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Abstract

The seemingly random fluctuations of price and value produced by information flow
and complex interactions across a diverse population of stakeholders has motivated
the extensive use of stochastic processes to analyze both capital markets and the reg-
ulatory approval process in healthcare. This thesis approaches the statistical analysis
of such processes through the lens of signal processing, with a particular emphasis on
studying how dynamics evolve over time.

We begin with a brief introduction to financial signal processing in Part I, before
turning to specific applications in the main body of the thesis. In Part II, we apply
spectral analysis to understand and quantify the relationship between asset-market
dynamics across multiple time horizons, and show how this framework can be used to
improve portfolio and risk management. Using the Fourier transform, we decompose
asset-return alphas, betas and covariances into distinct frequency components, allow-
ing us to identify the relative importance of specific time horizons in determining each
of these quantities. Our approach can be applied to any portfolio, and is particularly
useful for comparing the forecast power of multiple investment strategies.

Part III addresses the growing interest from the healthcare industry, regulators
and patients to include Bayesian adaptive methods in the regulatory approval process
of new therapies. By applying sequential likelihood ratio tests to a Bayesian decision
analysis framework that assigns asymmetric weights to false approvals and false rejec-
tions, we are able to design adaptive clinical trials that maximize the value to current
and future patients and consequently, public health. We also consider the possibility
that as the process unfolds, drug sponsors might stop a trial early if new information
suggests market prospects are not as favorable as originally forecasted. We show that
clinical trials that can be modified as data are observed are more valuable than trials
without this flexibility.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor, Sloan School of Management
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Chapter 1

Financial Signal Processing

The field of signal processing deals with extracting information from signals produced

by the behaviour or nature of some phenomenon. In finance, the most visible signal

produced by a system of competing market participants is price, and signal process-

ing can be used to extract information that may prove useful in predicting future

movements. For example, the history of the daily close of a stock market index may

contain information about long-term economic trends or more transient seasonal vari-

ations. This thesis explores how tools from signal processing can be used to extract

information from signals produced by capital markets and the regulatory approval

process in healthcare, and moreover, how systems in these areas can be designed to

make efficient use of this information. Before turning to specific applications in Parts

II and III, we begin by providing some historical context.

1.1 Background for Part II

Over the past 200 years, signal processing has made fundamental contributions to

fields ranging from finance, communications, and neuroscience, to partial differential

equations, astronomy, and geology. However, in contrast to its modern ubiquity, its

origins stem from a very specific problem—modeling the orbits of celestial bodies.

In the mid-18th century, the mathematicians Leonhard Euler, Joseph-Louis La-

grange, and Alexis Clairaut each observed that orbits could be approximated as linear

19



combinations of trigonometric functions, i.e., sines and cosines. In fact, in order to

estimate the coefficients from the data, Clairaut published the first explicit formu-

lation of the Discrete Fourier Transform (DFT) in 1754, more than a decade before

Jean-Baptiste Joseph Fourier was born. Shortly thereafter, while studying the orbit

of the asteroid Pallas in 1805, Carl Friedrich Gauss discovered a computational short-

cut while calculating the DFT. His calculation, which appeared posthumously as an

unpublished paper in 1866, is now known as the Fast Fourier Transform (FFT), and is

used in many applications in engineering, science, and mathematics. Unfortunately,

Gauss’ algorithm was largely forgotten until it was independently rediscovered in a

more general form almost a century later by James Cooley and John Tukey in 1965.

Drawing on the progress made by pioneers such as Clairaut, spectral analysis

was generalized by Fourier in his seminal paper on heat conduction. In his treatise

presented to the Paris Academy in 1807, Fourier claimed that any arbitrary function

could be represented by the superposition of trigonometric functions. This broader

claim was initially received with much skepticism, but eventually the Paris Academy

awarded his paper the grand prize in 1812. Despite the award, the Academy’s panel of

judges, which included Lagrange, Laplace and Legendre, still held reservations about

the rigor of his analysis, especially in relation to the challenging question posed by

convergence. Further advances by Dirichlet, Poisson, and Riemann addressed these

subtle issues, and provided the foundation for today’s Fourier transform, which forms

the basis for analyzing signals in the frequency domain (Briggs and Henson, 1995).

We will use these tools extensively in Part II of this thesis.

1.2 Background for Part III

Interestingly, it is not spectral analysis, but rather the heat equation from Fourier’s

treatise that has has the most influence on the field of finance. In 1900, Louis Bache-

lier, one of the pioneers of financial mathematics, modeled the fluctuations of stock

prices as random walks in continuous time. In doing so, he connected Fourier’s heat

equation to option pricing, which ultimately lead to the celebrated Black-Scholes-
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Merton formula. Similar to how the heat equation states that the rate of change in

temperature at a point in space is proportional to the convexity of the local temper-

ature profile, loosely speaking, the Black-Scholes-Merton partial differential equation

states that the rate of change in a European call option’s price at a given stock price

is proportional to the convexity of the option price at that underlying stock price.

This formulation captures the intuition that the value of an option is in its ability to

hedge uncertainty.

Both random walks and option valuation are applied throughout Part III of this

thesis. However, while the work of Bachelier and Black, Scholes and Merton focus on

continuous time, we approach these problems from the perspective of discrete time.

The major impetus for this choice is the result of Moore’s law, i.e., technological

advancements in computation have made it increasingly advantageous to represent

continuous time signals in discrete time. In particular, the discrete-time domain

provides greater flexibility to apply tools from signal processing on a case-by-case

basis, which is especially useful in our evaluation of real options in Chapter 7.
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Chapter 2

Spectral Analysis of Financial Time

Series

Although spectral methods are not new to finance, current applications are sufficiently

rare that a brief overview of spectral analysis may be appropriate before we turn to

our own applications. We begin in Section 2.1 with a brief motivation for spectral

methods, and review the literature in Section 2.2. The formulation of time-frequency

analysis is provided in terms of the Discrete Fourier Transform (DFT) in Section

2.3, and the Haar Wavelet Transform in Section 2.4. We then present the main

mathematical results on the co-spectrum in Section 2.5 that will be the basis of our

applications to portfolio theory, and include examples using business cycle data in

Section 2.6 and equity returns in 2.7. Readers familiar with spectral methods may

prefer to skip this Chapter and proceed to Chapter 3.

2.1 Introduction

Although portfolio optimization models have explicitly incorporated a time dimension

ever since the stochastic dynamic programming approach of Samuelson (1969) and

Merton (1969, 1971, 1973), the decision-making horizon of investors has rarely been

the main focus of attention. Portfolio weights are assumed either to be rebalanced

continuously over time or at arbitrary but fixed discrete intervals. In both cases, the
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process by which portfolio decisions are rendered is determined by dynamic optimiza-

tion, yielding optimal portfolio weights that are functions of state variables evolving

through time according to their laws of motion. The generality of this approach can

obscure important features of the underlying process by which information is reflected

in investment decisions. For example, although high-frequency trading and long-term

investing can both be profitable—and both can be modeled as a dynamic optimization

problem—they operate at very different frequencies using very different methods.

In this thesis, we propose a new approach to analyzing and constructing port-

folios in which the frequency component is explicitly captured. Using the tools of

spectral analysis—the decomposition of time series into a sum of periodic functions

like sines and cosines—we show that investment strategies can differ significantly

in the frequencies with which their expected returns and volatility are generated.

Slower-moving strategies will exhibit more “power” at the lower frequencies while

faster-moving strategies will exhibit more power at the higher frequencies. By iden-

tifying the particular frequencies that are responsible for a given strategy’s expected

returns and volatility, an investor will have an additional dimension with which to

manage the risk/reward profile of their portfolio.

In fact, because time-domain statistics such as means, standard deviations, corre-

lations, and beta coefficients all have frequency-domain counterparts, it is possible to

apply spectral analysis to virtually all aspects of portfolio theory, linear factor models,

performance and risk attribution, capital budgeting, and risk management. In each

of these areas, we can decompose traditional time-series measures into the sum of

frequency-specific subcomponents. For example, for a specific set of historical asset

returns, we can formulate a spectral factor model to decompose the covariance matrix

into the sum of high, medium, and low frequency components so that an investor can

determine the best and worst sources of diversification at different frequencies and

change their portfolio accordingly.

To motivate the practical relevance of frequency in the portfolio context, consider

the simple market-neutral mean-reversion strategy of Lo and MacKinlay (1990). This

strategy holds long positions in stocks that underperformed the average stock 𝑞 days
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ago and holds short positions in stocks that outperformed the average 𝑞 days ago, i.e.,

𝑤𝑖𝑡(𝑞) = −(𝑟𝑖𝑡−𝑞 − 𝑟𝑚𝑡−𝑞)/𝑁 where 𝑟𝑚𝑡−𝑞 =
∑︀

𝑖 𝑟𝑖𝑡−𝑞/𝑁 is the average stock return on

date 𝑡−𝑞 and 𝑁 is the total number of stocks. Each lag 𝑞 defines a different strategy,

one intended to exploit mean reversion over a 𝑞-day horizon. Common intuition

might suggest that the returns of strategies with non-overlapping horizons would be

uncorrelated. Therefore, it is not surprising to learn that the correlation between the

returns of the 𝑞=1 and 𝑞=2 strategies is −1.1% over the period from July 16, 1962 to

December 31, 2015.1 However, during the month of August 2007, these strategies all

suffered significant losses as part of the “Quant Meltdown” (Khandani and Lo, 2007).

During that month, the correlation between the 𝑞 = 1 and 𝑞 = 2 strategies spiked

to 65.8%. Figure 2-1 provides a more dynamic view of this correlation, computed

over 125-day rolling windows from 3 January 2006 through 31 December 2008. The

correlation began increasing in July 2007 but the spike occurred in August 2007 and

declined steadily until the correlation turned negative in the first half of 2008, only

to reverse itself during the second half as the Financial Crisis unfolded.

These strange dynamics illustrate the relevance of frequency effects in financial

asset returns, and spectral analysis is the most natural tool for quantifying these

effects.

1Specifically, the strategies are implemented using data from the University of Chicago’s Center
for Research in Securities Prices (CRSP). Only U.S. common stocks (CRSP share code 10 and 11)
are included, which eliminates REIT’s, ADR’s, and other types of securities, and we drop stocks
with share prices below $5 and above $2,000.
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Figure 2-1: 125-day rolling-window correlation between daily mean-reversion strate-
gies {𝑤𝑖𝑡(𝑞)} with 𝑞 = 1 and 𝑞 = 2 where 𝑤𝑖𝑡(𝑞) = −(𝑟𝑖𝑡−𝑞 − 𝑟𝑚𝑡−𝑞)/𝑁 and
𝑟𝑚𝑡−𝑞 =

∑︀
𝑖 𝑟𝑖𝑡−𝑞/𝑁 is the average stock return on date 𝑡− 𝑞. The gray lines de-

lineate 2-standard-deviation bands around the correlations under the null hypothesis
of zero correlation.
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2.2 Literature Review

The frequency domain has long been part of economics (Granger and Hatanaka,

1964; Engle, 1974; Granger and Engle, 1983; Hasbrouck and Sofianos, 1993), and the

Fourier transform has been used in finance to efficiently evaluate theoretical pricing

models for derivative securities (Carr and Madan, 1999). However, econometric and

empirical applications of spectral analysis in economics and finance are less common,

in part because economic time series are rarely considered stationary. Recently, there

has been a rebirth of interest in their application to economics in response to modern

advances in non-stationary signal analysis (Baxter and King, 1999; Croux et al., 2001;

Ramsey, 2002; Crowley, 2007; Huang et al., 2003; Breitung and Candelon, 2006; Rua,

2010, 2012; Dew-Becker and Giglio, 2016; Bandi et al., 2017). This rebirth motivates

our interest in the spectral properties of financial asset returns.

Spectral and co-spectral power, often calculated using either the Fourier or wavelet

transform, provide a natural way to study the cyclical components of variance and

covariance, two important measures of risk in the financial domain. Specifically,

spectral power decomposes the variability of a time series resulting from fluctuations

at a specific frequency, while co-spectral power decomposes the covariance between

two real-valued time series, and measures the tendency for them to move together

over specific time horizons. When the signals are in phase at a given frequency (i.e.,

their peaks and valleys coincide), the co-spectral power is positive at that frequency,

and when they are out of phase, it is negative.

In a recent empirical study, Chaudhuri and Lo (2015) perform a spectral decom-

position of the U.S. stock market and individual common stock returns over time.

They noticed that measures related to risk and co-movement varied not only across

time, but also across frequencies over time. Given that economic shocks produce dis-

tinct effects on financial assets over different time horizons, these dynamics are likely

to have important implications for any theory of risk, reward, and portfolio choice.

However, the traditional inputs into these analytics—means, variance, covariances,

alphas, and beta—are static, and do not distinguish between the short- and long-
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term components of these dynamics. The fact that the standard estimators of these

statistics are invariant to how the data are ordered suggests that traditional portfo-

lio analytics are incapable of capturing the dynamic properties of asset returns. In

this thesis, we apply spectral analysis to develop dynamic, frequency-specific analogs

for each of these portfolio analytics. Our exposition focuses on sample statistics of

the underlying power spectrums, but we note that each equation has a population

statistic analog.

Furthermore, to address the non-stationarity of financial time series, our analysis

relies on the short-time Fourier transform, which applies the discrete Fourier trans-

form (DFT) to windowed subsamples of the entire sample (Oppenheim and Schafer,

2009). Recently, wavelets (Ramsey, 2002; Crowley, 2007; Rua, 2010, 2012) and other

transforms (Huang et al., 2003) have also been used to study financial data in the

time-frequency domain, and depending on the specific context, these alternative tech-

niques can provide substantial benefits in terms of implementation. For example, the

sinusoids used in the short-time Fourier transform do not efficiently characterize dis-

continuous processes, whereas the flexibility of wavelets can be used to overcome this

difficulty. Moreover, the wavelet transform provides better time resolution at high

frequencies, and better frequency resolution at low frequencies, although similar re-

sults can be obtained by varying the window length used with the short-time Fourier

transform. In this thesis, we consider both sets of transform, but focus primarily

on the DFT for two reasons: the Fourier transform is intuitive and expositionally

simple, and all our results for the Fourier transform carry over directly to the wavelet

transform (albeit with greater mathematical complexity).

2.3 The Fourier Transform

One of the most structurally revealing analyses that can be performed on a time

series is to express its values as a linear combination of trigonometric functions. This

procedure relies on the Discrete-Time Fourier Transform (DTFT), and allows the

data to be transformed to the frequency domain. Specifically, given a finite-energy
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time series 𝑥𝑡, the DTFT is given by,

𝑋(𝜔) =
∞∑︁

𝑡=−∞

𝑥𝑡 𝑒
−𝑗𝜔𝑡, 𝜔 ∈ [0, 2𝜋) (2.1)

where the frequency 𝜔 has units of radians per sample and 𝑗 denotes the imaginary

unit
√
−1. When 𝑥𝑡 is real-valued, the inverse DTFT can be written in rectangular

form as,

𝑥𝑡 =
1

2𝜋

∫︁ 2𝜋

0

[︁
ℜ[𝑋(𝜔)] cos(𝜔𝑡) −ℑ[𝑋(𝜔)] sin(𝜔𝑡)

]︁
d𝜔, 𝑡 ∈ (−∞,∞) (2.2)

or in polar form as,

𝑥𝑡 =
1

2𝜋

∫︁ 2𝜋

0

|𝑋(𝜔)| cos(𝜔𝑡 + ∠𝑋(𝜔)) d𝜔, 𝑡 ∈ (−∞,∞) (2.3)

where ℜ[𝑋(𝜔)] and ℑ[𝑋(𝜔)] are the real and imaginary components of 𝑋(𝜔), and

|𝑋(𝜔)| and ∠𝑋(𝜔) are its magnitude and phase, respectively.

If only a finite sample of 𝑥𝑡 is available, or only a local portion of 𝑥𝑡 needs to

be analyzed, the DTFT reduces to the DFT. Specifically, given a sample of 𝑥𝑡 from

times 𝑡 = 0, . . . , 𝑇−1, the 𝑇 -point DFT is given by:2

𝑋𝑘 =
𝑇−1∑︁
𝑡=0

𝑥𝑡 𝑒
−𝑗𝜔𝑘𝑡, 𝑘 ∈ [0, 𝑇 − 1] (2.4)

where 𝜔𝑘 = 2𝜋𝑘/𝑇 . Again, when 𝑥𝑡 is real-valued, the inverse DFT can be written

in rectangular form as,

𝑥𝑡 =
1

𝑇

𝑇−1∑︁
𝑘=0

[︁
ℜ[𝑋𝑘] cos(𝜔𝑘𝑡) −ℑ[𝑋𝑘] sin(𝜔𝑘𝑡)

]︁
, 𝑡 ∈ [0, 𝑇 − 1] (2.5)

2In general, for finite 𝑇 , 𝑋(𝜔𝑘) ̸= 𝑋𝑘 as multiplying 𝑥𝑡 by a rectangular window results in the
convolution of 𝑋(𝜔) with the window’s DTFT in the frequency domain.
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or in polar form as,

𝑥𝑡 =
1

𝑇

𝑇−1∑︁
𝑘=0

|𝑋𝑘| cos(𝜔𝑘𝑡 + ∠𝑋𝑘), 𝑡 ∈ [0, 𝑇 − 1]. (2.6)

In this real-valued case, 𝑋𝑘 = 𝑋*
𝑇−𝑘, and so |𝑋𝑘| cos(𝜔𝑘𝑡+∠𝑋𝑘) = |𝑋𝑇−𝑘| cos(𝜔𝑇−𝑘𝑡+

∠𝑋𝑇−𝑘). Therefore, the lowest non-zero frequency occurs at 𝑘 = 1, and the highest

frequency occurs at 𝑘 = ⌊𝑇/2⌋. The relation ℎ=𝑇𝑇𝑠/𝑘, where 𝑇𝑠 is the time between

samples and 0≤ 𝑘≤ 𝑇/2, can be used to convert the 𝑘th harmonic frequency to its

corresponding time horizon.

As a concrete example, consider the rectangular pulse 𝑥𝑡 for 𝑡=0 to 𝑡=9 shown in

panel A of Figure 2-2. The real and imaginary components of the 10-point DFT are

plotted in panels B and C, and their magnitude and phase in panels D and E. Panel

F shows the reconstruction of 𝑥𝑡 using only the constant 𝑋0 term in (2.5), which is

equivalent to the average value of the time series 𝑥𝑡. Panel G shows the reconstruction

of 𝑥𝑡 using both the constant term and the first non-zero low-frequency terms. These

low-frequency terms are dominated by the sine term in (2.5) which has an amplitude

proportional to the magnitude of the imaginary coefficients at 𝑘 = 1 and 𝑘 = 9 in

panel C. More precisely, the amplitude of the low-frequency sinusoid can be seen in

panel D, and its phase in terms of a shifted cosine in panel E. As more frequencies

are included (see panel H), the output of the reconstruction begins to converge to

the original time series. Ultimately, the reconstruction exactly matches the original

rectangular pulse in panel A when all frequency terms are included.

Since the Fourier transform is a unitary operator that changes the basis func-

tion representation of a time series from impulses to sinusoids, Parseval’s theorem

states that, when represented as a vector, the Euclidean length of the time series is

preserved under the transformation (with proper normalization). This observation

forms the foundation of spectral decomposition, and provides a method to visualize

the data in the frequency domain. This representation, known as the power spec-

trum, characterizes how much of the variability in the data comes from low- versus

high-frequency fluctuations. We turn to this representation in Section 2.5, but first
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Figure 2-2: Panels B and C plot the real and imaginary components of the 10-point
DFT coefficients of the rectangular pulse 𝑥𝑡 shown in panel A. Panels D and E show
the magnitude and phase of the DFT coefficients. Panels F through H show recon-
structions of 𝑥𝑡 using progressively more frequencies. The reconstruction matches the
original pulse exactly when all frequencies are included.
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consider time-frequency analysis using the Haar Wavelet Transform.

2.4 The Haar Wavelet Transform

In this section, we use a similar explanation to Bandi et al. (2017) to show how

moving average filters in the time domain can be used to calculate the frequency

components of a stationary stochastic process. Expanding the logic of Beveridge and

Nelson (1981), who popularized the decomposition of a non-stationary time series into

a trend component and a transient component, we can use the wavelet transform to

decompose a time series into components operating over different levels of persistence.

Given a time series 𝑥𝑡 we can construct moving averages 𝑥(𝑘)
𝑡 of window length 2𝑘,

𝑥
(𝑘)
𝑡 =

1

2𝑘

2𝑘−1∑︁
𝑝=0

𝑥𝑡−𝑝 , (2.7)

where 𝑥(0)
𝑡 ≡ 𝑥𝑡. Defining ̃︀𝑥(𝑘)

𝑡 to be the difference between moving averages of lengths

2𝑘−1 and 2𝑘, ̃︀𝑥(𝑘)
𝑡 = 𝑥

(𝑘−1)
𝑡 − 𝑥

(𝑘)
𝑡 . (2.8)

we find that, ̃︀𝑥(𝑘)
𝑡 contains fluctuations that are not filtered out by the moving average

of length 2𝑘−1, but do get filtered by the moving average of length 2𝑘. Therefore, the

surviving fluctuations have periods in the interval [2𝑘, 2𝑘+1). Similarly, the moving

average 𝑥
(𝑘)
𝑡 includes fluctuations with periods that exceed length 2𝑘+1. Using (2.8),

we can express 𝑥𝑡 as,

𝑥𝑡 =
𝐾∑︁
𝑘=1

̃︀𝑥(𝑘)
𝑡 + 𝑥

(𝐾)
𝑡 , (2.9)

for any 𝐾 ≥ 1. The values ̃︀𝑥(𝑘)
𝑡 are known as the wavelet filter coefficients at level

𝑘, and 𝑥
(𝐾)
𝑡 are the scaling filter coefficients at level 𝐾. Intuitively, (2.9) decomposes

𝑥𝑡 into a sum of frequency-specific components, and a residual low-frequency moving

average term. As 𝐾 increases, 𝑥
(𝐾)
𝑡 approaches a constant, long-term average. In

practice, the choice of 𝐾 is informed by the available sample length.
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Conveniently, this decomposition can be implemented using a orthonormal matrix

operator. For 𝐾 = 2, the system of equations can be expressed as,⎛⎜⎜⎜⎜⎜⎜⎝
𝑥
(2)
𝑡̃︀𝑥(2)
𝑡̃︀𝑥(1)
𝑡̃︀𝑥(2)
𝑡−2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1
4

1
4

1
4

1
4

1
4

1
4

−1
4

−1
4

1
2

−1
2

0 0

0 0 1
2

−1
2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

𝑥𝑡−3

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.10)

Letting 𝒯 (2) be the (4× 4) matrix in (2.10), it can be shown that that 𝒯 (2) is orthog-

onal such that Λ(2) ≡ 𝒯 (2)(𝒯 (2))T is diagonal and well-defined (Bandi et al., 2017).

Therefore, by matrix inversion, one can reconstruct the original process given the

filtered components, ⎛⎜⎜⎜⎜⎜⎜⎝
𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

𝑥𝑡−3

⎞⎟⎟⎟⎟⎟⎟⎠ =
(︁
𝒯 (2)

)︁−1

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥
(2)
𝑡̃︀𝑥(2)
𝑡̃︀𝑥(1)
𝑡̃︀𝑥(2)
𝑡−2

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.11)

An extension of this procedure to any 𝐾 ≥ 2, and a recursive algorithm for the

construction of the matrix 𝒯 (𝐾) associated to any arbitrary 𝐾 value is provided in

Mallat (1989). The matrix 𝒯 (𝐾) is commonly known as the Haar Wavelet Transform

(HWT).

Similar to the DFT, the maximum-overlap discrete wavelet transform described

in this section is an energy-preserving transform, and therefore we can use it to

calculate the frequency-specific measures of volatility, alpha, and beta coefficients

that are described in the rest of Part II. Alternative wavelet transforms, such as the

Daubechies wavelet, can also be used. However, the structure of the HWT is useful as

it makes explicit the relationship between frequency components and moving averages.

