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Abstract

Static Random Access Memory (SRAM) continues to be the embedded memory of
choice for modern System-on-a-Chip (SoC) applications, thanks to aggressive CMOS
scaling, which keeps on providing higher storage density per unit silicon area. As
memory sizes continue to grow, increased bit-cell variation limits the supply voltage
(Vdd) scaling of the memory. Furthermore, larger memories lead to data transfer
over longer distances on chip, which leads to increased power dissipation. In the era
of the Internet-of-Things (IoT) and Artificial Intelligence (AI), memory bandwidth
and power consumption are often the main bottlenecks for SoC solutions. Therefore,
in addition to Vdd scaling, this thesis also explores leveraging data properties and
application-specific features to design more tailored and “smarter” memories.

First, a 128Kb 6T bit-cell based SRAM is designed in a modern 28nm FDSOI pro-
cess. Dynamic forward body-biasing (DFBB) is used to improve the write operation,
and reduce the minimum Vdd to 0.34V, even with 6T bit-cells. A new layout technique
is proposed for the array, to reduce the energy overhead of DFBB and decrease the
unwanted bit-line switching for un-selected columns in the SRAM, providing dynamic
energy savings. The 6T SRAM also uses data prediction in its read path, to provide
upto 36% further dynamic energy savings, with correct predictions.

The second part of this thesis, explores in-memory computation for reducing data
movement and increasing memory bandwidth, in data-intensive machine learning ap-
plications. A 16Kb SRAM with embedded dot-product computation capability, is
designed for binary-weight neural networks. Highly parallel analog processing in-
side the memory array, provided better energy-efficiency than conventional digital
implementations. With our variation-tolerant architecture and support of multi-bit
resolutions for inputs/outputs, > 98% classification accuracy was demonstrated on
the MNIST dataset, for the handwritten digit recognition application.

In the last part of the thesis, variation-tolerant read-sensing architectures are
explored for future non-volatile resistive memories, e.g. STT-RAM.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Continuous CMOS scaling for the past few decades, following Moore’s law [1], has

increased transistor density on a silicon chip by more than 6 orders of magnitude. To-

day’s micro-processors pack billions of transistors within a few mm2 of silicon area,

providing tremendous compute power, high processing performance and supporting a

wide range of functionalities. This has enabled a plethora of applications, including

portable electronics (e.g. laptops, smartphones), wearable health-monitoring sys-

tems, wireless sensor nodes etc. More and more of these devices around us have

compute capabilities and are increasingly getting connected to each other, forming

the “Internet-of-Things” (IoT). The tremendous boom in compute power, coupled

with improvement in algorithms and availability of huge amounts of data, has also

enabled modern computing systems to perform many “Artificial Intelligence” (AI)

tasks e.g. image recognition [2, 3], speech recognition [4], natural language under-

standing [5] etc. One particularly interesting case for these recognition systems is that

of “always-ON” sensing, which allows them to continuously collect data and monitor

their surroundings. If the “always-ON” block (e.g. face detection) detects an event

of importance (e.g. a human face), for further processing of data it can activate more

complex systems (e.g. a face recognition system, which can be typically in “sleep”

mode to conserve energy). However, many of these increasing number of “smart” and

“always-ON” systems have limited energy budget, since they typically get powered by

batteries or harvest ambient energy [6]. Hence, energy-efficiency of these computing
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systems is a key concern, for their sustainable deployment in the real world.

1.1 Embedded Memories in Modern Computing

Systems

Registers

L1 Cache

Main Memory (DRAM)

Secondary storage (HDD)

SRAM

Register Files

Figure 1-1: Typical memory hierarchy [7].

Memories are a critical component of any computing system, allowing to store data

that need to be accessed for processing. Fig. 1-1 shows the typical memory hiearchy,

with increasing speed and decreased energy of access as we move up the pyramid.

On the other hand, manufacturing cost decreases, along with increasing density of

stored bits, as we move down the hierarchy. Hence, frequently accessed data are

stored in faster and more energy-efficient embedded memories (caches), situated near

the processing engines. Whereas, data that is not accessed very frequently, is stored

further away in larger but slower memories, e.g. DRAM, Flash etc.. In this thesis,

we mostly focus on embedded memories in the upper part of the hierarchy, especially

Static Random Access Memories (SRAM), which are widely used for on-chip caches in

modern micro-processors [8, 9, 10]. SRAMs occupy a significant portion of chip area

in modern Systems-on-a-Chip (Soc). As seen Fig. 1-2, for the 14nm Zen processor [8]
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almost 50% portion of the die is occupied by L2 and L3 caches, which are implemented

with SRAMs. Figure 1-3 shows the general trend of increasing cache size in modern

micro-processors, which can be as high as 54MB on a single die [10].

L2

L2

L2

L2

L2

L2

L2

L2

Figure 1-2: Area occupied by on-chip caches (L2, L3) for the 14nm Zen processor [8].
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Figure 1-3: General trend of cache size. [source: ISSCC 2015 Trends]

In emerging applications, such as accelerators for machine learning (ML) algo-

rithms like neural networks, embedded memory is even more crucial for improving

performance. Google’s Tensor Processing Unit or TPU chip [11] is one such example,
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in which 37% of the chip area is occupied by memory (∼28MB), to buffer different

types of data.

1.2 Memory-wall & the “von-Neumann bottleneck”

“Memory-wall” [12] is a term used to describe the increasing gap between CPU clock

speeds and the memory access times. While CMOS scaling has resulted in smaller

and faster transistors, which improve the CPU’s speed, the overall processing times

remained limited by the slow access times of memories. To continue Moore’s law,

multi-core processor designs started gaining popularity around 2005. However, with

multiple cores operating in parallel, on-chip memory bandwidth and energy became

more dominant issues. One of the major reasons for memory being a bottle-neck in

modern computing systems is the traditional “von-Neumann” architecture, in which

the memory and the processor are physically separate, with data flowing between

them. This leads to a limited bandwidth for data transfer, which is dictated by the

memory input/output (IO) capacity. Hence, in modern computing systems, a major

portion of the time and energy is spent in moving data back and forth between the

memory and the processing elements [13, 14]. Fig. 1-4 shows the relative energy con-

sumption for different computation and memory access operations in a 45nm CMOS

process [13]. As seen from the figure, the energy required to read a 32-b data from

a 32KB SRAM cache can be 100× more than the energy needed for a 32-b integer

add operation. This trend is more pronounced in data-intensive applications, which

necessitates bigger memories. This is because, bigger memories lead to movement of

data over longer distances on-chip, which amounts to higher power dissipation.

With the gaining popularity of data-intensive AI and ML applications like face

recognition, image classification, speech recognition etc., the amount of storage needed

is increasing tremendously. This can be easily seen from the size of the models (Table

1.1) [15] of typical Deep Neural Networks (DNN), which are one of the most popular

ML algorithms. Hardware implementations of DNNs face major challenges in dealing

with huge amount of data movement. Fig. 1-5 shows the different components of
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Operation Energy (pJ)

Integer ADD (8b) 0.03

Integer ADD (16b) 0.05

Integer ADD (32b) 0.1

Integer MULT (8b) 0.2

Integer MULT (32b) 3.1

8KB SRAM Read (32b) 5

32KB SRAM Read (32b) 10

1MB SRAM Read (32b) 50

100X

1 10 50

Energy (pJ) in log scale

Figure 1-4: Energy consumption of various operations in a 45nm CMOS process at
Vdd = 0.9V, recreated from [13].

energy for running DNNs in hardware, as estimated in [15]. As seen from the figure,

the different memory access and data movement energies are the dominant ones,

compared to the computation (ALU) energy.

Table 1.1: Summary of model sizes of popular DNNs [15]

Metric
LeNet-

5
AlexNet

Overfeat
fast

VGG-
16

GoogLeNet
v1

ResNet-
50

Total # Fil-
ter Weights

60K 61M 146M 138M 7M 25.5M

There are different approaches to tackling the memory bottleneck problem in mod-

ern computing systems. Dynamic Voltage Scaling (DVS) has been proven to be an

effective way to reduce energy consumption of circuits [16, 17]. Decreasing the supply

voltage (Vdd) provides savings in the dynamic energy consumption (∝ V 2
dd), as well

as a reduction in the leakage power consumption, at the expense of slower perfor-

mance. However, SRAM Vdd do not easily scale as much as in logic circuits, due to

the reduction in operating margins. The next section will discuss the challenges and

opportunities in low-voltage SRAM design. Data-dependent SRAMs, which take ad-

vantage of certain data properties to provide energy savings, would be also discussed.
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Figure 1-5: Breakdown of energy consumption for different digital implementations
of a DNN algorithm [15].

Another promising approach to overcoming the von-Neumann bottleneck, is the con-

cept of in-memory compute, which blurs the line between traditional memories and

compute elements, by bringing computation features inside the memory. This will be

discussed in the subsequent section.

1.3 Low-voltage SRAM

Static Random Access Memories (SRAM) are the most popular type of embedded

memories and one of the most critical building blocks in modern SoCs. SRAMs

are pre-dominantly used for register files and L1-L3 cache memories, in the embed-

ded memory hierarchy (Figure 1-1). This is primarily because, SRAMs offer the

best access-speed performance among other embedded memory technologies [7]. Fur-

thermore, SRAMs are fully compatible with modern CMOS processes and operating

voltage, and hence, can be easily integrated with logic circuits. With the scaling of

device dimensions to sub-65nm regime, the variation in transistor threshold voltage

(Vt) has become more severe. Since SRAM bit-cell size aggressively reduces with ev-

ery technology node, the effect of random Vt variation makes it extremely challenging

to reduce the Vdd of SRAMs, while maintaining sufficient stability margin for the
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bit-cell. Figure 1-6 shows the recent trend in SRAM bit-cell size and the operating

Vdd. As seen from the figure, the Vdd scaling has been essentially stagnant, in sub-

65nm CMOS processes. Decreasing the supply voltage (Vdd) provides savings in the

dynamic energy consumption (∝ V 2
dd), as well as a reduction in the leakage power

consumption, at the expense of slower performance [16, 17]. Hence, Vdd scaling is

very crucial to reduce energy consumption of SRAMs.
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Figure 1-6: Scaling trends for SRAM bit-cell size and operating Vdd. [source: ISSCC
2016 Trends]

1.3.1 6T bit-cell based SRAM

Six transistor (6T) based bit-cell has been the workhorse for SRAM design, owing

to the small cell area and compact lithography-friendly layout [18], resulting in high

density memory arrays. As shown in Figure 1-7, each row of bit-cells share a common

word-line (WL), while a pair of bit-lines (BL and BLB) are shared by multiple bit-

cells in a column. The number of bit-line pairs (n) and the bit-width (m) of a single

word, determine the column select ratio of n
m

. A conventional 6T SRAM bit-cell

(shown in Figure 1-7) consist of two back-to-back inverters (comprised of PU1, PD1

and PU2, PD2) and two access transistors (PG1 and PG2). The inverter pair is cross-

coupled such that the output of one goes to the input of the other, and vice-versa.

The resulting positive feedback of the inverter pair, can hold the desired data (states
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Figure 1-7: Conventional SRAM array architecture and 6T bit-cell.

“1” or “0”) indefinitely at the internal nodes (N1 and N2), as long as the SRAM

is powered up and the access transistors are turned-off. Access transistors are only

turned-on during read and write operations, to connect the internal data nodes to

the bit-lines (BL and BLB).

Fig. 1-8(a) shows the 6T bit-cell during a write operation. It starts with driving

the bit-lines to the data value to be written. The WL is then asserted, turning-on the

PG transistors. If the data to be written is opposite to the previously stored state (as

shown in Figure 1-8(a)), the potential of the high internal node is lowered, depending

on the drive strengths of the pull-up (PU) PMOS and the PG NMOS transistors.

The ratio of the drive strengths of the PG and PU transistors is known as the γ-ratio

and it is an important parameter in 6T SRAM design. The transistors need to be

sized carefully so that the γ-ratio is high enough to lower the potential of the high

internal node below the VTRIP of the connected inverter. As shown in Figure 1-8(b),

a low γ-ratio can lead to a write failure.

The read operation starts with pre-charging the bit-line pairs (BL and BLB) to a

known voltage (typically Vdd). The bit-lines are then kept floating and the word-line

(WL) is asserted. Depending on the data stored, one of the bit-lines (BL or BLB)

starts discharging through the pass-gate (PG) and pull-down (PD) NMOS transistors,

connected in series (Figure 1-9(a)). The bit-line differntial voltage is sensed by a sense-
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Figure 1-8: (a) 6T bit-cell during a write operation, (b) Waveforms during a write
operation for two different γ-ratios: (WPG/WPU)x = 1.25, (WPG/WPU)y = 1). Write
failure occurs when the γ-ratio is not high enough to lower the potential of N2 below
the VTRIP of the PU1-PD1 inverter.
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Figure 1-9: (a) 6T bit-cell during a read operation, (b) Waveforms showing a “read
disturb” for a minimum sized bit-cell. Bit-cell flips since the disturbance at N1 is
large enough to trip the inverter (PU2, PD2).

amplifier to output the data. During the read operation, the discharging current flows

from the bit-line to the cell ground, on the side of the bit-cell storing a “0”. This leads

to an increase in the potential of the corresponding internal node (N1 in Figure 1-

9(a)) and the amount of disturbance depends on the drive strengths of the PG and PD

NMOS transistors. If this increased voltage goes above the trip-point (VTRIP ) of the

connected inverter, the stored data is flipped. This event is known as ‘read disturb’
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and it is shown in Figure 1-9(b). In order to prevent this, the PD NMOS needs to

be stronger than the PG NMOS. The ratio of their drive strengths is known as the

β-ratio, which is an important SRAM design parameter. Careful sizing of the NMOS

transistors is required to achieve the desired β-ratio, which ensures successful read

operations (i.e. without any ‘read disturbs’).

With CMOS scaling continuing in 10’s nm regime, it becomes increasingly chal-

lenging to precisely control the transistor dimensions and also the channel doping

concentration. Hence, the effect of random dopant fluctuation is exacerbated in mod-

ern CMOS processes, leading to a wide variation in the transistor threshold voltages

(Vt). The effect of random Vt variation is more pronounced as Vdd scales down, since

the overdrive voltage (Vdd − Vt) of the transistors is reduced. Thus, even though the

required β and γ ratios are satisfied at higher Vdd’s, they might not be sufficient for

every bit-cell when Vdd approaches close to Vt. This causes SRAM functional failure,

limiting the minimum achievable Vdd.WRM RVT PU: 80n/38PG: 120n/4PD: 162n/40n
SF-40C

Vdd mu sigma mu/sigma norm_u/sg
1 420.15 19.573 21.47 1.00

0.9 347.41 19.427 17.88 0.83
0.8 280.41 19.728 14.21 0.66
0.7 220.02 20.667 10.65 0.50
0.6 174.42 24.091 7.24 0.34
0.5 155.59 27.745 5.61 0.26
0.4 151.41 28.334 5.34 0.25

SNM RVT PU: 80n/38PG: 120n/4PD: 162n/40n
FS125C

Vdd mu sigma mu/sigma norm_u/sg
1 122.03 15.376 7.94 0.37

0.9 118.64 14.551 8.15 0.38
0.8 111.84 13.976 8.00 0.37
0.7 100.24 13.711 7.31 0.34
0.6 83.913 13.65 6.15 0.29
0.5 63.56 13.644 4.66 0.22
0.4 41.006 13.352 3.07 0.14
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Figure 1-10: SNM and WRM dependence on Vdd for a 6T bit-cell in a 28nm CMOS
process.

Figure 1-10 shows the effect of reducing Vdd on static noise margin (SNM) and

write margin (WRM) of a 6T bit-cell that has been designed in a 28nm CMOS process,

using regular-Vt transistors. As seen from the figure, the µ/σ ratio for both SNM and

WRM decreases with Vdd. However, WRM exhibits a much stronger dependence

on Vdd than SNM, especially at higher voltages. A µ/σ of more than 5 (i.e. < 1
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error in 106 bits) is typically required, for high yield ratios in large sized SRAMs.

Hence, new and improved read and write assist techniques are being increasingly

used as design solutions, to reliably reduce the minimum operating voltage (Vdd,min)

of SRAMs. Additionally, newer transistor structures, such as FDSOI [19, 20] and

FinFET [21, 22], are also emerging as replacements for planar-bulk devices, to reduce

device variations and further improve SRAM Vdd,min.

1.3.2 Assist Techniques Used in Modern 6T SRAMs

The issues of functional margin degradation with Vdd scaling are generally addressed

by using peripheral assist circuits, to aid the read and write operations [23, 24].

[23] defines three modes of SRAM functional failure: read-ability, write-ability and

read-stability. Assuming a differential sense-amplifier (SA) based read operation for

6T bit-cells, a read-ability failure occurs if the BL differential voltage (when the SA

is triggered) is less than the offset voltage of the SA. A write-ability failure occurs

when the desired data cannot be written at the end of the WL pulse. Read-stability

failures can happen if the selected bit-cell (BC) data or the half-selected BC data is

accidently flipped during a read or write operation, respectively. Here we summarize

common assist techniques used to improve read-ability, write-ability and read-stability

in modern 6T bit-cell based SRAMs.
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Figure 1-11: Conventional read assist techniques.
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Fig. 1-11 shows the waveforms for the different read assist techniques used in

previous works. Most of these techniques aim at improving the β ratio by making

the PG NMOS weaker or the PD NMOS stronger. For the word-line underdrive

(WLUD) technique [25, 26, 27], the gate-bias of the PG transistor is reduced, making

it weaker than the PD transitor and improving read-stability. However, a reduced

gate-drive decreases the BL discharge current, making read-ability worse. A reduced

BL pre-charge (PCH) level can help in improving read-stability, without degrading

the drive strength of the PG device (assuming negligible effect of VDS). The work in

[28] demonstrated a yield increase from 5 to 5.7 sigma, by pre-charging BLs to ap-

proximately 70% of Vdd. This technique has the overhead of generating and regulating

the reduced PCH voltage. Precise regulation of the PCH voltage is necessary, since

a low PCH level can create a pseudo-write operation scenario, which can overwrite

the existing cell data. Boosting the cell VDD makes the PD NMOS stronger than

the PG device, improving read-stability. Driving the cell VSS to a negative voltage

level, simultaneously improves the strengths of the PG and PD devices. Hence the

BL discharge current is increased, improving read-ability. These techniques can be

implemented in a row-by-row [29] or column-by-column [30, 31] fashion.
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Figure 1-12: Conventional write assist techniques.

Figure 1-12 shows the waveforms for the conventional write assist techniques,

which attempt to improve the γ ratio or weaken the bistability of the cross-coupled

inverters. The word-line boosting technique improves write-ability by increasing the
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gate-drive of the PG device, making it stronger than the PU PMOS. However, this has

a detrimental effect on the read-stability of the half-selected bit-cells (i.e. bit-cells in

the selected row and unselected columns) in a column-interleaved array. [32] addresses

this issue by delaying the boosting phase with respect to WL turn-on. Hence, the

half-selected bit-cells have already started reading and the BL voltage has sufficiently

reduced when the WL boosting is applied. This technique incurs the area overhead

of generating the boosted WL voltage. The negative BL technique [28, 27, 22, 33]

increases the gate-drive (VGS) of the PG transitor by reducing its source voltage

and hence, improves write-ability. However, by decreasing the potential of one of

the BLs below GND, there is a non-zero VGS across the PG devices in unaccessed

rows. If the internal node of an unaccessed bit-cell on this side is “1”, then there

is a chance of unintentional over-writing of that cell data. The non-zero VGS also

results in increased leakage from the PG devices and causes partial loss of the boost

signal. This technique is also susceptible to voltage overstress in the write path

at higher Vdd values [28, 25]. ‘Cell-VDD collapse’ [26, 33] and ‘Cell-VSS boost’ [34]

techniques decrease the strength of the cross-coupled inverter pair holding the data

and hence improves writability. However, the effect is much weaker [23] than the

‘WL boost’ and ‘Negative BL’ techniques, since the PG transistor’s strength is not

improved. Furthermore, these techniques when implemented column-wise, run the

risk of violating the data retention voltage for unaccessed bit-cells, which can cause

accidental loss of cell data. Whereas, if they are implemented row-wise, the read-

stability of the half-selected bit-cells are degraded.

