𝜇(Ω𝑚) < 𝜖, there exist 𝛿 ∈ (0, 1) and 𝜃*𝑝 ∈ Θ𝑝 such

that for every 𝜎 ∈ NE(𝛿, 𝜇, 𝜑) with 𝛿 > 𝛿:

∙ For every 𝜃 ≻ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

∙ For every 𝜃 ≺ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

∙ As for type 𝜃*𝑝,

◇ 𝒫𝜎
1,𝑡(𝜃

*
𝑝)(ℋ𝑡

1) > 1 − 𝛾(𝜖) for every 𝑡 ≥ 1.

◇ For every 𝜎′ ∈ NE(𝛿, 𝜇, 𝜑), type 𝜃*𝑝’s on-path behavior is 𝛾(𝜖)-close between 𝜎 and

𝜎′.

◇ Furthermore, if there exists no mixed commitment type under which 𝑎2 is player

2’s strict best reply, then type 𝜃*𝑝’s on-path behavior is the same across all equilibria

under generic parameters. Type 𝜃*𝑝 plays the same action in every period with (ex

ante) probability 1.

∙ Strategic type 𝜃’s equilibrium payoff is 𝑣*𝜃 for every 𝜃 ∈ Θ.

2. If all commitment types are playing pure strategies, then there exists 𝜖 > 0, such that for every

𝜇 ∈ ∆(Ω) with {𝜇(𝜃)/𝜇(𝜃)}𝜃∈Θ = 𝜆 and 𝜇(Ω𝑚) < 𝜖, there exist 𝛿 ∈ (0, 1) and 𝜃*𝑝 ∈ Θ𝑝 such

that for every 𝜎 ∈ NE(𝛿, 𝜇, 𝜑) with 𝛿 > 𝛿:

∙ For every 𝜃 ≻ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

∙ For every 𝜃 ≺ 𝜃*𝑝 and ℎ𝑡 ∈ ℋ𝜎(𝜃), type 𝜃 plays 𝑎1 at ℎ𝑡.

∙ There exists 𝛼1 ∈ ∆(Ω𝑔 ∪ {𝑎1, 𝑎1}) such that for every ℎ𝑡 ∈ ℋ𝜎(𝜃*𝑝),

◇ Type 𝜃*𝑝 plays 𝛼1 at ℎ0.

◇ If 𝑡 ≥ 1 and there exists 𝑎1 ∈ Ω𝑔 ∪ {𝑎1, 𝑎1} such that 𝑎1 ∈ ℎ𝑡, then type 𝜃*𝑝 plays 𝑎1

at ℎ𝑡.

∙ Strategic type 𝜃’s equilibrium payoff is 𝑣*𝜃 for every 𝜃 ∈ Θ.

Let me comment on the conditions in Theorem A.1. First, (A.64) is implied by (1.11) giv-

en that 𝒟(𝜑𝑎1 , 𝑎1) > 0. Second, when there are other commitment types under which player 2

has an incentive to play 𝑎2, then payoff and behavior uniqueness require the total probability of
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commitment types to be small enough. Intuitively, this is because the presence of multiple good

commitment types gives the strategic player 1 many good reputations to choose from, which can

lead to multiple behaviors and payoffs. An example is shown in Appendix A.7.5.

Next, I provide a sufficient condition on 𝜖. Let

𝑌 (ℎ𝑡) ≡ 𝜇(ℎ𝑡)(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝛼1∈Ω𝑔

𝜇(ℎ𝑡)(𝛼1)𝒟(𝜑𝛼1 , 𝛼1) +
∑︁

𝜃∈Θ𝑝∪Θ𝑔

𝜇(ℎ𝑡)(𝜃)𝒟(𝜃, 𝑎1), (A.65)

which is an upper bound on player 2’s incentive to play 𝑎2 at ℎ𝑡. I require 𝜖 to be small enough

such that

𝜖max̃︀𝜃∈Θ {𝒟(̃︀𝜃, 𝑎1)} + (1 − 𝜖)
∑︁

𝜃∈Θ𝑝∪Θ𝑔

𝜆(𝜃)∑︀
𝜃∈Θ 𝜆(𝜃)

𝒟(𝜃, 𝑎1) < 0. (A.66)

Such 𝜖 exists since
∑︀

𝜃∈Θ𝑝∪Θ𝑔
𝜆(𝜃)𝒟(𝜃, 𝑎1) < 0. Inequality (A.66) implies that 𝑌 (ℎ0) < 0, which is

also equivalent to (1.11) when Ω𝑔 = {∅}.

Third, when there are mixed strategy commitment types, the probabilities with which type

𝜃*𝑝 mixes may not be the same across all equilibria. Intuitively, this is because of two reasons.

First, suppose player 2 has no incentive to play 𝑎2 under any mixed commitment type, then given

that all strategic types either always plays 𝑎1 or always plays 𝑎1, player 2’s incentive to play 𝑎2 is

increasing over time as more 𝑎1 has been observed. As a result, there will be 𝑇 (𝛿) periods in which

player 2 has a strict incentive to play 𝑎2, followed by at most one period in which she is indifferent

between 𝑎2 and 𝑎2, followed by periods in which she has a strict incentive to play 𝑎2, with 𝑇 (𝛿)

and the probabilities with which she mix between 𝑎2 and 𝑎2 in period 𝑇 (𝛿) pinned down by type

𝜃*𝑝’s indifference condition in period 0. Under degenerate parameter values in which there exists

an integer 𝑇 such that type 𝜃*𝑝 is just indifferent between always playing 𝑎1 and always playing 𝑎1

when 𝑎2 will be played in the first 𝑇 periods, his mixing probability between always playing 𝑎1 and

always playing 𝑎1 is not unique. Nevertheless, when the ex ante probability of Ω𝑚 is smaller than

𝜖, his probability of mixing cannot vary by more than 𝛾(𝜖) even in this degenerate case, with 𝛾(·)
diminishes as 𝜖 ↓ 0. Second, when there are good mixed strategy commitment types, the probability

with which type 𝜃*𝑝 behaves inconsistently and builds a reputation for being a good mixed strategy

commitment type cannot be uniquely pinned down by his equilibrium payoff. Nevertheless, the

differences between these probabilities across different equilibria will vanish as the total probability

of commitment types vanishes. Intuitively, this is because if type 𝜃*𝑝 imitates the mixed commitment

type with significant probability, then player 2 will have a strict incentive to play 𝑎2. This implies

that as the probability of commitment type vanishes, the probability with which type 𝜃*𝑝 builds a

mixed reputation also vanishes.

A.4.3 Proof of Theorem A.1

Unique Equilibrium Behavior of Strategic Types when 𝜃 ∈ Θ𝑛 ∪ Θ𝑔: This part of the

proof is similar to the proof of Theorem 1.3, by replacing 𝑋(ℎ𝑡) with 𝑌 (ℎ𝑡). First, I show that

every type 𝜃𝑛 ∈ Θ𝑛 will play 𝑎1 at every ℎ𝑡 ∈ ℋ𝜎(𝜃𝑛) in every equilibrium 𝜎. This is similar to
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Step 1 in the proof of Theorem 1.3. Since 𝑌 (ℎ0) < 0 and at every ℎ𝑡 ∈ ℋ𝜎 with 𝑌 (ℎ𝑡) < 0, player

2 has a strict incentive to play 𝑎2. Applying Lemma A.3.3, there exists 𝜃𝑝 ∈ Θ𝑝 with ℎ𝑡 ∈ ℋ(𝜃𝑝)

such that type 𝜃𝑝’s continuation value at ℎ𝑡 is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), and hence always playing 𝑎1 is his best

reply. Type 𝜃𝑛’s on-path behavior is pinned down by Lemma A.3.1.

Next, I establish (A.63). Suppose towards a contradiction that
∑︀

𝜃∈Θ𝑔∪Θ𝑝
𝑞(ℎ1)(𝜃)𝒟(𝜃, 𝑎1) ≥ 0,

then 𝑌 (ℎ1) ≥ 𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1). According to Theorem 1.2, there exists 𝐾 ∈ R+ independent of 𝛿

such that type 𝜃’s continuation payoff is at least 𝑢1(𝜃, 𝑎1, 𝑎2)− (1− 𝛿)𝐾 at every ℎ1* ∈ ℋ𝜎. When 𝛿

is large enough, this contradicts the conclusion in the previous step that there exists 𝜃𝑝 ∈ Θ𝑝 such

that type 𝜃𝑝’s continuation value at ℎ0 is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), as he can profitably deviate by playing 𝑎1

in period 0. According to (A.63), we have 𝜇*(𝑟1) /∈ ℬ0. Following the same procedure, one can

show that 𝑟1 /∈ ℛ̂𝜎
𝑔 . and 𝑟0 /∈ ℛ̂𝜎

𝑔 . This implies that for every equilibrium 𝜎, type 𝜃𝑔 plays 𝑎1 at

every ℎ𝑡 ∈ ℋ𝜎(𝜃𝑔) for every 𝜃𝑔 ∈ Θ𝑔.

Consistency of Equilibrium Behavior and Generic Uniqueness of Equilibrium Payoff

when 𝜃 ∈ Θ𝑝: Let Ω𝑔𝑚 be the set of mixed strategy commitment types under which player 2 has

a strict incentive to play 𝑎2. I show that when Ω𝑔𝑚 = {∅}, type 𝜃𝑝 has to behave consistently over

time for every 𝜃𝑝 ∈ Θ𝑝. For every 𝑡 ≥ 1, let

𝑍(ℎ𝑡) ≡ 𝜇(ℎ𝑡)(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝛼1∈̂︀Ω𝑏

𝑞(ℎ𝑡)(𝛼1)𝒟(𝜑𝛼1 , 𝛼1) +
∑︁

𝜃∈Θ𝑝∪Θ𝑔

𝑞(ℎ𝑡)(𝜃)𝒟(𝜃, 𝑎1) (A.67)

where ̂︀Ω𝑏 ≡ {𝛼1 ∈ Ω𝑚∖{𝑎1}|𝒟(𝛼1, 𝜑𝛼1) < 0}. If Ω𝑔𝑚 = {∅}, then 𝜇(ℎ𝑡)(Ω𝑔) = 0 for every

ℎ𝑡 = (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎 with 𝑡 ≥ 1. Therefore, player 2 has a strict incentive to play 𝑎2 if 𝑍(ℎ𝑡) < 0.

Moreover, according to the conclusion in the previous step that type 𝜃𝑔 ∈ Θ𝑔 plays 𝑎1 for sure at

every ℎ𝑡 = (𝑎𝑡*, 𝑟
𝑡), we know that for every ℎ𝑡 ≻ ℎ𝑡−1, we have 𝑍(ℎ𝑡) ≥ 𝑍(ℎ𝑡−1).

Subcase 1: No Mixed Commitment Types Consider the case where there exists no 𝛼1 ∈ ̂︀Ω𝑏

such that 𝛼1 /∈ 𝐴1, i.e. there are no mixed strategy commitment types that affect player 2’s best

reply. By definition, 𝑍(ℎ𝑡) = 𝑋(ℎ𝑡) for every 𝑡 ≥ 1. As shown in Theorem 1.3, we know that

𝑍(ℎ𝑡) = 0 for every ℎ𝑡 = (𝑎𝑡*, 𝑟
𝑡) ∈ ℋ𝜎 and 𝑡 ≥ 1. When Ω𝑔 ̸= {∅}, let Ω𝑔 ≡ {𝑎11, ..., 𝑎

𝑛−1
1 } with

𝑎11 ≺ 𝑎21 ≺ ... ≺ 𝑎𝑛−1
1 ≺ 𝑎𝑛1 ≡ 𝑎1. There exists 𝑞 : Θ𝑝 → ∆(Ω𝑔 ∪ {𝑎1}) such that:

∙ Monotonicity: For every 𝜃𝑝 ≻ 𝜃′𝑝 and 𝑎𝑖1 ∈ Ω𝑔∪{𝑎1}. First, if 𝑞(𝜃𝑝)(𝑎
𝑖
1) > 0, then 𝑞(𝜃′𝑝)(𝑎

𝑗
1) =

0 for every 𝑎𝑗1 ≻ 𝑎𝑖1. Second, if 𝑞(𝜃′𝑝)(𝑎
𝑖
1) > 0, then 𝑞(𝜃𝑝)(𝑎

𝑗
1) = 0 for every 𝑎𝑗1 ≺ 𝑎𝑖1.

∙ Indifference: For every 𝑎𝑖1 ∈ Ω𝑔∖{𝑎1}, we have:

𝜇(𝑎𝑖1)𝒟(𝜑𝑎𝑖1
, 𝑎𝑖1) +

∑︁
𝜃𝑝∈Θ𝑝

𝜇(𝜃𝑝)𝑞(𝜃𝑝)(𝑎
𝑖
1)𝒟(𝜃𝑝, 𝑎

𝑖
1) = 0. (A.68)

These two conditions uniquely pin down function 𝑞(·), and therefore, the behavior of every type in

Θ𝑝. In player 1’s unique equilibrium behavior, every strategic type always replicates his action in
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period 0.

Subcase 2: Presence of Mixed Commitment Types Consider the case where there are

mixed strategy commitment types. Player 1’s action path 𝑎𝑡 = (𝑎1,0, ..., 𝑎1,𝑡−1) (with 𝑡 ≥ 1) is

‘inconsistent ’ if there exists no 𝑎1 ∈ Ω𝑔∪{𝑎1}∪{𝑎1} such that 𝑎1,0 = ... = 𝑎1,𝑡−1 = 𝑎1. Otherwise, it

is consistent. A history is ‘consistent ’ or (inconsistent) if the action path it contains is consistent (or

inconsistent). Since Ω𝑚 = {∅} and the types in Θ𝑔 are always playing 𝑎1, so type 𝜃’s continuation

value at every on-path inconsistent history must be 𝑢1(𝜃, 𝑎1, 𝑎2) for every 𝜃 ∈ Θ.

I show that in every equilibrium, type 𝜃𝑝’s behavior must be consistent for every 𝜃𝑝 ∈ Θ𝑝. Let

𝑊 (ℎ𝑡) ≡ 𝜇(ℎ𝑡)(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) +
∑︁

𝜃∈Θ𝑝∪Θ𝑔

𝑞(ℎ𝑡)(𝜃)𝒟(𝜃, 𝑎1). (A.69)

For every consistent history ℎ𝑡 where 𝑎1 is the consistent action, we know that 𝑊 (ℎ𝑡) ≤ 𝑍(ℎ𝑡) since∑︁
𝛼1∈̂︀Ω𝑏

𝑞(ℎ𝑡)(𝛼1)𝒟(𝜑𝛼1 , 𝛼1) ≤ 0.

As shown in the proof of Theorem 1.3, we know that 𝑊 (ℎ𝑡) ≥ 0. Moreover, similar argument shows

that:

1. If there exists 𝛼1 ∈ ̂︀Ω𝑏 such that 𝛼1(𝑎1) > 0, then 𝑊 (ℎ𝑡) > 0.

2. If there exists no such 𝛼1, then 𝑊 (ℎ𝑡) = 0.

The consistency of type 𝜃𝑝’s behavior at the 2nd class of consistent histories directly follows from

the argument in Theorem 1.3. In what follows, I focus on the 1st class of consistent histories.

For every consistent history ℎ𝑡 with 𝑊 (ℎ𝑡) > 0 and 𝜇(ℎ𝑡)(Θ𝑝) ̸= 0, let 𝜃𝑝 be the lowest type in

the support of 𝜇(ℎ𝑡). According to Lemma A.3.3, his expected payoff at any subsequent inconsistent

history is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), i.e. playing 𝑎1 all the time is his best reply. According to Lemma A.3.1, if

there exists 𝜃𝑝 ∈ Θ𝑝 playing inconsistently at ℎ𝑡, then type 𝜃𝑝 must be playing inconsistently at ℎ𝑡

with probability 1.

Suppose type 𝜃𝑝 plays inconsistently with positive probability at ℎ𝑡 with 𝑍(ℎ𝑡) ≤ 0, then his

continuation value at ℎ𝑡 is 𝑢1(𝜃𝑝, 𝑎1, 𝑎2). He strictly prefers to deviate and play 𝑎1 forever at

ℎ𝑡−1 ≺ ℎ𝑡 unless there exists ℎ̂𝑇 ≻ ℎ𝑡−1 such that 𝑍(ℎ̂𝑇 ) ≥ 0 and type 𝜃𝑝 strictly prefers to play

consistently from ℎ𝑡−1 to ℎ̂𝑇 . This implies that every 𝜃𝑝 plays consistently with probability 1 from

ℎ𝑡−1 to ℎ̂𝑇 , i.e. for every ℎ𝑡 ≻ ℎ𝑡−1 in which type 𝜃𝑝 plays inconsistently with positive probability

and ℎ𝑇 ≻ ℎ𝑡, we have 𝑍(ℎ𝑇 ) > 𝑍(ℎ̂𝑇 ) ≥ 0. This implies that at ℎ𝑡, type 𝜃𝑝’s continuation payoff

by playing consistently until 𝑍 ≥ 0 is strictly higher than behaving inconsistently, leading to a

contradiction.

Suppose type 𝜃𝑝 plays inconsistently with positive probability at ℎ𝑡 with 𝑍(ℎ𝑡) > 0, then

according to Lemma A.3.7, his continuation value by playing consistently is at least 𝑢1(𝜃𝑝, 𝑎1, 𝑎2),

which is no less than 𝑢1(𝜃𝑝, 𝑎1, 𝑎2), while his continuation value by playing inconsistently is at most
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(1 − 𝛿)𝑢1(𝜃𝑝, 𝑎1, 𝑎2) + 𝛿𝑢1(𝜃𝑝, 𝑎1, 𝑎2), which is strictly less when 𝛿 is large enough, leading to a

contradiction.

Consider generic 𝜇 such that there exist 𝜃*𝑝 ∈ Θ𝑝 and 𝑞 ∈ (0, 1) such that:

𝜇(𝑎1)𝒟(𝜑𝑎1 , 𝑎1) + 𝑞𝜇(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) +
∑︁
𝜃≻𝜃*𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1) = 0; (A.70)

as well as generic 𝛿 ∈ (0, 1) such that for every 𝑎1 ∈ Ω𝑔 ∪ {𝑎1}, there exists no integer 𝑇 ∈ N such

that

(1 − 𝛿𝑇 )𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2) + 𝛿𝑇𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) = 𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2). (A.71)

Hence, when 𝜇(Ω𝑚) is small enough such that:∑︁
𝜃≻𝜃*𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1) +
∑︁

𝛼1∈Ω𝑏

𝜇(Ω𝑚)𝒟(𝜑𝛼1 , 𝛼1) > 0 (A.72)

and

(1 − 𝑞)𝜇(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) + 𝜇(Ω𝑚) max
𝛼1∈Ω𝑚

𝒟(𝜑𝛼1 , 𝛼1) < 0, (A.73)

one can uniquely pin down the probability with which type 𝜃*𝑝 plays 𝑎1 all the time. To see this,

there exists a unique integer 𝑇 such that:

(1−𝛿𝑇 )𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2)+𝛿𝑇𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) > 𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) > (1−𝛿𝑇+1)𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2)+𝛿𝑇+1𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2).

The probability with which type 𝜃*𝑝 plays 𝑎1 all the time, denoted by 𝑞*(𝑎1) ∈ (0, 1), is chosen such

that:

𝑞*(𝑎1)𝜇(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) +
∑︁
𝜃≻𝜃*𝑝

𝜇(𝜃)𝒟(𝜃, 𝑎1)

+
∑︁

𝛼1∈Ω𝑚

𝜇(𝛼1) 𝛼1(𝑎1)
𝑇⏟  ⏞  

prob that type 𝛼1 plays 𝑎1 for 𝑇 consecutive periods

𝒟(𝜑𝛼1 , 𝛼1) = 0. (A.74)

Similarly, the probability with which type 𝜃*𝑝 plays 𝑎1 ∈ Ω𝑔 all the time, denoted by 𝑞*(𝑎1), is

pinned down via:

𝑞*(𝑎1)𝜇(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) +
∑︁

𝛼1∈Ω𝑚

𝜇(𝛼1)𝛼1(𝑎1)
𝑇 (𝑎1)𝒟(𝜑𝛼1 , 𝛼1) = 0.

where 𝑇 (𝑎1) is the unique integer satisfying:

(1 − 𝛿𝑇 (𝑎1))𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2) + 𝛿𝑇 (𝑎1)𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) > 𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2)

> (1 − 𝛿𝑇 (𝑎1)+1)𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2) + 𝛿𝑇 (𝑎1)+1𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2).

The argument above also pins down every type’s equilibrium payoff: type 𝜃 - 𝜃*𝑝 receives payoff

𝑢1(𝜃, 𝑎1, 𝑎2). Every strategic type above 𝜃*𝑝’s equilibrium payoff is pinned down by the occupation
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measure with which 𝑎2 is played conditional on player 1 always plays 𝑎1, which itself is pinned

down by type 𝜃*𝑝’s indifference condition.

𝛾-closeness of on-path behavior: Last, I claim that even when Ω𝑔𝑚 ̸= {∅}, (1) All strategic

types besides type 𝜃*𝑝 will either play 𝑎1 in every period or 𝑎1 in every period, (2) strategic type 𝜃*𝑝
will either play 𝑎1 in every period or 𝑎1 in every period with probability at least 1 − 𝛾(𝜖); (3) his

on-path behavior across different equilibria are 𝛾(𝜖)-close, with lim𝜖↓0 𝛾(𝜖) = 0.

Consider the expressions of 𝑌 (ℎ𝑡) in (A.65) and 𝑍(ℎ𝑡) in (A.67) which provide upper and

lower bounds, respectively, on player 2’s propensity to play 𝑎2 at ℎ𝑡. When 𝜇(Ω𝑚) < 𝜖, previous

arguments imply the existence of 𝛾(𝜖) with lim𝜖↓0 𝛾(𝜖) = 0, such that for every equilibrium,

𝑌 (ℎ𝑡), 𝑍(ℎ𝑡) ∈ [−𝛾(𝜖), 𝛾(𝜖)]

for every ℎ𝑡 ∈ ℋ𝜎 such that 𝑎1 has always been played. When 𝜖 is sufficiently small, this implies the

existence of 𝜃*𝑝 ∈ Θ𝑝 such that type 𝜃*𝑝 mixes between playing 𝑎1 in every period and playing 𝑎1 in

every period. This together with Lemma A.3.1 pins down every other strategic type’s equilibrium

behavior aside from type 𝜃*𝑝. Moreover, it also implies that the ex ante probability with which type

𝜃*𝑝 plays 𝑎1 in every period or plays 𝑎1 in every period cannot differ by 2𝛾(𝜖)/𝜇(𝜃*𝑝) across different

equilibria. Furthermore, when 𝜇(Ω𝑚) is small enough, player 2 will have a strict incentive to play

𝑎2 in period 0 as well as in period 𝑡 if 𝑎1 has always been played in the past. This and type 𝜃*𝑝’s

indifference condition pins down every type’s equilibrium payoff.

To show that the probability of type 𝜃*𝑝 behaving inconsistently vanishes with 𝜇(Ω𝑚), notice

that first, there exists 𝑠* ∈ R+ such that for every 𝑠 > 𝑠*, 𝜃𝑝 ∈ Θ𝑝 and 𝛼1 ∈ Ω𝑚,

𝑠𝒟(𝜃𝑝, 𝑎1) + 𝒟(𝜑𝛼1 , 𝛼1) < 0. (A.75)

Therefore, the probability with which every type 𝜃𝑝 ∈ Θ𝑝 playing time inconsistently must be below

𝑠*𝜖
{︁

min
𝜃𝑝∈Θ𝑝

(1 − 𝜖)
𝜆(𝜃𝑝)∑︀
𝜃∈Θ 𝜆(𝜃)

}︁−1
. (A.76)

Expression (A.76) provides an upper bound for 𝛾(𝜖), which vanishes as 𝜖 ↓ 0. When 𝜇(Ω𝑚)

is sufficiently small, Lemma A.3.1 implies the existence of a cutoff type 𝜃*𝑝 such that all types

strictly above 𝜃*𝑝 always plays 𝑎1 and all types strictly below 𝜃*𝑝 always plays 𝑎1, and type 𝜃*𝑝 plays

consistently with probability at least 1 − 𝛾(𝜖), concluding the proof.