2.5 The Power Spectrum

In many situations, a time series can be modeled as the realization of a stochastic

process, which can often be characterized by its first and second moments. The DTFT
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of the auto- and cross-covariance functions can then be interpreted as the frequency

distribution of the power contained within the variance and covariance of these time

series, respectively. Similarly, the inverse DTFT can be used to find the lagged second

moments as functions of the auto- and cross-power spectra.

Let {𝑥𝑡} and {𝑦𝑡} form real-valued discrete-time wide-sense stationary stochastic

processes with means 𝑚𝑥 and 𝑚𝑦, and cross covariance function 𝛾𝑥𝑦[𝑚] = E[(𝑥𝑡+𝑚 −

𝑚𝑥)(𝑦𝑡 −𝑚𝑦)].3 Assuming the cross-covariance function has finite energy, let 𝑃𝑥𝑦(𝜔)

be its DTFT,

𝑃𝑥𝑦(𝜔) =
∞∑︁

𝑚=−∞

𝛾𝑥𝑦[𝑚]𝑒−𝑗𝜔𝑚. (2.12)

The function 𝑃𝑥𝑦(𝜔) is known as the cross-spectrum. Its real component, known as

the co-spectrum, can be interpreted as the frequency decomposition of the covariance

between 𝑥𝑡 and 𝑦𝑡. Specifically, the covariance between {𝑥𝑡} and {𝑦𝑡} can be calculated

using the inverse DTFT of 𝑃𝑥𝑦(𝜔),

Cov(𝑥𝑡, 𝑦𝑡) ≡ 𝛾𝑥𝑦[0] =
1

2𝜋

∫︁ 2𝜋

0

ℜ[𝑃𝑥𝑦(𝜔)]. (2.13)

We denote the co-spectrum4 as 𝐿𝑥𝑦(𝜔) ≡ ℜ[𝑃𝑥𝑦(𝜔)].

This calculation of the power and cross-power spectra from the auto- and cross-

covariance functions assumes the first and second moments of the stochastic process

are known and do not change with time; however, for practical applications, especially

those in finance, the underlying distributions are often unknown and nonstationary.

To address this issue, we compute the short-time Fourier transform to decompose

rolling-window covariances into their frequency components. This approach uses the

DFT to express windowed subsamples of 𝑥𝑡 and 𝑦𝑡 in the frequency domain, and then

analyzes their magnitude and phase. When the time series are in phase at a given

3Specifically, the stochastic processes {𝑥𝑡} and {𝑦𝑡} are said to be wide-sense stationary if and
only if E[𝑥𝑡] and E[𝑦𝑡] are constants independent of 𝑡, and E[𝑥𝑡1𝑥𝑡2 ], E[𝑦𝑡1𝑦𝑡2 ] and E[𝑥𝑡1𝑦𝑡2 ] depend
only on the time difference (𝑡1 − 𝑡2).

4The co-spectrum, 𝐿𝑥𝑦(𝜔), is the real part of the cross-spectrum, 𝑃𝑥𝑦(𝜔). The imaginary part,
𝑄𝑥𝑦(𝜔), is called the quadrature spectrum.
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frequency, the contribution that frequency makes to the sample covariance is positive;

when they are out of phase, that particular frequency’s contribution will be negative.

Longer windows will provide better frequency resolution, but will conflict with our

ability to resolve changes in the statistical properties of signals over time.

Specifically, consider a real-valued subsample of 𝑥𝑡 and 𝑦𝑡 from times 𝑡 = 0, . . . , 𝑇−

1. The sample covariance over this interval can be calculated as:

Cov⟨𝑥𝑡, 𝑦𝑡⟩ =
1

𝑇

𝑇−1∑︁
𝑡=0

(𝑥𝑡 − 𝑥)(𝑦𝑡 − 𝑦), (2.14)

where 𝑥 and 𝑦 are the sample means of 𝑥𝑡 and 𝑦𝑡 over the same subperiod. This

calculation is exactly equivalent to the one formed using the 𝑇 -point DFT:

Cov⟨𝑥𝑡, 𝑦𝑡⟩ =
1

𝑇

𝑇−1∑︁
𝑘=1

�̂�𝑥𝑦[𝑘] , �̂�𝑥𝑦[𝑘] ≡ 1

𝑇
ℜ[𝑋*

𝑘𝑌𝑘] (2.15)

where 𝑋𝑘 and 𝑌𝑘 are the 𝑇 -point DFT coefficients of the subsample of 𝑥𝑡 and 𝑦𝑡. Thus,

the sum over �̂�𝑥𝑦[𝑘] is proportional to the sample covariance of 𝑥𝑡 and 𝑦𝑡. Moreover,

the sum of �̂�𝑥𝑦[𝑘] over a band of frequencies, Cov𝐾⟨𝑥𝑡, 𝑦𝑡⟩ |𝐾 ⊆ {1, . . . , 𝑇 −1}, is

proportional to that band’s contribution to the sample covariance. For this reason

the function �̂�𝑥𝑦[𝑘], called the cross-periodogram, is an estimate of the co-spectrum

at the harmonic frequency 𝜔𝑘, and can be interpreted as the frequency distribution

of the power contained in the sample covariance. It can be shown that these estima-

tors are asymptotically unbiased, but inconsistent. Practical implementation details,

including the standard errors of these estimators, are discussed in Appendix A. Fur-

ther references on the statistical properties of spectrum estimates can be found in,

for example, Jenkins and Watts (1968), Hannan (1970), Anderson (1971), Priestly

(1981), Brockwell and Davis (1991), Brillinger (2001), Velasco and Robinson (2001),

Phillips et al. (2006, 2007), Shao and Wu (2007), Oppenheim and Schafer (2009), and

Wu and Zaffaroni (2018).

Note that 𝑘 = 0, the zero frequency, is not involved in (2.15) since adding or

subtracting a constant to either time series does not change the sample covariance.
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In addition, as mentioned in Section 2.3, values of 𝑘 that are symmetric about 𝑇/2

(e.g., 𝑘 = 1 and 𝑘 = 𝑇 −1) have the same frequency and their contributions to the

sample covariance are equivalent. Therefore, pairs of elements that correspond to the

same frequency should be included together in the frequency band 𝐾 to form the

one-sided spectrum.5

As an illustrative example, suppose that,

𝑥𝑡 = 𝛼𝑥 + 𝛽𝑥𝐹𝑡 + 𝑢𝑡, (2.16)

𝑦𝑡 = 𝛼𝑦 + 𝛽𝑦𝐹𝑡−1 + 𝑣𝑡, (2.17)

where 𝛼𝑥, 𝛼𝑦, 𝛽𝑥 and 𝛽𝑦 are constants, and 𝐹𝑡, 𝑢𝑡 and 𝑣𝑡 are white-noise random

variables that are uncorrelated at all leads and lags.
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Figure 2-3: The spectral decomposition of (A) the variance of 𝑥𝑡, (B) the variance of
𝑦𝑡, and (C) the covariance of 𝑥𝑡 and 𝑦𝑡.

Panels A and B display the one-sided co-spectrums, 𝐿𝑥𝑥(𝜔) and 𝐿𝑦𝑦(𝜔). Since 𝑥𝑡

and 𝑦𝑡 are serially uncorrelated at all leads and lags, their power spectrums are flat,

and each frequency contributes equally to the variance. In this example, the lagged

dependence of 𝑦𝑡 on 𝐹𝑡 relative to 𝑥𝑡 suggests that 𝑥𝑡 and 𝑦𝑡 will be in phase over

longer time horizons, and out of phase over shorter time horizons. As shown in panel

C, this leads to a positive contribution to the covariance at low frequencies, and a

negative contribution at high frequencies. Moreover, since 𝑥𝑡 and 𝑦𝑡 are uncorrelated,

we find that 𝐿𝑥𝑦(𝜔) integrates to 0.
5For example, see the one-sided and two-sided power spectrums in Figure 2-4. For real-valued

time series, the cross-spectrum is conjugate symmetric causing the quadrature spectrum components
to cancel. For this reason, we focus on the co-spectrum.
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2.6 The Business Cycle

One of the most natural applications of spectral analysis is to measure the business

cycle, which many studies have done (Granger and Hatanaka, 1964; King and Watson,

1996; Baxter and King, 1999). Consider U.S. real GDP from the onset of the Great

Moderation in the mid-1980s to 2015. The annualized quarterly percentage change

in seasonally adjusted real GDP is plotted in panel A of Figure 2-4. Notice the data

exhibit longer-scale cyclical patterns in accordance with recessions and expansions,

as well as high-frequency oscillations related to more transitory dynamics.

As a first step, in panel B of Figure 2-4 we subtract the mean, to view fluctua-

tions about the long-term growth rate. We then apply the DFT to decompose this

adjusted time series into its frequency components, and plot the estimated two-sided

power spectrum in panel C of Figure 2-4. The horizontal axis of this graph is now

frequency instead of time, and the spectrum is symmetric about the center frequency.

Therefore, it is common to aggregate coupled frequencies into the one-sided power

spectrum as shown in panel D of Figure 2-4. In this form, it is clear that a substantial

portion of the signal’s power resides in low frequencies less than 1 cycle every 5 years.

These periods correspond to economic expansions and recessions, i.e., the business

cycle. A reconstruction of the original time series using only these low frequencies is

shown in panel E of Figure 2-4. Notice the more transitory components have been

removed, and what remains features the recession of the early 1990s, the internet

bubble, the Financial Crisis, and the subsequent recovery. A second reconstruction

using frequencies less than or equal to 1 cycle per year, is shown in panel F of Fig-

ure 2-4, and provides a more realistic reconstruction of the original data with more

transitory effects. This example demonstrates how spectral analysis can often reveal

structure in a time series not immediately evident in the raw data.
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Figure 2-4: Illustration of how the DFT can be used to implement the spectral decom-
position of a time series. The annualized quarterly percentage change in seasonally
adjusted US real GDP from 1986 to 2015 is plotted in panel A. The same time series
minus its mean is shown in panel B. Panel C shows its two-sided power spectrum
after applying the DFT. Note that the horizontal axis represents frequency, and the
vertical axis represents the relative contribution of each frequency to the overall vari-
ability of the time series. Panel D aggregates pairs of equivalent frequencies into the
one-sided power spectrum. Panels E and F plot reconstructions of the time series
using frequencies less than 1 cycle per 5 years, and less than or equal to 1 cycle per
year, respectively.

38



2.7 Volatility

Estimating volatility is central to mean-variance portfolio management, performance

attribution, and risk management. A spectral decomposition of returns allows us to

measure the fraction of variability that can be attributed to fluctuations at different

time scales.

Let 𝑥𝑡 be the one-period return of a security between dates 𝑡−1 and 𝑡. The sample

variance of returns over an interval from 𝑡 = 0, . . . , 𝑇−1 can be decomposed into its

frequency components using (2.15):

Var⟨𝑥𝑡⟩ =
1

𝑇

𝑇−1∑︁
𝑘=1

�̂�𝑥𝑥[𝑘] , �̂�𝑥𝑥[𝑘] ≡ 1

𝑇
|𝑋𝑘|2 (2.18)

where 𝑋𝑘 are the 𝑇 -point DFT coefficients of the subsample of 𝑥𝑡. As an illustrative

example, Figure 2-5 decomposes the 10-year rolling sample variance of the daily re-

turns of the CRSP value-weighted and equal-weighted market indices from 1926 to

2015 into its low (less than 1 cycle per month), medium (between 1 cycle per month

to 1 cycle per week), and high (more than 1 cycle per week) frequency components.

This spectral decomposition is compared to a white noise null hypothesis where the

windowed returns were rendered serially uncorrelated by generating random permu-

tations of their order. This exercise was repeated 10,000 times from which 95%

confidence intervals were formed around the flat-band, white-noise null hypothesis.

Our analysis shows that, from the mid-1960s to late-1990s, the variance of both

value-weighted and equal-weighted market returns exhibited smaller fluctuations at

short time scales (between 2 and 5 days), and greater fluctuations at longer time scales

(greater than 1 month), than would be expected if returns were serially uncorrelated.

In fact, this effect is more pronounced, and continues into the late 2000s, for the equal-

weighted market returns. This low-frequency power is in agreement with the large

positive serial correlation in weekly returns described in Lo and MacKinlay (1990),

which would tend to shift power from high frequencies to lower frequencies. However,

this spectral decomposition also shows these dynamics weakening over the subsequent
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Figure 2-5: Spectral decomposition of the 10-year rolling sample variance of the
daily returns of CRSP value-weighted market index (panel A), and the CRSP equal-
weighted market index (panel B) from 1926 to 2015. Frequency components are
grouped into 3 categories: high frequencies (more than 1 cycle per week), mid fre-
quencies (between 1 cycle per week and 1 cycle per month), and low frequencies (less
than 1 cycle per month).

decades, most likely in response to increased competitive forces and technological

advances such improved telecommunications, standardized electronic information ex-

change protocols, and automated trading. This simple example demonstrates the

usefulness of the frequency domain in visualizing complex dynamics that may exist

over a wide range of leads and lags in the time domain. For example, in addition to

tests in the time domain that detect local correlation between between neighboring

samples, the power spectrum allows us to detect departures from white noise caused

by periodic effects such as seasonal variation.
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Chapter 3

Dynamic Alpha

The value added by an active investor is traditionally measured using alpha, tracking

error, and the information ratio. However, these measures do not characterize the

dynamic component of investor activity, nor do they consider the time horizons over

which weights are changed. In this chapter, we propose a technique to measure the

value of active investment that captures both the static and dynamic contributions

of an investment process. This dynamic alpha is based on the decomposition of a

portfolio’s expected return into its frequency components using spectral analysis. The

result is a static component that measures the portion of a portfolio’s expected return

due to passive investments and security selection, and a dynamic component that

captures the manager’s timing ability across a range of time horizons. Our framework

can be universally applied to any portfolio, and is a useful method for comparing the

forecast power of different investment processes. Several analytical and empirical

examples are provided to illustrate the practical relevance of this decomposition.

3.1 Introduction

The shortest decision interval of a modern investment strategy may range from mi-

croseconds to years, a wide span of time horizons. While the legendary value investor

Warren Buffett tends to change his portfolio weights rather slowly, the same cannot

be said for famed day trader Steven Cohen of SAC Capital, yet both manage to gen-
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erate enormous value through active investment. Although alpha, tracking error, and

the information ratio are the standard tools for gauging the value-added of a portfo-

lio manager, they can obscure important features of the underlying process by which

information is reflected in investment decisions. Specifically, none of these standard

performance metrics directly measure the dynamic relationship between weights and

returns, which is the central focus of active investment strategies.

In this chapter, we propose a new approach to analyzing investment strategies

in which the frequency component is explicitly captured. Using the tools of spectral

analysis—the decomposition of time series into a sum of periodic functions like the sine

and cosine functions—we show that investment strategies can differ significantly in the

frequencies with which their expected returns are generated. Slower-moving strategies

will exhibit more “power” at the lower frequencies, while faster-moving strategies will

exhibit more power at the higher frequencies. By identifying the particular frequencies

that are responsible for a given strategy’s expected returns, an investor will have an

additional dimension with which to manage the risk/reward profile of his portfolio.

We begin in Section 3.2 with a brief review of the financial spectral analysis

literature. Our main results are contained in Sections 3.3 and 3.4, where we provide

spectral decompositions for an investment strategy’s forecast power. We provide

numerical and empirical illustrations of these techniques in Sections 3.5–3.7, and

conclude in Section 3.8.

3.2 Literature Review

In this chapter, we show that spectral analysis can be used to characterize and refine

active investment strategies. The standard tools used for performance attribution

originated from the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lint-

ner (1965). The difference between an investment’s expected return and the risk-

adjusted value predicted by the CAPM is referred to as alpha, and Treynor (1965),

Sharpe (1966), and Jensen (1968, 1969) applied this measure to quantify the value-

added of mutual-fund managers. Since then, a number of related measures have been
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developed, including the Sharpe, Treynor, and information ratios. However, none

of these measures explicitly depend on the relative timing of portfolio weights and

returns in gauging investment skill.

In contrast, Lo (2008) proposed a novel measure of active management that quan-

tifies the predictive power of an investment process by decomposing the expected

portfolio return into the covariance between the underlying security weights and re-

turns and the product of the average weights and average returns. In this context,

a successful portfolio manager is one whose decisions induce a positive correlation

between portfolio weights and returns. Since portfolio weights are a function of a

manager’s decision process and proprietary information, positive correlation is a di-

rect indication of forecast power and, consequently, investment skill.

As an extension of this decomposition, we introduce the concept of dynamic alpha,

which uses spectral analysis to measure the forecast power of a portfolio manager

across multiple time horizons. An investment process is said to be profitable at a given

frequency if there is a positive correlation between portfolio weights and returns at

that frequency. When aggregated across frequencies, dynamic alpha is equivalent to

Lo’s (2008) active component, and therefore provides a clear indication of a manager’s

forecast power across time horizons. This connects spectral analysis to the standard

tools of modern portfolio theory, allowing us to study the time-horizon properties of

investment performance.

3.3 Dynamic Alpha

In this section, we propose an explicit measure of the value of active management—

dynamic alpha—that takes into account forecast power across multiple time horizons.

Expanding on the framework of the decomposition developed by Lo (2008), we use

the DFT to separate the expected return of a portfolio into distinct components

that depend on the correlation between portfolio weights and returns at different

frequencies. The result is one component that measures the portion of a portfolio’s

expected return due to passive investments and active security selection, and multiple
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dynamic components that capture the manager’s timing ability across a range of time

horizons. Our method closely parallels Hasbrouck and Sofianos (1993); however, we

make a novel modification to their analysis to make it applicable to the expected

returns of portfolios.

Our approach uses the DFT to express the portfolio’s underlying security weights

and returns in the frequency domain and then analyzes their phase. When the weights

and returns are in phase at a given frequency, the contribution that frequency makes

to the portfolio’s expected return is positive. When they are out of phase, then that

particular frequency’s contribution will be negative.

If we consider a portfolio with 𝑁 securities, then for 𝑡= 0, . . . , 𝑇−1, the average

one-period portfolio return can be calculated as,

𝑟𝑝 =
1

𝑇

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

𝑤𝑖,𝑡𝑟𝑖,𝑡, (3.1)

where 𝑤𝑖,𝑡 and 𝑟𝑖,𝑡 are the realized weight and return of the 𝑖th stock at time 𝑡,

respectively. Using the definition of covariance, the average portfolio return can be

decomposed into a dynamic alpha component (𝛿𝑝) and a static component (𝜈𝑝) as

follows,

𝑟𝑝 = 𝛿𝑝 + 𝜈𝑝, (3.2)

𝛿𝑝 =
𝑁∑︁
𝑖=1

Cov⟨𝑤𝑖,𝑡, 𝑟𝑖,𝑡⟩ , 𝜈𝑝 =
𝑁∑︁
𝑖=1

𝑤𝑖,𝑡 · 𝑟𝑖,𝑡 . (3.3)

The value of the static component arises from the manager’s average position in a

security, and can be thought of as the portion of the portfolio’s return that results from

collecting risk premiums, as well as the ability to select securities with favorable long-

term prospects. This distinction contrasts with Lo’s (2008) use of the term “passive”

for the static component—in our setting, we wish to acknowledge the possibility that

active management is responsible for long-term bets on specific securities, in which

case a portion of a portfolio’s static component may, in fact, be alpha rather than

risk premia.
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The value of the dynamic alpha component consists of the profitability of the

portfolio manager’s conscious decision to buy, sell, or avoid a security by aggregating

the sample covariances between the portfolio weights, 𝑤𝑖,𝑡, and security returns, 𝑟𝑖,𝑡.

In particular, if a manager has positive weights when security returns are positive

and negative weights when returns are negative, this implies positive covariances be-

tween portfolio weights and returns, and will have a positive impact on the portfolio’s

average return. In effect, the covariance term captures the manager’s timing ability,

asset by asset.

Spectral analysis allows us to decompose this covariance term further, capturing

the manager’s timing ability over multiple time horizons,

𝛿𝑝 =
𝑇−1∑︁
𝑘=1

𝛿𝑝,𝑘 , 𝛿𝑝,𝑘 =
1

𝑇 2

𝑁∑︁
𝑖=1

ℜ[𝑊 *
𝑖,𝑘𝑅𝑖,𝑘] , (3.4)

where ℜ[𝑧] and 𝑧* denote the real part and complex conjugate of a complex number

𝑧, respectively, and 𝑊𝑖,𝑘 and 𝑅𝑖,𝑘 are the 𝑇 -point DFT coefficients (see Section A.1

in the Online Supplement) of the weights and returns for stock 𝑖. In this form, the

contribution to the average portfolio return by the 𝑘th harmonic frequency, where

𝑘 ∈ {0, ..., 𝑇 − 1}, is clearly visible. The lowest frequency occurs at 𝑘 = 0, and

the highest frequency occurs at the value of 𝑘 closest to 𝑇/2. Values of 𝑘 that are

symmetric about 𝑇/2 (e.g., 𝑘 = 1 and 𝑘 = 𝑇 − 1) have the same frequency, and their

contributions to the average portfolio return are equivalent. The relation ℎ = 𝑇𝑇𝑠/𝑘,

where 𝑇𝑠 is the time between samples and 0 ≤ 𝑘 ≤ 𝑇/2, can be used to convert

the 𝑘th harmonic frequency to its corresponding time horizon, ℎ. We also note that

𝛿𝑝,0 = 𝜈𝑝, and it is often convenient to include 𝛿𝑝,0 when computing the DFT.

Simply put, this spectral decomposition first deconstructs the weights and returns

into their various frequency components. At each frequency, if the weights and returns

are in phase, then that time horizon’s contribution to the average portfolio return will

be positive. If the two signals are out of phase, then that particular frequency’s con-

tribution will be negative. For this reason, a value-weighted portfolio of all securities,

which is traditionally considered passive, will contain no dynamic alpha across all
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frequencies as long as the individual security returns are serially uncorrelated (i.e.,

the Random Walk Hypothesis holds for all securities). On the other hand, if returns

are serially correlated, then it is possible for a buy-and-hold portfolio to yield a non-

zero dynamic alpha because changes in its weights will contain information related

to future returns. To distinguish between dynamically managed alpha and passive

portfolios that unintentionally contain non-zero dynamic alpha, we must therefore

rely on the manager’s stated intentions.

In addition to quantifying the value added from active management across time

horizons, we can also gauge the consistency of a portfolio manager’s timing ability.

Historically, the consistency of investment skill has been characterized by the volatility

of the tracking error, which is a measure of the variability of the difference between

the portfolio return and some benchmark return. Low tracking error volatility and

a positive excess return (i.e., alpha) indicates that the manager is reliably adding

value through active management. The ratio of alpha to the tracking error volatility

measures the efficiency with which a manager generates excess returns and is called

the information ratio. The higher the information ratio, the better the manager.

These measures can be incorporated into our framework by defining the dynamic

risk, 𝜎𝛿, as the variability of the difference between the portfolio return, 𝑟𝑝,𝑡, and the

static component, 𝜈𝑝,𝑡 =
∑︀𝑁

𝑖=1𝑤𝑖,𝑡 · 𝑟𝑖,𝑡. Specifically,

𝜎𝛿 =
√︁

Var⟨𝑟𝑝,𝑡 − 𝜈𝑝,𝑡⟩, (3.5)

where 𝜎𝛿 is a measure of the risk taken by the portfolio manager in an attempt to

generate higher returns by engaging in timing decisions. The dynamic information

ratio, 𝐼𝛿, can then be defined as,

𝐼𝛿 =
𝛿𝑝
𝜎𝛿

, (3.6)

and is a risk-adjusted measure of the dynamic alpha component. These performance

metrics can be calculated for a specific range of time horizons by aggregating the

frequency components of 𝛿𝑝 and 𝜎𝛿 over the band of interest. This provides us with a

risk-adjusted measure of the manager’s timing ability for a specific frequency band.
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Intuitively, it quantifies the manager’s predictive power across a range of time hori-

zons, but also attempts to identify the consistency of this power.

