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Abstract

Distributed MIMO has long been known theoretically to bring large throughput gains
to wireless networks. Recent years have seen significant interest and progress in
developing practical distributed MIMO systems. Multiple systems have developed
coordination protocols to synchronize multiple nodes and enable them to transmit
simultaneously without interference. However, there are still several challenges that
need to be addressed in order to have a practical distributed MIMO system for WiFi
and LTE.

In this thesis, we address the practical limitations in distributed MIMO systems.
We present algorithms that enable practical distributed MIMO in the context of WiFi
and LTE. Furthermore, we demonstrate these algorithms through Hardware/Software
architectures which are implemented on an FPGA platform and run in real-time.

We present two different systems in this thesis. For WiFi, we present MegaMIMO
2.0, the first real-time 802.11 distributed MIMO system. MegaMIMO 2.0 builds on
top of state of the art work in distributed MIMO, and adds support for dynamic
environments and mobile clients while meeting the tight timing requirements of the
802.11 WiFi standard. We also introduce Chorus the first scalable distributed MIMO
system for LTE. Chorus works with the different modes of LTE and is resilient to
changes in network configuration. Both MegaMIMO 2.0 and Chorus require no change
to the user devices, and are fully compatible with the 802.11 standard for WiFi and
the 3GPP standard for LTE.

Thesis Supervisor: Dina Katabi
Title: Professor
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Chapter 1

Introduction

Recent years have witnessed fast growth in the use of mobile devices, and a significant

increase in demand for wireless throughput. However, the wireless spectrum is limited.

In the case of WiFi, devices fight over the unlicensed frequency bands and with the

increased demand the network becomes easily congested and suffers from losses due

to interference. In the case of cellular networks, it costs billions of dollars to obtain

a spectrum license [24]. Therefore, researchers and network providers have been

considering advanced MIMO (Multiple Input Multiple Output) techniques to increase

throughput per unit spectrum and provide better connectivity.

Initial research and theoretical work on using MIMO for wireless communication

showed that it could increase the throughput per unit spectrum linearly with the

number of antennas [64]. However, when antennas are densely packed together in

a small area, the channels between the different antenna pairs become correlated.

And as a result, the capacity of such MIMO systems would not be proportional to

the number of antennas, and gains would saturate after adding few antennas to the

system.

Distributed MIMO has long been studied in theory because of its ability to elimi-

nate the limitations in traditional MIMO and deliver dramatic increase in the wireless

network throughput [3, 60, 69, 44, 73]. It does so by synchronizing the oscillators on

independent nodes, allowing a network of transmitters to act as if they were one huge

MIMO system. Recent years have seen significant advances in moving distributed

21



MIMO from theory to practice [49, 2, 5, 71, 55, 74]. Multiple systems have devel-

oped coordination protocols to synchronize distributed transmitters and enable them

to concurrently transmit to multiple independent receivers, without interference.

The primary focus of past work has been to synchronize time, frequency and phase

across multiple transmitters. While that was an important first step, there are still

several challenges that need to be addressed in order to have a practical distributed

MIMO system for WiFi or LTE. Specifically, in order for any proposed technique to

be practical it must be able to fit within the current WiFi and LTE standards without

major changes. Further, it should work with existing user devices. Techniques that

require significant changes to the standards or even minor changes to the user devices,

will need decades to be deployed and in many cases will end up not deployed at all.

In this thesis, we present new algorithms and system design principles that enable

distributed MIMO under the existing standards for WiFi and LTE. We introduce

Hardware/Software architectures to demonstrate the performance of our systems on

an FPGA platform. We show that our systems provide practical, standard compliant,

real-time implementations of distributed MIMO for WiFi and LTE.

While the basic idea of distributed MIMO synchronization is similar in WiFi and

LTE, the rest of the system must differ significantly due to major differences between

the two protocols. Specifically, the Medium Access Control (MAC) layer in WiFi is

intrinsically different from LTE. In the case of WiFi, the MAC protocol uses a random

access technique, called Carrier Sense Multiple Access (CSMA), which requires any

transmitter to listen to the medium and wait until the medium is free before it can

transmit. Since WiFi medium access is on-demand, when adding distributed MIMO

to WiFi access points (AP), the synchronization process has to be performed on

demand. In contrast, the LTE MAC protocol relies on a central unit responsible

for scheduling the medium and assigning the different time/frequency slots to the

transmitting devices. Given the schedule, LTE small cells continuously transmit

their signals without idle time between frames. Since LTE small cells access the

medium continuously, adding distributed MIMO to small-cell base stations requires

continuous synchronization, and cannot be done on-demand. Below we elaborate on
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these differences between the two protocols. In later chapters, we revisit the challenges

and explain our solutions for WiFi and LTE separately.

1.1 Challenges for WiFi Distributed MIMO

The random access nature of the WiFi protocol and the on demand synchronization

impose a set of challenges that need to be addressed in order to have a practical

distributed MIMO system for WiFi. Those challenges can be summarized as follows:

(a) Channel Feedback Overhead: In order to adapt to changes in the environment

and mobility of users, a distributed MIMO system will need to continuously track the

changes in the wireless channels between all the APs and user devices. This problem is

complicated by WiFi’s on-demand random access MAC, where channel measurements

have to be bootstrapped every time a node accesses the medium. State of the art

solutions rely on channel feedback from the user devices to track the wireless channel.

However, this introduces a large overhead on the wireless medium. For example, the

overhead of channel feedback for an 8 × 8 system in typical indoor scenarios is more

than 25%. We discuss the channel feedback overhead in more details later in Section

4.1.1.

(b) Distributed Gain Control: A WiFi receiver design typically have Automatic

Gain Control (AGC) on the receiver path. The task of this AGC is to adjust the

magnitude of the signal in order to prevent close by transmitters from saturating the

receiver, and reduce quantization noise in the case of far away transmitters. Due

to the random access nature of WiFi, a WiFi receiver can not know the source of a

packet until it is fully decoded. Hence, the AGC would start estimating a new gain

configuration for each packet it receives. And as a result, it introduces both magnitude

and phase mismatch that affects the phase correction and ruins the synchronization.

We discuss those properties in more detail in Section 4.3.

(c) Tight Timing Constraints of WiFi: The CSMA protocol, used in WiFi, re-

quires fast turn around time in order to maintain access to the medium. For example,

a WiFi receiver is expected to turn around within 10 microseconds from receiving the
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last sample of the packet to transmitting the MAC layer Acknowledgement (Ack)

packet. If the medium stays idle for more than that time, other nodes will be allowed

to get access to the medium and start transmitting. This tight timing requirement,

puts real-time constraints on the algorithms one may design for phase correction,

channel estimation, AGC correction etc.

To address the above challenges we present MegaMIMO 2.0, the first real-time

802.11 distributed MIMO system. MegaMIMO 2.0 builds on top of state of the art

work in distributed MIMO, and adds support for dynamic environments and mobile

clients, without excessive channel feedback. It also deals with the AGC constraints

and the tight timing requirements of the 802.11 WiFi standard.

1.2 Challenges for LTE Distributed MIMO

The LTE MAC protocol relies on a centralized scheduling architecture, and an LTE

cell is continuously transmitting control information in order to define the time bound-

aries and declare the schedule for all users. Hence, LTE small cells are required to be

continuously synchronized in order to have a practical distributed MIMO system.

Fortunately, the use of centralized scheduling and continuous synchronization al-

leviate and sometimes eliminate the challenges that exist for WiFi. For instance,

continuous transmission and the ability to control the schedule means that the wire-

less channels can be tracked as opposed to having to bootstrap the channel estimates

with every packet transmission. Further, the LTE protocol performs power control on

the user devices in order to maintain the signals received from all users at a similar

power level, which in turn eliminates the need for an AGC on the LTE small cell.

Finally, due to centralized scheduling, the turn around time in LTE is more relaxed

than in WiFi. Specifically, nodes have a few milliseconds to decode the data and turn

around with an ACK. This gives more flexibility for the architecture of the transceiver

design in the LTE case.

Although distributed MIMO for LTE small cells does not have the same challenges

that exist in WiFi. It introduces its own set of challenges that need to be addressed.
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Those challenges are mainly driven by the requirement of continuous synchronization,

and the larger geographic span of LTE small cell networks.

Cellular operators expect massive deployments of small cells in 5G networks in

order to meet capacity requirements, especially in dense urban settings such as Man-

hattan, downtown Tokyo etc. [12, 65, 25]. Such a distributed network naturally spans

a large geographic scale, and experiences large amount of multipath fading and shad-

owing effects. To make the matter even worse, small cells are typically deployed on

third-party premises with limited access and control for the operators of the network.

Those properties of 5G small cells require LTE distributed MIMO systems to have a

synchronization structure that is scalable, resilient and easy to manage.

Unfortunately, prior distributed MIMO systems for WiFi do not meet these syn-

chronization requirements. Specifically, in WiFi distributed MIMO systems, the APs

are typically organized around an architecture consisting of clusters, each with a

single leader AP and multiple slave APs. All slaves listen to the leader signal and

synchronize the phase of their signal to match that of the leader. Such an architec-

ture is feasible in WiFi since WiFi networks do not have the same stringent scalability

requirements of a cellular network, and are rarely deployed on third party premises.

This architecture, however, is untenable for LTE small cells, and would prevent the

network from achieving the key requirements of being scalable, resilient and easy to

manage – it does not scale beyond the range of a single small cell, has a single point

of failure, and requires frequent reconfiguration and full control over the location of

the small cells.

In this thesis we introduce Chorus, a scalable distributed MIMO system for LTE

small cells. In Chorus there are no special roles, i.e., no leader and slaves. All

Chorus nodes transmit a synchronization signal, and all synchronize their oscillator

phases by listening to the synchronization signals transmitted by other nodes in their

vicinity. There are also no special constraints on topology or connectivity. Thus, the

coordination protocol is easy to manage and naturally scales to large networks with

transmitters that are no longer in hearing range of each other. It also makes the

system resilient to node failure, addition or removal. In order to achieve the above
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properties and provide a practical distributed MIMO system for LTE, Chorus has to

address the following challenges:

(a) Leaderless Distributed Synchronization: Each Chorus node transmits a

synchronization signal and synchronizes with the composite synchronization signal

that it hears. Naively applying this design leads to synchronization loops –e.g., a node

may be synchronizing with a second node, that is synchronizing with a third node,

which is synchronizing with the first node in the loop. Such loops are destabilizing,

i.e., they prevent the system from converging [42]. To prevent loops, Chorus has a

distributed protocol to organize the nodes in the form of a tree (specifically a fat tree).

In Section 5.3, we explain the protocol in detail and show how it is made resilient to

failures including failures of the root of the synchronization tree.

(b) Robust Phase Tracking: In past systems, the phase difference is computed

at the time of transmission and applied immediately for the duration of a single

packet. In contrast, in LTE, the synchronization signal can only be sent sporadically

due to the LTE frame structure to avoid large overhead and is required to maintain

the synchronization continuously. This makes the synchronization task much harder.

Furthermore, due to the leaderless architecture, the received synchronization signal is

now a composition of synchronization signals sent from multiple nodes. It is likely for

this combined signal to suffer from destructive interference at the receiver resulting in

a low signal strength for synchronization. This in addition to the disturbance caused

while nodes are joining and leaving the network. Chorus deals with these stringent

synchronization requirements by combining techniques from signal processing and

control theory, we discuss those techniques in Section 5.4.

(c) LTE Standard Compatibility: In order to provide a practical distributed

MIMO for LTE small cells, all the techniques used by Chorus have to fit within

the current LTE standard without introducing any changes to the LTE user devices.

This puts extra constraints on the structure of the synchronization signal and the

architecture of the system in general.
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In this thesis, we address the practical limitations in distributed MIMO systems.

We present algorithms and Hardware/Software architectures that enable practical

distributed MIMO in the context of WiFi and LTE. Furthermore, we demonstrate

real-time implementations of our designs on an FPGA platform.

Specifically, we present two different systems. For WiFi, we present MegaMIMO

2.0, the first real-time 802.11 distributed MIMO system. MegaMIMO 2.0 adds sup-

port for dynamic environments and mobile clients while meeting the tight timing

requirements of the 802.11 WiFi standard. We also introduce Chorus the first scal-

able distributed MIMO system for LTE. Chorus works with the different modes of

LTE and is resilient to changes in network configuration. Finally, MegaMIMO 2.0

and Chorus require no change to the user devices, and are fully compatible with the

802.11 standard for WiFi and the 3GPP standard for LTE.

The rest of the thesis is organized as follows, In Chapter 2 we give a brief back-

ground on distributed MIMO and discuss some of the main differences between the

physical and medium access layers of WiFi and LTE. We discuss the related work

in Chapter 3. In Chapter 4 we present the design, implementation and evaluation

of MegaMIMO 2.0. Then similarly we introduce Chorus in Chapter 5. Finally, a

conclusion is given in Chapter 6.
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Chapter 2

Related Work

In this chapter we discuss the differences between the work presented in this thesis

and the related work in literature. First we discuss some of the theoretical work done

on MIMO in general and on Distributed MIMO in specific. After that we present

the related work in literature for practical distributed MIMO in the context of WiFi

and LTE. And finally, we show the difference between the synchronization required

for distributed MIMO compared to the synchronization required by other distributed

network protocols.

2.1 History of MIMO

Wireless communication technologies have been in continuous demand for higher data

rates. Traditionally this demand has been achieved using methods such as providing

more bandwidth and using higher modulation schemes. In the last few decades,

multiple antenna systems (Multiple Input, Multiple Output - MIMO) were introduced

and found to achieve a significant enhancement to data rate and channel capacity.

In this section, we give some background on MIMO communication, and how it was

developed over the past years.

Although some of the ideas concerning multi-channel digital transmission systems

are sometimes traced back to the 1970s [35, 11, 68], it wasn’t until the early 1990s

when inventors started looking at the possibility of using multiple antenna systems
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to transmit and receive different data streams on the same frequency at the same

time [45].

In the late 1990s, researchers started looking at the channel capacity limits for

MIMO systems and showing that the channel capacity for MIMO systems increases

with the number of antennas, and is proportional to the smaller of the number of

transmit antennas and receive antennas in the system. This was first established by

the ground-breaking papers of Foschini [27, 28] and Telatar [64].

Briefly after that, many researchers were studying the design of channel codes

for improving the data rate and reliability of wireless communication systems using

MIMO. This resulted in a large body of theoretical work on MIMO systems, examples

are Tarokh et al. [63, 62], Alamouti [4] and many others. After that many systems

were introduced to show the gains of MIMO systems, as an example the Bell Labs

Layered Space-Time (BLAST) architectures [27, 70, 54].

The gains from using MIMO are best achieved under the assumption of Indepen-

dent and Identically Distributed (i.i.d.) channel fading model. However, when the

scattering in the environment is insufficient, or when antennas are densely packed

together in a small area, the channels between the different antenna pairs become

correlated. And as a result, the capacity of such MIMO systems would not be pro-

portional to the number of antennas, and gains would saturate after adding few

antennas to the system.

The impact of correlated channel fading have been studied by a large body of

research [59, 39, 8, 29, 38, 51, 23], this in addition to other research that studied the

effect of the area and geometry of the antenna array on the degrees of freedom in a

MIMO system [41, 47, 48, 31].

In order to deal with the issues related to correlated channel fading, and provide a

MIMO system that could scale indefinitely with the number of antennas, researchers

started studying the idea of Distributed MIMO [73]. Distributed MIMO is a promising

technique which allows wireless systems to benefit from all the MIMO gains without

having all the antennas on the same device. As a result it reduces the dependancies

between the channels and allow for higher MIMO gains than what is achievable in
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regular MIMO systems. We discuss the related work on distributed MIMO both in

theory and practice in more details in the next sections.

2.2 Theoretical work on Distributed MIMO

There is some theoretical work [6, 66] that addresses distributed phase synchro-

nization, but assumes frequency synchronous oscillators and only provides one-time

phase offset calibration. Furthermore, The promise of distributed MIMO to improve

the scalability of wireless networks has been explored in the theoretical community.

Jungnickel et al. [34, 33] used capacity estimates derived from channel measure-

ments in an urban microcellular system, and demonstrated that distributed MIMO

can provide a large gain in spectral efficiency through cochannel interference mitiga-

tion. Simeone et al. [60] studied the limitations imposed by capacity constraints on

the performance gains provided by distributed MIMO.

In the context of ad hoc wireless networks, work by Aeron et al. [3] and Ozgur

et al. [44] considered the throughput scaling laws for distributed MIMO in the case

of dense networks. Aeron et al. [3] focused on networks with fixed Signal to Noise

Ration (SNR), and introduced schemes to optimize the total network throughput.