A.5 Proof of Proposition 1.1

When �̂� ∈ ∆(Θ) satisfies (1.20), the equilibrium in which type 𝜃 obtains payoff close to 𝑣𝜃(𝑎1) is

easy to construct, i.e. every type in Θ𝑔 ∪Θ𝑝 always plays 𝑎1 and every type in Θ𝑛 always plays 𝑎1.

Starting from period 1, player 2 plays 𝑎1 if and only if player 1 has always been playing 𝑎1, and
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plays 𝑎1 otherwise. In what follows, I show that he cannot obtain payoff greater than 𝑣𝜃(𝑎1) in any

equilibrium.

Let 𝜎 = (𝜎1, 𝜎2) be an equilibrium under (�̂�, 𝛿). Recall the definitions of ℋ and ℋ𝜎. Since I

will only be referring to on-path histories in this proof, I will replace ℋ𝜎 with ℋ from then on. I

start with recursively defining the set of ‘high histories’. Let ℋ0 ≡ {ℎ0} and

𝑎1(ℎ
0) ≡ max

{︁ ⋃︁
𝜃∈Θ

supp
(︁
𝜎𝜃(ℎ

0)
)︁}︁
.

Let

ℋ1 ≡ {ℎ1| there exists ℎ0 ∈ ℋ0
such that ℎ1 ≻ ℎ0 and 𝑎1(ℎ

0) ∈ ℎ1}.

For every 𝑡 ∈ N and ℎ𝑡 ∈ ℋ𝑡
, let Θ(ℎ𝑡) ⊂ Θ be the set of types that occur with positive probability

at ℎ𝑡. Let

𝑎1(ℎ
𝑡) ≡ max

{︁ ⋃︁
𝜃∈Θ(ℎ𝑡)

supp
(︁
𝜎𝜃(ℎ

𝑡)
)︁}︁

(A.77)

and

ℋ𝑡+1 ≡ {ℎ𝑡+1| there exists ℎ𝑡 ∈ ℋ𝑡
such that ℎ𝑡+1 ≻ ℎ𝑡 and 𝑎1(ℎ

𝑡) ∈ ℎ𝑡+1}. (A.78)

Let ℋ ≡
⋃︀∞

𝑡=0ℋ
𝑡
. For every 𝜃 ∈ Θ, let ℋ(𝜃) be a subset of ℋ such that ℎ𝑡 ∈ ℋ(𝜃) if and only if:

1. For every ℎ𝑠 % ℎ𝑡 with ℎ𝑠 ∈ ℋ, we have 𝜃 ∈ Θ(ℎ𝑠).

2. If ℎ𝑡−1 ≺ ℎ𝑡, then for every 𝜃 ∈ Θ(ℎ𝑡−1), there exists ℎ𝑠 ∈ ℋ with ℎ𝑠 ≻ ℎ𝑡−1 such that

𝜃 /∈ Θ(ℎ𝑠).

Let ℋ(Θ) ≡
⋃︀

𝜃∈Θℋ(𝜃), which has the following properties:

1. ℋ(Θ) ⊂ ℋ.

2. For every ℎ𝑡, ℎ𝑠 ∈ ℋ(Θ), neither ℎ𝑡 ≻ ℎ𝑠 nor ℎ𝑡 ≺ ℎ𝑠.

In what follows, I show the following Lemma:

Lemma A.5.1. For every ℎ𝑡 ∈ ℋ, if 𝜃 = max Θ(ℎ𝑡), then type 𝜃’s continuation payoff at ℎ𝑡 is no

more than max{𝑢1(𝜃, 𝑎1, 𝑎2), 𝑢1(𝜃, 𝑎1, 𝑎2)}.

Lemma A.5.1 implies the conclusion in Proposition 1.1 as ℎ0 ∈ ℋ and 𝜃 = max Θ(ℎ0). A useful

conclusion to show Lemma A.5.1 is the following observation:

Lemma A.5.2. For every ℎ𝑡 ∈ ℋ, if 𝜃, ̃︀𝜃 ∈ Θ(ℎ𝑡) with ̃︀𝜃 ≺ 𝜃, then the difference between type 𝜃’s

continuation payoff and type ̃︀𝜃’s continuation payoff at ℎ𝑡 is no more than 𝑢1(𝜃, 𝑎1, 𝑎2)−𝑢1(̃︀𝜃, 𝑎1, 𝑎2).
Proof of Lemma A.5.2: Since 𝑢1 has SID in 𝜃 and (𝑎1, 𝑎2), so for every 𝜃 ≻ ̃︀𝜃,

(𝑎1, 𝑎2) ∈ arg max
(𝑎1,𝑎2)

{︁
𝑢1(𝜃, 𝑎1, 𝑎2) − 𝑢1(̃︀𝜃, 𝑎1, 𝑎2)}︁ (A.79)
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which yields the upper bound on the difference between type 𝜃 and type ̃︀𝜃’s continuation payoffs.

For every ℎ𝑡 ∈ ℋ(̃︀𝜃), at the subgame starting from ℎ𝑡, type ̃︀𝜃’s stage game payoff is no more

than 𝑢1(̃︀𝜃, 𝑎1, 𝑎2) in every period and his continuation payoff at ℎ𝑡 cannot exceed 𝑢1(̃︀𝜃, 𝑎1, 𝑎2). This

is because 𝑎1 is type 𝜃’s Stackelberg action, so whenever player 1 plays an action 𝑎1 ≺ 𝑎1, 𝑎2 is

player 2’s strict best reply. Lemma A.5.2 then implies that for every 𝜃 ∈ Θ(ℎ𝑡) with 𝜃 ≻ ̃︀𝜃, type

𝜃’s continuation payoff at ℎ𝑡 cannot exceed 𝑢1(𝜃, 𝑎1, 𝑎2).

In what follows, I prove Lemma A.5.1 by induction on |Θ(ℎ𝑡)|. When |Θ(ℎ𝑡)| = 1, i.e. there

is only one type (call it type 𝜃) that can reach ℎ𝑡 according to 𝜎, then Lemma A.5.2 implies that

type 𝜃’s payoff cannot exceed 𝑢1(𝜃, 𝑎1, 𝑎2).

Suppose the conclusion in Lemma A.5.1 holds for every |Θ(ℎ𝑡)| ≤ 𝑛, consider the case when

|Θ(ℎ𝑡)| = 𝑛 + 1. Let 𝜃 ≡ max Θ(ℎ𝑡). Let me introduce set ℋ𝐵
(ℎ𝑡), which is a subset of ℋ. For

every ℎ𝑠 % ℎ𝑡 with ℎ𝑠 ∈ ℋ, ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) if and only if:

∙ ℎ𝑠 ∈ ℋ(𝜃),

∙ but ℎ𝑠+1 /∈ ℋ(𝜃) for any ℎ𝑠+1 ≻ ℎ𝑠 with ℎ𝑠+1 ∈ ℋ.

In another word, type 𝜃 has a strict incentive not to play 𝑎1(ℎ
𝑠) at ℎ𝑠. A useful property is:

∙ For every ℎ∞ ∈ ℋ with ℎ∞ ≻ ℎ𝑡, either there exists ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) such that ℎ𝑠 ≺ ℎ∞, or there

exists ℎ𝑠 ∈ ℋ(𝜃) such that ℎ𝑠 ≺ ℎ∞.

which means that play will eventually reach either a history in ℋ𝐵
(ℎ𝑡) or ℋ(𝜃) if type 𝜃 keeps

playing 𝑎1(ℎ
𝜏 ) before that for every 𝑡 ≤ 𝜏 ≤ 𝑠.

In what follows, I examine type 𝜃’s continuation value at each kind of history.

1. For every ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡), at ℎ𝑠+1 with ℎ𝑠+1 ≻ ℎ𝑠 and ℎ𝑠+1 ∈ ℋ, by definition,

|Θ(ℎ𝑠+1)| ≤ 𝑛.

Let ̃︀𝜃 ≡ max Θ(ℎ𝑠+1). By induction hypothesis, type ̃︀𝜃’s continuation payoff at ℎ𝑠+1 is at

most 𝑢1(̃︀𝜃, 𝑎1, 𝑎2). This applies to every such ℎ𝑠+1.

Type ̃︀𝜃’s continuation value at ℎ𝑠 also cannot exceed 𝑢1(̃︀𝜃, 𝑎1, 𝑎2) since he is playing 𝑎1(ℎ
𝑠)

with positive probability at ℎ𝑠, and his stage game payoff from doing so is at most 𝑢1(̃︀𝜃, 𝑎1, 𝑎2).
Furthermore, his continuation value afterwards cannot exceed 𝑢1(̃︀𝜃, 𝑎1, 𝑎2).
Lemma A.5.2 then implies that type 𝜃’s continuation value at ℎ𝑠 is at most 𝑢1(𝜃, 𝑎1, 𝑎2).

2. For every ℎ𝑠 ∈ ℋ(𝜃), always playing 𝑎1(ℎ
𝜏 ) for all ℎ𝜏 % ℎ𝑠 and ℎ𝜏 ∈ ℋ is a best reply for

type 𝜃. His stage game payoff from this strategy cannot exceed 𝑢1(𝜃, 𝑎1, 𝑎2), which implies

that his continuation value at ℎ𝑠 also cannot exceed 𝑢1(𝜃, 𝑎1, 𝑎2).

Starting from ℎ𝑡 consider the strategy in which player 1 plays 𝑎1(ℎ
𝜏 ) at every ℎ𝜏 ≻ ℎ𝑡 and ℎ𝜏 ∈ ℋ

until play reaches ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) or ℎ𝑠 ∈ ℋ(𝜃). By construction, this is type 𝜃’s best reply. Under

this strategy, type 𝜃’s stage game payoff cannot exceed 𝑢1(𝜃, 𝑎1, 𝑎2) before reaches ℎ𝑠. Moreover, his
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continuation payoff after reaching ℎ𝑠 is also bounded above by 𝑢1(𝜃, 𝑎1, 𝑎2), which proves Lemma

A.5.1 when |Θ(ℎ𝑡)| = 𝑛+ 1.

A.6 Proof of Proposition 1.2

Throughout the proof, I normalize 𝑢1(𝜃, 𝑎1, 𝑎2) = 0 for every 𝜃. Let 𝑥𝜃(𝑎1) ≡ −𝑢1(𝜃, 𝑎1, 𝑎2) and

𝑦𝜃(𝑎1) ≡ 𝑢1(𝜃, 𝑎1, 𝑎2). Assumptions 1.1 and 1.2 imply that:

∙ 𝑥𝜃(𝑎1) ≥ 0, with “=” holds only when 𝑎1 = 𝑎1.

∙ 𝑦𝜃(𝑎1) > 0 for every 𝜃 ∈ Θ and 𝑎1 ∈ 𝐴1.

∙ 𝑥𝜃(𝑎1) and −𝑦𝜃(𝑎1) are both strictly increasing in 𝑎1.

∙ For every 𝜃 < ̃︀𝜃, 𝑥𝜃(𝑎1) − 𝑥̃︀𝜃(𝑎1) and 𝑦̃︀𝜃(𝑎1) − 𝑦𝜃(𝑎1) are both strictly increasing in 𝑎1.

I start with defining ‘pessimistic belief path’ for every 𝜎 ∈ NE(𝛿, �̂�). For every 𝑎∞1 ≡ (𝑎1,0, 𝑎1,1..., 𝑎1,𝑡...),

we say 𝑎∞1 ∈ 𝒜𝜎(𝜃*) if and only if for every 𝑡 ∈ N, there exists 𝑟𝑡 ∈ ℛ𝑡 such that (𝑎1,0, ..., 𝑎1,𝑡−1, 𝑟
𝑡) ∈

ℋ𝜎 and
∑︀

𝜃%𝜃* 𝜇𝑡(𝜃)𝒟(𝜃, 𝑎1) < 0, where 𝜇𝑡 is player 2’s belief after observing (𝑎1,0, ..., 𝑎1,𝑡−1). For

any 𝜃 ∈ Θ, if (𝑎∞1 , 𝑟
∞) ∈ ℋ𝜎(𝜃) for some 𝑎∞1 ∈ 𝒜𝜎(𝜃), then 𝑉 𝜎

𝜃 (𝛿) = 0 and always playing 𝑎1 is

type 𝜃’s best reply.

For every �̂� satisfying (1.21), there exist a unique 𝜃*𝑝 ∈ Θ𝑝 and a unique 𝑞(�̂�) ∈ [0, 1) such that:

𝑞(�̂�)�̂�(𝜃*𝑝)𝒟(𝜃*𝑝, 𝑎1) +
∑︁
𝜃≻𝜃*𝑝

�̂�(𝜃)𝒟(𝜃, 𝑎1) = 0. (A.80)

When �̂� satisfies (1.21), then for every 𝜎 ∈ NE(𝛿, �̂�) and 𝜃 - 𝜃*𝑝, since
∑︀̃︀𝜃%𝜃

�̂�(̃︀𝜃)𝒟(̃︀𝜃, 𝑎1) < 0, using

the martingale property of beliefs, we know that there exists 𝑎∞1 ∈ 𝒜𝜎(𝜃) such that (𝑎∞1 , 𝑟
∞) ∈

ℋ𝜎(𝜃) for some 𝑟∞. This pins down the unique equilibrium payoff for all 𝜃 - 𝜃*𝑝.

In what follows, I establish the upper bound in Proposition 1.2. For every 𝜃 ≻ 𝜃*𝑝, in every action

path 𝑎∞1 = (𝑎1,0, 𝑎1,1, ...) which type 𝜃 follows with strictly positive probability under 𝜎 ∈ NE(𝛿, �̂�),

it must be that:

𝑉 𝜎
𝜃 (𝛿) =

∑︁
𝑎1,𝑎2

𝒫𝑎∞1 (𝑎1, 𝑎2)𝑢1(𝜃, 𝑎1, 𝑎2)

and

0 = 𝑉 𝜎
𝜃*𝑝

(𝛿) ≥
∑︁
𝑎1,𝑎2

𝒫𝑎∞1 (𝑎1, 𝑎2)𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2)

where

𝒫𝑎∞1 (𝑎1, 𝑎2) ≡
∞∑︁
𝑡=0

(1 − 𝛿)𝛿𝑡𝑝(𝜎1,𝜎2)(𝑎1, 𝑎2)
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with 𝜎1 playing 𝑎∞1 on the equilibrium path. Therefore, 𝑉 𝜎
𝜃 (𝛿) must be weakly below the value of

the following linear program:

max
{𝛽(𝑎1),𝛾(𝑎1)}𝑎1∈𝐴1

{︁ ∑︁
𝑎1∈𝐴1

𝛽(𝑎1)𝑦𝜃(𝑎1) − 𝛾(𝑎1)𝑥𝜃(𝑎1)
}︁
, (A.81)

subject to ∑︁
𝑎1∈𝐴1

𝛾(𝑎1) + 𝛽(𝑎1) = 1,

𝛾(𝑎1), 𝛽(𝑎1) ≥ 0 for every 𝑎1 ∈ 𝐴1,

and ∑︁
𝑎1∈𝐴1

𝛽(𝑎1)𝑦𝜃*𝑝(𝑎1) − 𝛾(𝑎1)𝑥𝜃*𝑝(𝑎1) ≤ 0. (A.82)

Due to the linearity of this program, it is without loss of generality to focus on solutions where

there exist 𝑎*1 and 𝑎**1 such that

𝛽(𝑎1) > 0 iff 𝑎1 = 𝑎*1, 𝛾(𝑎1) > 0 iff 𝑎1 = 𝑎**1 .

According to (A.82), we have:

𝛽(𝑎*1)𝑦𝜃*𝑝(𝑎*1) ≤ (1 − 𝛽(𝑎*1))𝑥𝜃*𝑝(𝑎**1 ). (A.83)

Plugging (A.83) into (A.81), the value of that expression cannot exceed:

max
𝑎*1,𝑎

**
1 ∈𝐴1

{︁𝑦𝜃(𝑎*1)𝑥𝜃*𝑝(𝑎**1 ) − 𝑥𝜃(𝑎
**
1 )𝑦𝜃*𝑝(𝑎*1)

𝑥𝜃*𝑝(𝑎**1 ) + 𝑦𝜃*𝑝(𝑎*1)

}︁
. (A.84)

Expression (A.84) is maximized when 𝑎*1 = 𝑎**1 = 𝑎1, which gives an upper bound for 𝑉 𝜎
𝜃 (𝛿):

𝑉 𝜎
𝜃 (𝛿) ≤ 𝑟𝑢1(𝜃, 𝑎1, 𝑎2) + (1 − 𝑟)𝑢1(𝜃, 𝑎1, 𝑎2), (A.85)

with 𝑟 ∈ (0, 1) satisfying: 𝑟𝑢1(𝜃
*
𝑝, 𝑎1, 𝑎2) + (1 − 𝑟)𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2) = 𝑢1(𝜃

*
𝑝, 𝑎1, 𝑎2). The upper bound

in (A.85) is asymptotically achieved when 𝛿 → 1 in an equilibrium where:

∙ Type 𝜃 always plays 𝑎1 if 𝜃 ≺ 𝜃*𝑝, always plays 𝑎1 if 𝜃 ≻ 𝜃*𝑝.

∙ Type 𝜃*𝑝 randomizes between always playing 𝑎1 and always playing 𝑎1 with prob 𝑞(�̂�) and

1 − 𝑞(�̂�).

A.7 Counterexamples

I present several counterexamples missing from the main text. For convenience, there is only one

commitment type in every example besides the one in Appendix A.7.5. The intuition behind the

142



examples still apply when there are multiple pure strategy commitment types. Abusing notation,

I use 𝜃 to denote the Dirac measure on 𝜃 and 𝑎𝑖 to denote the Dirac measure on 𝑎𝑖 with 𝑖 ∈ {1, 2}.

A.7.1 Failure of Reputation Effects When Supermodularity is Violated

Example 1: To begin with, I construct equilibrium in the entry deterrence game of Harrington

(1986) in which the supermodularity condition on 𝑢1 is violated.11 Let the stage game payoff be:

𝜃1 O I

F 1, 0 −1,−1

A 2, 0 0, 1

𝜃0 O I

F 5/2, 0 1/2, 1/2

A 3, 0 1, 3/2

One can verify that the monotonicity condition is satisfied. To see this game’s payoff fails the

supermodularity assumption, let us rank the state and players’ actions via 𝜃1 ≻ 𝜃0, 𝐹 ≻ 𝐴 and

𝑂 ≻ 𝐼. Player 1’s cost of fighting is 1 in state 𝜃1 and is 1/2 in state 𝜃0. Intuitively, when the

incumbent’s and the entrant’s costs are positively correlated, the incumbent’s loss from fighting

(by lowering prices) is higher when his cost is high, and the entrant’s profit from entry decreases

with the cost and increases with the incumbent’s price.

When Ω = {𝐹, 𝜃1, 𝜃0} and 𝜇(𝐹 ) ≤ 2𝜇(𝜃0), I construct an equilibrium with low payoffs in each

of the following three cases, depending on the signs of:

𝑋 ≡ 𝜇(𝜃0)

2
+

(︁𝜇(𝐹 )𝜑𝐹 (𝜃0)

2
− 𝜇(𝐹 )𝜑𝐹 (𝜃1)

)︁
− 𝜇(𝜃1) (A.86)

and

𝑌 ≡ 𝜇(𝐹 )𝜑𝐹 (𝜃0)

2
− 𝜇(𝐹 )𝜑𝐹 (𝜃1). (A.87)

1. If 𝑋 ≤ 0, then type 𝜃0 always plays 𝐹 , type 𝜃1 mixes between always playing 𝐹 and always

playing 𝐴, with the probability of playing 𝐹 being 1 +𝑋/𝜇(𝜃1). Player 2 plays 𝐼 for sure in

period 0. Starting from period 1, she plays 𝐼 for sure if 𝐴 has been observed before and plays
1
2𝛿𝑂+ (1 − 1

2𝛿 )𝐼 otherwise. Despite the probability of type 𝜃1 is large relative to that of type

𝜃0, type 𝜃1’s equilibrium payoff is 0 and type 𝜃0’s equilibrium payoff is 3/2, both are lower

than their commitment payoffs from playing 𝐹 .

2. If 𝑋 > 0 and 𝑌 ≤ 0, then type 𝜃1 always plays 𝐴, type 𝜃0 mixes between always playing

𝐹 and always playing 𝐴, with the probability of playing 𝐹 being −𝑌/𝜇(𝜃0). Player 2 plays

𝐼 for sure in period 0. Starting from period 1, she plays 𝐼 for sure if 𝐴 has been observed

before and plays 1
4𝛿𝑂 + (1 − 1

4𝛿 )𝐼 otherwise. Type 𝜃1’s equilibrium payoff is 0 and type 𝜃0’s

equilibrium payoff is 1.

3. If 𝑋 > 0 and 𝑌 > 0, then both types always play 𝐴. Player 2 plays 𝐼 no matter what. Type

𝜃1’s equilibrium payoff is 0 and type 𝜃0’s equilibrium payoff is 1.

11The case in which 𝑢2 has decreasing differences between 𝑎2 and 𝜃 is similar once we reverse the order on the
states.
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Example 2: Next, I construct equilibrium in the entry deterrence game when the supermodular-

ity condition on 𝑢2 is violated. I focus on the case in which 𝑢2 has decreasing differences between

𝑎2 and 𝑎1.
12 Consider the following 2 × 2 × 2 game with payoffs given by:

𝜃 = 𝜃1 ℎ 𝑙

𝐻 1,−1 −1, 0

𝐿 2, 1 0, 0

𝜃 = 𝜃0 ℎ 𝑙

𝐻 1 − 𝜂,−2 −1 − 𝜂, 0

𝐿 2,−1 0, 0

with 𝜂 ∈ (0, 1). The states and players’ actions are ranked according to 𝐻 ≻ 𝐿, ℎ ≻ 𝑙 and 𝜃1 ≻ 𝜃0.

Let Ω = {𝐻, 𝜃1, 𝜃0}. Theorem 1.2 trivially applies as the commitment outcome (𝐻, 𝑙) gives every

type his lowest feasible payoff. In what follows, I show the failure of Theorem 1.3, i.e. player 1 has

multiple equilibrium behaviors. First, there exists an equilibrium in which (𝐿, ℎ) is always played

or (𝐿, 𝑙) is always played, depending on the prior belief. Second, consider the following equilibrium:

∙ In period 0, both strategic types play 𝐿.

∙ From period 1 to 𝑇 (𝛿) ∈ N, type 𝜃0 plays 𝐿 and type 𝜃1 plays 𝐻. Player 2 plays ℎ in period

𝑡(≥ 2) if and only if 𝑡 ≥ 𝑇 (𝛿) + 1 and player 1’s past play coincides with type 𝜃1’s equilibrium

strategy. The integer 𝑇 (𝛿) is chosen such that:

(1 − 𝛿𝑇 (𝛿))(−1) + 2𝛿𝑇 (𝛿) > 0 > (1 − 𝛿𝑇 (𝛿))(−1 − 𝜂) + 2𝛿𝑇 (𝛿),

which exists when 𝛿 is close enough to 1.

A.7.2 Failure of Reputation Effects When Monotonicity is Violated

I show that the monotonicity condition is indispensable for my reputation result. For this purpose,

I consider two counterexamples in which Assumption 1 is violated in different ways.

Example 1: Consider the following 2 × 2 × 2 game:

𝜃 = 𝜃1 ℎ 𝑙

𝐻 3/2, 2 0, 0

𝐿 1, 1 0, 0

𝜃 = 𝜃0 ℎ 𝑙

𝐻 −1,−1/2 1, 0

𝐿 0,−1 5/2, 1/4

One can verify that this game satisfies the supermodularity assumption once we rank the states

and actions according to 𝜃1 ≻ 𝜃0, 𝐻 ≻ 𝐿 and ℎ ≻ 𝑙.13 However, the monotonicity assumption is

violated as player 1’s ordinal preferences over 𝑎1 and 𝑎2 depend on the state.