1.3.3 Alternate bit-cells for Low-Vdd Operation

Although assist techniques are useful in improving the operation margin of 6T SRAMs,

they are fundamentally limited by the fact that the read and write design choices in

6T SRAMs are inherently contradictory. Hence, alternate bit-cell topologies [35, 36]

have been explored to decouple read and write operations. Fig. 1-13 shows the popu-

lar 8-transistor (8T) based bit-cell design, which adds an extra read port, consisting of

series NMOS transistors, that does not affect the internal data nodes (‘Q’ & ‘QB’) of
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the bit-cell. Thus, there is no read-disturbance in the bit-cell and the read operation

is essentially not limited by the bit-cell sizing. Therefore, a low voltage operation can

be achieved by using more agressively designed write-assist techniques.

WWL WWL

WBLB

Vdd 

Q QBWBL

VGND

RBL

RWL

Decoupled Read Port

Figure 1-13: 8T SRAM bit-cell for low voltage operation.

1.4 Data-dependent SRAMs

The conventional 6T SRAM energy does not depend on the data read, because of

the differential bit-cell structure with a shared word-line (WL). However, in many

applications, the data bits stored are not entirely random and can have certain inter-

esting properties which can be leveraged to get energy savings. For example, in neural

networks, the input activations for the different layers can be sparse and have a high

percentage of ‘0’s [15]. Hence, 8T SRAMs can be used to store them. As shown in

Fig. 1-13, the 8T bit-cell has a single-ended read port and hence, it only discharges

the bit-line (BL) for one polarity of the data (can be chosen to be ‘1’). Therefore, if

most of the data bits stored are ‘0’s, then the BL switching energy (which is generally

the most dominant component in the SRAM dynamic energy) can be substantially

reduced [37]. Another application where data-dependent memory could be useful is

motion estimation for video processing [38]. In motion estimation, when reading data

from a reference video frame (i.e. an image), there can be a lot of correlation in the

neighboring pixel values. Hence, to store the reference frame, [38] uses a 10T bit-
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cell based SRAM with prediction signals, to prevent BL switching if the prediction

matches the bit stored/read. The prediction signals, shared column-wise for each out-

put data bit in [38], are updated less frequently because of the temporal correlation

of the read pixel data. With this architecture, [38] achieved upto 1.75× reduction in

energy/access with 100% correct predictions. [39] proposed another data-dependent

10T SRAM, in which the prediction logic is implemented at the periphery, rather than

the bit-cell itself. It uses the last data read as the prediction signal for the next data.

Therefore, if the last cycle’s prediction was correct, there is no need to pre-charge the

BLs for the next cycle, which reduces BL switching energy. If the next cycle detects

a wrong prediction, it updates the prediction value at the peripheral read circuit and

pre-charges the corresponding BL. Hence, if the activity factor in the read data is low

(i.e. similar bits are read for many consecutive cycles), this prediction based SRAM

[39] can provide upto 67% energy savings. [40] uses a similar concept of saving BL

energy by not dynamically pre-charging the BLs every cycle. It rather uses a 10T

bit-cell with a CMOS sensing inverter embedded in it, for a static read-out operation.

Hence, if the activity factor in the read data is low, [40] can reduce BL switching to

achieve 28-39% energy reduction, compared to 8T SRAMs with majority logic [37].

All the prior work mentioned above, use 8T/10T bit-cells, which have 1.3-1.7× more

area than 6T bit-cells. In applications where SRAM density is crucial (e.g. GPUs),

it would be useful to have data-dependent energy savings using standard 6T bit-cells.

Table 1.2: Summary of data-dependent SRAMs
Work Data-dependent Concept Energy Savings

Fujiwara ’08 [37]
An 8T SRAM with majority data logic

and bit reordering to reduce BL switching
28% (vs. no majority

logic)

Noguchi ’07 [40]
A non-precharge 10T SRAM with reduced BL

switching for similar consecutive data reads
39% (vs. 8T with

majority logic)

Sinangil ’14 [38]
A 10T SRAM with prediction signals in bit-cells
to reduce BL switching for correct predictions

43% (vs. 8T)

Duan ’17 [39]
A 10T SRAM using previous data read

as prediction to selectively pre-charge BLs
67% (vs. 8T)
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1.5 In/Near-memory Computing Architectures

Although Vdd scaling can provide energy savings in memories, modern computing sys-

tems are inherently limited by the “von-Neumann” bottleneck, as explained before.

Even with multiple cores, the system throughput and energy is limited by the memory

size and I/O bandwidth. One of the promising approaches to circumvent this limi-

tation is the concept of “in/near-memory” computation (Fig. 1-14). If the required

computation can be done inside the memory array or in the periphery, very close to

the array, then there would be significantly less data that needs to be transferrred

over long distances on chip. Additionally, there is the potential to simultaneously

access multiple memory addresses, which are involved in the computation. Thus the

effective number of bits that can be accessed from the memory is not limited by its

IO, which thereby, improves system throughput.

Memory

Compute

O
u

tp
u

t

Huge amount of
data transfer

to/from
memory

Memory with
Embedded

Computation

Conventional Architecture In-memory Architecture

Registers

Registers

In
p

u
t

O
u

tp
u

ts

In
p

u
t

No explicit data read

Much less 
data 

transfer
M

u
lt

ip
le

 M
em

o
ry

 
A

d
d

re
ss

 A
cc

es
s

Memory IO limitation

IO

IO
IO

Figure 1-14: Comparison of conventional and in-memory architectures.

There have been a few recent works exploring in/near-memory computing archi-

tectures. They can be primarily divided into 2 categories, depending on whether

the data stored in the memory is read explicitly and sequentially (“near-memory”) or

whether it is done implicitly (“in-memory”). Each of these can be further sub-divided

into 2 categories, depending on whether the computation involved is done in the dig-

ital manner (bit-precise) or in the analog domain. There are many applications, e.g.
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machine learning algorithms, in which the computation involved does not need to

be bit-precise, as it would have been done with an ideal digital implementation. In

these cases, low-precision analog computation with low signal-to-noise (SNR) ratio

has been used to take advantage in the error resiliency of the algorithms involved.

[41] describes a ML classifier (support vector machine or SVM) implemented with a

standard 6T SRAM array. 5× improvement in speed and 10× improvement in energy

consumption was reported, compared to a fully-digital implementation, for the hand-

written digit recognition task (MNIST). [42] presents a multi-functional ML classifier

chip, which implements face detection using SVMs, event detection using matched

filters, face recognition using template matching and handwritten digit recognition

using k-nearest neighbor algorithm. Although these systems achieve better energy-

efficiency, they do not provide very accurate computations and rely on error tolerance

of the ML algorithms. In other applications, bit-error rates might be more crucial

e.g. video encoding/decoding, security algorithms etc. In these cases, the in/near-

memory compute system needs to provide bit-accurate results in the digital domain.

[43] presents an SRAM with AND, OR, XOR computation capacibility for running

security algorithms e.g. AES. [44] describes a similar system for an image processing

application, to gain 2× in speed. [45] presents a 6T SRAM architecture for in-memory

logic operations, which can be reconfigured as a content-addressable-memory (CAM)

for searching operations.

Table 1.3: Summary of recent works on in/near-memory computing

Work
Comp.
Mode

Brief Description

Zhang ’17 [41] Analog
A 6T SRAM with in-memory dot-product computations
using 5-b inputs and 1-b weights, producing 1-b outputs

Kang ’18 [42] Analog
A 6T SRAM with in/near-memory dot-product computations

using 6-b inputs and 8-b weights, producing 6-b outputs

Zhang ’18 [43] Digital
A 10T SRAM to support in/near-memory bit-wise boolean

operations for running security algorithms

Akyel ’16 [44] Digital
A 10T SRAM implementing in-memory bit-wise boolean

operations and near-memory digital arithmetic operations

Jeloka ’16 [45] Digital
A 6T SRAM with in-memory logic operations, which can be

also re-configured as a CAM for searching operations
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1.6 Thesis Contributions

This thesis primarily focuses on low-power SRAM designs, utilizing data properties

and in-memory computation capability, to address traditional memory bottlenecks

and achieve high energy-efficiency, in energy-constrained IoT and AI applications.

Furthermore, variation-tolerant circuits for promising furture memory technologies,

e.g. STT-RAM, are also explored.

1.6.1 Low-Power 6T SRAM with Data-Dependent Energy

Savings

Chapter 2 presents a low-voltage 6T bit-cell based SRAM architecture which can in-

corporate data-prediction in its read path, to provide dynamic energy savings. Using

6T bit-cells provides higher memory density than 8T/10T designs. This is very critical

in many data-intensive applications, which needs large on-chip memories, dominating

majority of the chip area. However, traditional 6T SRAMs do not operate at low sup-

ply voltages (Vdd) due to conflicting read and write design requirements. This work,

in a 28nm FDSOI process, uses a dynamic forward body-biasing (DFBB) technique

to increase the write margin of the SRAM and simultaneously improve the access

speed for both write and read operations. A new array layout is proposed, which

rotates the traditional 6T bit-cell by 90◦, to align the n-wells horizontally (along the

word access direction). This layout technique reduces the n-well capacitance switched

per cycle for DFBB. In addition, it also eliminates the half-select problem (common

in traditional 6T SRAMs), by supporting multiple word-lines per row. Solving the

half-select issue, also helps in eliminating the dynamic bit-line power consumption

of un-selected columns. In conventional 6T SRAMs, the un-selected columns switch

every cycle unnecessarily, when their corresponding bit-cells are accessed, since they

share a common word-line with the accessed bit-cells in a row. Further, savings in

dynamic energy is obtained by incorporating data-prediction in the read path. We

use a hierarchical array design, with local and global bit-lines (BL), and implement

the prediction logic in the local read/write circuitry, rather than the bit-cell itself [38].
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This enables using 6T bit-cells in the array to achieve higher memory density, while

still saving global BL dynamic energy, when data is predicted correctly. This read

architecture using data prediction can be also interpreted as enabling an in-memory

X(N)OR computation capability, which could be beneficial in certain applications e.g.

security algorithms [46] and low-precision neural networks [47, 48].

1.6.2 In-Memory Computation for Low-Power Neural Net-

works

Chapter 3 presents an energy-efficient SRAM architecture with embedded dot-product

computation capability, intended for low-power neural-network (NN) based ML ap-

plications. The basic computation for neural networks can be boiled down to a

multiply-and-accumulate (MAC) or dot-product operation. For every layer in the

NN, the 3-D inputs are processed by multiple 3-D filters in parallel, producing a 3-D

output, which is fed as the input to the next layer. The dot-product is inherently

a parallel operation, and coupled with the fact that multiple dot-products share the

same inputs/weights, there is a lot of scope for highly parallel implementations. How-

ever, in traditional systems, memory bandwidth would limit the degree of parallelism

and also be a bottleneck in terms of energy. This is due to the need of constant

shuffling of data, back and forth between the memory and the processing elements.

With our architecture, the weights (1-b in this work) are stored in local arrays of an

SRAM and are not explicitly read. Instead, the inputs (6-b) for a given NN layer,

are sent to this SRAM as analog pre-charge voltages on bit-lines using DACs. The

bit-cells multiply these analog voltages by the 1-b weights stored in them and then,

the bit-line voltages are averaged. Finally, the analog averaged voltages are trans-

ferred back into the digital domain using ADCs. There are multiple advantages of

this architecture. Firstly, the weights are not read explicitly and sequentially from

each row of the memory. Instead, 16 rows are implicitly read in parallel, while also

implementing multiplication by 1-b. This reduces the SRAM read energy and also im-

proves throughput. Secondly, the highly parallel analog averaging operation is more
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energy-efficient than digital accumulation, which needs large bit-width adders to se-

quentially add multiple partial products for each MAC operation. Finally, the highly

parallel nature of the in-place computations significantly reduces data transfer to and

from the memory, providing higher energy-efficiency. It should be noted that, the

computation accuracy with an in-memory approach can be degraded due to variation

in the SRAM bit-cells, which use near-minimum sized transistors for high density.

In this work, we overcome this problem in 2 main ways. Firstly, we use the SRAM

bit-cells just for evaluating the 1-b weights, using full-swing local BL discharge. The

analog input voltages are not controlled by the SRAM bit-cells. Secondly, we use the

capacitance of the BLs to implement the analog computations. Since, in a CMOS

process, capacitance has much less variation than transistor Vt’s, hence, our approach

is more immune to variation and achieve better computation accuracy.

1.6.3 Variation-Tolerant Read Sensing Architectures for Non-

Volatile Resistive Memories

While SRAM is the current embedded memory of choice in modern SoCs, its scaling

would be limited in the future as CMOS processes scale down to sub 10-nm regime,

with feature sizes approaching the dimensions of a few atoms. Hence, alternate mem-

ory technologies (e.g. ReRAM, STT-RAM, PCRAM etc.) are being actively investi-

gated, as potential candidates for embedded memories. Most of these memories use a

resistive device as the storage element, whose resistance can be modulated to have 2

(or possibly more) values. Chapter 4 presents a read sensing architecture targetted to

improve yield. This is achieved in 2 main ways. Firstly, pseudo-differential 2-phase

resistive divider circuit is used to improve the read signal margin. And secondly,

an offset-cancellation technique is proposed which can tolerate more variation from

the array. The differential nature of the read techniques, with an inherently single-

ended bit-cell, provides more immunity to various types of common-mode noise and

improves yield.
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Chapter 2

Low-Power 6T SRAM with Output

Data Prediction

The aggressive scaling of SRAM bit-cell size with every technology node makes it

extremely challenging to reduce the Vdd,min of SRAMs, due to the increasing effect

of device variations. However, Vdd scaling is crucial in reducing the energy con-

sumption of SRAMs, which is a significant portion of the overall energy consump-

tion in modern micro-processors. Energy savings in SRAM is particularly important

for battery-operated applications, which run from a very constrained power-budget.

Recent works [49] have used negative bit-line (NBL) and word-line (WL) boosting

techniques to improve the Vdd,min for write operation. However, they are susceptible

to voltage overstress issues at higher Vdd, or can cause read disturb issues in the

half-selected bit-cells. In this work, we use dynamic forward body-biasing (DFBB)

in an energy-efficient way to improve the write margin and increase operating speed.

The proposed implementation significantly reduces the energy overhead of DFBB and

also helps in reducing the switching energy for half-selected bit-lines. Further savings

in energy/access is achieved by incorporating data-prediction in the 6T read path,

which reduces bit-line switching. The proposed techniques have been implemented

for a 128Kb 6T SRAM macro, designed in a 28nm FDSOI technology.
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2.1 Dynamic Forward Body-Biasing (DFBB)

2.1.1 DFBB as a write-assist

Forward body-biasing of an NMOS device, refers to applying a positive body-to-source

voltage (VBS > 0V ) across it. This reduces the threshold voltage of the NMOS, since

the body-terminal acts like a second gate [19]. Fully-depleted silicon-on-insulator

(FDSOI) technology [19, 20] offers the unique feature of applying FBB on NMOS

devices without the need of a triple-well structure, which would be required in a bulk

CMOS process. This is possible because of the electrical isolation of the source/drain

of the transistor from the well/substrate by using a buried-oxide (BOX) layer. The

ultra-thin BOX layer also improves the body-biasing efficiency ( ∼ 85mV/V [19]) as

compared to a bulk CMOS process (∼ 25mV/V [19]), in which the BOX layer is not

present. In this work, we use the LVT flavor of the FDSOI transistors [50], which

is characterized by NMOS devices on n-well and PMOS devices on p-well, as shown

in Figure 2-1. Since the n-well bias (GNDS) is controlled independently, the NMOS

devices can be selectively forward body-biased, reducing their threshold voltage. The

PMOS devices are already in FBB mode, since their body terminal is at 0V (same as

the p-substrate).

P-Substrate

P-Well

P+ P+
Gate

P+

VDDS = 0V

Si

N-Well

N+N+
Gate

N+

GNDS > 0V 

Si

NMOS (LVT) PMOS (LVT)

n-type BP p-type BP
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G

D

S

B G

D

S
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Figure 2-1: Cross-sectional view and circuit symbols of the LVT transistors [50] in
the FDSOI process, used for the 6T SRAM design.

Fig. 2-2(a) shows the 6T bit-cell with FBB applied on flip-well FDSOI NMOS

devices, during a write operation. FBB decreases the threshold voltage of the NMOS
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Figure 2-2: (a) 6T SRAM bit-cell with FBB applied during write operation (b) sim-
ulated write margin (c) 6T SRAM bit-cell with FBB applied during read operation
(d) variation analysis of bit-line read discharge time.

transistors. Hence, the NMOS access transistor (PG2) becomes stronger than the

PMOS pull-up transistor (PU2) and therefore, improves write-ability. Furthermore,

a stronger NMOS helps to improve the write-speed as well. Fig. 2-2(b) shows the

improvement in the write margin as a function of the supply voltage (Vdd), with

the body-bias voltage (VFBB) kept at a constant value of 1V . It can be seen from

the figure that, the µ/σ value of the write margin is consistently improved in the

entire Vdd range of 0.4V to 1V. The conventional 6T bit-cell works down to 600mV

with a µ/σ = 5.5 (SF corner, −40◦C), without any write assists. As seen from

the figure, a 1V forward body-biasing can reduce the Vdd,min for the write operation

to 400mV, while maintaining a µ/σ = 5.5. Fig. 2-2(c) shows the 6T bit-cell with

FBB applied during a read operation. FBB improves the read speed by reducing

the bit-line discharge time due to faster NMOS transistors (PG1 and PD1). As seen

from Fig.1(d), 43% improvement in the simulated local bit-line discharge time can be
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achieved by FBB (Vdd = 0.4V, VFBB = 0.4V ).

2.1.2 Energy-Efficient Array Layout for DFBB

2 Bit-Lines
per column

Column-wise shared n-well

6
T b

it-cells

M2 M3 Via (M2-M3)Via (M1-M2)

1 WL
per row

Figure 2-3: Conventional “thin-cell” array layout of 6T bit-cells, with column-wise
shared n-wells, shown for 3 rows and 2 columns (not to scale).

Since the leakage of the bit-cell increases when FBB is applied, a huge leakage

power penalty would be incurred if a DC FBB is applied to the whole array. This

motivates a dynamic implementation of the FBB technique (DFBB). However, DFBB

has its own share of power overhead due to n-well switching. For the conventional

“thin-cell” 6T layout [51], shown in Fig. 2-3, the n-wells are shared vertically with

other bit-cells in a column. Therefore, to apply body-biasing to a selected bit-cell,

the entire n-well of the corresponding column needs to be charged up [51]. This

translates into a significant capacitive-switching power overhead, since it scales with

both the number of rows and columns. This n-well switching power overhead can

limit the benefit of Vdd scaling, achieved using dynamic body-biasing. To address

this issue, an alternate layout technique is proposed in this work, which shares the

44



n-wells horizontally across all the bit-cells in a row. The benefit of this technique

stems from the fact that only one row in the memory array is accessed at a time.

Hence, body-biasing can be applied to only the two n-wells in a selected row. This

significantly reduces the amount of n-well capacitance switched per cycle, resulting

in a more energy-efficient implementation.

Shared BLs

WLA

Row-wise shared n-well

WLB

WLC

WLD

4 WLs
per row

H6T bit-cells

M3 M4 Via (M3-M4)Via (M2-M3)

Figure 2-4: Proposed layout of a single row, showing row-wise sharing of n-wells, BL
sharing between adjacent columns and multiple WLs per row (not to scale).