Ozgur et al. [44] showed that using distributed MIMO in such a setup can scale the

total capacity of wireless ad hoc networks linearly with the number of nodes.

In the context of WiMAX networks, Venkatesan et al. [69] studied the use of

distributed MIMO and quantified the spectral efficiency gains that can be obtained.

In their work they considered realistic propagation models and operational conditions

for a typical indoor deployment, and performed detailed simulations

Motivated by these theoretical results, recent years have seen significant research

effort in moving distributed MIMO from theory to practice for both WiFi and LTE,

and we discuss those system in the next two sections.
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2.3 Distributed MIMO Schemes for Wi-Fi

There has been a significant research effort in providing practical distributed MIMO

for WiFi [49, 5, 71, 2, 74, 71]. While these systems differ in details, they focus only

on the problem of synchronizing the transmitters in time, phase and frequency, do

not address power control and the overhead of learning and tracking the channels.

Further, they demonstrate their results using one-shot channel measurements, and

unlike MegaMIMO 2.0, do not design or show a full fledged physical layer or a real-

time system capable of dealing with moving clients and dynamic environments.

Also related to our work are papers studying the use of reciprocity for channel

estimation [10, 30, 58]. The growth of massive MIMO systems has led to interest

in scalable channel estimation techniques [57]. However, all these systems assume

that all the antennas being calibrated for reciprocity share a single clock, and are

on the same device. As a result, they do not extend to distributed scenarios where

the different devices do not share a clock, and perform independent gain control.

MegaMIMO 2.0 demonstrates how to extend reciprocity to these distributed scenarios,

thereby enabling scalable channel estimation for distributed MIMO.

MegaMIMO 2.0 builds on the above related work but fills in an important gap

by delivering the first fully operational 802.11 distributed MIMO PHY. This perfor-

mance is enabled by novel techniques for extending reciprocity to distributed MIMO,

coordinating power control, and providing a software-hardware architecture that can

meet the strict timing constraints of distributed MIMO.

2.4 Distributed MIMO Schemes for LTE

The typical design of WiFi distributed MIMO systems assume a leader/coordinator

that plays a special role in synchronizing the oscillators of the nodes. Such a design

would not work at the scale and conditions of LTE as discussed earlier in Section 1.2.

There are some previous schemes that have considered scaling beyond a single leader.

For example, NEMOx [74] considers multiple clusters each having its own leader
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AP. The leader APs coordinate with each other to limit interference across clusters.

However, such a system still is not resilient to the loss of leaders within a cluster,

or changes in network topology that prevent adjacent leaders from coordinating, and

is difficult to manage since it requires operators to determine the partitioning of the

network into clusters and the corresponding leader assignment.

An extension to Airsync [52] proposes a hierarchical leader scheme that faces the

same problems of scalability and resilience, and further, that system has only been

proposed in theory and not evaluated empirically.

Vidyut [71] avoids the need for a single leader by allowing the Wi-Fi access points

to synchronize their transmissions over the power lines, even if they are not within

the same coverage area. Such a scheme applies to nodes within the same home or

building, but does not scale to a larger network and does not apply to small cells

where nodes are geographically dispersed and connected to different power systems.

Furthermore, the reliance on power lines implies that the system is not resilient to

power surges and noise on the power lines.

LTE has some mechanisms for loose GPS-based synchronization between devices,

to enable joint transmission from multiple devices in nearby subcarriers, subcarrier

suppression for inter cell interference cancellation etc [9]. Similarly, schemes have

been proposed to achieve such inter-cell interference elimination in 802.11ac [72].

Unlike distributed MIMO, these schemes do not allow concurrent transmissions in

the same frequencies at the same time. They only limit interference between adjacent

frequencies. Hence their throughput gains are much lower than distributed MIMO.

Other LTE systems based on DAS and CoMP has been widely used to provide better

coverage and improve te network performance for in-door scenarios and around cell

edges. However, current solutions based on DAS or CoMP fail to deliver the benefits

of a truly distributed MIMO system.

A popular recent trend in LTE is massive MIMO [57, 56, 32, 40]. For instance,

systems such as Argos [57] have demonstrated designs where a large number of MIMO

antennas are packed densely on a single node. distributed MIMO is complementary

to Massive MIMO. Specifically, massive MIMO is typically applicable to base stations
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or macro cells, which can accommodate the size and power requirements of the large

number of antennas and their corresponding digital and analog chains. In contrast,

Chorus is targeted at small cells, which have a much smaller form factor and lower

power budget.

2.5 Other Related Work

There is a significant literature on a variety of coordination, consistency, and consen-

sus protocols in the distributed systems literature, such as Dynamo, Paxos, Spanner,

and Raft [14, 43, 36, 37]. These systems are typically used to determine a leader

among a set of servers in a distributed system, and agree in a distributed manner

on states of a state machine. These systems are however fundamentally different in

scope, and timescales, from distributed MIMO. Specifically, in these distributed pro-

tocols, the state of the system is determined only by interactions between the servers

in the distributed system, and advances or rolls back based on messages exchanged

between them. In contrast, the goal of distributed MIMO is to track an analog state,

specifically, the phase of a reference oscillator, which is constantly changing indepen-

dent of the interaction between the nodes in the system. As a result, the role of

the protocol is to ensure that all nodes in the system track this reference oscillator

accurately within tens of nanoseconds.
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Chapter 3

Background

3.1 Distributed Multi-User MIMO Systems

Unlike wired communication the wireless medium is shared. If two different transmit-

ters try to access the wireless medium at the same time and on the same frequency

their signal will interfere and a receiver will not be able to get the right data. As a

result wireless system tend to divide the resources between them in time or frequency

or both.

Using MIMO in wireless communication introduces a new dimension to be used

which is the spatial dimension. When a communication system has multiple transmit

and multiple receive antennas, like the system shown in Figure 3-1, those antennas

increase the degrees of freedom in the system and allow for spatial multiplexing.

Since each antenna on the receiver side is capable of hearing the antennas on

the transmitter side multiplied by some channel ℎ, under the condition that all the

channels are known and form an independant set of equations, the receiver would be

able to recover different data streams sent on the different antennas of the transmitter.

So for the example shown in Figure 3-1, this system would be capable of sending three

different data streams at the same time and on the same frequency. In such a system

where all the transmit antennas are on one device and all the receive antennas are on

another device, it is called point-to-point MIMO or Single User MIMO.

The most obvious limitation to single user MIMO is that the multiple streams of
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Figure 3-1: Single User MIMO.

data have to be sent to or received from one device at a time. Not only that, but the

number of streams that can be sent is limited by the minimum number of antennas

on the transmitter and the receiver. For example, if the transmitter (Access Point)

has 4 antennas and the receiver (phone) has 2 antennas, such a system is only capable

of sending 2 streams at a time.

Due to the unsemetric formfactor constraints on the Access Points (APs) and the

user devices (cellphone, tablet, etc.), APs typically have larger number of antennas

than the number of antennas on a user device. However, the achievable gains from

those antennas becomes limited by the number of antennas on the user device. In

order to overcome this limitation, we need to use a different technology called Multi-

User MIMO.

Figure 3-2 shows an example of a Multi-User MIMO system. The way Multi-User

MIMO works is that instead of performing the channel estimation and decoding at

the receiver, it is performed at the transmitter. So the transmitter is responsible

for precoding the signal transmitted on each of its antennas in a way that when it

combines at a given user only the data intended for that user survives and the data

for all the other users cancels out. And in order for the transmitter to perform the

precoding operation, it needs to know the channel between the different transmit and

receive antennas. And that could be either measured at the user devices then fed

back to the transmitter, or estimated directly at the transmitter using reciprocity.
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Figure 3-2: Multi-User MIMO.

Multi-User MIMO allows a wireless system to utilize all the antennas on the access

points even when the users are having less number of antennas. However, the gains

from such a system are still limited by the number of antennas that can be placed on

a single access point. And in many cases, because the multiple antennas are placed in

close proximity of each other their channels become dependent and reduce the degrees

of freedom that can be achieved by the system.

In order to reduce the dependancies between the channels, and provide a MIMO

system that is capable of scaling indefinitely with the number of antennas, we have to

use another technique that is called Distributed Multi-User MIMO, or we can just call

it Distributed MIMO. Figure 3-3 shows an example of Distributed MIMO. The main

AP 1 Client 1
ℎ""
ℎ#"

ℎ$"

Ethernet

Client 2
Client 3

AP 2
AP 3

Figure 3-3: Distributed Multi-User MIMO.
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difference between this system and the one shown in Figure 3-2, is that in Distributed

MIMO the antennas are distributed across multiple access points which reduces the

dependance between the channels.

The main challenge in Distributed MIMO is that in order for the different access

points to be able to transmit and receive at the same time, they need to be perfectly

synchronized in time, frequency and phase. And in this thesis we present algorithms

and implementations that are capable of synchronizing multiple nodes and showing

the gains of Distributed MIMO in the context of WiFi and LTE.

3.2 Differences between WiFi and LTE

It is essential for any proposed technique to be able to fit within the current framework

without major changes. Techniques that require significant changes to the standard

or even minor changes to the user devices, will need decades to be deployed and in

many cases will end up not deployed at all. In order to understand what it takes to

integrate distributed MIMO in todays WiFi and LTE networks, in this section we

present some background about WiFi and LTE, and discuss some of the differences

in the signaling structure between the two standards.

Before we discuss the challenges for Distributed MIMO systems, it is important

to understand some of the differences between WiFi and LTE. Understanding those

differences will help us set the goals for our systems, and optimize our resources in the

WiFi LTE
Network Scale Local Area Network Wide Area Network

Coverage Range outdoor < 100𝑚
indoor < 50𝑚

macro cells 10𝑠 𝑘𝑚
small cells 100𝑠 𝑚

Duplexing TDD only TDD or FDD
Medium Access Distributed Random Access Centralized Scheduling
Signal Structure Packets Continuous Transmission
Power Control APs and User devices User devices only
Turnaround Time Very tight More relaxed

Table 3.1: Significant differences in signaling structure between WiFi and
LTE.

38



right direction. Table 3.1 shows a summary for the differences that we are discussing

in this section.

3.2.1 Network Scale & Coverage Range:

Driven by regulations on the ISM bands and specifications from the WiFi standard,

the expected coverage provided by a single WiFi Access Point (AP) would not exceed

few 10𝑠 of meters in the best indoor scenario. On the other hand, an LTE Base

Station (BS) is expected to have more than one order of magnitude larger coverage

range from a single small cell. Although this might look like a simple scaling problem,

it is not the case for distributed MIMO. In order for distributed MIMO to scale the

network throughput with user demand, it has to increase the number of APs (for

WiFi) or BSs (for LTE) to increase the total throughput of the network. As a result,

a distributed MIMO system for LTE is expected to have a larger number of BSs and

span a larger geographic area, i.e. multiple buildings or even a city. In other words,

it is acceptable in a distributed MIMO system for WiFi to be structured in the form

of different clusters of APs, having each cluster using a different channel from the

ISM band, and covering an office area or one floor of a building. In LTE however,

this would simply not work.

3.2.2 Uplink/Downlink Duplexing:

In WiFi an AP shares the same frequency channel with all user devices connected to

it. The APs and user devices divide the resources between them in a Time Division

Duplexing (TDD) fashion. Which means that in WiFi both Tx and Rx of all devices

are expected to be using the same frequency channel. LTE however, comes in two

different flavors, one of them is TDD (similar to WiFi), and the other one is Frequency

Division Duplexing (FDD). In FDD, the BSs are transmitting on a different frequency

channel than that used for transmission by the user devices. In other words, there is

a specific channel for signals going from the BSs to the user devices called DownLink

(DL) channel, and a different frequency channel, UpLink (UL), for signals from the

39



user devices back to the BSs. Hense, in the FDD mode of LTE the Tx and Rx of

the BSs are not using the same frequency channel. And that introduces some extra

challenges in the case of LTE that we will discuss later.

3.2.3 Medium Access Control (MAC):

Since in both WiFi and LTE multiple devices are expected to be sharing the same

medium, there need to be a protocol that grants access for those devices. And that

is called the MAC. In WiFi, devices use a distributed random access protocol called

Carrier Sense Multiple Access (CSMA). The basic idea in CSMA is that when a

device needs to access the medium it has to first listen on the medium and make sure

the medium is free, only then it will start transmitting. In LTE, the case is totally

different, since network providers are paying to license a channel, they get exclusive

access to that channel. Hence, it is guaranteed that all the devices using this channel

belong to the same network controlled by that provider. So, in order to minimize the

losses, LTE uses a centralized scheduling technique. A central unit is responsible for

defining the schedule ahead of time, so each node will know exactly when to transmit

and when to expect data.

3.2.4 Signal Structure:

In WiFi the signaling unit used is a packet. Once a device obtains the access to the

medium using CSMA, it will transmit a packet or a sequence of packets. And once it

is done transmitting, it has no guarantee on when it will gain access to the medium

again. And for a WiFi device receiving a packet, it would not know which device

is sending this packet, or what is the purpose of it until the packet is fully received

and decoded. On the other side, LTE uses a frame structure. An LTE BS will be

continuously transmitting control signals inside that frame structure, that helps all

devices to track the state of the frame, and know when is the right time for them to

transmit or receive.
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3.2.5 Power/Gain Control:

In WiFi, in order to provide a reasonable coverage range without increasing the

requirements on the hardware. A WiFi AP would use an AGC on its receiver to

adapt for the difference in power for signals received from different devices. And

since the medium access is random, a WiFi receiver will have to start fresh for every

packet to learn what is the proper gain to be used for this specific packet. In LTE

gain control is relatively slow, and is performed only on the user devices. A BS would

provide a feedback to the user equipment to help it control its transmit power so that

signals from all users are received with similar power level at the BS.

3.2.6 Turnaround Time:

In WiFi, the turnaround time for the MAC layer Acknowledgement (Ack) is very

tight. A node is expected to turnaround and provide an Ack within 10 microsecond

from receiving the last sample in a packet. Moreover, if the medium stays idle for

more than 30 microseconds it is likely that another device will obtain the medium

and start transmitting. This puts harsh requirements on the coordination between

different nodes in a distributed MIMO system for WiFi. In LTE, that requirement

does not exist, the Ack could be provided milliseconds after the reception of the data,

and the medium access is guaranteed by the centralized scheduling.
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Chapter 4

MegaMIMO 2.0: Distributed MIMO

for WiFi

4.1 Introduction to MegaMIMO 2.0

It is important for a new technique to fit nicely within the target protocol without sig-

nificant changes to the standard or user devices. One of the prior work on distributed

MIMO for WiFi, MegaMIMO [49], has achieved a significant advancement in that

direction. MegaMIMO was designed to address the idea of synchronizing independant

WiFi APs and allowing them to jointly transmit to multiple user devices. It does so

by organizing the network into a single leader AP and multiple slave APs. The slave

APs listen to the leader packets, and use them to correct for the accumulated phase

change on their oscillators. They also use those packets as a trigger for the joint

transmission.

Although MegaMIMO was successful in solving the synchronization problem in

WiFi without any changes to the user devices. It did not address other important

challenges that arise once we start considering a real-time implementation of the

system. In this chapter we describe the design and implementation of MegaMIMO 2.0,

the first real-time distributed 802.11 MIMO system. MegaMIMO 2.0 delivers a full-

fledged 802.11 PHY, while meeting the tight timing constraints of the 802.11 protocol.

Further, in MegaMIMO 2.0 we address problems related to power control and we
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present a software/hardware architecture that enables the new functionalities required

for synchronization. In the rest of this section we discuss the critical limitations in

MegaMIMO, and show how we solve them in MegaMIMO 2.0.

4.1.1 Channel feedback overhead

At the heart of all distributed MIMO designs, there is a core subsystem that measures

the channels from all the transmitters to all the different end users and uses them

to apply desired beamforming and nulling. For any real-time system, these measure-

ments have to be collected and updated on the scale of tens of milliseconds. Even in

today’s point-to-point MIMO systems, the process of collecting channel measurement

is known to be high overhead [46]. The problem becomes quadratically more expensive

in a distributed MIMO scenario because all senders have to measure channels to all

clients for all subcarriers.