Suppose Ω = {𝐻, 𝜃1, 𝜃0} with 4𝜇(𝐻) < 𝜇(𝜃0). Consider the following equilibrium in which

player 2 plays a ‘tit-for-tat ’ like strategy. Type 𝜃1 plays 𝐿 all the time and type 𝜃0 plays 𝐻 all the

12The case in which 𝑢2 has decreasing differences between 𝑎2 and 𝜃 is similar to the previous example. One only
needs to reverse the order between the states.

13In fact, the game’s payoffs even satisfy a stronger notion of complementarity, that is, both 𝑢1 and 𝑢2 are strictly
supermodular functions of the triple (𝜃, 𝑎1, 𝑎2). The definition of supermodular function can be found in Topkis
(1998).
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time. Starting from period 1, player 2 plays ℎ in period 𝑡 ≥ 1 if 𝐿 was played in period 𝑡− 1 and

vice versa. Both types’ equilibrium payoffs are close to 1, which are strictly lower than their pure

Stackelberg commitment payoffs, which are 3/2 and 5/2 respectively.

To verify that this is an equilibrium when 𝛿 is high enough, notice that first, player 2’s incentive

constraints are always satisfied. As for player 1, if 𝜃 = 𝜃1, deviating for one period gives him a

stage game payoff at most 3/2 and in the next period his payoff is at most 0. If 𝛿 > 1/2, then he

has no incentive to deviate. if 𝜃 = 𝜃0, deviating for one period gives him a stage game payoff at

most 5/2 and in the future, he will keep receiving payoff at most 0 until he plays 𝐻 for one period.

He has no incentive to deviate if and only if for every 𝑡 ∈ N,

(1 − 𝛿)
5

2
− (𝛿𝑡 − 𝛿𝑡+1) ≤ 1 − 𝛿𝑡+1. (A.88)

which is equivalent to:
5

2
≤ 1 + 𝛿 + ...+ 𝛿𝑡−1 + 2𝛿𝑡.

The above inequality is satisfied for every integer 𝑡 ≥ 1 when 𝛿 > 0.9. This is because when 𝑡 ≥ 2,

the right hand side is at least 1 + 0.9 + 0.92, which is greater than 5/2. When 𝑡 = 1, the right hand

side equals to 2.8, which is greater than 5/2.

To see that player 1’s equilibrium behavior is not unique, consider another equilibrium in which

type 𝜃1 always plays 𝐻, type 𝜃0 always plays 𝐿 and for every 𝑡 ∈ N, player 2 plays ℎ in period 𝑡 if

𝐻 is played in period 𝑡− 1, and plays 𝑙 in period 𝑡 if 𝐿 is played in period 𝑡− 1. This implies that

the conclusion in Theorem 1.3 will fail in absence of the monotonicity assumption.

Example 2: Low payoff equilibria can be constructed when player 1’s ordinal preference over

each player’s actions does not depend on the state, but the directions of monotonicity violate

Assumption 1. For example, consider the following game:

𝜃 = 𝜃1 ℎ 𝑙

𝐻 2, 2 0, 0

𝐿 1, 1 −1/2, 0

𝜃 = 𝜃0 ℎ 𝑙

𝐻 1/4,−1/2 1/8, 0

𝐿 0,−1 −1/16, 1/4

Both players’ payoffs are supermodular functions of (𝜃, 𝑎1, 𝑎2). Player 1’s ordinal preferences over

𝑎1 and 𝑎2 are state independent but his payoff is strictly increasing in both 𝑎1 and 𝑎2, which is

different from what Assumption 1 suggests. Rank the states and actions according to 𝜃1 ≻ 𝜃0,

𝐻 ≻ 𝐿 and ℎ ≻ 𝑙.

Suppose Ω = {𝐻, 𝜃1, 𝜃0} with 4𝜇(𝐻) < 𝜇(𝜃0). The following strategy profile is an equilibrium.

Type 𝜃1 plays 𝐿 all the time and type 𝜃0 plays 𝐻 all the time. Starting from period 1, player 2 plays

ℎ in period 𝑡 ≥ 1 if 𝐿 was played in period 𝑡− 1 and vice versa. Type 𝜃1 and type 𝜃0’s equilibrium

payoffs are close to 1 and 1/8, respectively as 𝛿 → 1. Their pure Stackelberg commitment payoffs are

2 and 1/4, respectively, which are strictly higher. The verification of players’ incentive constraints

is the same as the previous example.
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Moreover, contrary to what Theorem 1.3 has suggested, player 1’s equilibrium behavior is not

unique even when player 2’s prior belief is pessimistic, i.e.

2𝜇(𝜃1) + 𝜇(𝐻)
(︁

2𝜑𝐻(𝜃1) −
1

2
𝜑𝐻(𝜃0)

)︁
− 1

2
𝜇(𝜃0) < 0. (A.89)

This is because aside from the equilibrium constructed above, there also exists an equilibrium in

which type 𝜃1 always plays 𝐻, type 𝜃0 mixes between always playing 𝐻 and always playing 𝐿

with probabilities such that player 2 becomes indifferent between ℎ and 𝑙 starting from period 1

conditional on 𝐻 has always been played. In equilibrium, player 2 plays ℎ in period 𝑡 ≥ 1 as long

as player 1 has always played 𝐻 before, and switches to 𝑙 permanently otherwise.

A.7.3 Failure of Reputation Effects When |𝐴2| ≥ 3

I present an example in which the reputation results in Theorems 2 and 3 fail when the stage game

has MSM payoffs but player 2 has three or more actions. This motivates the additional conditions

on the payoff structure in Online Appendix D. Consider the following 2× 2× 3 game with payoffs:

𝜃 = 𝜃1 𝑙 𝑚 𝑟

𝐻 0, 0 5/2, 2 6, 3

𝐿 𝜖, 0 5/2 + 𝜖,−1 6 + 𝜖,−2

𝜃 = 𝜃0 𝑙 𝑚 𝑟

𝐻 0, 0 2,−1 3,−2

𝐿 2𝜖, 0 2 + 2𝜖,−2 3 + 2𝜖,−3

where 𝜖 > 0 is small enough. Let the rankings on actions and states be 𝐻 ≻ 𝐿, 𝑟 ≻ 𝑚 ≻ 𝑙 and

𝜃1 ≻ 𝜃0. One can check that the stage game payoffs are MSM.

Suppose Ω = {𝜃1, 𝜃0, 𝐻} with 𝜇(𝜃0) = 2𝜂, 𝜇(𝐻) = 𝜂 and 𝜑𝐻 = 𝜃1, with 𝜂 ∈ (0, 1/3). Type 𝜃1’s

commitment payoff from playing 𝐻 is 6. However, consider the following equilibrium:

∙ Type 𝜃0 plays 𝐻 all the time. Type 𝜃1 plays 𝐿 from period 0 to 𝑇 (𝛿) and plays 𝐻 afterwards,

with 1 − 𝛿𝑇 (𝛿) ∈ (1/2 − 𝜖, 1/2 + 𝜖). Such 𝑇 (𝛿) ∈ N exists when 𝛿 > 1 − 2𝜖.

∙ Player 2 plays 𝑚 starting from period 1 if player 1 has always played 𝐻 in the past. She

plays 𝑟 from period 1 to 𝑇 (𝛿) and plays 𝑟 afterwards if player 1’s past actions are consistent

with type 𝜃1’s equilibrium strategy. She plays 𝑙 at every off-path history.

Type 𝜃1’s equilibrium payoff is approximately 3 + 𝜖/2 as 𝛿 → 1, which is strictly less than his

commitment payoff. To see that player 1 has multiple equilibrium behaviors under a pessimistic

prior belief, i.e. 𝜂 ∈ [1/4, 1/3), there exists another equilibrium in which all types of player 1 plays

𝐻 at every on-path history. Player 2 plays 𝑚 if all past actions were 𝐻 and plays 𝑙 otherwise.

A.7.4 Time Inconsistent Equilibrium Plays in Private Value Reputation Game

I construct an equilibrium in the private value product choice game in which despite there is

a commitment type that always exerts high effort, the strategic long-run player abandons his

reputation early on in the relationship and 𝐿 is played with significant probability. The game’s

payoff matrix is given by:
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− 𝐶 𝑆

𝐻 1, 3 −1, 2

𝐿 2, 0 0, 1

Suppose there is a commitment type that always plays 𝐻 (which is unlikely compared to the

strategic type) and consider the following equilibrium when 𝛿 > 1/2:

∙ The strategic type plays 𝐿 for sure in period 0. He plays 1
2𝐻 + 1

2𝐿 starting from period 1.

∙ Player 2 plays 𝑆 for sure in period 0. If 𝐻 is observed in period 0, then she plays 𝐶 for sure

as long as 𝐻 has always been played. She plays 𝑆 for sure in all subsequent periods if 𝐿 has

been played before.

If 𝐿 is observed in period 0, 𝐶 is played for sure in period 1. Starting from period 2, player

2 plays 𝐶 for sure in period 𝑡 if 𝐻 was played in period 𝑡− 1, and (1 − 1
2𝛿 )𝐶 + 1

2𝛿𝑆 in period

𝑡 if 𝐿 was played in period 𝑡− 1.

It is straightforward to verify players’ incentive constraints. Intuitively, starting from period 1, every

time player 1 shirks, he will be punished tomorrow as player 2 will play 𝐶 with less probability.

The probabilities with which he mixes between 𝐻 and 𝐿 are calibrated to provide player 2 the

incentive to mix between 𝐶 and 𝑆. Despite the strategic type obtains equilibrium payoff 𝛿, which is

close to his pure Stackelberg commitment payoff given that he is sufficiently patient. However, the

strategic long-run player’s equilibrium play is very different from the commitment type’s. Perhaps

more surprisingly, (i) imitating the commitment type is a strictly dominated strategy, which yields

payoff −(1− 𝛿) + 𝛿, strictly less than his equilibrium payoff; (ii) evaluating the occupation measure

of every action ex ante, 𝐿 is played with significant probability. On average, 𝐿 is played with

occupation measure strictly more than 1/2, which converges to 1/2 as 𝛿 → 1.

A.7.5 Behavioral Uniqueness: Commitment Type Occurs with Low Probability

The following example illustrates why 𝜇(Ω𝑚) being small is not redundant for Theorem 1.3’ when

there exists 𝛼1 ∈ Ω𝑚∖{𝑎1} such that {𝑎2} = BR2(𝛼1, 𝜑𝛼1). Consider the following 3 × 2 × 2 stage

game:

𝜃 = 𝜃1 𝐶 𝑆

𝐻 1, 2 −2, 0

𝑀 2, 1 −1, 0

𝐿 3,−1 0, 0

𝜃 = 𝜃0 𝐶 𝑆

𝐻 1/2,−1 −5/2, 0

𝑀 3/2,−2 −3/2, 0

𝐿 3,−3 0, 0

Let Ω ≡ {𝐻,𝑀, 𝜃1, 𝜃0} with 𝜇(𝐻) = 𝜇(𝜃1) = 1/20, 𝜇(𝜃0) = 3/10 and 𝜇(𝑀) = 3/5. Let 𝜑𝐻 = 𝜑𝑀

be the Dirac measure on 𝜃1. One can check that 𝑀 ∈ Ω𝑔 and 𝜇 satisfies (1.11). However, for every

𝛿 > 5/6, one can construct the following class of equilibria indexed by 𝑇 ∈ {1, 2, ...}:

∙ Equilibrium 𝜎𝑇 : Type 𝜃0 plays 𝑀 forever. Type 𝜃1 plays 𝑀 from period 0 to period 𝑇 ,

and plays 𝐻 starting from period 𝑇 + 1. Player 2 plays 𝐶 for sure from period 0 to 𝑇 + 1 if
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player 1’s past actions were either all 𝐻 or all 𝑀 . For period 𝑡 ≥ 𝑇 + 2, player 2 plays 𝐶 for

sure if player 1’s past actions were all 𝐻 or all 𝑀 from 0 to 𝑇 and all 𝐻 afterwards, he plays
3𝛿−1
3𝛿 𝐶 + 1

3𝛿𝑆 if player 1’s past actions were all 𝑀 . Player 2 plays 𝑆 for sure at any other

history.

One can verify players’ incentive constraints. In particular in period 𝑇 + 1 conditional on player

1 has always played 𝑀 in the past, type 𝜃1 is indifferent between playing 𝐻 and 𝑀 while type 𝜃0

strictly prefers to play 𝑀 . This class of equilibria can be constructed for an open set of beliefs.14

As we can see, player 1’s equilibrium behaviors are drastically different once we vary the index 𝑇 ,

ranging from playing 𝑀 all the time to playing 𝐻 almost all the time. Moreover, the good strategic

type, namely type 𝜃1, have an incentive to play actions other than 𝐻 for a long period of time,

contrary to what Theorems 1.3 and A.1 suggest.

A.7.6 Irregular Equilibria in Games with MSM Payoffs

I construct an equilibrium in the repeated product choice game with MSM payoffs in which at some

on-path histories, player 1’s reputation deteriorates after playing the highest action.15 Recall that

players’ stage game payoffs are given by:

𝜃 = 𝜃1 ℎ 𝑙

𝐻 1, 3 −1, 2

𝐿 2, 0 0, 1

𝜃 = 𝜃0 ℎ 𝑙

𝐻 1 − 𝜂, 0 −1 − 𝜂, 1

𝐿 2,−2 0, 0

with 𝜂 ∈ (0, 1). Let Ω ≡ {𝐻, 𝜃1, 𝜃0} with 𝜇(𝐻) = 0.06, 𝜇(𝜃0) = 0.04, 𝜇(𝜃1) = 0.9 and 𝜑𝐻 is the

Dirac measure on 𝜃1. Consider the following strategy profile:

∙ In period 0, type 𝜃1 plays 𝐻 with probability 2/45 and type 𝜃0 plays 𝐻 with probability 1/4.

Player 2 plays 𝑙.

∙ In period 1, if the history is (𝐿, 𝑙), then use the public randomization device. With probability

(1 − 𝛿)/𝛿, players play (𝐿, 𝑙) forever, with complementary probability, players play (𝐻,ℎ)

forever. If (𝐻,ℎ) is prescribed and player 1 ever deviates to 𝐿, then player 2 plays 𝑙 at every

subsequent history.

∙ In period 1, if the history is (𝐻, 𝑙), then both strategic types play 𝐿 and player 2 plays ℎ.

This is incentive compatible due to the presence of the commitment type.

∙ In period 2, if the history is (𝐻, 𝑙,𝐻, ℎ), then play (𝐻,ℎ) forever on the equilibrium path. If

player 2 ever observes player 1 plays 𝐿, then she plays 𝑙 in all subsequent periods.

∙ In period 2, if the history is (𝐻, 𝑙, 𝐿, ℎ), then use the public randomization device:

14Notice that under a generic prior belief, type 𝜃1 needs to randomize between always playing 𝐻 and always playing
𝑀 in period 𝑇 + 1. This can be achieved since he is indifferent by construction.

15One can also verify that the constructed strategy profile is also part of a sequential equilibrium under its induced
belief system.
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◇ With probability (1 − 𝛿)/𝛿, play (𝐿, 𝑙) forever on the equilibrium path.

◇ With probability 1− 1−𝛿
𝛿2

− 1−𝛿
𝛿 , play (𝐻,ℎ) forever on the equilibrium path. If player 2

ever observes player 1 plays 𝐿, then she plays 𝑙 in all subsequent periods.

◇ With probability (1−𝛿)/𝛿2, type 𝜃0 plays 𝐿 for sure and type 𝜃1 plays 𝐿 with probability

1/4, and player 2 plays ℎ.

Following history (𝐻, 𝑙, 𝐿, ℎ,𝐻, ℎ), play (𝐻,ℎ) forever on the equilibrium path. If player

2 ever observes player 1 plays 𝐿, then she plays 𝑙 in all subsequent periods.

Following history (𝐻, 𝑙, 𝐿, ℎ, 𝐿, ℎ), use the public randomization device again. With

probability (1 − 𝛿)/𝛿, play (𝐿, 𝑙) forever. With complementary probability, play (𝐻,ℎ)

forever on the equilibrium path. If player 2 ever observes player 1 plays 𝐿, then she

plays 𝑙 in all subsequent periods.

In period 0, player 2’s belief about 𝜃 deteriorates after observing 𝐻. This is true no matter whether

we only count the strategic types (as strategic type 𝜃0 plays 𝐻 with strictly higher probability) or

also count the commitment type (probability of 𝜃1 decreases from 24/25 to 10/11).

A.7.7 Multiple Equilibrium Behaviors when Player 1 is Impatient

I present an example in which the game’s payoff satisfies Assumptions 1.1 to 1.3, player 2’s prior

belief is pessimistic but player 1 has multiple equilibrium behaviors when 𝛿 is not high enough.

Consider the following product choice game:

𝜃 = 𝜃1 𝐶 𝑆

𝐻 1, 3 −1, 2

𝐿 2, 0 0, 1

𝜃 = 𝜃0 𝐶 𝑆

𝐻 1 − 𝜂, 0 −1 − 𝜂, 1

𝐿 2,−2 0, 0

with 𝜂 ∈ (0, 1), Ω𝑚 ≡ {𝐻} and 𝜑𝐻 be the Dirac measure on 𝜃1. Player 2’s prior satisfies:

𝜇(𝜃0) = 0.7, 𝜇(𝜃1) + 𝜇(𝐻) = 0.3 with 𝜇(𝐻) ∈ (0, 0.1).

I construct a class of Nash equilibria when 𝛿 ∈ (12 ,
1+𝜂
2 ), in which player 1’s on-path equilibrium

behaviors are different across these equilibria.16

∙ Type 𝜃0 always plays 𝐿.

∙ Type 𝜃1 plays 𝐻 in every period besides period 𝑡 ∈ {1, 2, ...}, in which he plays 𝐿.

∙ Player 2 plays 𝑆 in period 0 and period 𝑡. In period 𝑠 ̸= 0, 𝑡, she plays 𝑆 if player 1 has played

𝐿 before in any period besides 𝑡; she plays 𝐶 if player 1 has played 𝐻 in every period or has

only played 𝐿 in period 𝑡.

Intuitively, since player 1’s discount factor is low, strategic type 𝜃0 has no incentive to pool with the

commitment type. Therefore, after playing 𝐻 for one period, player 2’s belief becomes optimistic

which leads to multiple equilibrium behaviors.

16One can verify that these Nash equilibrium outcomes can also be implemented in sequential equilibrium.
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A.7.8 Why 𝜆 ∈ Λ(𝛼*
1, 𝜃) is not sufficient when 𝛼*

1 is mixed?

I use a counterexample to show that 𝜆 ∈ Λ(𝛼*
1, 𝜃) is no longer sufficient to guarantee the commitment

payoff bound when 𝛼*
1 is mixed. Players’ payoffs are given by:

𝜃1 𝑙 𝑚 𝑟

𝐻 1, 3 0, 0 0, 0

𝐿 2,−1 0, 0 0, 0

𝐷 3,−1 1/2, 0 1/2, 0

𝜃2 𝑙 𝑚 𝑟

𝐻 0, 1/2 0, 3/2 0, 0

𝐿 0, 1/2 0, 3/2 0, 0

𝐷 0, 0 0, 0 0, 0

𝜃3 𝑙 𝑚 𝑟

𝐻 0, 1/2 0, 0 0, 3/2

𝐿 0, 1/2 0, 0 0, 3/2

𝐷 0, 0 0, 0 0, 0

Suppose Ω𝑚 = {𝛼*
1} with 𝛼*

1 ≡ 1
2𝐻 + 1

2𝐿 and 𝜑𝛼*
1

is the Dirac measure on 𝜃1, one can apply the

definitions and obtain that 𝑣𝜃1(𝛼*
1) = 3/2 and Θ𝑏

(𝛼*
1,𝜃1)

= {𝜃2, 𝜃3}. If 𝜇(𝛼*
1) = 2𝜇(𝜃2) = 2𝜇(𝜃3) ≡ 𝜌

for some 𝜌 ∈ (0, 1/2), then 𝜆 = (1/2, 1/2) ∈ Λ(𝛼*
1, 𝜃1). In the following equilibrium, type 𝜃1’s payoff

is 1/2 even when 𝛿 → 1.

∙ Type 𝜃1 always plays 𝐷. In period 0, type 𝜃2 plays 𝐻 and type 𝜃3 plays 𝐿. Starting from

period 1, both types play 1
2𝐻 + 1

2𝐿. Player 2 plays 𝑚 in period 0. If she observes 𝐻 or 𝐷 in

period 0, then she plays 𝑚 forever. If she observes 𝐿 in period 0, then she plays 𝑟 forever.

In the above equilibrium, either 𝜇𝑡(𝜃2)/𝜇𝑡(𝛼
*
1) or 𝜇𝑡(𝜃3)/𝜇𝑡(𝛼

*
1) will increase in period 0, regardless

of player 1’s action in that period. As a result, player 2’s posterior belief in period 1 is outside

Λ(𝛼*
1, 𝜃1) for sure. This provides him a rationale for not playing 𝑙 and gives type 𝜃1 an incentive to

play 𝐷 forever, making player 2’s belief self-fulfilling. This situation only arises when 𝛼*
1 is mixed

and 𝑘(𝛼*
1, 𝜃) ≥ 2.
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Appendix B

Appendix to Chapter 2

B.1 Proof of Proposition 2.2

In this Appendix, I show the eight lemmas in Subsection 2.3.4 that lead to Proposition 2.2.

B.1.1 Proof of Lemma 2.3.1

Suppose towards a contradiction, that there exists 𝜋* ∈ (0, 1) such that lim𝑡→∞ 𝜋𝑡 = 𝜋*, where 𝜋𝑡

is the market’s belief conditional on ℎ𝑡 = {∅}. Rewrite (2.1) as:

𝑑𝜋𝑡
𝜋𝑡(1 − 𝜋𝑡)

= −𝑌𝑡𝑑𝑡.

Integrate both sides from 0 to ∞, we have:∫︁ ∞

0
𝑌𝑡𝑑𝑡 = ln

1 − 𝜋*

𝜋*
− ln

1 − 𝜋0
𝜋0

, (B.1)

Since 𝜋*, 𝜋0 ∈ (0, 1), so
∫︀∞
0 𝑌𝑡𝑑𝑡 is finite. This implies that lim𝑡→∞ 𝑌𝑡 = 0. Since 𝑌𝑡 = 𝜇𝜒𝑡𝑎𝑡, 𝜇 > 0

and 𝑎𝑡 ≥ 𝜑, we have 𝜒𝑡 → 0. Hence, for every 𝜀 > 0, there exists 𝑇 ∈ R+ such that 𝜒𝑡 < 𝜀 for all

𝑡 > 𝑇 . Pick 𝜀 such that:
𝜇𝜀

𝑟
𝜑 < 𝑐. (B.2)

Since 𝑉𝑎(𝜋𝑡) ≥ 0, so (2.5) implies that 𝑎𝑡 = 𝜑 for all 𝑡 > 𝑇 , implying that 𝑉𝑚(𝜋𝑡) < 𝑏. This suggests

that 𝜒𝑡 = 1 for all 𝑡 > 𝑇 , which leads to a contradiction.

B.1.2 Proof of Lemma 2.3.2

Since 𝜒(𝜋𝑡) > 0 for all 𝑡, let 𝑉𝑎(𝑡) ≡ 𝑉𝑎(𝜋𝑡). Replace 𝑉𝑎(𝜋𝑡) and 𝑉 ′
𝑎(𝜋𝑡) with 𝑉𝑎(𝑡) and 𝑉 ′

𝑎(𝑡) in

(2.3), we have:

𝑉𝑎(𝑡) = 𝜋𝑡𝑎𝑡 + 𝑐𝜑+ 𝑎𝑡

(︁𝜇𝜒𝑡

𝑟
(𝜑− 𝑉𝑎(𝑡)) − 𝑐

)︁
+

1

𝑟
𝑉 ′
𝑎(𝑡).
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The unique bounded solution is:

𝑉𝑎(𝑡) = 𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)

[︁
𝜋𝑠𝑎𝑠 + 𝑐𝜑+ 𝑎𝑠

(︁𝜇𝜒𝑠

𝑟

(︀
𝜑− 𝑉𝑎(𝑠)

)︀
− 𝑐

)︁]︁
𝑑𝑠 = 𝑐𝜑+𝑋𝑡 +𝑊𝑡, (B.3)

where

𝑋𝑡 ≡ 𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)𝑍𝑠𝑑𝑠, 𝑍𝑡 ≡ 𝑎𝑡

(︁𝜇𝜒𝑡

𝑟

(︀
𝜑− 𝑉𝑎(𝑡)

)︀
− 𝑐

)︁
,

and

𝑊𝑡 ≡ 𝑟

∫︁ ∞

𝑡
𝑒−𝑟(𝑠−𝑡)𝜋𝑠𝑎𝑠𝑑𝑠.