Fig. 2-4 shows the proposed layout technique, which shares the n-wells horizon-

tally across all the bit-cells in a row. This is done by rotating the 6T bit-cell by

90◦. The conventional “thin-cell” layout is used for the rotated 6T bit-cell (H6T), to

minimize the new bit-cell/layout design effort. Traditionally, the bit-line (BL) diffu-

sion contacts are shared with neighboring bit-cells in a column, reducing the effective

cell area. However, this is not possible in the present scenario, since the diffusion

regions run horizontally. Hence, the BL diffusion contacts are shared between bit-

cells in adjacent columns, so that the effective bit-cell area is not increased and the

lithography-friendly “thin-cell” layout structure is maintained. The “thin-cell” layout

typically has an aspect ratio of approximately 3:1. Since the BLs are now routed in

the longer dimension, the parasitic metal routing capacitance per BL is increased by

a factor of ∼ 3×, compared to the conventional case. With 2 adjacent columns now

45



sharing a BL, it is necessary to have at least 2 word-lines (WL) for each row. This

is to ensure that 2 adjacent bit-cells in a selected row, do not simultaneously drive a

single BL. In this implementation, 4 WLs are routed for each row, taking advantage

of the longer cell-height. The 4 WLs help in reducing unnecessary BL discharge in

half-selected columns, as shown in Fig. 2-5. Therefore, the effective number of BL

switching per cycle is reduced by a factor of 4. Due to these layout optimizations,

the BL switching power is actually reduced to ∼ 0.75× (= 3×
4

) i.e. 25% reduction as

compared to a conventional implementation, providing dynamic energy savings.
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Figure 2-5: Comparison of the conventional (1 WL/row) and proposed (4 WLs/row)
architectures for local BL discharge in unselected columns (shown for a group of 4
columns).

The proposed implementation (H6T ) incurs a 2.5% increase in the effective cell-

area, due to non-overlapping WL contacts between adjacent rows (Fig. 2-6). Normal

logic design rules are used for bit-cell layout. 4 metal layers are used for routing the

different signals. Metal-2 (M2) is used for the cell Vdd and GND, metal-3 (M3) is
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used for bit-lines and finally, WLs are routed in metal-4 (M4) (Fig. 2-4).

WL

WL

WL

Figure 2-6: Comparison of the WL contact placement in the poly-Si layer for the
conventional and proposed bit-cell/array layout.

2.1.3 DFBB circuit implementation
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Figure 2-7: Circuit implementation of the proposed row-wise dynamic forward body
biasing (DFBB) technique, and sample waveforms with FBB enabled during both
write and read modes.
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Fig. 2-7 shows the DFBB circuit and corresponding waveforms. Each n-well

(GNDS) is shared between two consecutive rows in a sub-array. Hence, it is charged

up when either of the rows (WLu/WLd) is accessed and FBB is enabled (FBB EN LS

= ‘1’). The VBB H node voltage is modulated to either VFBB or Vdd for write/read

respectively. A higher FBB voltage of VFBB(> Vdd) is used to improve the write

operation, which limits the Vdd,min of the array. A lower FBB voltage of Vdd is used

during a read operation to speed up the local bit-line discharge process. Using a lower

FBB voltage reduces the DFBB energy overhead for read operations. The high swing

signals (FBB EN LS and VBB H) are shared for all the 32 rows in a sub-array, to

amortize the area/power of the level-shifter circuits.

2.2 Overall Architecture
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Figure 2-8: Array architecture of the 28nm FDSOI 128Kb SRAM macro.

Fig. 2-8 shows the overall array architecture for the 128Kb SRAM macro, con-
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sisting of 16 local sub-arrays. The local sub-array consists of H6T bit-cells arranged

in 32 rows by 256 columns. A 4:1 column interleaving ratio is implemented to obtain

a 64-bit output data. For a group of 4 columns, there are 3 local BLs and 2 local

BLBs. This is because, in this implementation, the local bit-lines are shared be-

tween adjacent columns. Therefore, 2 address bits (A[1 : 0]) are required for column

multiplexing, to get a local BL pair (mLBL,mLBLB). The column-select signals,

Csel[2 : 0] and CselB[1 : 0] are generated as follows:

Csel[0] = A[0]A[1], Csel[1] = A[0]⊕ A[1], Csel[2] = A[0]A[1]

CselB[0] = A[1], CselB[1] = A[1]
(2.1)

As explained before, each row has 4 word-lines (WLA,WLB,WLC and WLD),

only one of which is asserted based on the row-decoder’s outputs and the column-

select bits (A[1 : 0]). For an area-efficient implementation of 4 WL drivers per SRAM

row, some of the common signals are shared by all the 32 rows in the local array, as

shown in Fig. 2-9. A 2:4 decoder, in the local timing circuitry of a 32 × 256 array,

produces the enable signals (ENBA, ENBB etc.) to choose one of A, B, C or D WLs.

In addition, the PMOS pull-up transistors for the WL drivers are shared by the 32

rows, using the common pull-up lines (V hA, V hB etc.). In this way, the 4 WL drivers

can be fit in 1 row pitch of the array layout, without incurring huge area penalty. It

should be noted that, sharing the V h signals increase their capacitances and hence,

the corresponding switching energy. However, only one of them is switched every

cycle for a 32× 256 local array. Hence, that energy overhead is not significant. The

selection of a 4:1 column interleaving ratio and the ability to route 4 WLs per row,

eliminates the half-select issue in this implementation. The DFBB circuit (explained

before in Fig. 2-7) implements the row-wise dynamic body-biasing. The n-wells are

shared horizontally, across all the 256 bit-cells in a row.

The local R/W circuitry per muxed-column, consist of inverter-based large-signal

sensing for read and the prediction logic (explained later). In addition, the local

write is implemented by the pull-down NMOS devices, controlled by data and dataB.

During a write operation (WR EN = “1”), data and dataB are locally generated
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Figure 2-9: Schematic of the area-efficient driver design for the 4 WLs per row in a
local array, using shared signals (V h’s and ENB’s).

from the global BLs (which are driven to the data being written by the global R/W

circuitry). During a read operation, the write path is turned off by driving data and

dataB to “0”. The pair of cross-coupled PMOS devices, connected to a local BL pair,

maintains a differential signal level on the local BLs, during a write operation. Fig.

2-10 shows typical waveforms for a read “0” and a write “1” operation for one column

in the local array. It should be noted that, the local R/W circuitry is shared between

two local sub-arrays, which reduces its area overhead to only 9.1% in comparison to

the bit-cell array.

All the global signals (including the global BLs and Pred, PredB lines) are driven

by the global R/W circuitry, which also incorporates small-signal sensing for the global

BLs, during a read operation.
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Figure 2-10: Typical operation waveforms for a read and a write cycle, showing the
critical signals in the local R/W block.

2.3 Data Prediction in 6T SRAM

Application specific features can provide interesting data properties, which can be

exploited to design a more tailored SRAM. [38] proposed a 10T SRAM bit-cell which

uses prediction of data to reduce bit-line switching power during a read operation. It

was targeted specifically towards motion-estimation in video processing applications.

In motion estimation, the pixels from a small block of a video frame (reference buffer)

is stored in the SRAM array and used in consecutive read cycles, before it is over-

written. The correlation of the pixel data, stored in the reference buffer, can be

exploited to predict the data during a read operation, using previously read values. If

the prediction matches the actual data, the bit-line (BL) pair is not discharged. Thus,

depending on the prediction accuracy, the BL switching power can be reduced. This

can provide significant energy savings, since BL switching constitutes a major portion

of the overall SRAM power consumption. [39] proposed another data-dependent 10T
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SRAM, in which the prediction logic is implemented at the periphery, rather than

the bit-cell itself. It uses the last data read as the prediction signal for the next data.

Therefore, if the last cycle’s prediction was correct, there is no need to pre-charge

the BLs for the next cycle, which reduces BL switching energy. If the next cycle

detects a wrong prediction, it updates the prediction value at the peripheral read

circuit and pre-charges the corresponding BL. Since both the BLs can potentially be

at 0V (due to wrong predictions), it can lead to unwanted write operations if regular

6T bit-cells, with common read and write BLs, are used. Hence, [39] uses a 10T

bit-cell to prevent write disturb. One drawback of the prior prediction-based SRAM

architectures is the need for 10T bit-cells, which consumes > 1.5× higher area than

a 6T bit-cell. In many applications where SRAM area is of critical importance (e.g.

GPU’s), use of 10T bit-cells would not be feasible. To address this, we propose a

prediction architecture which can use a 6T bit-cell. This is achieved by incorporating

data prediction at the local array level, instead of embedding it in the 10T bit-cell

as done in [38]. Thus, we get the area advantage of using smaller 6T bit-cells as

compared to 10T designs [38, 39], while still saving BL switching power.

Fig. 2-11 shows the architecture implementing the prediction scheme for a 6T

SRAM array. Two extra transistors (Np1, Np2) are added at the local sub-array level,

which are controlled by the prediction signals: Pred and PredB (generated locally

from Pred). Np1 and Np2 in turn, control the signal development at the ‘int1’ and

‘int2’ nodes, which drive the local sensing inverters. These inverters control the

discharge of the global bit-lines using NMOS pull-down transistors, during a read

operation (GWL is on). All the internal nodes are pre-charged to Vdd at the end

of a clock cyle (using PMOS transistors, not shown in the figure). The operation

waveforms of critical signals are shown in Fig. 2-12, for both correct and incorrect

prediction cases. Let us assume the data to be read is “0”. Hence, the LBL discharges

to ground, during a read operation, while LBLB stays at Vdd. If the prediction is

correct, i.e. Pred = “0” and PredB = “1”, Np1 is turned-off and the discharge of the

LBL is not transferred to the ‘int1’ node. Thus, both ‘int1’ and ‘int2’ nodes stay

at the pre-charged level of Vdd. Hence, neither of the global bit-lines (GBL,GBLB)

52



+   -

1     0

Np1 Np2

out

out

Figure 2-11: Proposed hierarchical data prediction architecture with 6T bit-cell array,
to reduce read energy consumption. PMOS pre-charge transistors at every internal
node are not shown.

are discharged from the pre-charged value of Vdd. The global sense-amplifier (SA)

outputs a “1” and the correct prediction value, Pred = “0”, is chosen as the read

output data. On the other hand, if the prediction is incorrect, i.e. Pred = “1” and

PredB = “0”, Np1 is turned-on and the discharge of the LBL is transferred to the

‘int1’ node. Hence, GBL starts discharging and the global SA senses this, to output a

“0”. Therefore, PredB (= “0”) is chosen as the read output (since the prediction was

incorrect). Thus, in either case, the correct value of the data (= “0” in this example)

is obtained at the output. However, if the prediction was correct, the discharge of

the global bit-line was avoided, which manifests into dynamic energy savings.

53



Vdd 

0
WL/GWL

Vdd 

0

LBL
LBLB

Vdd 

0
int1
int2

Incorrect Prediction
Pred = ‘1’, PredB = ‘0’ 

=> GBL Discharge

Data = “0”

Vdd 

0

GBL
GBLB

SA_En

SAout

Vdd 

0

Vdd 

0

Correct Prediction
Pred = ‘0’, PredB = ‘1’ 
=> No GBL Discharge

Vref

Dout
Vdd 

0

Figure 2-12: Typical operation waveforms during a read operation with the prediction
architecture, shown for both correct and incorrect predictions (data stored: “0”).

Therefore, in summary, without the data prediction technique, the BL switching

energy per output data-bit for a hierarchical SRAM architecture, with single-sided

read, is given by:

EBL(w/o pred) = ELBL + EGBL

= N × CLBL × V 2
dd + p1 × CGBL × Vdd ×∆VRD,SA

(2.2)

where, CLBL and CGBL are the capacitances for 1 LBL and 1 GBL, respectively.

N is the column-mux ratio, i.e. for every N local columns there is one global column.

p1 is the probability that the data read is a “1”, assuming it is the polarity for which

there is GBL switching with a single-sided read architecture. ∆VRD,SA is the average

GBL swing for the SA to detect the data correctly.
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On the other hand, with the proposed data-prediction technique, the BL switching

energy per output data-bit is given by:

EBL(w/pred) = ELBL + EGBL

= N × CLBL × V 2
dd + (1− pcorrect)× CGBL × Vdd ×∆VRD,SA

(2.3)

where, pcorrect is the probability of correct data prediction on the average, for a

given application and a prediction scheme.

Although the local BL switching is not affected in this technique, the dominant

component of the switching energy, which is due to the global BLs, can be reduced

by using data prediction. Furthermore, the local BL switching energy is reduced due

to the use of multiple word-lines in the proposed implementation, which eliminates

BL switching energy for un-selected columns in a local sub-array.

2.4 Using the Prediction Architecture for

In-memory XOR/XNOR Computations

The SRAM read scheme with the prediction architecture presented in the last section,

can be also interpreted as an XNOR computation between the data stored (D) in the

memory bit-cell (which is to be read) and the Pred signal. This can be understood

by observing the global SA output signal, SAout (Fig. 2-11). For the case shown

on the left in Fig. 2-12, SAout = “0” after the SA evaluation, which is the same as

D ⊕ Pred = 0⊕ 1 = “0”. Similarly, for the case shown on the right, SAout = “1”

after the SA evaluation, which is again the same as D ⊕ Pred = 0⊕ 0 = “1”. There

are many applications in which, there is a need to perform bit-wise XOR/XNOR

operations on wide bit-width words. For example, in crytographic algorithms such

as AES [46, 52], during the “AddRoundKey” step, the state bits (derived from the

plain-text bits) are XOR-ed with the secret key bits to generate the encrypted message

bits. [43] implements an in-memory XOR computation architecture for accelerating

cryptographic alogrihtms. However, it needs 10T SRAM bit-cells, which results in
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3× larger memory area vs. compiled 6T SRAMs. On the other hand, our architec-

ture still uses 6T bit-cells, which would lead to a very area-efficient implementation.

Next, in machine learning applications e.g. binary neural-networks [47, 48], there is

a need to perform bit-wise XNOR operation between the external input data (X: 1-b

dot-product inputs) and the stored memory word (W: 1-b dot-product weights), to

compute the output: Y =
∑

iXi ⊕Wi.

For all these applications, mentioned above, our SRAM architecture would be

very beneficial to improve the speed of the overall operation. This is because both the

memory read and the X(N)OR computation operations can happen in the same clock-

cycle, compared to 2 cycles to do a regular memory read followed by the X(N)OR

computation outside the memory array. In addition, the results of the X(N)OR

computations can be written back to the same memory, without the need for data

transfer between the memory and the processing engine (which would be needed in the

conventional design). Thus, there can be potential energy savings due to reduction

in the data movement.

2.5 Measurement Results
Table 3.1: Summary

Technology 28nm FDSOI

Macro Size 128Kb (6T)

Macro Area 0.046mm2

Macro Organization
(36×256)×16

sub-arrays

# output bits 64

Operating voltage 0.34V - 1.0V

Assist techniques
Dynamic FBB:
upto 1V (Wr),
upto Vdd (Rd)

Min. Energy/access
3.4pJ @ 0.45V,

40 MHz

(Eread,dyn) can be achieved with a 100% correct data prediction. Table 4.4 compares

this work with state-of-the-art low voltage and low energy SRAM designs. As seen

from the table, this work achieves the lowest energy/bit-access while still maintaining

a low SRAM area by efficiently utilizing the 6T bit-cell.
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Figure 3-13: Shmoo plot of the 128Kb SRAM macro (25◦C).

3.6 Conclusion

In this work we presented an energy-efficient, low-voltage 128Kb 6T SRAM macro.

Forward body-biasing (FBB) is used dynamically to improve the write margin. Lay-

out modifications are proposed for the array to reduce the energy overhead of dynamic
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Figure 2-13: Die photo and summary of the 128Kb 6T SRAM test chip fabricated in
28nm FDSOI technology.

Fig. 2-13 shows the die photo and test chip summary of the 128Kb 6T SRAM.
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12 different macros from 3 different chips were tested. All of them work without

any bit-error down to 360mV, (Fig. 2-14) without any assists. As seen from Fig.

2-14, FBB reduces the Vdd,min by 20mV; beyond 340mV read-disturb errors start to

occur. The improvement in Vdd,min is not as expected from simulations. We suspect

this is because, the fabricated chips that we received are in the typical (TT) process

corner, whereas the write-margin simulations were done for the worst case corner

(SF). Hence, the TT SRAMs already work down to low Vdd’s without any write-

assists. Nevertheless, in cases where write operation limits the SRAM functionality,

FBB would be helpful. The measured energy overhead due to DFBB in the proposed

implementation is 4.5× lower compared to the conventional approach (column-wise

n-wells). This demonstrates the benefit of the proposed layout with row-wise shared

n-wells.
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Figure 2-14: Shmoo plot of the 128Kb SRAM macro (25◦C).

Fig. 2-15 shows the measured average energy per word access (64-bit) of the 128Kb

6T SRAM macro, along with the maximum operating frequency for correct memory

functionality, at different Vdd’s. The macro achieves a minimum energy consumption

of 3.36pJ/word-access i.e. 52.5fJ/bit-access, at 0.45V, 40 MHz. Compared to 0.7V,

a 2× energy reduction is achieved at 0.45V, whereas, the SRAM can run at 3×
higher frequency at 0.7V. On the other hand, at the minimum operating voltage of

0.36V (w/o FBB), the 128Kb macro still achieves a low energy of 4.6pJ/word-access

i.e. 71.9fJ/bit-access, operating correctly up to 9.1MHz. This would be useful in

IoT devices, with very limited energy budget and which can only run from very low
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Vdd(V) tclk_min(ns)Max. Freq (MHz) tclk @ I meas Ileak_256Kb (mA)Iwrite_256Kb(mA)Ireadav_256Kb(mA)

0.7 8 125.00 9 0.5165 1.469 1.311

0.65 9 111.11 10 0.432 1.3137 1.166

0.6 14 71.43 17 0.363 0.79325 0.7251

0.55 17 58.82 17 0.3025 0.6965 0.633

0.5 20 50.00 20 0.2553 0.5574 0.5093

0.45 24 41.67 24 0.2162 0.4404 0.3975

0.4 54 18.52 56 0.1857 0.27195 0.25595

0.36 110 9.09 110 0.1622 0.2011 0.1936

0.35 160 6.25 160 0.15663 0.1825 0.1785
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Figure 2-15: Average energy/word-access and maximum operating frequency vs.
SRAM Vdd.

supply voltages (limited by the energy-harvesting capability of the device).

Data prediction is used during a read operation, to reduce the global BL switching.

With a single-ended read architecture, the baseline approach (without prediction)

would not consume any global BL switching energy for one polarity of the data (say

‘1’). Hence, in order to have a fair comparison, the SRAM array was configured with

50% 1’s and 50% 0’s . Fig. 2-16 shows the normalized dynamic read energy (Eread,dyn)

at a Vdd of 400mV, as a function of the percentage of correct data prediction. Since,

the conventional approach would only consume power for 50% of the data (equal

% of 0’s and 1’s in the memory), the benefit of the prediction technique is only

apparent for > 50% correct prediction. With a 100% correct data prediction, a 36%

reduction in Eread,dyn is achieved. It may be noted that the 36% reduction is for

the present array architecture with 32 rows per local bit-line, achieving only 9.1%

area overhead. Increased benefits can be achieved if the local BL energy is further

reduced. One simple way is to have fewer bit-cells per local BL. However, this comes

with a decreased area-efficiency of the array, due to the need of more local read/write

circuits.

58



0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

no pred. 50 62.5 75 87.5 100 

N
o

rm
al

iz
ed

 D
yn

am
ic

 R
e

ad
 E

n
er

gy
 

% of correct data prediction 

- 36% 

Figure 2-16: Improvement in dynamic read energy using data prediction.

Table 2.1 compares this work with state-of-the-art low voltage and low energy

SRAM designs, in similar process technologies. As seen from the table, this work

achieves the lowest energy/bit-access while still maintaining a low SRAM area by

efficiently utilizing the 6T bit-cell. Compared to an implementation [53] (which uses

larger 9T bit-cells) in the same 28nm FDSOI technology, our work performs better in

terms of both area and energy consumption of the memory, while working at similar

clock frequencies.