3.4 Alpha vs. Beta

To distinguish explicitly between manager outperformance and portfolio exposure to

factor risk, we have to impose additional structure on the returns of the individual

assets. Specifically, we consider a linear 𝑀 -factor model,

𝑥𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖,1𝐹1,𝑡 + · · · + 𝛽𝑖,𝑀𝐹𝑀,𝑡 + 𝜀𝑖,𝑡 , (3.7)

where 𝑥𝑖,𝑡 is defined to be the excess return of asset 𝑖, in excess of the risk-free

rate of return, 𝑟𝑓,𝑡, 𝐹𝑚,𝑡 are excess factor returns, and E[𝜀𝑖,𝑡 | 𝐹1,𝑡, . . . , 𝐹𝑀,𝑡] = 0.

This specification is consistent with Merton’s (1973a) Intertemporal Capital Asset

Pricing Model and Ross’s (1976) Arbitrage Pricing Theory. Since our expected-return

decomposition is considerably more general than any particular asset-pricing model

or linear-factor structure, we allow for an intercept, 𝛼𝑖, in our framework.

Under these assumptions, the portfolio’s exposure to factor 𝑚 is 𝛽𝑝,𝑚,𝑡 =
𝑁∑︀
𝑖=1

𝑤𝑖,𝑡𝛽𝑖,𝑚.

The average return of a portfolio of assets (3.2) can then be rewritten as,

𝑟𝑝 = Risk-Free Rate + Risk Premia + Security Selection⏟  ⏞  
𝜈𝑝≡Static Component

+Factor Timing + Security Timing⏟  ⏞  
𝛿𝑝≡Dynamic Component

(3.8)

where,

Risk-Free Rate ≡ 𝑟𝑓,𝑡 (3.9)

Risk Premia ≡
𝑀∑︁

𝑚=1

𝛽𝑝,𝑚,𝑡 · 𝐹𝑚,𝑡 (3.10)

Security Selection ≡
𝑁∑︁
𝑖=1

𝑤𝑖,𝑡 · 𝛼𝑖 (3.11)
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Factor Timing ≡
𝑀∑︁

𝑚=1

Cov⟨𝛽𝑝,𝑚,𝑡, 𝐹𝑚,𝑡⟩ (3.12)

Security Timing ≡
𝑁∑︁
𝑖=1

Cov⟨𝑤𝑖,𝑡, 𝜀𝑖,𝑡⟩ . (3.13)

Due to the structure of the linear multi-factor model, (3.8) is a more refined decompo-

sition than (3.2). The average portfolio returns are now the sum of five components:

a risk-free rate component, a risk-premia component that represents the return from

the passive exposures to factor risk, a security selection component that depends

on the 𝛼𝑖’s, a factor-timing component that depends on the covariance between the

portfolio’s factor exposures and the underlying factors, and finally, a security-timing

component that depends on the covariance between weights and the idiosyncratic

component of security returns. Note that the factor- and security-timing terms can

be decomposed further into their frequency components.

This factor-based decomposition demonstrates that investment expertise can man-

ifest itself in two distinct ways: identifying cheap sources of expected return (i.e., the

𝛼𝑖’s, which are reflected in the static component, 𝜈𝑝), and creating additional expected

return through factor- and security-specific timing across different time horizons (i.e.,

the covariance terms, which are reflected in the spectral decomposition of the dynamic

component, 𝛿𝑝,𝑘). Thus, even if all 𝛼𝑖’s are zero, as most asset-pricing models claim,

there can still be substantial value-added from active management if the investment

process has the ability to time price movements over certain time horizons.

3.5 Numerical Examples

To develop further intuition for our spectral decomposition, consider the following

simple numerical example of a portfolio of two assets, one that yields a monthly

return that alternates between 1% and 2% (Asset 1) and the other that yields a fixed

monthly return of 0.15% (Asset 2). Let the weights of this portfolio, called A1, be

given by 75% in Asset 1 and 25% in Asset 2. Table 3.1 illustrates the dynamics of

this portfolio over a 12-month period, where the average return of the portfolio is
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1.1625% per month, all of which is due to the static component. In this case, because

the weights are constant, the dynamic risk measure will also be 0%.

Month 𝑤1 𝑟1 𝑤2 𝑟2 𝑟𝑝
Strategy A1

1 75% 1.00% 25% 0.15% 0.7875%
2 75% 2.00% 25% 0.15% 1.5375%
3 75% 1.00% 25% 0.15% 0.7875%
4 75% 2.00% 25% 0.15% 1.5375%
5 75% 1.00% 25% 0.15% 0.7875%
6 75% 2.00% 25% 0.15% 1.5375%
7 75% 1.00% 25% 0.15% 0.7875%
8 75% 2.00% 25% 0.15% 1.5375%
9 75% 1.00% 25% 0.15% 0.7875%
10 75% 2.00% 25% 0.15% 1.5375%
11 75% 1.00% 25% 0.15% 0.7875%
12 75% 2.00% 25% 0.15% 1.5375%

Mean: 75% 1.50% 25% 0.15% 1.1625%

Spectral decomposition of 𝑟𝑝
𝜈𝑝 2𝛿𝑝,1 2𝛿𝑝,2 2𝛿𝑝,3 2𝛿𝑝,4 2𝛿𝑝,5 𝛿𝑝,6

1.1625% 0% 0% 0% 0% 0% 0%

Table 3.1: The expected return of a constant portfolio depends only on the static
component.

Now consider portfolio A2, which differs from A1 only in that the portfolio weight

for Asset 1 alternates between 50% and 100% in phase with Asset 1’s returns which

alternates between 1% and 2% (see Table 3.2). In this case, the total expected return

is 1.2875% per month, of which 0.1250% is due to the positive correlation between

the portfolio weight for Asset 1 and its return at the shortest-time horizon (i.e.,

highest frequency). In addition, the dynamic risk for this portfolio is 0.3375%, and

the dynamic information ratio is about 0.37.

Finally, consider a third portfolio A3 which also has alternating weights for Asset

1, but exactly out of phase with Asset 1’s returns—when the return is 1%, the portfolio

weight is 100%, and when the return is 2%, the portfolio weight is 50%. Table 3.3

confirms that this is counterproductive as Portfolio A3 loses 0.1250% per month from

its highest frequency component, and its total expected return is only 1.0375%. In

this case, the dynamic risk is 0.3375%, and the dynamic information ratio is −0.37.
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Month 𝑤1 𝑟1 𝑤2 𝑟2 𝑟𝑝
Strategy A2

1 50% 1.00% 50% 0.15% 0.5750%
2 100% 2.00% 0% 0.15% 2.0000%
3 50% 1.00% 50% 0.15% 0.5750%
4 100% 2.00% 0% 0.15% 2.0000%
5 50% 1.00% 50% 0.15% 0.5750%
6 100% 2.00% 0% 0.15% 2.0000%
7 50% 1.00% 50% 0.15% 0.5750%
8 100% 2.00% 0% 0.15% 2.0000%
9 50% 1.00% 50% 0.15% 0.5750%
10 100% 2.00% 0% 0.15% 2.0000%
11 50% 1.00% 50% 0.15% 0.5750%
12 100% 2.00% 0% 0.15% 2.0000%

Mean: 75% 1.50% 25% 0.15% 1.2875%

Spectral decomposition of 𝑟𝑝
𝜈𝑝 2𝛿𝑝,1 2𝛿𝑝,2 2𝛿𝑝,3 2𝛿𝑝,4 2𝛿𝑝,5 𝛿𝑝,6

1.1625% 0% 0% 0% 0% 0% 0.1250%

Table 3.2: The dynamics of the portfolio weights are positively correlated with returns
at the shortest time horizon, which adds value to the portfolio and yields a positive
contribution from the highest frequency (𝛿𝑝,6).

Month 𝑤1 𝑟1 𝑤2 𝑟2 𝑟𝑝
Strategy A3

1 100% 1.00% 0% 0.15% 1.0000%
2 50% 2.00% 50% 0.15% 1.0750%
3 100% 1.00% 0% 0.15% 1.0000%
4 50% 2.00% 50% 0.15% 1.0750%
5 100% 1.00% 0% 0.15% 1.0000%
6 50% 2.00% 50% 0.15% 1.0750%
7 100% 1.00% 0% 0.15% 1.0000%
8 50% 2.00% 50% 0.15% 1.0750%
9 100% 1.00% 0% 0.15% 1.0000%
10 50% 2.00% 50% 0.15% 1.0750%
11 100% 1.00% 0% 0.15% 1.0000%
12 50% 2.00% 50% 0.15% 1.0750%

Mean: 75% 1.50% 25% 0.15% 1.0375%

Spectral decomposition of 𝑟𝑝
𝜈𝑝 2𝛿𝑝,1 2𝛿𝑝,2 2𝛿𝑝,3 2𝛿𝑝,4 2𝛿𝑝,5 𝛿𝑝,6

1.1625% 0% 0% 0% 0% 0% −0.1250%

Table 3.3: The dynamics of the portfolio weights are negatively correlated with returns
at the shortest time horizon, which subtracts value from the portfolio and yields a
negative contribution from the highest frequency (𝛿𝑝,6).
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Note that in all three cases, the static components are identical at 1.1625% per

month because the average weight for each asset is the same across all three portfo-

lios. The only differences among A1, A2, and A3 are the dynamics of the portfolio

weights at the shortest time horizon. These differences give rise to different values

for the highest frequency component. As shown in (3.4), contributions from higher

frequencies (𝑘 > 0) sum to the overall dynamic component. These higher frequency

contributions can be interpreted as the portion of the dynamic component that arises

from a given time horizon.

For a more realistic example, consider the long/short equity market-neutral strat-

egy of Lo and MacKinlay (1990):

𝑤𝑖,𝑡 = − 1

𝑁
(𝑟𝑖,𝑡−1 − 𝑟𝑚,𝑡−1), (3.14)

𝑟𝑚,𝑡−1 =
1

𝑁

𝑁∑︁
𝑖=1

𝑟𝑖,𝑡−1 . (3.15)

By buying the losers and selling the winners from date 𝑡−1 at the onset of each date 𝑡,

this strategy actively bets on mean reversion across all 𝑁 stocks, and profits from re-

versals that occur within the subsequent interval. For this reason, Lo and MacKinlay

(1990) termed this strategy “contrarian,” as it benefits from market overreaction and

mean reversion, that is, when underperformance is followed by positive returns and

outperformance is followed by negative returns. By construction, the weights sum

to zero, and therefore the strategy is also considered a “dollar-neutral” or “arbitrage”

portfolio. This implies that much of the portfolio’s return should be due to active

management, and that value will be added near frequencies inversely related to the

mean reversion period.

Now suppose that stock returns satisfy the following simple MA(1) model,

𝑟𝑖,𝑡 = 𝜀𝑖,𝑡 + 𝜆𝜀𝑖,𝑡−1, (3.16)

where the 𝜀𝑖,𝑡 are serially and cross-sectionally uncorrelated white-noise random vari-

ables with variance 𝜎2. In this case, the expected one-period portfolio return can be
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calculated as,

E[𝑟𝑝] = −𝜆𝜎2(1 − 1

𝑁
) . (3.17)

We see that the expected return is proportional to the mean reversion factor, 𝜆, and

the volatility factor, 𝜎2. Applying our spectral decomposition (see Section A.2 in the

Online Supplement), we find that,

𝛿𝑝,𝜔 = −𝜎2
(︁

1 − 1

𝑁

)︁(︁
𝜆 cos(2𝜔) + (1 + 𝜆2) cos(𝜔) + 𝜆

)︁
, 𝜔 ∈ [0, 2𝜋). (3.18)

The relation ℎ = 2𝜋𝑇𝑠/𝜔, where 𝑇𝑠 is the time between samples and 𝜔 ∈ [0, 𝜋], can

be used to convert frequency 𝜔 to its corresponding time horizon, ℎ.

Column A of Figure 3-1 plots the dynamic alpha for the case of no serial correlation

(𝜆=0). The dynamic alpha is positive at high frequencies, indicating that the weights

and returns are in phase over these short time horizons. However, this added value is

cancelled out since the weights and returns are out of phase at longer time horizons,

resulting in zero net alpha.

Columns B and C of Figure 3-1 show the dynamic alpha for the cases of momentum

(𝜆 > 0) and mean reversion (𝜆 < 0) in the first lag of returns, respectively. For

the mean reversion case, we notice that both the lowest and highest frequencies are

more profitable relative to the serially uncorrelated case. This is an intuitive result

since both weights and returns now have more variability in these higher frequency

fluctuations. These high-frequency components will be in phase, leading to a large

positive contribution and an overall positive alpha. The momentum case is opposite

in effect. Relative to the serially uncorrelated case, both the lowest and highest

frequencies are less profitable, and the net contribution over all frequency components

is negative.
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Figure 3-1: Dynamic alpha of the contrarian trading strategy applied to the serially
uncorrelated (Column A), momentum (Column B), and mean reversion (Column C)
implementations of (3.16).
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3.6 An Empirical Example

To develop a better understanding of the characteristics of dynamic alpha, we apply

our framework to Lo and MacKinlay’s (1990) contrarian (mean reversion) trading

strategy using historical stock market data. The fact that the weights given by (3.14)

sum to zero at each date 𝑡 implies very little market-beta exposure. Also, since

the weights are so dynamic, much of this portfolio’s return should be due to active

management near frequencies inversely related to the decision period. The return for

a given interval can be calculated as the profit-and-loss of the strategy’s positions

over that interval, divided by the capital required to support those positions. In the

following analysis, we assume that Regulation T applies; therefore, the amount of

capital required is one-half the total capital invested (often stated as a 2:1 leverage,

or a 50% margin requirement). The unleveraged portfolio return, 𝑟𝑝,𝑡 is given by:

𝑟𝑝,𝑡 =

𝑁∑︀
𝑖=1

𝑤𝑖,𝑡𝑟𝑖,𝑡

𝐼𝑡
, 𝐼𝑡 =

1

2

𝑁∑︁
𝑖=1

|𝑤𝑖,𝑡| .

We apply (3.14) to the one-day and two-day returns of the five smallest size-decile

portfolios of all NASDAQ stocks, as constructed by the University of Chicago’s Center

for Research in Security Prices (CRSP), from January 2, 1990 to December 29, 1995.

We selected this time period purposely because of the emergence of day trading in the

early 1990s, an important source of profitability for statistical arbitrage strategies.

Of course, trading NASDAQ size deciles is obviously unrealistic in practice, but our

purpose is to illustrate the empirical relevance of our framework, not to derive an

implementable trading strategy.

Figure 3-2 illustrates the performance of the contrarian strategy for one-day and

two-day mean reversion over the 1990–1995 sample period, and Table 3.4 contains

summary statistics for the daily returns of the two trading strategies. For 1-day mean

reversion, with an annualized average return of 31.6% and standard deviation of 7.9%,

the strategy’s performance is considerably better than that of a passive buy-and-hold

strategy, which is one indication that active management is playing a significant role
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Figure 3-2: Cumulative return of a mean reversion strategy of Lo and MacKinlay
(1990) over one-day and two-day returns applied to the five smallest CRSP-NASDAQ
size deciles from January 2, 1990 to December 29, 1995.

in this case.

This intuition is confirmed by the decomposition of the strategy’s expected re-

turn into its dynamic alpha components in Table 3.5. On an annualized basis, the

dynamic component yields 32.2%, which exceeds the strategy’s total expected return

of 31.6%, implying a slightly negative static component. In this case, more than all

of the strategy’s expected return is coming from active management over a daily time

horizon, and the low-frequency components are subtracting value.

The explanation for this rather unusual phenomenon was provided by Lo and

MacKinlay (1990), who observed that because the contrarian strategy is, on aver-

age, long losers and short winners, it will typically be long the low-mean assets and

short the high-mean assets. Therefore, the static component, i.e., the sum of aver-

age portfolio weights multiplied by average returns, will consist of positive average

weights for low-mean stocks and negative average weights for high-mean stocks for

this strategy—a losing proposition in the absence of mean reversion. Fortunately,
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Statistic Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 1-day 2-day
Mean ×250 27.5% 17.4% 13.9% 13.7% 12.8% 31.6% 13.3%
SD ×

√
250 12.2% 9.8% 8.9% 9.1% 9.5% 7.9% 7.8%

SR ×
√

250 2.25 1.77 1.56 1.51 1.35 3.98 1.69
Min −2.9% −2.7% −2.7% −3.3% −3.5% −2.2% −5.2%
Median 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
Max 6.7% 3.6% 2.0% 2.1% 2.3% 2.4% 1.7%
Skew 0.6 0.1 −0.5 −0.7 −0.9 −0.1 −0.8
XSKurt 5.1 2.4 2.0 3.1 3.9 1.7 8.9

Table 3.4: Summary statistics of the daily returns of the one-day and two-day mean
reversion strategies of Lo and MacKinlay (1990) applied to the daily returns of the
five smallest CRSP-NASDAQ size deciles, from January 2, 1990 to December 29,
1995. The Sharpe ratio (SR) is calculated relative to a 0% risk-free rate.

the positive correlation between weights and returns at high frequencies is more than

sufficient to compensate for this long-term negative component.

To mitigate the loss caused by the static component, we can filter out the trend

component of each size-decile portfolio before calculating the mean-reversion weights.

Intuitively, the mean-reversion trading strategy will no longer place a negative bias on

the weights of the smallest deciles simply because they achieve relatively large average

returns. Similarly, if we perfectly filter out the low-frequency dynamics of the portfolio

returns, then we can extract the profitability in the high-frequency component of

returns, while not suffering the substantial losses of the low-frequency component.

In other words, the mean-reversion trading strategy will be trading on the relevant

high-frequency signal, and not the low-frequency “noise.” Since a perfect high-pass

filter cannot be implemented in practice, these low-frequency components would have

to be forecasted. Therefore, rather counterintuitively, our spectral framework reveals

that forecast power at low frequencies can be used to improve the overall performance

of a high-frequency trading strategy.

For mean reversion over two days, with an annualized average return of 13.3%

and a standard deviation of 7.8%, the strategy’s performance is considerably worse

than that of the one-day mean reversion strategy. Active management is playing a

significant but less productive role. Here, the positive correlation between weights

and returns at medium frequencies remains sufficient to compensate for the negative
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Statistic 1-day 2-day
Portfolio Mean ×250 31.6% 13.3%
Static Component ×250 −0.6% −1.0%
Dynamic Component ×250 32.2% 14.2%

Low Frequency (ℎ ≥ 5d) −44.7% −19.1%
Med Frequency (3d ≤ ℎ < 5d) 6.3% 33.7%
High Frequency (ℎ < 3d) 70.6% −0.4%

Table 3.5: Estimates of the dynamic alpha of the daily returns of the one-day and
two-day mean reversion strategies of Lo and MacKinlay (1990) applied to the five
smallest CRSP-NASDAQ size-decile returns, from January 2, 1990 to December 29,
1995. Frequency components are grouped into three categories: high frequencies
(more than one cycle per three days), medium frequencies (between one cycle per
three days and one cycle per week), and low frequencies (less than one cycle per
week).

correlation between weights and returns at the low and high frequencies.

The correlation of these two strategies’ returns is only 0.26. This low correlation

can be attributed to the fact that their performance is determined by market dy-

namics occurring in distinct and non-overlapping frequency bands. Moreover, these

frequency-specific strategies can be implemented simultaneously, and can therefore be

viewed as separate assets. These assets can then be combined in a portfolio to achieve

diversification across multiple frequencies. In our sample period, these diversification

benefits result in the Sharpe ratio being maximized when 84.6% of our capital is used

to implement the one-day mean-reversion trading strategy, and the remaining capi-

tal is used to trade with mean reversion over two days. However, Table 3.5 makes it

clear that both assets in our portfolio would be negatively affected by a low-frequency

market shock.

3.7 Warren Buffett’s Alpha

For a more realistic application of our dynamic alpha framework, we examine the

returns of Warren Buffett’s multinational conglomerate holding company, Berkshire

Hathaway Inc., which is known for its long-term investments in public and private

companies. We obtain quarterly holdings data for Berkshire Hathaway from Thomson
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Reuters Institutional (13F) Holdings database (based on Berkshire’s SEC filings) from

1980 to 2013, and stock return data from the CRSP Monthly Stock database.

One consequence of Warren Buffett’s longer decision interval is that we are less

likely to be affected by aliasing when applying our decomposition to quarterly weights

and returns of his portfolio; the same cannot be said for higher-frequency trading

strategies. Figure 3-3 displays the cumulative returns for Berkshire Hathaway (BRK)

and a simulated reconstruction (R[BRK]) of these returns using the holdings data

based on SEC filings. The correlation between these return series is 0.7, and their

Sharpe ratios are 0.69 and 0.66, respectively. The high correlation and similar Sharpe

ratios indicate that the reconstructed returns capture a significant fraction of Berk-

shire Hathaway’s price dynamics. Equating the mean of the reconstructed returns

with the realized returns, we use a leverage ratio of 1.41 to reconstruct Warren Buf-

fett’s levered returns (RL[BRK]). This is similar to the average leverage ratio of 1.4

estimated by Frazzini et al. (2013) using total assets to equity.

Table 3.6 contains summary statistics for the monthly returns of each time series.

With an average annualized return of 22.9% over more than 30 years, Berkshire

clearly has positive alpha when compared to traditional risk factors. Frazzini et al.

(2013) find that Buffett’s returns are due more to security selection than his effect

on management, which suggests that a large component of his returns must be static

alpha, i.e., high average weights on securities with large 𝛼𝑖’s. In other words, Buffett

is able to select securities that provide high average returns above and beyond the

expected return resulting from passive exposures to factor risk. Moreover, if Warren

Buffett has a positive long-term effect on returns due to his managerial and advisory

competence, then we would also expect to find a substantial component of his returns

derived from lower frequencies. Finally, Buffett is a practitioner of value investing,

and so we should not expect to find a significant correlation between his portfolio

weights and returns at high frequencies.

The decomposition of Berkshire Hathaway’s reconstructed average portfolio return

into its dynamic alpha components in Table 3.7 confirms this intuition. The static

component yields an annualized return of 18.9%. In comparison, the value-weighted
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Figure 3-3: Cumulative realized returns of Berkshire Hathaway (BRK) and a sim-
ulated reconstruction (R[BRK]) using holdings data for Berkshire Hathaway from
Thomson Reuters Institutional (13F) Holdings database (based on Berkshire’s SEC
filings) from 1980 to 2013. Equating the mean of the reconstructed returns with the
realized returns, we use a leverage ratio of 1.41 to reconstruct the levered returns
(RL[BRK]).

Statistic Risk-Free Market BRK R[BRK] RL[BRK]
Mean ×4 4.7% 12.8% 22.9% 16.3% 22.9%
SD ×

√
4 1.7% 17.4% 26.2% 17.5% 24.7%

SR ×
√

4 0 0.47 0.69 0.66 0.74
Min 0.0% −23.7% −30.1% −30.9% −43.6%
Median 1.2% 3.9% 4.4% 4.2% 6.0%
Max 3.8% 21.3% 46.1% 28.8% 40.7%
Skew 0.6 −0.6 0.3 −0.5 −0.5
XSKurt 0.3 0.5 0.9 1.8 1.8

Table 3.6: Summary statistics of the quarterly returns of the one-month Treasury
Bill (Risk-Free) rate, the value-weighted CRSP market index (Market), Berkshire
Hathaway (BRK), and a simulated reconstruction (R[BRK]) using holdings data for
Berkshire Hathaway from Thomson Financial Institutional (13F) Holdings Database
(based on Berkshire’s SEC filings) from 1980 to 2013. Equating the means of the
reconstructed returns with the realized returns we use a leverage ratio of 1.41 to
reconstruct the levered returns (RL[BRK]).
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CRSP market index yielded an average annualized return of 12.8% over the same

interval, and the annualized risk-free interest rate (one-month Treasury Bill rate) was

4.7%. The static component of the portfolio’s realized market beta over this interval

using quarterly returns was 0.84, which implies a risk premium component of 6.8%

and a static alpha component of 7.3%. This demonstrates that a substantial compo-

nent of Berkshire Hathaway’s returns results from Buffett’s ability to select securities

with favorable long-term prospects. The dynamic alpha component contributes an

additional annualized return of 4.1% to the portfolio, most of which can be attributed

to dynamics occurring at time horizons greater than 5 years. The annualized dynamic

risk is 10.3%, which yields a dynamic information ratio of 0.40. This result can be

attributed to Buffett’s ability as a manager to improve firm performance over the

long run while Berkshire maintains a position in the company, and also to his ability

to time transactions based on fundamental valuations.