This implies that for every 𝜀 > 0, there exists 𝑇 ∈ R+ such that for every 𝑡 > 𝑇 :

𝜋𝑡 < 𝜀, 𝑊𝑡 < 𝜀,

The expression for 𝑉𝑎(𝑡) suggests that:

𝑋𝑡 < 𝑉𝑎(𝑡) − 𝑐𝜑 < 𝑋𝑡 + 𝜀. (B.4)

Moreover, according to the agent’s incentive constraint, 𝑍𝑡 has the following property:

𝑍𝑡

⎧⎪⎨⎪⎩
< 0 when 𝜇𝜒𝑡

𝑟 (𝜑− 𝑉𝑎(𝜋𝑡)) < 𝑐

= 0 when 𝜇𝜒𝑡

𝑟 (𝜑− 𝑉𝑎(𝜋𝑡)) = 𝑐

> 0 when 𝜇𝜒𝑡

𝑟 (𝜑− 𝑉𝑎(𝜋𝑡)) > 𝑐

The following proof focuses on 𝑡 ∈ R+ large enough such that 𝜋𝑡 < 1− 𝑏, i.e. 𝑎*(𝜋𝑡) ∈ (𝜑, 1). Recall

the patience level is high if and only if:

𝑟 <
𝜇𝜑(1 − 𝑐)

𝑐
or 𝑉 𝑎 > 𝑐𝜑.

The following Lemma claims that the agent’s continuation value converges in the limit.

Lemma B.1.1. There exists 𝑉𝑎(0) ∈ R+ such that:1

lim
𝑡→∞

𝑉𝑎(𝑡) = lim
𝜋𝑡→0

𝑉𝑎(𝜋𝑡) = lim
𝜋𝑡→0

𝑉𝑎(𝜋𝑡).

The proof of this Lemma is in Section B of the Online Appendix. Let 𝑉𝑎(0) ≡ lim𝑡→∞ 𝑉𝑎(𝑡).

In what follows, I will show that 𝑉𝑎(0) = 𝑐𝜑 and then characterize players’ behaviors in the limit.

Limiting Continuation Value in High Patience Case: I show that 𝑉𝑎(0) = 𝑐𝜑 by ruling out

all other possibilities.

1The fact that lim𝑡→∞ 𝑉𝑎(𝑡) = lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) is a direct implication of Lemma 2.3.1.
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Part I: Suppose 𝑉𝑎(0) > 𝑉 𝑎. Since 𝑉𝑎(0) > 𝑉 𝑎 > 𝑐𝜑, there exists 𝑇 ∈ R+ such that 𝑉𝑎(𝑡) > 𝑉 𝑎

and 𝑋𝑡 > 0 for all 𝑡 > 𝑇 . But
𝜇𝜒𝑡

𝑟
(𝜑− 𝑉𝑎(𝜋𝑡)) < 𝑐

for all 𝜒𝑡 ∈ [0, 1] when 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎, and hence, 𝑍𝑡 < 0 for all 𝑡 > 𝑇 . This leads to a contradiction.

Part II: Suppose 𝑉𝑎(0) < 𝑐𝜑. Then there exists 𝑇 ∈ R+ such that 𝑉𝑎(𝑡) < 𝑉 𝑎 and 𝑋𝑡 < 0 for all

𝑡 > 𝑇 . Hence, there exists 𝑡 > 𝑇 such that 𝑍𝑡 < 0, i.e.

𝑎(𝜋𝑡) = 𝜑,
𝜇𝜒𝑡

𝑟

(︁
𝜑− 𝑉𝑎(𝑡)

)︁
< 𝑐.

Since 𝑉𝑎(𝑡) < 𝑉 𝑎, so 𝜒𝑡 ∈ (0, 1), implying that 𝑉𝑚(𝜋𝑡) ≥ 𝑏. Admissibility requires the existence of

𝜀0 > 0 such that

𝑎(𝜋𝑡+𝜀1) ∈
[︁
𝜑, 𝑎*(𝜋𝑡+𝜀1)

)︁
for every 𝜀1 ∈ (0, 𝜀0).

Equation (2.7) implies that 𝑉𝑚(𝜋𝑡+𝜀1) > 𝑏, thus 𝜒𝑡+𝜀1 = 0, contradicting the conclusion of Lemma

2.3.1.

Part III: Suppose 𝑉𝑎(0) ∈ (𝑐𝜑, 𝑉 𝑎). Then there exists 𝑇 ∈ R+ such that 𝑉𝑎(𝑡) < 𝑉 𝑎 and 𝑋𝑡 > 0

for all 𝑡 > 𝑇 . This implies the existence of 𝑡 > 𝑇 such that:

𝑎(𝜋𝑡) = 1,
𝜇𝜒𝑡

𝑟

(︁
𝜑− 𝑉𝑎(𝑡)

)︁
> 𝑐.

The intermediary’s incentive constraint requires that 𝜒(𝜋𝑡) > 0 and 𝑉𝑚(𝜋𝑡) ≤ 𝑏. Admissibility (left-

continuity with respect to belief or equivalently, right-continuity with respect to time) requires the

existence of 𝜀0 > 0 such that

𝑎(𝜋𝑡+𝜀1) ∈
(︁
𝑎*(𝜋𝑡+𝜀1), 1

)︁
for every 𝜀1 ∈ (0, 𝜀0).

Equation (2.7) implies that 𝑉𝑚(𝜋𝑡+𝜀1) < 𝑏 for all 𝜀1 ∈ (0, 𝜀0), which further implies that 𝜒𝑡+𝜀1 = 1

for all 𝜀1 ∈ (0, 𝜀0). But because 𝑉𝑎(𝑡) < 𝑉 𝑎 for all 𝑡 > 𝑇 , so 𝑎𝑡 = 1 when 𝜒𝑡 = 1. But then since

𝑎*(𝜋𝑡) < 1 for all 𝑡 > 𝑇 , we have 𝑉𝑚(𝜋𝑡) > 𝑏, contradicting the previous conclusion that 𝑉𝑚(𝜋𝑡) ≤ 𝑏.

Part IV: Suppose 𝑉𝑎(0) = 𝑉 𝑎. Then there exists 𝑇 ∈ R+ such that 𝑋𝑡 > 0 for all 𝑡 > 𝑇 . If

𝑉𝑎(𝜋𝑡) < 𝑉 𝑎 for all 𝜋𝑡 ∈ (0, 𝜋𝑇 ), we can obtain the same contradiction as in Part III.

Suppose there exists 𝑡 > 𝑇 such that 𝑉𝑎(𝑡) ≥ 𝑉 𝑎. Since 𝑋𝑡 > 0 and 𝑍𝑡 ≤ 0 for all 𝑡 such that

𝑉𝑎(𝑡) ≥ 𝑉 𝑎, so there exists 𝑡′ > 𝑡 with 𝑉𝑎(𝜋𝑡′) < 𝑉 𝑎. Since 𝑉𝑎(·) is a continuous function, there

exists 𝑡′′ ∈ [𝑡, 𝑡′) such that

𝑉𝑎(𝑡′′) = 𝑉 𝑎, 𝑉 ′
𝑎(𝑡′′) < 0.
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Since 𝑉𝑎(𝑡′′) = 𝑉 𝑎 suggests that 𝑍𝑡′′ ≤ 0, we have:

𝑉 𝑎 = 𝑐𝜑+ 𝑍𝑡′′ +
1

𝑟
𝑉 ′
𝑎(𝑡′′)⏟  ⏞  

<0

< 𝑐𝜑,

which is a contradiction.

Behavior at the Limiting Belief: Next, I characterize players’ equilibrium behaviors when 𝜋𝑡

is close to 0. Since 𝑉𝑎(0) = 𝑐𝜑 < 𝑉 𝑎, there exists 𝜈 > 0 such that 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎 for all 𝜋𝑡 < 𝜈. The

entire discussion will be focusing on 𝜋𝑡 < 𝜈.

I start with showing that 𝑎(𝜋𝑡) < 𝑎*(𝜋𝑡) cannot happen when 𝜋𝑡 is small enough. Suppose

towards a contradiction, that there exists 𝜋𝑡 < 𝜈 such that 𝑎(𝜋𝑡) < 𝑎*(𝜋𝑡), then since 𝑎(·) is left

continuous, there exists 𝜀 > 0 such that 𝑎(𝜋′) < 𝑎*(𝜋′) for all 𝜋′ ∈ (𝜋𝑡 − 𝜀, 𝜋𝑡]. Since 𝜒 ̸= 0 for

all 𝑡, and 𝑉𝑎(𝜋′) < 𝑉 𝑎, it has to be the case that 𝜒(𝜋′) ∈ (0, 1), implying that 𝑉𝑚(𝜋′) = 𝑏 for all

𝜋′ ∈ (𝜋𝑡 − 𝜀, 𝜋𝑡], and hence 𝑉 ′
𝑚(𝜋′) = 0 for all 𝜋′ ∈ (𝜋𝑡 − 𝜀, 𝜋𝑡). From (2.7), we have 𝑎(𝜋′) = 𝑎*(𝜋′)

for all 𝜋′ ∈ (𝜋𝑡 − 𝜀, 𝜋𝑡). But this implies that 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡), which is a contradiction.

Then I show that 𝑎(𝜋𝑡) > 𝑎*(𝜋𝑡) also cannot happen when 𝜋𝑡 → 0. The previous step implies

the existence of 𝜈 > 0 such that 𝑎(𝜋𝑡) ≥ 𝑎*(𝜋𝑡) for all 𝜋𝑡 < 𝜈, implying that 𝑉𝑚(𝜋𝑡) ≥ 𝑏. Since

𝜒(𝜋𝑡) > 0, so 𝑉𝑚(𝜋𝑡) = 𝑏, which is achieved only when 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) for all 𝜋𝑡 ≤ 𝜈. This completes

the proof.

B.1.3 Proof of Lemma 2.3.3

The existence and uniqueness of solution to the initial value problem is established in Lemma B.1.1

and the existence of solution to the limiting value problem is established in a Lemma in the Online

Appendix. To show uniqueness in the limiting value problem, let 𝑍(𝜋𝑡) ≡ 𝜑 − 𝑉𝑎(𝜋𝑡), re-write

(2.13) as

−𝑍(𝜋𝑡)
2 + 𝑍(𝜋𝑡)

(︁
𝜑− 𝑐𝜑− 𝜋𝑡𝑎

*(𝜋𝑡)
)︁

= 𝑐𝑎*(𝜋𝑡)𝜋𝑡(1 − 𝜋𝑡)𝑍
′(𝜋𝑡). (B.5)

Suppose towards a contradiction that there exists two solutions, 𝑍1(𝜋𝑡) ̸= 𝑍2(𝜋𝑡). Since

lim
𝜋𝑡→0

𝑍1(𝜋𝑡) = lim
𝜋𝑡→0

𝑍2(𝜋𝑡) = 𝜑− 𝑐𝜑,

there exists 𝜋* small enough such that:

𝑍1(𝜋), 𝑍2(𝜋) ∈ [𝜑− 𝑐𝜑− 𝜀, 𝜑− 𝑐𝜑+ 𝜀], for all 𝜋 < 𝜋*

and

𝑍1(𝜋
*) = 𝑍1 ̸= 𝑍2 = 𝑍2(𝜋

*).
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where 𝜀 ∈ (0, 𝜑−𝑐𝜑
2 ). Without loss of generality, let 𝑍1 > 𝑍2. I show that 𝑍1(𝜋𝑡) − 𝑍2(𝜋𝑡) ≥

𝑍1 − 𝑍2 > 0 for all 𝜋𝑡 ∈ (0, 𝜋*). To see this, differentiating the LHS by 𝑍(𝜋𝑡), we have:

−2𝑍(𝜋𝑡) + 𝜑− 𝑐𝜑− 𝜋𝑡𝑎(𝜋𝑡) ≤ −2(𝜑− 𝑐𝜑− 𝜀) + 𝜑− 𝑐𝜑− 𝜋𝑡𝑎(𝜋𝑡) < 0.

So, if 𝑍1(𝜋𝑡) > 𝑍2(𝜋𝑡) then 𝑍 ′
1(𝜋𝑡) < 𝑍 ′

2(𝜋𝑡). So 𝑍1(𝜋𝑡) − 𝑍2(𝜋𝑡) is increasing when 𝜋𝑡 decreases,

i.e.

lim
𝜋𝑡→0

𝑍1(𝜋𝑡) − lim
𝜋𝑡→0

𝑍2(𝜋𝑡) ≥ 𝑍1 − 𝑍2 > 0,

contradicting lim𝜋𝑡→0 𝑍1(𝜋𝑡) = lim𝜋𝑡→0 𝑍2(𝜋𝑡) = 𝜑− 𝑐𝜑.

B.1.4 Proof of Lemma 2.3.5

Let 𝑉 *
𝑎 (·) be the unique solution to (2.13). Re-write the ODE as:

𝜋𝑡(1 − 𝜋𝑡)𝑉
*′
𝑎 (𝜋𝑡) =

1

𝑐𝑎*(𝜋𝑡)

(︀
𝜑− 𝑉 *

𝑎 (𝜋𝑡)
)︀(︀
𝑐𝜑+ 𝜋𝑡𝑎

*(𝜋𝑡) − 𝑉 *
𝑎 (𝜋𝑡)

)︀
, (B.6)

This implies that 𝑉 *′
𝑎 (𝜋𝑡) > 0 if and only if

𝑉 *
𝑎 (𝜋𝑡) < 𝜋𝑡𝑎

*(𝜋𝑡) + 𝑐𝜑. (B.7)

I show that 𝑉 *
𝑎 (𝜋𝑡) is strictly increasing in 𝜋𝑡 for 𝜋𝑡 ∈ (0, 𝜋†). Suppose towards a contradiction that

there exists 𝜋 < 𝜋† such that:

𝑉 *
𝑎 (𝜋) ≥ 𝜋𝑎*(𝜋) + 𝑐𝜑,

then 𝑉 *′
𝑎 (𝜋) ≤ 0. Since 𝜋𝑡𝑎

*(𝜋𝑡) + 𝑐𝜑 is a strictly increasing function of 𝜋𝑡 and 𝑉 *
𝑎 (𝜋𝑡) is decreasing

in 𝜋𝑡 for all 𝜋𝑡 ∈ (0, 𝜋), so

𝑉 *
𝑎 (𝜋𝑡) −

(︁
𝜋𝑡𝑎

*(𝜋𝑡) + 𝑐𝜑
)︁

strictly increases as 𝜋𝑡 decreases when 𝜋𝑡 ≤ 𝜋. This implies that lim𝜋𝑡↓0 𝑉
*
𝑎 (𝜋𝑡) > 𝑐𝜑, which

contradicts the limiting value condition.

B.1.5 Proof of Lemma 2.3.6

According to Lemma 2.3.2, 𝜋1 > 0. Suppose towards a contradiction that 𝜋1 ∈ (0,min{1 − 𝑏, 𝜋†}).

Since 𝜋1 < 𝜋†, Lemma 2.3.5 implies that 𝑉𝑎(𝜋1) < 𝑉 𝑎. So there exists 𝜀 > 0 such that 𝑉𝑎(𝜋1+𝜀0) <

𝑉 𝑎 for all 𝜀0 ∈ (0, 𝜀). Throughout the proof, I will be focusing on 𝜋𝑡 ∈ [𝜋1, 𝜋1 + 𝜀).

By definition of 𝜋1, for every 𝜀 > 0, there exists 𝜋𝑡 ∈ (𝜋1, 𝜋1 + 𝜀) such that 𝑎(𝜋𝑡) ̸= 𝑎*(𝜋𝑡).

Since 𝑎(𝜋𝑡) is left-continuous, we only need to consider the following three cases. Common in all

cases, there exists an open interval Π ≡ (𝜋𝑡 − 𝜀0, 𝜋𝑡) ⊂ (𝜋1, 𝜋1 + 𝜀), such that:

∙ Case 1: 𝑎(𝜋) ∈ (𝜑, 1) but 𝑎(𝜋) ̸= 𝑎*(𝜋𝑡) for all 𝜋 ∈ Π. By the choice of 𝜀, the agent’s

continuation value is strictly below 𝑉 𝑎 for all 𝜋 ∈ Π. So 𝜒(𝜋) ∈ (0, 1) for all 𝜋 ∈ Π. However,
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the intermediary’s continuation value function requires that 𝑎(𝜋) = 𝑎*(𝜋) for all 𝜋 ∈ Π, which

is a contradiction.

∙ Case 2: 𝑎(𝜋) = 1 for all 𝜋 ∈ Π. Left-continuity of 𝑎(·) implies that 𝑎(𝜋𝑡) = 1. Since 𝜒(𝜋) > 0

for all 𝜋 ∈ Π ∪ {𝜋𝑡}, we have 𝑉𝑚(𝜋) ≤ 𝑏.

The ODE in (2.7) implies that if 𝑉𝑚(𝜋𝑡) ≤ 𝑏, then 𝑉𝑚(𝜋) < 𝑏 for all 𝜋 ∈ Π, and hence,

𝜒(𝜋) = 1 by the intermediary’s incentive constraint. Since the agent’s continuation value is

below 𝑉 𝑎 for all 𝜋𝑡 ≤ 𝜋1 + 𝜀, so 𝑎(𝜋) = 1 whenever 𝜒(𝜋) = 1. Let

𝜋2 ≡ inf
{︁
𝜋
⃒⃒⃒
𝜋 ∈ [𝜋1, 𝜋𝑡], 𝑉𝑚(𝜋′) < 𝑏 for all 𝜋′ > 𝜋

}︁
,

then 𝜋2 = 𝜋1, implying that 𝑉𝑚(𝜋1) < 𝑏, contradicting the fact that 𝑎(𝜋1) = 𝑎*(𝜋1) and

𝜒(𝜋1) ∈ (0, 1).

∙ Case 3: 𝑎(𝜋) = 𝜑 for all 𝜋 ∈ Π. Left-continuity of 𝑎(·) implies that 𝑎(𝜋𝑡) = 𝜑. Then,

𝜒(𝜋) < 1 for all 𝜋 ∈ Π ∪ {𝜋𝑡}, which requires that 𝑉𝑚(𝜋) ≥ 𝑏.

The ODE in (2.7) implies that if 𝑉𝑚(𝜋𝑡) ≥ 𝑏, then 𝑉𝑚(𝜋) > 𝑏 for all 𝜋 ∈ Π, so 𝜒(𝜋) = 0 by

the intermediary’s incentive constraint. This contradicts Lemma 2.3.1.

B.1.6 Proof of Lemma 2.3.7

I start with the following Lemma.

Lemma B.1.2. If 𝜋2 ≥ 𝜋, then 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎 for all 𝜋𝑡 > 𝜋2.

Proof of Lemma B.1.2: Recall the agent’s continuation value satisfies:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡𝑎𝑡 − (𝑎𝑡 − 𝜑)𝑐+
𝜇𝜒𝑡𝑎𝑡
𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

)︁
. (B.8)

By definition, if 𝜋2 ≥ 𝜋, then 𝜒(𝜋𝑡) = 1 and 𝑉𝑎(𝜋𝑡) ≥ 𝑉 𝑎 for all 𝜋𝑡 ∈ (𝜋†, 𝜋2]. Let

𝜋* ≡ inf
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ∈ (𝜋2, 1) and 𝑉𝑎(𝜋𝑡) ≤ 𝑉 𝑎

}︁
,

Suppose towards a contradiction that 𝜋* < 1, then 𝑉 ′
𝑎(𝜋*) < 0. The intermediary’s incentives imply

that 𝜒(𝜋*) = 1. Plugging this back to (B.8) and by the fact that 𝜋* ≥ 𝜋2 ≥ 𝜋, we have 𝑉 ′
𝑎(𝜋*) ≥ 0,

leading to a contradiction.

Lemma B.1.3. If 𝜋2 < 𝜋, then there exists 𝜋𝑡 ∈ (𝜋2, 𝜋) such that 𝑉𝑎(𝜋𝑡) ̸= 𝑉 𝑎.

Proof of Lemma B.1.3: Suppose towards a contradiction that 𝑉𝑎(𝜋𝑡) = 𝑉 𝑎 for all 𝜋𝑡 ∈ (𝜋2, 𝜋) ≡
Π0. For any 𝜋𝑡 ∈ Π0 such that 𝑎(𝜋𝑡) ̸= 𝑎**(𝜋𝑡), since 𝑉𝑎(𝜋𝑡) = 𝑉 𝑎,

∙ If 𝜒(𝜋𝑡) = 1, then 𝑉 ′
𝑎(𝜋𝑡) ̸= 0, leading to a contradiction.
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∙ If 𝜒(𝜋𝑡) < 1, then 𝑎(𝜋𝑡) = 𝜑, plugging this into (B.8) and using the assumption that 𝑉 ′
𝑎(𝜋𝑡) =

0,

𝑉 𝑎 = 𝜋𝑡𝜑+ 𝑐𝜑𝜒𝑡 < (1 − 𝑐− 𝑐𝑟

𝜇𝜑
)𝜑+ 𝑐𝜑 = 𝜑− 𝑐𝑟

𝜇
= 𝑉 𝑎,

which leads to a contradiction.

This finishes the proof.

Back to Lemma 2.3.7, suppose towards a contradiction that 𝜋2 ∈ [𝜋†, 1). If 𝜋2 > 𝜋, then

according to Lemma B.1.2, 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎 for all 𝜋𝑡 > 𝜋2. In this case, only 𝑎(𝜋𝑡) = 𝜑 = 𝑎**(𝜋𝑡) is

incentive compatible, which leads to a contradiction.

When 𝜋2 < 𝜋. There exists 𝜋 > 𝜋2, such that 𝑎(𝜋) ̸= 𝑎**(𝜋). Lemma B.1.3 implies that there

exists 𝜋𝑡 ∈ (𝜋2, 𝜋) such that 𝑉𝑎(𝜋𝑡) ̸= 𝑉 𝑎. Two subcases are examined separately.

1. If 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎, then by the continuity of 𝑉𝑎(·) and Lemma 2.3.4, there exists 𝜋′𝑡 ∈ (𝜋2, 𝜋𝑡)

such that

𝑎(𝜋′𝑡) > 𝜑, 𝑉𝑎(𝜋′) > 𝑉 𝑎.

This leads to a contradiction since when 𝑉𝑎(𝜋′) > 𝑉 𝑎, the only incentive compatible effort

level is 𝑎(𝜋′) = 𝜑, regardless of 𝜒(𝜋′).

2. If 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎, then there exists 𝜋′ ∈ (𝜋2, 𝜋𝑡) such that

𝑎(𝜋′) < 𝑎**(𝜋′), 𝑉𝑎(𝜋′) < 𝑉 𝑎.

Since 𝑎(·) is left-continuous and 𝑉𝑎(·) is continuous, there exists 𝜀0 ∈ (0, 𝜋𝑡 − 𝜋2) such that

𝑎(𝜋′′) < 𝑎**(𝜋′′), 𝑉𝑎(𝜋′′) < 𝑉 𝑎

for all 𝜋′′ ∈ (𝜋′ − 𝜀0, 𝜋
′) ≡ Π. This also implies that 𝜒(𝜋′′) < 1 for all 𝜋′′ ∈ Π. The

intermediary’s incentive constraint requires that 𝑉𝑚(𝜋′ − 𝜀0
2 ) ≥ 𝑏.

From the ODE in (2.7), 𝑉𝑚(𝜋′′) > 𝑏 for all 𝜋′′ ∈ (𝜋′−𝜀0, 𝜋′− 𝜀0
2 ). This implies that 𝜒(𝜋′′) = 0,

contradicting the conclusion of Lemma 2.3.1.