Table 2.2 compares the energy savings of our prediction-based hierarchical read

approach with other works on data-dependent SRAMs. [38, 39] use 10T bit-cells and

[37] uses 8T bit-cells, which have higher area overhead (33% - 67%) compared to our

implementation (9.1%). However, [38, 39] provide more energy savings, because for

correct predictions they can fully suppress BL switching. Whereas in our approach,

even with 100% correct predictions, there is local BL switching due to the use of 6T

bit-cells with 2-sided read ports. Compared to [37] our approach performs better,

because [37] needs extra energy to selectively invert (to data ‘1’) and store majority

data-bits in the 8T bit-cells, which are hard-wired to not switch BLs for data ‘1’.
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Table 2.1: Comparison with state-of-the-art low-Vdd SRAMs

Design
This

work [54]
[53]

ASSCC’17
[49]

ISSCC’11
[55]

VLSIC’13
[56]

JSSC’13

Technology
28nm

FDSOI
28nm

FDSOI
28nm Bulk 20nm Bulk

65nm LP
Bulk

Bitcell
structure

6T 9T 6T 6T 6T

Bitcell
area (um2)

0.2321 N/A 0.12 N/A 1.0921

Memory Size 128Kb 16Kb 128Kb 128Kb 128Kb

Organization:
rows × col.s
× macros

512× 256
×1

256× 64
×1

128× 256
×4

512× 64
×4

64× 512
×4

Col. mux ratio 4 1 4 2 16

I/O Width 64-b 64-b 64-b 32-b 32-b

Vdd,min(V) 0.36 0.47 0.6 0.6 0.4

Freq. (MHz)
@ Vdd,min

9 6.7 20 N/A 11.1

Emin/bit (fJ)
52.5 @
0.45V

105 @
0.5V

2187.5 @
0.6V

67.2 @
0.6V

103.13 @
0.4V

1 Logic design rules

Table 2.2: Comparison with data-dependent SRAMs

Design This work [54]
[38]

JSSC’14
[39]

JSSC’17
[37]

TVLSI’08

Bitcell
structure

6T 10T 10T 8T

Area overhead1 9.1% 66.7%2 66.7%2 33.3%2

Memory Size 128Kb 32Kb 16Kb 68Kb

Test case 50% 0’s, 50% 1’s
50% 0’s,
50% 1’s

Video
Frames

Video Frames

Energy savings
up to 36%3 vs.
6T with fixed

prediction

up to 43%
vs. 8T

up to 67%
vs. 8T

28% vs. 8T
with no

majority logic
1 vs. regular 6T with no prediction, no hierarchical structure in the macro.
2 Estimated using number of transistors in the bit-cell.
3 Dynamic energy only.
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2.6 Conclusion

In this work we presented an energy-efficient, low-voltage 128Kb 6T SRAM macro.

Forward body-biasing (FBB) is used dynamically to improve the write margin. Lay-

out modifications are proposed for the array to reduce the energy overhead of dynamic

FBB and to reduce unselected local bit-line switching by ∼25%. This work achieves

a minimum energy/bit-access of 52.5fJ at 0.45V and zero-error rate at the minimum

Vdd of 0.36V, while still having the area-advantage by using 6T bit-cells. Hence, this

SRAM would be very useful in IoT applications, where limited energy budget ne-

cessitates low voltage and low power operations. Our work would be also useful in

applications (e.g. GPUs) where SRAM density is of key concern and using 8T/10T

bit-cells might not be preferred. We also implemented area-efficient logic which uti-

lizes data prediction in the 6T read path to reduce bit-line switching energy. Upto

36% reduction in dynamic read energy is obtained with 100% correct data prediction.

More power reduction can be obtained by using smaller local arrays, at the cost of

decreased area-efficiency of the SRAM. The prediction-based read technique can also

be utilized for in-memory bit-wise XOR/XNOR computations, useful in security (e.g.

AES) and machine learning applications (e.g. binary neural-networks).

61



62



Chapter 3

In-Memory Computation for

Neural-Network based Low-Power

Machine Learning Applications

Artificial intelligence (AI) and machine learning (ML) are changing the way we in-

teract with the world around us. Speech recognition [4] allows us to interact with

“smart” devices using our voices. Facial recognition [2] enables using our faces to

get access to devices in a more intuitive manner, instead of traditional passcodes. As

we think about extending machine intelligence to more and more devices around us,

in the “Internet-of-Things” (IoT), “edge-computing” i.e. computing on these edge

devices vs. the “cloud” becomes increasingly important. There are a multitude of

reasons for this. Firstly, “edge-computing” enables the devices to make fast decisions

locally, without having to wait for the “cloud”. Secondly, it can significantly reduce

the communication traffic to the “cloud”, by only sending the critical/relevant infor-

mation and filtering out the rest of the massive amount of data the edge-devices may

collect. Furthermore, “edge-computing” helps in improving the security of the data

by keeping it local (within the devices), rather than having to send sensitive infor-

mation to the “cloud”. While “edge-computing” promises significant benefits for IoT

devices, it also has certain requirements. The circuits to run the compute algorithms

must be very energy-efficient, to extend the battery-life of these IoT devices, most
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of which have a very limited energy budget. Additionally, in many applications, the

local decision-making has to be done in real-time (e.g. self-driving cars), to make

them practical.

Convolutional neural networks (CNN) provide state-of-the-art results in a wide

variety of AI/ ML applications, ranging from image classification [3] to speech recog-

nition [4]. However, they are highly computation-intensive and require huge amounts

of storage. Hence, they consume a lot of energy when implemented in hardware and

are not suitable for energy-constrained applications e.g. “edge-computing”.
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Figure 3-1: Basics of a typical convolutional neural network (CNN) for a classification
problem, showing the structure for the CONV and FC layers [15].

CNNs typically consist of a cascade of convolutional (CONV) and fully-connected

(FC) layers (Fig. 3-1), with some non-linear layers in between (not shown in the

figure). The CONV layers extract different features of the input and the FC layers

combine these features to finally assign the input to one of the many pre-determined

output classes. For each of the CONV/FC layers, there is a set of 3-D filters (Wk),

which are applied on the 3-D input feature-map (IFMP) to that layer and generate its

3-D output feature-map (OFMP). Each 3D filter/input consist of mutliple 2D arrays,

each of which corresponds to a different “channel” (1 to C). When a 3-D filter (Wk)

is applied to the input (X), an element-wise multiplication is performed, followed by

addition of the partial products to compute the convolution output (Yk). For CONV
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layers the 3-D filter is applied on the shifted input to compute the next element in

the 2-D OFMP. Each individual filter corresponds to a different channel in the 3-D

OFMP. Therefore, the fundamental operation for both the CONV and FC layers can

be simplified to a dot-product or a multiply-and-accumulate (MAC) operation, as

shown in equation (3.1).

Yx,y,k =
C∑
c=1

R∑
j=1

R∑
i=1

Wi,j,c,k ×Xx+i,y+j,c

1 ≤ (x+ i), (y + j) ≤ H,

1 ≤ x, y ≤ H −R + 1(= E),

1 ≤ k ≤M

(3.1)

where, H is the width/height of the IFMP (with padding), E is the OFMP

width/height, R is the filter width/height, C is the number of IFMP/filter channels

and M is the number of filters/OFMP channels for a given CONV/FC layer. The

width and height of the feature-maps/filters are assumed to be same for simplicity

and also because it is very common in most of the popular CNNs.

In general, CNNs use real-valued inputs and weights. However, in order to their

reduce storage and compute complexity recent work have strived towards using small

bit-widths to represent the input/filter-weight values. [47] proposed a binary-weight-

network (BWN), where the filter weights (wi’s) can be trained to be +1/-1 (with

a common scaling factor per filter: α). This leads to a significant reduction in the

amount of storage required for the wi’s, making it possible to store them entirely on-

chip. BWN’s also simplify the MAC operation to an add/subtract operation, since α

is common for a given 3D filter and it can be incorporated after finishing the entire

convolution computation for that filter. As shown in [47], this algorithm does not

compromise much on the original classification accuracy of the CNN, obtained using

full precision weights. BWN performs better than binary-connect [57], which does

not incorporate the scaling factor of α per filter, and also binarized-neural-networks

[48], where both weights and activations are constrained to ±1.

In the conventional all-digital implementation of CNNs [58, 59], with the mem-
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Figure 3-2: Comparison of conventional approach vs. proposed approach of memory-
embedded convolution computation, for processing of CNNs.

ory and the processing elements being physically separate, reading the wi’s and the

partial sums from the on-chip SRAMs lead to a lot of data movement per computa-

tion [15] and hence, make them energy-intensive. This is because in modern CMOS

processes, the energy required to access data from memory can be much higher than

the energy needed for a compute operation with that data [13]. To address this

problem, we present an SRAM-embedded convolution computation architecture [60],

conceptually shown in Fig. 3-2. Embedding computation inside memory has two

significant benefits. Firstly, data transfer to/from the memory is greatly reduced,

since the filter-weights are not explicitly read and only the computed output is sent

outside the memory. Secondly, we can take advantage of the massively parallel na-

ture of CNNs to access multiple memory addresses simultaneously. This is because

we are only interested in the result of the computation using the memory data and

not the individual stored bits. Therefore, a much higher memory bandwidth can be

achieved with this approach, overcoming some of the major limitations posed by the

conventional “von-Neumann bottleneck”.
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3.1 Concept of SRAM-Embedded Compute

The basic operation involved in evaluating convolutions (Y ) for CNNs is the dot-

product of the 3-D IFMP (X) and the filter-weights (W ), as shown in equation (3.1).

It can be re-written by flattening the 3-D tensor into a 1-D vector to obtain equation

(3.2), where the 2-D subscripts (x, y) have been omitted for simplicity.

Yk =
R×R×C∑

i=1

Wk,i ×Xi (3.2)

Equation (3.2) can be further simplified for the case of binary filter-weights (wi’s)

to get equation (3.3a), where αk is the common coefficient for the kth filter. If αk is

expressed as a ratio of two integers (Mk, N) then we get equation (3.3b).

Yk = αk

R×R×C∑
i=1

wk,i ×Xi, wi ∈ (+1,−1) (3.3a)

=
Mk

N

R×R×C∑
i=1

wk,i ×Xi, Mk, N ∈ I+ (3.3b)

Now, if we separate out the scaling factor of Mk (which can be incorporated after

computing the entire dot-product), we get the expression for the effective convolution

output (YOUT ) as:

YOUT,k =
1

N

R×R×C∑
i=1

wk,i ×XIN,i (3.4)

where XIN is the effective convolution input, i.e. scaled version of the original

input X, limited to 7-b (includes 1-b sign). For energy-efficient computation with

multi-bit values inside the memory, equation (3.4) has to be implemented in the

analog domain, as shown in equation (3.5).

VY AV G,k =
1

N

R×R×C∑
i=1

wk,i × Va,i (3.5)

The equivalence of equations (3.4) and (3.5), conceptually shown in Fig. 3-3,

becomes apparent in 3 key steps. First, the digital inputs (XIN ’s) are converted into
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Binary-Weight CONV as Averaging in SRAMs

𝑌𝑂𝑈𝑇,𝑘 =
1

𝑁
 

𝑖

𝑤𝑘,𝑖 × 𝑋𝐼𝑁,𝑖

𝑉𝑌_𝐴𝑉𝐺,𝑘 =
1

𝑁
 

𝑖

𝑤𝑘,𝑖 × 𝑉𝑎,𝑖

DACADC 1

MAV2

3

MAV: Multiply-and-Average

YOUT: Convolution Output || w: Binary Filter Weight || XIN: Convolution Input

Digital Domain

Analog Domain

Figure 3-3: Concept of embedded convolution computation as averaging in SRAMs
for binary-weight convolutional neural networks.

analog voltages (Va’s) using digital-to-analog converters (DAC). Then, the analog

voltages are multiplied by the corresponding 1-bit filter-weights (wi’s), which are

stored in a memory array. This is followed by averaging over N terms to get the

analog-averaged convolution output voltage (VY AV G). These constitute the second

step: multiply-and-average (MAV). Finally, in the last step, the analog-averaged

voltage is converted back into the digital domain (YOUT ) using an analog-to-digital

converter (ADC), for further processing. It may be noted that if the 3-D filter size

(R×R×C) is greater than N, the above-mentioned 3-step process is repeated multiple

(Nr) times using R × R × C ′ (≤ N) elements in each cycle, where Nr = C/C ′. The

partial outputs (from the ADC) can then be further added digitally (outside the

memory) to get the final convolution output.

3.2 Overall Architecture

Fig. 3-4 shows the overall architecture of the 16Kb conv-SRAM (CSRAM) array,

consisting of 256 rows by 64 columns of SRAM bit-cells. It is divided into 16 local

arrays, each with 16 rows. Each local array is meant to store the binary filter-weights

(wi’s) for a different 3-D filter in a CONV/FC layer. wi is stored in a 10T SRAM

bit-cell as either a digital ‘0’ or a digital ‘1’, depending on whether its value is +1 or

−1 respectively. Each local array has its analog averaging circuits (MAVa’s) and a
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dedicated ADC to compute the partial convolution outputs (YOUT ’s). Sharing these

circuits for 16 rows in a local array reduces the area overhead. The IFMP values

(XIN ’s) are fed into column-wise DACs, which convert the digital XIN codes to analog

input voltages on the global bit-lines (GRBL’s). The GRBL’s are shared by all the

local arrays, implementing the fact that in CNNs each input is shared/processed

in parallel by multiple filters. With this architecture, the 16Kb CSRAM array can

process a maximum of 64 convolution inputs and compute 16 convolution outputs in

parallel.

Local SRAM Array #0

1-bit filter weights

Local Analog Averaging
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Figure 3-4: Overall architecture of the Conv-SRAM (CSRAM) showing local arrays,
column-wise DACs and row-wise ADCs to implement convolution as weighted aver-
aging.

Fig. 3-5(a) shows the simulated test error-rates for the MNIST dataset with the

LeNet-5 CNN, consisting of 2 CONV layers (C1, C3) and 2 FC layers (F5, F6) 1. The

number of bits to represent the IFMP/OFMP values are varied from 8 to 4. Lower bit-

width helps in reducing the area/power costs of the DAC and ADC circuits involved

for the convolution computations. However, as seen from Fig. 3-5(a) the error rate

starts to increase steeply for <7-b. Similar results (Fig. 3-6(a)) are observed for the

1Filter sizes: (C1) 5× 5× 1× 6 (C3) 5× 5× 6× 16 (F5) 5× 5× 16× 120 (F6) 1× 1× 120× 10
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CIFAR dataset [61] (for small image classification) with a 5-layer CNN, consisting of

3 CONV layers (C1, C2, C3) and 2 FC layers (F4, F5) 2. Hence, 7-b is chosen as the

target bit-width for the DAC/ADC circuits. With 7-b (including the sign bit) the

voltage resolution needed on a 1V scale is 1LSB = 1/26 ≈ 15.6 mV. Next, the effect

of the averaging factor (‘N ’) on the test error-rate is observed. A high value of ‘N ’

would decrease the area/power overhead of the ADC by amortizing it over more MAV

operations per clock-cycle. However, higher ‘N ’ can also degrade the computation

accuracy due to increased quantization by averaging. This is more crticial for CNN

layers with smaller filter sizes. As shown in Fig. 3-5(b), for layer F6 of the LeNet-5

CNN, with a 3-D filter size of 120, the error-rate steeply increases as ‘N ’ is varied

from 15 to 120. Similarly for the CIFAR dataset, N>50 has a strong negative impact

on the error rate of layer C2 (Fig. 3-6(b)). With a 2-D filter size of 5× 5 for a given

CNN layer, a minimum N = 25 is required to fit at-least 1 full filter channel per

CSRAM row. We chose N = 64 to fit 2 channels for 5× 5 filters, 4 channels for 4× 4

filters and 64 channels for 1× 1 filters, without sacrificing much on the error rate.
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Figure 3-5: Simulated results for the MNIST dataset with the LeNet-5 CNN by
varying: (a) bit-width to represent IFMP/OFMP values, (b) averaging factor (N).

2Filter sizes: (C1) 5× 5× 3× 32 (C2) 5× 5× 32× 64 (C3) 5× 5× 64× 64 (F4) 4× 4× 64× 128
(F5) 1× 1× 128× 10
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Figure 3-6: Simulated results for the CIFAR dataset with a 5-layer CNN by varying:
(a) bit-width to represent IFMP/OFMP values, (b) averaging factor (N).
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Figure 3-7: Effect of the number of rows in a local CSRAM array.

The number of rows (Nrows) per local array in the CSRAM determines the unit

capacitance (CLBL), which is used for all the analog operations required for the in-

memory convolution computation. For every column in a local array, there is a

corresponding MAVa circuit. Hence, a higher value of Nrows would decrease the area-
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overhead of MAVa, by amortizing it over multiple rows. It also reduces variation of

the CLBL value (Fig. 3-7), which helps in improving accuracy of the computations.

However, a high value of Nrows also means a high unit capacitance, which translates

to increased energy costs. Therefore, Nrows = 16 is chosen as a trade-off. It may be

noted that with Nrows = 16, the thermal noise (kT
C

) is < 1mV , which is well below

1LSB = 15.6mV. Hence, the analog computations are not affected by thermal noise.

3.3 Key contributions of this work
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Figure 3-8: Comparison of the conventional and proposed approaches of using SRAM
bit-cells for embedded analog computations.

While there are a few different approaches [41, 42, 62, 63] for in/near-memory

computing, the proposed architecture has some key contributions, which provide sig-

nificant benefits over prior work. The first key feature of our approach is the robust-

ness to SRAM bit-cell Vt variations. SRAM bit-cells use near-minimum transistor

sizes available in a given CMOS process and hence, suffer from transistor mismatch

and variation. For example, if we consider the discharge current (Idis) through an

SRAM bit-cell (shown in Fig. 3-8) we can observe that it has a significant spread

from its mean value (σ ≈ 30%µ). Now, when Idis is used to modulate the analog
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voltage (Va) on the bit-line [41, 42], there is a wide variation in the Va value and

it cannot be controlled very well. This compromises the computation accuracy and

extra algorithmic techniques might be required to compensate for that. [41] uses the

‘AdaBoost’ technique, in which the results of many weak classifiers are combined to

get a more accurate final result. However, this is not ideal for neural networks, since

the number of computations is already very large and having multiple of them would

only increase costs. [63] proposed an on-chip training to compensate for chip-to-chip

variations. However, this is also not very feasible owing to the energy and timing

penalty required to re-train the network corresponding to every single chip. In our

approach (Fig. 3-8), the analog voltage (Va) is directly sent to the bit-lines using

global DACs at the periphery. Since the global DACs can be upsized, with their

area being amortized over mutliple rows (256 in this case), the variation due to it is

significantly less compared to that of the bit-cell. Furthermore, the SRAM bit-cell is

only used to multiply Va by the 1-bit filter weight (wi) stored in it, using full signal

swing locally. That means, the purpose of the SRAM bit-cell is to discharge one of

its local bit-lines to 0, it is not used to control Va. Hence, given enough time for

the worst-case bit-cell discharge, the computation accuracy does not suffer from local

bit-cell Vt variations.