In contrast, the dynamics at the shortest time horizons—less than 18 months—

subtract 1.2% annually from the average portfolio return. Here, the negative cor-

relation between weights and returns can be attributed in part to transaction costs

and market impact. However, the quarterly sampling frequency of the holdings data

restricts our ability to study these higher frequency dynamics. By observing only

quarter-end weights and cumulative returns, we have no way of inferring the prof-

itability of dynamics occurring at these higher frequencies.

A spectral decomposition of Berkshire Hathaway’s returns demonstrates conclu-

sively that Buffett is not only a consummate long-term investor, but that the horizon

of his timing ability stretches far beyond the reaches of most other portfolio managers.
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Statistic RL[BRK]
Portfolio Mean ×4 22.9%
Static Component ×4 18.9%

Risk-Free Rate 4.7%
Risk Premium 6.8%
Static Alpha 7.3%

Dynamic Component ×4 4.1%
Low Frequency (ℎ ≥ 5y) 4.3%
Med Frequency (1.5y ≤ ℎ < 5y) 1.1%
High Frequency (ℎ < 1.5y) −1.2%

Table 3.7: Estimates of the static and dynamic alpha of the simulated quarterly
returns of Berkshire Hathaway using holdings data for Berkshire Hathaway from
Thomson Financial Institutional (13F) Holdings Database (based on Berkshire’s SEC
filings) from 1980 to 2013. Frequency components are grouped into three categories:
high frequencies (more than one cycle per 1.5 years), medium frequencies (between
one cycle per 1.5 years and one cycle per five years), and low frequencies (less than
one cycle per five years). Note that table entries may not sum due to rounding.

3.8 Conclusion

In this chapter, we have applied spectral analysis to develop a dynamic measure

of alpha that allows us to determine whether portfolio managers are generating al-

pha and over what time horizons their investment processes have forecast power. In

this context, an investment process is said to be profitable at a given frequency if

there is positive correlation between portfolio weights and returns at that frequency.

When aggregated across frequencies, dynamic alpha is equivalent to Lo’s (2008) ac-

tive component, and provides a clear indication of a manager’s forecast power and,

consequently, active investment skill. By separating the dynamic and static compo-

nents of a portfolio, it should be possible to study and improve the performance of

both.

Frequency-domain representations of auto- and cross-covariances can be applied

to many other financial statistics in addition to alpha. For example, dynamic versions

of performance attribution, linear factor models, asset allocation models, risk man-

agement, and measures of systemic risk can all be constructed using spectral analysis.
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Our framework can also be extended to other time-frequency decompositions, includ-

ing the wavelet transform, to address the impact of time-varying relationships and

other non-stationarities.
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Chapter 4

Spectral Beta

Economic shocks can have diverse effects on financial market dynamics at different

time horizons, yet traditional measures of beta do not distinguish between short- and

long-term components of systematic risk. In this chapter, we apply spectral analysis

to represent betas as a linear combination of frequency-specific betas, i.e., betas on

components of the asset returns and components of the factor operating at different

frequencies. Our spectral betas computed using the Haar Wavelet Transform can be

represented as regressions on moving averages in the time domain, thereby facilitating

interpretation and applicability. When applied to NYSE and AMEX stock returns

from 1972 to 2016, we find that the inclusion of the frequency domain dimension can

be used to select portfolios with significantly lower out-of-sample variance relative to

estimators based on traditional multi-factor models.

4.1 Introduction

Spectral and co-spectral power, often calculated using either the Fourier or wavelet

transform, provide a natural way to study the horizon-specific components of variance

and covariance, two important measures of risk in the financial domain. Specifically,

spectral power decomposes the variability of a time series resulting from fluctuations

at a specific frequency, while co-spectral power decomposes the covariance between

two real-valued time series, and measures the tendency for them to move together
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over specific time horizons. When the signals are in phase at a given frequency (i.e.,

their peaks and valleys coincide), the co-spectral power is positive at that frequency,

and when they are out of phase, it is negative. By identifying the particular frequen-

cies that are responsible for a given portfolio’s volatility, an investor adds another

dimension with which to manage his or her risk/reward profile.

Taking the ratio of co-spectral to spectral power, we can represent the beta of

an asset as a linear combination of spectral betas defined on components of asset

returns and the factor operating over different frequencies. This representation, first

introduced to the economic literature by Engle (1974), is such that covariance terms

across frequencies do not appear, as if the components of asset returns and the factor

were uncorrelated across frequencies. This is particularly helpful should one wish

to investigate the contribution of individual frequencies while ignoring the impact of

others. We modify Engle’s (1974) band spectrum regression framework by applying

the Haar Wavelet Transform (HWT), which allows us to represent the frequency

components of a time series in terms of moving average filters with different window

lengths. This representation of aggregation in the time domain makes the framework

easily operational, while avoiding interpretational issues.

We assess the economic significance of our spectral betas by estimating the co-

variance matrix of stock returns using frequency-specific factor models in the context

of portfolio optimization. For NYSE and AMEX stocks from 1972 to 2016, we find

that modeling the frequency domain yields portfolios with lower out-of-sample vari-

ance when compared to traditional multi-factor models. Moreover, we find that both

small (large) capitalization and high (low) book-to-market stocks have larger (smaller)

market betas at low frequencies relative to high frequencies. This has important im-

plications for both portfolio selection and tests of asset pricing models such as the

CAPM.

In Section 4.2, we review band-spectrum regression and provide a formulation of

spectral betas based on the HWT. An empirical application to portfolio optimization

is contained in Section 4.3, and Section 4.4 concludes.

64



4.2 Spectral Beta

Linear factor models are often used in financial applications, including market model

regressions, the CAPM, the APT, and the Fama-French three-factor model. The

estimated beta coefficients in these models are static measures that are incapable of

capturing dynamic relationships among the variables. On the other hand, band spec-

trum regression, proposed by Engle (1974), captures the sensitivity of the dependent

variable to the fluctuations in the independent variables over different time horizons.

The technique uses the Discrete Fourier Transform (DFT) to express windowed sub-

samples of time series in the frequency domain, and then analyzes their magnitude

and phase. When the time series are in phase at a given frequency, the contribution

that frequency makes to the frequency-specific beta is positive; when they are out of

phase, that particular frequency’s contribution will be negative.

Specifically, consider a real-valued subsample of the time series 𝑥𝑡 and 𝑦𝑡 from

𝑡 = 0, . . . , 𝑇−1. The sample covariance over this interval can be calculated as:

Cov⟨𝑥𝑡, 𝑦𝑡⟩ =
1

𝑇

𝑇−1∑︁
𝑡=0

(𝑥𝑡 − 𝑥)(𝑦𝑡 − 𝑦) , (4.1)

where 𝑥 and 𝑦 are the sample means of 𝑥𝑡 and 𝑦𝑡 over the same subperiod. This

calculation is exactly equivalent to the one formed using the 𝑇 -point DFT:

Cov⟨𝑥𝑡, 𝑦𝑡⟩ =
1

𝑇

𝑇−1∑︁
𝑘=1

�̂�𝑥𝑦[𝑘] , �̂�𝑥𝑦[𝑘] ≡ 1

𝑇
ℜ[𝑋*

𝑘𝑌𝑘] (4.2)

where 𝑋𝑘 and 𝑌𝑘 are the 𝑇 -point DFT coefficients of the subsample of 𝑥𝑡 and 𝑦𝑡. Thus,

the sum over �̂�𝑥𝑦[𝑘] is proportional to the sample covariance of 𝑥𝑡 and 𝑦𝑡. Moreover,

the sum of �̂�𝑥𝑦[𝑘] over a band of frequencies, Cov𝐾⟨𝑥𝑡, 𝑦𝑡⟩ where 𝐾 ⊆ {1, . . . , 𝑇−1},

is proportional to that band’s contribution to the sample covariance. For this reason

the function �̂�𝑥𝑦[𝑘], called the cross-periodogram, is an estimate of the co-spectrum

at the harmonic frequency 𝜔𝑘, and can be interpreted as the frequency distribution

of the power contained in the sample covariance.
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For a frequency band 𝐾 ⊆ {1, . . . , 𝑇 −1}, the spectral beta coefficients of an

𝑀 -factor model are given by,

𝛽𝐾⟨𝑦𝑡;𝑥1,𝑡, . . . , 𝑥𝑀,𝑡⟩ =

(︃∑︁
𝑘∈𝐾

L̂xx

)︃−1(︃∑︁
𝑘∈𝐾

L̂xy

)︃
, (4.3)

where,

∑︁
𝑘∈𝐾

L̂xx ≡

⎛⎜⎜⎜⎜⎝
∑︀
𝑘∈𝐾

�̂�𝑥1,𝑥1 [𝑘] · · ·
∑︀
𝑘∈𝐾

�̂�𝑥1,𝑥𝑀
[𝑘]

... . . . ...∑︀
𝑘∈𝐾

�̂�𝑥𝑀 ,𝑥1 [𝑘] · · ·
∑︀
𝑘∈𝐾

�̂�𝑥𝑀 ,𝑥𝑀
[𝑘]

⎞⎟⎟⎟⎟⎠ ,
∑︁
𝑘∈𝐾

L̂xy ≡

⎛⎜⎜⎜⎜⎝
∑︀
𝑘∈𝐾

�̂�𝑥1,𝑦[𝑘]

...∑︀
𝑘∈𝐾

�̂�𝑥𝑀 ,𝑦[𝑘]

⎞⎟⎟⎟⎟⎠ .

(4.4)

When only one factor is present, (4.3) reduces to the familiar expression,

𝛽𝐾⟨𝑦𝑡;𝑥𝑡⟩ =
Cov𝐾⟨𝑥𝑡, 𝑦𝑡⟩

Var𝐾⟨𝑥𝑡⟩
. (4.5)

Intuitively, these calculations are computationally equivalent to estimating the beta

coefficients by regressing the inverse DFT reconstruction of the time series, restricted

to the frequencies specified by 𝐾. Standard errors and the 𝐹 statistic for this band-

spectrum regression are provided in Appendix B.

As an illustrative example, Table 4.1 tests the hypothesis that long- and short-

term components of several hedge-fund style index returns are equally sensitive to

market index returns across all frequencies. Specifically, we analyzed the monthly

returns of the HFRI ED: Distressed/Restructuring, HFRI FOF: Market Defensive,

and HFRI EH: Quantitative Directional indices relative to the monthly returns of

the CRSP value-weighted market index using the spectral beta measures described

above. The short-term component was assumed to include frequencies higher than 1

cycle per year, and the original series were de-meaned.

The 𝐹 statistic value of 43.116 (𝑝<0.001) for the Distressed/Restructuring index

rejects the hypothesis that the sensitivity of this strategy’s returns to market move-
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𝛽 𝛽LF 𝛽HF 𝐹1,309

(SE) (SE) (SE)

Distressed/Restructuring 0.250 0.500 0.190 43.116***
(0.020) (0.067) (0.018)

Market Defensive 0.033 0.043 0.030 0.056
(0.022) (0.056) (0.023)

Quantitative Directional 0.704 0.709 0.703 0.009
(0.024) (0.064) (0.026)

*** 𝑝 < 0.001

Table 4.1: All-, low-, and high-frequency beta estimates of hedge fund index monthly
returns from 1990 to 2015 with the CRSP value-weighted market index returns. Fre-
quencies are grouped into two categories: low frequencies (less than or equal to 1
cycle per year), and high frequencies (more than 1 cycle per year). 𝐹 statistics are
formed to compare the restricted (non-spectral) and unrestricted (spectral) regression
models.

ments over this period did not differ between short- and long-term components. On

the other hand, the 𝐹 statistics for the Market Defensive and Quantitative Direc-

tional indices are 0.056 and 0.009, respectively. Here, the null hypothesis that the

sensitivity of these indices to market movements is the same across long and short

horizons cannot be rejected at the standard significance levels.

Figure 4-1 plots the cumulative returns of these hedge fund indices alongside the

cumulative return of the market index. The figure illustrates that the Market Defen-

sive index had low sensitivity to fluctuations in market returns across all frequencies

(𝛽𝐿𝐹 = 0.043; 𝛽𝐻𝐹 = 0.030), while the Quantitative Directional index responded

strongly to all market return fluctuations (𝛽𝐿𝐹 = 0.709; 𝛽𝐻𝐹 = 0.703). This observa-

tion corresponds to the relatively constant beta values across low to high frequencies

listed for these strategies in Table 4.1. Conversely, the Distressed/Restructuring in-

dex appears more sensitive to long-term fluctuations, leading to significantly larger

beta values at low frequencies relative to high frequencies (𝛽𝐿𝐹 = 0.500; 𝛽𝐻𝐹 =

0.190). This difference may reflect the illiquidity of assets contained within the Dis-

tressed/Restructuring index, and demonstrates that a non-spectral measure of beta

might underestimate the index’s market risk exposure.
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Figure 4-1: Cumulative returns of hedge fund indices alongside the CRSP value-
weighted market index from 1990 to 2015.

4.3 Application to Portfolio Selection

In this section, we present empirical evidence that the inclusion of the frequency

domain dimension can be used to select portfolios of stocks with lower out-of-sample

variance relative to estimators based on traditional multi-factor models.

4.3.1 Portfolio selection

Markowitz’s (1952) portfolio theory states that given a target value, �̃�, for the ex-

pected portfolio return, the efficient portfolio weights, w̃, are those that minimize

the portfolio variance for all portfolios with expected return �̃�. Mathematically, the

optimization problem can be written as,

w̃ = arg min
w

wTΣw (4.6)

subject to the constraints

wT𝜇 = �̃� and wT1 = 1 (4.7)
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where 𝑤𝑖 is the portfolio weight on the 𝑖th security, 𝜇𝑖 = E[𝑟𝑖] and Σ𝑖,𝑗 = Cov(𝑟𝑖, 𝑟𝑗).

An important input in this optimization problem is the covariance matrix of these

securities. In practice, portfolio weights are optimized using a covariance matrix that

has been estimated from historical data, and are held until the next rebalancing. The

out-of-sample performance of this estimator is gauged by the variance of this optimal

portfolio in the period after the portfolio has been formed. If the estimator overfits

the historical data, then the out-of-sample performance can be poor, which is why

imposing structure through a factor model can be beneficial.

4.3.2 Spectral Factor Model

Factor models of asset returns decompose the return on a cross-section of assets into

factor-related and asset-specific components.

Let 𝑅𝑖,𝑡 denote the return of asset 𝑖 in a universe of 𝑁 stocks. Assuming 𝑀 factors,

𝛽𝑖 = (𝛽𝑖,1, . . . , 𝛽𝑖,𝑀), denotes asset 𝑖’s sensitivity to the factors 𝑓𝑡 = (𝑓1,𝑡, . . . , 𝑓𝑀,𝑡),

respectively. A factor decomposition of asset 𝑖’s returns has the form,

𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝑓
T
𝑡 + 𝜀𝑖,𝑡 . (4.8)

It is commonly assumed that the asset-specific returns 𝜀𝑡 = (𝜀1,𝑡, . . . , 𝜀𝑁,𝑡) are cross-

sectionally uncorrelated such that E[𝜀T𝑡 𝜀𝑡] = 𝐷, where 𝐷 is a diagonal matrix. Letting

𝐵 be an 𝑁 × 𝑀 -matrix of factor betas and 𝑉 be the 𝑀 × 𝑀 covariance matrix of

the factors, the covariance matrix of returns, Σ, can expressed as

Σ = 𝐵𝑉 𝐵T + 𝐷 . (4.9)

Since the frequency-specific filtered components are orthogonal to one another, spec-

tral betas can be used to decompose (4.9) into its frequency components with no
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cross-frequency terms,

̂︀Σ =
𝐽∑︁

𝑗=1

Σ(𝑗) , (4.10)

̂︀Σ(𝑗) = 𝐵(𝑗)𝑉 𝐵(𝑗)T + 𝐷(𝑗) . (4.11)

This spectral estimate of the covariance matrix of returns models the fact that cor-

relations of asset returns may differ across time horizons.

We apply our spectral framework to the single-index market model (CAPM) of

Sharpe (1964), the Fama-French three-factor model, and a five-factor model where

the factors are calculated using principal components analysis (PCA), and compare

the out-of-sample performance of the non-spectral vs. spectral estimators.

4.3.3 Dataset

Our dataset and test criteria are similar to Ledoit and Wolf (2003). Stock return

data are extracted from the University of Chicago’s Center for Research in Securities

Prices (CRSP) monthly database. Only U.S. common stocks traded on the New York

Stock Exchange (NYSE) and the American Stock Exchange (AMEX) are included,

which eliminates REIT’s, ADR’s, and other types of securities. Market returns are

calculated as the equal-weighted portfolio return of this universe of stocks, and the

size and book-to-market factors are extracted from Kenneth French’s web site at

Dartmouth1. For 𝑡 = 1972 to 𝑡 = 2015, we use an in-sample period from August of

year 𝑡 − 10 to July of year 𝑡 to form an estimate of the covariance matrix of stock

returns. (We rebalance on the first trading day in August because AMEX stock return

data becomes available in August, 1962.) Future expected returns are estimated as

the average realized return during the in-sample period. Using these expected return

and covariance matrix estimates, we form the global minimum variance portfolio and

the minimum variance portfolio that targets a 20% expected return. In both cases,

short sales are allowed, and the universe of stocks ranges between 𝑁 = 946 and

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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𝑁 = 1302.

We hold these portfolios for one year, at which time they are liquidated and new

optimal portfolios are formed for the next year. Our measure of performance for

these competing estimators is the out-of-sample standard deviation of the estimated

optimal portfolios in the period from August, 1972 to July, 2016. The goal of this

empirical test is to quantify the reduction in the out-of-sample standard deviation

that results from using our spectral betas under fairly practical constraints.

4.3.4 Performance

For each factor model, we compute the standard deviation of the minimum variance

portfolios formed using non-spectral and spectral-based estimators of the covariance

matrix. The HWT-based models are formed with 6 levels, and the DFT-based models

are implemented using the corresponding frequency bands. The results including one-

sided variance ratio tests for the hypothesis that the non-spectral and spectral models

have equal variances are reported in table 4.2.

Model Standard deviation
(global minimum)

Variance
ratio

Standard deviation
(E[𝑅] = 20%)

Variance
ratio

CAPM 11.25 (0.35) – 12.66 (0.39) –
DFT-CAPM 10.77 (0.33) 1.09 11.89 (0.37) 1.13*
HWT-CAPM 10.82 (0.33) 1.08 11.92 (0.37) 1.13*
Fama-French 10.24 (0.32) – 10.95 (0.34) –
DFT-Fama-French 9.60 (0.30) 1.14* 10.33 (0.32) 1.12*
HWT-Fama-French 9.76 (0.30) 1.10 10.44 (0.32) 1.10

PCA 9.99 (0.31) – 10.73 (0.33) –
DFT-PCA 9.44 (0.29) 1.12* 10.13 (0.31) 1.12*
HWT-PCA 9.60 (0.30) 1.08 10.24 (0.32) 1.10

* 𝑝 < 0.1

Table 4.2: Risk of minimum variance portfolios from 𝑡 = 1972 to 𝑡 = 2015. Standard
deviation, expressed in percent, is annualized through multiplication by

√
12 and

standard errors on these standard deviation estimates are reported in parenthesis.
Ratios of the non-spectral model variance to spectral model variance are reported
with their significance levels based on a one-sided F-test for equal variances.

We find that for each factor model, including the frequency domain consistently

reduces the out-of-sample standard deviation by about 60 basis points, such that the
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variance of the overall portfolio is lowered by about 10%. Moreover, the DFT-spectral

models performs slightly better than the HWT-spectral models, but in general, their

improvement over the non-spectral models is approximately equal.

To determine the economic intuition behind this improvement, we report the

average frequency-specific market betas for portfolios that are sorted by size from

𝑡 = 1972 to 2015 and book-to-market from 𝑡 = 1980 to 20152 in Figure 4-2. We

also report the alpha term of Sharpe’s (1964) single index market model using each

frequency-specific market beta as an estimate of the overall market beta.
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Figure 4-2: HWT-CAPM betas and corresponding alphas. Average frequency-specific
market betas for portfolios that are sorted by size from 𝑡 = 1972 to 2015 and book-
to-market from 𝑡 = 1980 to 2015. The alpha term of Sharpe’s (1964) single index
market model using the frequency-specific market beta as an estimate of the overall
market beta is also reported.

We see that frequency-specific betas vary not only across the size and value dimen-

sions, but also along the frequency dimension. Interestingly, small and value stocks
2Book value is extracted from Compustat and only becomes available to match our CRSP data

around 1980. The universe of stocks for this book-to-market analysis varies from 𝑁 = 703 to
𝑁 = 885.
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are more sensitive to market fluctuations at low frequencies, while large and growth

stocks are the opposite. Economically, this suggests that small stocks and value stocks

are more strongly affected by low-frequency business cycle dynamics. For example,

these companies might find it more difficult to finance their operations in recessions

compared to more established, non-distressed companies. Our frequency-specific beta

model is able to capture these dynamics, which helps to explain the spectral models’

improved out-of-sample performance.

As a result, the alpha terms in Figure 4-2 decrease as we extend the horizon.

This has important implications for asset pricing models, as it suggests the single-

index model is satisfied more convincingly at low frequencies. In general, we find that

aggregation through the HWT provides a systematic framework to capture short-

and long-term dynamics in asset returns as well as the factors. We view notions of

frequency-specific risk aversion or heterogeneity in investors’ investment/consumption

horizons, among other channels, as being promising directions for future empirical and

theoretical investigations. We hope the findings in this chapter will encourage such

investigations.

4.4 Conclusion

We show that the beta of an asset can be expressed as a linear combination of

frequency-specific betas, i.e., betas on components of the asset returns and com-

ponents of the factor operating at different frequencies. When computed using the

HWT, this beta representation can be expressed in the time domain using moving av-

erage filters, thereby facilitating interpretation and applicability. It does not involve

cross-covariances between frequency-specific components of asset returns and the fac-

tor, thus permitting all frequency-specific information to be contained exclusively in

frequency-specific betas.

When applied to NYSE and AMEX stock returns from 1972 to 2016, we find that

the inclusion of the frequency domain can be used to estimate spectral factor models

that select portfolios with significantly lower out-of-sample variance relative to esti-
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mators based on traditional multi-factor models. These frequency-specific measures

allow us to distinguish between short- and long-term components risk and covari-

ances, providing additional insights into portfolio and risk management above and

beyond their static counterparts. These considerations can be particularly useful

when asset-dynamics differ across time horizons.

Frequency-dependent alphas, betas, variances and auto- and cross-covariances can

be used to incorporate dynamics into many other financial applications. For example,

spectral versions of performance attribution, linear factor models, asset-allocation

models, risk management, and measures of systemic risk can all be constructed using

spectral analysis.

In particular, our representation can be used to test for the impact of systematic

risk at different frequencies on the pricing of assets. Our proposed framework allows

for the possibility of heterogeneous pricing over different frequencies or horizons. It

therefore offers a useful framework to remove the restriction of equal pricing across

frequencies that is implied in the asset pricing literature.
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Part III

Applications to Healthcare Finance
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Chapter 5

Patient-Centered Clinical Trials

In this chapter, we review how Bayesian decision analysis can be used to incorporate

patient preferences in the regulatory approval process for new therapies. By assigning

weights to type I and type II errors based on patient preferences, the significance level

(𝛼) and power (1 − 𝛽) of a randomized clinical trial (RCT) for a new therapy can

be optimized to maximize the value to current and future patients and consequently,

to public health. As an example, we apply this technique to weight-loss devices and

find that potentially effective, low-risk treatments have optimal 𝛼’s larger than the

traditional one-sided significance level of 5%, while potentially less effective and riskier

treatments have optimal 𝛼’s below 5%. Moreover, the optimal RCT design, including

trial size, varies with the risk aversion, time-to-access preferences, and medical need

of the target population.