B.1.7 Proof of Lemma 2.3.8

I start from the following Lemma:

Lemma B.1.4. If 𝜋0 < 𝜑, then for any 𝑡 ∈ R+, 𝜒 ∈ X, a ∈ A and â ∈ A:

Eâ,𝜒,𝜋0 [𝜋𝑡+𝑑𝑡|𝜃 = 1,a] > 𝜋𝑡. (B.9)

Proof of Lemma B.1.4: Conditional on 𝜃 = 1, the probability breakthrough at [𝑡, 𝑡 + 𝑑𝑡] is at

least 𝜇𝜒𝑡𝜑𝑑𝑡, after which 𝜋𝑡 = 1. With complementary probability, 𝜋𝑡 degrades to

𝜋𝑡 − 𝜇𝜒𝑡�̂�𝑡𝜋𝑡(1 − 𝜋𝑡)𝑑𝑡.
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The expected belief at 𝑡+ 𝑑𝑡 exceeds 𝜋𝑡 if:

𝜇𝜒𝑡𝜑𝑑𝑡+ (1 − 𝜇𝜒𝑡𝜑𝑑𝑡)(𝜋𝑡 − 𝜇𝜒𝑡�̂�𝑡𝜋𝑡(1 − 𝜋𝑡)𝑑𝑡) > 𝜋𝑡 (B.10)

Ignoring higher order terms, we get:

𝜑 > �̂�𝑡𝜋𝑡, (B.11)

(B.11) implies that 𝜋0 < 𝜑 is sufficient for (B.9).

Back to the proof of Lemma 2.3.8, for any given 𝜒 and a correct market belief â, the agent’s

continuation value is:

𝑉 â,𝜒
𝑎 (𝜋𝑡) = 𝜋𝑡�̂�(𝜋𝑡)− 𝑐

(︁
𝑎(𝜋𝑡)− 𝜑

)︁
+
𝜇𝜒(𝜋𝑡)𝑎(𝜋𝑡)

𝑟

(︁
𝜑− 𝑉 â,𝜒

𝑎 (𝜋𝑡)
)︁
− 𝜇𝜒(𝜋𝑡)�̂�(𝜋𝑡)

𝑟
𝜋𝑡(1− 𝜋𝑡)𝑉

â,𝜒′
𝑎 (𝜋𝑡).

(B.12)

Let Γâ,𝜒(𝜋𝑡) ≡ 𝑉 â,𝜒
𝑎 (𝜋𝑡) − 𝜋𝑡𝜑, we have:

Γâ,𝜒(𝜋𝑡) = 𝜋𝑡

(︁
�̂�(𝜋𝑡) − 𝜑

)︁
− 𝑐

(︁
𝑎(𝜋𝑡) − 𝜑

)︁
+
𝜇𝜒(𝜋𝑡)𝑎(𝜋𝑡)

𝑟

(︁
𝜑(1 − 𝜋𝑡) − Γâ,𝜒(𝜋𝑡)

)︁
−𝜇𝜒(𝜋𝑡)�̂�(𝜋𝑡)

𝑟
𝜋𝑡(1 − 𝜋𝑡)Γ

â,𝜒′
(𝜋𝑡) −

𝜇𝜑𝜒(𝜋𝑡)�̂�(𝜋𝑡)

𝑟
𝜋𝑡(1 − 𝜋𝑡). (B.13)

In what follows, I write Γ(·) instead of Γâ,𝜒(·) for notation simplicity. Let

𝜋* ≡ sup
{︁
𝜋𝑡 ≤ 1

⃒⃒⃒
𝑉 â,𝜒
𝑎 (𝜋) ≤ 𝜑𝜋 for all 𝜋 ≤ 𝜋𝑡

}︁
.

Lemma B.1.4 suggests that when 𝜋0 < 𝜑, the agent can guarantee himself payoff 𝜋0𝜑 by playing

𝑎𝑡 = 𝜑 forever, so 𝜋* ≥ 𝜑 > 0.

I show that 𝜋* = 1. Suppose towards a contradiction that 𝜋* < 1. Since Γ(𝜋𝑡) is continuous,

we have:

Γ(𝜋*) = 0, Γ′(𝜋*) < 0.

From (B.13), we have:

0 > 𝜋*
(︁
�̂�(𝜋*) − 𝜑

)︁
− 𝑐

(︁
𝑎(𝜋*) − 𝜑

)︁
+
𝜇𝜒(𝜋*)𝑎(𝜋*)

𝑟
𝜑(1 − 𝜋*) − 𝜇𝜑𝜒(𝜋*)�̂�(𝜋*)

𝑟
𝜋*(1 − 𝜋*). (B.14)

I consider three cases, depending on the market’s believed effort �̂� as well as the strength of

reputation concerns, 𝜇𝜒(𝜋*)
𝑟 𝜑(1−𝜋*)− 𝑐. I will obtain a contradiction in each case based on (B.14).

Case 1: If �̂�(𝜋*) = 𝜑, then 𝑎(𝜋*) = 𝜑 must be a best reply since the market’s belief is correct,

we have:

0 >
𝜇𝜒(𝜋*)𝜑

𝑟
𝜑(1 − 𝜋*) − 𝜇𝜑𝜒(𝜋*)

𝑟
𝜑𝜋*(1 − 𝜋*)

=
𝜇𝜒(𝜋*)𝜑2

𝑟
(1 − 𝜋*)2 ≥ 0,
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which is a contradiction.

Case 2: If �̂�(𝜋*) ∈ [𝜑, 1] and 𝜇𝜒(𝜋*)
𝑟 𝜑(1 − 𝜋*) = 𝑐, then the agent is indifferent between all effort

levels, so

0 > 𝜋*
(︁
�̂�(𝜋*) − 𝜑

)︁
+ 𝑐𝜑− 𝜇𝜑𝜒(𝜋*)�̂�(𝜋*)

𝑟
𝜋*(1 − 𝜋*)⏟  ⏞  

=𝑐𝜋*�̂�(𝜋*)

.

= (1 − 𝑐)𝜋*�̂�(𝜋*) + 𝜑(𝑐− 𝜋*)

≥ (1 − 𝑐)𝜋*𝜑+ 𝜑(𝑐− 𝜋*) = 𝜑𝑐(1 − 𝜋*) > 0.

which is a contradiction.

Case 3: If �̂�(𝜋*) = 1 and 𝜇𝜒(𝜋*)
𝑟 𝜑(1 − 𝜋*) > 𝑐, then 𝑎(𝜋*) = 1 is the agent’s best response. Then

0 > 𝜋*
(︁

1 − 𝜑
)︁
− 𝑐

(︁
1 − 𝜑

)︁
+
𝜇𝜒(𝜋*)

𝑟
𝜑(1 − 𝜋*) − 𝜇𝜑𝜒(𝜋*)

𝑟
𝜋*(1 − 𝜋*).

= (𝜋* − 𝑐)(1 − 𝜑) +
𝜇𝜑𝜒(𝜋*)

𝑟
(1 − 𝜋*)2

> (𝜋* − 𝑐)(1 − 𝜑) + 𝑐(1 − 𝜋*) = 𝜋*(1 − 𝑐) + 𝜑(𝑐− 𝜋*).

If 𝜋* ≤ 𝑐, the last expression is strictly positive, which leads to a contradiction. If 𝜋* > 𝑐 and

𝜋* ≥ 𝜑,

𝜋*(1 − 𝑐) + 𝜑(𝑐− 𝜋*) ≥ 𝜋*(1 − 𝑐) + 𝜋*(𝑐− 𝜋*) = 𝜋*(1 − 𝜋*) > 0,

which leads to a contradiction. If 𝜋* > 𝑐 but 𝜋* < 𝜑,

𝜋*(1 − 𝑐) + 𝜑(𝑐− 𝜋*) ≥ 𝜋*(1 − 𝑐) + (𝑐− 𝜋*) = 𝑐(1 − 𝜋*) > 0,

which also leads to a contradiction.

B.2 Exogenous Information Benchmark

In this Appendix, I show Proposition 2.1 and Proposition 2.3.

B.2.1 Proof of Proposition 2.1

I start with computing the agent’s continuation value when 𝜋𝑡 → 0 if 𝜒𝑡 = 1 for all 𝑡. Applying

integral expression (A.3) and plugging in 𝜒𝑡 = 1, we have:

𝑉𝑎(𝑡) − 𝑐𝜑 = 𝑋𝑡 +𝑊𝑡.

For any 𝜀 > 0, there exists 𝑇 ∈ R+ such that 𝑊𝑡 ∈ (0, 𝜀) for all 𝑡 > 𝑇 .
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Suppose towards a contradiction that 𝑉𝑎(∞) ≤ 𝑐𝜑, then 𝑋𝑡 → 0 and there exists 𝜀 > 0, such

that:
𝜇

𝑟
(𝜑− 𝑉𝑎(𝑡)) >

𝜇

𝑟
(𝜑− 𝑐𝜑) > 𝑐+ 𝜀,

for 𝑡 large enough. Hence, 𝑍𝑡 ≥ 𝜀, i.e. 𝑋𝑡 ≥ 𝜀 for 𝑡 large enough. But then,

lim
𝑡→∞

𝑉𝑎(𝑡) = lim
𝑡→∞

𝑊𝑡 + lim
𝑡→∞

𝑋𝑡 + 𝑐𝜑 ≥ 𝑐𝜑+ 𝜀 > 𝑐𝜑,

leading to a contradiction.

So 𝑉𝑎(∞) > 𝑐𝜑, implying that lim𝑡→∞𝑋𝑡 > 0, i.e. there exists 𝑇 ∈ R+ such that 𝑍𝑡 > 0 for all

𝑡 > 𝑇 . Thus, 𝑉𝑎(∞) satisfies:

𝑉𝑎(∞) = 𝑐𝜑+ lim
𝑡→∞

𝑋𝑡 = 𝑐𝜑+ 𝑟

∫︁ ∞

0

(︁𝜇
𝑟

(𝜑− 𝑉𝑎(∞)) − 𝑐
)︁
𝑑𝑡, (B.15)

which gives:

𝑉𝑎(∞) = 𝑉𝑎(0) =
𝜇𝜑

𝜇+ 𝑟
− 𝑟𝑐(1 − 𝜑)

𝜇+ 𝑟
. (B.16)

Next, I construct an MPE of the exogenous information game and apply the result of Faingold and

Sannikov (2011) to establish uniqueness.2 Consider the following limiting value problem:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡 − 𝑐(1 − 𝜑) +
𝜇

𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

)︁
,

with (B.16) the limiting value condition. I will show that this problem admits a unique solution in

Section A of the Online Appendix. Let 𝑉 **
𝑎 (𝜋𝑡) be the solution. Let 𝜋‡ be defined by:

𝜋‡ ≡ inf
{︁
𝜋𝑡 > 0

⃒⃒⃒
𝑉 **
𝑎 (𝜋𝑡) = 𝑉 𝑎

}︁
.

From Lemma 2.3.4, 𝜋‡ > 𝜋. From Lemma 2.3.8, 𝜋‡ < 1 − 𝑐𝑟
𝜇𝜑 . Let

𝑎(𝜋𝑡) =

{︃
1 when 𝜋𝑡 ≥ 𝜋‡

𝑎**(𝜋𝑡) when 𝜋𝑡 < 𝜋‡.
(B.17)

I claim that this strategy and its induced market belief system induce an MPE. First, 𝑉 **
𝑎 (𝜋𝑡) is

the agent’s continuation value when 𝜋𝑡 ≤ 𝜋‡. By definition of 𝜋‡, 𝑉 **
𝑎 (𝜋𝑡) ≤ 𝑉 𝑎 for all 𝜋𝑡 ≤ 𝜋‡,

implying that 𝑎(𝜋𝑡) = 1 is incentive compatible for the agent. Second, since 𝑉𝑎(𝜋‡) = 𝑉 𝑎, so

∙ If 𝜋‡ < 𝜋, then since 𝑎(𝜋𝑡) = 𝑎**(𝜋𝑡), we have 𝑉𝑎(𝜋𝑡) = 𝑉 𝑎 for all 𝜋𝑡 ∈ [𝜋‡, 𝜋] (Lemma

2.3.4), implying that every effort level is optimal. If 𝜋𝑡 > 𝜋, then 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎, implying that

𝑎(𝜋𝑡) = 𝜑 is optimal for the agent.

∙ If 𝜋‡ ≥ 𝜋, then 𝑉𝑎(𝜋𝑡) > 𝑉 𝑎 for all 𝜋𝑡 > 𝜋‡, i.e. 𝑎(𝜋𝑡) = 𝜑 is optimal for the agent.

2The exogenous information benchmark fits into the definition of Poisson good news model in Faingold and
Sannikov (2011), subsection 9.1 page 823, and the uniqueness result is reported in Theorem 11 of their paper.
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B.2.2 Proof of Proposition 2.3

Let 𝑉1(·) be the unique solution to the following limiting value problem:

𝑉𝑎(𝜋) = 𝜋𝑎*(𝜋) + 𝑐𝜑− 𝑐

𝜑− 𝑉𝑎(𝜋)
𝜋(1 − 𝜋)𝑉 ′

𝑎(𝜋),

with lim𝜋→0 𝑉𝑎(𝜋) = 𝑐𝜑. Let 𝑉2(·) be the unique solution to the following limiting value problem:

𝑉𝑎(𝜋) = 𝜋 − 𝑐(1 − 𝜑) +
𝜇

𝑟

(︁
𝜑− 𝑉𝑎(𝜋) − 𝜋(1 − 𝜋)𝑉 ′

𝑎(𝜋)
)︁
,

with lim𝜋→0 𝑉𝑎(𝜋) = 𝑟
𝜇+𝑟𝑉 𝑎 + 𝜇

𝜇+𝑟 𝑐𝜑.

Recall that 𝜋† and 𝜋‡ are defined by 𝑉1(𝜋
†) = 𝑉 𝑎 and 𝑉2(𝜋

‡) = 𝑉 𝑎 respectively. The following

Lemma puts upper bounds on 𝑉1(·) and 𝑉2(·).

Lemma B.2.1. For all 𝜋𝑡 ∈ (0, 𝜋†],

𝑉1(𝜋𝑡) ≤ 𝜋𝑡𝑎
*(𝜋𝑡) + 𝑐𝜑.

For all 𝜋𝑡 ∈ (0, 𝜋‡],

𝑉2(𝜋𝑡) ≤
𝑟

𝜇+ 𝑟
𝜋𝑡 +

𝑟

𝜇+ 𝑟
𝑉 𝑎 +

𝜇

𝜇+ 𝑟
𝑐𝜑.

This Lemma will be shown in the Online Appendix.3 Let

𝜋* ≡ 2𝜇+ 𝑟

2𝜇+ 2𝑟
𝜑, (B.18)

which is less than 1
2 when 𝜑 is small enough (𝜑 < 1

2). Since 𝑉1(𝜋
*) < 𝑐𝜑 + 𝜋*𝑎(𝜋*) < 𝑐𝜑 + 𝜋*, we

have 𝑉1(𝜋
*) < 𝑉 𝑎. I will be focusing on the case in which 𝑏 = 1 − 𝜋*. The claim can be extended

to an open neighborhood of 𝑏 by a continuity argument. The key step is the following Lemma:

Lemma B.2.2. When 𝜑 < 1
2 , for every 𝑟 > 0, there exists 𝑐 ∈ (0, 1) and 𝜇 > 0 satisfying

𝜑− 𝑐𝜑− 𝑟𝑐

𝜇
> 0

such that for every 𝑐 < 𝑐, 𝜇 > 𝜇 and 𝑟 ∈
(︁
𝑟,

𝜇𝜑(1−𝑐)

𝑐

)︁
, we have:

𝑉2(𝜋
*) < 𝑉1(𝜋

*). (B.19)

Proof of Lemma B.2.2: The proof is divided into two parts. In Part I, I show that 𝑉1(𝜋
*) is

arbitrarily close to 𝜋* when 𝑐→ 0 and 𝑟 is sufficiently large. In Part II, I show that when 𝜇 and 𝑟

are both large, 𝑉2(𝜋
*) is bounded away from 𝜋* even when 𝑐→ 0.

3The first inequality is a Corollary of Lemma A.3 in the Online Appendix. The second inequality is a Corollary
of Lemma A.4 in the Online Appendix.
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Part I: Lemma B.2.1 implies that 𝑉1(𝜋
*) ≤ 𝜋* + 𝑐𝜑, so

𝑉 𝑎 − 𝑉1(𝜋
*) ≥ 𝜑− 𝑐𝜑− 𝑐𝑟

𝜇
− 𝜋* =

𝑟𝜑

2(𝜇+ 𝑟)
− (𝑐𝜑+

𝑐𝑟

𝜇
).

Since
𝜇𝜒(𝜋*)

𝑟

(︁
𝜑− 𝑉1(𝜋

*)
)︁

= 𝑐,

we have:

𝜒(𝜋*) ≤ 𝑐𝑟

𝜇

1

𝜑
𝑟

2𝜇+ 2𝑟
− 𝑐(𝜑+

𝑟

𝜇
)
.

Notice that the agent’s flow payoff is bounded above by 1 and below by −1. For any 𝑟 > 0 and

𝜀0 > 0, there exists 𝑇 > 0 such that

𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡𝑑𝑡 > 1 − 𝜀0.

Let 𝜋𝑡 be defined via the following ODE

�̇�𝑡 = −𝜇𝜋𝑡(1 − 𝜋𝑡)𝜒(𝜋𝑡), (B.20)

with initial value 𝜋0 = 𝜋*. Then for every 𝜀1 > 0, there exists 𝑐 small enough and 𝜇 large enough

such that

𝜋* − 𝜋𝑇 < 𝜀1.

Also, by definition of 𝜋*, which is less than 𝜑, the agent’s flow payoff at time 𝑡 is at least 𝜋𝑡. Now,

we can compute a lower bound on 𝑉1(𝜋
*):

𝑉1(𝜋
*) ≥ 𝑟

∫︁ 𝑇

0
𝑒−𝑟𝑡 min

{︁
𝜋* − 𝜀1, 𝜑

}︁
𝑑𝑡+ 𝑟

∫︁ ∞

𝑇
𝑒−𝑟𝑡(−1)𝑑𝑡 ≥ (𝜋* − 𝜀1)(1 − 𝜀0) − 𝜀0,

which converges to 𝜋* as both 𝜀0 and 𝜀1 go to 0.

Part II: I will show that 𝑉2(𝜋
*) is bounded below by 𝜋*, with difference bounded away from 0

even when 𝑐→ 0. This can imply that 𝑉2(𝜋
*) < 𝑉1(𝜋

*). I establish an upper bound on 𝑡*, defined

via 𝜋𝑡* = 𝜑
3 , where 𝜋𝑡 is the solution to initial value problem (B.20).

𝑡* ≤

2𝜇+ 𝑟

2𝜇+ 2𝑟
𝜑− 𝜑

3
𝜑

3
(1 − 𝜑

3
)𝜇

=
1

2(1 − 𝜑
3 )

4𝜇+ 𝑟

𝜇(𝜇+ 𝑟)
.
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Intuitively, 𝑡* is the time it takes for market to belief to go from 𝜋* to 𝜑
3 . Let 𝐶1 ≡ 1

2(1−𝜑
3
)
. We

can then obtain an upper bound on 𝑉2(𝜋
*):

𝑉2(𝜋
*) ≤ 𝑟

∫︁ 𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟)

0
𝑒−𝑟𝑡𝑑𝑡+ 𝑉2(

𝜑

3
)
(︁

1 − 𝑟

∫︁ 𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟)

0
𝑒−𝑟𝑡𝑑𝑡

)︁
≤

(︁
1 − 𝑒

−𝑟𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟)

)︁
+ 𝑒

−𝑟𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟)

(︁ 𝜑
3

𝑟

𝜇+ 𝑟
+

𝜇𝜑

𝜇+ 𝑟⏟  ⏞  
=𝜋*−𝜑

6
𝑟

𝜇+𝑟

−𝑟𝑐(1 − 𝜑)

𝜇+ 𝑟

)︁
.

For every 𝜀 > 0, there exists 𝜇 > 0 such that for all 𝜇 > 𝜇,

(︁
1 − 𝑒

−𝑟𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟)

)︁
+ (

𝜑

2
+ 𝑐𝜑)𝑒

−𝑟𝐶1
4𝜇+𝑟

𝜇(𝜇+𝑟) ≤ 𝜋* − 𝜑

6

𝑟

𝑟 + 𝜇
+ 𝜀.

Lemma B.2.2 has found a belief, 𝜋*, such that 𝑉2(𝜋
*) < 𝑉1(𝜋

*) < 𝑉 𝑎. What remains to be

shown is that 𝑉1(𝜋𝑡) > 𝑉2(𝜋𝑡) for all 𝜋𝑡 ∈ [𝜋*,min{𝜋†, 𝜋‡}]. Since 1 − 𝑏 = 𝜋*, so when 𝜋𝑡 > 𝜋*,

(𝑎𝑡, 𝜒𝑡) = (1, 1) in both scenarios, implying that 𝑉1(·) reaches 𝑉 𝑎 at a smaller belief than 𝑉2(·).4

B.3 Semi-Markov Equilibrium

B.3.1 Characterizing 𝜋* and 𝜋**

In this subsection, I characterize the two belief thresholds, 𝜋* and 𝜋**, as functions of the cutoff 𝜋S,

which we write as 𝜋*(𝜋S) and 𝜋**(𝜋S), respectively. I characterize the agent’s continuation value

in each phase, as well as the thresholds 𝜋* and 𝜋**, as functions of 𝜋S. Let 𝑉 *
𝑎 (·) be the unique

solution to limiting value problem (2.13), which is the agent’s continuation value in Phase I.

Recall that 𝜋† is defined in (2.14) by 𝑉 *
𝑎 (𝜋†) = 𝑉 𝑎. For any 𝜋S ∈ [0,min{1 − 𝑏, 𝜋†}], Lemma

2.3.5 implies that 𝑉 *
𝑎 (𝜋S) < 𝑉 𝑎. Let 𝑉 1

𝑎 (·|𝜋S) be the unique solution to the following initial value

problem:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡 − 𝑐(1 − 𝜑) +
𝜇

𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡)

)︁
, (B.21)

with 𝑉𝑎(𝜋S) = 𝑉 *
𝑎 (𝜋S). By definition, 𝑉 1

𝑎 (𝜋𝑡|𝜋S) is the agent’s continuation value in Phase II when

𝜋𝑡 ≤ 𝜋*(𝜋S), with 𝜋*(𝜋S) defined as:

𝜋*(𝜋S) ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ≥ 𝜋S, 𝑉 1

𝑎 (𝜋|𝜋S) < 𝑉 𝑎 for all 𝜋 < 𝜋𝑡

}︁
. (B.22)

If this set is empty, then 𝜋*(𝜋S) = 𝜋S. By definition,

𝜋*(0) = 𝜋‡ and 𝜋*
(︁

min{1 − 𝑏, 𝜋†}
)︁

= 𝜋†.

4This perverse incentive also exists when the intermediary is the agent’s direct supervisor, i.e. her flow payoff is
𝜃𝑎𝑡 instead of 𝜃𝑎𝑡 − 𝑤𝑡. The proof of this extension is available upon request.