To illustrate how significant a problem overhead is, we simulate a distributed sys-

tem consisting of 𝑁 access points and 𝑁 clients. We use typical feedback parameters

for WiFi (8 bits magnitude and phase for all OFDM subcarriers, and QPSK with

1/2 rate for the channel feedback data with proper headers and DIFS), and evaluate

overhead for various channel feedback intervals. Fig. 4-1 plots this overhead as a

percentage of medium occupancy. As we can see, the overhead increases drastically

with the number of users and can consume most of the wireless medium resources for

large distributed MIMO systems. In fact, for a 16 × 16 system, feedback consumes

most of the channel time at typical indoor coherence times of 100 ms. The overhead

is even bigger for mobile clients with lower coherence times. It is therefore clear that

for a real-time distributed MIMO system to be plausible, it cannot rely on explicit

feedback and needs to devise other mechanisms to update channel information at low

cost.

Addressing this problem in the context of distributed nodes is not easy. The

natural approach for eliminating channel feedback would be to use channel reciprocity.

Reciprocity refers to the property that the over-the-air channel from a node, say node

A, to another node, say node B, is the same as the over-the-air channel from node
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Figure 4-1: Channel feedback overhead for distributed MIMO system. The
figure shows that at typical coherence times of about 100ms, the channel feedback
overhead can significantly limit the gains of distributed MIMO systems, particularly
as they scale to more nodes. For mobile clients with lower coherence times, the
overhead is even higher.

B to node A. Point-to-point MIMO systems have leveraged reciprocity to enable a

transmitter to infer the forward channel from its measurements of the reverse channel,

without the need for any receiver feedback. They do this by performing a one-

time computation of a constant calibration factor that compensates for the part of

the channel introduced by the transmit and receive hardware, and correcting their

estimate of the forward channel from A to B by applying this calibration factor to the

reverse channel from B to A. In Section 4.2, we demonstrate that in a WiFi distributed

MIMO systems, there is no such constant calibration factor that can be computed

one-time, and applied to correct for reciprocity. We present a mathematical model

that captures the variations in the calibration factor in a distributed system. We also

introduce a protocol that computes these variations without additional transmission

overhead, thereby extending the benefits of reciprocity to MegaMIMO 2.0.
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4.1.2 Power control

Practical WiFi systems all use Automatic Gain Control (AGC), an analog module

that dynamically adapts for the difference in power of signals received from different

devices. However, in a distributed MIMO system, the nodes must maintain a con-

sistent view of the channels and other signaling information (e.g., their phase with

respect to the lead access point). Furthermore, the measurements of the channels and

signaling information have to be consistent across time. These requirements are at

odd with today’s AGCs, which operate independently from the AGCs on other nodes

and have no memory across packets. Of course, one way to address this problem is

to deactivate any individual control of AGC across the different devices.1 However,

doing this is not acceptable for any practical system, since the loss of data rates due

to the inability to control power will translate to a large performance loss, defeating

the very purpose of distributed MIMO.

MegaMIMO 2.0 therefore designs a system that infers the AGC parameters from

the hardware on a per-packet basis, and incorporates these parameters into both

distributed MIMO signaling and channel estimation.

4.1.3 Rearchitecting the baseband and firmware

Distributed MIMO requires redesigning the firmware-hardware interface. Event tim-

ing in the existing WiFi stack is local to each device. Thus, the firmware-hardware

interface operates on event sequence, and timing is buried into the hardware. In

contrast, in a distributed MIMO system, the hardware needs to react to interactions

between devices, and perform coordinated actions across multiple devices, as opposed

to purely local timing interaction like in traditional WiFi. MegaMIMO 2.0 extends

the interface between the PHY and the MAC to support such distributed coordina-

tion, and further enhances the real-time component of the MAC to enable it to effect

this distributed coordination using local actions at each node.

We present a comprehensive system design that delivers the first real-time dis-
1This is typically the case in USRPs which have no support for AGC and on which prior systems

have been demonstrated.
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tributed WiFi MIMO system. Our design provides a full-fledged distributed MIMO

PHY layer that address the above challenges, delivering seamless channel adaptation,

coordinated power control, and a refactored implementation of the 802.11 baseband

and firmware to incorporate distributed coordination. We have built MegaMIMO 2.0

in a system-on-module comprised of an FPGA connected by a high-speed bus to an

ARM core. Our implementation features a real-time full-fledged 802.11 PHY capable

of distributed MIMO.

We evaluate our system in an indoor deployment consisting of multiple 802.11

distributed-MIMO capable APs and unmodified 802.11 clients in an indoor testbed.

Our results show the following:

∙ MegaMIMO 2.0 can deliver a real-time distributed MIMO system capable of adapt-

ing to mobile devices and dynamic environments with people walking around. In

particular, a four-AP distributed MIMO system running MegaMIMO 2.0 delivers

a median throughput of 120Mb/s and a maximum throughput of 194 Mb/s to four

clients mounted on moving Roomba robots.

∙ MegaMIMO 2.0’s reciprocity is both accurate and necessary for high throughput.

Specifically, in a fully static environment, beamforming using reciprocity and beam-

forming using explicit feedback deliver the same gain. In contrast, in a mobile

environment with four APs and four mobile clients, explicit feedback reduces the

median throughput by 20% in comparison to reciprocity, due to feedback overhead.

However, reducing the feedback rate can decrease the throughput by as much as

6x due to stale channel information. These results show the importance of using

reciprocity even in a relatively small 4×4 distributed MIMO system. Since the

feedback overhead increases quadratically with the size of the distributed MIMO

system, we expect that reciprocity is even more essential for larger systems.

∙ MegaMIMO 2.0’s ability to accommodate distributed power control is critical. In

the absence of distributed gain control, the throughput of clients drops dramatically

as the channels between some APs and clients become significantly weaker than

channels between other APs and clients. Our experiments show a reduction of 5.1×

in throughput when we deactivate MegaMIMO 2.0’s distributed power control.
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4.2 Channel Update and Tracking

Knowing the channels is a core requirement for any multi-user MIMO system. In

order for the AP to apply MIMO techniques like beamforming and nulling, it needs

to know a priori the downlink channels to the clients. However, learning the downlink

channels and tracking them as they change over time can cause excessive overhead

for the system, as shown in Fig. 4-1. The overhead quickly increases for distributed

MIMO as the number of participating APs and clients increases, and can eat up most

of the gains even for relatively moderate sized distributed MIMO systems with, say,

8 or 16 APs. In this section, we describe a completely passive approach for learning

the downlink channels and updating them in real-time. Our approach extends the

normal reciprocity concept used in point-to-point MIMO to infer downlink channels

from uplink channels. Below, we explain how reciprocity is used in today’s MIMO,

the challenges in extending the same concept to distributed MIMO, and finally our

solution for addressing those challenges.

4.2.1 Reciprocity in Traditional MIMO

Let us consider the simple example in Fig. 4-2 where a two-antenna AP is com-

municating with a single-antenna client. As mentioned earlier, to perform MIMO

techniques, the AP needs to know the downlink channels ℎ𝑑𝑜𝑤𝑛,1 and ℎ𝑑𝑜𝑤𝑛,2 to the

client. The most straightforward approach would be to have the AP transmit on the

downlink to the client from both antennas, and have the client measure the channels

and transmit them back to the AP.2 Alternatively, the AP can avoid the feedback

overhead by leveraging the concept of reciprocity, which says that the forward channel

on the air is the same as the reverse channel on the air. Thus the AP can leverage

the client’s transmissions to measure the uplink channels ℎ𝑢𝑝,1 and ℎ𝑢𝑝,2. It can then

convert them to downlink channel estimates by multiplying them by a calibration

2The client would need to measure the channels for all subcarriers and send them back to the
AP.
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Figure 4-2: A 2-antenna AP transmitting to a 1-antenna client. With reci-
procity based channel estimation, the AP would need to estimate the downlink chan-
nels ℎ𝑑𝑜𝑤𝑛,1 and ℎ𝑑𝑜𝑤𝑛,2 from the uplink channels ℎ𝑢𝑝,1 and ℎ𝑢𝑝,2.

factor, 𝐾𝑖, as follows:

ℎ𝑑𝑜𝑤𝑛,1 = 𝐾1ℎ𝑢𝑝,1

ℎ𝑑𝑜𝑤𝑛,2 = 𝐾2ℎ𝑢𝑝,2

The calibration factor compensates for the fact that the measured channels include

the hardware of the AP and the clients, as well as the air channels. Specifically, the

downlink channels include the impact of the transmit chain on the AP and the receive

chain on the client, while the uplink includes the transmit chain on the client and

receive chain on the AP. Thus,

𝐾1 =
ℎ𝑡𝑥,𝐴𝑃,1

ℎ𝑟𝑥,𝐴𝑃,1

/
ℎ𝑡𝑥,𝐶𝑙𝑖,1

ℎ𝑟𝑥,𝐶𝑙𝑖,1

𝐾2 =
ℎ𝑡𝑥,𝐴𝑃,2

ℎ𝑟𝑥,𝐴𝑃,2

/
ℎ𝑡𝑥,𝐶𝑙𝑖,1

ℎ𝑟𝑥,𝐶𝑙𝑖,1
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From the above, it might seem that the calibration factor used at the AP are

client dependent. However, this is not the case. Specifically, MIMO systems do

not need the exact values of the channels but rather need the relative ratios of the

channels from the different transmit antennas.3 [67]. Therefore, instead of computing

the above channels, we can divide all channels by 𝐾1, and compute the following

MIMO channels.

ℎ′𝑑𝑜𝑤𝑛,1 = ℎ𝑢𝑝,1

ℎ′𝑑𝑜𝑤𝑛,2 = 𝐶2ℎ𝑢𝑝,2

where this new calibration factor:

𝐶𝑖 =
ℎ𝑡𝑥,𝐴𝑃,𝑖

ℎ𝑟𝑥,𝐴𝑃,𝑖

/
ℎ𝑡𝑥,𝐴𝑃,1

ℎ𝑟𝑥,𝐴𝑃,1

is independent of the client.

Further, this calibration factor, 𝐶𝑖, is independent of time and can be computed

once and used for all further transmissions from this AP.

4.2.2 Reciprocity in Distributed MIMO

Ideally, one would like to leverage the concept of reciprocity to learn the downlink

channels without any client feedback, as is the case for traditional MIMO. Unfortu-

nately, the traditional reciprocity formulation does not extend to distributed MIMO,

i.e., there is no such constant factors that can be computed once and used to infer

the downlink channels from the uplink channels.

To understand why this is the case, let us go back to our previous example and

assume that instead of two independent APs, we have two APs each with one an-

tenna. In principle, a distributed MIMO system aims to emulate a traditional MIMO

3In fact, all channels get eventually scaled by the transmit power and therefore, all measurements
are up to a scaling factor.
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system with all the antennas on one humongous transmitter. Unfortunately, now

each antenna is on a different AP, which has a separate oscillator and hence the two

antennas would have carrier frequency offsets relative to each other. This simple fact

means that the calibration factor 𝐶𝑖 is no longer constant over time. Recall that the

calibration factor is defined as:

𝐶𝑖 =
ℎ𝑡𝑥,𝐴𝑃,𝑖

ℎ𝑟𝑥,𝐴𝑃,𝑖

/
ℎ𝑡𝑥,𝐴𝑃,1

ℎ𝑟𝑥,𝐴𝑃,1

When the two antennas are on the same device, they are connected to the same

oscillator, and therefore their hardware chains do not change with respect to each

other. However, when the two antennas are on independent APs, they are connected

to different oscillators. Since the oscillator is part of the hardware chain, the differ-

ences between oscillators are part of the calibration factor. However, the differences

between oscillators do not stay constant over time since their phases rotate relative

to each other according to their CFO. In particular, say that the first oscillator has a

carrier frequency 𝜔1 and the second oscillator has a carrier frequency 𝜔2 = 𝜔1 +∆𝜔21.

Then, the calibration factor 𝐶𝑖 changes over time as

𝐶𝑖(𝑡) = 𝐶𝑖(0) exp(𝑗2∆𝜔21𝑡) (4.1)

Two points are worth noting.

∙ First, one option to compute the calibration with respect to the lead AP is to

compute the CFO with respect to the lead AP, and update the calibration factor

according to Eq. 4.1. As mentioned earlier, and is widely known, this does not

work in a distributed MIMO system since even small errors in computing the CFO

accumulate over time leading to unacceptable errors in the estimate.

∙ The factor of two in Eq. 4.1 arises from the fact that MegaMIMO 2.0 needs to correct

uplink channel estimates for the phase offset between master and slave and convert

them to correct downlink channel estimates. In contrast, MegaMIMO directly cor-

rects downlink channel estimates for the phase difference between the master and
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the slave.

In the following section, we describe a protocol that extends distributed MIMO

to account correctly for this factor.

4.2.3 Distributed Reciprocity

We use the term distributed reciprocity to refer to the extension of the reciprocity con-

text to distributed environments. Thus, the objective of distributed reciprocity is to

compute the time dependent calibration parameter 𝐶𝑖(𝑡) which allows the distributed

MIMO system to infer the downlink channels from the uplink channels.

Recall that, in distributed MIMO, there is a lead AP and multiple slave APs, and

all the slave APs calibrate with respect to the lead AP. In the context of reciprocity,

this means that the lead AP simply uses its uplink channel estimates as its downlink

channel estimates without any correction, and all slave APs have to compute their

downlink channel estimates as their uplink channel estimates corrected by their cali-

bration factor with respect to the lead AP, i.e., the ∆𝜔 in Eq. 4.1 is the CFO relative

to the lead AP.

As mentioned earlier, simply estimating the phase offset using the CFO will lead

to large errors. Thus, instead of computing the value of the calibration factor over

time, we only compute the instantaneous value of the calibration factor exactly when

the channel is measured, i.e., we compute the difference between the oscillator phase

on the master and the oscillator phase on the slave at the exact time as the uplink

channel measurement.

MegaMIMO 2.0’s calibration occurs in two steps: initialization and update. The

initialization step occurs at reboot or when the AP joins the distributed MIMO

system. It estimates both the magnitude and phase of the calibration parameter at

the initialization time. The update step is invoked upon any reception from a client.

It assumes the existence of some prior estimate of the calibration factor, and updates

that prior estimate to account for change of phase relative to the lead AP.

We first describe the initialization step. The goal of this step is twofold. First, it
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estimates the magnitude and phase of the calibration parameter, as mentioned earlier.

Second, it computes a reference channel from the lead AP to the slave AP, which is

used during the update step, as described later.

The step consists of two back to back transmissions, the first from the lead AP

to the slave, and the second from the slave AP to the lead. The slave measures the

channel from the lead AP, ℎ𝐴𝑃1→𝑖, using the preamble of the first transmission and the

lead measures the channel from the slave AP, ℎ𝐴𝑃𝑖→1, using the preamble of second

transmission. By reciprocity, the forward air channel between the lead AP and the

slave AP is the same as the reverse air channel. Hence, the slave can compute the

initial calibration factor as:

𝐶𝑖(0) =
ℎ𝐴𝑃𝑖→1

ℎ𝐴𝑃1→𝑖

Additionally, the slave stores the channel from the lead AP, ℎ𝐴𝑃1→𝑖 as a reference

channel, ℎ𝑙𝑒𝑎𝑑(0).

We now explain the update step. For this step, we introduce the concept of a syn-

chronization trailer. Similar to how a synchronization header synchronizes the trans-

mission functions of slave APs during a joint transmission in distributed MIMO [49],

we use a synchronization trailer here to synchronize the reception function on the

slave APs. Specifically, when the client transmits its data, the lead AP follows the

client transmission with a synchronization trailer. In fact, MegaMIMO 2.0 leverages

the MAC layer ACK transmission from the lead AP which acknowledges the client’s

data to act as a synchronization trailer at all the slaves.

Each slave uses the preamble of the trailer to compute the channel from the lead,

ℎ𝑙𝑒𝑎𝑑(𝑡) at that point in time. Now that the slave has an estimate of the lead channel

both at time 0 and at time 𝑡, it can compute the total rotation, 𝜑(𝑡), of its oscillator

relative to the lead AP as the difference between the two phases. Specifically,

𝜑(𝑡) = ∆𝜔𝑡 = 𝑎𝑛𝑔𝑙𝑒(ℎ𝑙𝑒𝑎𝑑(𝑡)) − 𝑎𝑛𝑔𝑙𝑒(ℎ𝑙𝑒𝑎𝑑(0))
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The slave then computes the updated calibration parameter at the current time 𝑡 as

𝐶𝑖(𝑡) = 𝐶𝑖(0)𝑒𝑥𝑝(𝑗2𝜑(𝑡))

and uses this updated calibration parameter to compute the downlink channel esti-

mate.