5.1 Introduction

Determining the acceptable level of uncertainty associated with clinical evidence has

been an important and challenging decision when regulators conduct benefit-risk

assessments of novel technologies, especially for unmet medical needs. Traditional

clinical trial designs typically set the one-sided significance level, i.e., the maximum

allowed value for the rate of type I error (approving a device for which there is not a

reasonable assurance of safety and effectiveness), at 5% regardless of the context in
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which the decision is made and the public health implications of the consequences.

However, the context may matter for making rational and sensible decisions with

significant public health impact. In some circumstances, the consequences of making

a type I error can be less important than those of type II error (not approving a

device for which there is a reasonable assurance of safety and effectiveness), particu-

larly when the device can treat a life-threatening or irreversibly debilitating disease or

condition for which there are no other available treatments. Moreover, the standard

value of 5% for type I error is, itself, arbitrary and not tied to any context-specific

considerations.

To address this important regulatory science challenge, the Center for Devices

and Radiological Health (CDRH) at the U.S. Food and Drug Administration (FDA)

has used a stepwise strategy. First, CDRH has conveyed its approach to making

benefit-risk assessments more robust and systematic through the release of a guid-

ance document on benefit-risk determinations for premarket approval and De Novo

classification decisions released in 2012 and updated in 2016 (US Food and Drug

Administration, 2016a). The guidance document is intended to explain the FDA’s

thinking on the factors to take into account when making benefit-risk determinations

for premarket approval of medical devices and has explicitly listed patient perspec-

tives as one of the important factors for and CDRH staff to consider. CDRH has also

made a commitment to make its regulatory decision-making more patient-centered

by engaging patient stakeholders and exploring the use of quantitative methods to

elicit and use patient preferences in a valid scientific manner.

To explore ways to include patient perspectives into its regulatory decision-making,

CDRH sponsored a proof-of-concept pilot study in 2012 to elicit quantitative prefer-

ences on benefit-risk tradeoffs for weight-loss devices (Ho et al., 2015). Recognizing

the importance of heterogeneity across the spectrum of patient preferences, the survey

was designed as a discrete choice experiment, which captures not only the average, but

also the distribution of patient preferences, including its variability among patients

of various genders, ages, body mass indexes and previous experience with weight-loss

surgeries. Moreover, the device attributes and levels considered in the study, including
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benefits (amount of weight loss, weight loss duration, improvement in comorbidities),

risks (side effects duration, chance of hospitalization, chance of dying from getting

the device), and other device characteristics (dietary restrictions, type of operation)

were selected by CDRH regulators based on a portfolio of devices that were in the

development pipeline but not yet on the market. Each question in the study involved

a choice between two hypothetical weight-loss devices with different attribute profiles

and each attribute had varying levels. Subjects then answered eight choice questions,

which revealed the relative importance of each attributes and their levels.

Since the study results have became available, they have been informing reviewers

at CDRH when making their approval decisions across a wide range of weight-loss

devices with differing benefit-risk profiles. However, while CDRH review staff has

subjectively considered the evidence in the patient preference study, there was no ob-

jective, explicit and transparent method to directly relate the specific patient prefer-

ence evidence developed in the study to the acceptable level of uncertainty associated

with the submitted clinical evidence.

In recent years CDRH has achieved significant milestones to facilitate designing

and conducting patient preference studies by sponsors and patient groups. In 2015

the Medical Device Innovation Consortium released a patient preference framework

report sponsored by the FDA. It discusses how patient preference information can

be used at various stages of the total product life cycle and also includes a catalog

of existing methods for eliciting patient preferences compiled by a panel of experts.

In 2016, the FDA Patient Preference Information guidance document was released,

containing the following mandate (US Food and Drug Administration, 2016b):

This guidance focuses on the specific type of patient input referred to as

patient preference information [PPI], which, for the purposes of this guid-

ance, is defined as: qualitative or quantitative assessments of the relative

desirability or acceptability to patients of specified alternatives or choices

among outcomes or other attributes that differ among alternative health

interventions. . . The specific role of quantitative PPI is to provide esti-

mates of how much different outcomes, endpoints or other attributes are
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valued by patients, and the tradeoffs that patients state or demonstrate

they are willing to make among them. Such outcomes or other attributes

of a device include demonstrated or posited measures of effectiveness,

safety, and other device characteristics that may impact benefit-risk con-

siderations, including (but not limited to) means of implantation, duration

of effect, duration and frequency of use, and utility of the device.

However, there is a missing quantitative link between specific patient preferences

and acceptable levels of uncertainty. Furthermore, methodologies that objectively,

transparently and reproducibly determine these quantitative links have been elusive.

In this chapter, we use a Bayesian method proposed by Montazerhodjat et al.

(2017) and Isakov et al. (2018), and quantitative patient preference data from the

CDRH patient preference obesity study (Ho et al., 2015) to calculate acceptable lev-

els of uncertainty (significance level and power) when designing pivotal clinical trials

for clinical evidence required by regulatory decision-making. The Bayesian approach

has long been applied to clinical trial design and analysis (Berry, 2004, 2006; Irony

and Simon, 2006; Irony, 2007; US Food and Drug Administration, 2010; Bonangelino

et al., 2011; Irony, 2012). Bayesian Decision Analysis (BDA), the particular method

presented in this chapter, aims to optimize the balance between type I and II error

rates and the severity of the consequences of making type I and type II errors based

on patient preferences. The appropriate patient preference scores are scientifically

elicited and estimated across safety and effectiveness, and used to construct hypo-

thetically optimal balanced two-arm fixed-sample randomized clinical trials (RCTs)

to maximize the expected the value for patients.

We take into account the fact that lengthy clinical trials provide more power but

can negatively impact public health because they delay access of effective treatments

to patients. In addition, we weigh the consequences of approving an ineffective treat-

ment versus rejecting an effective intervention. If we set the significance level to be

smaller and consequently more stringent, we not only reduce the chance approving an

ineffective treatment but also increase the chance of rejecting an effective treatment.

We find that the BDA-optimal design is often substantially different in significance
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level, power, and sample size from the conventional approach using a fixed one-sided

significance level of 5%. Of course, the BDA-optimal design depends on several key

assumptions. While this framework provides a systematic and quantitative method

of incorporating multifaceted tradeoffs into RCT design, the usefulness of its rec-

ommendations relies on the appropriateness of these assumptions and on accurately

calibrated model parameters.

Although we apply BDA to a specific medical device in this study, the framework

applies more broadly to other therapeutics and this application is meant to serve as a

proof-of-concept for a more general and systematic approach to incorporating patient

preferences into medical device and drug approval processes.

5.2 BDA-Optimal Clinical Trial Design

In this section we use the quantitative framework from Montazerhodjat et al. (2017)

and Isakov et al. (2018) to explicitly take into account patient preferences across mul-

tiple device-attributes when determining the optimal sample size and critical value of

a balanced two-arm fixed-sample RCT. We first define a patient-centered value model

associated with given medical device’s attributes. We then assign prior probabilities

to each possible combination of these attributes, and formulate the expected value of

the trial. The optimal trial size (2𝑛, where there are 𝑛 patients in each arm of the

study), and the one-sided significance level (𝛼 or critical value, 𝜆𝛼) are then jointly

determined to maximize the expected value of the trial. Note that maximizing the

value of the trial means providing access of a safe and effective treatment to patients

as soon as possible, or concluding that the treatment has not demonstrated a rea-

sonable assurance of safety and effectiveness as soon as possible. It is equivalent to

minimizing its losses, which include the consequences of incorrect decisions for all cur-

rent and future patients, as well as the inefficiency of delaying access of a potentially

safe and effective treatment to patients. Although the value model we now introduce

is based on explicit-preference data for a specific device, these methods have been

applied to a previous oncology analysis (Montazerhodjat et al., 2017; Isakov et al.,
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2018) and are applicable to other therapeutics for which patient-preference data are

available.

5.2.1 Patient-Centered Value Model

The CDRH weight-loss device study elicited and quantified the importance of safety,

effectiveness, and other attributes of weight-loss devices into patient preference scores

(Ho et al., 2015). Table 5.1 shows the preference scores estimated from the survey

data for percent total body weight loss (%TBWL), which is defined as a patient’s

absolute amount of weight loss divided by the patient’s current weight, and mortality

risk. The scores are on a scale from −10 (least preferred) to +10 (most preferred),

where −10 is the estimated value of a 5% mortality risk to patients. %TBWL and

mortality risk were modeled as continuous variables, and their preference weights were

linearly interpolated between observations.

Attribute Level Preference score

Average amount of weight loss (%TBWL) 0% Reference level
5% +0.2

10% +0.6
20% +2.0
30% +4.3

Chance of dying from getting the device (mortality risk) 0% Reference level
1% −3.5
3% −7.1
5% −10

Table 5.1: Estimates of preference scores by attributes and levels (Ho et al., 2015).

Patient preference scores for each attribute were then mapped directly to relative

values. For example, the change in value (loss) of an increase in mortality risk from

0 to 1% can be quantified by the preference score difference between these two levels.

The change in value of this increase from the patient’s perspective is therefore −3.5.

Similarly, the change in value (gain) of an increase in percent total body weight loss

(%TBWL) from 0 to 30% is +4.3. Given both these changes, and holding other

attributes constant, the net change in value would then be +0.8 and so the additional

weight loss would more than compensate for the increased mortality risk according to
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the patient preference information. The relative loss of value per patient, 𝐿, of using

one intervention over another is then defined as this net change in value. The number

of patients affected can be used to scale 𝐿 to estimate a collective loss of value.

As demonstrated in Montazerhodjat et al. (2017) and Isakov et al. (2018), the

value associated with a clinical trial for a superiority claim can be categorized into

in-trial and post-trial value. In-trial value depends on the number of subjects in

each arm of the trial, and is independent of the outcome of the trial if both arms

have the same number of subjects. Post-trial value, on the other hand, is completely

dependent on the outcome of the trial, and affects patients beyond the scope of the

trial. In particular, we assume there is no post-trial loss in value with making a correct

decision – i.e., rejecting (approving) a device that is less (more) preferred relative to

the control – except for the wait time caused by the regulatory approval process. We

further define the relative loss in value per person of using the investigational device

under the null hypothesis (𝐻 = 0) as 𝐿0, and the relative loss in value per person

of foregoing the use of a the investigational device under the alternative hypothesis

(𝐻 = 1) as 𝐿1. If the size of the target population is 𝑁 , then the aggregate loss

in value of a type I or II error will be 𝐷𝐹𝑡 · 𝑁 · 𝐿0 and 𝑁 · 𝐿1, respectively, where

𝐷𝐹𝑡 is a discount factor that decreases from 1 to 0 and accounts for the wait time,

𝑡, caused by the regulatory approval process. In other words, patients place a lower

value on a treatment if it is not accessible immediately. Therefore, the aggregate loss

in value caused by the length of the regulatory-approval process under the alternative

hypothesis is [1 −𝐷𝐹𝑡] ·𝑁 · 𝐿1.

Finally, if the investigational device is less preferred to the control, then the 𝑛

subjects in the investigational arm experience a total loss of value of 𝑛 ·𝐿0. However,

if the investigational device is preferred to the control treatment, then the 𝑛 subjects

in the control arm forego a better treatment and experience a total loss of value of

𝑛 ·𝐿1. The potential losses in value associated with a fixed sample trial are tabulated

in Table 5.2. Note that there is no loss in value (i.e., there is maximum value)

in the hypothetically optimal scenario where the correct approval decision is made

immediately and without running a trial.
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Post-trial In-trial

𝐻 = 0 Accepted 𝐻 = 1 Accepted
𝐻 = 0 0 𝐷𝐹𝑡 ·𝑁 · 𝐿0 𝑛 · 𝐿0

𝐻 = 1 𝑁 · 𝐿1 (1 −𝐷𝐹𝑡) ·𝑁 · 𝐿1 𝑛 · 𝐿1

Table 5.2: Post-trial and in-trial loss of value associated with a balanced fixed-sample
RCT (Montazerhodjat et al., 2017; Isakov et al., 2018).

We additionally assume time consistent (i.e., exponential) discounting, and sug-

gest that time-horizon preferences, which measure the capacity of patients to tolerate

waiting, be elicited directly in future patient survey experiments. If the annual dis-

count rate is 𝑟, then the discount factor is given by 𝐷𝐹𝑡 = 𝑒−𝑟𝑡, where 𝑡 is length of the

regulatory-approval process. This proposed discount factor ensures that patient pref-

erences do not change over time in such a way that they become inconsistent with one

another. As in Montazerhodjat et al. (2017), the duration of the regulatory-approval

process is assumed to be determined by the size of the study (2𝑛), the patient accrual

rate for the study (𝜂), the time required to setup the study (𝑠), the follow-up time of

the final patient to complete the study (𝑓), and the FDA review time (𝜏) such that

𝑡 = 𝑠 + 2𝑛/𝜂 + 𝑓 + 𝜏 .

5.2.2 Bayesian Decision Analysis

A quantitative primary endpoint based on TBWL as a percentage of initial weight

is assumed for the trial. We further assume that subjects in the treatment arm

receive the investigational device and each subject’s response is independent of all

other responses. Diet and exercise are assumed to be administered to patients in the

control arm. The response variables in the treatment arm, denoted by {𝑇1, . . . , 𝑇𝑛},

are assumed to be independent and identically distributed, where 𝑇𝑖 ∼ 𝒩 (𝜇𝑡, 𝜎
2
𝑡 ).

Similarly, the control arm responses, represented by {𝑃1, . . . , 𝑃𝑛}, are assumed to

be independently and identically distributed as 𝑃𝑖 ∼ 𝒩 (𝜇𝑝, 𝜎
2
𝑝). We further confine

ourselves to superiority trials where the device is likely to have either a positive

effect (𝜇𝑡 > 𝜇𝑝), or no effect (𝜇𝑡 = 𝜇𝑝). In such cases, the treatment effect of the

device, 𝛿, is defined as the difference between the response means in the two arms
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(i.e., 𝛿 ≡ 𝜇𝑡 − 𝜇𝑝). In a fixed-sample trial with 𝑛 subjects in each arm, we collect

observations from the treatment and control arms, and form the following t-statistic:

𝑇 =
̂︀𝜇𝑡 − ̂︀𝜇𝑝√︁̂︀𝜎2

𝑡

𝑛
+

̂︀𝜎2
𝑝

𝑛

(5.1)

where ̂︀𝜇 and ̂︀𝜎 represent the sample mean and standard deviation, respectively, and

𝑇 has a noncentral 𝑡-distribution with noncentrality parameter 𝛿
√︁

𝑛
𝜎2
𝑡+𝜎2

𝑝
. Under the

assumption that the two variances are equal, this distribution has 2(𝑛− 1) degrees of

freedom. The 𝑡-statistic, 𝑇 , is then compared to the critical value, 𝜆𝛼. Finding that

𝑇 > 𝜆𝛼 supports rejection of the null hypothesis (i.e., that the device has no effect).

The probability of failing to reject the null hypothesis, for a device that provides a

treatment effect 𝛿 with response variances 𝜎2
𝑡 and 𝜎2

𝑝, is therefore 𝑃 (𝑇 ≤ 𝜆𝛼).

Assuming prior probabilities 𝑝0 and 𝑝1 (where 𝑝0 + 𝑝1 = 1) for the cases where

the investigational device is equally effective (𝐻 = 0) and more effective (𝐻 = 1) to

the control treatment, respectively, and letting 𝑉0 and 𝑉1 be the value created in the

hypothetically optimal scenarios where the correct approval decision is made imme-

diately and without running a trial, it is straightforward to calculate the expected

value associated with an RCT design with parameters {𝑛, 𝜆𝛼} as

E[Value;𝑛, 𝜆𝛼] = 𝑝0(𝑉0 − E[Loss | 𝐻0]) + 𝑝1(𝑉1 − E[Loss | 𝐻1]) (5.2)

where

E[Loss | 𝐻0] = 𝐿0 · [𝛼 ·𝐷𝐹𝑡 ·𝑁 + 𝑛] , (5.3)

E[Loss | 𝐻1] = 𝐿1 · [𝑁 − (1 − 𝛽) ·𝐷𝐹𝑡 ·𝑁 + 𝑛] , (5.4)

𝛼 is the significance level and 1 − 𝛽 is the power of the trial. As in Montazerhodjat

et al. (2017) and Isakov et al. (2018), the optimal sample size (𝑛*) and critical value

(𝜆*
𝛼) are jointly determined such that the expected value of the trial is maximized

subject to an upper bound, Powermax, for the power level, which we set to 80% in our
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simulations. This power constraint is intended to represent the practical considera-

tions of the medical device industry. In solving the constrained optimization problem,

we observe that the expected value of the trial is maximized when the expected loss,

E[Loss;𝑛, 𝜆𝛼] = 𝑝0E[Loss | 𝐻0] + 𝑝1E[Loss | 𝐻1], is minimized.

5.3 Weight Loss Device Case Study

Using Bayesian decision analysis and the estimated preference scores, we can now

formulate the BDA-optimal fixed-sample test for weight loss devices. We assume an

annual discount rate of 10%, a %TBWL as a percentage of initial weight standard

deviation of 25% for both arms of the study, a patient accrual rate of 100 patients

per year (as well as a fixed study startup time of 6 months, final observation period

of 1 year, and FDA review time of 9 months), and a target population of 100,000

patients. We also consider two separate categories of interventions, low risk and

high risk, which represent devices that require non-invasive and invasive surgeries,

and have mortality risks of 0.1% and 0.3%, respectively. In each case, we assume

the device is either ineffective (𝜇𝑡 = 𝜇𝑝) or effective (𝜇𝑡 > 𝜇𝑝), with equal prior

probability. This prior is consistent with the equipoise principle of two-arm clinical

trials, which states that it is only ethical to assign the same number of patients to

both arms if there is no prior information in the medical profession that favors one

arm over the other (Freedman, 1987). We further subcategorize effective weight loss

into low effectiveness (𝜇𝑡 = 10%) and high effectiveness (𝜇𝑡 = 20%). Figure 5-1

summarizes the multiple categories of investigational devices considered. Finally, the

control treatment (e.g., diet and exercise) is assumed to provide moderate weight

loss (𝜇𝑝 = 2%) and have no additional mortality risk. In Appendix C we conduct

sensitivity analyses to investigate the robustness of our analysis to perturbations in

our model’s key assumed parameter values.

Table 5.3 lists the optimal RCTs for the devices described above. As can be seen,

the device that is assumed to be low risk, but is potentially highly effective has a

relatively large BDA-optimal significance level (𝛼) of 6.5%. This value is greater than
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the traditional 5% level, reflecting the fact that patients are willing to bear increased

uncertainty of receiving an ineffective device, because 1) the device is thought to

be safer, and/or 2) they value the weight loss benefit and don’t want to miss the

opportunity of receiving an effective weight-loss device, and/or 3) they want to access

a potentially effective weight-loss device sooner. The preference and ability to shorten

the regulatory-approval process is especially apparent as the trial size is set to 44

patients (22 in each arm), which is approximately 6 times smaller than the trial size

recommended for the low risk, low potential weight loss device.
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Figure 5-1: Possible device characteristics: low risk with high weight loss (top left),
low risk with low weight loss (bottom left), high risk with high weight loss (top right),
and high risk with low weight loss (bottom right). Circles and triangles represent
the investigational device characteristics under the null hypothesis (𝐻 = 0) and
alternative hypothesis (𝐻 = 1), respectively.

In contrast, the optimal significance level for the device that is assumed to have a
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high mortality risk is 1.1%. The additional mortality risk causes the preference score

of this device to be relatively low, and hence patients require greater evidence of

clinical effectiveness. To achieve this goal, the trial size is set to 78 patients, almost

twice the size of the trial recommended for the low risk device with an equivalent

potential effectiveness. However, the preference to keep the trial size small remains

evident, especially when compared to the 278-patient trial size recommended for the

low risk, low potential weight loss device. Finally note that, because the high risk,

low potential weight loss device is not preferred to the standard treatment under the

alternative hypothesis (see Figure 5-1), the BDA framework recommends this device

be rejected without conducting a trial.

Device characteristics
under 𝐻 = 1

Trial size
(2𝑛)

Critical
value (𝜆𝛼)

Significance
(𝛼)

Power
(1− 𝛽)

Low risk, high %TBWL 44 1.54 6.5% 80%
Low risk, low %TBWL 278 1.83 3.5% 80%
High risk, high %TBWL 78 2.33 1.1% 80%
High risk, low %TBWL 0 – – –

Table 5.3: BDA-optimal RCTs for weight loss devices.

While the previous analysis studied the benefit-risk preferences of the average pa-

tient, we can also calculate BDA-optimal trial designs for more risk-tolerant early

adopters. In this analysis, we derive counterpart BDA-optimal RCTs for a subset of

patients who have a fraction (𝛾) of the risk aversion of the average survey respondent.

For example, if 𝛾 = 2/3, a patient’s risk aversion is one third smaller in magnitude

when compared to the average patient’s risk preferences seen in Table 5.1. We use this

coefficient for illustrative purposes only, and recommend that preference scores from

population subsets, including categorization by disease severity and other demograph-

ics, be elicited directly from survey responses. Table 5.4 compares the BDA-optimal

designs for patients who are one third (𝛾 = 2/3) and two thirds (𝛾 = 1/3) less risk

averse than the average patient.

The BDA-optimal RCT designs vary substantially across risk-tolerance groups.

With a 1/3 decrease in risk aversion, the sample size decreases by a factor of 21–

88



Device characteristics
under 𝐻 = 1

Risk
aversion (𝛾)

Trial size
(2𝑛)

Critical
value (𝜆𝛼)

Significance
(𝛼)

Power
(1− 𝛽)

Low risk, high %TBWL 1 44 1.54 6.5% 80%
2/3 34 1.26 10.9% 80%
1/3 20 0.77 22.5% 80%

Low risk, low %TBWL 1 278 1.83 3.5% 80%
2/3 190 1.36 8.7% 80%
1/3 94 0.71 24.0% 80%

High risk, high %TBWL 1 78 2.33 1.1% 80%
2/3 62 1.99 2.6% 80%
1/3 44 1.54 6.5% 80%

High risk, low %TBWL 1 0 – – –
2/3 0 – – –
1/3 278 1.83 3.5% 80%

Table 5.4: BDA-optimal RCTs for weight loss devices for three risk-tolerance groups.

32%, and the significance level increases in magnitude by 1.5–5.2%, such that the

recommended 𝛼’s for low and high risk devices are on the order of 10% and 2.5%, re-

spectively. The small number of patients and large 𝛼’s for the risk tolerant subgroups

relative to the average population are observed because the BDA-optimal RCT, by

being less conservative, aims to grant faster access to these “early adopters.” The

decrease in the length of the regulatory-approval process is a consideration to offset

the excess risk from the extra permissiveness in the trial, and the overall penalty – the

expected harm to current and future risk-tolerant patients – may be minimized. Fi-

nally note that, if effective, the high risk, low potential weight loss device is preferred

to the standard treatment by the most risk-tolerant subgroup (in fact they view the

device similar to how the average population view the low risk, low potential weight

loss device), and the BDA framework recommends conducting a conservative trial.

5.4 Discussion

In this chapter, we have applied a quantitative framework in which patients’ prefer-

ences are the center of RCT design. We quantify the loss in value to public health

associated with different actions in any fixed-sample RCT, use a BDA framework to
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aggregate the value of the trial, and then determine an optimal RCT in which the

expected value is maximized. We tailor this framework to weight-loss devices, using

quantitative preference evidence elicited from patients through conjoint analysis, and

assumptions for RCT statistics to design BDA-optimal RCTs for both average and

more risk-tolerant patient populations.