163



Let 𝑎1(𝜋𝑡|𝜋S) be the agent’s on-path effort given that punishment phase starts at 𝜋S. Let

𝑌 1(𝜋𝑡|𝜋S) ≡ 𝜇𝑎1(𝜋𝑡|𝜋S) be market’s on-path learning rate. Let 𝑉 0
𝑎 (·|𝜋S) be the (unique) solution to

the following initial value problem:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡𝑎
1(𝜋𝑡|𝜋S) + 𝑐𝜑− 𝑌 1(𝜋𝑡|𝜋S)

𝑟
𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡). (B.23)

with 𝑉𝑎(𝜋S) = 𝑉 *
𝑎 (𝜋S). Define �̂�**(𝜋S) as:

�̂�**(𝜋S) ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ≥ 𝜋S, 𝑉 0

𝑎 (𝜋|𝜋S) < 𝑉 𝑎 for all 𝜋 < 𝜋𝑡

}︁
. (B.24)

If this set is empty, then �̂�**(𝜋S) = 𝜋S. Suppose �̂�**(𝜋S) ≤ 1 − 𝑏, then

𝜋**(𝜋S) ≡ �̂�**(𝜋S). (B.25)

Otherwise, record the value 𝑉 0
𝑎 (1 − 𝑏|𝜋S). Let 𝑉 0

𝑎 (·|𝜋S) be the (unique) solution to the following

initial value problem:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡𝑎
1(𝜋𝑡|𝜋S) + 𝑐𝜑+

𝜇

𝑟

(︁
𝜑− 𝑉𝑎(𝜋𝑡)

)︁
− 𝑌 1(𝜋𝑡|𝜋S)

𝑟
𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡). (B.26)

with 𝑉𝑎(1 − 𝑏) = 𝑉 0
𝑎 (1 − 𝑏|𝜋S). Define �̃�**(𝜋S) as:

�̃�**(𝜋S) ≡ sup
{︁
𝜋𝑡

⃒⃒⃒
𝜋𝑡 ≥ 1 − 𝑏, 𝑉 0

𝑎 (𝜋|𝜋S) < 𝑉 𝑎 for all 𝜋 < 𝜋𝑡

}︁
. (B.27)

Then we have:

𝜋**(𝜋S) ≡ �̃�**(𝜋S). (B.28)

B.3.2 Proof of Proposition 2.4

First, the proof of Lemma 2.3.1 directly carries over to the Semi-Markov case which implies that

𝜋𝑡(1 − 𝜋𝑡) → 0 in probability. I use {𝑎(𝜋𝑡), 𝜒(𝜋𝑡)} to represent players’ on-path strategies. The

next Lemma is the counterpart of Lemma 2.3.2 which characterizes the agent’s continuation value

in a generic SME when 𝜋𝑡 → 0.

Lemma B.3.1. When players’ patience level is high, either one of the following two statements is

true:5

∙ lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) = 𝑐𝜑 and there exists 𝜈 > 0 such that for all 𝜋𝑡 ≤ 𝜈, 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) and

𝜒(𝜋𝑡) < 1.

∙ lim𝜋𝑡→0 𝑉𝑎(𝜋𝑡) = 𝜇𝜑−𝑟𝑐(1−𝜑)
𝜇+𝑟 and there exists 𝜈 > 0 such that for all 𝜋𝑡 ≤ 𝜈, 𝑎(𝜋𝑡) = 1 and

𝜒(𝜋𝑡) = 1.

5Recall that 𝑐𝜑 is the agent’s limiting continuation value in the unique MPE and 𝜇𝜑−𝑟𝑐(1−𝜑)
𝜇+𝑟

is his limiting
continuation value under exogenous information.
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Comparing with Lemma 2.3.2, SME admits another possibility (statement 2). This is because

(𝑎𝑡, 𝜒𝑡) = (1, 1) can be sustained by low effort low disclosure rate off the equilibrium path.

Proof of Lemma B.3.1: Let 𝑉𝑎(𝜋𝑡), 𝑉𝑚(𝜋𝑡), 𝑎(𝜋𝑡) and 𝜒(𝜋𝑡) be the agent’s and the intermedi-

ary’s continuation value, effort and disclosure rate on the equilibrium path. Let 𝑉𝑎(𝑡) ≡ 𝑉𝑎(𝜋𝑡),

𝑉𝑚(𝑡) = 𝑉𝑚(𝜋𝑡). Define 𝑋𝑡, 𝑍𝑡 and 𝑊𝑡 as in the proof of Lemma 2.3.2, we have:

𝑉𝑎(𝑡) = 𝑐𝜑+𝑋𝑡 +𝑊𝑡. (B.29)

Since the only relevant off-path is the intermediary withholding information when 𝜒(𝜋𝑡) = 1, then

the proofs in Part I, II and IV of Lemma 2.3.2 directly go through. I modify the argument in Part

III.

Modified Part III: Suppose 𝑉𝑎(0) ∈ (𝑐𝜑, 𝑉 𝑎).6 Then there exists 𝑇 ∈ R+ such that 𝑉𝑎(𝑡) < 𝑉 𝑎

and 𝑋𝑡 > 0 for all 𝑡 > 𝑇 . So, there exists 𝑡* > 𝑇 such that:

𝑎𝑡* = 1 and
𝜇𝜒𝑡*

𝑟

(︁
𝜑− 𝑉𝑎(𝑡*)

)︁
> 𝑐.

This also suggests that 𝜒𝑡 > 0, which implies 𝑉𝑚(𝜋𝑡) ≤ 𝑏. Two cases are considered

∙ Suppose 𝜒𝑡 ̸= 1, then the Semi-Markov restriction implies that continuation play should

not depend on whether a breakthrough has arrived or not, conditional on no disclosure.

Admissibility requires the existence of 𝜀0 > 0 such that

𝑎(𝜋𝑡+𝜀1) ∈ (𝑎*(𝜋𝑡+𝜀1), 1) for all 𝜀1 ∈ (0, 𝜀0).

The ODE in (2.7) implies that 𝑉𝑚(𝜋𝑡+𝜀1) < 𝑏 for all 𝜀1 ∈ (0, 𝜀0), which further implies that

𝜒𝑡+𝜀1 = 1 for all 𝜀1 ∈ (0, 𝜀0). Since 𝑉𝑎(𝑡) < 𝑉 𝑎 for all 𝑡 > 𝑇 , so 𝑎𝑡 = 1 and 𝜒𝑡 = 1. But then

1 = 𝑉𝑚(𝜋𝑡) > 𝑏, contradicting 𝑉𝑚(𝜋𝑡) ≤ 𝑏. This contradiction applies as long as for every

𝑇 ∈ R+, there exists 𝑡 > 𝑇 such that

𝑍𝑡 > 0 and 𝜒𝑡 < 1.

∙ Next I consider the case in which 𝜒𝑡 = 1 for all 𝑡 > 𝑇 satisfying 𝑍𝑡 > 0.

– If there exists 𝑇 ∈ R+, such that 𝑎𝑡 = 1 for all 𝑡 ≥ 𝑇 , then we have:

𝑉𝑎(0) =
𝜇𝜑− 𝑟𝑐(1 − 𝜑)

𝜇+ 𝑟
.

– If for every 𝑇 ∈ R+, there exists 𝑡 > 𝑇 such that 𝑎(𝜋𝑡) < 1. Since 𝑉𝑎(𝑡) < 𝑉 𝑎, it is

required that 𝜒𝑡 < 1 and 𝑉𝑚(𝜋𝑡) = 𝑏. Since 𝑋𝑡 > 0, for every such 𝑡, there exists 𝑡′ > 𝑡

6This case also treats the situation in which 𝑉𝑎(0) = 𝑉 𝑎 but 𝑉𝑎(𝑡) < 𝑉 𝑎 for all 𝑡 large enough.
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such that 𝑎(𝜋𝑡′) = 1. Admissibility requires that for every 𝑡, there exists 𝜀 > 0 such that

𝑎(𝜋𝑡+𝜀0) < 1 for all 𝜀0 ∈ (0, 𝜀).

This requires that 𝜒(𝜋𝑡+𝜀0) ∈ (0, 1), i.e. 𝑉𝑚(𝜋𝑡+𝜀0) = 𝑏. The ODE in (2.7) then requires

that 𝑎(𝜋𝑡+𝜀0) = 𝑎*(𝜋𝑡+𝜀0).

This suggests that 𝑎(𝜋𝑡) ≥ 𝑎*(𝜋𝑡) for all 𝑡 ≥ 𝑇 . Also, for every 𝑡 such that 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡),

there exists 𝑡′ > 𝑡 with 𝑎(𝜋𝑡′) = 1 > 𝑎*(𝜋𝑡′). But then 𝑉𝑚(𝜋𝑡) > 𝑏, implying that 𝜒𝑡 = 0,

contradicting the conclusion that 𝜒𝑡 ̸= 0.

Next, I characterize players’ on-path behavior when 𝜋𝑡 is bounded away from 0. The next two

Lemmas examine cases when 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎.

Lemma B.3.2. For any 𝜋𝑡 such that 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎, 𝑎(𝜋𝑡) ∈ {𝑎*(𝜋𝑡), 1}.

Proof of Lemma B.3.2: Suppose towards a contradiction that there exists such 𝜋𝑡. Then let

𝜋* ≡ inf
{︁
𝜋
⃒⃒⃒
𝑉𝑎(𝜋) < 𝑉 𝑎, 𝑎(𝜋𝑡) /∈ {𝑎*(𝜋𝑡), 1}

}︁
. (B.30)

By left-continuity of 𝑎(·), there exists 𝜀 > 0 such that 𝑎(𝜋*+𝜀0) /∈ {𝑎*(𝜋*+𝜀0), 1} for all 𝜀0 ∈ (0, 𝜀).

Since 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎, so 𝜒(𝜋𝑡) < 1 for all 𝜋𝑡 ∈ (𝜋*, 𝜋*+𝜀). Since 𝜒(𝜋𝑡) ̸= 0, so 𝜒(𝜋𝑡) ∈ (0, 1), implying

that 𝑉𝑚(𝜋𝑡) = 𝑏 for all 𝜋𝑡 ∈ (𝜋*, 𝜋* + 𝜀). But the intermediary’s continuation value satisfies:

𝑉𝑚(𝜋𝑡) = 𝑎(𝜋𝑡)(1 − 𝜋𝑡) +
𝜇𝜒(𝜋𝑡)𝑎(𝜋𝑡)

𝑟

{︁
𝑏− 𝑉𝑚(𝜋𝑡) − 𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑚(𝜋𝑡)

}︁
.

Then 𝑉𝑚(𝜋𝑡) = 𝑏 and 𝑉 ′
𝑚(𝜋𝑡) = 0 imply that 𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡), leading to a contradiction.

Lemma B.3.3. If there exists 𝜋* such that 𝑎(𝜋*) = 𝜒(𝜋*) = 1, then for any 𝜋𝑡 > 𝜋* with

𝑉𝑎(𝜋𝑡) < 𝑉 𝑎, we have 𝑎(𝜋𝑡) = 𝜒(𝜋𝑡) = 1.

Proof of Lemma B.3.3: Suppose towards a contradiction that there exists such 𝜋𝑡, then 𝑎(𝜋𝑡) <

1 while 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎 implies that 𝜒(𝜋𝑡) < 1. Let

𝜋** ≡ inf
{︁
𝜋
⃒⃒⃒
𝜋 > 𝜋*, 𝑉𝑎(𝜋) < 𝑉 𝑎, 𝜒(𝜋) < 1, 𝑎(𝜋𝑡) < 1

}︁
. (B.31)

By the left-continuity of 𝑎(·) and 𝜒(·), there exists 𝜀 > 0 such that 𝑎(𝜋**+𝜀0) < 1 and 𝜒(𝜋**+𝜀0) < 1

for all 𝜀0 ∈ (0, 𝜀). Then since withholding information happens on path before 𝜋𝑡 reaches 𝜋**,

so according to the Semi-Markov restriction as well as Lemma B.3.2, 𝑉𝑚(𝜋**) > 𝑏. But then,

𝜒(𝜋**) = 0, which is a contradiction.

Putting together Lemma B.3.1, Lemma B.3.2 and Lemma B.3.3, for all 𝜋𝑡 such that 𝑉𝑎(𝜋𝑡) < 𝑉 𝑎,
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there exists a cut-off belief 𝜋S ∈ [0,min{1 − 𝑏, 𝜋†}, such that

𝑎(𝜋𝑡) =

{︃
𝑎*(𝜋𝑡) when 𝜋𝑡 ≤ 𝜋S

1 when 𝜋𝑡 > 𝜋S

𝜒(𝜋𝑡) =

⎧⎨⎩
𝑐𝑟

𝜇(𝜑− 𝑉𝑎(𝜋𝑡))
when 𝜋𝑡 ≤ 𝜋S

1 when 𝜋𝑡 > 𝜋S

The limiting value problem in (2.13) and the initial value problem in (B.21) pin down the agent’s

on-path continuation value. Once it reaches 𝑉 𝑎 at 𝜋*(𝜋S), then the proofs for uniqueness of on

path effort and disclosure rate are exactly the same as in the proof of Lemma 2.3.7.

The last step verifies the players’ incentives in Phase III. The agent’s incentive to choose

𝑎(𝜋𝑡) = 𝑎*(𝜋𝑡) when 𝜋𝑡 ∈ (𝜋S, 𝜋**] and the intermediary’s incentive when 𝜋𝑡 ≤ min{1 − 𝑏, 𝜋**}
is straightforward. To verify the agent’s incentive to choose 𝑎(𝜋𝑡) = 𝜑 when 𝜋𝑡 > 𝜋**, we compute

his value function:

𝑉𝑎(𝜋𝑡) = 𝜋𝑡𝑎(𝜋𝑡) + 𝑐𝜑+ �̂�(𝜋𝑡)
(︁𝜇
𝑟

(𝜑− 𝑉𝑎(𝜋𝑡)) − 𝑐
)︁
− 𝜇𝑎(𝜋𝑡)

𝑟
𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡), (B.32)

where 𝑎(𝜋𝑡) and �̂�(𝜋𝑡) are on-path and off-path effort, respectively. When 𝜋𝑡 = 𝜋**, we have

𝑉𝑎(𝜋𝑡) = 𝑉 𝑎, which gives:

𝑉 𝑎 = 𝜋𝑡𝑎(𝜋𝑡) + 𝑐𝜑− 𝜇𝑎(𝜋𝑡)

𝑟
𝜋𝑡(1 − 𝜋𝑡)𝑉

′
𝑎(𝜋𝑡),

Since 𝑎(𝜋𝑡) ≥ 𝑎**(𝜋𝑡) for all 𝜋𝑡, this implies that 𝑉 ′
𝑎(𝜋𝑡) > 0 and the agent has an incentive to shirk

at belief higher than 𝜋**.
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Appendix C

Appendix to Chapter 3

C.1 Proof of Theorem 3.1: Equilibrium Construction

In this Appendix, I show that 𝑉 * ⊂ 𝑉 (𝜋0) by constructing Sequential Equilibria that can attain

any payoff vector in the interior of 𝑉 * when 𝛿 is sufficiently high. For every 𝛾 ∈ [0, 1], let

𝑣𝑖(𝛾) ≡ (1 − 𝛾𝜃𝑖)
1 − 𝜃1

1 − 𝛾𝜃1
, (C.1)

and let 𝑣(𝛾) ≡
(︁
𝑣𝑖(𝛾)

)︁
1≤𝑖≤𝑚

. Let 𝑉 (𝛾) be the triangular set with vertices (0, 0, ..., 0), (1−𝜃1, ..., 1−
𝜃𝑚) and 𝑣(𝛾). By definition, for every 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑖(𝛾

*) = 𝑣*𝑖 , 𝑣𝑖(1) = 1 − 𝜃𝑖 and 𝑉 * = 𝑉 (𝛾*).

To establish 𝑉 * ⊂ 𝑉 (𝜋0), it is sufficient to show that for every 𝛾 > 𝛾*, every payoff vector in

𝑉 (𝛾) is attainable in sequential equilibrium when player 1 is arbitrarily patient. As (0, 0, ..., 0) and

(1−𝜃1, ..., 1−𝜃𝑚) are trivially attainable when 𝛿 is high enough and players have access to a public

randomization device,1 it is sufficient to establish the attainability of 𝑣(𝛾).

Proposition C.1. For every 𝜂 ∈ (0, 1) and 𝛾 ∈ (𝛾*, 1), there exists 𝛿 ∈ (0, 1), such that for every

𝛿 > 𝛿 and 𝜋0 ∈ ∆(Θ) with 𝜋0(𝜃1) ≥ 𝜂, there exists a sequential equilibrium in which player 1’s

payoff is 𝑣(𝛾).

The proof of Proposition C.1 is decomposed into three subsections. In Subsection C.1.1, I define

several variables that are key to my construction. In Subsection C.1.2, I describe players’ strategies

and belief systems. In Subsection C.1.3, I verify players’ incentive constraints and the consistency

of their beliefs.

C.1.1 Defining the Variables

In this subsection, I define several variables that are critical for my construction. I will also specify

how large 𝛿 needs to be for every pair of (𝜋0, 𝛾).

1Payoff vector (0, 0, ..., 0) is attainable by repeating the stage game equilibrium. Payoff vector (1− 𝜃1, ..., 1− 𝜃𝑚)
is attainable by grim-trigger strategy, namely, player 2 plays 𝑁 forever after observing 𝐿. For every 𝛾′ ∈ [𝛾, 1], 𝑣(𝛾′)
can be written as a convex combination of 𝑣(1) and 𝑣(𝛾).
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Fixing 𝛾 ∈ (𝛾*, 1), there exists a rational number ̂︀𝑛/̂︀𝑘 ∈ (𝛾*, 𝛾) with ̂︀𝑛,̂︀𝑘 ∈ N. Moreover, there

exists an integer 𝑗 ∈ N such that ̂︀𝑛̂︀𝑘 =
̂︀𝑛𝑗̂︀𝑘𝑗 < ̂︀𝑛𝑗̂︀𝑘𝑗 − 1

< 𝛾.

Let 𝑛 ≡ ̂︀𝑛𝑗 and 𝑘 ≡ ̂︀𝑘𝑗. Let ̃︀𝛾 ≡ 1

2

(︁𝑛
𝑘

+
𝑛

𝑘 − 1

)︁
, (C.2)

and ̂︀𝛾 ≡ 1

2

(︁𝑛
𝑘

+ 𝛾*
)︁
. (C.3)

Let 𝛿1 ∈ (0, 1) to be large enough such that for every 𝛿 > 𝛿1,

𝛿 + 𝛿2 + ...+ 𝛿𝑛

𝛿 + 𝛿2 + ...+ 𝛿𝑘
< ̃︀𝛾 < 𝛿𝑘−𝑛−1(𝛿 + 𝛿2 + ...+ 𝛿𝑛)

𝛿 + 𝛿2 + ...+ 𝛿𝑘−1
. (C.4)

By construction, 𝛾* < ̂︀𝛾 < 𝑛
𝑘 < ̃︀𝛾 < 𝑛

𝑘−1 < 𝛾. Let 𝜂(ℎ0) ≡ 𝜋0(𝜃1), which is the probability of type

𝜃1 according to player 2s’ prior belief. Let 𝜂* be an arbitrary real number satisfying:

𝜂* ∈
(︁
𝛾*𝜂(ℎ0), 𝜂(ℎ0)

)︁
.

Let 𝜆 > 0 be small enough such that:(︁
1 + 𝜆(1 − 𝛾*)

)︁̂︀𝛾(︁
1 − 𝜆𝛾*

)︁1−̂︀𝛾
> 1. (C.5)

Given 𝛾* < ̂︀𝛾, the existence of such 𝜆 is implied by the Taylor’s Expansion Theorem. Let 𝑋 ∈ N
be a large enough integer such that(︁

1 + 𝜆(1 − 𝛾*)
)︁𝑋−1

>
1 − 𝜂*

𝜂(ℎ0) − 𝜂*
. (C.6)

Let

𝑌 ≡ 1

2

(︁
𝛾 − (1 − 𝛾)

̃︀𝛾
1 − ̃︀𝛾)︁⏟  ⏞  

>0

1 − 𝜃1
1 − 𝛾𝜃1

, (C.7)

which is strictly positive. Let 𝛿2 ∈ (0, 1) be large enough such that for every 𝛿 > 𝛿2,

𝑌 > max
{︁

1 − 𝛿𝑋 ,
1 − 𝛿

1 − 𝛾

}︁
and

𝛿 − 𝜃1
1 − 𝜃1

>
1 − 𝛿

1 − 𝛾
. (C.8)

The existence of such 𝛿2 is implied by ̃︀𝛾 < 𝛾.

Let 𝛿 ≡ max{𝛿1, 𝛿2}, which will be referred to as the cutoff discount factor. Let 𝑣𝐿, 𝑣𝐻 and

𝑣𝑁 ∈ R𝑚 be player 1’s payoff vectors from terminal outcomes 𝐿, 𝐻 and 𝑁 , respectively. The target
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payoff vector 𝑣(𝛾) can be written as the following convex combination of 𝑣𝐿, 𝑣𝐻 and 𝑣𝑁 :

𝑣(𝛾) =
𝜃1(1 − 𝛾)

1 − 𝛾𝜃1⏟  ⏞  
≡𝑝𝑁

𝑣𝑁 +
(1 − 𝜃1)𝛾

1 − 𝛾𝜃1⏟  ⏞  
≡𝑝𝐻

𝑣𝐻 +
(1 − 𝜃1)(1 − 𝛾)

1 − 𝛾𝜃1⏟  ⏞  
≡𝑝𝐿

𝑣𝐿, (C.9)

with 𝑝𝑁 , 𝑝𝐻 and 𝑝𝐿 being the convex weights of outcomes 𝑁 , 𝐻 and 𝐿, respectively.

Importantly, for every 𝛿 that meets the above requirements under 𝜂(ℎ0), it also meets all the

requirements under every 𝜂′(ℎ0) ≥ 𝜂(ℎ0). This is because the required 𝑋 decreases with 𝜂(ℎ0), so

an increase in 𝜂(ℎ0) only slackens inequality (C.8) while having no impact on other requirements.

C.1.2 Three Phase Equilibrium

In this subsection, I describe players’ strategies and player 2s’ belief system. Players’ sequential

rationality constraints and the consistency of their beliefs are verified in the next step. Every type

other than type 𝜃1 follows the same strategy, which is called high cost types, while type 𝜃1 is called

the low cost type. Let 𝜂(ℎ𝑡) be the probability player 2s’ posterior belief at ℎ𝑡 attaches to type 𝜃1.

Recall the definition of 𝜂*, which I will refer to as the belief lower bound. Let

∆(ℎ𝑡) ≡ 𝜂(ℎ𝑡) − 𝜂*, (C.10)

which is the gap between player 2s’ posterior belief and the belief lower bound.

State Variables: The equilibrium keeps track of the following set of state variables: ∆(ℎ𝑡) as

well as 𝑝𝑎(ℎ𝑡) for 𝑎 ∈ {𝑁,𝐻,𝐿} such that

𝑝𝑎(ℎ0) = 𝑝𝑎 and 𝑝𝑎(ℎ𝑡) ≡

{︃
𝑝𝑎(ℎ𝑡−1) if ℎ𝑡 ̸= (ℎ𝑡−1, 𝑎)

𝑝𝑎(ℎ𝑡−1) − (1 − 𝛿)𝛿𝑡 if ℎ𝑡 = (ℎ𝑡−1, 𝑎).
(C.11)

Intuitively, 𝑝𝑎(ℎ𝑡) is the remaining occupation measure of outcome 𝑎 at history ℎ𝑡, while 𝑝𝑎(ℎ0) −
𝑝𝑎(ℎ𝑡) is the occupation measure of 𝑎 from period 0 to 𝑡− 1. Player 1’s continuation value at ℎ𝑡 is

𝑣(ℎ𝑡) ≡ 𝛿−𝑡
∑︁

𝑎∈{𝑁,𝐻,𝐿}

𝑝𝑎(ℎ𝑡)𝑣𝑎. (C.12)

Equilibrium Phases: The constructed equilibrium consists of three phases: a normal phase, an

absorbing phase and a reshuffling phase.

Play starts from the normal phase, in which player 2 always plays 𝑇 . Every type of player 1’s

mixed strategy at every history can be uniquely pinned down by player 2’s belief updating process:

∆(ℎ𝑡, 𝐿) = (1 − 𝜆𝛾*)∆(ℎ𝑡) and ∆(ℎ𝑡, 𝐻) = min
{︁

1 − 𝜂*,
(︁

1 + 𝜆(1 − 𝛾*)
)︁

∆(ℎ𝑡)
}︁
. (C.13)

Since 𝜂(ℎ0) > 𝜂*, we know that ∆(ℎ𝑡) > 0 for every ℎ𝑡 in the normal phase.
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Play transits to the absorbing phase permanently when ∆(ℎ𝑡) reaches 1 − 𝜂* for the first time.