However, these computed downlink channel estimates cannot directly be used for

beamforming and joint transmission by the slaves. This is because the downlink

channels for different clients are now estimated at different times (specifically, the

times of their respective uplink transmissions). Recall that this is different from [49]

where the APs jointly estimate downlink channels to all clients. As a result, during

joint transmission, MegaMIMO 2.0 slaves cannot apply a single phase correction to the

beamformed packet to account for the oscillator rotation between channel estimation

and joint transmission to all clients, unlike in [49]. To account for this, MegaMIMO

2.0 instead performs an additional phase correction step during channel estimation.

Specifically, each slave, after computing the instantaneous downlink channel estimate

from the uplink client transmission as described above, then applies an additional

phase rotation to infer the downlink channel estimate at an earlier time, specifically

time 0. Note that the slaves can do this simply using the reference master-slave

channel at time 0 (ℎ𝑙𝑒𝑎𝑑(0)), as well as the master-slave channel estimate at time 𝑡

from the synchronization trailer. After this step, each slave then has an estimate for

the downlink channel to each client as if it was measured at time 0, independent of

the actual time of the uplink transmission.

These computed downlink channel estimates can be used for beamforming, nulling

etc. in future joint transmissions as described in prior papers [49].

4.3 Power Control

Power control is a fundamental aspect of any wireless communication system. In

particular, wireless receivers need to perform adaptive gain control to amplify their
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Figure 4-3: Histogram of the difference in phase between different AGC
gains. The figure shows that there are very large differences in phase across the
different gain settings, in fact as large as 𝜋 radians. Different gain ranges involve
activation of different elements of the analog RF front-end, and hence can introduce
significantly different phase shifts.

received signal and ensure that it maximally utilizes the range of the receiver ADC.

Similarly, wireless transmitters need to scale their transmit power to fill the range of

their DAC.

In point-to-point MIMO, each node performs power control locally. However since

distributed MIMO involves the joint operation of multiple transmit and receive chains

across multiple APs, one needs to ensure that power control across all these dis-

tributed chains is also coordinated. Below, we describe three key problems that

occur due to the interaction between distributed MIMO and power control, and our

corresponding solutions.
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4.3.1 Coordinating AGC across time

The first step in a receive chain is a subsystem called Adaptive Gain Control (AGC),

which constantly monitors the analog signal, and scales it up or down in the analog

domain to make sure it fills the range of the ADC. For example, if your receiver has a

12 bit ADC, you would like your incoming signal to cover somewhere in the range of

10-12 bits. If the incoming signal is too large, the AGC will scale it down so it does

not get clipped. If the incoming signal is too small, the AGC will scale it up so that

it has enough bit resolution.

The AGC has no memory across packets and makes a fresh gain decision for each

packet. This unfortunately creates problems for distributed MIMO, which requires a

predictable relationship between channel measurements across time.

Recall that distributed MIMO works by having each slave node maintain an es-

timate of its channel from the lead AP. Every time the slave hears from the lead, it

recomputes this channel estimate. It assumes that any change in the phase of the

channel estimate is due to oscillator drift between master and slave, and hence com-

pensates for the change in channel phase. This process can interact adversely with

the AGC function. Specifically, since the AGC has no memory between packets, it

makes an independent scaling decision every time it hears a new signal from the lead.

While, in principle, the decision should be similar since the signal is coming from the

same source, in practice, due to noise in the medium, there is a level of uncertainty in

the AGC decision. Different AGC decisions can introduce different scaling of the esti-

mated channel, which the slave would incorrectly attribute to oscillator drift, leading

to synchronization errors. Note that AGC scaling involves both magnitude and phase

as different gains involve activating different elements of the analog chain. In fact,

even a small variation of one step in the AGC can introduce very large variations in

phase. For instance, in our step, changing the AGC gain by just 1 dB (for instance,

from 34 to 35 dB) can introduce a phase change of 𝜋 radians (since this activates

a different analog element - this is an inverting amplifier in our RF front-end). Not

accounting for this would completely destroy the synchronization of the slave with
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the lead AP.

MegaMIMO 2.0 addresses this problem by inferring the phase introduced by each

gain setting, and correcting for it on a per-packet basis so that it does not impact

the synchronization of distributed MIMO. Estimating the phase introduced by the

AGC, however, is not straightforward. The problem is that the hardware knows the

AGC setting; however, it does not know the phase introduced by each specific setting.

So, the device needs to calibrate the phase introduced by each gain value. Note that

these phases are not the same across all radios from the same manufacturer; in fact,

every individual device needs to do this calibration on its own to account for hardware

variations.

MegaMIMO 2.0 performs this calibration as follows. For each antenna, the device

transmits and receives on the same antenna measuring the loopback channel. It does

this by operating the AGC in a mode where the AGC gain is set manually, and

then stepping through the entire range of gains supported by the RF chain. For

each gain setting, it measures the received channel. Of course, this received channel

contains phase contributions from both the actual channel as well as the gain setting.

However, note that as described earlier, MIMO only needs channel measurements

relative to a reference. The same principle applies here, and hence MegaMIMO 2.0

simply computes the change in phase of the measured channel relative to the channel

at a reference gain setting.

Note that simply doing this process naively by transmitting the same signal and

simply changing the received gain setting will not work correctly. This is because

the loopback channel is typically quite strong, and hence setting a high gain setting

will cause the receiver to saturate and therefore report an incorrect channel. Hence,

MegaMIMO 2.0 performs the process in two steps: It first estimates the ideal gain

setting for the loopback channel by running the AGC in its regular mode where it

is free to adapt the gain to the optimal setting. The hardware reports this gain

setting to the calibration software. As the calibration software increases the receiver

gain above this optimal AGC setting, it simultaneously digitally scales down the

transmitted power by a corresponding amount. Specifically, for an increase in X dB
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in the receive gain setting, the calibration software applies a digital scaling factor of

-X dB to the transmitted signal. This ensures that the signal swing at the ADC stays

in the optimal range even as the gain setting is increased to larger values.

We calibrate all our boards using the technique described above. Fig. 4-3 plots

a histogram of the relative phase between the different gains computed on different

boards and across different subcarriers. The figure shows that it is essential to cal-

ibrate and account for the phase changes introduced by gains. In fact, some gain

settings introduce a phase change as large as 𝜋 radians. Not correcting for this phase

change would completely destroy phase synchronization and beamforming in dis-

tributed MIMO. The same is true even of the smaller changes. There are differences

on the order of 0.2-0.3 radians, which if not corrected for, would cap the maximum

achievable SNR at any client at around 12-14 dB.

It is worth noting that the phase correction for AGC should be applied to all

transmissions from the lead AP: the reference channel, the synchronization header

transmissions for joint transmissions, as well as the synchronization trailer for client

channel estimation transmissions described in Chapter 4.2.3.

4.3.2 Coordinating AGC across space

As described in Chapter 4.2.3, channel estimation in MegaMIMO 2.0 is performed

independently by the different APs from a client’s transmission. Since each AP applies

gain control independently to its reception, the client’s signal and hence the estimated

channel from the client is scaled differently at different nodes. If these channels

were simply communicated to the master without accounting for the AGC at each

slave, they would each have an unknown scale component, and hence could not be

used for joint precoding. Hence, each MegaMIMO 2.0 slave needs to compensate for

the magnitude (and phase) change introduced by its AGC before communicating its

estimated channels to the master.

Of course, the most straightforward way to do this would be for the receiver

hardware to simply undo the effect of gain control. Specifically, if the receiver AGC

applies a gain setting of X dB, it could simply scale down the measured channel
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Figure 4-4: CDF of the difference between nominal and actual AGC gains.
The figure shows that there are significant differences between nominal and actual
gains, sometimes as large as 6-7 dB.

magnitude by a corresponding amount. Since 𝑃𝑜𝑤𝑒𝑟(𝑑𝐵) = 20 log10(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒),

we can compute the channel magnitude corresponding to an AGC gain of 𝑋𝑑𝐵 as

10
𝑋
20 . However, this does not work for two reasons. First, due to hardware variations,

a gain setting of X dB does not actually provide an exact gain corresponding to that

amount but has some errors around that number. Second, even if the gain is accurate,

it represents an average gain across all subcarriers. The actual gain in each subcarrier

is different due to the presence of various receive filters.

MegaMIMO 2.0 addresses this issue by extending the calibration process described

in the previous section. Specifically, in addition to the change in phase introduced

by each gain, MegaMIMO 2.0 also computes the ratio of the channel magnitude in

each subcarrier relative to the reference channel, during the calibration step. It then

corrects each reported channel by the magnitude scaling factor in each subcarrier

before using the channel for further beamforming computations.

The result of this calibration process can be used to see the effects of the deviation

due to hardware variations and across subcarriers described above. Specifically, we

convert the calibration factor for each gain computed as described above to the actual

power gain, �̂�𝑑𝐵 (this is simply computed as 20 log10(𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟). We then
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compute its difference from the nominal AGC gain, 𝑋𝑑𝐵 expected for that AGC

setting. We repeat this process for all gain settings and all subcarriers across all the

boards in our system. Fig. 4-4 plots the CDF of all these values. As can be seen, the

variations are significant, with the 90𝑡ℎ percentile going to 1 dB, and the maximums

as large as 6 dB. To understand the impact of this error, consider a simple case where

the difference between the nominal and actual AGC gain is 3 dB. Such an error can

lead to an incorrect estimate of the channel magnitude by a factor of 1.4. Using a

channel with this incorrect magnitude to null another signal of comparable power

would lead to a residual noise of 0.4 times the magnitude of the channel, thereby

capping the SNR of the system to 20 log 10(1/0.4) = 8𝑑𝐵 independent of the actual

SNR. This shows that calibrating AGC gain magnitude is fundamental to the correct

functioning of distributed MIMO.

4.3.3 Coordinating transmit power

In distributed MIMO, each transmitter creates its transmitted signal by multiplying

the user data with a precoding matrix. This precoding matrix ensures that the joint

transmission satisfies the desired beamforming and nulling constraints. In principle,

there are two ways to perform this multiplication. The first way is to perform the

multiplication completely in the digital domain after which the signal is passed to the

DAC and then to the power amplifier (PA). The problem with this approach is that

if the multiplier significantly reduces the value of the signal such that it uses only a

few bits of the DAC, the final signal will have very low resolution. Thus, a better

approach is to split the multiplication between the analog and the digital domain.

Specifically, the multiplication is split into two factors: the first is applied in the

digital domain and ensures that the signal after multiplication still spans the range

of the DAC, the second factor is then applied in the analog domain by controlling

the attenuation of the PA. This ensures that the final signal has high resolution and

therefore improves the overall SNR of the system.

Of course, changing the attenuation of the PA can cause phase offsets which one

needs to precompensate for in the digital domain. This effect is similar to the AGC
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effect mentioned earlier and is calibrated using a similar technique.

4.4 MegaMIMO 2.0 Architecture

In the previous sections, we have described algorithmic modifications to the PHY

layer in order to support efficient channel estimation and coordinated distributed

power control. In this section, we describe how to modify the interface between the

PHY and the MAC to support distributed MIMO, and the design of the time critical

lower layer MAC subsystem to control the PHY.

A full-fledged distributed MIMO MAC has various functions, including updating

channels from clients, determining which APs should jointly transmit to which clients

at any time, computing the associated precoding matrices, and so on. Many of these

functions occur at long timescales, corresponding to multiple packets, and we do not

address these MAC functions in this thesis. This thesis focuses on the PHY and the

real-time controls needed for the PHY.

The PHY interface to the MAC has two components: control of the PHY transmit

subsystem by the MAC, and reporting from the PHY receiver subsystem to the MAC.

The interface enables the PHY to be stateless across packets while still supporting

distributed MIMO functionality. We first describe the enhancements to the interface,

and then describe the enhancements to the time critical MAC subsystem to utilize

these enhancements.

4.4.1 Transmitter PHY-MAC Interface

In the 802.11 standard, the interface between PHY and MAC for a packet transmission

is called TXVECTOR. It provides the ability for the MAC to specify for each packet

the associated payload, payload length, precoding matrix (if applicable), modulation

and coding scheme (rate) to be used for the packet, and similar metadata. For

distributed MIMO, the PHY needs to provide additional support for timing, phase,

and frequency synchronization.

In particular, it supports the following additional functionalities:
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Timing Synchronization: In addition to regular CSMA/CA transmission, the PHY

provides the ability to transmit packets at specific time stamps defined relative to a

system timer. This feature is to be used in triggered transmissions which is described

later in this section.

Initial Phase Correction: For successful joint transmission, all slave APs are re-

quired to correct for any phase offset relative to the master AP at the instance of

transmission. In order to do so the PHY transmit interface provides an initial phase

correction capability. This feature enables the MAC to define a slope and intercept

to be applied on the OFDM subcarriers for the given packet. Using this initial phase

correction all APs can be configured to start the joint transmission with no relative

phase offset. However, due to the frequency offset between the APs the relative phase

will keep changing during the packet.

Frequency Offset Correction: This feature provides the slave APs with the ability

to correct for the relative frequency offset to the master AP during the given packet.

It enables the MAC to define two different rates to correct for CFO and SFO. The

first rate is the CFO correction and is provided as a phase change per sample, while

the second rate is the SFO correction and is provided as a change in the phase slope

(over the subcarriers) per symbol.

4.4.2 Receiver PHY-MAC interface

Similar to the TXVECTOR, the 802.11 standard defines the RXVECTOR to provide

the interface between the PHY and MAC for a packet reception. For distributed

MIMO, the PHY needs to provide additional support for MAC in order to adapt the

transmitter metadata for future transmissions.

Specifically, for each packet, the receiver reports the following:

Frequency Offset Estimation: The receiver computes an estimate of the frequency

offset with the transmitter for each packet and reports it along with the received data

and other metadata to the MAC. The MAC maintains this information for every

master transmitter, to be used in frequency corrections for future joint transmissions.
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Channel: The receiver also reports the measured channels in each subcarrier to

the MAC. Depending on the type of packet and its source, the MAC deals with the

channels differently: either as a reference channel from the master, or as a channel

corresponding to a synchronization header to be used for phase synchronization for

joint transmission, or a channel measurement from a client that can be utilized for

later beamforming.

4.4.3 Real-time MAC interface to the PHY

In this section, we describe the real-time components of the MAC that need to be

implemented in hardware to ensure timing, phase, and frequency synchronization.

Fig. 4-5 shows a schematic of the timing, frequency and phase synchronization sub-

system.

Timing Synchronization Subsystem: In order to support timing synchronization,

the real-time MAC component has the abstraction of triggered transmissions. A

triggered transmission has two elements: a triggering condition, and an elapsed time

after the triggering condition at which a packet is transmitted. A triggering condition

comprises of either a transmission or reception of a packet with the MAC address

of the master. This is a simple check and can be performed with low hardware

complexity.

At a high level, to initiate a joint transmission, the MAC at the master provides

two packets to the physical layer. The first packet is the synchronization header,

which is transmitted using the typical contention based medium access. The second

packet is the joint transmission, whose transmission is triggered by the transmission

of the first packet. The timestamp of this second transmission is a fixed time after

the transmission of the first packet, say a SIFS.

At each slave, the MAC examines each received packet. If the received packet

is a synchronization header, the MAC at each slave participating in the joint trans-

mission then initiates a joint transmission triggered by this matching reception. The

timestamp for this joint transmission is determined by the timestamp of reception of
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Figure 4-5: Timing, Frequency and Phase Synchronization Subsystem. This
subsystem of the MAC operates in real-time. It interacts with the PHY and triggers
transmission of packets based on transmission or reception of sync headers. It also
applies the correct frequency and phase correction at the slave APs for the joint
transmission.

the synchronization header, and like in the master, is computed as a fixed time after

the previous reception (specifically, it is the inter packet gap in the master less the

receive-transmit turnaround time in the slave hardware).

Frequency and Phase Synchronization Subsystems: At each slave, this sub-

system operates jointly with the timing synchronization subsystem to ensure correct

joint transmission. Specifically, at each node, this subsystem examines every received

packet. If the received packet is a synchronization header from a master, the MAC

determines the associated CFO and SFO of that master. Further, it uses the channel
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from the synchronization header, and compares it with the reference channel from

that master to determine the initial phase correction to be applied to the joint trans-

mission. It uses these parameters to apply the appropriate correction to the joint

transmission packet at the slave. It is worth mentioning that this process needs to

be performed in hardware in order to meet the short gap between synchronization

header and the joint transmission, which is usually a SIFS.

4.5 Implementation

We implement MegaMIMO 2.0 and evaluate it in an indoor testbed. In this sec-

tion we discuss the platform the we use to implement our system and the hardware

architecture of our implementation.