The second key feature of our approach is the improvement of the dynamic voltage

range for the analog computations without disturbing any bit-cell. In the conventional

approach (with 6T SRAM bit-cells) [41, 42], where multiple word-lines (WL) are

activated for the same bit-line, there might be a situation where one of the accessed

bit-cells in that column is in pseudo-write mode (Fig. 3-9). This is because multiple

activated bit-cells in that column can discharge a bit-line to a very low voltage, which

could overwrite the data stored (Qk = ‘1’) in the disturbed bit-cell. Hence, the bit-

line voltage range has to be limited to prevent any write-disturb. In our approach,

10T bitcells are used which de-couple the read and the write ports, to prevent any

write-disturb. Furthermore, each bit-cell is read independently in parallel without

sharing any bit-lines. And hence, the discharge on one bit-line cannot affect another

accessed bit-cell. Thus, we can utilize a wide voltage range (close to full-rail) for the
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Figure 3-9: Comparison of the conventional and proposed approaches on write-disturb
issue of SRAM bit-cells during compute mode.

analog computations, without disturbing any bit-cell. It may be noted that, with our

architecture a 6T bit-cell can also be potentially used instead of a 10T. However, the

word-line voltage (VWL) should be kept low enough to not disturb the bit-cell when a

low pre-charge voltage (Va) is used during the compute mode. The disadvantage with

a low VWL is the increase in the bit-line discharge time. Therefore, a choice can be

made between 6T/10T bit-cell designs, based on the area and timing requirements,

without compromising on the computation accuracy. On the other hand, in the

conventional approach a low VWL decreases the overdrive voltage, leading to more

variation in Icell and Va, as explained before.

The third key feature of our work, which distinguishes it from “near-memory”

computing approaches [42, 62], is the use of the inherent bit-line capacitances in

the SRAM array to implement the computations. This precludes the need for extra

area-intensive capacitors, which would be otherwise required at the SRAM periphery

[42] to implement some of the analog computations. Hence, it is an “in-memory”
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computing architecture.

Finally, this work supports multi-bit resolution for the inputs and outputs of the

dot-products, compared to [41] (output: 1-b) and [62] (both input/output: 1-b). This

helps in achieving higher classification accuracy for a neural-network of a given size,

as compared to [62] which needs a much larger network to compensate for the 1-b

input/output quantization.

All the key features, described above, make our proposed architecture scalable,

i.e. muliplte CSRAM arrays can operate in parallel to run larger neural networks.

3.4 Circuits for the 3-Phase Conv-SRAM Opera-

tion

3.4.1 Phase-1: DAC

During the first phase of the Conv-SRAM (CSRAM) operation the digital convolution

input (XIN) is converted into an analog voltage (Va) using a column-wise digital-to-

analog converter (GBL DAC). The analog voltage is used to pre-charge the global

read bit-line (GRBL) and the local bit-lines (not shown in Fig. 3-4) in the SRAM

array. Each GRBL is shared by all 16 local arrays and hence, they get the same value

of the analog pre-charge voltage. This implements the fact that in a given CNN layer

(CONV/FC) each input is processed simultaneously by multiple filters. Furthermore,

all the 64 column-wise GBL DACs operate in parallel and can send a maximum of

64 analog inputs to the CSRAM array in one clock cycle.

Fig. 3-10 shows the schematic of the proposed GBL DAC circuit. It consists of

a cascode PMOS stack biased in the saturation region to act as a constant current

source. The GRBL is charged with this fixed current for a time tON , which is de-

termined by the ON pulse-width. tON is modulated based on the digital input code

(XIN [5 : 0]), using a digital-to-time converter. To achieve a very good linearity of

Va vs XIN or tON vs XIN , there should be a single continuous ON pulse for every

input code, to avoid non-linearities due to multiple charging phases. This is not pos-
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the timing signals and operation waveforms for 2 input codes (right).

sible to generate by simply using 6 timing signals with binary-weighted pulse-widths.

However, it may be generated using 26 or 64 timing signals and a 64:1 mux. But

that would consume a lot of area, which is not ideal for a circuit that needs to be

replicated for each column of the SRAM array. To address this issue, we present a

2-phase architecture in which the 3 MSBs of XIN are used to select the ON pulse-

width for the first half of charging and the 3 LSBs for the second half. A control

signal (TD56) is used to choose between the 2 phases. In this way, an 8-to-1 mux,

with 8 timing signals, can be shared during both phases, to reduce the area overhead

and the number of timing signals to route. A tree-based architecture, using 2:1 unit
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mux’s, is used for the 8:1 mux to equalize the mux-delay for different control bits.

To design the pulse-widths of the 8 timing signals, we need to express XIN in

terms of its 2 components:

XIN,dec = 8× kA + kB,

kA = Decimal(XIN [5 : 3]),

kB = Decimal(XIN [2 : 0])

(3.6)

where, kA and kB are the decimal values for the 3 MSBs and the 3 LSBs of XIN

respectively. Since kA and kB can have any integer values from 0 to 7, the pulse-widths

of the timing signals (TD’s) are chosen as:

tTD9k
= 8× kt0 + kt0 = 9× kt0

k ∈ (0, 1, .., 7)
(3.7)

where, t0 is the minimum time resolution. A delay-line architecture, with a con-

trollable unit delay of t0, is used to generate 64 time-delayed signals from the input

clock. Then the appropriate signals are combined using NOR gates to generate the

TD’s. This is done at the global level and the generated TD’s are buffered and routed

to all the GBL DACs.

To understand how the 2-phase charging technique works, let us consider two XIN

values of 24 and 63, as shown in Fig. 3-10. For XIN = 24 = 8× 3 + 0, kA is 3 and kB

is 0. Hence, TD9×3 or TD27 is used in phase A and TD0 is used in phase B, to select

the pulse-width of the ON timing signal. Similarly, for the code XIN = 63 = 8×7+7,

both kA and kB are 7 and hence, TD63 is used in both the charging phases.

In addition to the linearity aspect of the DAC transfer function, this architecture

also performs better in terms of device mismatch, compared to binary-weighted PMOS

charging DACs [41]. This is because, here, the same PMOS stack is used to charge the

global bit-line for all input codes, rather than having to use smaller PMOS devices for

small input values. Furthermore, the pulse-widths of the globally generated timing

signals have less variations typically, compared to those arising from local Vt-mismatch

in the PMOS devices [41].
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Figure 3-11: Schematic of the CSRAM array during the calibration mode for
GBL DAC.

It should be noted that, a one-time calibration is required to set the maximum

value of the analog pre-charge voltage for the maximum input code (XIN,max). The

maximum pre-charge voltage should be kept lower than the supply voltage of the

GBL DAC, to ensure that the PMOS cascode stack is operating in the saturation

region, as a constant current source. For a given t0, the calibration can be achieved

by tuning the externally provided bias voltage (Vbiasp) of the PMOS stack. Fig. 3-11

shows the set-up of the CSRAM array in the DAC calibration mode. All DACs are fed

the same value of the input code, XIN,max. In a given clock cycle, first, the GBL DAC

pre-charges the GRBL to an analog voltage (Va). Then, Va is compared to an exter-

nally provided reference voltage, Vref (fixed at 1V in this work). The comparison is

done by the column-wise sense-amplifiers (SA), which are already present for normal

read-out of the SRAM. All the 64 SAs operate in parallel and use the same Vref to

provide 64 comparison outputs simultaneously. Vbiasp is monotonically increased from

0V until majority of the SAs (> 50%) flip their outputs (‘1’ to ‘0’), at which point
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the calibration is achieved. In this work, a 5mV step-size is used to tune Vbiasp.

3.4.2 Phase-2: Multiply-and-Average

The second phase of the Conv-RAM operation involves the mutliplication of the

analog input voltages (Va’s) with the 1-bit filter weights (wi’s) and averaging over N

values. This multiply-and-average (MAV) operation is done in parallel for all the 16

local arrays, each storing the wi’s for a different 3-D filter when running a CONV/FC

layer.

VY AV G,k =
1

N

N∑
i=1

wk,i × Va,i, 0 ≤ k ≤ 15, N ≤ 64

VY AV G = V pAV G − V nAV G

(3.8)

Fig. 3-12 shows the details for the MAV operation for one local array. It starts

by turning on the read word-line (RWL) for the selected row in the local array. This

leads to discharging of one of the local bit-lines (LBLT,LBLF ) in each column,

depending on the wi stored in the corresponding 10T bit-cell. A positive wi (+1)

is stored as a digital ‘0’ and a negative wi (−1) as a digital ‘1’. It should be noted

that, the local bit-lines have been pre-charged to the same analog voltage (Va,i) as its

corresponding global bit-line (GRBL) during phase-1. Therefore, at the end of weight

evaluation, the difference between the local bit-line voltages represents the product

of the analog voltage (Va,i) and the 1-bit weight (wi). For example, the bit-cell in the

‘0th’ column stores a −1 and hence, ∆VLBL,0 = VLBLT,0 − VLBLF,0 = −Va,0.
The weight multiplication/evaluation step is completed by turning off the RWL.

After that, the appropriate local bit-lines are shorted together horizontally to evaluate

the average. The positive and negative parts of the average as obtained on two

separate voltage rails, V pAV G and V nAV G, respectively. This is implemented by the

local MAVa circuits, which pass the voltages of the LBLT ’s and LBLF ’s to either

the V pAV G or the V nAV G voltage rails, depending on the sign of the input XIN . If the

input for the particular column is positive (XIN > 0) ENP is turned on, otherwise

ENN is on. ENP and ENN are digital control signals which are globally routed and
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shared column-wise by all the 16 local arrays.

The fully-differential nature of the averaging architecture helps in mitigating many

common-mode noise issues, e.g. clock coupling noise from the control switches, ca-

pacitance variation of the local bit-lines and the voltage rails due to different process

corners, etc. This helps in improving the accuracy of the dot-product computations

with our approach.

It should be also noted that during this phase, when the SRAM bit-cell is actually

used for weight-evaluation, the time required does not have a large variation. Fig.

3-13 shows the simulated local bit-line discharge time (tdis,LBL ) in the slowest process

corner (SS). As seen from the figure, even the 6σ value of tdis,LBL is merely 500ps,

which is much smaller than the total clock period (≈ 100ns). This shows that bit-cell
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BL WL

Figure 3-13: Variation of the local bit-line discharge time for weight evalua-
tion/multiplication in phase-2.

Vt variations do not dominate the overall computation time. The longer clock period

is facilitated by the highly parallel processing in the compute mode.

3.4.3 Phase-3: ADC

The third and last phase of the Conv-RAM operation is the analog-to-digital con-

version of the dot-product outputs, with multi-bit resolution. The difference of the

analog average voltages (V pAV G and V nAV G) is fed to an ADC to get the digital

value of the computation (YOUT ). This is done in parallel for all the 16 local arrays,

producing outputs corresponding to 16 different filters simultaneously.

Choosing the ADC architecture is crucial since it would be replicated mulitple

times in the CSRAM array. Hence, area and power consumption are key metrics to

consider. In addition, the typical distribution of the ADC outputs (YOUT ’s) should

also be considered to find the more appropriate architecture. As seen from simulation

results in Fig. 3-14, for a typical CONV layer with a full scale input range of ±31,

YOUT has an absolute mean value of ±1.3 and is typically limited to ±7. Hence, a

serial integrating ADC architecture is more apt in this scenario, compared to other

area-intensive (e.g. SAR) and more power-hungry ones (e.g. flash). In spite of its

serial nature, in most cases we can expect the ADC to finish its operation within a

81



Figure 3-14: Simulated distribution of the partial convolution output from the ADC
(YOUT ), for a typical CONV layer (C3) in the LeNet-5 CNN.

few cycles, due to the particular YOUT distribution.

Fig. 3-15 shows the architecture of the proposed integrating ADC (CSH ADC). It

consists of 3 main parts: a charge-sharing based integrator, a sense-amplifier (SA) and

a logic block. Capacitive charge-sharing with replica bit-lines is used to implement

the integration. Using replica bit-lines help to track the local bit-line capacitance

better in the presence of process and temperature variations. The SA has a standard

strongARM latch-type architecture [64]. PMOS devices are chosen for the SA’s input

differential pair, since the common mode voltage of V pAV G and V nAV G signals are

expected to be closer to the GND rail. The logic block provides the timing signals for

the charge-sharing (PCHR, EQP , EQN) and the SA comparison (SA EN), using the

globally provided timing signals (φ1, φ2). It also has a counter to count the number

of cycles it takes to finish the ADC operation and that provides the digital output of

the dot-product computation.

Fig. 3-15 also shows the waveforms for a typical CSH ADC operation. It starts by

sending a SA EN pulse from the ADC logic block to the SA. The SA compares V pAV G

and V nAV G, and sends its outputs (SAOP , SAON) to the ADC logic block. The first

comparison determines the sign of the output, e.g. for the case shown in Fig. 3-15,

YOUT is positive since V pAV G is higher than V nAV G. After the first comparison, the
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Figure 3-15: Architecture for the charge-sharing based ADC (CSH ADC) for 1 local
array of the Conv-RAM and typical waveforms for the digital output (YOUT ) compu-
tation for the convolution (dot-product) operation.

lower of the 2 voltage rails (V nAV G) is integrated by charge-sharing it with a reference

local bit-line (BLNref ), using the equalize signal (EQN in this case). The reference

bit-line, which replicates the local bit-line capacitance, was pre-charged during the

SA comparison using the PCHR signal to Vref (= 1V in this work). Therefore, the

step-size of the integration is ≈ Vref

N
, where N is the number of SRAM local columns

that were averaged. The pre-charge and equalize/integrate operations, along with the

SA comparison, continue until the lower voltage rail (V nAV G) exceeds the higher one

(V pAV G). When this happens, the SA outputs flip indicating the end-of-conversion

(EOC). After this, no more timing pulses are generated. A counter in the ADC logic

block counts the number of equalize pulses (EQN) it takes to reach EOC and that

generates the digital value of the convolution/dot-product output (YOUT ), which is

+4 for the example shown in Fig. 3-15.

Fig. 3-16 shows the detailed schematic of the logic block in the CSH ADC. The

logic block uses the globally provided 2-phase ADC timing signals: φ1 and φ2 (gen-

erated from an on-chip free running VCO). φ1 is used to generate the sense-amplifier
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Typical waveforms are shown on the right, corresponding to the example in Fig. 3-15,
with FLIP = ‘0’

enable (SA EN) and pre-charge (PCHR) signals. Whereas, φ2 is used to generate

the equalize signals (EQP , EQN) for integration. Each of φ1 and φ2 consists of a

set of 2 signals: one to denote the first pulse (φ1,sgn, φ2,sgn) and the other one is for

the rest of the pulses (φ1,del, φ2,del). φ1,sgn is always needed in the ADC for the first

SA comparison, to determine the sign of the output. And, φ2,sgn is always needed

for the first integrate operation, to determine if the magnitude of the ADC output

is zero. Hence, φ1,sgn and φ2,sgn are sent separately, without having to be generated

locally for each individual ADC. φ1,del and φ2,del signals are used for generating the

timing signals, after the first ADC cycle. The FLIP signal is used to flip the outputs

from the SA during offset-cancellation, as explained below. Fig. 3-16 also shows the

sample waveforms for the example discussed in Fig. 3-15, with FLIP = ‘0’.

It should be noted that YOUT is directly affected by the SA offset voltage (VOS),

which can degrade the overall computation accuracy due to incorrect ADC outputs.

To address this issue, we propose a simple 2-cycle offset-cancellation technique, using

a flipping mux at the input of the SA (Fig. 3-17). During the first/even cycle

of this 2-cycle period, FLIP = ‘0’. Hence, V pAV G and V nAV G are passed to the
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Figure 3-17: Circuit for the 2-cycle offset-cancellation technique for the SA in
CSH ADC.

positive and negative input terminals of the SA respectively. Therefore, YOUT,0 =

fADC(V yAV G,0−VOS). The output in this cycle is exactly same as in the conventional

case (without the flipping mux). However, during the next odd cycle, the inputs to

the SA are flipped by setting FLIP = ‘1’. Hence, a differential voltage of (V nAV G−
V pAV G) = −V yAV G is applied to the input of the SA. To get the correct polarity at

the output of the ADC, another negation is applied by the ADC logic block. This

results in YOUT,1 = −fADC(−V yAV G,1−VOS) = fADC(V yAV G,1+VOS), as compared to

YOUT,1 = fADC(V yAV G,1−VOS) for the conventional case. Finally, we add the YOUT ’s

for the 2 consecutive cycles to accumulate the partial results for the convolution.

With our proposed 2-cycle approach the effect of VOS is inherently canceled since:

YOUT = YOUT,0 + YOUT,1

= fADC(V yAV G,0 + V yAV G,1)
(3.9)

On the other hand, for the conventional case the effect of VOS adds up since:

YOUT = fADC(V yAV G,0 + V yAV G,1 − 2× VOS) (3.10)

and this makes the accumulation result further inaccurate. It should be noted

that, the benefits of this offset-cancellation technique comes without any extra timing

and power penalty, as long as an even number of cycles are required to finish a full

convolution computation. This can be easily expected for most CNNs.
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3.5 Measured Results

The 16Kb CSRAM array was implemented in a 65nm LP CMOS process. The die

photo in Fig. 3-18 shows the relative area occupied by the different key blocks. The

bit-cell array (along with its peripheral circuitry) occupies 73.1% of the total CSRAM

area, 8.2% is occupied by the GBL DACs, 8.6% by the local MAVa circuits, 7.3% by

the CSH ADCs and the rest by global timing circuits. The test-chip summary is also

shown in Fig. 3-18.

Technology 65nm

CSRAM size 16Kb

CSRAM area 0.063mm2

Array organization 256×64 (10T bit-cells)

# column DAC’s 64

# row ADC’s 16

Max. # MAV’s 64×16

Supply voltages
1V (main),

1.2V (DAC), 0.8V (array)

Main clock freq.
(compute mode)

5MHz

ADC clock freq. 250MHz

CLK_main

PCH_done

CONV_done

CLK_ADC_by8

GBL_DAC
Pre-charging

Mult., Avg.
& CSH_ADC. 

YOUT

computation

Figure 3-19: Measured oscilloscope waveforms of critical signals, for tclk = 90ns.

3.5.1 Circuit Characterizations

Fig. 3-20 shows the measured transfer function for the GBL DAC, which is used

in the 5-b mode by setting the LSB of XIN to ‘0’ (the sign bit of XIN does not

affect the DAC analog output voltage). To estimate the DAC analog output voltage

(Va), VGRBL for the 64 columns of the CSRAM are compared to an external voltage

(Vref ) by column-wise SA’s, as explained before for DAC calibration (Fig. 3-11). For

each XIN , the Vref at which more than 50% of the SA outputs flip is chosen as an

average estimate of Va. As mentioned before, an initial one-time calibration is needed
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Figure 3-18: Die photo and summary of the Conv-RAM test-chip fabricated in a
65nm CMOS process.

Fig. 3-19 shows the measured waveforms for the critical signals, denoting the

completion of different key steps during the convolution computation. CLK main

is the main input clock of the system, PCH done denotes the completion of the
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Figure 3-19: Measured oscilloscope waveforms of critical signals, for tclk = 90ns.

GBL DAC pre-charge phase, and CONV done denotes the end of the CSH ADC

operation i.e. end of convolution computation. Finally, the clock signal for the ADC

(frequency divided by 8) is CLK ADC by8. The ADC clock is generated from an

on-chip VCO, which is activated when needed during the ADC operation.

3.5.1 Circuit Characterizations

Fig. 3-20 shows the measured transfer function for the GBL DAC, which is used

in the 5-b mode by setting the LSB of XIN to ‘0’ (the sign bit of XIN does not

affect the DAC analog output voltage). To estimate the DAC analog output voltage

(Va), VGRBL for the 64 columns of the CSRAM are compared to an external voltage

(Vref ) by column-wise SAs, as explained before for DAC calibration (Fig. 3-11). For

each XIN , the Vref at which more than 50% of the SA outputs flip is chosen as an

average estimate of Va. As mentioned before, an initial one-time calibration is needed

to set Va,max = 1V for XIN = 31 (max. input code). The supply voltage for the

DACs is fixed at 1.2V, to keep the PMOS stack in them operating in the saturation

region (as a constant current source). It can be seen from Fig. 3-20 that, there is

a good linearity in the DAC transfer function with DNL < 1LSB. Since the SAs
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have NMOS input-pair, low values of Va cannot be properly estimated. Hence, the

characterization is done down to XIN =16 (or Va ≈ 500mV ).
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Figure 3-20: Measured transfer function of GBL DAC at Vdd,DAC = 1.2V, with Vref
= 1V and t0 ≈ 250ps.
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Figure 3-21: Measured transfer function and energy consumption of CSH ADC at
Vdd,ADC = 1V, Vdd,ARY = 0.8V and fADC = 250MHz.