Recall that 𝑣(ℎ𝑡) ∈ R𝑚 is player 1’s continuation value at ℎ𝑡. Let 𝑣𝑖(ℎ
𝑡) be the projection of

𝑣(ℎ𝑡) on the 𝑖-th dimension. After reaching the absorbing phase, player 2s’ learning stops and the

continuation outcome is either (𝑇,𝐻) in all subsequent periods or 𝑁 in all subsequent periods,

depending on the realization of a public randomization device, with the probability of (𝑇,𝐻) being

𝑣1(ℎ
𝑡)/(1 − 𝜃1).

Play transits to the reshuffling phase at ℎ𝑡 if ∆(ℎ𝑡) < 1 − 𝜂* and 𝑝𝐿(ℎ𝑡) ∈ [0, (1 − 𝛿)𝛿𝑡).

1. If 𝑝𝐿(ℎ𝑡) = 0, then the continuation play starting from ℎ𝑡 randomizes between 𝑁 and (𝑇,𝐻),

depending on the realization of the public randomization device, with the probability of (𝑇,𝐻)

being 𝑣1(ℎ𝑡)
1−𝜃1

.

2. If 𝑝𝐿(ℎ𝑡) ∈ (0, (1 − 𝛿)𝛿𝑡), then the continuation payoff vector can be written as a convex

combination of 𝑣𝐻 , 𝑣𝑁 and

(1 − 𝛿)𝑣𝐿 + ̃︀𝑄𝑣𝐻 + (𝛿 − ̃︀𝑄)𝑣𝑁 , (C.14)

for some ̃︀𝑄 ∈
[︁

min{𝑌, 𝛿 − 𝜃1
1 − 𝜃1

}, 𝛿 − 𝜃1
1 − 𝜃1

]︁
and 𝑌 being defined in (C.7). I will show in the next subsection that ̃︀𝑄 indeed belongs to

this range for every history reaching the reshuffling phase.

If player 1’s realized continuation value at ℎ𝑡 takes the form in (C.14), then player 2 plays

𝑇 at ℎ𝑡, type 𝜃1 player 1 plays 𝐻 for sure while other types mix between 𝐻 and 𝐿 with the

same probabilities (could be degenerate) such that:

∆(ℎ𝑡, 𝐿) = −𝜂* and ∆(ℎ𝑡, 𝐻) =

{︃
∆(ℎ0) if ∆(ℎ𝑡) ≤ ∆(ℎ0)

∆(ℎ𝑡) if ∆(ℎ𝑡) > ∆(ℎ0).
(C.15)

If player 2 observes 𝐿 at ℎ𝑡, then he attaches probability 0 to type 𝜃1 and player 1’s continu-

ation value is

𝛿−1 ̃︀𝑄𝑣𝐻 + 𝛿−1(𝛿 − ̃︀𝑄)𝑣𝑁 , (C.16)

which can be delivered by randomizing between outcomes (𝑇,𝐻) and 𝑁 , with probabilities

𝛿−1 ̃︀𝑄 and 1 − 𝛿−1 ̃︀𝑄, respectively.

If player 2 observes 𝐻 at ℎ𝑡, then he attaches probability ∆(ℎ𝑡, 𝐻) + 𝜂* to type 𝜃1 and player

1’s continuation value is:

1 − 𝛿

𝛿
𝑣𝐿 +

̃︀𝑄− (1 − 𝛿)

𝛿
𝑣𝐻 +

𝛿 − ̃︀𝑄
𝛿

𝑣𝑁 , (C.17)
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which can be written as a convex combination of 𝑣𝑁 and

𝑣
(︁

1 − 1 − 𝛿̃︀𝑄
)︁
. (C.18)

According to (C.8) and the range of ̃︀𝑄,

𝛾 < 1 − 1 − 𝛿̃︀𝑄 < 1, (C.19)

which implies that (C.18) can further be written as a convex combination of 𝑣𝐻 and 𝑣(𝛾).

If the continuation value is 𝑣𝐻 or 𝑣𝑁 , then the on-path outcome is (𝑇,𝐻) in every subsequent

period or is 𝑁 in every subsequent period. If the continuation value is 𝑣(𝛾), then play switches

back to the normal phase with belief max{∆(ℎ0),∆(ℎ𝑡)}, which is no less than ∆(ℎ0).

C.1.3 Verifying Constraints

In this subsection, I verify that the strategy profile and the belief system indeed constitute a

Sequential Equilibrium by verifying players’ sequential rationality constraints and the consistency

of beliefs. This consists of two parts. In Part I, I verify player 2’s incentive constraints. In Part II,

I verify the range of ̃︀𝑄 in Subsection C.1.2. In particular, at every history of the normal phase or

reshuffling phase, the ratio between the occupation measure of 𝐻 and the occupation measure of

𝐿 must exceed some cutoff.

Part I: Player 2’s incentive constraints consist of two parts: the normal phase and the reshuffling

phase. If play remains in the normal phase at ℎ𝑡, then (C.13) implies that the unconditional

probability with which 𝐻 being played is at least 𝛾*, implying that player 2 has an incentive to

play 𝑇 . If play reaches the reshuffling phase at ℎ𝑡 and at this history, player 1 is playing a non-trivial

mixed action, then according to (C.15) and the requirement that 𝜂* > 𝛾*𝜂(ℎ0), the unconditional

probability with which 𝐻 is played is at least 𝛾*. This verifies player 2’s incentives to play 𝑇 .

Part II: In this part, I establish bounds on player 1’s continuation value at every history in the

normal phase or in the beginning of the reshuffling phase. In particular, I establish a lower bound

on the ratio between the convex weight of 𝐻 and the convex weight of 𝐿 at such histories, or

equivalently, a lower bound on the depleted occupation measure of 𝐻 and the depleted occupation

measure of 𝐿. Recall the definitions of 𝑛 and 𝑘 in Subsection C.1.1. The conclusion is summarized

in the following Lemma:

Lemma C.1.1. If 𝛿 > 𝛿 and 𝑇 ≥ 𝑘+𝑋, then for every ℎ𝑇 = (𝑎0, ..., 𝑎𝑇−1), if play remains in the
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normal phase for every ℎ𝑡 ⪯ ℎ𝑇 , then

(1 − 𝛿)

𝑇−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐻}⏟  ⏞  
depleted occupation measure of 𝐻

− (1 − 𝛿𝑋)⏟  ⏞  
weight of initial 𝑋 periods

≤ (1 − 𝛿)

𝑇−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐿}⏟  ⏞  
depleted occupation measure of 𝐿

· ̃︀𝛾
1 − ̃︀𝛾⏟  ⏞  

multiplier

. (C.20)

Lemma C.1.1 implies that when play first reaches the reshuffling phase, the remaining occupa-

tion measure of 𝐻 is at least ̃︀𝑄. This implies that player 1’s continuation value after reshuffling

also attaches sufficiently high convex weight on 𝑣𝐻 compared to the convex weight of 𝑣𝐿. Using

the self-generation argument in Abreu, Pearce and Stacchetti (1990), Chari and Kehoe (1990), one

can conclude that payoff vector 𝑣(𝛾) is attainable in sequential equilibrium when 𝛿 > 𝛿.

The key difficulty to prove this Lemma is that different periods have different weights due

to discounting. To see this, for every fixed 𝛿 > 𝛿, Lemma C.1.1 requires a uniform bound for

every 𝑇 ∈ N, including those that are arbitrarily large. Therefore, one could potentially increase

the depleted occupation measure of 𝐻 and decrease that of 𝐿 by front-loading the play of 𝐻,

making inequality (C.20) harder to satisfy. Nevertheless, the condition that play never reaching

the absorbing phase before ℎ𝑇 constrains on how front-loaded the play of 𝐻 can be.

Proof of Lemma C.1.1: For every 𝑡 ∈ N, let 𝑁𝐿,𝑡 and 𝑁𝐻,𝑡 be the number of periods in which

𝐿 and 𝐻 are played from period 0 to 𝑡− 1, respectively. The proof is done by induction on 𝑁𝐿,𝑡.

When 𝑁𝐿,𝑡 ≤ 𝑘− 𝑛, then the conclusion holds as 𝑁𝐻,𝑡 ≥ 𝑛+𝑋. According to (C.5) and (C.6),

we know that ∆(ℎ𝑇 ) will reach 1 − 𝜂* before period 𝑇 (or equivalently, play reaches the absorbing

phase).

Suppose the conclusion holds for when 𝑁𝐿,𝑡 ≤ 𝑁 with 𝑁 ≥ 𝑘 − 𝑛, and suppose towards a

contradiction that there exists ℎ𝑇 with 𝑇 ≥ 𝑘 + 𝑋 and 𝑁𝐿,𝑇 = 𝑁 + 1, such that play remains in

the normal phase for every ℎ𝑡 ⪯ ℎ𝑇 but

(1 − 𝛿)

𝑇−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐻} − (1 − 𝛿𝑋) > (1 − 𝛿)

𝑇−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐿} · ̃︀𝛾
1 − ̃︀𝛾 , (C.21)

I will obtain a contradiction in three steps.

Step 1: I show that for every 𝑠 < 𝑇 ,

(1 − 𝛿)

𝑇−1∑︁
𝑡=𝑠

𝛿𝑡1{𝑎𝑡 = 𝐻} ≥ (1 − 𝛿)

𝑇−1∑︁
𝑡=𝑠

𝛿𝑡1{𝑎𝑡 = 𝐿} ̃︀𝛾
1 − ̃︀𝛾 . (C.22)

Suppose towards a contradiction that the opposite of (C.22) holds, then (C.22) and (C.21) together

imply that:

(1 − 𝛿)

𝑠−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐻} − (1 − 𝛿𝑋) > (1 − 𝛿)

𝑠−1∑︁
𝑡=0

𝛿𝑡1{𝑎𝑡 = 𝐿} ̃︀𝛾
1 − ̃︀𝛾 (C.23)
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and

(1 − 𝛿)

𝑇−1∑︁
𝑡=𝑠

𝛿𝑡1{𝑎𝑡 = 𝐿} > 0. (C.24)

According to (C.24), 𝑁𝐿,𝑠 < 𝑁𝐿,𝑇 . Since 𝑁𝐿,𝑇 = 𝑁 + 1, we have 𝑁𝐿,𝑠 ≤ 𝑁 . Applying the

induction hypothesis and (C.23), we know that play reaches the absorbing phase before ℎ𝑠, leading

to a contradiction.

Step 2: I show that for every 𝑘 consecutive periods

{𝑎𝑟, ..., 𝑎𝑟+𝑘−1} ⊂ ℎ𝑇 ,

the number of 𝐻 in this sequence is at least 𝑛+ 1. According to (C.22) shown in the previous step

and (C.4), 𝐻 occurs at least 𝑛+ 1 times in the last 𝑘 periods, i.e. {𝑎𝑇−𝑘+1, ..., 𝑎𝑇 }.

Suppose towards a contradiction that there exists 𝑘 consecutive periods in which 𝐻 occurs no

more than 𝑛 times, then the conclusion above that 𝐻 occurs at least 𝑛 + 1 times in the last 𝑘

periods implies that there exists 𝑘 consecutive periods {𝑎𝑟, ..., 𝑎𝑟+𝑘−1} in which 𝐻 occurs exactly

𝑛 times and 𝐿 occurs exactly 𝑘 − 𝑛 times. According to (C.4), we have

(1 − 𝛿)
𝑟+𝑘−1∑︁
𝑡=𝑟

𝛿𝑡1{𝑎𝑡 = 𝐻} < (1 − 𝛿)
𝑟+𝑘−1∑︁
𝑡=𝑟

𝛿𝑡1{𝑎𝑡 = 𝐿} ̃︀𝛾
1 − ̃︀𝛾 , (C.25)

but according to (C.5) and the definition of ̂︀𝛾 in (C.3), we also know that

∆(ℎ𝑟+𝑘) > ∆(ℎ𝑟+1). (C.26)

Next, let us consider the following new sequence with length 𝑇 − 𝑘:

̃︀ℎ𝑇−𝑘 ≡ {̃︀𝑎0,̃︀𝑎1, ...,̃︀𝑎𝑇−𝑘−1} ≡ {𝑎0, 𝑎1, ..., 𝑎𝑟−1, 𝑎𝑟+𝑘, ..., 𝑎𝑇−1}

which is obtained by removing {𝑎𝑟, ..., 𝑎𝑟+𝑘−1} from the original sequence and front-loading the

subsequent play {𝑎𝑟+𝑘, ..., 𝑎𝑇−1}. The number of 𝐿 in this new sequence is at most 𝑁 +1− (𝑛−𝑘),

which is no more than 𝑁 . According to the conclusion in Step 1:

(1 − 𝛿)

𝑇−1∑︁
𝑡=𝑟+𝑘

𝛿𝑡1{𝑎𝑡 = 𝐻} > (1 − 𝛿)

𝑇−1∑︁
𝑡=𝑟+𝑘

𝛿𝑡1{𝑎𝑡 = 𝐿} ̃︀𝛾
1 − ̃︀𝛾 . (C.27)

This together with (C.25) and (C.21) imply that

(1 − 𝛿)

𝑇−𝑘−1∑︁
𝑡=0

𝛿𝑡1{̃︀𝑎𝑡 = 𝐻} − (1 − 𝛿𝑋) > (1 − 𝛿)

𝑇−𝑘−1∑︁
𝑡=0

𝛿𝑡1{̃︀𝑎𝑡 = 𝐿} ̃︀𝛾
1 − ̃︀𝛾 .

According to the induction hypothesis, play will reach the absorbing phase before period 𝑇 − 𝑘 if
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player 1 plays according to {̃︀𝑎0,̃︀𝑎1, ...,̃︀𝑎𝑇−𝑘−1}.

1. Suppose ̃︀ℎ𝑇−𝑘 reaches the absorbing phase before period 𝑟, then play will also reach the

absorbing phase before period 𝑟 according to the original sequence.

2. Suppose ̃︀ℎ𝑇−𝑘 reaches the absorbing phase in period 𝑠, with 𝑠 > 𝑡, then according to (C.26),

we have ∆(̃︀ℎ𝑠) ≤ ∆(ℎ𝑠+𝑘), implying that play will reach the absorbing phase in period 𝑠+ 𝑘

according to the original sequence.

This contradicts the hypothesis that play has never reached the absorbing phase before period 𝑇

if play proceeds according to ℎ𝑇 .

Step 3: For every history ℎ𝑇 ≡ {𝑎0, 𝑎1, ..., 𝑎𝑇−1} ∈ {𝐻,𝐿}𝑇 and 𝑡 ∈ {1, ..., 𝑇 − 1}, define the

operator Ω𝑡 : {𝐻,𝐿}𝑇 → {𝐻,𝐿}𝑇 as:

Ω𝑡(ℎ
𝑇 ) = (𝑎0, ..., 𝑎𝑡−2, 𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡+1, ..., 𝑎𝑇−1), (C.28)

in another word, swapping the order between 𝑎𝑡−1 and 𝑎𝑡. Recall the belief updating formula in

(C.13) and let

ℋ𝑇,* ≡
{︁
ℎ𝑇

⃒⃒⃒
∆(ℎ𝑡) < 1 − 𝜂* for all ℎ𝑡 ≺ ℎ𝑇

}︁
. (C.29)

If ℎ𝑇 ∈ ℋ𝑇,*, then Ω𝑡(ℎ
𝑇 ) ∈ ℋ𝑇,* unless:

∙ 𝑎𝑡−1 = 𝐿, 𝑎𝑡 = 𝐻.

∙ and,
(︁

1 + 𝜆(1 − 𝛾*)
)︁

∆(ℎ𝑡−1) ≥ 1 − 𝜂*.

Next, I show that the above situation cannot occur besides in the last 𝑘 periods. Suppose towards

a contradiction that there exists 𝑡 ≤ 𝑇 −𝑘 such that ℎ𝑇 ∈ ℋ𝑇,* but Ω𝑡(ℎ
𝑇 ) /∈ ℋ𝑇,*. Then according

to the conclusion in step 2, 𝐻 occurs at least 𝑛 + 1 times in {𝑎𝑡, ..., 𝑎𝑡+𝑘−1}. Now, consider the

sequence {𝑎𝑡−1, ..., 𝑎𝑡+𝑘−1}, in which 𝐻 occurs at least 𝑛 + 1 times and 𝐿 occurs at most 𝑘 − 𝑛

times. This implies that:

∆(ℎ𝑡+𝑘) ≥ ∆(ℎ𝑡−1)
(︁

1 + 𝜆(1 − 𝛾*)
)︁𝑛+1(︁

1 − 𝜆𝛾*
)︁𝑘−𝑛

= ∆(ℎ𝑡−1)
(︁

1 + 𝜆(1 − 𝛾*)
)︁𝑛(︁

1 − 𝜆𝛾*
)︁𝑘−𝑛

⏟  ⏞  
≥1

(︁
1 + 𝜆(1 − 𝛾*)

)︁

≥ ∆(ℎ𝑡−1)
(︁

1 + 𝜆(1 − 𝛾*)
)︁

≥ 1 − 𝜂*, (C.30)

where 2nd inequality follows from 𝑛/𝑘 > ̂︀𝛾 and (C.5), and the 3rd inequality follows from the

hypothesis that Ω𝑡(ℎ
𝑇 ) /∈ ℋ𝑇,*. Inequality (C.30) implies that play reaches the high phase before

period 𝑡+ 𝑘 ≤ 𝑇 , contradicting the hypothesis that ℎ𝑇 ∈ ℋ𝑇,*.
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To conclude, for every 𝑡 ≤ 𝑇 − 𝑘, if ℎ𝑇 ∈ ℋ𝑇,*, then Ω𝑡(ℎ
𝑇 ) ∈ ℋ𝑇,*. For every 𝑡 > 𝑇 − 𝑘, if

ℎ𝑇 ∈ ℋ𝑇,*, then Ω𝑡(ℎ
𝑇 ) ∈ ℋ𝑇,* unless 𝑎𝑡−1 = 𝐿 and 𝑎𝑡 = 𝐻. Intuitively, this is to say that one

can freely swap the order of play before period 𝑇 − 𝑘 and can also freely front-load the play the 𝐿

after period 𝑇 − 𝑘.

Let 𝑙 ∈ N be the number of 𝐿 in the sequence {𝑎𝑇−𝑘, ..., 𝑎𝑇−1}. If ℎ𝑇 ∈ ℋ𝑇,*, then the following

sequence that can be obtained by applying {Ω𝑡|𝑡 > 𝑇 − 𝑘} (only to 𝑎𝑡−1 = 𝐻 and 𝑎𝑡 = 𝐿) also

belongs to ℋ𝑇,*:

{𝑎0, ..., 𝑎𝑇−𝑘−1, 𝐿, 𝐿, ..., 𝐿⏟  ⏞  
#𝐿=𝑙

, 𝐻,𝐻, ...𝐻⏟  ⏞  
#𝐻=𝑘−𝑙

}. (C.31)

Applying {Ω𝑡|𝑡 ≤ 𝑇 − 𝑘} to (C.31), we know that the following sequence that can be obtained

through these operations also belong to ℋ𝑇,*:

{... 𝐿, 𝐿, ..., 𝐿⏟  ⏞  
#𝐿=𝑘−𝑛

, 𝐻,𝐻, ...𝐻⏟  ⏞  
#𝐻=𝑘−𝑙

}. (C.32)

The sequence in (C.32) is feasible due to the induction hypothesis that 𝑁𝐿,𝑇 ≥ 𝑛−𝑘. The conclusion

that (C.32) belongs to ℋ𝑇,* contradicts the conclusion in step 2, as there exists a sequence with

length 𝑘 in which 𝐻 occurs at most 𝑛 times. This contradiction implies that (C.21) cannot be true

for any history ℎ𝑇 s.t. 𝑁𝐿,𝑇 = 𝑁 +1 and play remains in the normal phase for every ℎ𝑡 ⪯ ℎ𝑇 . This

proves Lemma C.1.1.

C.2 Proof of Theorem 3.1: Payoff Upper Bound

In this Appendix, I show that 𝑉 (𝜋0) ⊂ 𝑉 *. In Subsection C.2.1, I establish a payoff upper bound

for the lowest cost type that uniformly applies across all discount factors. In Subsection C.2.2, I

establish a payoff upper bound for other types that applies in the 𝛿 → 1 limit. To accommodate

applications where players move simultaneously, I prove the result under the following stage game:

𝜃 = 𝜃𝑖 𝑇 𝑁

𝐻 1 − 𝜃𝑖, 𝑏 −𝑑(𝜃𝑖), 0

𝐿 1,−𝑐 0, 0

I assume that players’ payoffs are monotone-supermodular (Liu and Pei 2017). In the context

of this game, once we rank the states and players’ actions according to 𝜃1 ≻ 𝜃2 ≻ ... ≻ 𝜃𝑚,

𝐻 ≻ 𝐿 and 𝑇 ≻ 𝑁 , monotone-supermodularity implies that 𝑑(𝜃𝑖) ≥ 0 for every 𝜃𝑖 ∈ Θ and

|𝜃𝑖 − 𝜃𝑗 | ≥ |𝑑(𝜃𝑖) − 𝑑(𝜃𝑗)| for every 𝑖 < 𝑗.

Having players move simultaneously in the stage game and letting future short-run players

observing their predecessors’ actions introduce new challenges. As discussed in Pei (2017), the

predecessor-successor relationship is incomplete on the set of histories where player 1 has always

played 𝐻. Nevertheless, the adaptation of my proof to sequential move stage games in the baseline

model is straightforward.
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C.2.1 Payoff Upper Bound for the Lowest Cost Type

I start with recursively defining the set of high histories. Let ℋ0 ≡ {ℎ0} and

𝑎1(ℎ
0) ≡ max

{︁ ⋃︁
𝜃∈Θ

supp
(︁
𝜎𝜃(ℎ

0)
)︁}︁
.

Let

ℋ1 ≡ {ℎ1|∃ℎ0 ∈ ℋ0
s.t. ℎ1 ≻ ℎ0 and 𝑎1(ℎ

0) ∈ ℎ1}.

For every 𝑡 ∈ N and ℎ𝑡 ∈ ℋ𝑡
, let Θ(ℎ𝑡) ⊂ Θ be the set of types that occur with positive probability

at ℎ𝑡. Let

𝑎1(ℎ
𝑡) ≡ max

{︁ ⋃︁
𝜃∈Θ(ℎ𝑡)

supp
(︁
𝜎𝜃(ℎ

𝑡)
)︁}︁

(C.33)

and

ℋ𝑡+1 ≡ {ℎ𝑡+1|∃ℎ𝑡 ∈ ℋ𝑡
s.t. ℎ𝑡+1 ≻ ℎ𝑡 and 𝑎1(ℎ

𝑡) ∈ ℎ𝑡+1}. (C.34)

Let ℋ ≡
⋃︀∞

𝑡=0ℋ
𝑡

be the set of high histories. The main result in this subsection is the following

Proposition, which shows that at every history, the lowest cost type in the support of player 2s’

posterior belief cannot receive a continuation payoff higher than her pure Stackelberg commitment

payoff.

Proposition C.2. For every ℎ𝑡 ∈ ℋ, if 𝜃𝑖 = min Θ(ℎ𝑡), then type 𝜃𝑖’s continuation payoff at ℎ𝑡 is

no more than 1 − 𝜃𝑖 in any Nash Equilibrium.

Since ℎ0 ∈ ℋ and 𝜃1 = min Θ(ℎ0), a corollary of Proposition C.2 is that type 𝜃1’s payoff cannot

exceed 1 − 𝜃1 in any Nash Equilibrium.

Proof of Proposition C.2: For every 𝜃 ∈ Θ, let ℋ(𝜃) be a subset of ℋ (could be empty) such

that ℎ𝑡 ∈ ℋ(𝜃) if and only if both of the following conditions are satisfied:

1. For every ℎ𝑠 ⪰ ℎ𝑡 with ℎ𝑠 ∈ ℋ, we have 𝜃 ∈ Θ(ℎ𝑠).

2. If ℎ𝑡−1 ≺ ℎ𝑡, then for every 𝜃 ∈ Θ(ℎ𝑡−1), there exists ℎ𝑠 ∈ ℋ with ℎ𝑠 ≻ ℎ𝑡−1 such that

𝜃 /∈ Θ(ℎ𝑠).