4.5.1 Hardware Platform

Each node in our system consists of a Zedboard connected to an Analog Device

FMCOMMS3 transceiver card both shown in Figure 4-6. The Zedboard is equipped

Figure 4-6: Hardware Platform The figure shows the Zedboard on the left and the
FMCOMMS3 board on the right.
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Figure 4-7: Platform Architecture The figure shows the software-hardware ar-
chitecture of our platform. The PHY on the FPGA implements an 802.11n MIMO
system as well as the real time synchronization facilities needed for distributed MIMO.
The software on the ARM core configures the PHY and manages data transfer to and
from the device.

with a Xilinx Zynq Z-7020, which consists of an ARM dual-core Cortex A9 processing

system connected to an Artix family FPGA via a high-speed AXI bus.

We implement our baseband system in Verilog on the FPGA. Our baseband con-

sists of a full-fledged 802.11 a/g/n PHY layer that can operate in real-time and

support all the 802.11 modulations and code rates on the FPGA. We enhance our

PHY implementation to support distributed MIMO as described in the previous sec-

tions, and also implement various time critical MAC functionalities on the FPGA.

Figure 4-7 shows the high level architecture of our system and the interfaces between

the different components of our platform.

We also implement the higher layer control system that triggers channel mea-

surement, channel updates, precoding, and interfaces with user traffic in C on the

ARM core. The FMCOMMS3 board acts as an RF front-end capable of transmit-

ting and receiving signals in the 2.4 and 5 GHz frequency ranges. Each Zedboard

is equipped with a Gigabit Ethernet interface through which it is connected to an

Ethernet backhaul.
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Figure 4-8: MegaMIMO 2.0 Transceiver Architecture The figure shows the high
level architecture of our MegaMIMO 2.0 transceiver.

4.5.2 Hardware Architecture

Figure 4-8 shows the high level architecture of the MegaMIMO 2.0 transceiver. The

upper part of the figure shows the transmitter pipeline and the lower part shows

the receiver pipeline. The transmit packets are stored by the ARM core in a shared

memory section in the DRAM, and then the transmitter pipeline directly reads it

from the DRAM through the DMA. Similarly, the receive packets are directly stored

in the DRAM by the receiver pipeline, and then read and processed after that by the

ARM core.

Both transmitter and receiver pipelines are three stages symbol based pipeline

each. Which means that during the transmit/receive operations, it handles three

different OFDM symbols concurrently. All the three stages of the pipeline are designed

to be capable of finishing the symbol processing in less than the symbol time of the

802.11 standard, which is 4𝜇𝑠. The data is passed between the different pipeline

stages through shared SRAMs that are rotated across the different pipeline stages.
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FFT and iFFT Blocks

The MegaMIMO 2.0 transceiver design has two different FFT blocks, one for the

transmitter to perform the iFFT operation and the other one is for the receiver to

perform the FFT operation. The FFT size is a 128 points and the bit-width is 16-bits

real and 16-bits imaginary. The FFT implementation uses an in place architecture

with a block floating point. The block floating point technique allows each FFT frame

to have a different exponent to prevent overflow and increase the dynamic range, but

at the same time avoids the complexity of the floating point design by sharing the

same exponent across all the samples inside the frame.

Tx Frontend Block

Figure 4-9 shows the Tx frontend block. Based on the size of the FPGA, our current

implementation supports up to 4 distributed transmitters transmitting simultaneously

to 4 independent clients. The DMA reader block is responsible for reading the data

for all the users from the DMA and making sure that the user buffers always has data

ready for processing. It is also responsible for for reading the precoding Matrix. Each

user has a separate pipeline to perform the scrambling, encoding and interleaving
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Figure 4-9: Tx Frontend Block The figure shows the architecture the Tx Frontend
block.
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Figure 4-10: Tx Time-Domain Block The figure shows the architecture the Tx
Time-Domain block.

as specified by the 802.11 standard. The different streams are then combined in

the second stage of the interleaving to reduce the memory overhead, and in that

block the bit mapping and pilot insertion is done. This block is also responsible for

controlling the flows for the different users through a feedback to the DMA reader

block. Then the output of the mapping is passed to the precoding block where the 4

streams are multiplied by the precoding matrix then SFO correction is applied on the

different subcarriers using the MegaMIMO 2.0 estimated frequency offset. Finally,

the corrected subcarriers are then written to the shared memory to be processed by

the iFFT block.

Tx Time-Domain Block

Figure 4-10 shows the Tx Time-Domain block. This block reads the output of the

iFFT which corresponds to the time-domain samples. It appends the Cyclic Prefix

(CP) to it as specified by the 802.11 standard supporting both normal and short CP

modes. After that, the scaling block accounts for the block floating point exponent

and multiply by a packet specific magnitude scale. Then the output of the scaling

block is passed through the CFO correction block where it accounts for the frequency

offset measured in the MegaMIMO 2.0 algorithm. Finally, before the signal is send to

the DAC interface, it is passed through a saturation block where it performs digital

clipping.

Rx Time-Domain Block

Figure 4-11 shows the Rx Time-Domain block. The first block in the pipeline of

the receiver is the packet detection. Our packet detection algorithm is based on
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Figure 4-11: Rx Time-Domain Block The figure shows the architecture the Rx
Time-Domain block.

autocorrelation. The output of the auto correlation is also used for coarse CFO

estimation. After that CFO correction is performed on the time domain signal using

the coarse CFO estimation. The cyclic prefix is removed, and the data gets buffered

in the shared memory at the granularity of symbols to be processed by the Rx FFT

block.

Rx Backend Block

Figure 4-12 shows the Rx backend block. The Symbol Reader block reads the output

of the FFT from the shared memory and it consumes one subcarrier every 4 clock

cycles. If the current symbol is from the channel estimation header it forwards it to the

channel estimation block, otherwise the subcarrier is fed through the normal pipeline.

The second stage in the pipeline is the frequency offset correction, and this stage

performs compensation for the SFO as well as the residual CFO. The output of the
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Figure 4-12: Rx Backend Block The figure shows the architecture the Rx Backend
block.
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frequency offset correction is then fed to the channel equalization block which divides

by the estimated channel. Then if the current subcarrier is a pilot subcarrier, it will

be routed to the CFO tracking block to update the estimate of the frequency offset,

otherwise it forwards it to the de-mapping block. The de-mapping block performs

soft-decision de-mapping and produce a 3-bit value for each transmitted bit, then

it feeds that through to the de-interleaver. It also remaps a hard-decision of the

bits and feeds it back to the channel estimation block to update the estimate of the

channel. The de-interleaving block undo the interleaving operation that was done at

the transmitter and feeds the soft bits to the Viterbi decoder. After that the output

of the decoder is de-scrambled and parsed to remove the PHY headers and check the

CRC. Then finally the data of the packet will be written to the DRAM to be post

processed by the software.

FPGA Utilization

Table 4.1 shows the resource utilization of our real-time PHY and MAC implemen-

tation on our current FPGA platform.

4.6 Evaluation

We evaluate MegaMIMO 2.0 both through microbenchmarks of its individual com-

ponents, and integrated system results of its overall performance.

(a) Testbed: We evaluate MegaMIMO 2.0 in an indoor testbed that emulates

a typical conference room or lounge area. The APs are deployed high up on the

walls near the ceiling as is typical in these environments. The clients are deployed

Resource Used Utilization (%)
Slice Registers 49492 46.52

LUTs 43475 81.72
Block RAMs 36Kb 28 20

DSP48 (multipliers) 45 20.45

Table 4.1: FPGA Utilization on Xilinx Zynq Z7020. This table shows the uti-
lization of different FPGA elements by our real-time PHY and MAC implementation.
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at or near the floor level. The environment has furniture, pillars, protruding walls

etc. that create rich multipath, and line of sight and non line of sight scenarios. We

evaluate our system under both static and mobile conditions. All our experiments are

conducted in the 2.4 GHz band, channel 10 (center frequency 2.457 GHz and 20 MHz

bandwidth), using the 802.11n protocol.

(b) Compared Systems: We compare MegaMIMO 2.0’s performance both with

traditional 802.11 and distributed MIMO systems based on explicit channel feedback.

Note that in prior distributed MIMO systems, channel estimation happens in a

sequential process, where at each time, the channel from each AP antenna to each

client is measured jointly with one antenna of the lead AP. The reason for including

one antenna from the lead AP in every measurement is to provide a reference to relate

the measurements to each other even though they are performed at different times.

These measurements are then corrected to account for phase rotation across time,

which can be inferred from the phase changes in the reference channel measured from

the antenna of the lead AP. The corrected measurements can then be used as the

downlink channel estimates for beamforming. The details are described in [49].

For traditional 802.11, we assume the standard carrier sense based medium access

protocol that allows one transmitter to transmit at any given time.

(c) Metrics: The metrics of interest that we compare are: the SNR after beam-

forming of the received packets at client, the total network throughput (in Mbps), and

the individual throughput at each client (in Mbps). Depending on the experiment,

we compare one or more of these metrics in different scenarios.

4.6.1 Accuracy of Reciprocity

Reciprocity eliminates the overhead of channel feedback, which tends to be excessive

in distributed MIMO systems (see Fig. 4-1). However, would reciprocity lead to a

degradation in MIMO gains in comparison to using channel feedback? In this section

we answer this question by evaluating whether the channels inferred via reciprocity

are as effective at delivering MIMO beamforming as the channels measured at the

clients and explicitly sent to the access points –i.e., explicit channel feedback.
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Figure 4-13: SNR with reciprocity (MegaMIMO 2.0) and explicit feedback
(MegaMIMO) based distributed MIMO systems. The 45𝑜 degree line is shown
in dotted black. The figure shows that reciprocity based distributed MIMO can
achieve the same SNR as explicit feedback across the range of SNRs.

Method: We evaluate a simple 2-transmitter, 2-receiver system in a static envi-

ronment. The network has both downlink and uplink traffic with 90% of the traffic

being on the downlink. We evaluate two scenarios: 1) The APs transmit packets on

the downlink to the clients and receive explicit channel feedback from the clients, as

in MegaMIMO. 2) The APs apply MegaMIMO 2.0’s reciprocity protocol and use the

clients’ data transmissions to infer the downlink channels without any explicit feed-

back. We use both these explicit downlink channels, and estimated downlink channels

to perform beamformed transmissions to the clients. We interleave the beamforming

measurements using explicit feedback with those using reciprocity to ensure that the

two compared methods experience similar channels. We then compare the SNR of

these beamformed transmissions at the clients in the two scenarios. We repeat the

experiment across a variety of locations, and the entire range of 802.11 SNRs, from

5-30 dB.

Results: Fig. 4-13 shows a plot of the SNR achieved with reciprocity as a func-

tion of the SNR achieved with explicit channel feedback for each topology. As the

graph shows, MegaMIMO 2.0’s reciprocity based channel estimation performs as well
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as explicit channel feedback through the entire range of SNRs. This means that dis-

tributed MIMO systems can safely use the reciprocity technique developed in this

thesis to avoid the excessive overhead of explicit channel feedback.

4.6.2 Need for AGC calibration

A key feature of MegaMIMO 2.0 is its ability to enable the use of AGC by calibrating

for AGC phase and magnitude impact on a per-packet basis both in hardware and

software. In this section, we evaluate the importance of this calibration.

Method: We evaluate a 4-transmitter, 4-receiver system in a static environment.

The network performs distributed MIMO beamforming from all 4 transmitters to all

4 receivers using reciprocity based channel estimation. The network has both uplink

and downlink traffic with uplink traffic accounting for 10% of the load. The first

is full-fledged MegaMIMO 2.0 with AGC running on all nodes, and both hardware

and software calibration. The second is MegaMIMO 2.0 with AGC running on all

nodes, but with only magnitude calibration and no phase calibration. The final

system is MegaMIMO 2.0 with a fixed manually chosen gain setting (this is similar
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Figure 4-14: Throughput comparison of MegaMIMO 2.0 with full AGC cali-
bration, MegaMIMO 2.0 using AGC without calibration, and MegaMIMO
(fixed gain). The figure shows that distributed MIMO needs the use of AGC with
full calibration in order to achieve high gains with low variance.
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to MegaMIMO in USRPs). We repeat the experiment 10 times and change the client

locations across runs. We compare the network throughput obtained by the system

in all three settings.

Results: Fig. 4-14 shows the network throughput in each of the three scenarios

described above. The following points are worth noting.

∙ MegaMIMO 2.0 with an operating AGC, and both magnitude and phase calibration,

achieves the highest throughput among all the systems.

∙ We compare MegaMIMO 2.0 with a system with an operating AGC where we turn

off the phase calibration but still apply the magnitude calibration based on the

rated AGC gain. That is, we assume that an AGC gain of X dB scales the signal

magnitude by 10
𝑋
20 (as described in 4.3.2), and correct for it accordingly. We use

this reference because ignoring magnitude calibration completely makes the beam-

forming extremely sensitive even to small changes in AGC gain during channel

estimation at any of the APs (the impact of gain errors is analyzed in 4.3.2 in a

different context). Since this system does not correct for phase, it sometimes expe-

riences extremely large errors and therefore has higher variance than the full-fledged

MegaMIMO 2.0 system. Additionally, it loses performance because of differences

between the actual hardware gain and the nominal hardware gain intended by the

AGC.

∙ Finally, the system with lowest performance is the one with manually assigned gain

control. This is because one cannot pick a single gain value for a large system that

will allow all master-slave and all client-AP links to function at reasonable SNRs

across a variety of topologies. As a result, this system too has low throughput and

high variance.

4.6.3 Real-time Performance

In this section, we evaluate whether MegaMIMO 2.0 can deliver a distributed MIMO

system capable of operating in real-time.

Method: We consider dynamic environments common in indoor settings. We
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introduce dynamism into the system in two ways. In the first case, all the nodes are

static, but there is mobility in the environment due to moving people. In the second

case, we introduce additional mobility by moving the nodes themselves. Specifically,

the clients in the testbed are moved by either mounting them on Roomba robots, or

by walking humans. The client mobility speeds change from one run to another and

are in the range [0.2m/s, 1m/s].

We deploy 4 nodes acting as APs in our testbed, and 4 nodes acting as clients.

We compare two schemes: distributed MIMO with explicit channel feedback, and

distributed MIMO with reciprocity. Note that both schemes are running MegaMIMO

2.0’s real-time PHY with all of its components (AGC, calibration etc., necessary to

deal with mobility) and differ only with the mechanism for tracking the channels.

We compute the throughput of individual nodes under 4 scenarios: reciprocity based

distributed MIMO where the clients send uplink traffic about 10% of the time (i.e.

90% of the traffic is downlink traffic), and explicit feedback at three different feedback

intervals: 30 ms, 100 ms, and 300 ms. We run this experiment for several hours. We

repeat it for various topologies and the entire range of 802.11 SNRs.

Result: Figs. 4-15(a) and (b) plot the CDF of the throughput obtained by each

client in the various scenarios. A few of points are worth noting.

∙ First, MegaMIMO 2.0’s real-time PHY can support dynamic environments, and

adapt to both moving devices and people. In particular, a four-AP distributed

MIMO system running MegaMIMO 2.0 delivers a median throughput of 120Mb/s

and a maximum throughput of 194 Mb/s to four mobile clients.

∙ Second, as expected, reciprocity based distributed MIMO obtains the highest through-

put in both scenarios: dynamic environment and dynamic clients. The median

throughput gain of reciprocity based distributed MIMO over explicit feedback ranges

from 20% to 6x in when the device is mobile, and 10% to 6x when device is static yet

people are moving around. Further, explicit feedback systems with infrequent feed-

back (100-300 ms) get significantly lower throughput than the case of reciprocity,

in spite of having significantly lower channel feedback overhead. This is because

they suffer from stale channel information since mobility causes the actual channels
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Figure 4-15: CDF of user throughput of a 4x4 distributed MIMO in mobile
scenarios using MegaMIMO 2.0’s real-time PHY with reciprocity, and
MegaMIMO 2.0’s real-time PHY but with explicit feedback at different
intervals. The figure shows that MegaMIMO 2.0’s real-time PHY can react to
changing environments and deliver a distributed MIMO system even in the presence
of mobility. The figure also shows that reciprocity based distributed MIMO always
outperforms explicit feedback based systems. At low feedback rates, the feedback
based systems suffer from stale channel information. At high feedback rates, the
systems have fresh channel information but have high overhead.
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to deviate from the reported channels faster than the feedback interval. In fact,

explicit feedback with intervals of 100-300 ms suffers from extremely low through-

put between 35-50% of the time because of channel staleness. Explicit feedback

at a high rate (30 ms) is also worse than reciprocity. In this case the APs have

fresh channel information, but explicit feedback suffers a throughput loss due to

the overhead of feedback.