Fig. 3-21 shows the transfer function of the CSH ADC, operating at 1V and a

clock frequency of 250 MHz (generated on-chip with a free-running VCO). The array

voltage is kept at 0.8V to reduce the clock-coupling noise from theWL’s, when reading

the weights. To characterize the CSH ADCs, all XIN ’s are fed the same input code,

all wi’s are written the same value and then the ADC outputs (YOUT ’s) are observed.
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The measurement results show a good linearity in the overall transfer function and

low variation in the YOUT values, which is due to the fact that the variation in BL

capacitance (used in CSH ADC) is much lower than transistor Vt-variation. It can be

also seen from Fig. 3-21 that the energy/ADC scales linearly with the input/output

value, which is expected for the integrating ADC topology.
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Figure 3-22: Measured distribution of convolution output values (YOUT ) from
CSH ADC with and without the offset-cancellation (OC) technique, for two values of
the input code (XIN).

The effect of the offset-cancellation (OC) technique for the SA (in the CSH ADC)

is also characterized, as shown in Fig. 3-22 for two different input codes. It can be

clearly seen that, the OC helps in reducing the variation of the YOUT values, leading

to a better computation accuracy for the dot-products/convolutions.

3.5.2 Test Case: MNIST Dataset

To demonstrate the functionality for a real CNN architecture, the MNIST hand-

written digit recognition dataset is used with the LeNet-5 CNN. As illustrated in Fig.

3-23, LeNet-5 consist of 2 CONV layers (C1, C3) and 2 FC layers (F5, F6), along

with the non-linear max-pooling (S2, S4) layers. The ReLU layer (R5 after layer F5)

is not shown in the figure for simplicity. Only the CONV/FC layers, which involve

majority of the computations, are implemented on-chip by the CSRAM array. The

non-linear layers are implemented in software (described later). Table.3.1 shows the
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Figure 3-23: Architecture of the LeNet-5 CNN, showing the sizes of the feature maps
(top) and the filters (bottom).

detailed mapping of the 4 CONV/FC layers to the CSRAM array to compute the

convolutions. Let us first consider layer C3. It has a filter size of 5× 5, with 6 input

channels and 16 output channels (number of 3-D filters). Each of the 16 3-D filters

are mapped to the one of the 16 local arrays in the CSRAM. Since each row in the

local array has 64 bit-cells, hence, a maximum of 2 (= b 64
5×5c) input channels can fit

per row. Therefore, 3 (= 6
2
) rows are required in each local array to fit the entire 3-D

filter. In every clock cycle, 50 (= 5 × 5 × 2) XIN ’s are sent through a buffer (shift-

registers) to the CSRAM array to compute 16 partial convolution outputs. Thus, the

CSRAM array processes 50 × 16 × 2 operations (1 MAV = 2 OPs: 1 multiply + 1

add/average), per clock cycle. For layer F5, the entire filter cannot be fit at once in

the CSRAM array (due to its limited 16Kb size in the test-chip). Hence, the entire

process, explained above, is repeated mulitple times to finish all the computations.

However, having multiple CSRAM arrays operating in parallel, can easily alleviate

this problem, by fitting all the filter weights together on-chip.

Fig. 3-24 shows the measured error rate on the 10K MNIST test-dataset, with

each CONV/FC layers being successively implemented on-chip. 3 different chips are

measured, each experiment is repeated mulitple times, and the average value of the er-

ror rate is reported. For this experiment, Vdd,DAC is set to 1.2V, Vdd,ARY is set to 0.8V

and the rest of the circuits are operating from a 1V supply, with a 200ns clock period.
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Table 3.1: Parameter mapping for the CONV/FC layers of LeNet-5 CNN to the
CSRAM array

Parameters (↓) C1 C3 F5 F6

3-D Filter size 5×5×1 5×5×6 5×5×16 1×1×120

# 3-D Filters 6 16 120 10

# Local ARYs used 6 16 15* 10

# IFMP channels/row 1 2 2 30 (15)

Rows, Col.s/local ARY 1, 25 3, 50 8, 50 4 (8), 30 (15)

# col.s for AVG (N) 32 50 50 32 (16)

# operations/cycle 25×6×2 50×16×2 50×15×2 30 (15)×10×2

* Repeated 8 times to cover all the 120 filters
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Figure 3-24: Measured error rate for the 10K test images in the MNIST dataset using
LeNet-5 CNN, with and without batch-normalization, at Vdd = Va,max = 1V.

We tested 2 different versions of LeNet-5: with and without Batch-Normalization

(BN) layers preceeding the CONV/FC layers. Without BN layers (‘v1’) we achieve a

classification error rate of 2.5% after all the 4 layers. The error rate is improved to

1.7% by using the BN layers (‘v2’). This is mostly because BN normalize the convolu-

tion inputs for every layer, with a mean around ‘0’ and also limits the maximum value

of the inputs. Hence, after input quantization to 6-b, its features are better preserved

compared to an un-normalized input distribution. The measured error rate, which is

close the expected value from an ideal digital implementation, shows the robustness

of the CSRAM architecture to compute convolutions. The error rate for the MNIST
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dataset is improved by 8.3% compared to prior work on in/near-memory compute

[41, 62], where a 10% error rate was achieved. Next, we tested functionality at a

lower voltage setting of Vdd,DAC = 1V and the rest of the circuits operating at 0.8V,

with a clock period of 400ns. The maximum DAC pre-charge voltage (Va,max), cor-

responding to the maximum input code, is calibrated to 0.8V. Hence, the magnitude

of 1LSB is ∼ 26mV (instead of 32mV for the previous case with Va,max = 1V). Fig.

3-25 shows the measured error rate for this set of voltages. Due to reduced analog

voltage precision, the error rates are slightly higher, with ‘v1’ achieving 3.4% and ‘v2’

achieving 1.9% for the 10K test dataset of MNIST.
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Figure 3-25: Measured error rate for the 10K test images in the MNIST dataset using
LeNet-5 CNN, with and without batch-normalization, at Vdd = Va,max = 0.8V.

Fig. 3-26 shows the overall energy consumption of the CSRAM array for running

the different layers of LeNet-5, with Vdd = 1V, fclk = 5MHz. Of the 4 CONV/FC

layers in LeNet-5, the energy while running layers C1 and F6 are lower than layers C3

and F5. This is because layers C1 and F6 do not fully utilize the entire CSRAM array,

due to their small filter sizes. However, that also translates to a lower energy-efficiency

for them (table 3.2), since the energy is amortized over fewer MAV operations. A

higher array utilization in layer C3 (all 16 local arrays) helps in achieving an energy-

efficiency of 38.8TOPS/W (‘v1’) by consuming 41.3pJ of energy for 50×16×2 = 1600

operations. Whereas, for ‘v2’ (with BN), layer F5 achieves the best energy-efficiency

of 40.3TOPS/W, utilizing 15 of the 16 local arrays. Fig. 3-26 also shows the energy
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breakdown for the 3 major components: GBL DAC, array+MAVa and CSH ADC.

The energy for GBL DAC is limited by the bit-precision requirement for representing

the IFMP/OFMP values. Whereas, the energy for the array, MAVa and CSH ADC

circuits can be scaled down by scaling their supply voltages while sacrificing speed.

Fig. 3-27 shows the measured energy consumption of the CSRAM array, at Vdd,DAC

= 1V, Vdd = 0.8V and fclk = 2.5MHz. The reduced supply voltages help in decreasing

the energy consumption, leading to better energy-efficiency numbers (table 3.3).

0

10

20

30

40

50

60

v1 v2 v1 v2 v1 v2 v1 v2

C1 C3 F5 F6

En
er

gy
 (p

J)

LeNet‐5 CNN Layer

GBL_DAC ARY & MAVa CSH_ADC

v1: w/o BN,  v2: w/ BN

Figure 3-26: Measured energy consumption of the CSRAM array when running the 4
different CONV/FC layers of the LeNet-5 CNN, at Vdd = 1V, Vdd,DAC = 1.2V, Vdd,ARY

= 0.8V and fclk,main = 5MHz.

Table 3.2: Measured energy-efficiency* (TOPS/W) for
the CONV/FC layers of LeNet-5 CNN, at Vdd = 1V

Type (↓) C1 C3 F5 F6

v1: without BN 14.8 38.8 38.8 24.3

v2: with BN 14.7 33.5 40.3 23.2

* 1 MAV = 1 multiply + 1 average = 2 operations
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Figure 3-27: Measured energy consumption of the CSRAM array when running the
4 different CONV/FC layers of the LeNet-5 CNN, at Vdd = 0.8V, Vdd,DAC = 1V and
fclk,main = 2.5MHz.

Table 3.3: Measured energy-efficiency* (TOPS/W) for
the CONV/FC layers of LeNet-5 CNN, at Vdd = 0.8V

Type (↓) C1 C3 F5 F6

v1: without BN 19.7 49.6 48.9 17.0

v2: with BN 19.6 51.3 49.6 16.5

* 1 MAV = 1 multiply + 1 average = 2 operations

The measured distributions of the 6-b partial convolution outputs from the ADC

(YOUT ’s) are shown in Fig. 3-28, for all the 4 CONV/FC layers. For each of these

layers, YOUT has a mean around ≈ 1LSB and is typically limited to ±8LSBs (for

a full-scale of ±31), which justify the use of the serial ADC topology to compute it.

Fig. 3-29 shows the measured distributions of the convolution inputs (XIN ’s) for the

4 layers. XIN ’s have been properly scaled and quantized to 6-b (including sign bit)

before being sent to the CSRAM array to compute the convolutions. As seen from

the figure, all the layers have a high proportion of 0’s with low (absolute) mean values

for the XIN ’s. This helps in reducing the GBL DAC energy to convert and send them

to the columns of the CSRAM array.
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Figure 3-28: Measured distribution of the partial convolution outputs (YOUT ’s) for
the 4 different CONV/FC layers of the LeNet-5 CNN (Vdd = 1V).
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Figure 3-29: Measured distribution of the 6-b convolution inputs (XIN ’s) for the 4
different CONV/FC layers of the LeNet-5 CNN (Vdd = 1V).
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Table 3.4: Comparison with prior work on low bit-width hardware implementations
of ML algorithms

Metric
This work

[60]
ISSCC’17

[65]
JSSC’17

[66]
JSSC’18

[42]
JSSC’18

[62]
CICC’18

[67]
ISSCC’18

[68]

Tech. (nm) 65 28 40 65 65 28 65

Voltage (V) 0.8, 1 0.715 0.8 1 0.55 0.66 0.65

Computation
Mode

In-Memory,
mixed-
signal

Digital Digital

In-
Memory,
mixed-
signal

Near-
Memory,
digital

Digital Digital

ML Algo. CNN
FC-

DNN
(4-layer)

CNN k-NN1

FC-
DNN
(12-

layer)

CNN CNN

ML Dataset MNIST MNIST MNIST MNIST MNIST MNIST FER2013

# MAC(V)’s/
classification

406.8K 334.3K 406.8K 16.4K 768.1K 20M -

Classification
Accuracy

98.3% (1V)
98% (0.8V)

98.36% 98% 92%1 90.1% 97.4% -

# bits for
IFMP/OFMP

6 8 6 8 2 1 16

# bits for
Weights

1 8 4 8 1 1 1

SRAM Size
(KB)

2 1024 144 16 102.1 328 256

Peak
Throughput
(GOPS)2

8 (1V)
4 (0.8V)

10.7 102 10.2 380.2 90 368.6

Peak Energy
Efficiency
(TOPS/W)

40.33 (1V),
51.33 (0.8V)

1.86
(0.345)4

1.75
(0.663)4

1.94 6.0
230

(42.68)4
50.6

1 k-NN: k-nearest neighbor, only 4-output classes (out of 10) were demonstrated with 100 test
images

2 We assume 2 operations (OPs) for 1 MAV (1 mult. + 1 avg.), similar to a MAC (1 mult. + 1
acc.)

3 Does not include energy to access IFMP/OFMP memories
4 Assuming a 65nm implementation and Energy ∝ (Tech.)2

Recent hardware implementations [66, 65, 62, 69, 68, 67] for NNs have focused

on reduced bit-precisions to achieve higher energy-efficiency. Table 3.4 presents com-

parison with prior work, both conventional digital [65, 66, 68, 67] and in-memory

approaches [42, 62]. It should be noted that, while [65, 66, 62, 67, 68] are full systems,

the main focus of this work was to demonstrate in-memory computation capability for
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CNNs. Hence, ours does not include the energy for IFMP/OFMP memories. How-

ever, for the MNIST dataset with LeNet-5 CNN, we estimate (Appendix B) those to

have only small contributions to the overall energy-efficiency per MAV operation, due

to the high parallelism supported by our in-memory approach. Furthermore, as seen

from Fig.s 3-29 and 3-28, both the inputs (XIN ’s) and the partial outputs (YOUT ’s)

have a high proportion of ‘0’s. Hence, in future work, data-dependent memory archi-

tectures e.g. 8T SRAMs, [54, 39] can be used to store and access the inputs/outputs.

[54, 39] take advantage of data properties to significantly reduce memory-access en-

ergy, which would be highly useful here. Compared to [65, 66], we achieve > 27×
improvement in energy-efficiency, due to the massively parallel in-memory analog

computations. Our work achieves similar energy-efficiency numbers as [67] (con-

sidering a simplified technology scaling model), while using 6-b for IFMP/OFMP,

compared to 1-b in [67]. Whereas, we achieve similar classification accuracy as [67]

on MNIST, using ∼ 50× less MAC/MAV operations per classification. Our numbers

are also comparable to the energy-efficiency of [68] (not quoted for MNIST), which

uses 1-b for weights. Next, compared to a near-memory approach [62], which uses

only 1-b for IFMP/OFMP, we still achieve 8.5× improvement in energy-efficiency.

This is because our approach exploits high parallelism of accessing multiple memory

addresses simultaneously, without the need to sequentially and explicitly read out the

data (filter weights) from the memory. We also achieve a higher classification accu-

racy compared to [62], because of using 6-b for inputs/outputs. Finally, our work also

achieves better classification accuracy than prior in-memory approach [42], although

it supports 8-b weights. This is because we reduce the effect of bit-cell variation when

evaluating the weights. In addition, our approach benefits from more parallelism, by

supporting 16 different dot-product computations per array per cycle, compared to 1

for [42].
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Figure 3-30: Test setup photograph, showing the chip under test in the center, digital
inputs coming from a pattern generator and digital outputs sent to a logic analyzer
for further processing.

3.6 Test/ Demonstration System

Fig. 3-30 shows the test setup for measuring the power consumption of the Conv-

RAM. A pattern generator is used to continuously send all the digital inputs to the

chip. Hence, it helps in measuring the average current consumption from the DC

voltage sources. The digital outputs from the chip are sent to a logic analyzer, which

captures them for multiple iterations. The logic analyzer output is exported as a text

file and further analyzed/processed in MATLAB.

Although the pattern generator and the logic analyzer are useful to quickly test

out the system, a more automated setup is required when a test has to be repeated for

10,000 different inputs (MNIST test dataset). Fig. 3-31 shows the setup for this. The

inputs for a particular CNN layer are sent from the MATLAB environment, where it
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Conv-RAM Test-chip

Figure 3-31: Demonstration system setup for automatically running the 4 CONV/FC
layers of the LeNet-5 CNN for a given hand-written test input. Also used for mea-
suring error rate for the 10,000 test images in the MNIST dataset.

is easy to process vectors as well as multi-dimensional arrays. An FPGA board (Opal-

Kelly XEM3001) can interface with MATLAB over USB and receive digital inputs

serially. A FIFO (FIFOI) is used in the FPGA to convert this serial bit-stream

from MATLAB to a multi-bit vector output. The FIFOI outputs are read using the

FPGA’s internal clock (‘clk1’), and sent to the Conv-RAM test-chip. At the same

time, the outputs from the Conv-RAM test-chip are sampled using ‘clk1’ and stored

in an output FIFO (FIFOO) in the FPGA. Finally, the FPGA communicates back

to MATLAB and send those outputs serially over USB. The serial outputs are then

interpreted in MATLAB and converted into the arrays of appropriate shapes/sizes, for

a given CNN layer. This is done iteratively for all the 10,000 test inputs in the MNIST

dataset, without any manual intervention. Furthermore, multiple CNN layers (each

with different parameters) can be run one after the other using this setup. The outputs

from the final layer F6 of the LeNet-5 CNN are used to determine the classification
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results, from which the average error rate is obtained. This setup can also be used for

demonstration with a user-provided test input: 28×28 image of a hand-written digit.

The system, after running through all the 4 CONV/FC layers with the Conv-RAM

hardware, would display the probablity for the 10 different classes, as shown in Fig.

3-32 for a few different inputs.
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Figure 3-32: Probability distribution over the 10 different output classes for a few
test inputs, obtained after running the 4 CONV/FC layers of the LeNet-5 CNN using
the Conv-RAM test-chip and the setup shown in Fig. 3-31.
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3.7 Conclusion

In this work, we presented an SRAM-embedded convolution (dot-product) computa-

tion architecture for running binary-weight neural networks. We demonstrated func-

tionality with the LeNet-5 CNN on the MNIST digit-recognition dataset, achieving

classification accuracy close to digital implementations and much better than prior

in-memory approaches. This is made possible by our variation-tolerant architecture

and also the support of multi-bit resolutions of input/output values. Compared to

prior digital accelerator approaches using small bit-widths, we achieve similar or bet-

ter benefits in combined energy-efficiency and throughput metrics, by overcoming

some of the major limitations of memories in traditional computing paradigms. This

is because our architecture can significantly reduce data transfer by running mas-

sively parallel analog computations inside the memory. The results indicate that the

proposed SRAM-embedded architecture is capable of highly energy-efficient convolu-

tion computation that could enable low power ubiquitous ML applications for smart

devices in the Internet-of-Everything.
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Chapter 4

Variation-tolerant Read Sensing

Technique for Non-volatile

Resistive Memories

Resistive memories [70, 71] are a class of non-volatile embedded memories that have

the potential to be a universal memory technology by providing the density of DRAM,

the speed of SRAM and the non-volatility of Flash. One of the promising candidates

among resistive memories is the Spin-Transfer Torque Random Access Memory (STT-

RAM). STT-RAM offers a lower leakage consumption and up to 4× higher density

compared to SRAM circuits (Table 4.1) [72]. Additionally, it achieves similar density

as DRAM with the advantage of being non-volatile [73].

Table 4.1: Comparison of STT-RAM vs. other popular memory technologies [72, 73]

Metric (↓) SRAM DRAM
STT-
RAM

Density 0.25× 1× 1×
Leakage High Low Low

Write Latency 0.1× 0.5× 1×
Write Energy Low Low High

Non-volatility No No Yes

Sense Margin High High Low
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Figure 4-1: Basics of a STT-RAM bit-cell, showing the MTJ device and R-I hysteresis
curve.

An STT-RAM bit-cell typically consists of a 1T-1R structure [74, 75], with a

resistive storage device (based on magnetic tunnel junctions or MTJ) and an access

transistor (Fig. 4-1). A 1T-1R bit-cell has 3 terminals: (1) a word-line (WL) to

access the cell, (2) a bit-line (BL) and (3) a source-line (SL), to apply appropriate bias

voltages to the MTJ device. An MTJ is made of two ferromagnetic layers separated

by a thin oxide. If the oxide layer is thin enough (few nm’s), then electrons can

“tunnel” through it when a voltage is applied, and thereby conducting current. One

of the ferromagnetic layers is “fixed” in terms of its spin-polarization, while the other

(“free”) layer’s spin can be altered by passing a spin-polarized DC current through

it. Hence, there are two possible resistance states: high-resistance (RAP or ‘1’), when

the spins are aligned anti-parallely and low-resistance (RP or ‘0’), when the spins are

aligned parallely. The difference between these 2 resistance states is characterized by

a tunnel-magneto-resistance ratio (TMR), where TMR = (RAP

RP
−1). For MTJ devices

the TMR is typically around 100%-200%, depending on technology, temperature etc.,

which makes it challenging to distinguish the two resistance states correctly. Fig. 4-2
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shows a typical distribution [76] of the 2 MTJ resistance states, with µ ∼ 2.1KΩ, σ ∼
4% for RP and µ ∼ 4.1KΩ, σ ∼ 3% for RAP . Furthermore, the resistance of the

access transistor adds to that of the MTJ, reducing the the read-margin between the

‘0’ and ‘1’ states.