Our results demonstrate that the traditional RCT design with a fixed statisti-

cal significance level does not necessarily maximize overall value (or equivalently,

minimize harm) to current and future patients of an investigational treatment. For

low-risk devices and risk-tolerant populations, the inefficiency is mainly caused by

lengthy RCTs that are too conservative and overprotective of the type I error rate

(i.e., too focused on rejecting ineffective treatments and on avoiding the harm caused

by false positives.) Missed treatment opportunities do indeed harm patients, and

should be considered along with the risk of approving ineffective or risky treatments.

Conversely, for some high-risk devices, such as those that require open surgery,

traditional one-sided significance levels of 5% are more permissive than the BDA-

optimal thresholds. These RCTs allow for a larger chance of approving ineffective or

riskier treatments, such that the expected benefits are not justified by the risk to pa-

tient health. We believe that a more nuanced consideration of both significance level

and power described here is instructive to the design of future clinical trials. Although

we made strong assumptions here for illustrative purposes, these assumptions can be

readily relaxed in future work. For example, while we have used point prevalence for

simplicity in this chapter, period prevalence, incidence rates, and other epidemiolog-

ical measures can be used to estimate the total population affected by the outcome

of the trial. Moreover, other factors – including the time until the adverse effects of

a type I error are discovered after a device is inadvertently approved, measures of

disease burden, and the expected time until a new treatment is discovered that is at

least as safe and effective as the investigational device – can easily be incorporated

into the model (Montazerhodjat et al., 2017).

Our findings must therefore be qualified in several respects. First, many clinical

trials are non-inferiority trials instead of the superiority trials we have considered.
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Second, we have considered fixed sample clinical trials, when in reality clinical trials

for regulatory purposes could be adaptive and might include interim analyses for early

signals of effectiveness, futility, or lack of safety. Any of these possible adaptations

in any given trial may alter the optimal significance level and power and appropriate

modifications to our calculations are required to determine the optimal designs in

these situations.

Third, the trials considered here use the percent of total body weight loss as the

primary endpoint, and mortality risk as the only safety concern. For weight-loss

devices, these attributes are clear and of unambiguous importance. Moreover, total

body weight loss is a surrogate endpoint for morbidity and mortality; hence this trial

resembles those of many other therapeutics. Other attributes may also be included,

such as weight-loss duration, co-morbidities, side-effect duration, and others, which

are more difficult to gauge. Study-specific definitions of type I error and type II error

loss would require more nuanced treatment in these trials, but can easily be included

in our BDA framework.

Fourth, we acknowledge that hypothetical patient choices such as the ones ob-

tained in a discrete-choice experiment do not have the same clinical and emotional

consequences as actual choices. However, advances in patient preference elicitation

methods and best practices have helped increase the reliability of such results by

ensuring that respondents are well informed, and that hypothetical biases are mini-

mized. Despite these limitations, the estimated preference scores allow us to develop

quantitative models to compare benefit-risk trade-offs across device attributes. This

information is required for making patient-centered, evidence-based regulatory deci-

sions.

Finally, we have constrained our attention to patients’ medical outcomes without

considering the financial cost to patients and their families, to industry, or to soci-

ety. New therapies often come at a very high financial cost, which, when taken into

account, may raise the bar of success for new agents, thus lowering the acceptable

significance level. On the other hand, the larger the target population, the more

robust the results will be to the accuracy of 𝑁 and the more palatable higher finan-
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cial costs might be for developing beneficial therapies. While other decision makers

(insurance companies, etc.) may integrate financial costs into consideration, these

concerns would not be included in regulatory decisions. On the other hand, the in-

creased significance levels that we have proposed may lower the cost of clinical trials –

which has grown to an average of $36,500 per patient as of 2013 (Battelle Technology

Partnership Practice, 2015) – and reduce the risk to sponsors, which may encourage

device development, lower device costs, and further accelerate clinical research.

To incorporate perspectives from the entire biomedical ecosystem, as well as the

value of patient input to the device development process, CDRH has developed a pa-

tient engagement advisory committee, consisting of key stakeholder groups – patient

advocacy, caregivers, physicians, medical device and biopharma executives, regula-

tors, and policymakers. It is possible to consider whether this committee would be an

appropriate forum to consider formulating explicit cost estimates for type I and type

II errors. These estimates can then be incorporated into the FDA decision-making

process as additional inputs to their quantitative and qualitative deliberations.

This ability of the BDA framework to systematically weigh multifaceted tradeoffs

that reflect a variety of perspectives combined with its flexibility and practicality

make it a potentially valuable tool for optimal RCT design. While the framework

is robust, we emphasize that careful consideration must be applied to the assump-

tions underlying the specific models in order to produce useful recommendations. If

correctly implemented, a Bayesian perspective has the potential to benefit all stake-

holders. In the next chapter, we demonstrate how this framework can be incorporated

into an adaptive design.
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Chapter 6

Bayesian Adaptive Patient-Centered

Clinical Trials

As was discussed in the previous chapter, the regulatory approval process for new

medical therapies involves statistical decisions that are subject to error: approving

an ineffective therapy or failing to approve an effective one. The potential harm to

patients of these two types of error—known as type I and type II error, respectively—

are not necessarily equal, and may also differ across patients, diseases, therapies, and

other circumstances. In this chapter, we propose a patient-centered Bayesian adaptive

design that applies sequential likelihood ratio tests to randomized clinical trials and

incorporates patient preferences and burden-of-disease measures so as to minimize the

expected harm to current and future patients. Using U.S. Burden of Disease Study

2010 data for a variety of diseases, we find that, relative to the typical balanced fixed-

sample two-arm clinical trial, the expected sample size, type I, and type II error can

be decreased up to 63%, 43%, and 38%, respectively in our framework.

6.1 Introduction

Adaptive protocols are becoming increasingly popular in the design of randomized

clinical trials (RCTs). Unlike traditional fixed-sample balanced two-arm RCTs, adap-

tive trials use the accumulation of past observations to modify their progress, a
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characteristic that makes Bayesian inference the ideal tool for their implementation

(Anscombe, 1963; Berry, 1987; Berry and Eick, 1995; Cheng et al., 2003; Berry, 2004,

2006, 2010, 2015). Adaptive RCTs have been proposed as a way to increase the ef-

ficiency of the regulatory approval process by reducing not only time and costs, but

also the probability of false positives (type I error) and false negatives (type II error).

Modern RCTs use different types of adaptive designs for several purposes, includ-

ing dose finding, changing the randomization proportions or accrual rate, dropping

arms or doses, integrating multiple phases of development, sample size reestimation,

and population enrichment (Berry, 2010, 2015; Bhatt and Mehta, 2016). Examples

of adaptive RCTs include I-SPY (Harrington and Parmagiani, 2016), LUNG-MAP

(Steuer et al., 2015), and GBM-AGILE (National Biomarker Development Alliance).

In this chapter, we apply sequential likelihood ratio tests to the RCT sample

size of balanced two-arm clinical trials. For a given significance level and power,

determined from the severity of the adverse effects of type I and type II errors on the

patient (Montazerhodjat et al., 2017; Isakov et al., 2018), we find stopping boundaries

for superiority and futility for the primary endpoint. This protocol allows us to

end the trial early in cases where the investigational treatment shows clear signs of

effectiveness or ineffectiveness on the patient, or to collect additional observations

when current observations do not lead to a clear choice.

6.2 Methods

The fixed-sample RCTs considered in the previous chapter are designed so that a deci-

sion is made after a predetermined number of observations have been collected. These

observations are costly to acquire, however, and introduce a delay in the regulatory

decision-making process. Intuition suggests it would be preferable to make a decision

after a number of observations if the resulting probability of error is small enough, and

to continue collecting observations otherwise. To do so, we apply Bayesian sequential

analysis to our model.
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6.2.1 Bayesian Decision Analysis for Fixed-Sample Trials

As in the previous chapter, a quantitative primary endpoint is assumed for the trial.

However, here we assume the response variance in each arm is known and equal to 𝜎2

(Isakov et al., 2018). In a fixed-sample test with 𝑛 subjects in each arm, we collect

observations from the treatment and control arms, and form the following 𝑍-statistic:

𝑍𝑛 =

√
𝐼𝑛
𝑛

𝑛∑︁
𝑖=1

(𝑇𝑖 − 𝑃𝑖) , (6.1)

where 𝑍𝑛 is a normal random variable, i.e., 𝑍𝑛 ∼ 𝒩 (𝛿
√
𝐼𝑛, 1), and 𝐼𝑛 = 𝑛

2𝜎2 is

the information in the trial (Jennison and Turnbull, 1999). The 𝑍-statistic, 𝑍𝑛, is

then compared to the critical value, 𝜆, and the therapy is approved if 𝑍𝑛 > 𝜆. The

probability of approving a therapy given a treatment effect 𝛿 is therefore Φ(𝛿
√
𝐼𝑛−𝜆),

where Φ(·) is the standard normal cumulative distribution function.

Given a realization 𝑍𝑛 = 𝑧𝑛, it is straightforward to calculate the expected harm

to patients (𝐶), which can be measured using either patient preference information

or burden of disease estimates, associated with an RCT design with parameters {𝑛,

𝜆} as

E[𝐶] =

∫︁
E[𝐶 | 𝑍𝑛 = 𝑧𝑛] · Pr(𝑍𝑛 = 𝑧𝑛) · 𝑑𝑧𝑛 . (6.2)

Let 𝐶𝑖𝑗 be the total harm of choosing hypothesis ̂︀𝐻 = 𝑖 when 𝐻 = 𝑗. If the decision

rule selects the alternative hypothesis ̂︀𝐻 = 1 given 𝑍𝑛 = 𝑧𝑛, then the probability of

error is Pr(𝐻 = 0 | 𝑍𝑛 = 𝑧𝑛), and the expected cost of this decision is

Pr(𝐻 = 0 | 𝑍𝑛 = 𝑧𝑛) · 𝐶10 + Pr(𝐻 = 1 | 𝑍𝑛 = 𝑧𝑛) · 𝐶11 . (6.3)

Similarly, if the decision rule selects the null hypothesis ̂︀𝐻 = 0, then the expected

cost of this decision is

Pr(𝐻 = 0 | 𝑍𝑛 = 𝑧𝑛) · 𝐶00 + Pr(𝐻 = 1 | 𝑍𝑛 = 𝑧𝑛) · 𝐶01 . (6.4)

To minimize the expected harm, also known as Bayes risk, the decision rule should
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choose the hypothesis with the smallest expected cost

Pr(𝐻 = 0 | 𝑍𝑛 = 𝑧𝑛) · 𝐶10 + Pr(𝐻 = 1 | 𝑍𝑛 = 𝑧𝑛) · 𝐶11

Pr(𝐻 = 0 | 𝑍𝑛 = 𝑧𝑛) · 𝐶00 + Pr(𝐻 = 1 | 𝑍𝑛 = 𝑧𝑛) · 𝐶01

̂︀𝐻=0

≷̂︀𝐻=1

1 . (6.5)

Assuming prior probabilities 𝑝0 and 𝑝1 for 𝐻 = 0 and 𝐻 = 1, respectively, this

equation can be written in terms of the likelihood functions using Bayes’ rule

𝑝0 · Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 0) · 𝐶10 + 𝑝1 · Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 1) · 𝐶11

𝑝0 · Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 0) · 𝐶00 + 𝑝1 · Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 1) · 𝐶01

̂︀𝐻=0

≷̂︀𝐻=1

1 , (6.6)

and can be simplified to the following likelihood ratio test (LRT),

Λ(𝑧𝑛) =
Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 0)

Pr(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 1)

̂︀𝐻=0

≷̂︀𝐻=1

𝑝1(𝐶01 − 𝐶11)

𝑝0(𝐶10 − 𝐶00)
= 𝜂. (6.7)

Taking the natural logarithm of the likelihood ratio function, Λ(𝑧𝑛), and solving for

𝑧𝑛 allows us to express the decision rule that minimizes the expected harm for a given

𝑛 as

𝑧𝑛
̂︀𝐻=0

≶̂︀𝐻=1

𝜆𝑛 , (6.8)

where

𝜆𝑛 =
𝛿
√
𝐼𝑛

2
− ln(𝜂)

𝛿
√
𝐼𝑛

. (6.9)

As in (Isakov et al., 2018), the optimal sample size (𝑛*) and critical value (𝜆*
𝑛) are then

jointly determined such that the expected harm of the trial is minimized subject to an

upper bound for the power level, Powermax, which we set to 90% in our simulations.

This power constraint is chosen to reflect industry practice—the higher the power

level, the more likely it is that a given treatment effect is detected, but at the cost of

a larger sample size.

6.2.2 Sequential Analysis for Bayesian Adaptive Trials

In contrast to the fixed-sample RCTs of the previous section, we now propose to

make binary decisions on the basis of a variable number of observations, choosing to
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stop collecting additional observations when a sufficiently good decision can be made.

Common sense tells us that it is particularly valuable to collect additional data when

the current observations do not lead to a clear choice. Specifically, we have three

possible choices after obtaining each observation: decide that 𝐻 = 1, decide that

𝐻 = 0, or continue collecting data. This can be viewed as a generalization of the

standard Neyman-Pearson hypothesis test, which employs a tradeoff between the two

types of error. Here, we have a three-way tradeoff between the two types of error and

the time required to make a decision.

It can be shown that the sequence of log-likelihood ratios, 𝑆𝑛 = ln Λ(𝑍𝑛), is a

random walk under each of the two hypotheses. An appropriate decision rule for

this framework is to choose 𝐻=0 if the sample value 𝑠𝑛 of 𝑆𝑛 exceeds some positive

threshold, choose 𝐻 = 1 if 𝑠𝑛 is less than some negative threshold, and to continue

testing if the sample value lies in between the two thresholds. By setting these two

thresholds to be ln(𝛼) and ln(𝛽), the type I and type II error rates are guaranteed to

be smaller than 𝛼 and 𝛽, respectively (Gallager, 2014),

𝑠𝑛

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> ln(1/𝛽) ; select ̂︀𝐻 = 0

< ln(𝛼) ; select ̂︀𝐻 = 1

otherwise ; continue .

(6.10)

Solving for 𝑧𝑛, the decision boundaries for superiority and futility can be rewritten

as,

𝑧𝑛

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 𝜆𝑙,𝑛 ; select ̂︀𝐻 = 0

> 𝜆𝑢,𝑛 ; select ̂︀𝐻 = 1

otherwise ; continue

(6.11)

where

𝜆𝑙,𝑛 =
𝛿
√
𝐼𝑛

2
− ln(1/𝛽)

𝛿
√
𝐼𝑛

, 𝜆𝑢,𝑛 =
𝛿
√
𝐼𝑛

2
− ln(𝛼)

𝛿
√
𝐼𝑛

. (6.12)

By using the sequential decision procedure described above, for a given expected

sample size, we simultaneously get the Chernoff bound error exponent for 𝐻=1 that
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a fixed-sample trial would provide if we gave up entirely on an error exponent for

𝐻 = 0, and vice versa (Gallager, 2014). This gain in efficiency, however, has to be

weighed against the substantial increase in protocol complexity, as we shall discuss

further in Section 6.4.

6.2.3 Patient Value Model

To define the target error rates 𝛼 and 𝛽 for our fixed-sample and Bayesian adaptive

RCTs, we must first define the harm associated with regulatory delay and both types

of error, or equivalently, the loss of value to the patient. Our patient-centered value

model is derived from Montazerhodjat et al. (2017) and Isakov et al. (2018), but we

extend their classical fixed-sample trials to the case of Bayesian adaptive trials as in

Colton (1963) and Cheng et al. (2003) where there is continuous monitoring of the

data and Bayesian inference is carried out during the trial. Similar to the proposal of

Grieve (2015) and Isakov et al. (2018), we assign different weights to the consequences

of false positives and false negatives, based on the U.S. Burden of Disease Study (US

Burden of Disease Collaborators, 2013).

As in Montazerhodjat et al. (2017) and Isakov et al. (2018), to quantify the severity

of the adverse effects of a type I or type II error, we estimate the years lived with

disability (YLD), a measure of overall disease burden expressed as the number of

years lost due to disability or ill health. A percentage point increase of burden means

that a patient would be indifferent to a choice between living each year with the

additional adverse effects, or losing 1% of each year if, for the rest of that year, they

could live without the adverse effects. To incorporate the additional adverse effects of

decreased mortality, we estimate the overall severity of a disease using the following

relation:

𝑠 =
𝐷 + YLD
𝐷 + 𝑁

, (6.13)

where 𝐷 is the number of deaths caused by the disease, YLD is the years lived

with disability, and 𝑁 is the disease prevalence, all estimated from the U.S. Burden

of Disease Study (US Burden of Disease Collaborators, 2013). As in Isakov et al.
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(2018), under the alternative hypothesis, given a treatment effect 𝛿 > 0, and response

variance 𝜎2, the loss in value to the patient of forgoing the treatment, 𝐿1, can be

estimated as

𝐿1 = min

(︂
𝛿

𝜎
, 1

)︂
𝑠 . (6.14)

Alternatively, under the null hypothesis, the loss of value to the patient, 𝐿0, of using

an ineffective and possibly toxic treatment is estimated at 0.07 using the values for

YLD, 𝐷, and 𝑁 for the adverse effect of medical treatment in the U.S. (US Burden of

Disease Collaborators, 2013; Isakov et al., 2018). This value can be made more precise

by considering the specifics of the therapy under investigation, but for simplicity, we

hold this value constant across all diseases in this application.

Finally we decompose the value of a clinical trial into the same in-trial and post-

trial components given in Table 5.2. We also assume the rate at which patients

discount treatment benefits over time, 𝑟, is linearly related to the severity of the

disease, such that 𝑟 = 𝑟0 + 𝛾𝑠2. Table 6.1 summarizes the parameter values used in

our analysis.

Parameter Assumed Value
Probability that treatment is effective (𝑝1) 50%
Treatment effect to response variability ratio ( 𝛿

𝜎 ) 0.25
Excess burden caused by toxic and ineffective
treatment (𝐿0)

0.07

Discount rate that measures baseline capacity of
patients to tolerate delay (𝑟0)

10% per year

Discount rate factor that decreases the capacity
of patients to tolerate delay in the presence of
increased disease severity (𝛾)

10% per unit severity

Patient accrual rate (𝜅) 200 patients per year
Start-up time before patient enrollment 6 months
Follow-up period after enrolling the last patient 1 year
FDA review time 9 months

Table 6.1: Assumptions for RCT design.
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6.3 Results

Applying the patient value model we have described, we can calculate the optimal

Bayesian decision analysis (BDA) fixed-sample RCT for a therapy intended to treat a

severe disease. Similar to Isakov et al. (2018), Table 6.2 ranks selected diseases from

the 30 leading causes of premature mortality in the U.S. by estimated severity. As

can be seen in column 2, some diseases are not as harmful as others. For example,

chronic obstructive pulmonary disease (COPD) is much less severe than pancreatic

cancer, which reflects the fact that pancreatic cancer has a poor prognosis, even when

diagnosed early. As such, the BDA-optimal fixed-sample RCT for pancreatic cancer

(𝑛=83, 𝛼=37.1%) is much less conservative than that for COPD (𝑛=365, 𝛼=1.6%).

In general, the optimal significance level increases with the severity of the disease,

and the sample size decreases, as the harm from not approving a potentially effective

therapy grows larger. From the patient perspective, it is beneficial in the case of a

severe disease to increase the probability of a false approval, in exchange for shorter

clinical trials with potentially fewer false negatives. It should be noted that a number

of the diseases in Table 6.2 are, in fact, broad collections of heterogeneous sub-diseases

(e.g., breast cancer), and therefore the RCT designs here are for illustrative purposes

only. The BDA framework can be readily adapted to more finely stratified categories

of disease as long as information about burden of disease and survival statistics are

available.

Using the estimates for statistical size and power for the optimal non-adaptive

RCTs to form the stopping boundaries for superiority and futility in (6.11), we can

simulate the performance of the adaptive RCT protocol. The sample size statistics

(mean, standard deviation, and 25th, 50th and 75th percentiles) under both the null

(𝐻=0) and alternative (𝐻=1) hypotheses are reported in Table 6.2 and Figures 6-1–

6-2. There is a noticeable decrease in the expected and median sample sizes, especially

for the larger and more conservative RCTs. The average decrease in the expected

sample size across all diseases is 44% (maximum decrease = 63%) under the null

hypothesis, and 37% (maximum decrease = 39%) under the alternative hypothesis.
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The decrease in the expected sample size occurs because the adaptive RCT is able to

stop early when a sufficiently good decision can be made.

In addition, the last two columns in Table 6.2 show that the probabilities of both

type I and type II errors are consistently lower for adaptive RCTs. The average de-

crease in type I error across all diseases is 19% (maximum decrease = 43%), and

16% (maximum decrease = 38%) for type II error. In other words, by using the

sequential test described by (6.11), we simultaneously get a reduction in the average

sample size and the error rate relative to a fixed-sample RCT. As a result, the av-

erage decrease in the expected harm across all diseases is 10% (maximum decrease

= 17%) under the null hypothesis, and 15% (maximum decrease = 16%) under the

alternative hypothesis. While these results are striking, it should be noted that these

significant reductions in error probability and sample size are accompanied by sub-

stantial increases in protocol complexity, which is an issue that we discuss further in

the following section.
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Non-Adaptive Adaptive
Sample Size (𝐻 = 0) Sample Size (𝐻 = 1)

Disease Severity Prevalence
(000s)

Sample
Size

𝛼
(%)

Power
(%)

Mean
(SD) Median (IQR) Mean

(SD) Median (IQR) 𝛼
(%)

Power
(%)

Chronic kidney disease 0.04 9,919 387 1.2 88.9 142.8 106.0 246.1 209.0 0.9 89.3
(124.2) (61.0,178.0) (158.3) (133.0,317.0)

Prostate cancer 0.05 3,710 381 1.3 88.9 142.6 103.0 239.6 208.0 1.1 90.5
(123.9) (62.0,180.0) (147.6) (135.0,307.0)

Breast cancer 0.05 3,885 373 1.4 89.0 142.9 103.0 235.1 198.0 1.2 90.3
(122.9) (61.0,182.0) (146.4) (132.0,300.0)

COPD 0.06 32,372 365 1.6 89.1 141.6 103.0 233.1 197.0 0.8 90.8
(122.4) (60.0,180.5) (146.3) (128.0,302.0)

HIV/AIDS 0.10 1,160 314 3.0 89.6 142.0 106.0 195.6 161.0 2.4 90.6
(116.5) (62.0,184.0) (129.3) (105.0,251.0)

Kidney cancers 0.12 329 301 3.5 89.6 140.0 105.0 184.9 154.0 3.1 91.2
(112.5) (61.0,182.0) (121.8) (99.0,237.5)

Ischemic heart disease 0.12 8,896 300 3.6 89.7 142.6 107.0 183.6 151.0 3.1 90.2
(114.9) (63.5,186.0) (124.6) (98.0,235.0)

Non-Hodgkin lymphoma 0.13 283 286 4.2 89.6 140.3 106.0 179.9 147.0 3.4 90.8
(112.0) (62.0,182.0) (125.1) (93.0,231.0)

Colorectal cancer 0.15 799 274 4.9 89.8 139.8 107.0 168.8 138.0 3.8 91.2
(109.8) (65.0,182.0) (118.8) (88.0,215.0)

Cardiomyopathy 0.17 416 264 5.5 89.9 139.7 107.0 162.6 133.0 4.5 90.9
(111.5) (63.0,180.0) (113.7) (83.0,208.0)

Alzheimer’s disease 0.18 5,145 260 5.8 90.0 138.4 108.0 156.9 128.5 4.2 91.6
(107.8) (63.0,180.0) (109.6) (81.0,200.5)

Influenza 0.20 119 245 6.8 89.9 136.0 105.0 150.2 123.0 5.0 91.4
(103.8) (62.0,180.0) (106.5) (74.0,193.0)

Leukemia 0.21 140 239 7.3 90.0 135.0 106.0 148.1 118.0 6.4 91.6
(103.0) (63.0,173.0) (108.6) (72.0,191.0)

Hypertensive heart disease 0.27 185 215 9.5 90.0 131.1 103.0 131.0 104.0 7.8 91.3
(97.6) (63.0,169.0) (97.8) (62.0,167.0)

CNS/PNS cancers 0.30 60 197 11.5 90.0 124.3 99.0 119.9 93.5 10.1 91.6
(91.9) (60.0,161.0) (90.7) (56.0,156.5)

Liver cancer 0.44 31 147 19.4 90.0 113.4 90.5 90.8 68.0 15.8 92.2
(83.7) (55.0,147.5) (74.3) (39.0,118.0)

Lung cancer 0.45 290 150 18.8 90.0 111.8 89.0 95.9 71.0 15.5 92.6
(80.9) (55.0,145.0) (79.9) (40.0,126.0)

Cirrhosis of the liver 0.49 78 137 21.5 90.0 105.9 85.0 85.9 64.0 17.6 92.3
(75.3) (52.0,137.0) (71.8) (36.0,112.0)

Pancreatic cancer 0.71 23 83 37.1 90.0 83.9 67.0 56.1 37.0 31.9 93.8
(65.6) (37.0,111.0) (55.5) (19.0,73.0)

Table 6.2: Selected diseases from the 30 leading causes of premature mortality in the U.S. ranked with respect to their severity from lowest (top) to
highest (bottom). The sample size statistics, as well as statistical size (𝛼) and power are reported for both fixed-sample and adaptive clinical trials.
SD, standard deviation; IQR, interquartile range about the median.
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Figure 6-1: Sample sizes and type I error rates (𝛼) for BDA-optimal non-adaptive (NA) and Bayesian adaptive (BA) randomized
clinical trials under 𝐻 = 0.
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Figure 6-2: Sample sizes and power for BDA-optimal non-adaptive (NA) and Bayesian adaptive (BA) randomized clinical trials
under 𝐻 = 1.
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6.4 Discussion

Our simulation results show that clinical trials with fixed sample sizes do not neces-

sarily minimize overall harm—or equivalently, maximize overall benefit—to current

and future patients of a disease. Often this is due to the fact that the drug approval

process takes time and missed opportunities for early approval or rejection can harm

patients. On the other hand, when current observations offer ambiguous clinical evi-

dence, it can benefit both patients and regulators to increase the trial size to protect

against both type I and type II errors. For a given significance level and power, such

an adaptive strategy leads to an overall reduction in the expected trial duration and

an increase in value to the patient.