Let ℋ(Θ) ≡
⋃︀

𝜃∈Θℋ(𝜃). By definition, ℋ(Θ) possesses the following two properties:

1. ℋ(Θ) ⊂ ℋ.

2. For every ℎ𝑡, ℎ𝑠 ∈ ℋ(Θ), neither ℎ𝑡 ≻ ℎ𝑠 nor ℎ𝑡 ≺ ℎ𝑠.

For every ℎ𝑡 ∈ ℋ(𝜃𝑖), at the subgame starting from ℎ𝑡, type 𝜃𝑖’s stage game payoff is no more than

1 − 𝜃𝑖 in every period if she plays 𝑎1(ℎ
𝑠) for every ℎ𝑠 % ℎ𝑡 and ℎ𝑠 ∈ ℋ. Since ℎ𝑡 ∈ ℋ(𝜃𝑖) implies

that doing so is optimal for type 𝜃𝑖, her continuation payoff at ℎ𝑡 cannot exceed 1 − 𝜃𝑖. When the

stage game payoff is supermodular, for every 𝑗 < 𝑖, the payoff difference between type 𝜃𝑗 and type
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𝜃𝑖 in any period is at most |𝜃𝑖 − 𝜃𝑗 |. This implies that for every 𝜃𝑗 ∈ Θ(ℎ𝑡) with 𝜃𝑗 < 𝜃𝑖, type 𝜃𝑗 ’s

continuation payoff at ℎ𝑡 cannot exceed 1 − 𝜃𝑗 .

In what follows, I show Proposition C.2 by induction on #Θ(ℎ𝑡). When #Θ(ℎ𝑡) = 1, i.e. there

is only one type (call it type 𝜃𝑖) that can reach ℎ𝑡. The above argument implies that type 𝜃𝑖’s

payoff cannot exceed 1 − 𝜃𝑖.

Suppose the conclusion in Proposition C.2 holds for every #Θ(ℎ𝑡) ≤ 𝑛, consider the case when

#Θ(ℎ𝑡) = 𝑛 + 1. Let 𝜃𝑖 ≡ min Θ(ℎ𝑡). Next, I introduce the definition of set ℋ𝐵
(ℎ𝑡): For every

ℎ𝑠 ⪰ ℎ𝑡 with ℎ𝑠 ∈ ℋ, ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) if and only if:

∙ ℎ𝑠 ∈ ℋ(𝜃𝑖), but ℎ𝑠+1 /∈ ℋ(𝜃𝑖) for any ℎ𝑠+1 ≻ ℎ𝑠 with ℎ𝑠+1 ∈ ℋ.

In another word, type 𝜃𝑖 has a strict incentive not to play 𝑎1(ℎ
𝑠) at ℎ𝑠. A useful property of ℋ𝐵

(ℎ𝑡)

is:

∙ For every ℎ∞ ∈ ℋ with ℎ∞ ≻ ℎ𝑡, either there exists ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) such that ℎ𝑠 ≺ ℎ∞, or there

exists ℎ𝑠 ∈ ℋ(𝜃𝑖) such that ℎ𝑠 ≺ ℎ∞.

which means that play will eventually reach either a history in ℋ𝐵
(ℎ𝑡)

⋃︀
ℋ(𝜃𝑖) if type 𝜃 plays

𝑎1(ℎ
𝜏 ) before that for every 𝑡 ≤ 𝜏 ≤ 𝑠. In what follows, I examine type 𝜃𝑖’s continuation value.

1. For every ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡), at every ℎ𝑠+1 satisfying ℎ𝑠+1 ≻ ℎ𝑠 and ℎ𝑠+1 ∈ ℋ, we have:

#Θ(ℎ𝑠+1) ≤ 𝑛.

Let 𝜃𝑗 ≡ min Θ(ℎ𝑠+1). According to the induction hypothesis, type 𝜃𝑗 ’s continuation payoff

at ℎ𝑠+1 is at most 1 − 𝜃𝑗 . Since this applies to every such ℎ𝑠+1, type 𝜃𝑗 ’s continuation value

at ℎ𝑠 also cannot exceed 1 − 𝜃𝑗 since she is playing 𝑎1(ℎ
𝑠) with positive probability at ℎ𝑠,

and her stage game payoff from doing so is at most 1 − 𝜃𝑗 . Therefore, type 𝜃𝑖’s continuation

value at ℎ𝑠 is at most 1 − 𝜃𝑖.

2. For every ℎ𝑠 ∈ ℋ(𝜃𝑖), playing 𝑎1(ℎ
𝜏 ) for all ℎ𝜏 ⪰ ℎ𝑠 and ℎ𝜏 ∈ ℋ is a best reply for type

𝜃𝑖. Her stage game payoff from this strategy cannot exceed 1 − 𝜃𝑖, which implies that her

continuation value at ℎ𝑠 also cannot exceed 1 − 𝜃𝑖.

Starting from ℎ𝑡, consider the strategy in which player 1 plays 𝑎1(ℎ
𝜏 ) at every ℎ𝜏 ≻ ℎ𝑡 and ℎ𝜏 ∈ ℋ

until play reaches ℎ𝑠 ∈ ℋ𝐵
(ℎ𝑡) or ℎ𝑠 ∈ ℋ(𝜃𝑖). By construction, this is type 𝜃𝑖’s best reply.

Under this strategy, type 𝜃𝑖’s stage game payoff cannot exceed 1 − 𝜃𝑖 before reaches ℎ𝑠. Moreover,

her continuation payoff after reaching ℎ𝑠 is also bounded above by 1 − 𝜃𝑖, which establishes the

conclusion in Proposition C.2 when #Θ(ℎ𝑡) = 𝑛+ 1.
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C.2.2 Payoff Upper Bound for Other Types

I establish an upper bound on the limiting equilibrium payoffs for types other than the lowest cost

type. For this purpose, I introduce an auxiliary maximization program. For every 𝑖 > 𝑗, let

𝑊𝑖(𝑣𝑗) ≡ max
{𝑞𝑘,𝛼𝑘

1 ,𝛼
𝑘
2}𝑘∈N

∞∑︁
𝑘=1

𝑞𝑘𝑢1(𝜃𝑖, 𝛼
𝑘
1 , 𝛼

𝑘
2), (C.35)

subject to
∑︀∞

𝑘=1 𝑞
𝑘 = 1, and 𝑞𝑘 ∈ [0, 1],

𝛼𝑘
2 ∈ arg max

𝛼′
2∈Δ(𝐴2)

𝑢2(𝛼
𝑘
1 , 𝛼

′
2) and

∞∑︁
𝑘=1

𝑞𝑘𝑢1(𝜃𝑗 , 𝛼
𝑘
1 , 𝛼

𝑘
2) ≤ 𝑣𝑗 , (C.36)

for evert 𝑘 ∈ N.

Intuitively, program (C.35) maximizes the high cost type 𝜃𝑖’s expected payoff by choosing a con-

vex combination of action profiles (with weights given by 𝑞𝑘) subject to player 2’s (myopic) incentive

constraints and type 𝜃𝑗 ’s expected payoff being no more than 𝑣𝑗 . For every 𝑣𝑗 ∈ [−𝑑(𝜃𝑗), 1− 𝛾*𝜃𝑗 ],

one can solve the above linear program and obtain:

𝑊𝑖(𝑣𝑗) ≤
1 − 𝛾*𝑐𝑖
1 − 𝛾*𝑐𝑗

𝑣𝑗 , (C.37)

with equality holds when 𝑣𝑗 ∈ [0, 1 − 𝛾*𝜃𝑗 ].

For every strategy profile 𝜎, let 𝑣𝜎𝑖 (ℎ𝑡) be the (discounted average) continuation payoff of type

𝜃𝑖 at history ℎ𝑡 and let 𝑢𝜎𝑖 (ℎ𝑡) be her stage game payoff. Let 𝑃 𝜎 be the probability measure over

ℋ induced by 𝜎. Let

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≡ 𝑣𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑣
𝜎
𝑗 (ℎ𝑡)). (C.38)

Let NE(𝛿, ℎ𝑡) be the set of equilibria in the continuation game starting from ℎ𝑡 when the discount

factor is 𝛿. The main result of this subsection is stated in the following Proposition:

Proposition C.3. For every ℎ𝑡, if 𝜃𝑖, 𝜃𝑗 ∈ Θ(ℎ𝑡) with 𝜃𝑗 = min Θ(ℎ𝑡), then

lim sup
𝛿→1

sup
𝜎∈NE(𝛿,ℎ𝑡)

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤ 0. (C.39)

Proof of Proposition C.3: Without loss of generality, I focus on continuation games that start

with ℎ0. The proof is done by induction on #Θ(ℎ𝑡). I start with cases in which there are two types,

with 𝜃𝑖 > 𝜃𝑗 , before moving on to cases in which there are more than two types.

Two Types: For every given equilibrium 𝜎 and history ℎ𝑡 with 𝑃 𝜎(ℎ𝑡) > 0, let 𝜎(ℎ𝑡, 𝜃𝑖) ∈ ∆(𝐴1)

be the action played by type 𝜃𝑖 at ℎ𝑡 and let 𝜎(ℎ𝑡) ∈ ∆(𝐴1) be player 1’s weighted average action

according to player 2s’ posterior belief at ℎ𝑡. Consider the following strategy �̂�𝜃𝑖 for type 𝜃𝑖: For

every ℎ𝑡 with 𝑃 𝜎(ℎ𝑡) > 0,

1. �̂�𝜃𝑖(ℎ
𝑡) = 𝜎(ℎ𝑡) if both types play every action in the support of 𝜎(ℎ𝑡) with positive probability.
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2. �̂�𝜃𝑖(ℎ
𝑡) = 𝜎(ℎ𝑡, 𝜃𝑖)∖𝜎(ℎ𝑡, 𝜃𝑗) if it is non-empty.

3. �̂�𝜃𝑖(ℎ
𝑡) = 𝜎(ℎ𝑡, 𝜃𝑖) otherwise.

By construction, �̂�𝑖 is a best response for type 𝜃𝑖 against the equilibrium strategy of player 2. In

what follows, I consider the three cases one by one. In the 1st case, one can decompose 𝐷𝜎
𝑖,𝑗(ℎ

𝑡)

according to:

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤ (1 − 𝛿)
(︁
𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢

𝜎
𝑗 (ℎ𝑡))

)︁
+ 𝛿𝑞(ℎ𝑡)

(︁
𝑣𝜎𝑖 (ℎ𝑡, 𝐻) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑡, 𝐻))

)︁
+𝛿(1 − 𝑞(ℎ𝑡))

(︁
𝑣𝜎𝑖 (ℎ𝑡, 𝐿) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑡, 𝐿))

)︁
(C.40)

where 𝑞(ℎ𝑡) is the probability that 𝐻 is played according to 𝜎(ℎ𝑡). Since 𝜎(ℎ𝑡) is a best reply

for both type 𝜃𝑖 and type 𝜃𝑗 , the term 𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢
𝜎
𝑗 (ℎ𝑡)) is non-positive according to the linear

program (C.35) that defines 𝑊𝑖.

In the 2nd case, by playing 𝜎(ℎ𝑡, 𝜃𝑖)∖𝜎(ℎ𝑡, 𝜃𝑗), type 𝜃𝑖 will be separated from type 𝜃𝑗 in period

𝑡+ 1, and afterwards, Proposition C.2 implies that 𝐷𝜎
𝑖,𝑗(ℎ

𝑡, 𝑎1,𝑡+1) ≤ 0. Therefore,

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤
(︁

1 + 𝑑(𝜃𝑖)
)︁

(1 − 𝛿). (C.41)

In the 3rd case, given that type 𝜃𝑖 plays 𝜎(ℎ𝑡, 𝜃𝑖) and type 𝜃𝑗 plays 𝜎(ℎ𝑡, 𝜃𝑗), we know that if type

𝜃𝑖 only plays 𝐻, then:

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤ (1 − 𝛿)
(︁
𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢

𝜎
𝑗 (ℎ𝑡))

)︁
+ 𝛿

(︁
𝑣𝜎𝑖 (ℎ𝑡, 𝐻) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑡, 𝐻))

)︁
. (C.42)

If type 𝜃𝑖 only plays 𝐿, then:

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤ (1 − 𝛿)
(︁
𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢

𝜎
𝑗 (ℎ𝑡))

)︁
+ 𝛿

(︁
𝑣𝜎𝑖 (ℎ𝑡, 𝐿) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑡, 𝐿))

)︁
. (C.43)

In the first subcase, 𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢
𝜎
𝑗 (ℎ𝑡)) ≤ 0, and in the second subcase, 𝑢𝜎𝑖 (ℎ𝑡) −𝑊𝑖(𝑢

𝜎
𝑗 (ℎ𝑡)) ≤ 0

unless 𝑇 is played with positive probability.

In what follows, I provide a uniform upper bound (interdependent of 𝛿) on the expected number

of periods where type 𝜃𝑖 only plays 𝐿 but player 2 has an incentive to play 𝑇 . Let 𝑃 * be the

probability measure over ℋ induced by �̂�𝜃𝑖 and 𝜎2. I establish a uniform upper bound on:

𝑄 ≡ E𝑃 *
[︁
1
{︁
ℎ𝑡 ∈ ℋ, 𝜎2(ℎ𝑡)[𝑇 ] > 0 and �̂�𝑖(ℎ

𝑡) = 𝐿
}︁]︁
. (C.44)

This bound is interesting since it can be applied to the previous part and obtain:

𝐷𝜎
𝑖,𝑗(ℎ

𝑡) ≤ 2(1 − 𝛿)
(︁

1 + 𝑑(𝜃𝑖)
)︁
𝑄 (C.45)

for every 𝜎 ∈ NE(ℎ𝑡, 𝛿), which implies (C.39). For every ℎ𝑡 ∈ ℋ with 𝑃 *(ℎ𝑡) > 0, let 𝜂(ℎ𝑡) be the

probability of type 𝜃𝑗 and let

𝜆(ℎ𝑡) ≡ (1 − 𝜂(ℎ𝑡))/𝜂(ℎ𝑡).
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Under the probability measure induced by (�̂�𝜃𝑖 , 𝜎2), for every ℎ𝑡 with 𝑃 *(ℎ𝑡) > 0, we have:

E[𝜆(ℎ𝑡+1)|ℎ𝑡] ≥ 𝜆(ℎ𝑡).

If 𝜎2(ℎ
𝑡)[𝑇 ] > 0 and only type 𝜃𝑗 plays 𝐻 at ℎ𝑡, then according to player 2’s incentive constraint,

type 𝜃𝑗 plays 𝐻 with probability at least 𝛾*(1 + 𝜆(ℎ𝑡)). Therefore, if ℎ𝑡 occurs with probability

𝑃 *(ℎ𝑡), we have:

E[𝜆(ℎ𝑡+1)] ≥ E[𝜆(ℎ𝑡)]

1 − 𝛾*𝑃 *(ℎ𝑡)

Since such periods can only occur when E[𝜆(ℎ𝑡)] ≤ 1/𝛾* − 1 for every 𝑡 ∈ N, we have:

𝑄 ≤ − 1

𝛾*
log 𝜆(ℎ0). (C.46)

Three or More Types: I use the result in the previous part as an induction hypothesis to

establish the conclusion in Proposition C.3 when there are three or more types. For 𝑛 ≥ 2, suppose

inequality (C.39) holds at every ℎ̃𝑡 with #Θ(ℎ̃𝑡) ≤ 𝑛, then consider a history ℎ𝑡 with #Θ(ℎ𝑡) = 𝑛+1.

Let 𝜃𝑗 ≡ min Θ(ℎ𝑡) and 𝜃𝑖 ∈ Θ(ℎ𝑡) with 𝑖 > 𝑗. Let ℎ𝑠 be a generic history that succeeds ℎ𝑡. By

definition, we have Θ(ℎ𝑠) ⊂ Θ(ℎ𝑡). The induction hypothesis implies that we only need to consider

histories in which Θ(ℎ𝑠) = Θ(ℎ𝑡), which we will be focusing on for the rest of the proof. Let

𝜎(ℎ𝑠) ∈ ∆(𝐴1) be the average action of player 1 at ℎ𝑠 according to 𝜎.

If every type in Θ(ℎ𝑠) plays every action on the support of 𝜎(ℎ𝑠) with positive probability, then:

𝐷𝜎
𝑖,𝑗(ℎ

𝑠) = (1 − 𝛿)
(︁
𝑢𝜎𝑖 (ℎ𝑠) −𝑊𝑖(𝑢

𝜎
𝑗 (ℎ𝑠))

)︁
+ 𝛿𝑞(ℎ𝑠)

(︁
𝑣𝜎𝑖 (ℎ𝑠, 𝐻) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑠, 𝐻))

)︁
+𝛿(1 − 𝑞(ℎ𝑠))

(︁
𝑣𝜎𝑖 (ℎ𝑠, 𝐿) −𝑊𝑖(𝑣

𝜎
𝑗 (ℎ𝑠, 𝐿))

)︁
, (C.47)

where 𝑞(ℎ𝑠) is the probability of 𝐻 at ℎ𝑠 according to 𝜎. Using the same argument as before, we

know that 𝑢𝜎𝑖 (ℎ𝑠) −𝑊𝑖(𝑢
𝜎
𝑗 (ℎ𝑠)) ≤ 0.

If not every type in Θ(ℎ𝑠) plays every action on the support of 𝜎(ℎ𝑠) with positive probability,

then consider two subcases. First, suppose there exists 𝑎1 ∈ 𝐴1 that is played with positive

probability by type 𝜃𝑖 but there exists 𝜃𝑘 ∈ Θ(ℎ𝑠) such that type 𝜃𝑘 plays 𝑎1 with probability

0, then by playing 𝑎1 at ℎ𝑠, #Θ(ℎ𝑠, 𝑎1) ≤ 𝑛. The conclusion is established via the induction

hypothesis. Second, suppose such action does not exist, then there exists an action on the support

of 𝜎(ℎ𝑠) in which 𝜎(ℎ𝑠, 𝜃𝑖) attaches 0 probability. In this case, apply the inequality (C.46), we can

obtain an upper bound on 𝐷𝜎
𝑖,𝑗(ℎ

𝑡), which diminishes as 𝛿 → 1.

182



Bibliography

[1] Abreu, Dilip, David Pearce and Ennio Stacchetti (1990) “Toward a Theory of Discounted

Repeated Games with Imperfect Monitoring,” Econometrica, 58(5), 1041-1063.

[2] Atakan, Alp and Mehmet Ekmekci (2012) “Reputation in Long-Run Relationships,” Review

of Economic Studies, 79(2), 751-780.

[3] Aumann, Robert and Michael Maschler (1995) Repeated Games with Incomplete Information,

MIT Press.

[4] Bai, Jie (2016) “Melons as Lemons: Asymmetric Information, Consumer Learning and Seller

Reputation,” Working Paper, Harvard Kennedy School.

[5] Bain, Joe (1949) “A Note on Pricing in Monopoly and Oligopoly,” American Economic Review,

39(2), 448-464.

[6] Baker, George, Michael Gibbs and Bengt Holmström (1994a) “The Internal Economics of the

Firm: Evidence from Personnel Data,” Quarterly Journal of Economics, 109(4), 881-919.

[7] Baker, George, Michael Gibbs and Bengt Holmström (1994b) “The Wage Policy of a Firm,”

Quarterly Journal of Economics, 109(4), 920-955.

[8] Banerjee, Abhijit and Esther Duflo (2000) “Reputation Effects and the Limits of Contracting:

A Study of the Indian Software Industry,” Quarterly Journal of Economics, 115(3), 989-1017.

[9] Bar-Isaac, Heski (2003) “Reputation and Survival: Learning in a Dynamic Signalling Model,”

Review of Economic Studies, 70(2), 231-251.

[10] Baron, David and Roger Myerson (1982) “Regulating a Monopolist with Unknown Costs,”

Econometrica, 50(4), 911-930.

[11] Barro, Robert (1986) “Reputation in a Model of Monetary Policy with Incomplete Informa-

tion,” Journal of Monetary Economics, 17, 3-20.

[12] Barro, Robert and David Gordon (1983) “Rules, Discretion and Reputation in a Model of

Monetary Policy,” Journal of Monetary Economics, 12, 101-122.

183



[13] Bergemann, Dirk and Ulrich Hege (1998) “Venture Capital Financing, Moral Hazard, and

Learning,” Journal of Banking & Finance, 22, 703-735.

[14] Bergemann, Dirk and Ulrich Hege (2005) “The Financing of Innovation: Learning and Stop-

ping.” RAND Journal of Economics, 36(4), 719-752.

[15] Board, Simon and Moritz Meyer-ter-Vehn (2013) “Reputation for Quality,” Econometrica,

81(6), 2381-2462.

[16] Bonatti, Alessandro and Johannes Hörner (2017) “Career Concerns with Exponential Learn-

ing,” Theoretical Economics, 12(1), 425-475.

[17] Campbell, Arthur, Florian Ederer and Johannes Spinnewijn (2014) “Delay and Deadlines:

Freeriding and Information Revelation in Partnerships,” American Economic Journal: Mi-

croeconomics, 6(2), 163-204.

[18] Chassang, Sylvain (2010) “Building Routines: Learning, Cooperation, and the Dynamics of

Incomplete Relational Contracts,” American Economic Review, 100(1), 448-465.

[19] Che, Yeon-Koo and Johannes Hörner (2018) “Optimal Design for Social Learning,” Quarterly

Journal of Economics, forthcoming.

[20] Chung, Kai-Lai (1974) A Course in Probability Theory, Third Edition, Elsevier.

[21] Cisternas, Gonzalo (2015) “Two-Sided Learning and Moral Hazard,” Review of Economics

Studies, forthcoming.

[22] Cole, Harold, James Dow and Willam English (1995) “Default, Settlement and Signalling:

Lending Resumption in a Reputational Model of Sovereign Debt,” International Economic

Review, 36(2), 365-385.

[23] Cripps, Martin, Eddie Dekel and Wolfgang Pesendorfer (2005) “Reputation with Equal Dis-

counting in Repeated Games with Strictly Conflicting Interests,” Journal of Economic Theory,

121, 259-272.

[24] Cripps, Martin, George Mailath and Larry Samuelson (2004) “Imperfect Monitoring and Im-

permanent Reputations,” Econometrica, 72(2), 407-432.

[25] Cripps, Martin, Klaus Schmidt and Jonathan Thomas (1996) “Reputation in Perturbed Re-

peated Games,” Journal of Economic Theory, 69(2), 387-410.

[26] Deb, Joyee and Yuhta Ishii (2017) “Reputation Building under Uncertain Monitoring,” Work-

ing Paper, Yale School of Management.

[27] Dellarocas, Chrysanthos (2006) “Reputation Mechanisms,” Handbook on Information Systems

and Economics, T. Hendershott edited, Elsevier Publishing, 629-660.

184



[28] Dewatripont, Mathias, Ian Jewitt and Jean Tirole (1999) “The Economics of Career Concern-

s, Part II: Application to Missions and Accountability of Government Agencies,” Review of

Economic Studies, 66(1), 199-217.

[29] Echenique, Federico (2004) “Extensive-Form Games and Strategic Complementarities,” Games

and Economic Behavior, 46, 348-364.

[30] Ekmekci, Mehmet (2011) “Sustainable Reputations with Rating Systems,” Journal of Eco-

nomic Theory, 146(2), 479-503.

[31] Ekmekci, Mehmet, Olivier Gossner and Andrea Wilson (2012) “Impermanent Types and Per-

manent Reputations,” Journal of Economic Theory, 147(1), 162-178.

[32] Ellison, Glenn and Sara Ellison (2011) “Strategic Entry Deterrence and the Behavior

of Pharmaceutical Incumbets Prior to Patent Expiration,” American Economic Journal-

Microeconomics, 3(1), 1-36.

[33] Ely, Jeffrey (2017) “Beeps,” American Economic Review, 107(1), 31-53.

[34] Ely, Jeffrey, Drew Fudenberg and David Levine (2008) “When is Reputation Bad?” Games

and Economic Behavior, 63, 498-526.

[35] Ely, Jeffrey, Johannes Hörner and Wojciech Olszewski (2005) “Belief-Free Equilibria in Re-

peated Games,” Econometrica, 73(2), 377-415.
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