(RP)

(RAP)

Resistance (KΩ)

Figure 4-2: Distribution of the 2 resistance states of the MTJ: low (RP ) and high
(RAP ), with 100% TMR [76].
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Figure 4-3: Possible scenarios for MTJ disturbance during a read operation.

Although the read margin can be improved by increasing the bias current through

the MTJ, it is not ideal due to the possibility of a read disturbance. During a read
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operation, the direction of the current through the MTJ is fixed. Hence, for one of the

states there might be accidental flipping (Fig. 4-3), resulting in an unwanted write

operation (i.e. a disturbance). This is true not only for the data MTJ, but also for

any reference MTJ’s, that would be needed for reference voltage/current generation

during a read operation. Hence, the read current through the MTJ (Imtj) should be

kept as low as possible. Therefore, with increasing variations in sub-32 nm CMOS

processes along with variation in MTJ resistance, it becomes extremely challenging

to design a read-sensing scheme that achieves low read-disturbance and high yield

(> 5.5σ).

SL

WL
Idata

RMTJ

BL

SL_ref

WL_ref
Iref

Rref

BL_ref

SA

Dout

VDD

VRD

VDD

VRD
’

To bit-cell 
array

To Read 
Sense Circuit

VCLAMPVCLAMP

VDD VDD

MP1 MP2

MN1 MN2

Mismatch

Mismatch
Vdata Vref

Figure 4-4: Conventional current-mode read sensing scheme for STT-RAM.

Previous work [74, 75, 77] have typically used current-mode read sensing schemes.

Fig. 4-4 shows a typical current-mode sensing scheme for STT-RAM. It involves

biasing the BL’s of both the data and reference MTJ’s to ∼ VRD, using clamp NMOS

transistors (MN1,MN2). With the same bias voltages applied, the current difference

between the data and reference MTJ’s are converted into a voltage difference by the

current-mirror PMOS transistors (MP1,MP2). Finally, the difference between Vdata

and Vref is compared with a sense-amplifier (SA) to get a full-rail output (Dout). This
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scheme suffers from any mismatch between MN1 and MN2, since that would create

different bias voltages for the data and the reference MTJ. It is also affected by

the mismatch between MP1 and MP2, since that might reduce the voltage difference

between Vdata and Vref . That, in turn, would make it harder for the SA (with its

own offset voltage) to detect the output correctly. Hence, this scheme does not have

a very good yield. Furthermore, it typically operates from a high supply voltage due

to voltage headroom requirements and hence consumes a lot of power.

In this work [78] we try to address these issues to design a robust read sensing

circuit for STT-RAM, which would work for yield > 5.5σ and reduce power consump-

tion. The robustness to variations is achieved in mainly two ways. Firstly, due to

the pseudo-differential nature (comparing data to two references ‘ref1’ and ‘ref0’) of

the sensing scheme we get 2× signal margin as compared to a single reference scheme

[74, 77]. Secondly, the offset cancellation of the sense-amplifier (SA) makes it more

suitable to tolerate variation from the array due to MTJ resistance variation. Also

due to offset cancellation, we can use small sized devices for the SA, which results

in lower area and less power. Thus the proposed technique benefits from technology

scaling. Furthermore, since the sense amplifier has a differential topology it reduces

the effect of supply noise and improves common mode rejection.

4.1 Proposed resistive-divider based

Pseudo-differential Read Technique

4.1.1 Concepts and Modeling

Fig. 4-5 shows the concept of the proposed resistive-divider (‘v1’) based read sensing

technique. The basic principle of sensing the MTJ resistance is comparing a resistive-

divider output voltage VO (formed by a ref-‘1’ MTJ and the data MTJ) to 2 reference

voltages VH and VL. VH and VL are also generated from 2 resistive-divider networks

using ref-‘1’ and ref-‘0’ cells. Rref,H and Rref,L are the resistances of the ref-‘1’ and

ref-‘0’ devices respectively. Rmtj is the resistance of the data MTJ to be sensed.
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Figure 4-5: Concept of the resistive-divider read technique (‘v1’) for STT-RAM.

Therefore, the sense margin (SM) can be expressed as the difference of VO from the

2 reference voltages (VH , VL):

SM = ∆V2 −∆V1 = (VO − VL)− (VH − VO) = 2× VO − (VH + VL) (4.1)

Assuming a TMR of 150%, i.e. RH = 2.5× RL, the nominal SM for data ‘1’ and

data ‘0’ can be calculated as:

SM1 = 2× 2.5RL

2.5RL + 2.5RL

Vdd − (0.5 +
RL

2.5RL +RL

)Vdd = 0.214Vdd

SM0 = 2× RL

2.5RL +RL

Vdd − (0.5 +
RL

2.5RL +RL

)Vdd = −0.214Vdd

(4.2)

Now, let us compare this scheme with an ideal voltage sensing scheme, as shown

in Fig. 4-6. RL and RH are assumed to be 4KΩ and 10KΩ, respectively, with each

having a resistance variation of σ = 5%. We also assume the maximum read current

(for the ‘1’ state which may be potentially disturbed) is limited to 20µA (nominal).

This implies a maximum stack bias voltage of Vdd = 2 × 10KΩ × 20µA = 400mV .

As seen from Fig. 4-6, the nominal SM is 1.43× higher for the proposed scheme,

compared to the ideal voltage sensing method. This is because of the use of 2 reference

voltages vs. 1 for the conventional approach. We also observed the effect of applying

(gaussian) variations to the different resistors, on the sense margin. 10K monte-carlo
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(MC) simulations are done in MATLAB to obtain the µ and the σ values. 2 different

versions are simulated: one assumes the reference voltages being generated using

only 1 (=N) set of resistors, whereas for the other version 16 (=N) sets of reference

resistors are used to get the final reference voltage. As seen from Fig. 4-6, the µ/σ

of the SM is almost the same for both the proposed and the conventional schemes.

This is because both the µ and the σ of the SM are proportionately increased.1

Vo

Rmtj 

Vref

Rref = (RL+RH)/2

Iref Iref

Vcc Vcc

SM = |Rmtj – Rref|*Iref

Sensing Scheme
Prop.
(v1)

Conv.

# ref. MTJs 5 4

Nominal SM (mV) 85.6 60

SM µ/σ (N = 1) 5.1 5.5

RH = 10 KΩ, RL = 4 KΩ, σrmtj = 5%, 
Iref = 20µA, Vdd = 0.4V

SM µ/σ (N = 16) 6.0 6.1

Conventional voltage sensing (ideal)

Figure 4-6: Comparison of the SM of the proposed (‘v1’) resistive-divider based read
vs. a conventional (ideal) voltage sensing.

To improve the SM in the presence of MTJ resistance variation, a modified

resistive-divider (‘v2’) based read technique is proposed, as shown in Fig. 4-7. The

principal concept of comparing the data voltage to 2 reference voltages, still remains

the same as ‘v1’. However, the reference MTJ devices on the top of the resistive-

divider stacks are re-used and time-shared in 2 phases: Φ1,Φ1B. Hence, the same

reference MTJ (at the top of the resistor stack) is used to generate the voltage differ-

ences: ∆V1,∆V2. This reduces the effect of reference MTJ resistance variation on the

SM. Fig. 4-7 shows the typical operation waveforms of this technique. The voltage

swings (∆V1,∆V2) are generated at the 2 nodes: ‘in1’ and ‘in2’. In phase Φ1, the node

‘in1’ is connected to VO and the node ‘in2’ is connected to VL. So Vin1 is close to Vdd/2

(if we assume the data bit is ‘1’) and Vin2 is close to Vdd/3 (assuming RH = 2×RL).

In the next phase Φ1B, ‘in1’ is connected to VH and ‘in2’ is connected to VO. Hence,

1Given a random variable Y ∼ N(µ, σ), a new random variable Y’ = kY follows N(kµ, kσ), where
k is a scalar.
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Vin1 is equal to Vdd/2 and Vin2 is close to Vdd/2. Thus the swing at the node ‘in1’ from

phase Φ1 to Φ1B is smaller than the swing at ‘in2’ i.e. ∆V1 < ∆V2. Whereas if data is

‘0’, ∆V1 > ∆V2. The sense margin is still defined as (∆V1−∆V2) = 2×VO−(VH +VL),

as before.

Vo

Rmtj 

Rref,H

VL

Rref,L

VddVdd

VH

Rref,H

Rref,H

ɸ1
___
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___
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∆V2
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SM = ∆V2 - ∆V1 = 2*Vo – (VH+VL)
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∆V2
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∆V1 < ∆V2 ∆V1 > ∆V2

Proposed resistive-divider read technique

Vmid 
Vmid 

Figure 4-7: Modified resistive-divider (‘v2’) read technique for STT-RAM, which
re-uses the top MTJ reference devices in 2 phases.

Table 4.2: Comparison of the different read techniques

Metric (↓) Ideal Voltage-
Sensing

Resistive-
divider

‘v1’

Resistive-
divider

‘v1’

# of ref. MTJ’s 4 5 4

Nominal SM (mV) 60 85.6 85.6

SM µ/σ
(MATLAB sim)

6.11 6.01 7.2

SM µ/σ
(SPICE sim)

- 5.3 6.6

µ− 4σ (mV)
(SPICE sim)

- 14.5 22.4

1 Assuming N = 16 way averaging for generating the references

An analytical model of this scheme was simulated in MATLAB to analyze the

effect of MTJ resistance variation on the sense margin. The µ and µ/σ of the sense

margin (SM) is shown in the table 4.2, and compared with the approaches mentioned

before. As seen from the figure, the modified sensing scheme (‘v2’) improves the µ/σ
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of the SM vs. both ‘v1’ and the ideal voltage sensing approaches. This is because

the voltages ∆V1 and ∆V2 are generated using the same Rref,H resistor in both the

phases Φ1 and Φ1B, which reduces the effect of its variation on the sense voltage. The

improvement is still maintained after incorporating actual device models and other

parasitic effects in SPICE simulations of the ‘v1’ and ‘v2’ circuits. For the SPICE

simulations, the array architecture (described in the next subsection) is used.

The proposed resistive-divider technique also burns less power since Vdd is smaller

(∼400mV) compared to the nominal Vcc (∼1V, due to voltage headroom require-

ments) for ideal voltage sensing. Furthermore, the modified resistive-divider tech-

nique uses 4 reference MTJ’s, which is the same as the ideal voltage sensing case

(∵ Rref = (RH + RL)/2 = (RH + RL)||(RH + RL)). Hence, it does not incur any

extra area overhead, compared to a single reference scheme. However, there is some

timing penalty due to the 2-phase operation of the proposed scheme.

4.1.2 Array implementation

The reference devices needed for generating the Vin1, Vin2 voltages (Fig. 4-7), can be

implemented in the memory array itself and they can be shared by a sub-array (or

sector) to reduce their area overhead. Fig. 4-8 shows the implementation of the four

reference devices. There is one reference row per sector (driven by ‘Ref WL’) and

one reference column per global column (with ‘BL ref’ and ‘SL ref’). The reference

column and reference row implement the top and bottom devices respectively, of the

resistor-divider stack in Fig. 4-7. Since the voltages at the nodes ‘in1’ and ‘in2’

are needed simultaneously, the unselected sector (shown in the bottom part of Fig.

4-8) is used to generate the reference voltages (VH , VL) by operating the switches in

phases Φ1 and Φ1B, as described in Fig. 4-7. To further reduce the area-overhead of

implementing the reference devices, instead of having two separate reference rows, the

Rref,H and Rref,L devices (in the lower part of the resistor-divider stack) are shared

between two adjacent global columns. They generate the reference voltages for the

two adjacent global columns in a time-interleaved manner, i.e. the Φ1 and Φ1B signals

for the global column<n> are opposite to that of the global column<n+1>.
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Figure 4-8: Array implementation of the reference devices (shown for two global
columns), with the reference voltages (VH , VL) generated from the unselected sector.

4.2 Proposed Sense-Amplifier with Improved

Offset-cancellation

The difference of VO from the 2 reference voltages VH and VL are fed as the 2 inputs

of a differential sense amplifier. The sense amplifier (SA) consists of 2 inverters which

can be reconfigured both as an amplifier and a latch, similar to [79]. We propose a

technique to fully cancel the trip-point (VI) mismatch of the 2 inverters to reduce the

sense-amplifier offset voltage.

Fig. 4-9 shows the proposed sensing circuit. The nodes ‘in1’ and ‘in2’ are from

the resistive-divider network (Fig. 4-7), described above. During phase Phi1, the two

inverters ‘inv1’ and ‘inv2’ are biased at their respective trip points. This self-biasing

scheme makes sure that the inverters are biased in their high gain (amplifying) region
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Figure 4-9: Proposed sense-amplifier with full offset cancellation of inverter trip point
mismatch (VI1 6= VI2) by addition of an extra phase (Φ2e) and using extra sampling
capacitors (CZ1 and CZ2). Shown for the case of ∆V1 < ∆V2, i.e. data ‘1’.

irrespective of device variation. During this phase the sampling capacitors (Cz1 and

Cz2) samples the difference of the trip points of the 2 inverters. Next, in phase Φ1B,

the negative feedback for the inverters is disconnected. The swing at the nodes ‘in1’

and ‘in2’ are coupled to the input of the inverters via the coupling capacitors (Cf1

and Cf2). The swing at the input of the inverters is amplified by their gain (A) at
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the outputs (‘y1’ and ‘y2’). The nodes ‘z1’ and ‘z2’ of the capacitors Cz1 and Cz2

are floating in this phase, so they do not provide any extra loading at the input of

the inverters. After this, in phase Φ2e, ‘z1’ is connected to ‘y2’ and ‘z2’ is connected

to ‘y1’. This creates a positive feedback circuit (as long as Cz > Cf/A). So the

inputs ‘x1’ and ‘x2’ will move in opposite directions (from the respective VI points),

depending on whichever of ∆V1 and ∆V2 is higher. Similarly, the outputs ‘y1’ and ‘y2’

will move in opposite directions. Finally, in phase Φ2 the capacitors Cz1 and Cz2 are

shorted, completing the latch and generating full-rail outputs. Fig. 4-10 shows the

states of the SA’s just before the positive feedback in enabled, for both the proposed

and the conventional (without the Cz capacitors and phase Φ2e) SA’s. It can be seen

that, even if the trip points of the two inverters are different, it does not affect the

positive feedback for the proposed SA, since the difference of VI1 and VI2 was already

sampled across Cz1 and Cz2 during phase Φ1. By doing this we can fully cancel the

offset due to Vt-mismatch in the 2 inverters. This is unlike the conventional SA, which

suffers from mismatch between VI1 and VI2 when X1 − Y2 and X2 − Y1 connections

are made for positive feedback (Fig. 4-10).
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Figure 4-10: Comparison of the state of the conventional and proposed SA’s before
the positive feedback is enabled.

The waveforms of both the SAs are shown in Fig. 4-11 for a case where there

is a mismatch of the VI of the 2 inverters. As seen from the figure the proposed

SA was able to resolve the data correctly (Y1 = ‘1’, Y2 = ‘0’), due to the full offset

cancellation technique, unlike the conventional SA. However, the proposed SA needs
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Figure 4-11: Simulation waveforms for the conventional and proposed sense-amplifiers
when there is a mismatch of the VI of the two inverters. Shown for the case of
∆V1 < ∆V2, i.e. data ‘1’.

a slightly longer sensing time, due to the addition of the extra phase (Φ2e).

Table 4.3 shows the effect of variation on the simulated SA offset voltage (Voff ).

The proposed SA provides∼ 3× improvement in σ(Voff ) over the conventional design.

The residual offset is mostly due to other types of mismatches e.g. gains of the

inverters, input/output capacitances, switch charge injection etc. The low sigma due

to offset cancellation suggests that small sized transistors can be used for the sensing

inverters and hence the SA power can be reduced. On the other hand, the SA area

which is mainly dominated by the size of the sampling capacitors also reduces with

CMOS scaling. This is because the capacitors can be implemented by regular MOS

transitors. Hence, the proposed SA benefits from technology scaling in terms of both

area and power metrics, which is very desirable when designing for future resistive

memory technologies. Table 4.3 also shows the effect of supply noise on σ. For this

analysis the Vcc of the SA is switched by ∆Vcc from phase Φ1 to Φ1B. This is because
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changing Vcc in phase Φ1B shifts the inverter trip points and this shift did not get

sampled during phase Φ1. Hence, this step jump in Vcc can have a negative impact

on the SA operation. However, because the proposed scheme is differential it is more

immune to supply noise (which is a common mode signal) than a single-ended sensing

scheme [80].

Table 4.3: Variation analysis (simulated) and effect of supply noise on the proposed
SA.

Offset Voltage (mV) (↓) Conventional SA Proposed SA

Mean (µ) 0.2 0.1

Standard Deviation (σ) 7.0 2.1

µ+ 4σ 28.2 8.5

% Vcc Noise σ of proposed SA (mV)

0 2.1

5 3.4

10 4.4

4.3 Silicon Implementation and Measurement Re-

sults

The proposed SA was implemented in a 14nm CMOS technology 2. The capacitors in

the design (Cf , Cz) are realized using MOSFET devices to limit the technology cost

while still achieving a compact footprint of 8µm2. To facilitate offset characterization,

the resistive-divider output voltages (VH , VL, and VO) are provided externally through

the pads as shown in Fig. 4-12. A Schmitt trigger and a timing control block is

integrated on-die to relax the tester requirements. After the DC inputs are set,

START is asserted, and the timer generates all the phase clocks that are necessary

for SA operation as described in Section III. The SA output becomes available on the

2Layout and chip testing were done at Intel (Hillsboro). We thank F. Hamzaoglu, U. Arslan, P.
Jain and others in the Advanced Design team there for help.
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Figure 4-12: Sense amplifier layout and test structure including a Schmitt trigger and
a timing generator block.

Dout pin at the end of Φ2, and is held by the SA in the latch state until Dout value is

recorded and START is deasserted for the next measurement.

The trip points of 71 SA instances were measured by stepping VO from VL (100

mV) to VH (150 mV) with a 2mV resolution. Each instance was tested 16 times and

the VO levels that can reliably produce ‘0’ or ‘1’ at the output were recorded. Fig.

4-13 shows the distributions of the trip voltage (defined as VO − 0.5 × (VL + VH))

for both low-to-high and high-to-low transitions. The low-to-high trip point varies

with a (µ, σ) of (11.3 mV, 2.6 mV), whereas the distribution of the high-to-low trip
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Fig. 6: Measured SA trip point distributions showing the VO levels that can reliably produce 
high and low at data out. Collected from 71 SA instances where each instance was tested 16 
times. 
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Fig. 7: Measured DC offset from 71 SAs. Each SA was tested 16 times and random noise was 
removed from data by computing the average trip point. DC offset is then defined as the 
difference between the measured average and ideal trip points. 
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Figure 4-13: Measured SA trip point distributions showing the VO levels that can
reliably produce high and low at data out. Collected from 71 SA instances where
each instance was tested 16 times.