∙ The performance of the explicit feedback system in Figs. 4-15(a) and (b) is worse

than the simulation results of a 4×4 system in Fig. 4-1. This is because the sim-

ulation results do not account for the impact of stale channel information on the

behavior of distributed MIMO systems.

∙ Overall the empirical results show the importance of using reciprocity even in a rel-

atively small 4×4 distributed MIMO system. Since the feedback overhead increases

quadratically with the size of distributed MIMO, we expect that reciprocity is even

more essential for larger systems.

4.6.4 Performance in a Static Environment

Finally, we check MegaMIMO 2.0’s performance in static settings to ensure that

our implementation supports the gains expected from distributed MIMO in static

environments.

Method: We deploy 4 nodes acting as APs in our testbed, and 4 nodes acting

as clients. We compare MegaMIMO 2.0 with reciprocity to traditional 802.11. The

network has both uplink and downlink traffic with uplink traffic creating ≈10% of

the load. We perform this experiment for 15 different runs, and change the clients’

locations from one run to another. We evaluate the throughput of each of these three

schemes in three SNR ranges: low (6-12 dB), medium (12-18 dB), and high (18+ dB).

Result: Fig. 4-16 shows that MegaMIMO 2.0 with reciprocity achieves about

3.6× gain with 4 transmitters. This is compatible with the behavior expected from

distributed MIMO since this system can deliver 4 packets to 4 clients concurrently.

The figure also shows that this behavior is consistent across the whole range of 802.11

SNRs.
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Figure 4-16: Comparison of throughput obtained with traditional 802.11,
and MegaMIMO 2.0 with reciprocity. The figure shows that MegaMIMO 2.0’s
implementation can scale throughput linearly with the number of nodes. At all SNRs,
the throughput of MegaMIMO 2.0 with 4 nodes is 3.6× the throughput of a single
802.11 link.
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Chapter 5

Chorus: Distributed MIMO for LTE

5.1 Introduction to Chorus

In the context of LTE, prior work on distributed MIMO can be divided into two main

categories.

∙ The first category relies on a central unit that is responsible for constructing and

receiving the RF signals for all the antennas. An example for this approach is

Distributed Antenna Systems (DAS) [53]. In DAS the RF signals are distributed

inside buildings or across the area of intrest through high quality RF cables and

using splitters and power amplifiers to overcome the losses. Despite the expensive

infrastructure and very limited throughput gains, DAS based solutions and market

has witnessed a significant growth over the past few years, and is expected to reach

a market worth of 10 Billion USD by 2022 [13]. This is purely driven by more use

of smartphones and tablets etc., and the increasing demands on better coverage and

high speed connectivity.

∙ The second category tries to achieve better coverage by distributing the transmis-

sion functionality across multiple devices. The concept of Coordinated MultiPoint

(CoMP) was introduced in the 3GPP LTE standard several years ago to improve

network performance at cell edges. And different modes where added to CoMP

in order to benefit other scenarios of coordination across small cells. Examples of
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systems that try to benefit from CoMP are PCell [26, 1] and a demonstration by

Ericsson [15]. These systems assume a shared clock across all nodes either via GPS

or a wire. As such, these systems do not deliver the benefits of a truly distributed

design as we will discuss in the rest of this section, and they wouldn’t work in

scenarios where the GPS signal is poor like tunnels and dense urban areas.

Both categories described above fail to deliver the promised gains of distributed

MIMO in the context of LTE. The question that now arises is, can we use techniques

similar to what was proposed by MegaMIMO 2.0 for WiFi to provide distributed

MIMO for LTE?

Although the basic idea of synchronization is very much the same in WiFi and

LTE, the challenges to have a practical distributed MIMO system are not. The tech-

niques described earlier to provide distributed MIMO for WiFi were mainly focused

on enabling the transmission functionality of signals to be distributed, which was

not an easy task given the random access nature of WiFi. As a result, the control

plane which coordinates the transmitters became fairly centralized. Specifically, in

the WiFi case, the transmitters are typically organized in clusters, each with a single

leader and multiple slaves. All the slaves listen to the leader signal and synchronize

the phase of their signals to match that of the leader. Such an architecture prevents

distributed MIMO networks from enjoying key desirable features in an LTE network:

scalability, resilience, and ease of management. Further, the clustering architecture

used in WiFi introduce another limitation on the system, since now the system has to

deal with interference across clusters. That issue could be avoided in the WiFi case

by using three different frequency channels of the ISM band - we discuss that in more

details in Section 5.2. In LTE however, this would tripple the cost of the spectrum

license, which is clearly undesirable by the network providers.

In this thesis, we introduce Chorus, a system the removes these limitations and

builds a scalable distributed MIMO system for LTE. In rest of this section we will

discuss the challenges for distributed MIMO in the context of LTE in more details

and show how we address them in Chorus through the rest of this thesis.
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5.1.1 Scalability, Resilience and Manageability

Bringing scalability to distributed MIMO is particularly important for 5G small cell

networks. All major cellular equipment manufacturers and operators expect massive

deployment of small cells in 5G in order to meet capacity requirements, especially in

dense urban settings, such as Manhattan, downtown Tokyo etc. [12, 65, 25]. Such

dense small cell deployment will naturally increase the interference between trans-

mitting nodes, and emphasize the need for distributed MIMO, which both eliminates

interference and increases throughput. Further, such small cell networks will natu-

rally span large geographic scale (e.g., Manhattan), and hence will need a distributed

architecture that does not assume the presence of one node that can be heard by all

others. Finally, small cells are typically deployed in third-party premises with limited

access and control for the operators of the network. This will make management

a nightmare with existing distributed MIMO solutions, as nodes cannot be easily

replaced and changes to the wireless environment are often out of operator control,

making it very hard to ensure that all slaves always hear the leader.

Chorus addresses this issue by distributing the synchronization role across all

the nodes. In Chorus, there are no special roles, i.e., no leader and slaves. All

Chorus nodes transmit a synchronization signal, and all synchronize their oscillator

phases by listening to the synchronization signals transmitted by other nodes in their

vicinity. There are also no special constraints on topology or connectivity. Thus, the

coordination protocol is easy to manage and naturally scales to large networks with

transmitters that are no longer in hearing range of each other. It also makes the

system resilient to node failure, addition and removal.

Distributing the synchronization role solves the scalability issue and makes the

system more resilient and manageable. However, naively applying this design leads

to synchronization loops –e.g., a node may be synchronizing with a second node, that

is synchronizing with a third node, which is synchronizing with the first node in the

loop. Such loops are destabilizing, i.e., they prevent the system from converging [42].

To prevent loops, Chorus has a distributed protocol to organize the nodes in the
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form of a tree (specifically a fat tree). Nodes at the same depth of the tree transmit

the synchronization signal in the same frequency, and this composite synchronization

signal is used by nodes at the next lower depth to synchronize themselves. In addition

to this resilient fat tree architecture, Chorus also has a special acyclic structure at the

root to make the synchronization tree resilient to failures of the root. We describe

the details of our protocol and resilient architecture in Section 5.3.

5.1.2 Robust Phase Tracking

In the proposed architecture, the synchronization signal is no longer a clean trans-

mission from one leader - it is a composition of synchronization signals from multiple

nodes. Those signals from multiple nodes could destructively interfere at the receiver

resulting in a low signal strength for synchronization. Furthermore, having nodes join-

ing and leaving the network at different points in time would increase the variability

on the synchronization signal, and disturb the phase tracking. Moreover, compared

to past systems, where the phase difference is computed at the time of transmission

and applied immediately. In contrast, in Chorus the synchronization signal can be

sent only sporadically due to LTE frame structure. As a result, the measured phase

difference can be outdated.

To deal with its more stringent synchronization requirements, Chorus combines

techniques from signal processing and control theory to improve the resilience of the

system while minimizing the phase error. Specifically, Chorus allows different nodes

to send different synchronization signals, then at the receiver instead of estimating

the channel, it computes the change in phase that was accumulated over the period

between the two measurements. This phase change is then fed to a controller which

minimizes the error by tracking the drift of the local oscillator.

5.1.3 LTE Compatibility

Similar to MegaMIMO 2.0 for WiFi, we would like Chorus to be directly applicable

to LTE small cells without having to change the LTE protocol or user devices. To
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do so, we leverage that LTE’s OFDM modulation divides the frequency band into

subcarriers, which themselves get divided into timeslots called resource elements.

Chorus allocates some of these resource elements for transmitting synchronization

signals. Chorus also schedules the resource elements used for synchronization so that

they look to user devices as if they were yet another user in the system. Only small

cells participating in Chorus need to interpret the synchronization signal.

We implement Chorus in a hardware platform composed of an FPGA connected

to a high speed ARM core. We use the srsLTE open source LTE stack implemen-

tation [61] and augment the eNodeB with Chorus. Our implementation therefore

provides an LTE small cell that is capable of synchronized operation and distributed

joint transmission. We perform our experiments in the white space frequency bands

(680 MHz), which is very close to the 700-800 MHz where major US operators such

as Verizon and AT&T run their networks. Our results show:

∙ Chorus’s distributed synchronization is scalable, and synchronizes small cells that

are not within range of each other. Specifically, the median phase variance between

two such small cells is less than 0.004 𝑟𝑎𝑑𝑖𝑎𝑛𝑠2.

∙ Chorus is resilient to the loss of any single node by enabling multiple nodes to

simultaneously transmit the synchronization signal. Specifically, Chorus achieves

synchronization within a phase variance of 0.002 even when 10 independent small

cells jointly transmit the synchronization signal. This means that the interference

between concurrent transmissions from our distributed MIMO nodes is less than

0.5 dB.

∙ Chorus’s controller is resilient to variations in synchronization signal SNR. Specifi-

cally, it delivers accurate synchronization even when synchronization SNR is as low

as 6 dB. The resilience to loss of any single node, as well as variation in synchro-

nization SNR, ensure that Chorus’s deployments are easy to manage.

∙ We evaluate Chorus in a 20 node testbed deployment, and compare its performance

with a clustering based approach. Chorus delivers 2.7× higher throughput than a

clustering based approach in our testbed. This gain is the result of Chorus’s ability

to build a large distributed MIMO system across nodes that cannot hear a single
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leader, and allow all these nodes to transmit together. In contrast, a clustering

based approach must divide the network into multiple distributed MIMO clusters,

each within range of a single leader. These clusters have to transmit in different time

slots to avoid mutual interference, and as a result misses out on large throughput

gains.

∙ We evaluate the scaling performance of Chorus in a larger geographic setting using

simulation. Specifically, we consider an example deployment of 25600 small cells in

an 8 × 8 sq. km. area, which is slightly larger than the size of Manhattan. We

show that Chorus can synchronize cells within a median radius of 5 km to within

a phase variance of 0.004. Nodes outside this range show higher phase variance.

These differences however are irrelevant, because these nodes are much more distant

from each other than the range at which nodes interfere in the network.

5.2 Gains of a Distributed Design

Prior distributed MIMO systems deliver their throughput gain by enabling APs (or

base stations) to synchronize their phase to one leader that is heard by all APs. A

natural question is what throughput gains accrue from synchronizing the phase of APs

that do not hear a single leader. In this section, we use a couple of simple examples

to answer this question, and illustrate the benefits of a leaderless distributed MIMO.

Consider the simple topology shown in Fig. 5-1 with 6 APs. Each AP hears its

adjacent APs, and each client hears the two APs closest to it.

Master AP Slave AP Client 

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

  

APs 

Downlink Connectivity Matrix 

C
lie

n
ts

 

First slot cluster Second slot cluster 

Figure 5-1: 1D clusters sparse
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Master AP 

Slave AP 

Figure 5-2: 2D clusters

A leader-based distributed MIMO architecture for this network would therefore

group every three adjacent APs into a cluster. Each cluster will have one leader and

two slaves. It would transmit concurrently to the three clients closest to the APs in

that cluster. The shaded areas in Fig. 5-1 show the potential leader-based clusters.

Note that adjacent clusters cannot transmit simultaneously in this network, since the

transmissions of the edge APs of the two clusters would interfere at the clients that fall

near the edge of the two clusters. As a result, this network supports 3 simultaneous

transmissions.

In contrast, consider a leaderless design that synchronizes the phase of all APs,

even when all the APs do not hear each other. Such a design can support a distributed

MIMO cluster that allows all APs to transmit simultaneously to all clients. It would

therefore support 6 simultaneous transmissions, delivering a throughput gain of 2 over

traditional leader-based distributed MIMO.

The gains would be higher if we extend this to two dimensions. In particular,

consider the example in Fig. 5-2, where the APs are laid out in a two dimensional

grid, and each AP can hear the adjacent APs along the grid. The dotted lines

depict the leader-based distributed MIMO clusters. In order to avoid interference

between adjacent clusters, only one in every three clusters can transmit at one time,

with each shading depicting the clusters transmitting at a particular time slot. In
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contrast, leaderless distributed MIMO would allow APs in all clusters to transmit

simultaneously to their associated clients, delivering a throughput gain of 3x.

It is important to note a few points:

∙ The benefit described above is not particular to the specific interference pattern

described between individual APs, or APs and clients. In particular, as the deploy-

ment scales, it is natural to have APs that do not hear each other, or all clients. In

such a situation, leader-based distributed MIMO is inherently limited in the sizes of

clusters it can support, and therefore the throughput gains it can deliver, compared

to leaderless distributed MIMO.

∙ One can get significant gains even with small cluster sizes, as demonstrated in the

figure that compares a cluster with 3 APs, and a cluster with 6 APs.

∙ Additionally, the presence of a synchronization fabric that ensures that APs are

synchronized does not necessitate that all the APs in the entire network need to

transmit together. Instead, it provides the ISP flexibility in picking which APs can

transmit with each other as part of distributed MIMO. In addition to the throughput

gain provided by this flexible picking, it can also allow the ISP to adapt distributed

MIMO to dynamic congestion in the network. For instance, the operator might

choose to use distributed MIMO on demand simply to deliver throughput gains in

congested areas, and change which APs are part of these on-demand distributed

MIMO clusters. Leader based distributed MIMO systems do not provide such

flexibility.

5.3 Self Organizing Tree Architecture

Chorus achieves leaderless synchronization by making all nodes equally responsible for

propagating the synchronization signal. Specifically, every node continuously listens

to the synchronization signal, compensates for its own phase shift with respect to the

synchronization signal, and transmits a synchronization signal that can then be used

by other nodes to measure their phase shifts and synchronize their oscillators.

However, if nodes do this naively, they could end up with synchronization loops.
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Figure 5-3: Positive Feedback between two nodes. The figure shows two nodes
transmitting and receiving synchronization signals to each other. Each node can be
modeled as a control system with transfer function 𝐺. Node A receives a reference
synchronization signal from node B, and transmits a synchronization signal, which
in turn is used by Node B as its input synchronization signal, producing a positive
feedback loop.

For example, consider the following topology – node 1 transmits a synchronization

signal that is used by node 2, which transmits a synchronization signal used by

node 3, which in turn, transmits a synchronization signal that is used by node 1.

Such synchronization loops can destabilize the system, i.e., prevent the network from

converging to a coherent phase.

To understand why, let us model the system using control theoretic concepts. Each

node in our system has a reference signal which is the synchronization signal received

by the node. The node internally has some controller which aims to match the node’s

phase to the reference phase. Since the details of the controller are irrelevant to this

argument, let us abstract the controller inside the node by the function 𝐺. Since the

goal of the controller is to ensure that the output synchronization signal matches the

reference, the transfer function 𝐺 should be as close to 1 as possible.

Now, let us see what happens when there is a loop. We will take a simple case with

two nodes A and B. Node A receives a synchronization signal from node B, which it

uses to synchronize and transmit its own synchronization signal. Node B will hear

the synchronization signal transmitted by node A, use it to synchronize itself, and in
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Figure 5-4: Resilience to Root Failures: (a) shows a topology for the synchro-
nization tree that is resilient to either node A or B failing. (b) shows a topology that
is resilient to any two nodes of {A,B,C} failing.

turn transmit the synchronization signal that node A uses. This leads to a feedback

loop, as shown in Fig. 5-3. From basic control theory [42], the transfer function of

such a loop is 𝐺
1−𝐺2 . Since, accurate tracking requires 𝐺 to be as close to 1 as possible,

the loop is bound to be unstable. The same argument generalizes to larger loops.

5.3.1 Chorus’s Layering Protocol

Since our objective is to eliminate loops, by definition, our synchronization topology

must be a tree. We will refer to the nodes at a particular depth in the synchronization

tree as a layer, with the root being at depth 0, and so on. Each layer has its own

frequencies in which it transmits its synchronization signal. Each node transmits its

synchronization signal in the frequencies corresponding to its layer, and synchronizes

itself by listening to the synchronization signal on the frequencies corresponding to

its parent layer directly above it. Thus, the tree structure is really a fat tree.