There are, however, some disadvantages to adaptive designs. First, the logistics of

Bayesian adaptive RCTs are more complicated than those of standard fixed-sample

trials. An adaptive process requires consolidating and analyzing observations at the

same time that patients are being accrued. This parallel operation adds additional

overhead costs and operational complexity to an already complicated process, and

increases the probability of administrative errors.

A related issue is the statistical complexity in designing futility and superiority

stopping boundaries. We have considered a relatively simple example for the 𝑍-

statistic, but computing the performance characteristics for other statistics is not triv-

ial. Moreover, non-standard adaptive designs will likely undergo additional scrutiny

by regulators and institutional review boards, adding time and uncertainty to the

review process.

There is also the issue of information leakage, which can diminish the credibility

of a clinical trial. However, for the balanced two-arm RCTs considered here, the fact

that a trial should be continued merely indicates that the data lie between the study’s

stopping boundaries, which is unlikely to compromise the study’s integrity.

Finally, the assumption of time-invariant patient populations throughout the du-

ration of the trial is important. While patient trends affect fixed clinical trials as

well, adaptive trials are especially sensitive to changes in subject composition. Se-
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quential likelihood ratio tests generally assume stationary stochastic processes, and

drastic changes in the patient population would require considerably more sophisti-

cated stopping boundaries.

6.5 Conclusion

Bayesian adaptive clinical trials are becoming more popular because they exhibit

clear advantages over their fixed-sample counterparts in terms of cost, speed, and

potential impact on current and future patients (Berry, 2010). In such a framework,

it is straightforward to incorporate burden-of-disease measures and patient preferences

so as to reflect differences in the potential harm of type I and II errors to patients.

Although such processes are inherently more complex than traditional fixed-sample

clinical trials, the added complexity may well be worthwhile when weighed against

the savings in clinical trial costs, the number of patients exposed to potentially toxic

therapies, and the time to approval of effective therapies.
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Chapter 7

Financially Adaptive Clinical Trials

via Option Pricing Analysis

In the previous chapter, we considered designing adaptive clinical trials from the

perspective of patients. Here, we take the perspective of industry sponsors of new

therapies and investors. When valuing a candidate therapy from a financial per-

spective, we must consider the possibility that as the regulatory approval process

unfolds, industry sponsors might stop a trial early if clinical evidence suggests mar-

ket prospects are not as favorable as originally forecasted. Intuition suggests that

clinical trials that can be modified as new data are observed are more valuable than

trials without this flexibility. In this chapter, we propose modeling the accrual of

information in a clinical trial as a series of real options, which allows us to system-

atically design early-stopping decision boundaries that maximize the economic value

to the sponsor. In an empirical analysis of selected disease areas, we find that when

a therapy is ineffective, our method can decrease the expected cost incurred by the

sponsor in terms of total expenditures, number of patients, and trial length by up to

46%. Moreover, by amortizing the large fixed costs associated with a clinical trial over

time, financing these projects becomes less risky, resulting in lower costs of capital

and larger valuations when the therapy is effective.
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7.1 Introduction

When discounted cash flow (DCF) analysis is used to value a project, one must model

the possibility that as the project unfolds, managers might expand the project if it

goes well, or contract or even abandon the project when it does not work out as

forecasted. Intuitively, projects that can be modified as new information becomes

available are more valuable than projects without this flexibility. Moreover, the more

uncertain the outlook, the more valuable this flexibility becomes. The ability to

modify projects in the future are known as real options, and in this chapter we con-

sider how this valuation technique can be used to design financially-optimal decision

boundaries for futility in clinical trials.

Randomized clinical trials (RCTs) conducted by pharmaceutical and biotech firms

proceed through a series of controlled observations. Each observation of a drug’s safety

and efficacy provides information about its market potential, and therefore after each

observation there is an opportunity to review the data to determine whether or not

the trial is worth continuing. At any point in time, the drug’s sponsor knows the

cost of the next observation, but do the benefits of proceeding outweigh the cost, or

should the trial be stopped early for futility? Continuing the trial allows the sponsor

to make future decisions about whether to continue or abandon after subsequent

observations. In other words, it gives the sponsor the right, but not the obligation,

to invest in future observations and stages of drug development. From a financial

perspective, this can be evaluated as a series of real options.

The standard tools used to value options originate from Black and Scholes (1973)

and Merton (1973b). The term “real option” was first introduced to the literature by

Myers (1977), who identified that many corporate assets can be viewed as call op-

tions. Option-pricing techniques have since been used to value a variety of managerial

decisions including the option to expand, contract, defer or abandon a project across

a range of applications from natural resource valuation to biopharmaceutical R&D

(Brennan and Schwartz, 1985; Titman, 1985; McDonald and Siegel, 1985; Trigeor-

gis and Mason, 1987; Ingersoll Jr and Ross, 1992; Pindyck, 1993; Moel and Tufano,
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2002; Schwartz, 2004; Gunther McGrath and Nerkar, 2004; Bogdan and Villiger, 2010;

Lynch and Shockley, 2016).

In biopharmaceutical R&D there are two factors that can affect the value of a

drug as it navigates the regulatory approval process. The first is called scientific risk,

which captures the possibility that the drug will fail to meet its clinical endpoints.

This risk is generally uncorrelated with macroeconomic factors, and is therefore con-

sidered idiosyncratic. The second is market risk, which occurs when the drug is likely

to be technically successful, but the sponsor learns that its economic potential is

more limited than initially projected. For example, early-stage R&D projects are

traditionally monetized through licensing, joint development deals, and mergers and

acquisitions with other biopharma companies. Therefore, even when a drug meets its

clinical endpoints, these projects may face substantial systematic risk in the form of

business- and credit-cycle downturns, when investor appetite for such deals are lower

(Thakor et al., 2017). As a trial progresses, clinical observations and shifting market

conditions provide information on both of these risks. In this chapter, we develop a

systematic valuation approach that uses the information contained in these observa-

tions to determine whether it is economically beneficial to proceed with additional

observations.

7.2 The Option Value of a Clinical Trial

Management decisions during the drug development process depend on multiple pa-

rameters that may change over time as new information is collected. As time passes,

and more clinical observations are collected, the sponsor will begin to develop a clearer

understanding of its economic potential. This clarity can manifest itself in a number

of ways including through the likelihood the drug will be able to meet its endpoints.

The closer we get to the end of a clinical trial, the better informed we will be about

the economic potential of the drug. For example, imagine that a drug shows early

signs of toxicity, reducing our forecasted sales and increasing the probability that it

will not be approved for commercial development. After revaluing the project, we

109



may decide to abandon the drug because it is no longer profitable. To estimate a

more accurate value of a project, we must model this risk directly.

Real option valuation techniques, such as the binomial options pricing model, at-

tempt to model this risk by forecasting the possible trajectories the economic potential

of a project can follow based on both scientific and market risks. Given an estimate

of the current market potential, there is uncertainty about what that estimate will

be one period from now. We can model the progress of this market estimate as new

information is received using a recombining binomial lattice. For a fixed-sample clin-

ical trial with 𝑁 observations, the possible trajectories of the summary statistic on

the primary endpoint, Θ𝑛, can be represented as sample paths in this framework. A

new clinical observation of the effectiveness or safety of a new therapy can either be

positive or negative, reflected by the left (L) and right (R) steps of the binomial lat-

tice in Figure 7-1. Similarly, the state of the market, 𝑆𝑛, can independently improve

(U) or deteriorate (D) with a certain probability.

𝑛

𝑆𝑛

Θ𝑛

𝑉0

𝑉
(𝐿,𝑈)
1

𝑉
(𝐿,𝐷)
1

𝑉
(𝑅,𝑈)
1

𝑉
(𝑅,𝐷)
1

𝑉0

(𝐿)

𝑉
(𝐿,𝑈)
1

𝑉
(𝐿,𝐷)
1

(𝑅)

𝑉
(𝑅,𝑈)
1

𝑉
(𝑅,𝐷)
1

Figure 7-1: A single step of the binomial lattice. The scientific risk, Θ𝑛, can either step
left (L) or right (R) depending on the outcome of the most recent clinical evidence,
and the market risk, 𝑆𝑛, can either step up (U) or down (D) depending on evolving
market conditions. The right panel separates these 2 independent sources of risk into
a 2-step process.

The right panel of Figure 7-1 illustrates how this 2-dimensional risk can be visu-

alized as a binomial tree. First the summary statistic of the clinical trial is updated,

followed by a revision to the market conditions. Now suppose that at the start of the
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period, the cost of the next clinical observation is 𝐾, and the sponsor has the option

to continue or abandon the clinical. In this scenario, the value of drug at the start of

the period is given by,

𝑉0 = max

(︃
0,

E𝑄
0 [𝑉1]

𝑒𝑟𝑓Δ𝑡
−𝐾

)︃
, (7.1)

where the risk-neutral probability measure is denoted by 𝑄, the risk-free rate by 𝑟𝑓 ,

and the length of the period by ∆𝑡. Since we have assumed the scientific risk is

independent of the market risk, its risk-neutral probabilities are equal to its physical

probabilities, and therefore (7.1) can be expressed as,

𝑉0 = max

(︃
0,

E𝑃
0

[︀
E𝑄
0 [𝑉1 | Θ1]

]︀
𝑒𝑟𝑓Δ𝑡

−𝐾

)︃
, (7.2)

where the physical probability measure is denoted by 𝑃 . The calculation of a project’s

value then becomes straightforward. Once all possible scenarios with their corre-

sponding cash flows and various risk-neutral probabilities have been defined, we mul-

tiply the future values by their probabilities to calculate the expected future value

under the risk-neutral measure, and then discount this expected cash flow at the risk-

free rate back one layer. After we subtract the cost of continuing the trial, if the value

at any node is negative, we abandon the project, and set the value of the project at

that node to $0. In these states, the project value increases from a negative value to

$0. This difference in value is directly linked to the option to abandon.

The farther we proceed into the future, the less certain we are about the state

of the market or the clinical trial, and the tree therefore branches out as we move

forward in time (see Figure 7-2). The leaves of the tree represent the possible market

states at the end of the clinical trial, which for pivotal phase 3 trials precedes product

launch, and for early-stage trials precedes a later-stage trial. Working from the leaves

of the tree backwards to its root, we can calculate the value of the drug at each node,

one layer at a time. The present value of the project then corresponds to the value
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calculated at the root node,

𝑉𝑁 = max
(︁

0, 𝑓(Θ𝑁 , 𝑆𝑁) − 𝐼
)︁

𝑉𝑁−1 = max

(︃
0,

E𝑃
𝑁−1

[︀
E𝑄
𝑁−1[𝑉𝑁 | Θ𝑁 ]

]︀
𝑒𝑟𝑓Δ𝑡

−𝐾

)︃
...

𝑉0 = max

(︃
0,

E𝑃
0

[︀
E𝑄
0 [𝑉1 | Θ1]

]︀
𝑒𝑟𝑓Δ𝑡

−𝐾

)︃
,

(7.3)

where 𝑓(·) is a function that defines the economic value of a drug at the end of the

clinical trial for a given realization of (Θ𝑛, 𝑆𝑛), and 𝐼 is the investment required for

the next stage of development.

𝑛

𝑆𝑛

Θ𝑛

(Θ0, 𝑆0)

(Θ1, 𝑆1)

(Θ2, 𝑆2)

(Θ3, 𝑆3)

Figure 7-2: Binomial lattice model. The farther we proceed into the future, the less
certain we are about the state of the market or the clinical trial, and the tree therefore
branches out as we move forward in time.

The economic value of a drug upon commercial launch is often estimated by fore-

casting the drug’s peak annual sales and sales curve over time given market conditions
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and the drug’s attributes. This uncertainty is eventually resolved with the progression

of the drug through the clinical trial as its safety and effectiveness becomes known.

In addition to these factors, future sales will be influenced by the growth rate of the

target market, the marketing power of the company, other treatments available, the

price elasticity for the disease, and so on. These cash flows must then be discounted

at an appropriate cost of capital which is often estimated as the expected rate of

return investors will demand from similarly risky projects. While the appropriate

discount rate will depend on factors such as investor risk aversion and the correla-

tion of the project’s cash flows with other investments, in general, the cost of capital

will be higher in the earlier stages of drug development relative to the period after a

successful commercial launch.

7.3 Defining the Scientific and Market Risk Processes

To develop a better understanding of our valuation framework, consider a balanced

two-arm RCT that uses the Z-statistic as a measure of its primary quantitative end-

point. As in the previous chapter, given an observation 𝑍𝑛 = 𝑧𝑛, we define the

likelihood ratio of 𝑧𝑛, Λ(𝑧𝑛), as

Λ(𝑧𝑛) =
Φ(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 0)

Φ(𝑍𝑛 = 𝑧𝑛 | 𝐻 = 1)
. (7.4)

Taking the natural logarithm of the likelihood ratio function and using (6.1) to sub-

stitute in for 𝑍𝑛, the log-likelihood function, ln Λ(𝑍𝑛) ≡ Θ𝑛, can be expressed as a

random walk,

Θ𝑛 =
𝑛∑︁

𝑖=1

𝑋𝑖 , where 𝑋𝑖 =
𝛿2 − 2𝛿(𝑇𝑖 − 𝑃𝑖)

4𝜎2
, (7.5)
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and Θ𝑛 is defined to be the scientific risk process. The mean displacement between

Θ𝑛 and Θ𝑛+1 under the null and alternative hypothesis is then given by,

𝜇𝑋 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛿2

4𝜎2
, 𝐻 = 0

−
𝛿2

4𝜎2
, 𝐻 = 1 ,

(7.6)

and its variance is,

𝜎2
𝑋 =

𝛿2

2𝜎2
. (7.7)

The right (R) and left (L) additive factors for Θ𝑛 in the binomial lattice can then be

modeled as ±𝜎𝑋 , respectively, and their physical probabilities as,

𝑝𝑅 = 1 − 𝑝𝐿 =
𝜇𝑥 − 𝐿

𝑅− 𝐿
. (7.8)

These factors represent clinical evidence of the effectiveness of the drug. Adding L for

each leftward step, and R for each rightward step to Θ𝑛, models a possible evolution

of the summary statistic of the clinical trial as observations get collected.1

Similarly, if we model the market risk process (𝑆𝑛) as geometric brownian motion,

the up (U) and down (D) multiplicative factors in the binomial lattice are given by

𝑒±𝜎
√
Δ𝑡, respectively, where 𝜎 is the underlying market risk volatility. Their physical

probabilities are then given by,

𝑝𝑈 = 1 − 𝑝𝐷 =
𝑒𝑟Δ𝑡 −𝐷

𝑈 −𝐷
, (7.9)

where 𝑟 is the underlying cost of capital, and their risk-neutral probabilities are given

1Note that while we have considered normally distributed response variables for expositional
purposes, as long as the observations are conditionally independent and identically distributed, the
log-likelihood function will follow a random walk. By the central limit theorem, for large enough
𝑛 (e.g., 𝑛 > 50), we can approximate each 𝑋𝑖 as 𝒩 (𝜇𝑋 , 𝜎2

𝑋). (This approximation is exact for
normally distributed response variables.)
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by,

𝑞𝑈 = 1 − 𝑞𝐷 =
𝑒𝑟𝑓Δ𝑡 −𝐷

𝑈 −𝐷
, (7.10)

where 𝑟𝑓 is the risk-free rate. Here, U and D represent changes to the economic

potential of the drug due to external shocks in market conditions. The binomial

lattice is then formed by multiplying 𝑆𝑛 by U for each upward step, and by 𝐷 for

each downward step, which models the evolution of market conditions over the course

of the clinical trial.

7.4 Optimal Decision Boundaries for Futility

Using the risk processes defined in the previous section, we can now design an optimal

decision boundary that, when crossed, informs the sponsor that the clinical trial

should be stopped early for futility. Setting 𝐻 = 1 in (7.6), we can determine which

nodes, (Θ𝑛, 𝑆𝑛), result in the project being abandoned in (7.3). This design choice

mitigates the chance of a false early rejection when the drug is effective, yet preserves

its ability to stop early when the drug is ineffective (𝐻 = 0).

The decision boundary formed by this methodology can be demonstrated by con-

sidering a numerical example. We consider a balanced two-arm RCT that uses the

Z-statistic, 𝑍𝑛 in (6.1), as a measure of its primary quantitative endpoint. Tradition-

ally, 𝑍𝑛 is compared to a critical value, 𝜆, and the drug progresses to the next stage

of development if 𝑍𝑛 > 𝜆. The probability of approving a therapy given a treatment

effect 𝛿 is therefore Φ(𝛿
√
𝐼𝑛−𝜆), where Φ(·) is the standard normal cumulative distri-

bution function. Here, we assume 𝜆 = 1.64 for phase 2 and 𝜆 = 1.96 for phase 3, such

that the probability of a false approval given the drug has no effect is 5% and 2.5%,

respectively. A complete list of assumptions for this numerical example are provided

in Table 7.1.

To visualize the early-stopping boundary defined by applying our valuation tech-
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nique, note that 𝑍𝑛 is related to Θ𝑛 by the following equation

𝑍𝑛 =
𝛿
√
𝐼𝑛

2
− Θ𝑛

𝛿
√
𝐼𝑛

. (7.11)

Figure 7-3 plots this decision boundary as a function of the number of clinical ob-

servations, 𝑛, for this hypothetical example. Initially, when 𝑛 is small, the decision

boundary is very conservative. Common sense tells us that it is valuable to continue

collecting data in this scenario because the small sample size restricts the quality of

decision that can be made. Only if the drug has clearly underperformed does it make

economic sense to stop the trial for futility at this early stage. As 𝑛 increases, the de-

cision boundary becomes less conservative because a drug that has performed poorly

up to this point will have little chance of meeting its primary endpoint. Finally, as

𝑛 approaches its target accrual of 276 patients for phase 2 and 1,052 patients for

phase 3, the decision boundary approaches 𝑍𝑛 = 1.64 and 𝑍𝑛 = 1.96, respectively, in

accordance with the approval criteria.

The second factor that affects the decision boundary over time is unanticipated

shocks, either positive or negative, in economic conditions as modeled by the market

volatility parameter. If market conditions deteriorate, then continuation of the trial

at earlier stages becomes less valuable. In this scenario, the optimal decision is to

use a less conservative threshold for futility, which results in abandoning the trial at

an earlier stage. On the other hand, if market conditions improve, then the drug

becomes more valuable, and the optimal decision is to collect more evidence before

we can reject the hypothesis that the drug is effective.
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Figure 7-3: Financially-optimal futility boundaries. The left and right columns show the
decision boundaries for the phase 2 and phase 3 clinical trials described by Table 7.1. The
top row provides a 3-dimensional visualization of the decision boundary surface as a function
of the market conditions and number of patients accrued to the study. The middle rows
provide a top-down perspective of the decision boundary surface, and the bottom rows
provide a cross-section of the surface given stable market conditions.
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Parameter Phase 2 Phase 3 Comments

Significance level (𝛼) 5% 2.5% Probability of a false approval under 𝐻 = 0.
Statistical power (1− 𝛽) 80% 90% Probability of a correct approval under 𝐻 = 1.
Standardized difference (𝛿/𝜎) 0.3 0.2 Average treatment effect under 𝐻 = 1 in units of standard devia-

tions of the response variable.
Target accrual (2𝑁) 276 1, 052 Total number of patients in the trial if run to completion.
Cost per patient (𝐾/2) $40, 000 $42, 000 The cost of clinical trials varies across disease groups and de-

pends on multiple factors. On average, clinical trials have been
estimated to cost $40,000 and $42,000 per patient for phase 2
and phase 3 trials, respectively Battelle Technology Partnership
Practice (2015).

Trial length (𝑇 ) 2 years 3 years 𝑇/𝑁 defines the time between 2 observations, Δ𝑡, assuming uni-
form patient accrual.

Median annual sales – $300MM The drug is forecasted to generate $300 million per year in sales
if it meets its primary endpoint.

Net margin – 20% Percentage of revenues remaining as profit after all operating, in-
terest, and tax expenses have been deducted from annual sales.
In this case, the expected annual profit is $60 MM per year.

Years of exclusivity – 13 Revenues from a successful therapy are expected to be gener-
ated for a 13-year period of exclusivity after FDA approval before
patent expiration.

Launch costs – $50MM launch-related investment during the year a new therapy enters
the market.

Probability of success 58.3% 59.0% Average estimates for the probability of a successful transition
from phase 2 to phase 3, and phase 3 to approval across therapeu-
tic areas Wong et al. (2018). These values are used to estimate
the a priori probability of 𝐻 = 1.

Annual market volatility 50% 50% Market risk that affects the drug’s economic potential independent
of its clinical trial results (i.e., scientific risk). Factors include
business- and credit-cycle risk, regulation, and competition.

Annualized cost of capital (𝑟) 20% 10% Conventional estimates for early and late-stage clinical trials.
Risk-free rate (𝑟𝑓 ) 3% 3% Annual yield on a US 10-year Treasury Note.

Table 7.1: Parameter assumptions for the phase 2 and phase 3 clinical trials.
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7.5 Empirical Results

The financial value of these boundaries can be exhibited by applying our methodology

to a set of common disease areas. In this section, we vary the cost per patient, median

annual sales, and probability of a successful phase 3 trial to determine the optimal

futility boundaries across disease groups. Table 7.2 reports the present values of a

candidate drug for each disease group under both the null (𝐻 = 0) and alternative

(𝐻 = 1) hypotheses for clinical trials with (adaptive) and without (non-adaptive) the

option to end the trial early for futility.

These table entries show that disease groups with greater costs per patient, lower

median sales, and lower a priori probabilities of success have relatively less conserva-

tive decision boundaries. When a drug is ineffective, this results in greater savings in

terms of total expenditures, number of patients, and trial length. Here, managerial

flexibility allows the sponsor to avoid significant clinical trial costs when the economic

potential of the drug is learned to be poor. For example, under the null hypothe-

sis, phase 3 clinical trials for oncology, which have the higher cost per patient, were

stopped approximately 42.1% early, increasing the NPV for this scenario from −$67.5

million to −$35.7 million. In general, the average increase in NPV from using the

futility boundaries was $3.3 million for phase 2, and $14.3 million for phase 3. More-

over, trials that used the optimal futility boundaries were on average 31% smaller in

terms of total number of patients and overall trial length. Figure 7-4 illustrates these

savings by phase and disease area.