µ = 2.0mV
σ = 1.9mV

Figure 4-14: Measured DC offset from 71 SAs. Each SA was tested 16 times and
random noise was removed from data by computing the average trip point. DC offset
is then defined as twice the difference between the measured average and ideal trip
points.

voltage has a (µ, σ) of (-9.6 mV, 3.2 mV). All the 71 SAs are able to reliably detect

input signal levels beyond 20 mV in all 16 runs. We suspect that the data uncertainty

within the 20 mV input range is partly caused by random AC noise events in our test

environment, since the pre-silicon validation had confirmed the design to have a good

tolerance to supply noise and low thermal noise. The AC noise is removed from the

data by computing the average trip voltage of each SA from the 16 measurements.
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The DC offset is then defined as twice the difference between the measured average

and ideal trip points. Fig. 4-14 shows that the DC offset varies with a standard

deviation of 1.9 mV, matching reasonably well to the expected value of 2.1 mV.

4.4 Conclusion

In this chapter we presented a resistive-divider based pseudo-differential read sensing

structure for resistive memories. It achieves more signal margin due to the usage

of 2 references, compared to the conventional single reference design. Techniques to

mitigate variation effects of device resistances were proposed. A possible array im-

plementation of the proposed resistive-divider based read scheme is also explained.

Finally, a four-phase differential sense amplifier (SA) with an improved offset cancel-

lation technique is proposed, to work with the resistive-divider read scheme. The SA

was implemented in a 14nm CMOS process. 71 tested SA’s achieve correct operation

with 20mV input and achieve a DC offset σ of 1.9mV. This shows that the SA can

tolerate large variations from the memory array, to achieve a high yield. On the

other hand, due to the offset-cancellation technique the SA can be designed using

small sized devices to achieve low area and power.
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Chapter 5

Conclusions and Future Work

This thesis primarily explored avenues for improving the energy-efficiency of em-

bedded SRAMs in modern computing systems, in which memory is often the main

bottleneck. Firstly, we investigated techniques to reduce energy consumption of 6T

SRAMs using: (1) assist circuits for voltage scaling, (2) alternate array layout imple-

mentations and (3) utilizing data properties for application-dependent further energy

savings. 6T bit-cell based SRAM design was used, owing to its higher area-efficiency.

We demonstrated very low voltage operations (∼ 0.34V), inspite of using 6T bit-cells,

whose operating voltage is generally limited due to conflicting requirements in read

and write operations. We also achieved low access energy of 52.5fJ/bit (minimum)

at 0.45V. The low voltage and low-energy SRAM would be ideal in many IoT appli-

cations, where the energy budgets are very limited. Our work would be also useful in

applications (e.g. GPUs) where SRAM density is of key concern and using 8T/10T

bit-cells might not be preferred.

The second approach for overcoming traditional limitations of memories, was to

embed some computation capability inside the memory, for reduced data transfer and

increased bandwidth. This is highly useful in data-intensive machine learning appli-

cations, in which the memory access and data movement energy dominates the energy

of the arithmetic computation operations. We demonstrated the in-memory compu-

tation capability with a 16Kb SRAM array, running binary-weight neural network

computations, used for the handwritten digit recognition task. We achieved better
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energy-efficiency than conventional digital implementations, while still attaining sim-

ilar classification accuracy. On the other hand, we improved classification accuracy

compared to prior in-memory approaches, by addressing the impact of bit-cell varia-

tion on the analog computations. The measured results show that our approach could

make it possible to run low-power ML algorithms in IoT devices, by energy-efficient

local processing of data, instead of relying on the “cloud”. This could enable “smart”

decision making and “always-ON” sensing for these energy-constrained devices.

Finally, we also investigated read sensing circuits and architectures to improve

yield for future non-volatile resistive memories, e.g. STT-RAM. These memory tech-

nologies have the potential to replace SRAMs for on-chip storage. However, they

have unique design challenges compared to SRAM’s, that need to be overcome before

being adopted as a mainstream embedded memory technology.

5.1 Summary of contributions

This section summarizes the key contributions of this thesis.

5.1.1 Low-Power 6T SRAM with Data-Dependent Energy

Savings

In this work, a low-voltage 128Kb 6T SRAM array was designed in a 28nm FDSOI

process. Dynamic forward body-biasing (DFBB) was used to improve the write mar-

gin of the SRAM and to push the minimum operating voltage of the 6T SRAM to

0.34V.

• An energy-efficient array layout was proposed for implementing DFBB. The

proposed layout shares the n-wells (body terminals) along the rows, compared

to the conventional column-wise sharing. This reduced the n-well capacitance

switched per cycle and consequently reduced its energy overhead by 4×.

• The proposed array layout allowed routing upto 4 word-lines per row. Since

only 1 word-line is turned ON every cycle (due to 4:1 column-muxing ratio),
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the bit-lines in the un-selected columns do not switch every cycle unnecessarily.

Hence, the local bit-line (BL) dynamic energy was reduced by ∼ 25%.

• Data-prediction was incorporated at the local sub-array level (9% area overhead

with 32 bit-cells/local bit-line), instead of using it at the bit-cell level, which

would lead to a 10T design (∼ 1.6× overhead). Therefore, our architecture could

still use area-efficient 6T bit-cells, while still saving global bit-line switching

energy, when there is a correct data prediction. Upto 36% dynamic energy

savings was demonstrated for the 128Kb SRAM, compared to a conventional

single-ended read. The energy savings can be further improved by sacrificing a

little on the area-efficiency, using smaller number of bit-cells per local bit-line.

5.1.2 In-Memory Computation for Low-Power Neural Net-

works

In this work, a 16Kb SRAM (Conv-RAM) with embedded dot-product computation

capability was proposed for binary-weight neural networks. This architecture reduces

data transfer by implementing in-place analog computations inside the memory array.

The dot-product was modeled as an analog voltage averaging operation, which can

be efficiently implemented inside the memory array.

• Analog inputs were directly sent on the global BLs, instead of using the WLs

(conventional approach). This provided more linearity and better control of

them using DACs at the SRAM periphery.

• The issue of bit-cell variations affecting the analog computations, is mitigated by

using the bit-cell to only discharge one of its local BL to ground, to implement

the 1-b multiplication. The analog input voltage was rather controlled by DACs,

which were up-sized to have less variation. A hierarchical architecture (with

local and global BLs), enabled de-coupling the weight multiplication and the

analog averaging operations.
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• Using the inherent BL capacitance for the analog operations, made them more

immune to variation. This is because in a CMOS process, capacitance has

much less variation than transistor Vt. Hence, the computation accuracy was

improved.

• Support of 6-b precision for the inputs/outputs of the dot-products, allowed

to achieve higher classification accuracy than 1-b inputs/outputs, for a neural

network of a given size. We demonstrated> 98% accuracy for 10K test inputs on

the MNIST dataset, compared to 90% achieved by prior in-memory approaches.

• With the highly parallel architecture (64 input, 16 outputs per cycle), > 27×
benefits in energy-efficiency of the dot-product operations was achieved, com-

pared to low-precision prior full-digital implementations.

5.1.3 Variation-Tolerant Read Sensing Architectures for Non-

Volatile Resistive Memories

This work focused on read-sensing architectures for resistive memories, specifically

STT-RAM, with a 1 transistor and 1 MTJ storage device (1T-1R) bit-cell structure.

• A pseudo-differential resistive divider based read-sensing scheme is proposed

for the 1T-1R STT-RAM bit-cell array. This scheme compares the data voltage

with 2 reference voltages to improve the signal margin, compared to a single

reference scheme. The 2-phase architecture allows re-using some of the reference

bit-cells in both phases, reducing the effect of their variation on the signal mar-

gin. An array architecture is proposed with shared reference rows and columns,

to reduce their area overheads.

• An improved offset-cancellation (OC) technique is proposed for a sense-amplifier

(SA), which uses inverters as both amplifiers and a latch. The proposed scheme

fully cancels the mismatch in the trip points of the 2 inverters, by adding 2

small sampling capacitors and one extra phase, compared to the conventional

OC technique. 3× benefits in the sigma of the offset voltage was obtained in
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simulation, compared to the conventional SA for iso-area. The proposed SA

was implemented in a 14nm CMOS process and achieved a DC σoffset ∼ 2mV.

5.2 Future Work

With the exponential growth in data-intensive ML applications, e.g. neural net-

works, there are many opportunities in re-thinking the traditional memory design. As

demonstrated in this thesis, for these applications, memory and computation do not

necessarily need to be separated and huge benefits can be achieved by re-configuring

the memory to implement in-place computations as well. Mentioned below, are some

possible future areas to explore, which can expand on the ideas presented in this

thesis.

• The proposed SRAM array for embedded dot-product computation currently

supports usage of 1-b binary weights (+1/-1). It can be easily extended for

2-b ternary weights (+1/0/-1). However, it would be challenging and inter-

esting to support more-precision in the weights, without compromising on the

variation-tolerant read architecture. Supporting multi-bit weights could im-

prove classification accuracy for a neural network of a given size.

• 6T bit-cells can be explored for in-memory dot-product computations instead

of the 10T bit-cells used in this thesis. This would have obvious area advantage.

However, techniques to not disturb the bit-cell during analog read operations

should be investigated.

• The present Conv-RAM architecture implements the DAC, average and ADC

operations in 3 consecutive phases. To reduce the clock period and improve

the throughput, future work can also explore pipelining the DAC+average and

ADC operations.

• Future work can also investigate into incorporating more computation capability

with the same memory array, e.g. boolean logic, arithmetic operations etc. That

could lead to more general purpose compute SRAMs.
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• Future work can also explore ways to expand the in-memory computation ca-

pability to newer memory technologies, e.g. STT-RAM, ReRAM etc. These

memories have the advantage of being non-volatile. Hence, the data stored

(e.g. filter weights for neural networks) in them, can be retained even when

they are powered off and do not be re-written once they are powered back up.

Also, these memories have more density and some of them can store multiple

bits in one cell. This could also be highly beneficial for neural networks, since

all the filter weights can be stored on-chip, obviating the need for expensive

off-chip DRAM accesses.
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Appendix A

Energy Estimation for Digital

Implementation of Binary-Weight

CNNs

We estimate a rough energy model for the digital implementation of binary-weight

CNNs, to compare with our in-memory computation approach. The architecture

used for the estimation is shown in Fig. A-1, where the digital computation units are

assumed to be situated next to the memory. We use the same size SRAM (256× 64),

as with the in-memory approach, to store the 1-bit filter weights. We assume an

implementation, similar to the Conv-RAM, where each set of 64 inputs are re-used

for 16 different filters. Hence, in each clock cycle, 64 1-bit filter weights (corresponding

to a unique 3-D filter in a given CNN layer) are read. Then, they are multiplied by the

corresponding 6-bit input values (XIN ’s), and the partial-products are added using

a digital adder tree to get the dot-product output (YOUT ). This is repeated for 16

filters, after which a new set of inputs (corresponding to a 1-D convolutional shift or

to different input channels) are used for the computations. Hence, the total energy

for a set of 16 filters, re-using the same set of 64-inputs, can be written as:

Edig = 16× (64× ESRAM,RD + 64× E2s,COMP + EAdder Tree)

= 16× (64× ESRAM,RD + 64× E2s,COMP + 72.5× EADD)
(A.1)
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where, ESRAM,RD is the average energy per bit access for a read operation of

the SRAM (storing the filter weights), E2s,COMP is the average energy for the 1-

b weight multiplication with the inputs (i.e. 2’s complement computation of the

inputs, XIN ’s) and EADD is the average energy for a 6-b pipelined adder. The energy

of the adder tree is estimated using a linear relationship of the energy of an adder

with its corresponding bit-width.

ADD ADD
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6-b input buffer

1-b filter weights

IN

OUT
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Digital Adder 
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256x64 SRAM
storing 1-b

filter weights
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x
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RegistersADD

Figure A-1: Architecture for digital implementation of binary-weight CNNs.

Table A.1 shows the estimated energy for the different operations at 0.8V.ESRAM,RD

is obtained from the measurements of the Conv-RAM read energy. An equal propor-

tion of 0’s and 1’s are assumed for the 1-b weights. Hence, the SRAM would only

consume bit-line switching energy for 50% of the cases. E2s,COMP is estimated from

simulations with 25-50% activity factor. Similarly, the energy (EADD) for the 6-b

pipelined adder is estimated from simulations with different sets of inputs.

Hence, from equation A.1 we can estimate the energy for doing 16 dot-products,

each with 64 input pairs, using the traditional digital approach, as:
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Table A.1: Energy (at Vdd = 0.8V) for the different digital operations, assumed in
this estimation

ESRAM,RD (‘1’): per bit 81fJ
ESRAM,RD (‘0’): per bit 25fJ
ESRAM,RD(avg): per bit 53fJ
E2s,COMP : per 6-bit 20fJ
EADD: per 6-bit 80fJ

Edig = 16× (64× 0.053 + 64× 0.02 + 72.5× 0.08)

= 167.6pJ
(A.2)

Hence, it corresponds to an energy-efficiency of: 16 × 64 × 2OPs/167.6pJ =

12.2TOPS/W at Vdd = 0.8V. Compared to this, our measurements for the in-memory

computation with the Conv-RAM (at 0.8V) achieved a peak energy-efficiency of

51.3TOPS/W for MNIST, which is > 4× better. This shows that our highly parallel

in-memory analog computation approach is more energy-efficient than a near-memory

digital implementation, even with binary filter weights.
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Appendix B

Energy Model of Input/Output

SRAMs for the LeNet-5 CNN

Here, we will estimate the SRAM energy required to read the inputs and write the

outputs for the convolutions/dot-products, implemented with Conv-RAM (CSRAM).

LeNet-5 CNN (shown in Fig. B-1) is used for the estimation. We will only analyze

the CONV layer C3, which involves the maximum number of computations. The

analysis can be easily extended for all the other layers of LeNet-5.

CNN 
Layers:

C1 S2 C3 S4 F5 F6
5×5

CONV
5×5

CONV
2×2

MAXPOOL
5×5
FC

1×1
FC

2×2
MAXPOOL

28×28×6

28×28×1

14×14×6

10×10×16

5×5
×16

1×1×120 1×1
×10Input

0

9

1
23

4
567

8

Figure B-1: Architecture of the LeNet-5 CNN, showing the sizes of the feature maps
(top) and the filters (bottom).

The input feature map (IFMP) size, for the layer C3, is 14× 14× 6, with 16 3-D
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Figure B-2: SRAM architecture to store the IFMP/OFMP’s, while processing the
convolutions.

filters of size 5× 5× 6. Hence, the 2-D output feature map (OFMP), corresponding

to one filter, would have a size of 14−5+1 = 10 elements in each direction. And, the

3-D OFMP size is 10 × 10 × 16. Since, the sub-sampling layer S4, following CONV

layer C3, reduces the size of the OFMP by 2× in each 2-D direction, we only need to

store 5× 5× 16 = 400 elements/pixels. Fig. B-2 shows the structure of the SRAM,

which can store the IFMP and OFMP elements. The IOFMP SRAM has 2 banks,

one of which is accessed per cycle. Each row in a bank has 8 words (each 6-bit),

corresponding to 8 different channels. For the IFMP of layer C3, each channel has

14× 14 = 196 elements/pixels. Since, all the 6 (<8) IFMP channels can fit in 1 row,

we need 196 rows to accommodate the entire IFMP. The OFMP (after sub-sampling)

has 5 × 5 = 25 elements per channel. Since, each row can accommodate 8 channels,

we need 25 × (16/8) = 50 rows, to fit all the 16 OFMP channels. Therefore, in

total, we need 196+50 = 246 rows to fit both the IFMP and OFMP of layer C3. We

assume 256 rows (128 rows per bank) to support this. It should be noted that, when

processing one CNN layer at a time, we only need to store its corresponding inputs

and outputs. The output of one layer is essentially the input to the next.

For estimating the energy for reading/writing the inputs/outputs for the convo-

lutions, we assume an architecture with multiple CSRAM arrays working in parallel.
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Figure B-3: Architecture of multiple CSRAM arrays working in conjunction, with 2
different input channels mapped to each CSRAM array (for CONV layer C3).

As shown in Fig. B-3, the partial convolution outputs (digital) from CSRAM array

#1 (corresponding to 2 input channels: 2,3) can be passed on to the next CSRAM

array #0 (corresponding to 2 other input channels: 0,1), where it is added to array

#0’s convolution output. In this way multiple partial convolution outputs (digital)

can be combined together, before being written back to the IOFMP SRAM.

When processing a CONV layer, like C3, we can re-use most of the input feature

map values when we evaluate the next output, corresponding to a 1-D shift. This is

illustrated in Fig. B-4, showing for a 5 × 5 filter, only 5 new pixels (for each input

channel) need to be read for the next computation cycle, for both horizontal and

vertical shifts. A possible implementation for the IFMP FIFOs is also shown in Fig.

B-4, to support the IFMP pixels re-use in the CONV layers. For vertical shifts, 5

new pixel values corresponding to a new row are fed to the input of the last FIFO.

After 5 serial shifts, all the input FIFOs would have the updated IFMP values for

the next Conv-RAM computation cycle. On the other hand, for vertical shifts, 5 new

pixel values are parallely fed to the inputs of the individual 5-element FIFOs. With 5

FIFOs operating in parallel, one shift operation is needed to update the IFMP values

for the next Conv-RAM computation cycle.

Now, 6 pixels for 6 different input channels can be simultaneously read from the
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Figure B-4: IFMP pixels re-use when processing 2-D convolutions with sliding window
(top), and the corresponding implementation for the IFMP FIFOs (bottom).

IOFMP SRAM per cycle and sent to 3 CSRAM arrays (each processing 2 channels

as shown in Fig. B-3). Therefore, the IOFMP read energy is amortized by a factor

of 3. Hence, the IFMP read energy, per computation cycle of 1 CSRAM array, can

be expressed as:

EIFMP =
1

3
× 5× 8× 6× (p0 × ESRAM,RD,0 + p1 × ESRAM,RD,1) (B.1)

where, ESRAM,RD,0 and ESRAM,RD,1 are the read energy per bit of the SRAM

for data ‘0’ and data ‘1’ respectively. The IOFMP SRAM is assumed to be data

dependent [54, 39], i.e. it has lower energy consumption for one polarity of the data

(‘0’ here) than the other (‘1’). p0 and p1 are the average percentages of ‘0’ and ‘1’ bits

in the input pixel values. We estimate the read energy from the Conv-RAM measured

values at 0.8V (as shown in Appendix A), and calculate p0 = 79% and p1 = 21% from

the measured input distributions for layer C3. Using those, we obtain:

134



EIFMP =
1

3
× 5× 8× 6× (0.79× 0.0125 + 0.21× 0.0405)

= 1.47pJ

(B.2)

For the OFMP, only 1 value needs to be written back per convolution output

(YOUT ) for 3 CSRAM arrays. In addition, while processing the 2-D convolutions,

only 1 value needs to be stored for 4 neighboring OFMP pixels. This is because

of the 2 × 2 sub-sampling/max-pooling operation (i.e. maximum of the 4 values) of

layer S4, following CONV layer C3, in the LeNet-5 CNN. With 8 channels per IOFMP

SRAM row, we need 2 cycles to write all the 16 CSRAM outputs corresponding to

16 different OFMP channels. Therefore, the OFMP write energy, per computation

cycle of 1 CSRAM array, can be expressed as:

EOFMP =
1

4
× 1

3
× 2× 8× 6× ESRAM,WR

= 0.4pJ

(B.3)

where, ESRAM,WR = 50fJ, is the write energy per bit, estimated from Conv-RAM

measurements at 0.8V.

Therefore, the total estimated energy (at Vdd = 0.8V), for the IOFMP SRAM

per computation cycle of 1 CSRAM array is = 1.47+0.4 = 1.87pJ, which is ∼ 6.2%

of the measured CSRAM energy of 30pJ at Vdd = 0.8V. This shows that, for the

convolution implementation using CSRAM, the energy required to read and write

the IFMP/OFMP values can be much lower than the energy of the CSRAM array, by

taking advantage of data re-use. For bigger sized neural networks (with more input

and output channels), the data re-use opportunity would be more, and hence, the

IFMP/OFMP SRAM energy overhead can be further reduced.
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