Chorus’s synchronization tree is self-organizing. All that the administrator has to

do is to pick the root of the tree. Once the administrator nominates the root, the tree

self organizes as follows: The root starts transmitting a signal in layer 0. Each node

who wants to join the system listens for synchronization signals on the frequencies
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associated with all layers. The node picks the lowest layer from which it receives an

adequately strong synchronization signal. Specifically, each node internally is running

a controller (described in 5.4) whose objective is to match its phase with the phase of

the synchronization signal. The controller needs a minimum synchronization signal

SNR in order to provide robust phase coherence. Thus, when picking a layer, the

node picks the lowest layer whose SNR is above this threshold. We evaluate the

performance of Chorus’s controller in 5.9.2, and describe how we can determine this

SNR threshold. Intuitively, one can see these layers in space as concentric rings

starting from the single layer 0 node in the network.

Since the synchronization signals will attenuate with distance, Chorus can reuse

synchronization frequencies. For example, say that we have 8 sets of synchronization

frequencies, which are used by layers 0 through 7. Layer 8 can re-use the frequencies

corresponding to layer 0, assuming nodes at this layer are sufficiently distant from the

node in layer 0. By default, Chorus uses 8 distinct sets of synchronization frequen-

cies. Thus, layer 𝑖, for 𝑖 ≥ 1, receives on synchronization frequency (𝑖 − 1) mod 8,

and transmits on synchronization frequency 𝑖 mod 8. In 5.5, we describe how these

synchronization frequencies can be provided cheaply in the LTE framework without

allocating dedicated frequency bands.

5.3.2 Resilience

Chorus is resilient to node addition and removal, as well as changes in channel quality

and, therefore, topology of the synchronization tree. In particular, say that a node

fails. Such a failure typically has no impact on the other nodes. Specifically, all nodes

who are synchronizing to the layer on which the failed node transmits are likely to

continue receiving the synchronization signal from the rest of the nodes in that layer.

In the unlikely case, where the failed node has a descendant who cannot hear any

other nodes from that layer, the descendant will immediately discover the loss of its

synchronization signal from its parent layer, and therefore pick the next layer with

sufficiently high SNR. This process could, in principle, cascade across several nodes,

and naturally resolve itself with each node moving to the appropriate layer. Node
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addition works similarly.

In our description so far, we have addressed the resilience at all layers except

layer 0. We now address how to make layer 0 resilient. Specifically, consider the

topology in Fig. 5-4(a). This is a modified tree topology where node A transmits a

synchronization signal on layers 0 and 1, node B listens to the synchronization signal

on layer 0, and transmits a synchronization signal on layer 1, and nodes𝑁1, 𝑁2, . . . , 𝑁𝑘

listen to the synchronization signal on layer 1, and transmit a synchronization signal

on layer 2. In this case, if node A dies, node B automatically becomes the root of the

network and the system continues to operate as usual. Further, if node B dies, nodes

𝑁1, 𝑁2, . . . , 𝑁𝑘 transparently continue to synchronize with parent layer 1, but using

node A alone. Thus, this system can withstand one root failure, at the expense of an

additional layer at the root alone. We can extend this idea to multiple root failures.

For instance, Fig. 5-4(b) shows a root topology that can withstand up to two nodes

at the root failing, i.e., any two nodes of A, B, and C can fail. While we expect that

the system administrator should pick robust nodes for the root, such as base stations,

the fault tolerant topology shown here enables resilience to the transient failure of

one or more of the root nodes.

5.4 Robust Phase Update Algorithm

Chorus embeds the synchronization signal in the LTE frame. LTE divides the fre-

quency band into subcarriers, which themselves are divided into timeslots called re-

source elements. To maintain low overhead, the synchronization signal appears in

certain resource elements, once every 5 milliseconds (the details are in 5.5). Every

time the synchronization signal is available, the small cell obtains new measurements,

which it uses to correct any phase drift caused by it’s own oscillator.

Chorus’s phase update algorithm has to work under stringent requirements. Specif-

ically, it needs to provide continuous phase tracking to accommodate LTE’s con-

tinuous data transmission, while using infrequent phase measurements in order to

integrate into the LTE framework with low overhead. Furthermore, Chorus’s syn-
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Figure 5-5: A Block-diagram of Chorus’s Phase Control Loop.

chronization signal is transmitted by multiple nodes as opposed to a single leader,

which makes it susceptible to destructive interference resulting in low signal strength.

This in addition to being stable while nodes are joining or leaving the network. In or-

der to achieve these requirements, Chorus combines techniques from signal processing

and control theory. The phase update algorithm has two main components.

(a) Control Block: In order to cope with the infrequent phase measurements,

Chorus formulates phase tracking as a control problem. Fig. 5-5 shows the block

diagram for the phase estimation and correction. The Controller takes as input the

measured phase error and it produces a correction value that is fed to the correction

modules on both the Tx and Rx signal paths. The task of the controller is to minimize

the magnitude of the phase error, by tracking the phase drift of the local oscillator.

To achieve the optimal control behaviour we use MATLAB control toolbox to design

and tweak Chorus’s controller. This is done by accurately modelling the phase control

loop, and accounting for the delays of the different components in the loop. Chorus’s

controller is implemented in HW with loadable coefficients from SW. This is to reduce

the loop latency and achieve better stability, while providing enough flexibility to

adapt for different SNRs of the synchronization signal.

(b) Robust Synchronization Signal: In order to provide resilience against de-

structive interference and changes in the network structure, Chorus designs the syn-
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chronization signal sent from multiple nodes to be uncorrelated. Specifically, each

node gets to choose a random signal to be transmitted on each resource element used

for synchronization, then it keeps sending the same signal repeatedly every 5 millisec-

onds. At the receiver, instead of estimating the channel, the receiver computes the

change in phase that was accumulated over the 5 milliseconds on each of the resource

elements used for synchronization, and uses that phase change to correct for it’s own

oscillator drift. Now, since the different nodes are sending different signals, it becomes

unlikely to have destructive interference on all the resource elements.

Now to show how this would increase resilience to changes in the network struc-

ture, consider the following example. Say that 𝑁 nodes are transmitting the syn-

chronization signal at the same layer 𝐿. And the synchronization signal is using 𝐾

resource elements. The synchronization signal transmitted by node number 𝑛 on re-

source element number 𝑘 is denoted by 𝑆𝑛
𝑘 . When a node is being synchronized to

the combination of these signals, and it’s oscillator had a phase drift of ∆𝜑 over the

5 milliseconds, then the phase drift at the receiver is computed as 𝑎𝑛𝑔𝑙𝑒(𝜓), where 𝜓

is given by Equation (1).

𝜓 =
𝐾∑︁
𝑘=1

𝑐𝑜𝑛𝑗(
𝑁∑︁

𝑛=1

𝑆𝑛
𝑘 ) × (

𝑁∑︁
𝑛=1

𝑆𝑛
𝑘 𝑒

𝑗Δ𝜑)

𝜓 = 𝑒𝑗Δ𝜑 ×
𝐾∑︁
𝑘=1

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑛=1

𝑆𝑛
𝑘

⃒⃒⃒⃒
⃒
2

If a new node joins the network during the 5 milliseconds between the two mea-

surements and starts transmitting 𝑆𝑁+1
𝑘 . In this case the 𝜓 is given by Equation

(2).

𝜓 =
𝐾∑︁
𝑘=1

𝑐𝑜𝑛𝑗(
𝑁∑︁

𝑛=1

𝑆𝑛
𝑘 ) × (

𝑁+1∑︁
𝑛=1

𝑆𝑛
𝑘 𝑒

𝑗Δ𝜑)

𝜓 = 𝑒𝑗Δ𝜑 × (
𝐾∑︁
𝑘=1

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑛=1

𝑆𝑛
𝑘

⃒⃒⃒⃒
⃒
2

+
𝐾∑︁
𝑘=1

(𝑆𝑁+1
𝑘 × 𝑐𝑜𝑛𝑗(

𝑁∑︁
𝑛=1

𝑆𝑛
𝑘 )))

Comparing this with the previous case, there is a new term that is added here.
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However, since 𝑆𝑛
𝑘 is selected at random with zero mean, and K is typically large 80

resource elements in our implementation. This will result in a significant rejection for

the disturbance introduced by the new node.

5.5 LTE Compatibility

In this section, we describe how Chorus can be implemented within the LTE protocol

structure. Specifically, there are four issues that need to be addressed in order to

integrate Chorus with LTE. We discuss these issues below.

5.5.1 Making Synchronization Signals Transparent to End-

User Devices

In earlier sections, we described how Chorus assigns different synchronization frequen-

cies to different layers. Of course, we would like to transmit these synchronization

signals in-band. Furthermore, we would like these synchronization signals to be trans-

parent to existing end-user devices (called UEs in LTE).

Our basic idea is to make the synchronization signal look like yet another user

in the system. Only the small cells participating in the Distributed-MIMO system

understand how to interpret the synchronization signal, and process it appropriately,

whereas regular user devices simply steer clear of these frequency bands because they

are not intended for them.

To achieve this, Chorus leverages the structure of LTE transmissions [18, 21, 22].

LTE transmissions are organized as frames, with each frame being 10 ms long. Each

frame can be viewed as a time-frequency map. In particular, each frame consists of

10 1 ms subframes. It is also divided in the frequency domain into many subcarriers

which are combined using OFDM.

Users are allocated at the granularity of groups of subcarriers for a subframe

(Resource Block). Thus, we allocate the virtual synchronization user two resource

blocks each in subframe 0, and subframe 5. A typical LTE channel of 10 MHz has
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500 resource blocks in a frame. This amounts to a total overhead of 4/500, which is

less than 1%. The overhead further decreases with increasing channel width. Having

allocated these resource blocks for synchronization, Chorus maps the synchronization

signals for different layers to these resource blocks. Specifically, we interleave the

synchronization signals for the different layers in these resource blocks, similar to the

way user data is interleaved.

5.5.2 Addressing FDD Systems

LTE systems come in two flavors: TDD (Time Division Duplex) which has the same

frequency bands for uplink and downlink and schedules uplink and downlink at dif-

ferent points in time, and FDD (Frequency Division Duplex) which uses different

frequency bands for uplink and downlink, with both uplink and downlink operating

simultaneously at all times.

As we described above, to make the system transparent to end-user devices, we

need the synchronization signal to be transmitted as if it were a virtual user. However,

this means that such signals would have to be transmitted on the downlink frequencies

for FDD systems. Small cells in FDD systems are not capable of listening to downlink

transmissions, and hence cannot use these signals to synchronize. Conceptually, one

solution to this problem is to modify end-user devices to listen to the synchronization

signal on the downlink, synchronize to it, and transmit a synchronization signal on

the uplink. However, this defeats the objective of not modifying end-user devices. So,

the solution is to simply have the operator deploy a few special end-user devices that

have been modified to support this cascading of synchronization signals. We refer to

these boxes as Cascading End Users.1

1This does not mean that the operator actually deploys cellphones. The operator deploys boxes
that are similar in form factor to a picocell, but are significantly simpler – they do not need to do
end-user data processing, and hence are not limited by backhaul requirements or other deployment
constraints.
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5.5.3 Joining The Network

Initially, as a node decides to join the system, its phase might not at all be coherent

with other synchronized nodes in the network. The node cannot simply start trans-

mitting a synchronization signal before it reaches a reasonable level of coherence.

Thus, when the node starts, it uses existing LTE synchronization signals, specifically

the Primary and Secondary Synchronization Signals (PSS and SSS) that are trans-

mitted by other distributed-MIMO nodes, to obtain a coarse frequency offset estimate

and time synchronization to a frame boundary. Having obtained these estimates, the

Chorus node then determines the synchronization layer to which it belongs, and starts

its controller. The controller then uses the synchronization signals to start doing fine

tracking of the frequency offset, and reports to the node when it has converged. At

this point, the small cell is fully synchronized and ready to join the distributed-MIMO

system by transmitting the synchronization signal on its appropriate layer. The node

also now joins the rest of the distributed-MIMO nodes in transmitting PSS and SSS

signals. For FDD, the Cascading End Users will relay the PSS and SSS on the uplink

for use by the joining small cells.

5.5.4 Transmission

Now that small cells are part of the Distributed-MIMO network, they can participate

in joint transmission much like with Coordinated Multi Point (CoMP) today. Specif-

ically, the system can use CSI-RS (Channel State Information Reference Signals) to

measure downlink channels and get feedback from UEs, the UE-RS (UE-Specific Ref-

erence Signals) as pilots to measure the beamformed downlink channel to end users,

and the actual data subcarriers for beamformed data transmission.

5.6 Implementation

We prototype Chorus using a joint software-hardware implementation. Our prototype

is integrated with srsLTE [61], an open source LTE stack library, and hence it is com-
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patible with LTE end user devices. The prototype runs on a custom programmable

radio platform, which comprises of a Zedboard integrated with the Analog Devices

RF frontend, FMCOMMS3. The Zedboard has an FPGA connected to an ARM core

by a high-throughput, low latency bus, hence allowing for real-time processing at the

PHY layer. Our hardware implementation is done using Verilog on the FPGA, and

our software runs on the ARM core.

We implement the components of Chorus in the different software and hardware

elements as follows:

∙ The layered architecture is implemented across both software and hardware. Specif-

ically, the hardware reports the signal strength for the different synchronization lay-

ers to our software, which determines which layer this small cell node should belong

to. The hardware then determines the appropriate time-frequency pattern of the

transmitted synchronization signal based on this layer. Further, the initialization

protocol described in 5.5 to determine time and coarse frequency synchronization

are implemented in hardware.

∙ Chorus’s controller that performs continuous synchronization and ongoing tracking

of the received synchronization signal is implemented in hardware so as to be real-

time and responsive.

∙ The LTE frames for transmission are created jointly by software and hardware.

Specifically, the srsLTE software encodes and modulates the data, and produces

protocol compliant LTE frames, with both cell specific and user specific information.

The hardware translates this frame into the signal representation after augmenting

it with synchronization information depending on the layering information described

above.

∙ For joint transmissions, we provide software knobs that allow the system to pick

between diversity, nulling and multiplexing. The hardware executes on these knobs

by performing the correct precoding.
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5.7 Testbed

Our evaluation testbed is distributed across one floor in our building (80 × 60 feet).

Depending on their location, nodes can be separated by elevator banks, passages and

inside walls etc. The testbed contains a total of 20 nodes, with each node emulating

either an LTE small cell or an LTE client. We assign one LTE small cell node to

be in layer 0, and then run our layering algorithm to assign layers to other small

cells. We control the transmitted power of our nodes to create different interference

neighborhoods, and emulate a larger geographic area. For each experiment, we deploy

our nodes around the floor to create different topologies and layering of small cells.

The exact topology for each experiment is described along with the experiment (See

Fig. 5-10 for an example layout for one of the experiments.) In order to replicate

LTE conditions as closely as possible, we run our experiments in the white space

frequency bands. Specifically, we use the 680 MHz center frequency, which is very

close to the 700-800 MHz where major US operators such as Verizon and AT&T

run their networks. LTE has multiple possible channel widths, and our prototype is

implemented using the 3 MHz channel width. Chorus can support any channel width;

however, our choice of 3 MHz is dictated by the FPGA size and processing power of

our platform.

5.8 Metrics

In this section, we describe the metrics we use to evaluate Chorus.

(a) Phase Variance: The key function of distributed MIMO protocols is to syn-

chronize the oscillator phase across different nodes. Thus, it is natural to evaluate

Chorus in terms of the phase variance across the distributed MIMO transmitters. In

an ideal scenario, the phase across multiple independent transmitters will be coherent

across time, and the variance will be zero. The smaller the phase variance, the lower

the interference caused by misalignment of signals during joint transmission.

(b) Throughput Gain: We compute the ratio of the total throughput that can be
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delivered by the network, i.e. by concurrent transmissions from multiple independent

small cells to multiple end user devices using a distributed-MIMO scheme, to the

throughput delivered by the network without distributed-MIMO, i,e. i.e. with only

one small cell transmitting to a single end user device at a time.

5.9 Results

In this section, we evaluate Chorus’s performance and scaling behavior.

5.9.1 Resilience to Multiple Nodes Transmitting the Synchro-

nization Signal

A key property of Chorus is that it achieves resilience to the failure of individual

nodes and changes in network connectivity by having multiple nodes simultaneously

transmit the synchronization signal. In this section, we verify how the quality of

synchronization varies as the number of nodes transmitting the synchronization signal

increases.