On the other hand, if the drug is effective, the likelihood of crossing the early-

stopping boundary decreases, and so the option to abandon the trial early for futility

is not exercised. In this case, the option expires worthless, but at no extra cost to

the sponsor, causing the NPV for both the adaptive and non-adaptive trial designs

to converge. The option to abandon early therefore allows the sponsor to hedge the

risk of downside scenarios, while maintaining their ability to fully extract the benefits

of positive outcomes. It is this nonlinear payoff structure that makes this adaptive

design so valuable.
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Phase 2 Non-Adaptive Adaptive
𝐻 = 0 𝐻 = 1 𝐻 = 0 𝐻 = 1

Disease Cost per patient
($M)

POS3,APP
(%)

NPV
($MM)

NPV
($MM) 2N T NPV

($MM)
E[2N]
(SD)

E[T]
(SD)

NPV
($MM)

E[2N]
(SD)

E[T]
(SD)

Cardiovascular 25.0 62.2 −6.0 22.3 276 2 −3.4 181.0 1.31 22.4 268.7 1.95
(59.6) (0.43) (25.7) (0.19)

Central Nervous System 39.5 51.1 −8.3 88.8 276 2 −5.0 197.4 1.43 89.0 270.8 1.96
(51.6) (0.37) (18.3) (0.13)

Metabolic 18.5 51.6 −2.7 89.8 276 2 −1.4 207.2 1.50 89.9 271.8 1.97
(46.2) (0.34) (14.7) (0.11)

Hematology 30.0 59.0 −6.2 70.9 276 2 −3.7 198.1 1.44 71.1 270.9 1.96
(51.2) (0.37) (18.0) (0.13)

Infectious 17.5 75.3 −2.5 89.1 276 2 −1.2 207.8 1.51 89.1 271.8 1.97
(45.9) (0.33) (14.5) (0.11)

Oncology 67.5 35.5 −17.2 19.2 276 2 −7.9 154.3 1.12 20.1 262.9 1.91
(70.9) (0.51) (42.6) (0.31)

Respiratory 30.5 59.0 −7.0 39.7 276 2 −4.2 188.4 1.37 39.9 269.7 1.95
(56.1) (0.41) (22.1) (0.16)

Phase 3 Non-Adaptive Adaptive
𝐻 = 0 𝐻 = 1 𝐻 = 0 𝐻 = 1

Disease Cost per patient
($M)

Annual sales
($MM)

NPV
($MM)

NPV
($MM) 2N T NPV

($MM)
E[2N]
(SD)

E[T]
(SD)

NPV
($MM)

E[2N]
(SD)

E[T]
(SD)

Cardiovascular 26.0 145 −25.6 83.2 1052 3 −12.6 569.0 1.62 84.8 996.0 2.84
(211.0) (0.60) (148.1) (0.42)

Central Nervous System 40.5 422 −38.3 343.5 1052 3 −22.9 682.3 1.95 344.2 1036.3 2.96
(190.1) (0.54) (67.0) (0.19)

Metabolic 19.0 371 −17.0 314.1 1052 3 −10.5 717.2 2.05 314.3 1038.9 2.96
(176.2) (0.50) (55.3) (0.16)

Hematology 31.0 302 −29.6 233.1 1052 3 −17.2 663.9 1.89 233.8 1031.2 2.94
(193.1) (0.55) (79.4) (0.23)

Infectious 18.0 265 −16.8 209.3 1052 3 −10.1 686.6 1.96 209.7 1032.8 2.95
(183.8) (0.52) (71.5) (0.20)

Oncology 69.0 344 −67.5 236.8 1052 3 −35.7 608.8 1.74 238.9 1023.7 2.92
(212.3) (0.61) (106.3) (0.30)

Respiratory 31.0 213 −30.2 144.7 1052 3 −16.2 616.3 1.76 145.8 1017.9 2.90
(203.9) (0.58) (110.2) (0.31)

Table 7.2: Phase 2 and phase 3 clinical trial statistics for selected disease areas. Abbreviations: POS3,APP, probability of success of a phase 3 to
approval transition; NPV, net present value; 2N, total number of patients in the trial; M, thousands; MM, millions; SD, standard deviation. Cost per
patient estimates are from Battelle Technology Partnership Practice (2015), POS3,APP estimates are from Wong et al. (2018) where we have used the
overall success rates for hematologic and respiratory diseases, and annual sales estimates are from Bogdan and Villiger (2010).
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Figure 7-4: Increases in value (ΔNPV) and decreases in clinical trial length (ΔT) from using the optimal futility boundaries in the case
of an ineffective drug (𝐻 = 0).
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The previous analysis assumed that the cost of capital for both trials with and

without the option to end the trial early for futility were the same. However, as de-

scribed by others Myers and Howe (1997); Thakor et al. (2017), because of financial

leverage, maintaining a large, fixed commitment to biopharmaceutical R&D is diffi-

cult in the face of business- and credit-cycle downturns. By providing sponsors and

investors with more frequent and systematic “exit options” to cut their losses in the

face of a market downturn, the systematic risk component of their investment will

be reduced. Moreover, these adaptive clinical trials can be funded according to more

granular milestones reducing the amount of financial leverage inherent to the project.

Since biotechnology firms have a greater clinical trial costs relative to their size, a

reduction in the leverage effect should be more beneficial for them, thus reducing

their exposure to systematic risk and consequently their cost of capital.

Figure 7-5 provides a sensitivity analysis that investigates the effect of a change

in the cost of capital. We find that if the cost of capital of an early-phase trial were

reduced by half, from 20% per year to 10% per year (similar to the cost of capital of

late-stage trials), then the value of an effective therapy increases on average by $15.2

million. Similarly, a 5% per year reduction in the cost of capital from 10% to 5%

increases the average value of a phase 3 clinical trial under 𝐻 = 1 by $152.8 million.

Moreover, the added value is most prominent for disease groups that have the greatest

economic potential given a successful therapy. This acute sensitivity suggests that

even modest reductions in the systematic risk component faced by investors can have

substantial benefits in terms of larger clinical trial valuations and increased funding

for biomedical R&D.
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Figure 7-5: Sensitivity of the value (∆NPV) of an effective drug (𝐻 = 1) to the cost
of capital for selected disease areas. From the left to right of each bar, the three
number summary corresponds to [1.5, 1, 0.5] times the cost of capital proposed in
Table 7.1.
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7.6 Discussion

Our empirical results show that fixed-sample RCTs without the option to abandon

early fail to maximize the economic value of candidate drug therapies. Often this is

because of missed opportunities to stop the trial early when clinical evidence suggests

lackluster future market prospects. In contrast, adaptive clinical trials that take

advantage of this optionality mitigate downside risk and result in an overall increase

in value to the sponsor and investors.

The framework that we have described is a simplified version of reality. The

resolution of a drug’s economic potential depends on multiple factors including the

trajectory of disease incidence that the drug is intended to treat, the rate of pop-

ulation growth over time, income growth, reimbursement rates, and so forth. For

example, imagine that a competing drug shows outstanding clinical results, reducing

our forecasted sales. After revaluing the project, we may decide to abandon the drug

because it is no longer profitable. In our empirical results, these factors have been

modeled as a general brownian motion process, but to estimate a more accurate value

of a project, we should model these other factors that affect the market risk process

directly. Moreover, we could expand the leaves of the binomial pricing model’s tree

to include a wider range of economic potential at launch, perhaps with a blockbuster

scenario in addition to other, more refined, intermediate outcomes that may not fol-

low a log-normal distribution. In general, clinical trials can also involve complicated

fee structures with various kinds of triggers for contract clauses. Therefore our state-

space representation can take on many forms, since each trial has its own peculiarities

and unique scenarios.

Since R&D programs and clinical trials are complex and uncertain, modeling

them can quickly become unmanageable. If we are not careful, however, the added

complexity can convolute our analysis to the point where they are no longer useful

to guide decision-making. Therefore, models must be pruned to the point where they

show us the most important links between present and future decisions. Our primary

goal in this paper was not to develop a detailed representation of the regulatory
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approval process, but rather to demonstrate how a clinical trial with both scientific

and market risk can be valued as a series of real options. Nevertheless, while we

have focused on a binomial recombining lattice representation, the principles behind

our valuation technique can easily be extended to more general distributions that

provide more realistic assumptions about the nature of the uncertainty. In these

cases, simulations and sophisticated numerical analysis will be required to estimate

early-stopping decision boundaries.

7.7 Conclusion

Clinical trials with financially-optimal futility boundaries exhibit clear economic ad-

vantages over their fixed-sample, non-adaptive counterparts. In particular, the tra-

ditional fixed-sample trials are inflexible, resulting in missed opportunities to stop

the trial early for futility. Conversely, financially adaptive trials add economic value

by conditionally funding future stages of a trial only when a drug shows commercial

potential. The ability of our framework to systematically design decision boundaries

that inform the sponsor when to stop a trial early for futility make it a potentially

valuable tool for capital budgeting. While our framework can be generalized, we em-

phasize that careful consideration must be applied to the assumptions underlying the

specific models in order to produce useful recommendations.
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Conclusion
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Chapter 8

Summary of Findings

This thesis approached the statistical analysis of stochastic processes in capital mar-

kets and regulatory decision-making in healthcare through the lens of signal process-

ing. We explored how information could be extracted from the evolution of signals

such as price and clinical observations, and moreover, how systems in these areas can

be designed to make efficient use of this information.

The main body of the thesis was separated into two parts. Part II focused on

the role of the frequency domain in investing. We presented the main mathematical

results of the power spectrum in Chapter 2, which formed the basis of our applications

to portfolio theory. In Chapter 3, we applied spectral analysis to develop a dynamic

measure of alpha that allows us to determine whether portfolio managers are capturing

alpha and over what time horizons their investment processes have forecast power. In

this context, an investment process was said to be profitable at a given frequency if

there was positive correlation between portfolio weights and returns at that frequency.

When aggregated across frequencies, the dynamic alpha was shown to be equivalent

to Lo’s (2008) Active/Passive decomposition, and provided a clear indication of a

manager’s forecast power and, consequently, active investment skill.

In Chapter 4, we extended the frequency domain representations of auto- and

cross-covariances to a financial measure of systematic risk, beta. Applying Engle’s

(1974) band-spectrum regression, we demonstrated that the beta of an asset can be ex-

pressed as a linear combination of frequency-specific betas, i.e., betas on components
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of the asset returns and components of the factor operating at different frequencies.

When applied to NYSE and AMEX stock returns from 1972 to 2016, we found that

the inclusion of the frequency domain can be used to estimate spectral factor models

that select portfolios with significantly lower out-of-sample variance relative to esti-

mators based on traditional multi-factor models. These frequency-specific measures

were shown to distinguish between short- and long-term components risk and covari-

ances, providing additional insights into portfolio and risk management above and

beyond their static counterparts.

Part III focused on efficient designs for randomized clinical trials (RCTs) in the

development and approval process of new therapies. In Chapter 5, we applied the

Bayesian decision analysis (BDA) framework of Montazerhodjat et al. (2017) and

formed a quantitative model in which patients’ preferences are the center of RCT

design. We quantified the loss in value to public health associated with different

actions in any fixed-sample RCT, used a BDA framework to aggregate the value of the

trial, and then determined an optimal RCT in which the expected value to patients

is maximized. We tailored this framework to weight-loss devices, and our results

demonstrated that traditional RCT designs with a fixed statistical significance level

do not necessarily maximize overall value (or equivalently, minimize harm) to current

and future patients. For low-risk devices and risk-tolerant populations, the inefficiency

was mainly caused by lengthy RCTs that were too conservative and overprotective of

the type I error rate. Conversely, for some high-risk devices, such as those that require

open surgery, traditional one-sided significance levels of 5% were more permissive than

the BDA-optimal thresholds.

Chapter 6 extended this framework to Bayesian adaptive clinical trials through

the use of sequential likelihood ratio tests. We found that adaptive trials exhibited

clear advantages over their fixed-sample counterparts in terms of cost, speed, and

potential impact on current and future patients. We concluded that although such

processes are inherently more complex than traditional fixed-sample clinical trials,

the added complexity may well be worthwhile when weighed against the savings in

clinical trial costs, the number of patients exposed to potentially toxic therapies, and
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the time to approval of effective therapies.

Chapters 5 and 6 focused on patient value, and did not include a consideration

of a clinical trial’s economic costs. In Chapter 7, we modeled a clinical trial as a se-

ries of real options, which allowed us to systematically design early-stopping decision

boundaries that maximize the economic value to the industry sponsor. Our numerical

simulations demonstrated that these financially adaptive clinical trials exhibit clear

economic advantages over their fixed-sample, non-adaptive counterparts. In particu-

lar, fixed-sample trials were inflexible, resulting in missed opportunities to stop the

trial early for futility. Conversely, financially adaptive trials added economic value

by conditionally funding future stages of a trial only when a drug showed commercial

potential. The ability of our framework to systematically design decision boundaries

that inform the sponsor when to stop a trial early for futility make it a potentially

valuable tool for capital budgeting.
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Appendix A

Chapter 2 Supplement

In this appendix, we derive statistical properties of the main estimators in Chapter

2 that are required for conducting standard inferences such as hypothesis tests and

significance-level calculations.

A.1 General Moment Properties of the Power Spec-

trum

Consider the real-valued discrete-time wide-sense stationary stochastic processes {𝑥𝑡}

and {𝑦𝑡} with means 𝑚𝑥 and 𝑚𝑦, and cross-covariance function 𝛾𝑥𝑦[𝑚] = E[(𝑥𝑡+𝑚 −

𝑚𝑥)(𝑦𝑡 −𝑚𝑦)]. Assuming the cross-covariance function has finite energy, let 𝑃𝑥𝑦(𝜔)

be its Discrete-Time Fourier Transform (DTFT) such that,

𝑃𝑥𝑦(𝜔) =
∞∑︁

𝑚=−∞

𝛾𝑥𝑦[𝑚]𝑒−𝑗𝜔𝑚, (A.1)

𝛾𝑥𝑦[𝑚] =
1

2𝜋

∫︁ 2𝜋

0

𝑃𝑥𝑦(𝜔)𝑒𝑗𝜔𝑚d𝜔. (A.2)

The function 𝑃𝑥𝑦(𝜔) is known as the cross spectrum, and can be interpreted as the

frequency distribution of the power contained in the covariance between 𝑥𝑡 and 𝑦𝑡. A

rectangular window of length 𝑇 can be used to select a finite-length subsample of 𝑥𝑡

and 𝑦𝑡. Forming the cross spectrum estimate from the DFT of this finite subsample
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we find that E[𝐶𝑥𝑦[𝑘]] is not generally equal to 𝑃𝑥𝑦(𝜔𝑘), where 𝜔𝑘 = 2𝜋𝑘/𝑇 , and

is therefore a biased estimator. The bias results from the convolution of the true

power spectrum, 𝑃𝑥𝑦(𝜔), with the DTFT of the aperiodic autocorrelation function

of the window. As the window length increases, its DTFT approaches a Dirac delta

function, and so the bias approaches 0. Thus, E[𝐶𝑥𝑦[𝑘]] is an asymptotically unbiased

estimator of 𝑃𝑥𝑦(𝜔𝑘) (Oppenheim and Schafer, 2009). Moreover, over a wide range of

conditions, it can be shown that,

Var[𝐿𝑥𝑦[𝑘]] ≈ 1

2
(𝑃𝑥𝑥(𝜔𝑘)𝑃𝑦𝑦(𝜔𝑘) + Λ2

𝑥𝑦(𝜔𝑘) − Ψ2
𝑥𝑦(𝜔𝑘)), (A.3)

where Λ𝑥𝑦(𝜔) and Ψ𝑥𝑦(𝜔) are the theoretical co-spectrum and quadrature spectrum

between 𝑥𝑡 and 𝑦𝑡, respectively. At the harmonic frequencies, which are separated

in frequency by 1/𝑇 , these frequency-specific estimators of the co-spectrum are ap-

proximately uncorrelated (Jenkins and Watts, 1968). This property can be used to

estimate the variance of the sum of co-spectrum estimators, 𝐿𝑥𝑦[𝑘].

A few important implementation details still remain. Notice that the variance of

the co-spectrum estimates are not consistent as they do not asymptotically approach

0 as 𝑇 increases. Averaging the co-spectrum estimates calculated over overlapping

time intervals can reduce the variance of the spectral estimates at the expense of

introducing bias. In addition, windowing procedures (e.g., multiplication by a Ham-

ming window) can be applied to the data before calculating the DFT. This procedure

will generally decrease spectral leakage at the expense of reducing spectral resolution.

An estimate of the co-spectrum can also be calculated from the Fourier transform of

the estimated cross-covariance function. Finally, if 𝑥𝑡 and 𝑦𝑡 are sampled at a low

frequency relative to the rate at which their properties change, then the decompo-

sition will be biased due to a phenomenon known as aliasing. See Oppenheim and

Schafer (2009) and Jenkins and Watts (1968) for a more detailed discussion of these

advanced implementation techniques.
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Appendix B

Chapter 4 Supplement

This Appendix summarizes the relevant band-spectrum regression properties from

Engle (1974).

B.1 Standard Errors and 𝐹 -Tests for Spectral Betas

If we define 𝑦 to be a 𝑇 × 1 column vector, and �̃� to be a 𝑇 ×𝑀 matrix, where the

𝑘th rows are the DFT coefficients of 𝑌𝑘 and [𝑋1,𝑘, . . . , 𝑋𝑀,𝑘], respectively, then an

𝑀 -factor band-spectrum regression can be specified as:

𝐴𝑦 = 𝐴�̃�𝛽 + 𝐴𝜀, (B.1)

where A is a 𝑇 × 𝑇 matrix with ones on the diagonals corresponding to included

frequencies and zeros elsewhere. Using this form, (4.3) can be rewritten as:

𝛽𝐾 =
(︀
(𝐴�̃�)†(𝐴�̃�)

)︀−1(︀
(𝐴�̃�)†(𝐴𝑦)

)︀
(B.2)

Var(𝛽𝐾) =
(︀
(𝐴�̃�)†(𝐴�̃�)

)︀−1
𝜎2 , (B.3)
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where “†” denotes the conjugate transpose, and an estimator of 𝜎2 is given by:

𝐴�̃� = 𝐴𝑦 − 𝐴�̃�𝛽𝐾 , (B.4)

�̂�2 =
(𝐴�̃�)†(𝐴�̃�)

𝑇𝐾 −𝑀
. (B.5)

From these equations, the standard errors of 𝛽𝐾 can be estimated. If a regression

model that forces the 𝛽’s to fit all frequencies (the restricted model) holds, then a

regression model that allows the 𝛽’s to differ across frequency bands (the unrestricted

model) will be relatively inefficient. In this case, Fisher’s 𝐹 -test can be used to

determine if the unrestricted model yields a significantly better fit. Assuming the

same 𝑇 ′ frequencies are used for both models, and letting �̃� and 𝑣 be the unrestricted

model’s and restricted model’s residuals, respectively, the 𝐹 -statistic is given by,

𝐹 =

(︁𝑣†𝑣 − 𝑢†𝑢

𝑛𝑢 − 𝑛𝑣

)︁
(︁ 𝑢†𝑢

𝑇 ′ − 𝑛𝑢

)︁ , (B.6)

where the unrestricted model has 𝑛𝑢 parameters, and the restricted model has 𝑛𝑣

parameters. Under the null hypothesis that the unrestricted model does not provide

a significantly better fit than the restricted model, 𝐹 will have an 𝐹 distribution with

(𝑛𝑢 − 𝑛𝑣, 𝑇
′ − 𝑛𝑢) degrees of freedom.
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Appendix C

Chapter 5 Supplement

In this Appendix, we investigate the robustness of our results in Chapter 5 to the

parameter assumptions in our model.

C.1 Sensitivity Analysis

We calculate the optimal balanced two-arm fixed sample RCT for each of the 4 device

types in our study as we vary the power constraint (Powermax), the time horizon

discount rate (𝑟), and the control device efficacy (𝜇𝑝). The optimal 𝛼 and sample size

values associated with the perturbed parameters are given in Tables C.1, C.2, and

C.3.

In Table C.1, we find that both the trial size and 𝛼 decrease as the power con-

straint decreases. By allowing a larger type II error rate, the optimization can afford

to decrease both the trial length and the type I error rate. On the other hand, in

Table C.2, the wait time induced by the regulatory-approval process becomes less

harmful as the discount rate decreases, and so the optimization can afford to increase

the sample size to reduce both the type I and type II error rates. Furthermore, as the

treatment effect of the control device increases in C.3, it becomes relatively more dif-

ficult to detect a difference between the control and investigational devices, especially

for the low efficacy devices. As such, the sample size must increase to maintain accu-

racy. Finally, in addition to providing specific BDA-optimal RCT recommendations,
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this sensitivity analysis highlights the need for carefully considered assumptions and

accurately calibrated preference models when implementing the BDA-framework.

Device characteristics
under 𝐻 = 1

Constraint
(Powermax)

Trial size
(2𝑛)

Critical
value (𝜆𝛼)

Significance
(𝛼)

Power
(1− 𝛽)

Low risk, high %TBWL 100% 78 1.11 13.5% 98.1%
90% 54 1.36 9.0% 90%
80% 44 1.54 6.5% 80%

Low risk, low %TBWL 100% 338 1.72 4.4% 89.0%
90% 338 1.72 4.4% 89.0%
80% 278 1.83 3.5% 80%

High risk, high %TBWL 100% 124 2.05 2.1% 97.4%
90% 92 2.16 1.7% 90%
80% 78 2.33 1.1% 80%

High risk, low %TBWL 100% 0 – – –
90% 0 – – –
80% 0 – – –

Table C.1: BDA-optimal RCTs for weight loss devices for decreasing power con-
straints.
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Device characteristics
under 𝐻 = 1

Discount
rate (𝑟)

Trial size
(2𝑛)

Critical
value (𝜆𝛼)

Significance
(𝛼)

Power
(1− 𝛽)

Low risk, high %TBWL 20% 30 1.13 13.4% 80%
15% 36 1.32 9.8% 80%
10% 44 1.54 6.5% 80%
5% 56 1.85 3.5% 80%
1% 88 2.53 0.7% 80%

Low risk, low %TBWL 20% 220 1.53 6.4% 80%
15% 244 1.66 4.9% 80%
10% 278 1.83 3.5% 80%
5% 338 2.10 1.8% 80%
1% 472 2.63 0.4% 80%

High risk, high %TBWL 20% 64 2.03 2.3% 80%
15% 68 2.12 1.9% 80%
10% 78 2.33 1.1% 80%
5% 88 2.53 0.7% 80%
1% 118 3.06 0.1% 80%

High risk, low %TBWL 20% 0 – – –
15% 0 – – –
10% 0 – – –
5% 0 – – –
1% 0 – – –

Table C.2: BDA-optimal RCTs for weight loss devices for decreasing discount rates.

Device characteristics
under 𝐻 = 1

Control
%TBWL

(𝜇𝑝)

Trial size
(2𝑛)

Critical
value (𝜆𝛼)

Significance
(𝛼)

Power
(1− 𝛽)

Low risk, high %TBWL 0% 38 1.62 5.7% 80%
2% 44 1.54 6.5% 80%
4% 50 1.42 8.1% 80%

Low risk, low %TBWL 0% 180 1.84 3.4% 80%
2% 278 1.83 3.5% 80%
4% 508 1.86 3.2% 80%

High risk, high %TBWL 0% 64 2.35 1.1% 80%
2% 78 2.33 1.1% 80%
4% 92 2.22 1.4% 80%

High risk, low %TBWL 0% 0 – – –
2% 0 – – –
4% 0 – – –

Table C.3: BDA-optimal RCTs for weight loss devices for increasing control device
efficacy.
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