For this experiment, we deploy the nodes in our testbed such that there are three

distinct areas of connectivity. We pick one node and assign it to layer 0. We then

run the layering protocol, which then assigns layer 1 to all the nodes that can hear

layer 0, and layer 2 to all the nodes that can hear layer 1. By definition, layer 1

nodes synchronize to the layer 0 node, and layer 2 nodes synchronize to the combined

signal from layer 1 nodes. We vary the number of LTE small cells in layer 1. We

then pick one node in layer 2 to synchronize to the combined layer 1 signal. Our

goal is to evaluate how well the node in layer 2 is synchronized to the individual

nodes in layer 1, though it is using a combined synchronization signal from all the

layer 1 nodes. For this, we pick one node in layer 1 to transmit data concurrently

with the node in layer 2, and receive these signals at an auxiliary node.2 To enable

the auxiliary node to measure the phase difference between the layer 1 and layer 2

2Note that all nodes in layer 1 are transmitting synchronization signals.
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Figure 5-6: Performance at an auxiliary node as a function of number of
joint transmitters in an intermediate synchronization layer. (a) plots the
phase variance observed at an auxiliary node as a function of the number of simul-
taneous transmitters in a layer. The figure shows that the phase variance observed
at an auxiliary node remains constant and low even as the number of transmitters in
the intermediate synchronization layer increases. (b) shows the impact of this phase
variance on interference, by estimating the Interference to Noise Ratio (INR). The
graph shows that the INR stays less than 0.5 dB for up to 10 simultaneous trans-
mitters. This demonstrates that Chorus’s strategy of having all nodes in the system
transmit the synchronization signal provides robust synchronization.
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nodes, we make them transmit in alternate symbols, i.e., the layer 1 node transmits

in the odd numbered symbols, and the layer 2 node transmits in the even numbered

symbols. The auxiliary node then compares the phase difference between the two

nodes using every pair of adjacent symbols, after compensating for the corresponding

channels between the layer 1 and layer 2 node to itself. We repeat the measurement

with different choices of layer 1 and layer 2 nodes.

Results. Fig. 5-6(a) plots the variance in the phase difference between the data

signals from layer 1 and layer 2 nodes as a function of the number of transmitters on

layer 1. The variance is measured across 1 sec intervals which is significantly larger

than the channel coherence time. If the layers are synchronized perfectly, the phase

difference between the adjacent symbols will be zero, since the oscillators are locked

with each other. Any error in synchronization will manifest as a non-zero phase

difference. The figure shows that the variance in the phase difference stays below

0.0022 radians even as the number of transmitters in layer 1 increases from 1 to 10.

The low phase variance shows that Chorus operates properly without a unique leader,

and can maintain good synchronization even when many small cells contribute to the

synchronization signal.

To understand the implication of phase variance, let us reason about its impact

on interference. Say that the distributed MIMO is trying to eliminate interference

by nulling the transmitted signals at a particular receiver. If the transmitters are

perfectly phase coherent, then they can compensate for the channels between them

to the receiver perfectly, and align the signals to eliminate interference. Any phase

variance will translate into phase noise and manifest itself as a misalignment of the

signals, i.e., interference. We can use our measurements from above to compute the

residual interference when the two transmitters apply nulling at the auxiliary node.

Fig. 5-6(b) plots these results. Note the similarity in shape between the INR plot

and the phase variance plot. This is because of the approximately linear relationship

between them at low INR. The figure shows that the residual interference to noise

ratio is 0.5 dB, which is small and comparable to previous systems. This shows

that despite the fact that Chorus has no leaders and multiple nodes transmitting the
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synchronization signal concurrently, it can achieve high performance comparable to

past systems that relied on a single leader.

5.9.2 Resilience to Varying Synchronization Link Quality

It is important to understand Chorus’s performance as a function of the synchro-

nization link SNR for two reasons. First, recall that Chorus nodes join the lowest

numbered layer with adequately strong synchronization signal. Hence, we want to

calibrate the performance of the controller across SNRs to determine this value. Sec-

ond, a key objective of Chorus is to be able to work robustly across a range of

synchronization SNRs to ensure resilience to variations in link quality.

For this experiment, we again deploy the nodes as before such that the layering

algorithm divides the network into three layers, layer 0, layer 1, and layer 2. We pick

two small cell nodes, both in layer 2, synchronizing to a node in layer 1. Our objective

is to investigate whether the two small cell nodes have accurately synchronized their

oscillators. To do that, we repeat the same measurement procedure as in 5.9.1,

where the two small cells interleave their data transmissions, and an auxiliary mode

measures the phase difference between the two small cells.

We repeat this process and characterize the phase synchronization accuracy across

different SNRs and locations in our testbed.

Results. Fig. 5-7(a) plots the variance in phase difference between the two small

cells measured across a 1 sec time interval, as a function of the minimum SNR of

the synchronization links, i.e., the links from the layer 1 node to the two small cells.

The figure shows that even when the synchronization link SNR is as low as 6 dB, the

median phase variance stays lower than 0.0045.

As before, we again examine the impact of this phase variance on interference, by

measuring the residual interference, i.e., INR. We plot the INR as a function of the

minimum SNR of the synchronization links in Fig. 5-7(b). Again, we notice that the

median INR is very small, less than 1 dB for synchronization SNR larger than 6 dB.

Figs. 5-7(a) and (b) show that by picking the minimum synchronization link SNR
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Figure 5-7: Performance at an auxiliary node as a function of synchroniza-
tion SNR. (a) plots the variance in phase between the signals received from two
small cells at an auxiliary node and (b) shows the median Interference to Noise Ratio
(INR) for various synchronization SNRs. The figure shows that Chorus can achieve
median INR less than 1 dB even for synchronization SNRs as low as 6 dB. This de-
termines the minimum SNR of the synchronization link used by Chorus’s layering
algorithm.
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Figure 5-8: Phase variance between small cells that cannot hear each other
and are synchronized through an intermediate node, as a function of syn-
chronization SNR. The figure shows that Chorus can achieve high level of synchro-
nization even when the nodes cannot hear each other.

to be 6 dB, Chorus can ensure that the maximum interference is less than 1 dB.

5.9.3 Synchronizing Nodes that Cannot Hear Each Other

Chorus’s architecture allows it to synchronize nodes that are not within listening

range of each other by cascading the synchronization signal across layers. In this

section, we evaluate the performance of such cascading.

For this experiment, we deploy our nodes such that the layering algorithm divides

the network into four layers, layers 0 through 3. We then pick three nodes, one each

in layers 1, 2 and 3, from our testbed. By the definition of our layering algorithm,

nodes in layer 3 cannot hear nodes in layer 1. For each run, we pick one node in

layer 1, and one node in layer 3, and synchronize via a node in layer 2, as described

in 5.3. Our objective is to investigate whether the nodes in layer 1 and layer 3 have

accurately synchronized their oscillators. We therefore repeat the same measurement

as in 5.9.2, but with the small cells in two different layers.

Results. Fig. 5-8 plots the variance in phase difference between the two small cells

105



measured across a 1 sec time interval, as a function of the minimum SNR of the

synchronization links, i.e., the links between the layer 2 node to the two small cells.

The figure shows that the quality of synchronization stays high even as the SNR of

the synchronization signal drops.

5.9.4 Comparison with Leader-Based Distributed MIMO

In this section, we empirically compare Chorus’s fully distributed protocol with

MegaMIMO, a leader-based distributed MIMO system. MegaMIMO is designed for

Wi-Fi networks but can be extended to small cells. The data plane does not need

to change since both Wi-Fi and LTE operate over OFDM. For the control plane,

MegaMIMO makes the leader node transmit a synchronization header before each

packet. This is not possible in LTE since one cannot insert new headers between LTE

frames. To make MegaMIMO compatible with LTE, we make the leader transmit

its synchronization information in the same resource elements used to transmit Cho-

rus’s synchronization signals. Since MegaMIMO has no layers, a MegaMIMO leader

transmits its synchronization signal in the channels of all layers.

We consider a deployment across a single floor of our building. The floor consists

of both offices and conference rooms, and our deployment consists of 20 nodes, with

10 acting as small cells, and 10 acting as clients. As explained earlier, we reduce the

transmission power to emulate a larger geographic area. We measure the pairwise

link quality between all the small cells to identify nodes that can hear each other

well. Fig. 5-9 shows the link quality matrix with all links with SNR less than 6 dB

(the minimum synchronization SNR, as determined in 5.9.2) gr-eyed out. As is clear

from the link quality matrix, there is no single node that is heard by all other nodes

in the network.

To run Chorus in this testbed, we need only to pick the root node; the syn-

chronization layers self-configure. Fig. 5-10(a) shows the topology of our testbed

with each node labeled with its layer as assigned by the layering algorithm. To run

MegaMIMO, we need to decide how to divide the network into clusters of distributed

MIMO systems where each cluster consists of one leader and its slaves. Based on
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1 2 3 4 5 6 7 8 9 10 

1 24 15 14 

2 24 21 10 

3 15 21 12 

4 10 12 17 

5 17 17 

6 17 12 7 

7 12 20 19 

8 20 11 

9 7 19 11 13 

10 14 13 

Figure 5-9: Pairwise link strength between small cells. The figure shows the
pairwise SNR in dB between small cells in our deployment, with links with SNR less
than the synchronization SNR threshold (6 dB) grayed out. No single small cell can
be heard by all other small cells.

the link-quality matrix in Fig. 5-9, we can see that the minimum number of clusters

is 3, i.e., MegaMIMO has to pick 3 leaders and their corresponding slaves. We pick

the leader-slave clusters by solving an optimization problem that maximizes the sum

of the link quality between each slave and its leader. This results in the following

three clusters: The first cluster consists of N1, N2, and N3 with N2 as the leader, the

second consists of N4, N5, and N6, with N5 as the leader, and the third is N7, N8,

N9, and N10, with N9 as the leader. Fig. 5-10(b) shows our topology (same as (a)),

with the MegaMIMO leaders and associated clusters labeled.

In Chorus all nodes in the network are synchronized and hence can transmit

concurrently without interference. In contrast, in MegaMIMO, nodes belonging to

different clusters are not synchronized and hence cannot transmit concurrently with-

out interference. Thus, a leader-based protocol like MegaMIMO needs to run a MAC

protocol to arbitrate the medium between adjacent MegaMIMO clusters. Designing

such a distributed inter-cluster MAC protocol is a complex task. Thus, we take a

conservative approach and allow MegaMIMO to use a perfect and centralized oracle

that arbitrates the medium between the MegaMIMO clusters.
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(b) MegaMIMO clustering and leader assignment. Different clusters
cannot transmit simultaneously since they interfere with each other.

Figure 5-10: Testbed topology, showing the assigned layers for Chorus
and the selected leaders and clusters for MegaMIMO. Note that, unlike
MegaMIMO, Chorus is self-organizing.
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2.7x 

Figure 5-11: Gains of Chorus in a distributed deployment. Chorus can allow
simultaneous transmission even across nodes that cannot hear a single leader, and
hence provide throughput gains over MegaMIMO as the network scales.

We consider the case of 10 clients distributed uniformly across the entire floor.

We measure the network throughput obtained with MegaMIMO, and with Chorus.

We then repeat this process for various different choices of client locations.

Results. Fig. 5-11 shows the CDF of the network throughput gain of Chorus and

MegaMIMO across the different client location choices. The figure shows that Chorus

achieves a median throughput gain of 2.7× over MegaMIMO. Chorus achieves this

throughput gain since it can synchronize all small cells in the network to transmit

jointly to all 10 clients, whereas MegaMIMO will need to time multiplex between

the three clusters and transmit to only 3 or 4 clients at a time. Note that, while

MegaMIMO has three clusters, the median gain is less than 3× because of imbalances

in the client channel matrices for different layouts.
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5.9.5 Scaling the Network

Finally, we want to verify that Chorus’s architecture can scale to a large geographic

area with thousands of nodes. Since we cannot evaluate this large scale in actual

deployment, we leverage simulation for this task.

We perform our simulation in a dense urban setting. Each small cell in our

system is an urban micro cell with transmit power of 1W, as described in Page 29

of the 3GPP TS 136.104 v 12.7.0 LTE standard [19]. We use the Non Line of Sight

Propagation Model for a Manhattan grid layout, as described on Page 93 of 3GPP TR

36.814 V9.0.0 [16]. Receivers have a noise floor of -100 dB, which corresponds to the

standard noise figure of 6 dB (defined in the LTE TR 36 931 document [17]) at 27∘ C

for a bandwidth of 5 MHz. With these parameters, the SNR in our network attenuates

to 0 dB at around 300 m. In order to evaluate dense deployments, we consider a case

where small cells are separated by an average distance of 50 m, in a 8 km × 8 km grid,

which roughly corresponds to the size of Manhattan. Thus, our simulation has 25600

small cell nodes deployed uniformly at random in this grid. We have an oscillator

model for each node, with a carrier frequency offset of ±100𝑝𝑝𝑏, which corresponds to

the LTE hardware tolerance defined in TR 36 104 [20, 7], and a phase noise of -88 dBc

at 100 KHz for a bandwidth of 5 MHz, which is typical for the voltage, temperature

and oven controlled oscillators used in small cells [50]. Each small cell node in our

system runs the Chorus controller to ensure phase synchronization in the presence

of oscillator offsets. We run the layering algorithm on our simulated deployment,

and then simulate the operation of the network for a duration of 5 seconds, which is

significantly larger than the typical channel coherence time of 100-200 ms.

Fig. 5-12 visualizes the results of the layering algorithm, showing that this network

has 19 layers. Since Chorus has 8 distinct synchronization frequencies, the layers reuse

these frequencies as described in 5.3.

Since we have access to the absolute phases of our oscillators in our simulation,

we can compute the absolute phase difference, and consequently the phase variance,

between pairs of nodes in our system. We plot the median of this phase variance as
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Figure 5-12: Visualization of Chorus’s layering scheme. The figure depicts the
different layers assigned by Chorus’s layering algorithm. It shows that across the
geographical range of this simulation, Chorus reuses synchronization frequencies.

a function of the distance between node pairs. Since the number of node pairs in our

system is very large, the graph is generated by subsampling the node pairs.

Fig. 5-13 shows the median phase variance as a function of distance. As one would

expect, the phase variance increases as the distance between node pairs increases.

Further, the phase variance stays less than 0.004 for all nodes within distance 5 km

of each other. For nodes farther apart than this distance, the higher phase variance is

irrelevant because the nodes are separated by many multiples of the interference range

and therefore, their signals do not interact. This shows that Chorus’s synchronization

fabric scales to large networks. Of course this does not mean that thousands of nodes

will transmit concurrently to the same client set. Rather it shows that Chorus can

create an abstraction of distributed phase coherence across thousands of nodes. The

higher layers can then treat the network as they would treat a very large massive
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Figure 5-13: Phase variance as a function of distance. The figure shows that,
while phase variance increases as a function of distance between the nodes, it stays
within 0.004 for nodes within 5 km of each other. This implies that Chorus provides
tight phase synchronization for nodes significantly longer than the interference range
of nodes, and hence enables joint transmission from multiple transmitters.

MIMO system, and become free to combine any subset of nearby base stations to

create multiplexing or diversity gains for the clients.
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Chapter 6

Conclusion

In thes thesis we presented MegaMIMO 2.0, the first full fledged real-time PHY capa-

ble of supporting distributed MIMO for WiFi. MegaMIMO 2.0 is 802.11 compatible,

and addresses various key practical issues required for a practical PHY layer that

can operate across diverse SNRs and channel conditions. Further, it extends the

802.11 PHY interface to support a MAC layer capable of distributed MIMO, and can

therefore serve as a building block for a full stack distributed MIMO system. We be-

lieve that MegaMIMO 2.0 represents a significant step forward in bringing distributed

MIMO closer to practice.

We also presented Chorus, a new design for LTE small cells distributed MIMO.

Chorus use a fully distributed phase synchronization protocol, where all nodes con-

tribute equally to propagating the synchronization signal. Chorus allows dense de-

ployments of 5G small cell networks to coordinate their transmissions, eliminate inter-

ference, and deliver large throughput gains. The resulting distributed MIMO network

is scalable, resilient to failures and changes in connectivity. We have integrated Cho-

rus with an open source LTE stack library, and demonstrated that it can deliver tight

synchronization at scale, and distributed-MIMO throughput gains with unmodified

end-user devices. We believe that Chorus’s flexible and self-healing design will en-

able distributed-MIMO to truly move from small scale demonstrations to practical,

manageable use in large networks.
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